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Abstract

This project was undertaken in order that a formal operational specification

of the Ada programming language would be designed. The formalism used was

that of SEMANOL, TRW's well established metalanguage for completely defining

the syntax and semantics of programming languages. The design produced in

this project essentially covers the entire Ada language, ignoring only the

low-level semantics of implementation dependencies, since deferral of these

was required by the conditions of this project. The SEMANOL design specifi-

cally provides an operc tonal framework in which concurrent task execution

can be defined. To support this form of parallel execution semantic defini-

tion, a very few extensions to the SEMANOL metalanguage were made; however,

these extensions were done so as to leave SEMANOL fully upward compatible

from the prior version of the metalanguage. The design provides both

concrete and abstract syntax specifications, and includes the algorithm by

which the concrete grammar is mapped to the abstract form. The semantics are

given in operational terms, as is SEMANOL's purpose, and deal with overloading,

generics, exceptions, all Ada types, etcetera, as well as concurrency. A

design basis has thus been established from which a full, operational, SEMANOL

specification of Ada can be constructed.

This report summarizes the performance and results of contract performance,

while the accompanying report, "The Design of a SEMANOL Specification of Ada,"

presents the detailed technical products of this effort.
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EVALUATI ON

This effort directly supports the Higher Order Language sub-thrust of the

Software Cost Reduction thrust by providing two valuable details necessary

for successful language development and control. These details insure a

language in which errors, inconsistencies, and ambiguities have been

removed, and a formal specification to provide implementors an exact

definition of the language.

The goals of this effort, through the process of formal specification

using SEMANOL, were to uncover deficiencies in the Ada language, and to

design a formal SEMANOL specification for Ada. The information and design

resulting from this process are to be available to the Air Force and

Department of Defense in their programs to develop and control the Ada

language.

DOUGLAS A. WHITE
Project Engineer

Vii



INTRODUCTION

This project was undertaken with the purpose of designing a SEMANOL specifi-

cation for the Ada programming language. Since SEMANOL is a metalanguage

meant to express formal specifications for programming languages, a SEMANOL

specification of Ada can provide a precision to Ada definition that is missing

in conventional prose descriptions. SEMANOL's operational nature also means

that semantic details, even those related to language implementations, can be

clearly identified, and implementation guidelines provided to those who must

provide Ada processors and host environments. As Ada is a new language, even

now undergoing refinement, a formal operational definition can also contribute

to clarity of language design and understanding of that design. In particular,

the use of SEMANOL can contribute to resolving issues of (1) unintended vague-

ness versus intentional omissions for implementation dependencies, (2) defini-

tion of conformance of programs and language processors to a standard, and

(3) the classification of errors (e.g., run time or compile time). A SEMANOL

specification of Ada can thereby contribute to Ada's acceptance on the wide

scale that is now hoped for.

The SEMANOL system used in this project was developed by TRW over the past

ten years. It consists of a theory of semantics based on traces, a meta-

language in which operational specifications can be written, and an Interpreter

to process metaprograms written in the SEMANOL metalanguage. SEMANOL has

previously been used to give definitions of JOVIAL(J3), JOVIAL(J73), CMS-2, SMITE

and BASIC that were complete and Interpreter-tested to a substantial degree.

Designs for SEMANOL specifications, complete with illustrative fragments of

SEMANOL metaprogramming,have also been created for COBOL and Pascal. These

past projects amply demonstrate SEMANOL's ability to fully describe a wide

range of typical, frequently used, programming languages. Since Ada has much

in common with these older languages, the semantic description techniques

developed in past SEMANOL applications have often been adaptable to Ada.

At the same time, Ada contained features that the programming languages

treated before had lacked; the most notable new feature being the possibility

of concurrent execution of parallel tasks.

kL1



I

Thus a major effort was made in this project to extend the SEMANOL theory and

the metalanguage so as to provide a satisfying way in which to describe the

semantics of concurrency. This was accomplished by creating a system of

SEMANOL processors whose scheduling and interaction are determined by an

element of the SEMANOL metaprogram that is analogous to a host operating

system nucleus. The implementation characteristics of Ada concurrency are

thereby made very visible. This was achieved without the need to make many

changes to the SEMANOL metalanguage itself, and making these extensions so

that the SEMANOL specifications written earlier remain valid (i.e., upward

compatibility was maintained).

