
AD-AQ9I 686 CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF PSYCHOLOGY F/G 5/10
ACQUISITION OF PROBLEM-SOLVING SKILL.(U)
OCT 80 J R ANDERSON. J G GREENO, P J KLINE N0001-78-C-0725

UNCLASSIFIED TR-80-5 ML.ImIIIIIIIIImI
I , flllllllffffff
lEE~lEEllElllE
IIIIIIIIIIIIII
IIIIIIEEEEIII
IIIIIIIIII



6 LEVEL(
Acquisition of Problem-Solving Skill

John R. Anderson James G. Greeno
Carnegie-Mellon University University of Pittsburgh

/ Paul J. Kline and David M. Neves
Carnegie-Mellon University

Approved for public release; distribution unlimited.
Reproduction in whole or in part is permitted for any purpose

of the United States government.

, This research was supported by the Personnel and Training Research Programs, Psychological
Services Division, Office of Naval Research, under Contract No.: N00014-78-C-0725, Contract
Authority Identification Number, NR No.: 154-399 to John Anderson and under Contract No.: N00014-
78-C-0022, Contract Authority Identification Number, NR No.: 157-408 to James Greeno.

80 11 05



SLICA QTJ f 4 e .A D ~ . ~J . C .
SLUIYCIAS51-7ICATION -- TW4S PArE'Sa Di

REPOR) I.OCU MENTATION P AGE READ INSTRUCTIONS
_____________________________________BEFOR~E COMPLETING ?ORM

I RtE=ORT NUMSE:R !ZGOVT ACCESSION NO. 3. ;ECIP;ENT*S CATAL.00 NUMaER

Technical Report #80-5 A A '9 $b
4. TITLE (and Sablitii) 5. TYPE OF REPORT & PERIOD COV.EREO

Acquisition of Problem-Solving Skill, e' Final technical *

6. PERFORMING ORG. REPORT NUMBER

7. AUTMQRteo). . ..---- CONTRACT OR GRANT NUMBER(*)

JonR./Anderson.,Janes G. hreeno7 'Paul J./Kline
Jon David M./Neves .N~l-8C~2

9. PERFORMING ORGANIZATION NAME AND AOORLSS 10. _P A ELEMEsT.PROOtfCT. TASKC

Department of Psychology REA04WOK-NIT4-0lR

Carnegie-Mellion UniversityRR40-1
Pittsburgh, Pennsylvania 15213 NR 154-399 66153N

II. CONTROLLING OFFICE NAME AND ADDRESS .AOR T " T &

Personnel and Training Research Programs 1 7 Octebew 17'48(f
Office of Naval Research 13. NUMBER OF PACE~

Arlington, Virginia 22217 72 i
14. MONITORING AGENCY NAME 8ADORESS(11 different !rom Controling2 Office) I5. SECURITY CLASS. (61 this reiport)

'. / .. '. ,1~ unclassified

5s. OECL ASS] F1CATION/ DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (if efile Report)

Approved for public release; distribution unlimited.

17?. DISTkISUTION STATEMENT (of thle abstract entered it' Block 20. 11 different from -Report)

is. suPT'-EMENTARY NOTES

To appear in J.R. Anderson (Ed.), Cognitive Skills and their Acquisition,
Hillsdale, N.J.: Lawrence Erlbaum Associates, 1981.

19. KEY A :R"J (C,;neisiue on r~ aese side if necessary ianrd identity by block num'ber)

Geometry Schemata Representation Discrimination
Mathematics education Planning Composition Automatization
Skill acquisition Proofs Proceduralization Declarative encodings
Learning Problem-solving Analogy Procedural encodings

2.Production systems Search Generalization Practice effects
2. JSTR ACT (Cantnue on reverse. side ifn.ecesery 'aid idenltify by block num'ber)

The paper is organized into five major sections and a summary. Each of the
five major sections is devoted to a different aspect of our analysis of proof
skills in geometry and their acquisition. The first section presents an analysis
of how a student searches for a proof in geometry after he has acquired his basic
skills. This provides a basic framework within which to understand each of the
types of learning that we then discuss in the remaining four sections. The
second section is concerned with what we call text learning. It is concerned with

DDFA'Pm7 1473 EDITION1 OF 1 Nov 45, :3 )85tC-F unclassified
SE~uPi1Y :L A5; 1ZAT;CN OF TtIIS PAGE 'Wher Vt. En.,rdaj



unclassified
SECURITY CLASSIVICATIDN OP THIS PAGEtW' D st. Entered)

,20. Abstract (continued)

w hat the student directly encodes from the text, and more importantly, the

processes that use this direct encoding to guide the problem solving. The

third section is concerned with a process that we call subsumption, a means

by which the student encodes new information into existing knowledge structures.

Fourth, we discuss the processes of knowledge compilation by which knowledge is

transformed from its initial encoded form, which is declarative, to a more

effective procedural form. The final major section discusses how practice

serves to tune and optimize the skill so that the proof search is performed

more successfully.

19. Key Words (continued)

Tuning
Partial matching

Accessi'onr

'tC

unclassified

SECURITY CLASSIFICATION OF TSIS Phaerhen sea Ente)

...-



Introduction

This chapter presents some recent explorations we have made in the domain of learning to solve

geometry proof problems. The background of these explorations consisted of two research

programs: one investigating general principles of learning and the other investigating the nature of

problem-solving skill in geometry. We have been conducting these two programs relatively

independently since about 1976, but both programs have used versions of Anderson's (1976) ACT

production system as a computational formalism. Our investigations of learning have included a

discussion of general assumptions about learning and design issues (Anderson, Kline & Beasley,

1980) and an analysis of prototype formation (Anderson, Kline & Beasley, 1979). Our studies of

geometry problem solving have included an analysis of forms of knowledge required for successful

performance (Greeno, 1978), a discussion of goal representation (Greeno, 1976), and a discussion of

schematic knowledge involved in planning (Greeno, Magone & Chaiklin, 1979). The knowledge

required to solve proof problems is moderately complex, but since its structure has been studied in

some detail it serves as a feasible target for a theoretical analysis of learning. In our investigations,

we have found ways to extend both the previous analysis of learning and the previous analysis of

problem-solving skill significantly.

The paper is organized into five major sections and a summary. Each of the five major sections is

devoted to a different aspect of our analysis of proof skills in geometry and their acqu isition. The first

section will present an analysis of how a student searches for a proof in geometry after he has

acquired his basic skills. This will provide a basic framework within which to understand each of the

types of learning that we will then discuss in the remaining four sections. The second section is

concerned with what we call text learning. It is concerned with what the student directly encodes

from the text, and more importantly, the processes that use thi6 direct encoding to guide the problem

solving. The third section is concerned with a process that we call subsumption, a means by which

the student encodes new information into existing knowledge structures. Fourth, we discuss the

processes of knowledge compilation by which knowledge is transformed from its initial encoded form,

which is declarative, to a more effective procedural form. The final major section discusses how

practice serves to tune and optimize the skill so that the proof search is performed more successfully.
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The empirical information used in this research came from a number of sources. First, a 14-year-

old student agreed to study geometry with our supervision and observation. This student, to whom we

refer as Subject R, met with one or two of us on quite a regular basis for 30 sessions covering 2

months. In each session, lasting for about 45 minutes, R read sections of a geometry textbook and

worked problems from the text, thinking aloud as he proceeded. This work done by R was his only

study of geometry; his mathematics work in school was on algebra, and this represented accelerated

instruction for him. We also had access to a set of three interviews obtained from a 14-year-old

student who was beginning to work on geometry as his regular school mathematics study. The other

major source of information was a set of interviews obtained from six students who were taking a

regular course in geometry. These interviews were obtained on an approximately weekly basis

throughout the course.

A Model of the Skill Underlying Proof Generation

Most successful attempts at proof generation can be divided into two major episodes - an episode

in which a student attempts to find a plan for the proof and an episode in which the student translates

that plan into an actual proof. The first stage we call planning and the second execution. It is true

that actual proof generation behavior often involves alternation back and forth between the two

modes -- with the student doing a little planning, writing some proof, running into trouble, planning

some more, writing some more proof, and so on. Still we believe that planning exists as a logically

and empirically separable stage of proof generation. Moreover, we believe that planning is the more

significant aspect and the aspect which is more demanding of learning. Execution, while not

necessarily trivial, is more "mechanical".

It is also the case that planning tends to pass without comment from the student. (We had one

subject who preferred to pass through this stage banging his hands on his forehead.) However, we

have tried to open this stage up to analysis through the gathering of verbal protocols. These

protocols indicate a lot of systematic goings-on which seem to fit under the title of planning.

A plan, in the sense we are using it here, is an outline for action -- the action in this case being proof

execution. We believe that the plan students emerge with is a specification of a set of geometric rules
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that allows one to get from the givens of the problem, through intermediate levels if statements, to the

to-be-proven statement. We call such a plan a proof tree. This idea about the general nature of a

plan is consistent with other discussions of planning such as Greeno, Magone and Chaiklin (1979),

Newell and Simon (1972), and Sacerdoti (1977).

Figure 1 illustrates (a) an example geometry problem and (b) a proof tree. In the tree, the goal to

prove two angles congruent leads to the subgoal of proving the trianglesA(VZ andAWVY congruent.

This goal is achieved by the side-angle-side (SAS) postulate. The first side VX" I Wis gotten directly

from the givens. Since these sides form an isosceles triangle, they also imply LVXZ LVWY, the

second part of the SAS congruence pattern. The third partXZ -- WY can be gotten from the other

given that XY = 7Z. A proof can be obtained from Figure 1 by unpacking various links in the proof

tree. Such a proof is given below. It should be noted that some of these links map into multiple lines

of proof. For instance, the link connecting" x '?Z to 72- WY maps into the 9 lines 4-12 in the

proof. This is one of the important reasons why we characterize the proof tree as an abstract

specification of a proof.

1. "X VW given
2. SY1 WZ given
3. &(YZ is isosceles definition
4. .YXZ 1=?LYWY baseLs of isosceles
5. XY = WZ def. of '
6. YZ = YZ symmetric property of equality
7. XY + .. Z = YZ + WZ addition property of equality
8. XYZW given
9. XZ = XY + YZ segment addition
10. WY YZ + WZ segment addition
11. XZ WY substitution
12. XZ W def. ofW
13. AXVZ%, WVY SAS
14..XVZ TJ.WVY corresponding parts of congruent &s

The proof tree is, of course, not something that students typically draw out for themselves. Rather it

is a knowledge structure in the head. Various remarks of students suggest to us that it is a real

knowledge structure, not just a product of our theoretical fantasies. For instance, one student

described a proof as "an upside down pyramid". (For a student a proof tree would be upside-down

since the actual proof ends in the to-be-proven statement. However, we display the tree right-side up

(to-be-proven statement at the top) because that arrangement facilitates theoretical discussion.)