The results of this research activity were the successful production of a

design for a SEMANOL specification of Ada and the development of the SEMANOL

metalanguage extensions needed to support this form of specification. This

design and the factors that led to it are given in a companion report to this

one, "The Design of a SEMANOL Specification of Ada". The Design document

contains the detailed technical output produced in performance of this

project. The remainder of this Final Technical Report summarizes these

results and provides an introduction to the SEMANOL system used for the Ada

design formalization. A description of the methods used and the factors

affecting project performance is also included, as are a few conclusions

drawn from the conduct of this effort. The Final Technical Report is meant

to give the sense of what has been done in this project without being unduly

technically demanding; the interested specialist is urged to read the Design

report for a full treatment of the issues involved in creating a formal

SEMANOL specification of Ada.
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PROJECT PERFORMANCE SUMMARY

This project was undertaken with the purpose of producing a design for a

SEMANOL specification of Ada. The SEMANOL specification of Ada is then

expected to be useful because it can compliment the conventional language

descriptions by being more precise and complete than they and, by giving an

operational meaning to Ada semantics, can clarify the nature of the implementa-

tion dependencies of Ada. The type of SE24ANOL specification we believe would

do this is described in detail in the accompanying Design Report. In that

report, the design for a SEMANOL specification of Ada is presented along with

a technical justification for the approach therein followed. In this section

of the Final Technical Report, we will simply attempt to describe a few of the

major points bearing upon our performance of this contract.

It should be realized that designing and writing formal specifications is

always a difficult task. Since it involves making precise what is imprecisely

explained in a conventional programming language manual, a great deal of

analysis must be done to decide just what the language being defined (e.g.,

Ada) is thought to most nearly be. The areas in which this hypothetical

model are doubtful, where one is filling in gaps in the conventional manual or

resolving apparent conflicts therein, can be difficult to recognize and

extremely difficult to resolve in a satisfactory way. The language model must

then be expressed in the SEMANOL system. The major problem in this, a familiar

one to programmers but exacerbated here, is to create a SEMANOL metaprogram

that is clear, through its organization and style, to its human readers. To

make complex ideas understandable is always hard, and Ada certainly presents

this challenge. And while clarity is of paramount importance, SEMANOL meta-

programs are expected to be executed by the SEMANOL Interpreter; thus the

efficiency of the metaprogram is considered and alternate approaches may need

to be evaluated. Writing the SEMANOL specification design of Ada has thus

demanded technical competence and individual perseverance. We believe the

results will be useful.



The approach followed in conducting this project was essentially one of (1)

analyzing Ada, (2) deciding what parts of Ada could be adequately treated by

traditional SEMANOL techniques, (3) and developing new SEMANOL methods for the

novel features of Ada. A guiding principle in our conduct of this project was

the desire to minimize changes to the SEMANOL metalanguage; a corollary to

that was the wish to maximize the use of methods that were successful in past

applications of SEMANOL. Since metalanguage changes were so few and localiz-d.

the metalanguage remains upward compatible with the existing version; older

SEMANOL metaprograms will still run without change. Since proven methods were

so often adaptable to Ada, our analysis could be focused upon the newer featur-

of Ada and overall confidence in tt, r -,t ' design incr-.sed.

The technical performers for this project were Mr. Frank Bel?, Dr. Edward Blum,

and Mr. Dennis Heimbigner. All have been involved in many past SEMANOL projects

and have been responsible for SEMANOL's development and extension; of course,

Dr. Blum is the inventor of SEMANOL. All had also followed the Ada development

process and participated in the various language and requirements reviews that

were part of this Ada development. An exceptionally fine group of computer

scientists, extraordinarily well versed in the appropriate technologies, have

thus been responsible for TRW's construction of the design for the formal Ada

specification.

The Ada language for which the design of a SEMANOL specification was developed

reflects our interpretations of the "Preliminary Ada Reference Manual" and the

"Rationale for the Design of the Ada Programming Language." Our understanding

of Ada was also influenced by reading the many Language Issue Reports sub-

mitted, by Mr. Belz's participation as a Distinguished Reviewer and, to a much

lesser extent, by an analysis of the many reports that have been written about

Ada. The formal denotational specification was also a useful source document

for this project. It provided an alternate type of definition of Ada, and so

complimented the conventionally presented definitions of the Reference Manual

and Rationale. Since all three documents were written by the Ada design team,

they could be assumed to be three views of essentially the same language; it

was thus possible for us to use all three when searching for Ada. Our design
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report also tends to follow the organization of the denotational specification

in that it presents the SEMANOL design in an Ada feature-by-feature basis

generally, instead of by SEMANOL metaprogram sections. The two approaches to

formal semantics are thereby more readily comparable.

While the denotational specification was helpful, it should be remembered that

it ignores Ada zoncurrency altogether (because of its difficulty). The

SEMANOL design provides a solution to this complex technical problem. The

SEMANOL design is not just a restatement of the denotational specification,

but one that goes beyond it to formalize a greater part of Ada.

It should be remembered that Ada is a new programming language and one that is

still undergoing design changes. Thus the analysis done in this contract has

had to cope with the fact the language itself is changing. Also, since the

language is a new one, the defining documentation for it is somewhat incomplete

and occasionally ambiguous. Thus the major source documents from which this

work was done were themselves somewhat imperfect. On the other hand, Ada is

also a language of great interest to many people, a large number of whom are

involved at present in analyzing and evaluating the language. Many of these

have discovered problems in the Ada reference manual (as have we), and by so

doing have aided us in our analysis of that same manual. The Language Issue

Reports have often reported definition problems that we had also discovered,

and by so doing have relieved us of the necessity of preparing duplicate

reports. So while the newness of the Ada language has complicated our task,

the fact that the language is being carefully scrutinized by so many others

has at the same time simplified our task.

Our analysis has also been assisted by the fact that Mr. Frank Belz has served

as a Distinguished Reviewer for the Ada programming language. In this capacity,

Frank has attended many meetings in which the various language design and

specification issues were discussed. His participation has thus assured us of

being conversant with the latest prospective changes to Ada. In this way, we

have been able oftentimes to anticipate changes in Ada and to include these

prospective changes in the work we have performed. Mr. Belz's participation
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has also meant that the results of TRW's analysis of Ada have been directly

presented to the committee. So the results achieved in performance of this

contract have already been injected into the Ada development process. Frank's

participation as a Distinguished Reviewer was not covered by this contract

itself, but it has, nevertheless, contributed to making our performance better

than it would otherwise have been and in making some of the results of this

project immediately useful.

The major product of this contract is the design document for t,.e SEMANOL

specification of Ada. In it will be found our approach to defining the

semantics of Ada in a formal operational manner. The specification that has

been created is complete except for certain omissions to be described later,

but does vary in the level of detail in which the various language te'd.ures

are described. The document does contain a complete concrete grammar for the

Ada programming language and a complete abstract grammar. The document also

contains a specific algorithm by which the concrete grammar can be matched to

the abstract grammar. The grammars and the explicit mapping algorithm between

them do constitute a contribution to the Ada development. To our knowledge,

this has not existed prior to our performance upon this contract.

While the grammar of Ada has been treated very completely and in thorough

detail, the semantics of Ada have been considered somewhat less fully and less

evenly. As suggested before, those parts of Ada which have previously been

dealt with in SEMANOL, such as evaluation, have not in all cases had their

semantics worked out in detail in performance of this contract. We essentially

rely for the design on citing the analogy of past performance and pointing out

how these previously developed methods can be applied to Ada. It is largely

in the area of features to which SEMANOL has not been applied that our emphasis

has been given and that the design report itself largely directs its attention.

Thus an extensive discussion of the semantics of concurrency will be found

there.

Certain features described in the Ada Reference Manual have been disregarded

in the SEMANOL design as being beyond the scope of Ada semantics. They are

6



important to Ada users, but their appearance in a formal Ada definition would

be unconventional and unhelpful. These exclusions are as follows:

1. Machine code insertions. Ada permits the in-line insertion of

machine code. While the specification of the semantics of

machine code for some hypothetical machine could readily be

accomplished in SEMANOL, there was certainly no reason to do

so in this research-oriented project.