( a ) 
_ _ _

Given: V-X a VW, XY -WZ, X YZ W
Prove: LXVZ a LWVY

x y z w

(b) PLAN

LxVz a LwVY

AZ.VX & WVY

FIGURE 1

A problem with its proof tree and detailed proof.



Given: M is the midpoint of AB and CD
Prove: M is the midpoint of EF

F IGURE 2

I; Problem for simulation of planning.
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As a pedagogical aside, we might say that we think it very important that the central role of such

abstract plans be taken into account in instruction. It is very easy to direct instruction to proof

execution and ignore the underlying plan that guides the writing of the proof. The idea of focusing on

the general structure of the proof, rather than on its details, agrees with Duncker's (1945) suggestion

of attempting to present organic proofs, rather than mechanical ones. Since the proof tree is closely

related to the main subgoals that arise during solution, instruction that used the proof tree explicitly

might facilitate acquisition of useful strategic knowledge.

Creating a proof tree is not a trivial problem. The student must either try to search forward from the

givens trying to find some set of paths that converge satisfactorily on the to-be-proven statement or

he must try to search backward from the to-be-proven statement trying to find some set of

dependencies that lead back to the givens. Using unguided forward or backward search, it is easy to

become lost. We will argue that students use a mixture of forward and backward search. This

mixture, along with various search heuristics they acquire, enables students to deal with the search

demands of proof problems found in high school geometry texts.

Example: The Simulation

We will discuss an example problem taken from Chapter 4 of Jurgensen, Donnelly, Maier, and

Rising (1975). This problem is shown in Figure 2. It is among the most difficult problems found in that

chapter. We first discuss the way that an ACT simulation performed on this problem. This will serve

to illustrate more fully our conception of the planning process in proof generation and how this

planning is achieved in a production system. Then we will see how ACT's performance compares

with that of a high school subject.

ACT's search for a proof tree involves simultaneously searching backward from the to-be-proven

statement and searching forward from the givens. An attempt is made to try to bring these two

searches together. This search process creates a network of logical dependencies. When successful

ACT will eventually find in its search some set of logical dependencies that defines a satisfactory

proof tree. This proof tree will be embedded within the search network.

Figure 3 illustrates the search at an early stage of its development. ACT has made forward



AC E
Goal M is midpoint

of EF

M EM FM

ACME. ADMF

F D B

,&AMC ABMD

MB ?iM=Wb LAMCZLBMD LCMEZLDMF
t t

M, midpoint M midpoint vertical
of AF of CD angles

FIGURE 3

Problem net early in planning.



inferences that there are two sets of congruent anglesAMC ;LBMD and CME ILDMF because of

vertical angles and that there are two sets of congruent segments, AM and CM = MD because

of the midpoint information. (These inferences were made by specific productions in the ACT

simulation, but we are postponing discussion of productions until the learning sections.) With this

information in hand ACT also makes the forward inference that &AMC *= ABMD because of the side-

angle-side postulate. It has been our experience that almost everyone presented with this problem

works forward to this particular inference as the first step to solving the problem. Note at this point

that neither ACT nor our subjects know how this inference .;; Y fit into the final proof of the problem.

Meanwhile, ACT has begun to unwind a plan of backward inferences to achieve the goal. It has

translated the midpoint goal into the goal of proving the congruence E-M = FM. In turn it has decided

to achieve this goal by proving that these two segments are corresponding parts of congruent

triangles, &CME and6,DMF. This means that it must prove that these two triangles are congruent --

its new subgoal.

Note that the forward inferences have progressed much more rapidly than the backward

inferences. This is because backward inferences, manipulating a single goal, are inherently serial

whereas the forward inferences can apply in parallel. With respect to the serial-parallel issue it should

be noted that the backward and forward searches progress in parallel.

Figure 3 illustrates the limit to the forward inferences that ACT generates. While there are, of

course, more forward inferences that could be made, this is the limit to the inferences for which ACT

has rules strong enough to apply.

Figure 4 illustrates the history of ACT's efforts to reason backward to establish thatACMEN= ADMF.

ACT first attempts to achieve this by the side-side-side (SSS) postulate (a basically random choice at

this stage of learning). This effort is doomed to failure because the triangle congruence has been set

, !as a subgoal of proving one of the sides congruent. When ACT gets to the goal of establishing EMt'

FM it recognizes the problem and backs away. Our subject R, like ACT, had a propensity to plunge

into hopeless paths. One component of learning (discrimination) would eventually stop it from setting

such hopeless subgoals.

-I
-I :



A C E

M Goal M is midpoint
o f EF

F D B
ACME t ADMF X

S SAS X ASA'

CM=-DM ME=-MF FC-=FD LCME=_LDMF CM=-MD LECM=-LFDM X

&AMC ACME

Mmpon =CMBMD LA M C LBM D LCMEz LOW

MipitM midpoint vertical
of AB o f CD angles

FIGURE 4

Trace of some backward-chaining efforts by ACT.



We will skip over ACT's unsuccessful attempt to achieve the triangle congruentM by side:angle-side

(SAS) and look in detail at its efforts with the angle-side-angle (ASA) postulate. Two of the three

pieces required for this -- CME ' _MF and C-M ' MD have already been established by forward

inferences. This leaves the third piece to be established - that /ECM '..FDM. This can be inferred

by supplementary angles from something that is already known -- thatAMC ! MD. However, ACT

does not have the postulate for making this inference available. This corresponds to a blindness of

our subject R with respect to using supplementary angles. Although the opportunity did not arise in

this problem because he was following a different path to solution, many other times he overlooked

opportunities to achieve his goals by the supplementary angle rule.

Having failed the three available methods for proving triangle congruence, ACT backed up and

found a different pair of triangles, &AME and ABMF, whose triangle congruence would establish the

higher goal that EM = FM. (It turns out that, by failing on the supplementary angle needed to

establish&CME 1 &DMF and going on to try/&AME '! A BMF, ACT finds the shorter proof.)

Fortuitously, ACT chooses ASA as its first method. The attempt to apply this method is illustrated in

Figure 5. A critical congruence, thatLAME Z_MF is gotten because these are vertical angles. Note

that this inference was not made by the forward-reasoning vertical-angle rules. This is caused by a

difficulty that the ACT pattern-matcher has in seeing that lines define multiple angles. The segments

IWand ME that defineLAME were already used in extracting the anglesJAMC andLCME for use by

the forward reasoning vertical angle postulate.

ACT is also able to get the other parts of the ASA pattern. The side AM = BM has already been

gotten by forward inference. The fact thatLEAM ".LFBM can be inferred from the fact that,&AMC T

&BMD since the angles are corresponding parts of congruent triangles. With this ACT has found its

proof tree embedded within the search net. That proof tree is highlighted in Figure 5.

Comparison of ACT to Subject R

It is of interest to see how ACT's behavior compares to that of a typical student. We have a more or

less complete record of subject R's learning and work at geometry through Chapter 4 of Jurgensen,

Donnelly, Maier, and Rising. In particular, we have a record of his performance on the critical



A C E

M
Goal M is midpoint

F D B EM ZFM

ACME= i&DMF AAME -=,ABMF

SSS SAS ASA A

LAME LBMF 4- LEAM LFBM

AM M5 ZCM MD ZAMC /jpMD L9ME aLDMF

M idoint M idoint vria
*of AB of CD angles

FIGURE 5

A Application of ASA method by ACT.
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problem in Figure 2.

Subject R's performance did not correspond to that of ACT in all details. This is to be expected

because ACT's choices about what rules to apply have an important probabilistic component to them.

However, we can still ask whether ACT and subject R made inferences of the same character. One

way of answering this question is to determine whether ACT could have produced R's protocol if the

probabilities came out correctly. By this criterion ACT is compatible with much of R's protocol.

Like ACT, R began by making the forward inferences necessary to conclude AAMC B ~.MD and

then making this conclusion. Like ACT these inferences were made with little idea for how they would

be used. Then like ACT, R began to reason backward from his goal to prove that M was the midpoint

of EF to the goal of proving triangle congruence. However, unlike ACT he was lucky and chose the

triangle &AME "t BMF first. Unlike ACT again, but this time unlucky, he first chose SAS as his

method for establishing the triangle congruence. He got AM M-B from previous forward inference

and the LEM %- BM from the fact that.&MC ',&1BMD -- just as ACT obtained this in trying to use

ASA. However, he then had to struggle with the goal of proving AEtJBF. Unlike ACT, subject R was

reluctant to back up and he tenaciously tried to find some way of achieving his goal. He was finally

told by the instructor to try some other method. Then he turned to ASA. He already had two pieces of

the rule by his efforts with SAS and quickly got the third componentLAME 'L-L1MF from the fact that

they were vertical angles. Note that subject R also failed to make this vertical angle inference in

forward mode ajnd only made it in backward mode - as did ACT.

In conclusion, we think that R's behavior was very similar in character to that of ACT. The only

major exception was R's reluctance to back up when a particular method was not working out

When subject R worked on this problem he had spent a considerable number of hours studying

geometry. Thus, the version of ACT that simulates his performance represents knowledge acquired

over some history of learning, although we will discuss later some significant ways in which this

version of ACT is less advanced than some others that have been programmed for geometry problem

solving. We did not simulate the acquisition of skills represented in the version of ACT whose

performance we have just described. However, we had certain learning processes in mind when we
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developed the simulation program, and its design was intended to be a plausible hypothesis about

skill that could be acquired with those learning processes, as well as to simulate performance like that

of subject R. We have developed simulations of various components of the learning process that lead

to a skill product of the kind we simulated in this version of ACT. It is to this learning analysis that we

now turn.