2. Foreign languages. Ada is also meant to provide facilities by

which subprograms written in a language other than Ada can be

connected with Ada programs; that is, calls to subprograms in

another language are to be supported by Ada. As with machine

code insertions, this too could be done with SEMANOL. One

could, for example, choose to consider BASIC, for which a

SEMANOL specification already exists, and thereby support this

option. However, as in past SEMANOL projects, we have

deliberately chosen to consider the formal specification of

subprograms written in a different language as beyond the

domain of Ada.

3. Library facilities. We have always considered the possibility

of library support facilities to be a compiler-related feature

of a host environment, and not something to be thought of as an

intrinsic part of the semantics of a programing language. That

is, the definition of a library is beyond the scope of a formal

programing language specification. This view applies to Ada as

well.

Now SEMANOL could provide a library definition. However, many

of the characteristics of the total library facility, and most

of the details, would only be defined by the host environment

in which a given Ada compiler operates. Thus a formal definition

of a library could only be suitable for an arbitrary conjectural

situation. It is also a good deal of effort, even with SEMANOL,

to implement a library creation and maintenance facility. For

7



these reasons, this is an Ada feature whose specificationP

design is best ignored, or at least deferred.

4. Pragmas. Pragmas are meant to supply information to a given

Ada compiler, and some pragmas are considered language defined.

However, even the language defined pragmas (e.g., SUPPRESS) are

expected to be without semantic effect, and so can be disregarded

in a SEMANOL specification.

A few other aspects of Ada were largely ignored in the design process as

being low level implementation dependent semantics best considered later.

These include the following:

1. Approximate arithmetic. If a SEMANOL specification is to be

made complete to the degree that it is to be operational., some

sort of arithmetic must be provided for. Thus the way in which

real numbers are to be represented and the way in which arithmetic

is to be performed upon these approximations must needs be

defined. We have defined this kind of arithmetic in past

projects, and have generally attempted to do so in a parametric

way in order that the specification given could be as general

as possible. Nevertheless, this is a very low level part of

any programming language specification; since our design effort

here is generally being conducted at a higher level, it is simply

thought unsuitable to attempt to provide details for approximate

arithmetic at this time.

2. Input-output. Ada does not contain explicit input-output opera-

tions, nor does it presume any specific interface through which

Ada programs can communicate with external devices; thus input-

output semantics per se are outside the scope of Ada. The

details of input-output, which is assumed to be possible, are

to be entirely implementation determined. This means any effort

to include them in a formal definition must invent an external

"world," possibly in the form of an event-driven operational

model. While SEKANOL can do this, it has no special facilities

8



for such modeling. For these reasons, we have made no effort

to formulate a generalized environmental framework in which

Ada programs would execute.

Some input-output packages that are to support Ada programs are

given in the Ada Reference Manual. LOW-LEVEL-IO is essentially

implementation defined, and its modeling would present the

problems already noted. INPUT-OUTPUT and TEXT-IO are somewhat

more abstract, and are similar in function to input-output

features modeled previously with SEMANOL. TEXT-10 features can

be explained with the #INPUT and #OUTPUT operators of SEMANOL,

while INPUT-OUTPUT can make use of SEMANOL sequences. The

higher-level forms of Ada input-output do lend themselves to a

relatively straightforward definition in SEMANOL. The uncertain

relationship of input-output to Ada, the anticipated major

changes to Ada in this area, and the fact that dealing only with

higher-level input-output is still a substantial task, caused us

to generally disregard input-output altogether in our design.

This could be reconsidered in a later implementation phase

(where some input-output facility would probably become necessary).

3. Interrupts. Interrupts are related to low level input-output,

and their nature and timing are likewise implementation

determined. Our design does model the receipt and handling of

interrupts, but not the simulation of their generation. The

generation of interrupts, like input-output modeling, could be

provided by SEMANOL's ability to use external functions. How-

ever, such functions are so closely related to the host environ-

ment and Ada program application that the design of any interrupt

functions was thought best delayed until an implementation phase.