Learning from the Text

Out ot their initial interactions with the text and the teacher, students emerge with a rudimentary

ability to solve proof problems in geometry. One might suppose that students are directly instructed

as to what the procedures are that underlie proof generation. However, there is no such instruction in

standard texts and yet students can learn from these texts. The texts provide only indirect information

about how to generate proofs. We have been able to identify three sources of the knowledge that

permits students their initial success in solving problems. These sources can be ordered on a

continuum of sophistication and power. Lowest on this continuum, students use worked out

examples as an analogical base for solving further problems.' Next on the continuum students can

apply general problem solving methods to apply their understanding of the postulates and definitions

of geometry. Highest on the continuum, students can extend general concepts that they have to

incorporate the new material of geometry (subsumption). We will discuss the first two kinds of

learning in this section and the other kind of learning in the next section. We organize the first two

together beause they involve more direct encoding of knowledge from the text. This issue here turns

out to be, not encoding the knowledge, but rather how the knowledge is used once encoded. With

respect to the third kind of learning, the subsumption processes underlying the encoding proves to be

of considerable interest.

t Another form of learning based on worked-out examples is possible, but the authors of this paper differ in our opinions
about whether it is plausible. The possibility is that learners acquire new problem-solving procedures directly from observation
of the solutions of example problems. We have work~ed out some simulations of learning based on this idea, but we do not
describe them in this chapter. partly because of space limitations, and partly because we do not all agree that the mechanism of

production designation used in that learning psychologically plausible.
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Analogy: Use of Examples

A good deal of a typical student's time is spent studying worked out examples of proofs or going

over examples that he/she has worked out. Students are able to commit a good bit of these examples

to memory arnd what they cannot remember they refer back to the text for. Many students make heavy

use of the examples (recalled from memory or read from the text) to guide solutions to new problems.

Students are able to spontaneously detect similarities between past problems they remember and new

problems they are facing. Once having detected the similarities, they enjoy fair success in

mapping/transforming proofs for one problem to another problem. This use of prior examples we

refer to as analogy, which seems an appropriate label and is consistent with others' uses of the term

(Rumelhart & Norman, this volume; Winston, 1978). One such pair of problems for which analogy is

successful is illustrated in Figure 6. The text provides a solution to Problem (a) and then presents

Problem (b) as the first problem for proof in the section. Our subject R noticed the similarity between

the two problems, went back to the first and almost copied over the solution.

To account for successful solution of Problem (b) by analogy using Problem (a), we must assume

that the student has a facility to partially match the diagram and given statements of one problem to

the diagram and given statements of another problem. We have recently developed such partial

matching facilities for the ACT theory.

One problem with analogy to specific problems is that it appears to be effective only in the short run

because students' memory for specific problems tends to be short-lived. All examples we have of

analogy in R's protocols come within the same section of a chapter. We have no examples of

problems in one section reminding R of problems in an earlier section.

A second problem with pure analogy is that it is superficial. Any point of similarity between two

* problems increases the partial match. It is no accident that the two pairs of triangles in Figure 6 are

oriented in the same direction, although this is completely irrelevant for the success of the analogy.

In ACT analogy depends on partial matching processes which are quite "syntactic" in character.

That is. the partial matching processes just count up the degree of overlap in the problem

descriptions without really evaluating whether the overlaps are essential to the appropriateness of the



(a)
~~Gived: XY= W'

Prove: AXYZ a AWYZ

x w

(b)
Given: AB U -

iBC bisects AD
Prove: AABC ADBC

A C D

FIGURE 6

I. Two problems with obvious similarity.

'9



C(a)

Given: AE EC

LBEA LBEC
Prove; AABD ACBD

A 0 C

(b)Given: ON aOR
LOON - LRON

Prove: AMOO A APRN
M N 0 P

(c) B
Given: TB =

LBEF LBEG
AB ni FE
BC ni EGA F D G C Prove: AABD - ACBD

I.

FIGURE 7

Problems illustrating limited validity of superficial analogy.

-I I I I I I I
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solution or not. In our own selves we note a tendency to respond to overlap between problems in this

same superficial way. Consider the three problems in Figure 7. At a deep level the first two problems

are really quite similar. Larger triangles contain smaller triangles. To prove the containing triangles

congruent it is first necessary to prove the contained triangles congruent. The contained triangles in

the two problems are congruent in basically the same way and they overlap with the containing

triangles in basically the same way. However, on first glance the two problems seem quite different.

In contrast, on first glance, the two problems in parts (a) and (c) of Figure 7 appear to have much in

common. Now it is true that upon careful inspection we can determine that the first pair provides a

more useful analogy than the second pair. However, it seems that the function of analogy in problem

solving of this sort is that of a noticing function. Similar problems spontaneously come to mind as

possible models for solutions. If the superficial similarity between Problems (a) and (b) is not

sufficient for the analogy to be noticed there will never be the opportunity for careful inspection to

realize how good the deep correspondence is.

There is one very nice illustration of the problem with the superficiality of analogy in the protocol of

R. This concerns a pair of problems that come in the first chapter. Figure 8 illustrates the two

problems. Part (a) illustrates the initial problem R studied along with an outline of the proof. Later in

the section R came across Problem (b) and immediately noticed the analogy. He tried to use the first

proof as a model for how the second should be structured. Analogous to the first line R0 = NY he

wrote down the line AB > CID. Then analogous to the second line ON = ON he wrote down BC > BCI

His semantic sensitivities caught this before he went on and he abandoned the attempt to use the

analogy.

Interpretation of Definitions and Postulates4 We have found a schema-like representation to be very useful for representing a student's initial

declarative encoding of some of the geometry postulates and definitions. (As we will explain shortly,

we have also found schemata to be useful structures for encoding prior knowledge.) Table 1

illustrates a schema encoding for the SAS postulate which is stated in the text as:

If two sides and the included angle of one triangle are congruent to the corresponding
parts of another triangle, the triangles are congruent.

The diagram in Figure 9accompanied this statement.

F d



Y C D

(a) N (b) B

Given: RO=NY, RONY Given: AB >CD, ABCD
Prove: RN=OY Prove: AC > BD

RO = NY AS CD

ON= ON BC a BC
RO+ON= ON+NYRONY III

RO+ON =RN
ON+NY =OY

RN= OY

FIGURE 8

A problem in which superficial analogy goes wrong.

Im



Table 1

SAS Schema

Background s is a side of AXYZ

s2 is a side of AXYZ
Al is an angle of AXYZ
?A1 is included by si and s2?
s3 is a side of LUVW
s4 is a side of AUVW
A2 is an angle ofAUVW
?A2 is included by ,3 and s4?

Hypothesis
si is congruent to s3
s2 is congruent to s4
Al is congi uent to A2

Conclusion
A XYZ is congruent to .UVW

Comment
This is the side-angle-side postulate

I:

I
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FIGURE 9

Diagramn accompanying the SAS postulate.
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We propose a student creates a declarative representation like the schema in Table 1. The schema

in Table 1 is divided into four categories of information: background, hypothesis, conclusion, and

comment. The background includes relevant descriptive information about the diagram and contains

the constraints that allow the variables (sides and angles) to be properly bound. The hypothesis

specifies propositions that must be asserted in previous statements of the proof. The comment

contains additional information relevant to its use. Here we have the name of the postulate that

prescribes what the student should write as a reason.

In reading such a postulate subject R would typically read through at a slow but constant rate and

then go to the diagram trying to relate it to the statement of the postulate. More time would be spent

looking at the diagram and relating it to the postulate statement than on anything else. We take this to

indicate time spent extracting the background information which is not very saliently presented for a

particular problem. Students are not always successful at extracting the relevant background

information. For instance, subject R failed to appreciate what was meant by "included angles"

(hence the question marks around these clauses in the clauses in the background in Table 1). It was

only sometime later, after direct intervention by the experimenter, that R got this right.

We regard the knowledge structure in Table 1 to be schema-like in that it is a unit organized into

parts according to "slots" like background, hypothesis, conclusion, and comment. The knowledge

structure is declarative in that it can be used in multiple ways by interpretative procedures. For

instance, the following production would be evoked to apply that knowledge in a working-backwards

manner:

IF the goal is to prove a statement
and there is a schema that has this statement as conclusion

THEN set as subgoals to match the background of the schema
and after that to prove the hypothesis of the schema

If the schema is in working memory and its conclusion matches the current goal, this production will

start up the application of the schema to the current problem. First the background is matched to

bind the variables and then the hypotheses are checked.

A schema of this kind can be evoked in several ways in a working-forward mode. In this way, it is
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similar to a constraint, in Steele and Sussman's (Note 5) sense. For instance, the following

production would serve to evoke the schema in this manner:

IF a particular statement is known to be true
and there is a schema that includes this statement in its hypothesis

THEN set as subgoals to match the background of the schema
and then to match the remaining hypotheses of the schema
and if they match, to add the conclusion of the schema

This production is evoked when only part of the hypothesis is satisfied. Because there can be any

number of statements in a hypothesis, it is not possible to have a general interpretive production that

matches all the statements of any hypothesis (since a production only matches a fixed number of

statements in its condition). Rather it is necessary to evoke on a partial match and then to check if the

remaining statements match. This is one instance of many that illustrates the need for piecemeal

application when knowledge is used interpretively. Before the rest of the hypotheses can be checked

the background must be matched to bind variables. If the hypotheses do match, the conclusion is

added as an inference.

Note that whether the knowledge is used in reasoning forward or reasoning backward, the

background must be matched first. In reasoning forward, the hypotheses serve as a test of the

applicability of the schema and the conclusion is added. In reasoning backwards, the conclusion

serves as the test and the hypotheses are added as subgoals. However, in either mode the

background serves as a precondition that must be satisfied.

Subsumption: Learning with Understanding

In this section we present an analysis of meaningful learning, in the sense that was used by Katona

(1940) and Wertheimer (1945/1959). Discussions of meaningful learning have distinguished between

learning that results in relatively mechanical skill and learning that results in understanding of the

structure of the problem situation. We have developed a system that learns meaningfully by acquiring

a structure in which problem-solving procedures are integrated with genera) concepts the system

already has. The outcome of learning is a schema that provides a structure for understanding a

problem situation in general terms, as well as guiding problem-solving performance. We believe that

in working out this implementation we have reached a more specific and clearer understanding of the
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processes and prior knowledge required for meaningful learning of problem-solving procedures.

Wertheimer and Katona gave numerous examples of the distinction between mechanical and

meaningful learning. One of Wertheimer's is particularly relevant to our discussion. The problem is to

prove that the opposite vertical angles in Figure 10 are equal: for example, to show x = z. There is a

simple algebraic proof, shown in the lower left portion of Figure 10. Wertheimer argued that this

algebraic solution could be learned without the student understanding the problem well. He

advocated teaching in a way that would call attention to important spatial relationships in the problem,

shown in the lower right portion of Figure 10. The idea that understanding is strengthened by

appreciation of these spatial relationships seems intuitively compelling. There is a problem of

specifying the nature of understanding in a way that clarifies how it is strengthened, and we hope that

our discussion in this section contributes to an improvement in clarifying specificity of this issue. We

will describe some general features of the system we developed to investigate meaningful learning

and then describe the learning that this system accomplishes in two different learning tasks.

Schema-based problem solving

The system that we developed to investigate mneaningful learning represents problems

schematically. The schema used in debugging the system has the relationships between two objects

that are joined together to form another object; we call the schema WHOLE/PARTS. The structure of

a schema is consistent with recent proposals, especially of Bobrow and Winograd (1977) in their KRL

system. A schema is used to represent relationships among a set of objects that fit into the schema's

slots. The schema has some application conditions that are procedural in our system, implemented

as schemnatizing productions. A schema also has procedural attachments, which are schematic

descriptions of procedures that can be performed on objects of the kinds that the schema can be

used to interpret. Finally, a schema has contextual associations, which provide information about

features of the schema's application that vary in different contexts.

An example is in Table 2, where we show the main components of the schema in the state we used

as initial knowledge prior to learning in the context of geometry problems. The schema provides a

structure for understanding problems such as, "There are 5 girls and 3 boys; how many children are

there?" or "There are 6 dogs and 8 animals: how many cats are there?" The schematizing production



Table 2

Slots:

PART 1, PART 2, WHOLE

Procedural Attachments:

COMBINE/CALCULATE

SEPARATE/CALCULATE

ADJUST/SAME-WHOLE

Contextual Associations:

SET - NUMBER

Schematizing Production

IF VI is a set,

and V2 is a set,

and V3 is a set,

and V1 is a kind ot V3,

and V2 is a kind of V3;

THEN Instantiate WHOLE/PARTS,

with V1 in PART 1, V2 in PART 2,

and V3 in WHOLE.

I
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requires that two of the sets be related to the third through a "kind-of" relation, and uses these

relations in determining which sets are the parts and which is the whole. (Other schematizing

productions could easily be added; for example, sets that are located in separate places for problems

such as "There are 3 cookies on the counter and 4 cookies in the jar; How many cookies are there in

all?") More systematic studies of the use of schemata in understanding arithmetic word problems

have been conducted by Heller (Note 2) and by Riley (Note 4).

One of the procedural attachments of the schema is shown in Table 3. This is organized in the way

proposed by Sacerdoti (1977), with information that specifies prerequisites, consequences, and

actions that are performed in order to execute the procedure. These procedural attachments are

schema-like themselves and have some similarity to the types of schema discussed earlier (e.g. in

Table 1).2 In Table 3 Vrelation refers to a variable whose value is determined by the contextual

association of the schema; for problems about sets, Vrelation would be the number associated with a

set. Therefore, if the problem is about sets, the prerequisite of COMBINE/CALCULATE is that

numbers of the parts are known, the consequence is that the number of the whole will be found, and

the action to perform is addition of the known numbers.

The other procedural attachments in the WHOLE/PARTS schema are organized similarly. The

procedure SEPARATE/CALCULATE has a prerequisite of known values associated with the whole

and one of the parts, and the consequence of finding the other part. The procedure ADJUST/SAME-

WHOLE is used when one of the parts is too large or too small for some reason, and a shift of

members between the two parts is made in a way that keeps the value of the whole constant.

To solve problems using schemata, ACT has a strategy implemented as a set of productions similar

to the productions on pp. 11. The specific strategy that we implemented for this sytem uses one step

of backward chaining if it can; otherwise it is a forward-chaining strategy. ACT first tries to find a

2 Our use of the term "schemata" is somewhat different here than in the earlier presentation (Table 1). This is similar to the
general literature, where "schema" is used to refer to various kinds of structures: however, we may be unusual in adopting two
different meanings in the same article. The difference reflects the fact that the implementations described in these two sections
were in the hands of different authors (Table 1: Anderson: this section: Greeno). We believe that the two kinds of schematic
structures are quite compatible. The background information in Table 1 correspond to the condition of a schematizing
production here. the hypotheses in Table I to the prerequisites of proceaural attachment, and the conclusion to the
consequence of a procedural attachment.



Table 3

Prerequisites:

Vrelation of PART 1 is known.

Vrelation of PART2 is known.

Consequence:

Vrelation of WHOLE is found.

Performance:

Add numbers (Vrelation of PART 1, Vrelation of Part 2)

I



procedure whose consequences matches its current problem goal. If one is fo~nd, ACT checks the

prerequisites of that procedure, and if they are satisfied ACT performs the actions of that procedure.

If prerequisites are not satisfied, ACT looks for another procedure whose consequence matches the

goal of the problem. Any time ACT fails to find a procedure with a consequence matching its current

goal, it tests prerequisites of its procedures and attempts to work forward.

Learning tasks

Several different forms of learning can be considered in relation to schemata of the kind we are

using. We will discuss three here. First, we simulated generalization of a schema to a new problem

domain. The system initially had the schema shown in Table 2, which it could use to schematize

problems about sets. It was shown an example problem involving segments, and learned a new

schematizing production and contextual association enabling it to use the WHOLE/PARTS schema to

schematize problems about segments.

A second task that we have simulated involved adding new structure to an existing schema. The

added structures were new procedural attachments that enable ACT to solve a new kind of problem.

Initially the only procedures attached to the WHOLE/PARTS schema involved numerical calculations

or adjustments. ACT was shown an example problem involving proof, and acquired new procedures

for writing steps in the proof. These new procedures were attached to ACT's WHOLE/PARTS

schema. so that ACT's later solution of other proof problems included its general understanding of

part-whole structural relations.

The third task for which we have performed a simulation involved synthesizing new schematic

structure. A problem was presented for which the existing WHOLE/PARTS schema is too simple to

provide a complete interpretation. The system acquired a more complex schema in which two

WHOLE/PARTS structures are included as subschemata, and in which the previously learned proof

* procedures were available for use in solving more complex problems.

Task application in a new domain

Initially the WHOLE/PARTS schema was coded for the model and debugged on problems involving

numbers of objects in different sets, such as the "There are 5 children and 2 boys. how many girls are
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there?" A new example problem was presented to the model, consisting of a diagram consisting of a

segment with endjoints A and C, and a point on the segment marked B. The following propositions

were also presented: "Given: AB = 5, BC = 3; Find AC." The solution was also presented: "AC = 5

+ 3 = 8." The model included a production for interpreting the given information as lengths of

segments in the diagram. It also had a production for interpreting "Find AC" by setting a goal to find

the length of that segment.

The new knowledge required for the schema to be applied in the domain of segments is a new

schematizing production whose action assigns objects in the segment problem to slots in the

WHOLE/PART schema. There is a difficulty with formulating such a production and that difficulty

arises from the fact that the learner is not directly told to incorporate this situation as an instance of

his WHOLE/PART schema. We assumed that activation of the appropriate schema would require

some relatively specific cue, which is consistent with evidence that indicates that human problem

solvers are unlikely to notice structural similarities among problems unless there are fairly obvious

signals available (Gick & Holyoak, 1980). We provided the needed cue in the form of the

WHOLE/PART schema's name; this might correspond to a situation in a class where the teacher

points out that the whole segment is composed of other segments as its parts.

Our simulation identifies the schema that is named in the explanation of the solution-step that is

presented. The respective slot-roles of the various objects in the problem are sorted out by examining

the problem-solving action. A production is built whose performance matches the action that is

shown, and the slots mentioned in the procedure are matched to the objects that are associated with

the values in the action. The action of the new production is determined by these identifications: it

refers to the objects in the problem that is to be schematized and associates them with the slots they

should occupy.

Table 4 shows the schematizing production that the system learned. We also programmed the

system to store a new contextual association, so that for future problems involving segments, the

problem solver would use the lengths of segments as the relevant properties. Thus, by acquisition of

the schematizing production the system is able to bring to bear its knowledge about WHOLE/PART

I



Table 4

IF V1i12 is a segment
and V116 is a segment
and V120 is a segment
and V120 contains V1 12
and V120 contains VI 16
and V119 and V121 are endpoints of V112
and V119 and V122 are endpoints of V116
and V1 21 and V1 22 are endpoints of V1 20

THEN Instantiate WHOLE/PARTS,
with V112 in PART1, and V116 in PART2,
and V120 in WHOLE.

!1
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Given: ABC

Prove., AB =AC -BC

Statement Reason

1, ABC -I. Given
2. AC-=AB +BC 2. Segment addition (Step I
3. AB=AC - BC 3. Substraction property(Step2)

FIGURE 11

An example used to teach problem-solving procedures.
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relationships to the solving of geometry problems.

We believe that the ability to solve PART/WHOLE problems of the kind we discussed here is

probably learned well before students begin studying geometry, and that they probably understand

the part-whole relationship involved. We have not observed any students in their work on geometry

whose performance indicates a lack of the knowledge modeled in this section. On the other hand, the

extension of this knowledge and understanding to the early problems of geometry is by no means

automatic for all students, as we will discuss later.

Acquiring New Procedural Attachments

The second meaningful learning task that we simulated used the problem shown in Figure 11. The

learning simulated in this situation was very similar to that discussed on pp. 11i-ia

In this task, ACT began with the WHOLE/PARTS schema, and the schematizing production shown

in Table 4, so it represented the part-whole structure of the segments in the diagram. Steps 2 and 3

represented new actions for ACT -- that is, did not have knowledge of procedures that would produce

these proof steps. Using its representation of the problem situation and the statements in the proof

steps, ACT stored new schemata descriptions of procedures and attached them to its

WHOLE/PARTS schema. As a result, ACT had structures similar to the SAS schema shown in Table

1 corresponding to the segment-addition postulate and the subtraction property of equality. However,

these new structures were integrated with ACT's general understanding of structures that involve

part-whole relationships.

A consequence of attaching the segment-addition procedure to the WHOLE/PARTS schema is that

it is available for use in more complicated problem situations, when the WHOLE/PARTS schema is

invoked in ACT's understanding of more complex problems. We discuss an extension of that kind in

the next section.