(We should also note that SEMANOL metaprograms are not expected

to supply test-bed environments.)

4. Detailed storage model. Ada's address-specification is used to

position code at a particular machine address or to define an

address as the location of a variable or hardware interrupt

9
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entry transfer. Its semantics are inherently implementation

defined, having a significance dependent upon the particular

machine organization used and that machine's interface to

external devices. Such machine sensitive low level details are

being ignored in this design effort. Presumably, the address-

specification would be used to support low level input-output

as realized with LOW-LEVEL-10 and similar packages.

In a similar way, length-specification, packing-specification,

enumeration-type-representation and record-type-representation

allow one to control the internal structure of data elements.

They can easily be modeled with the use of SEMANOL, but they

lack semantic significance and so have been disregarded in this

project.

While the design has passed over some features of Ada, at least for now, it

has also included aspects of Ada that are generally ignored when using other

formal methods. Thus the issues of separate compilation and real-time clocks

have been addressed. Separate compilation is a feature of a programming

language that allows a program to be broken into parts, compilation units in

Ada, such that parts translated separately by a compiler can be combined

somehow into a single program for execution (possibly by a linking loader).

The units needed to make a compilation unit whole for execution are maintained

in a library; so the issues of separate compilation and libraries are them-

selves closely related. Our design for a formal specification of Ada omits

specification of a library for the reasons given before, but does include

enforcement of the visibility rules of Ada that support separate compilation.

Thus the SEMANOL specification design expects the entire program to be given

as a body by #GIVEN-PROGRAM, and then checks the text for correct unit

ordering. Separate compilation implications are therewith included in our

design.

While we had originally thought to disregard this particular feature of Ada,

we have generally included facilities for modeling the behavior of clocks.

Thus the time of day and delay intervals are provided for in the SEMANOL
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specification of Ada. There is no pretense, however, that this "time" has

any particular significance with regard to execution rates.

Besides including these unusual features, the SEMANOL design provides a

formalism with which to explain the semantics of parallelism. We believe

that this development of a semantic framework in which parallel
execution can be explained is a noteworthy contribution of this project.

Methods of formal semantic description have often been forced to disregard the

semantics of concurrent execution. The approach we have developed is given in

detail in the accompanying design report, where it is accompanied by the

technical background needed to compare this approach with others that have

been attempted. The approach is an operational one, as expected with SEMANOL,

that depends upon the construction of an operating system kernel, with the

kernel being described by the SEMANOL metalanguage. Essentially, a set of

SEMANOL processes having the characteristics of physical processors are

defined which, in turn, are used to interpret the concurrent Ada tasks. There

is no one-to-one correspondence between SEMANOL processors and Ada tasks and,

indeed, the number of SEMANOL processors is a specification parameter. The

flexibility afforded by this approach means that it is well able to illustrate

the practical problems of implementing the Ada language in the face of

concurrent task execution. It is a pragmatic approach but, nevertheless, it

does have a theoretical grounding as explained in the design document.

This approach to parallelism retained much of the control structure used in

past SEMANOL applications for interpreting a single execution sequence. This

traditional control structure is applied to each Ada task with SEMANOL being

extended so that multiple concurrent SEMANOL processes can be applying this

structure to multiple Ada tasks. In this way, the execution of concurrent Ada

tasks can be simulated much as they might occur on a multiple processor host

computer. The key decision in this design process was the decision to provide

SEMANOL itself with concurrent metaprogram execution abilities. Had it been

considered desirable to model Ada concurrency by use of a single SEMANOL

processor, the SEMANOL language probably would not have changed. Although the

extensions to SEMANOL were not strictly necessary, since Ada concurrency could

be modeled by a use of a single processor SEMANOL metaprogram (just as Ada
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programs containing concurrent tasks could presumably be executed on a single

processor computer system), the use of the existent non-parallel SEMANOL

system seemed unlikely to lead to a specification that would give its readers

a clear picture of the implications of parallelism as it occurred in Ada. To

capture Ada parallelism it simply seemed necessary to use a form of SEMANOL

parallelism. We believe that the control model developed is one that reveals

some of the implementation issues that arise in supporting Ada parallelism.

It is particularly welcome to note that the extension of SEMANOL so as to

provide support for this type of concurrent task modeling involved very little

change to the SEMANOL metalanguage. A primitive capable of initiating

concurrent SEMANOL task processors (i.e., #CO-COMPUTE) and two primitivc-;

corresponding to integer semaphores (i.c., #P and #V) were all that were

required. In addition, these changes were made in such a way that past

SEMANOL specifications continue to be valid; that is, upward Metalanguage

compatibility has been maintained. Old SEMA1NOL specifications (e.g., BASIC

and JOVIAL) remain valid.

Although the operational nature of the SEMANOL concurrent-process model

introduces some degree of overspecification, being in effect an implementation

of Ada, the act of constructing it has pointed up certain difficulties and

subtleties that exist in Ada and which will cause difficulty in any implementa-

tion. For example, the unblocking of a task blocked on a select which involves

both an accept and a delay was found to require careful attention to avoid

deadlock, with rather subtle analysis required of mutual exclusion and

synchronization techniques and choice of correct unblocking alternatives.

We should note that it had been our original intention to use the Ada Translator

program as a guide to resolving questions arising from ambiguity in the Reference

Manual. The idea was that Ada test programs illustrative of the issue would be

written and submitted to the Translator, and an analysis of the Translator

results would then determine whether a certain usage was legal or not. In this

way, the Translator could help resolve questions about the Reference Manual.

Unfortunately, we found the Translator did not work well when we used it early

12



in the contract performance period. In general, it rejected our programs even

though later consultation with the Ada language designers revealed the programs

should have been accepted (e.g., the assignment of aggregates to multi-dimensioned

arrays was considered illegal by the Translator when it should have been legal).

Other Translator users reported sfiilar problems. We thus concluded the

Translator was an unreliable defining mechanism for Ada, and so could not pro-

vide the resolution of ambiguities that we had hoped it might; therefore, we

abandoned efforts to use the Translator in this contract effort. Because of

the Translator's failure in our demanding application, we derived no part of

our design for the Ada specification from definitions fIplied by the Translator.

(Since we weren't testing the Translator we, naturally, found no conflicts

between the Translator and the Ada Reference Manual.)
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THE SEKA±40L SYSTEM

The term SEMANOL commonly is used to refer to the metalanguage of that name.

But in a broader sense, it also includes a philosophical viewpoint of

semantics, an approach to writing specifications in the metalanguage, and an

Interpreter for the metalanguage that creates an operational system. All of

these aspects are considered in what follows.

The general approach of this section is to discuss SEMANOL as it had evolved

prior to the performance of this contract, and then to point out how it has

been affected by performance of this contract. En the case of the meta-

language extensions, a separate subsection is given; for the theory, specifi-

cation structure, and Interpreter presentations, the influence of Ada is

given as an integral part of the text. It is intended that this section

provide an introduction to SEMANOL, suggest how SEMANOL can be used to express

a formal definition for Ada specifically, and show where the SEMANOL meta-

language and methodology have been affected by this application to Ada.

The SEMANOL Concept of Semantics

The SEMANOL concept of semantics of programming languages views a

programming language, L, as a set of structured strings called programs.

Each program, p, in L defines an algorithm, p, for computing a function,

f. (Notation: When xc is used to denote some expression, x is used to

represent the thing denoted by x.) The function f and the algorithm p are

both built up out of the operations and relations in a collection of data

types associated with L. To describe p (or f), a program p must contain

constants and variables which denote the elements in the data types and which

are combined with operation symbols into expressions and statements. The

semantics of L tell us how to obtain p from p; that is, it tells us how, given

p and some input data, E, which serve as initial values of some of the

variables in p, to get a trace, t, of the computation produced by p. (The

value, f(E), of the function f is denoted by some constant which is part of

the trace.) Thus the semantics of L is an operator, tL, which maps such pairs
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(p,E) onto traces. (DL is called the semantic operator of L.

A SEMANOL metaprogram, PL' for language L describes the semantic operator OL.