Building a new schema from old schemata

Another task that we have used to simulate learning is shown in Figure 12 (also discussed in Figure

8). Conceptual understanding of this problem involves seeing the given segment RY as two

overlapping WHOLE/PARTS structures. each having a distinct part as well as a part that the two
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Table 5

Slots

PARTA, PARTAB, PARTB, WHOLEA, WHOLEB, WHOLE

Subschemata

WHOLE/PARTSA, WHOLE/PARTSB

Procedural Attachments:

SUBSTITUTION

ADDITION-PROPERTY

SUBTRACTION-PROPERTY

Contextual Association:

Segment -> Length

Schematizing Productions

IF V1, V2, V3, V4, V5, and V6 are segments,

and VS includes V1, V2, V3, V4, and V5,

and V4 includes V1 and V2,

and VS includes V2 and V3,

THEN Instantiate WHOLE/PARTS ( schemal) with V1 as PAST1,

V2 as PART2, V4 as WHOLE;

and instantiate WHOLE/PARTS ( = schema2) with V3 as PARTI,

V2 as PART2, VS as WHOLE;

and instantiate OVERLAP/WHOLE/PARTS with V1 as PARTA, V2 as PARTB

V3 as PARTB, V4 as WHOLEA, V5 as WHOLEB, V6 as WHOLE,

schemal-as WHOLE/PARTSA, and schema.2 as WHOLE/PARTSB.

IL
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structures share. Table 5 shows a schema that we have partially implemented with the required

structure. The important new idea in this simulation is the inclusion of subschemata as components

of the schema. The main consequence is that the procedures already attached to the subschema are

automatically available in situations schematized with the superschema. For example, the segment-

addition procedure, attached to the WHOLE/PARTS schema because of the learning discussed just

above, is available in solving problems that can be schematized with the OVERLAP/WHOLE/PARTS

schema. In the problem-solving strategy that we implemented, the problem-solver first tries to apply

procedures that are attached to the main schema, and when none are applicable, procedures

attached to the subschemata are tested.

There are powerful consequences of schematizing line segment problems as instances of

WHOLE/PARTS or OVERLAP/WHOLE/PARTS structures. At this level of representation a wide

variety of problems have essentially the same character. For instance, consider the angle problem

presented in Figure 13. From the point of view of the OVERLAP/WHOLE/PARTS schema it is

essentially the isomorphic to the segment problem in the earlier Figure 12. An interesting question is

to what degree do students conceptualize these problems in terms of the general schema and how

much success do they enjoy in their problem-solving if they do.

The protocols that we obtained from the six students who were studying a regular course in

geometry are relevant here. One of the sessions occurred soon after students had completed work

on proofs of the kind shown in Figure 12 involving line segments. Students had been introduced to a

concept of additive combination of angles, called the angle-addition property, but they had not yet

worked on proof problems of the kind shown in Figure 13, which was the first problem presented in

the interview session.

We found a full range of performance from these students in terms of their ability to recognize the

similarity between the angle and segment problems. Four of the six noticed some similarity, one (who

successfully solved the problem) noticed no similarity, and the final student had so many gaps in

knowledge that it is difficult to diagnose exactly what this student knew. At least two students gave

evidence of quite deep appreciation of the underlying similarity. One of them spontaneously

I
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Transfer problem.



remarked "Okay, well, it's basically the same kind of thing ... Well, it's just working kind of the same

thing. Except over a curve, kind of, the measure of angles instead of distances."' The other remarked

"Well, its the same problem again. You know something? I'm getting kind of tired of that problem."

Although only the second of these two solved the problem, both showed evidence of trying to use the

general conceptual structure on their problem-solving. We conclude from these protocols and others

that at least same students make active use of these general schemata in their geometry Droblem-

solving, that these schemata can be helpful in problem-solving, but that they are not essential. On the

last point, our subject R whom we have studied most extensively, made slow but sure progress

stubbornly refusing to try to relate the geometry material to prior knowledge.

Knowledge Compilation

In this section we discuss learning mechanisms that accomplish a transition from declarative to

procedural knowledge. In the simulations of geometry learning that we have discussed in th~s

chapter, we have assumed that the initial cognitive encoding of information for problem solving is

declarative. There is room for disagreement on the question of whether problem-solving knowledge

always has an initial declarative encoding (in fact the authors of this chapter disagree on this question

-see footnote 1). Even so, descriptions of procedures constitute an important source of information

for human learners, and the development of cognitive procedures from initial knowledge in

declarative form is an important requirement of much human learning.

One advantage of declarative representations over corresponding representations in the form of

productions is that declarative representations are more concise. The same facts can give rise to a

great many possible productions reflecting various ways that the information can be used. For

instance, consider the textbook definition of supplementary angles:

"Supplementary angles are two angles whose measures have sum 180.'"

Below are productions that embody lust some of the ways in which this knowledge can be used.

These productions differ in terms of whether one is reasoning forward or backward, what the current

goal is, and what is known.

IF mLA + .L = 1800
THEN /A andL8 are supplementary

IF the goal is to proved andLB are supplementary
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THEN set as asubgoal to prove mA. + mLB = 1800

IF /A andLB are supplementary
THEN r/A + mLB = 1800

IF LA and LB are supplementary
and mlA =X

THEN rn = 1800 - X

IF LA andLB are supplementary
and the goal is to find nVLA

THEN set as a subgoal to find nTB

IF the goal is to show.A -LB
andL6 is supplementary toLC
and/B is supplementary toLD

THEN set as a subgoal to prove/C ='.D

A basic point is that the definition of supplementary angles is fundamentally declarative in the sense

that it can be used in multiple ways and does not contain a commitment to how it will be used. It is

unreasonable to suppose that, in encoding the definition, the system anticipates all the ways in which

it might be used and creates a procedural structure for each.

A related difficulty has to do with encoding control information into working-backward productions.

The actual implementations of a working-backward production require rather intricate knowledge and

use of goal settings that might exceed the knowledge or information -- handling capacities of many

learners.

Interpretive Application of Knowledge

Rather than assuming students directly encode such information into procedures we have assumed

that they first encode this information declaratively. In the ACT system encoding information

declaratively amounts to growing new semantic network structure to encode the information. We

suppose general interpretative procedures then use this information according to the features of the

particular circumstance. In earlier sections we discussed how this declarative knowledge was

encoded in schema-like format and how some interpretive procedures would use this knowledge. As

we will now describe, when declarative knowledge is used many times in a particular way, automatic

learning processes in ACT will create new procedures that directly apply the knowledge without the

interpretative step. We refer to this kind of learning as knowledge compilation.

*1
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In individual subjects we see a gradual shift in performance which we wiild like to put into

correspondence with this compilation from the interpretative application of declarative knowledge to

direct application of procedures. For instance, after reading a particular postulate students'

applications of that postulate are both slow and halting. Students will often recite to themselves the

postulate before trying to apply it -- or even go back and reread it. It seems that they need to activate

the declarative representation in their working memory so that interpretative procedures can apply to

the data of this representation. They typically match separately fragments of the postulate to the

problem. We will see that such fragmentary application is typical of a general knowledge interpreter

applying to a declarative representation. With repeated use, however, application of the postulate

smooths out. It is no longer explicitly recalled and it is no longer possible as observer or subject to

discriminate separate steps in the application of the procedure.

We will use the side-angle-side schema of Table 1 to discuss how the student switches from the

initial piecemeal interpretive application of knowledge to direct, unitary procedures. For convenience

that table is reproduced as Table 6. The following are some of the productions that are used to apply

the schema knowledge in working backwards mode:

P1: IF the goal is to prove a statement
and there is a schema that has this statement as conclusion

THEN set as subgoals to match the background of the schema
and after that to prove the hypothesis of the schema

This production recognizes that the schema is relevant to proving the problem. It would invoke the

SAS schema in situations where the goal was to prove two triangles congruent. The next production

to apply is:

P2: IF the goal is to match a set of statements
THEN match the first statement in the set

Production P1 had set the subgoal of matching the statements in the background. This production

above starts that process going by focusing on the first statement in the background. This production

is followed by a production which iterates through the statements of the background.

P3: IF the goal is to match a statement in a set
and the problem contains a match to the statement

THEN go on to match the next statement in the set

(Actually, there is a call to a subroutine of productions which execute the matches to each statement.



Table 6

SAS Schema

Background
si is a side of AXYZ
s2 is a side of &XYZ
Al is an angle of A XYZ
Al is included by sl and s2
s3 is a side of .UVW
s4 is a side of &UVW
A2 is an angle of ,UVW
A2 is included by s3 and s4

Hypothesis
sl is congruent to s3
s2 is congruent to s4
Al is congruent to A2

Conclusion
/XYZ is congruent toAUVW

Comment
This is the side-angle-side postulate

I
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See Neves & Anderson, 1981 ).After all statements in the background have been matched, the

following production sets the goal to prove the hypotheses:

P34: IF the goal is to match a set of statements
and the last statement in that set has been matched

THEN go on to the goal that follows

Composition

There are two major processes in knowledge compilation -- composition and proceduralization.

When a series of productions apply in a fixed order, composition will create a new production that

accomplishes the effect of the sequence in a single step (see Neves & Anderson). Composition,

operating on the sequence of P1, P2, and P3, applied to the SAS schema, would put forth the

production:

135: IF the goal is to prove a statement
and there is a schema that has this statement as conclusion
and the schema has a statement as the first member of its background
and the problem contains a match to the statement

THEN set as subgoals to match the background
and within this subgoal to match the next statement of the background
and after that to prove the hypotheses of the schema

This production only applies in the circumstance that the sequence P1, P2, and P3 applied and this

production will have the same effect in terms of changes to the data base. The details underlying

composition are discussed in Neves and Anderson, but the gist of the process is easy to describe.

The composed production collects in its condition all those clauses from the individual productions'

conditions except those that are the product of the actions of earlier productions in the sequence. As

an example of this exception P2 has in its condition that the goal is to match the set of statements.

Since this goal was set by P1, earlier in the sequence, it is not mentioned in the condition of the

composed production P5. Thus, the condition is a test of whether the circumstances are right for the

full sequence of productions to execute. The action of the composed production collects all actions

of the individual productions except those involved in setting transitory goals that are finished with by

the end of the sequence. As an example of this exception, P2 sets the subgoal of matching the first

statement of the background but P3 meets this subgoal. Therefore, the subgoal is not mentioned in

the action of the composed production P5.

This composition process can apply to the product of earlier compositions. Although there is

iL
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nothing special about compositions of three, consider what the resulting production would be like if

P5 were composed with two successive iterative applications of P3:

P&: IF the goal is to prove a statement
and there is a schema that has this statement as conclusion
and the schema has a statement as the first member of the background
and the problem contains a match to this statement
and the schema has another statement as the next member of its background
and the problem contains a match to this statement
and the schema has another statement as the next member of its background
and the problem contains a match to this statement

THEN set as subgoals to match the background
and within this the next statement of the background
and after that to prove the hypotheses of the schema

It should be noted that such productions are not really specific to the SAS schema. Indeed,

productions such as P5 and P6 might already have been formed from compositions derived from the

productions applying to other, earlier schemata. If so, these composed productions would be ready

to apply to the current schema. Thus, there can be some general transfer of learning produced by

composition. However, there is a clear limit on how large such composed productions can become.

As they get larger they require more information in the schema be retrieved from long term memory

and held active in working memory. Limits on the capacity of working memory imply limits on the size

of the general, interpretive conditions that can successfuly match.

P rocedu ralization

Proceduralization is a process that eliminates retrieval of information from long term memory by

creating productions with the knowledge formerly retrieved from long-term memory built into them.

To illustrate the process of proceduralization, consider its application to the production P6. This

statement contains in its condition four clauses that require retrieval of information from long term

memory:

1. There is a schema that has the to-be-proven statement as its conclusion.

4 2. The schema has a statement as the first member of its background.

'1 3. The schema has another statement as the next member of its background.

4. The schema has another statement as the next member of its background.

Applied to the SAS schema these statements match the following information:
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1. The SAS schema has as its conclusion 'AXYZ --AUVW'.

2. The first statement of its background is "S1 is a side of,?(YZ".

3. The next statement of its background is "S2 is a side of YZ".

4. The next statement of its background is "Al is an angle ofXYZ".

What is accomplished by matching these statements in P6 is to identify the SAS schema, its

conclusion, and the first three statements of its background. A specialized production can be built

which contains this information and does not require the long term memory retrievals:

P7: IF the goal is to prove that ,XYZ i AUVW
and S1 is a side of AXYZ
and S2 is a side of &XYZ
and Al is an angle of AXYZ

THEN set as subgoals to match the background of the SAS schema
and within this to match the next statement in the schema
and after that to prove the hypothesis of the schema

This production is now specialized to the SAS schema and does not require any long term memory

retrieval. Rather, built into its condition are the patterns retrieved from long term memory.

The effect of this proceduralization process is to enable larger composed productions to apply

because the proceduralized productions are not limited by the need to retrieve long-term information

into working memory. This in turn allows still larger compositions to be formed. The eventual product

of the composition process applied to the top-down evocation of the SAS schema, initially via

productions P1, P2, P3, and P4, would be:

P8: IF the goal is to prove thatAXYZ is congruent toAUVW
and S1 is a side of XYZ
and S2 is a side of (YZ
and Al is an angle of &XYZ

*and Al is included by S1 and S2
and S3 is a side of &UVW
and S4 is a side of,&UVW

* and A2 is an angle of UVW
and A2 is included by S3 and S4

THEN set as subgoals to prove
S1 is congruent to S3
S2 is congruent to S4
Al is congruent to A2

This production serves to apply the SAS postulate in working backward mode. When the knowledge
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reaches this state it has been completely proceduralized.

As we will discuss in later portions of the paper, composition need not stop when the postulate has

been completely incorporated into a single production. Composition can continue to merge

productions to compress even longer sequences of actions into a single production. For instance,

consider what would happen should production P8 compose with later productions that attempted to

prove the hypothesis parts. Suppose, furthermore, that the first two parts of the hypothesis could be

established directly since they were already true. The composition process would produce the

following working backward production:

P9:. IF the goal is to prove that &XYZ is congruent toAUVW
and S1 is a side of &XYZ
and S2 is a side of &XYZ
and Al is an angle of AXYZ
and Al is included by S1 and S2
and S3 is a side of JUVW
and S4 is a side of blJVW
and A2 is an angle of &UVW
and A2 is included by S3 and S4
and S1 is congruent to S3
and S2 is congruent to S4

THEN set as a subgoal to prove that A1 is congruent to A2

This production checks that two sides of the triangles are congruent and sets the goal to prove that

the included angles are congruent. P9 is obviously much more discriminant in its application than P8

and is therefore much more likely to lead to success.

Evidence for Composition and Proceduralization

So far we have offered two lines of argument that there are these processes of composition and

proceduralization. One is that it creates a sensible connection between declarative knowledge and

procedural knowledge. That is, knowledge starts out in a declarative form so that it can be used in

multiple ways. However, if the knowledge is repeatedly used in the same way, efficient procedures

* will be created to apply the knowledge in that way. The second argument for these processes is that

they are consistent with the gross qualitative features of the way application of knowledge smooths

out and speeds up. That is, with practice explicit verbal recall of the geometry statements drop out

and the piecemeal application becomes more unitary.

The idea is a natural one, that skill develops by collapsing together multiple steps in one. Lewis



26

(1976), who introduced composition applied to productions, traces the general concept back to Book

(1908). However, there is more than intuitive appeal and general plausibility going for this learning

mechanism. It is capable of accounting for a number of important facts about skill development. One

feature of the knowledge compilation is that procedures can develop to apply the knowledge in one

manner without corresponding procedures developing to apply the knowledge in other ways. It is

somewhat notorious that people's ability to use knowledge can be specific to how the knowledge is

evoked. For instance, Greeno and Magone (Note 1) have found that students who have a fair facility

at proof generation make gross errors at proof checking, a skill which they have not practiced.

Neves and Anderson (this volume) provide an extensive discussion of how composition and

proceduralization serves to account for a range of results in the experimental literature -- for the

speed-up of a skill with practice, for the growing automaticity of a skill, for the Einstellung effect

(Luchins, 1942), and for the drop-out of self-reports with practice.

Knowledge Optimization

Having operators proceduralized is not enough to guarantee successful proof generation. There is

still a potentially very large search space of forward and backward inferences. Finding the proof tree

in this search space would often be infeasible without some search heuristics that enable the system

to try the right inferences first.

In our observations of student subjects as they learned geometry, we saw very little success in

discovering such heuristics. Therefore, these observations do not provide a strong basis for the

assertion that acquisition of such heuristics is an important part of learning geometry. However, the

performance of students at more advanced stages oi learning included many examples of problem-

solving activity organized according to quite strong heuristic methods. An additional basis for our

beliefs on this matter come from comparing our own performance on proof problems with that of that'I subjects whom we observed in their early stages of learning. While the title "expert" is a little

overblown in our case, we have something of a novice-expert contrast here. Our two beginning

subjects barely managed to get their knowledge beyond the initial proceduralization and often made

choices in search that seem transparently wrong to us. Presumably. our more tuned judgment
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reflects the acquisition of appropriate heuristics with experience. Therefore, indiscussing particular

heuristics we will be drawing on (a) those rare instances of learning of heuristics identifiable in our

beginning subjects, (b) performance of more advanced students that has been analyzed previously,

and (c) our own intuitions about the kinds of heuristics we use.

One kind of heuristic amounts to adding some discriminative conditions to a production to restrict

its applicability. For instance, production P9 differs from p8 (pp. 24 & 25) by the addition of tests for

two out of three of the conditions of SAS. While satisfying these conditions does not guarantee that

SAS will be satisfied, it does make it more likely. This is the nature of a heuristic -- to select an

operator on the basis of tests that suggest that it has a higher probability of success in this

circumstance than other operators.

It is interesting to note that novices do not deal with proofs by plunging into endless search. They

are very restrictive in what paths they attempt and are quite unwilling to consider all the paths that are

legally possible. The problem is, of course, that the paths they select are often non-optimal or just

plain dead-ends. Thus, at a general level, expertise does not develop by simply becoming more

restrictive in search, rather it develops by becoming more appropriately restrictive.

There are four ways that we have been able to discover by which subjects can learn to make better

choices in searching for a proof tree. One is by analogy to prior problems -- using with the current

problem methods that succeeded in similar past problems. Use of such analogy is limited in ways that

we discussed earlier and we will not discuss it further here. The second, related technique is to

generalize from specific problems operators that capture what the solutions to these specific

problems have in common. The third is a discrimination process by which restrictions are added to

the applicability of more general operators. These restrictions are derived from a comparison of

where the general operators succeeded and failed. The fourth process is a composition process by

which sequences of operators become collapsed into single operators that apply in more restrictive

situations. We will discuss the last three of these methods.
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Generalization

We have characterized solving problems by analogy as superficial. Part of what is superficial about

the approach is that the analogy is based only on the statement of the problems not on the structures

of their solution. Analogy, in the sense discussed, cannot use the structure of the solution, because

the proof for the second problem is not available when the analogy has to be made. Analogy is being

used in service of finding the second proof.

Generalization, on the other hand, is based on a comparison between two problems and their

solutions. By using the structure of the solution it is possible to select out the relevant aspects of the

problem statement. A rule is formulated by the generalization process which tries to formulate what

the two problems and their solutions have in common. That rule can then be used should similar

problems appear. For instance, consider the two problems in Figure 14. The generalization process

applied to these two examples would encode what they have in common by the following schema:

GENERALIZED SCHEMA:

Background
,XYZ contains&YZ

&UVW containsTVW
Givens.,

SY = TL.ysz 'vw
Goal

AxYZ Auvw
Method,,SYZ & T'IVW by SAS

YZ V VWby corresponding parts
Z/XYZ ' IJVW by corresponding parts
AXYZ T AUVW by SAS

In our opinion, these generalizations are based on the same partial-matching process that underlies

analogy. However. the partial-matching occurs between solved problems not just between problem

statements. Because the product of the partial match is a fairly general problem description, it is likely

to apply to many problems. Thus it is likely to be strengthened and become a permanent part of the

student's repertoire for searching for proofs. This contrasts to the specific examples that serve as the

basis for analogy. These specific examples are likely to be forgotten.

We have been able to identify two moderately clear cases of generalization in R's protocols. One

I*1JL
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Given: AE~ EC
LBEA M LBEC

Prove: AABD a ACBD
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(b)
Q R Given: QN=OR

LOON a LRON
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I Prove: AMQO A APRN
M N 0 P

FIGURE 14

Two proof problems whose generalization leads to a useful operator.
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has to do with problems of the variety illustrated in part (a) of Figure 6. Many variations on this

problem appeared in the early part of the text and R came to recognize this general type of problem

when it appeared later. The other example has to do with the use of the hypotenuse-leg theorem for

right angle triangles. After some examples R formulated the generalized rule that he should use this

theorem if he was presented with two right angle triangles whose hypotenuses were given as

congruent. This is the feature that all the hypotenuse-log problems had in common.

Discrimination

Discrimination provides a complementary process to generalization. It takes operators that are too

general and thus are applying in incorrect situations and places restrictions on their range of

applicability. If the operator to be discriminated is embodied as a production, discrimination adds an

additional clause to restrict the range of situations where the production condition will match. ACT

determines what additional clauses to add by comparing the difference between successful and

unsuccessful application of the rule.

Figure 15 illustrates an analysis of a problem which led subject R to form a discrimination. In part

(a) we have a representation of the problem and in part (b) we have indicated the network of

backward inferences that constitute R's attempt to solve the problem. First he tried to use SSS, a

method which had worked on a previous problem that had a great deal of superficial similarity to this

problem. However, he was not able to get the sides FR and S congruent. Then he switched to SAS,

the only other method he had at the time for proving triangles congruent. Interestingly, it was only in

the context of this goal that he recognized the right angles were congruent. After he had finished with

this problem, he verbally announced the rule to use SSS only if there was no angle mentioned. This

can be seen to be the product of discrimination. The "don't use SSS if angle" comes from a

comparison of the previous problem in which no angle was mentioned with the current problem that

did mention angles.

ACT's generalization and discrimination processes were described in considerable detail in

Anderson, Kline, and Beasley (1979). There we were concerned with showing how they applied in

modelling the acquisition of category schema or prototypes. That data provided pretty strong

evidence for the ACT mechanisms and further new data is contained in Elio and Anderson

I A



Given: Li and L2 are
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reflexivity right angles

FIGURE 15

Problem leading to a discrimination.
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(forthcoming). It is partly the success of that enterprise that leads us to believe they play an important

role in the development of expertise in geometry proof generation. Basically, the claim is that

students develop from examples schemata for when various proof methods are appropriate just as

they develop schemata for what are examples of categories.

Composition

We feel that composition has an important role to play in forming multiple operator sequences just

as it played an important role in the initial proceduralization of operators. Figure 16 illustrates an

example where composition can apply. The first production to apply in sclving this problem would be:

P1: IF the goal is to prove.X j.U
andLx is part of XYZ
and.U is part of &JJVW

THEN the subgoal is to prcveAXYZ 'O ,UVW

This production would set as a subgoal to prove ,ABC & DBC. At this point the following

production might apply:

P2: IF the goal is t.proveAXYZ '-2UVW
and XY =' UV
and ZX= WU

THEN the subgoal is to prove YZ VW

This production, applied to the situation in Figure 16, would set as the subgoal to proveBC-'! BC as a

step on the way to using SSS. At this point the following production would apply:

P3: IF the goal is to prove XY "X
THEN this may be concluded by reflexivity

This production would add B = BC and allow the following production to apply:

P4: IF the goal is to.prove&XYZ '=,UVW
and XY I UV
and YZI! W
and ZX = WU

THEN the goal may be concluded by SSS

where-XY = AB, UV = DB, YZ = BC, VW = BC, ZX = CA. andW = CD. This adds the information

that AWAC t' ADBC. Finally, the following production will apply which recognizes that the to-be-

proven conclusion is now established:

P5: IF the goal to proveLX t.U
andAXYZ = NUVW

THEN the goal may be concluded because of congruent parts of congruent triangles

• , The composition process operating on this sequence of productions, would eventually produce a

ti



A Given: AB DB
AD d -Aa -

< 
Prove: LA LD

C

FIGURE 16

Problem leading to a composition.
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production of the form:

P6: IF the goal is to prove/A /D
and/A is part of ABC
and/D is part of AOBC
and X'9 T-
and C" V DC

THEN conclude W =' AB by reflexivity
and conclude ,ABC T A)BC by SSS
and conclude the goal because of congruent parts of congruent triangles

The variables in this production have been named to correspond to the terms in Figure 16 for

purposes of readability. This production would immediately recognize the solution to a problem like

that in Figure 16. Another feature of composition, illustrated in this example, is that it transforms what

had been a basically working backward solution to the problem into something much more of the

character of working forward. Indeed, all the methods that we have discussed for tuning search

operators, to the extent that they put into the conditions additional tests for applicability and into the

action additional inferences, have the effect of converting working backward into working forward.

Larkin, McDermott, Simon, and Simon (in press) and Larkin (this conference) have commented on this

same transformation in the character of physics problem solving with the development of expertise.

Summary

By way of a summary, Figure 17 provides an overview of the progress that we think a student makes

through geometry learning. There are two major sources of knowledge in the learning environment --

these are the general rules stated in the instructional portion of the text and the examples of proofs

worked out and provided as exercises. Both rules and examples are given declarative encodings.

The declarative representation of rules can be used to solve problems by general problem-solving

procedures. The declarative encoding of the examples can be used to guide the solution to problems

through a declarative interpreter. The twin processes of knowledge compilation, composition and

proceduralization, can transform either of these declarative representations into a procedural form.

The procedures compiled from the declarative representation of the rules are general and the

procedures compiled from examples are specific. The generalization mechanism provides a way of

transforming the specific procedures into general form.

There is another route to learning and this is the process of subsumption which involves the
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development of new problem-solving schemata out of old ones. We see this as a form of learning with

structural understanding. We discussed two types of learning of this variety -- elaborating existing

schemata to apply to new situations or building new schemata out of existing schemata. These

schemata are basically declarative in character and the compilation process should be able to apply

to these to form general procedures also.

Note that there are many routes by which a student can arrive at general operators for solving

geometry problems. This corresponds to the diversity we see in individual students: some lean heavily

on prior knowledge in learning; others try to apply the general rules of geometry directly; still others

(probably the majority) lean heavily on past examples to guide their problem solving and learning.

Whatever means the student takes to achieve general operators for solving geometry problems,

there remains a great deal of learning about heuristic features of the problem environment that are

predictive of solution steps. To some extent, general operators that arise from specific examples

through generalization may still preserve some of these heuristic features of the examples. Other

methods of acquiring these heuristic features involve the processes of discrimination and

composition which create larger multiple-inference operators which are much more discriminant in

their range of applicability. In the extreme we get special rules that outline full proof trees for certain

kinds of problems. The character of these operators is, as we have noted, working forward more than

working backward. To the extent that new problems fit the specifications of these advanced

operators, solution will be quick and efficient. However, to the extent new problems pose novel

configurations of features not covered by the advanced operators the student will have to fall back to

the slower and more general operators for working backwards. We certainly notice this variation in

our own behavior as "experts" depending on how unique a geometry problem is. Our view of

expertise, then, is very much like the one that was developed for chess (Chase & Simon, 1973; Simon

& Gilmartin, 1973); that is, experts in geometry proof generation have simply encoded many special

case rules.

In conclusion, we should make some remarks to avoid an overly-impressive interpretation of Figure

17: Nowhere does there reside a single version of the ACT system containing all the components in
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Figure 17 which progresses from the initial input of a geometry text to the final status of a geometry

expert. Rather we have simulated bits and pieces of Figure 17 separately. All the major components

have been tested on problems and we would like to believe they would all work together if put into a

complete system. However, undoubtedly interesting new issues would come up if we tried to put it all

together. So, Figure 17 represents a partial sketch of what is involved in geometry learning.

There are two basic reasons far the current disjointed character of our simulations. One is that the

size and complexity of the full system is staggering. We run out of PDP 10 conventional address

space just simulating components. The other reason is that we all took on separate parts of the task,

and while we certainly talked to each other, our implementation efforts were separate. While on this

topic we should indicate who was mainly responsible for implementing which components: John

Anderson implemented the general control structure for proof searches; Jim Greeno the processes

underlying schema subsumption; Paul Kline the analogy components; David Neves the knowledge

compilation processes; and John Anderson and Paul Kline the processes of generalization and

discrimination. Perhaps someday, technology and ourselves willing, there will be implemented an

integrated version of Figure 17.
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5001 Eisenhower Avenue Brooks AFB, TX 78235
Alexandria, VA 22333

1 Dr. Genevieve Haddad

Dr. Joseph Ward Program Manager
U.S. Army Research Institute Life Sciences Directorate
5001 Eisenhower Avenue AFOSR
Alexandria, VA 22333 Boiling AFB, DC 20332

1 Dr. Marty Rockway
Technical Director
AFHRL(OT)
Williams AFB, AZ 58224

2 3700 TCHTW/TTGH Stop 32
Sheppard AFB, TX 76311

1 Jack A. Thorp, Maj., USAF

Life Sciences Directorate
AFOSR
Boiling AFB, DC 20332
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Marines Other DoD

H. William Greenup 12 Defense Technical Information Center

Education Advisor (E031) Cameron Station, Bldg 5

Education Center, MCDEC Alexandria, VA 22314

Quantico, VA 22134 Attn: TC

I Special Assistant for Marine 1 Dr. Craig I. Fields

Corps Matters Advanced Research Projects Agency

Code lOOM 1400 Wilson Blvd.

Office of Naval Research Arlington, VA 22209

800 N. Quincy St.
Arlington, VA 22217 1 Dr. Dexter Fletcher

ADVANCED RESEARCH PROJECTS AGENCY

I DR. A.L. SLAFKOSKY 1400 WILSON BLVD.

SCIENTIFIC ADVISOR (CODE RD-i) ARLINGTON, VA 22209

HQ, U.S. MARINE CORPS
WASHINGTON, DC 20380 1 Military Assistant for Training and

Personnel Technology
Office of the Under Secretary of Defense

for Research & Engineering
Room 3D129. The Pentagon
Washington, DC 20301

_.1
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Civil Govt Non Govt

Dr. Susan Chipman I Anderson, Thomas H., Ph.D.
Learning and Development Center for the Study of Reading
National Institute of Education 174 Children's Research Center
1200 19th Street NW 51 Gerty Drive
Washington, DC 20208 Champiagn, IL 61820

Dr. Joseph I. Lipson 1 Dr. John Annett
SEDR W-638 Department of Psychology
National Science Foundation University of Warwick
Washington, DC 20550 Coventry CV4 7AL

ENGLAND

WIlliam J. McLaurin
Rh. 301, Internal Revenue Service 1 DR. MICHAEL ATWOOD
2221 Jefferson Davis Highway SCIENCE APPLICATIONS INSTITUTE
Arlington, VA 22202 40 DENVER TECH. CENTER WEST

7935 E. PRENTICE AVENUE
Dr. Arthur Melmed ENGLEWOOD, CO 80110
National Intitute of Education
1200 19th Street NW 1 1 psychological research unit
Washington, DC 20208 Dept. of Defense (Army Office)

Campbell Park Offices
Dr. Andrew R. Molnar Canberra ACT 2600, Australia
Science Education Dev.

and Research I Dr. Alan Baddeley
National Science Foundation Medical Research Council
Washington, DC 20550 Applied Psychology Unit

15 Chaucer Road
Personnel R&D Center Cambridge CB2 2EF
Office of Personnel Managment ENGLAND
1900 E Street NW
Washington, DC 20415 1 Dr. Patricia Baggett

Department of Psychology
Dr. Frank Withrow University of Denver
U. S. Office of Education University Park
400 Maryland Ave. SW Denver, CO 80208
Washington, DC 20202

1 Mr Avron Barr
Dr. Joseph L. Young, Director Department of Computer Science
Memory & Cognitive Processes Stanford University
National Science Foundation Stanford, CA 94305' I Washington, DC 20550

,1 Dr. Nicholas A. Bond
Dept. of Psychology
Sacramento State College
600 Jay Street
Sacramento, CA 95819

LI4
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Non Govt Non Govt

Dr. Lyle Bourne 1 Dr. William Clancey
Department of Psychology Department of Computer Science
University of Colorado Stanford University
Boulder, CO 80309 Stanford, CA 94305

Dr. John S. Brown 1 Dr. Allan M. Collins
XEROX Palo Alto Research Center Bolt Beranek & Newnan, Inc.
3333 Coyote Road 50 Moulton Street
Palo Alto, CA 94304 Cambridge, Ma 02138

1 Dr. Bruce Buchanan 1 Dr. Lynn A. Cooper

Department of Computer Science LRDC
Stanford University University of Pittsburgh
Stanford, CA 94305 3939 O'Hara Street

Pittsburgh, PA 15213
DR. C. VICTOR BUNDERSON
WICAT INC. 1 Dr. Meredith P. Crawford
UNIVERSITY PLAZA, SUITE 10 American Psychological Association
1160 SO. STATE ST. 1200 17th Street, N.W.
OREM, UT 84057 Washington, DC 20036

Dr. Pat Carpenter 1 Dr. Hubert Dreyfus
Department of Psychology Department of Philosophy
Carnegie-Mellon University University of California
Pittsburgh, PA 15213 Berkely, CA 94720

Dr. John B. Carroll 1 LCOL J. C. Eggenberger
Psychometric Lab DIRECTORATE OF PERSONNEL APPLIED RESEARC
Univ. of No. Carolina NATIONAL DEFENCE HQ
Davie Hall 013A 101 COLONEL BY DRIVE
Chapel Hill, NC 27514 OTTAWA, CANADA KIA OK2

Charles Myers Library 1 Dr. Ed Feigenbaum
Livingstone House Department of Computer Science
Livingstone Road Stanford University
Stratford Stanford, CA 94305
London E15 2LJ
ENGLAND 1 Dr. Richard L. Ferguson

The American College Testing Program
I Dr. William Chase P.O. Box 168

Department of Psychology Iowa City, IA 52240
Carnegie Mellon University
Pittsburgh,-,A 15213 1 Mr. Wallace Feurzeig

Bolt Beranek & Newman, Inc.
Dr. Micheline Chi 50 Moulton St.
Learning R & D Center Cambridge, MA 02138
University of Pittsburgh

3939 O'Hara Street
Pittsburgh, PA 15213
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Non Govt Non Govt

Dr. Victor Fields I Dr. Barbara Hayes-Roth
Dept. of Psychology The Rand Corporation
Montgomery College 1700 Main Street
Rockville. MD 20850 Santa Monica, CA 90406

Dr. John R. Frederiksen 1 Dr. Frederick Hayes-Roth
Bolt Beranek & Newnan The Rand Corporation
50 Moulton Street 1700 Main Street
Cambridge, MA 02138 Santa Monica, CA 90406

1 Dr. Alinda Friedman 1 Dr. James R. Hoffman
Department of Psychology Department of Psychology
University of Alberta University of Delaware
Edmonton, Alberta Newark, DE 19711
CANADA T6G 2E9

1 Glenda Greenwald. Ed.
Dr. R. Edward Geiselman "Human Intelligence Newsletter"
Department of Psychology P. 0. Box 1163
University of California Birmingham, MI 48012
Los Angeles, CA 90024

1 Dr. Earl Hunt
DR. ROBERT GLASER Dept. of Psychology
LRDC University of Washington
UNIVERSITY OF PITTSBURGH Seattle, WA 98105
3939 O'HARA STREET
PITTSBURGH, PA 15213 1 Dr. Steven W. Keele

Dept. of Psychology
Dr. Marvin D. Glock University of Oregon
217 Stone Hall Eugene, OR 97403
Cornell University
Ithaca, NY 14853 1 Dr. Walter Kintsch

Department of Psychology
Dr. Daniel Gopher University of Colorado
Industrial & Management Engineering Boulder, CO 80302
Technion-Israel Institute of Technology
Haifa 1 Dr. David Kieras
ISRAEL Department of Psychology

University of Arizona
I DR. JAMES G. GREENO Tuscon, AZ 85721

LRDC
UNIVERSITY OF PITTSBURGH, 1 Dr. Kenneth A. Klivington
3939 O'HARA STREET Program Officer
PITTSBURGH, PA 15213 Alfred P. Sloan Foundation

630 Fifth Avenue
Dr. Harold Hawkins New York, NY 10111
Department of Psychology
University of Oregon
Eugene OR 97403

I.i
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Non Govt Non Govt

Dr. Stephen Kosslyn 1 Dr. Allen Munro
Harvard University Behavioral Technology Laboratories

Department of Psychology 1845 Elena Ave., Fourth Floor
33 Kirkland Street Redondo Beach, CA 90277

Cambridge, MA 02138
1 Dr. Donald A Norman

Mr. Marlin Kroger Dept. of Psychology C-009
1117 Via Goleta Univ. of California, San Diego
Palos Verdes Estates, CA 90274 La Jolla, CA 92093

1 Dr. Jill Larkin 1 Dr. Jesse Orlansky
Department of Psychology Institute for Defense Analyses
Carnegie Mellon University 400 Army Navy Drive
Pittsburgh, PA 15213 Arlington, VA 22202

Dr. Alan Lesgold 1 Dr. Seymour A. Papert
Learning R&D Center Massachusetts Institute of Technology
University of Pittsburgh Artificial Intelligence Lab
Pittsburgh, PA 15260 545 Technology Square

Cambridge, MA 02139
Dr. Michael Levine
Department of Educational Psychology 1 Dr. James A. Paulson
210 Education Bldg. Portland State University
University of Illinois P.O. Box 751
Champaign, IL 61801 Portland, OR 97207

Dr. Robert A. Levit 1 MR. LUIGI PETRULLO
Director, Behavioral Sciences 2431 N. EDGEWOOD STREET
The BL4 Corporation ARLINGTON, VA 22207
7915 Jones Branch Drive
McClean. VA 22101 1 DR. PETER POLSON

DEPT. OF PSYCHOLOGY

Dr. Charles Lewis UNIVERSITY OF COLORADO
Faculteit Sociale Wetenschappen BOULDER, CO 80309
Rijksuniversiteit Groningen
Oude Boteringestraat 1 Dr. Steven E. Poltrock
Groningen Department of Psychology
NETHERLANDS University of Denver

DenverCO 80208
1 Dr. Erik McWilliams

Science Education Dev. and Research 1 MINRAT M. L. RAUCH

National Science Foundation P II 4
Washington, DC 20550 BUNDESMINISTERIUM DER VERTEIDIGUNG

POSTFACH 1328
Dr. Mark Miller D-53 BONN 1, GERMANY
Computer Science Laboratory
Texas Instruments, Inc.
Mail Station 371, P.O. Box 225936
Dallas, TX 75265



-7,

CMU/ANDERSON September 11, 1980 Page 10

Non Govt Non Govt

Dr. Fred Reif 1 Dr. Richard Snow
SESAME School of Education
c/o Physics Department Stanford University
University of California Stanford, CA 94305
Berkely, CA 94720

1 Dr. Robert Sternberg
Dr. Andrew M. Rose Dept. of Psychology
American Institutes for Research Yale University
1055 Thomas Jefferson St. NW Box 11A, Yale Station
Washington, DC 20007 New Haven, CT 06520

Dr. Ernst Z. Rothkopf 1 DR. ALBERT STEVENS
Bell Laboratories BOLT BERANEK & NEWMAN, INC.
600 Mountain Avenue 50 MOULTON STREET
Murray Hill, NJ 07974 CAMBRIDGE, MA 02138

DR. WALTER SCHNEIDER 1 Dr. David Stone

DEPT. OF PSYCHOLOGY ED 236
UNIVERSITY OF ILLINOIS SUNY, Albany
CHAMPAIGN, IL 61820 Albany, NY 12222

Dr. Alan Schoenfeld 1 DR. PATRICK SUPPES
Department of Mathematics INSTITUTE FOR MATHEMATICAL STUDIES IN
Hamilton College THE SOCIAL SCIENCES
Clinton, NY 13323 STANFORD UNIVERSITY

STANFORD, CA 94305
DR. ROBERT J. SEIDEL
INSTRUCTIONAL TECHNOLOGY GROUP 1 Dr. Kikuii Tatsuoka

HUMRRO Computer Based Education Research
300 N. WASHINGTON ST. Laboratory
ALEXANDRIA, VA 22314 252 Engineering Research Laboratory

University of Illinois
Committee on Cognitive Research Urbana, IL 61801
% Dr. Lonnie R. Sherrod
Social Science Research Council 1 Dr.-John Thomas
605 Third Avenue IBM Thomas J. Watson Research Center
New York, NY 10016 P.O. Box 218

Yorktown Heights, NY 10598
I: Robert S. Siegler

Associate Professor 1 DR. PERRY THORNDYKE
Carnegie-Mellon University THE RAND CORPORATION
Department of Psychology 1700 MAIN STREET
Schenley Park SANTA MONICA, CA 90406
Pittsburgh, PA 15213

1 Dr. Douglas Towne
Dr. Robert Smith Univ. of So. California
Department of Computer Scipe-e Behavioral Technology Labs
Rutgers University 1845 S. Elena Ave.
New Brunswick, NJ 08903 Redondo Beach, CA 90277

I
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Non Govt

1 Dr. J. Uhlaner
Perceptronics, Inc.
6271 Variel Avenue
Woodland Hills. CA 91364

1 Dr. Benton J. Underwood
Dept. of Psychology
Northwestern University
Evanston, IL 60201

1 Dr. Phyllis Weaver
Graduate School of Education
Harvard University
200 Larsen Hall, Appian Way
Cambridge, MA 02138

1 Dr. David J. Weiss
N660 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

DR. GERSHON WELTMAN
PERCEPTRONICS INC.
6271 VARIEL AVE.

;WOODLAND HILLS, CA 91367

I Dr. Keith T. Wescourt
Information Sciences Dept.
The Rand Corporation
1700 Main St.

I