It does this by specifying a meta-algorithm which produces a meta-trace from

which the trace t can be extracted. We can depict how the meta-algorithm does

this with a schematic diagram as follows:

(DL
(p,E) - t

(p',E') O to

T
L

Here we see DL analyzed into three factors. The mapping yL converts the

original program text p and input data constants E into representations,

p' and E', in terms of SEMANOL data types. YL is described in a section of

the metaprogram P involving lexical and syntactic analysis of the text p andL

the data E. This can also be thought of as a description of compile-time

processing of p. The mapping TL produces a SEMANOL meta-trace, t'. TL is

described in the semantic section of PL in terms of SEMANOL operations and

relations which are used to simulate the operations of L. The meta-trace t'

is actually produced by executing the command section of PL" Such execution

follows the semantics, s, of the SEMANOL metaprogramming language, which is

based on certain standard well-understood programming concepts. The meta-

trace t' is essentially an expansion of t in which each operation of L is

built up from SEMANOL operations. Finally, the trace t is recovered from t'
-1

by applying the inverse conversion mapping, yL , which transforms SEMANOL

constants back to the constants of language L.

The semantic operator of SEMANOL, % , can be thought of as a SEMANOL machine.

The metaprogram PL can be loaded into this machine together with a pair (p,E).

The machine will execute the various sections of PL and produce the trace t

as output. Pictorially,
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metaprogram PL SEMANOL

-a-trace t

machine

L program and input data (p,E) 4s

This view reflects the actual structure of the current SEMANOL implementation

as shown in Figure 1. The SEMANOL Interpreter simultaneously defines the

semantic operator 4s for SEMANOL and, in conjunction with the Multics system,

incarnates the SEMANOL machine. In the same way, the SEMANOL description of

programming language L simultaneously defines the semantic operator (D for L
L

and, in conjunction with the SEMANOL machine, incarnates an L-machine.

For the programming languages to which SEMANOL had been applied prior to this

project, the trace was a single ordered sequence of operations; that is,

parallel execution did not exist for these languages. Ada is different in

that parallel task computations are an explicit part of the language, and the

effects of this parallelism on program results (e.g., with regard to synchro-

nization and orderly access to shared variables) are an explicit result of Ada

program execution rather than implied by Ada semantics. In a sense, Ada is a

relatively low level language when it comes to defining control flow; thus

the details of parallelism must appear in tt2 formal SEMANOL specification.

For Ada, the trace t (and its analogous t') will no longer be totally ordered

when parallel computation occurs. In the face of parallelism, the semantics

of Ada do not define the relative ordering between steps of parallel task

activations; it is only at points of explicit synchronization that order is

imposed. Thus each branch of a parallel computation is associated wit'. an

ordered sub-trace, but there is no accepted unique way in which these parallel

sub-traces may be merged into the single trace assumed earlier for SEMANOL.

The trace now becomes a collection of parallel trace chains, one for each

concurrently active task, that are connected at points of task synchronization.

Each step in a task trace chain is ordered by an earlier-than relation, as are
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the connecting synchronization steps (one thus has a semilattice). It is

this new view of a trace that then guides the development of the design of a

SEMANOL specification of Ada.

The Structure of a SEMANOL Specification

A formal SEMANOL specification of a programming language is a metaprogram, PL'

for processing a source language program text written in the programming

language being defined. The algorithm expressed by the SEMANOL metaprogram

describes a way in which the intended effect of executing any program in the

defined language can be realized. That is, the algorithm is an interpretive

definition of semantics or, alternatively viewed, the metaprogram describes

an interpreter for the defined programming language. In what follows, we

attempt to briefly describe this type of metaprogram through emphasizing the

nature of its control flow logic, while only touching upon the data structures

and representations involved. While the presentation is rather general, it

does correspond to the design developed for Ada; indeed, those parts of the

metaprogram whose treatment for Ada differs markedly from that used with other I
languages in prior contracts are noted. The changes in approach adopted for

Ada are thus made clear.

A gen-al approach to writing metaprograms has evolved through performance of

past projects, and most of this general approach was retained when dealing

with Ada. This approach is suggested in Figure 2. The left side of Figure 2

shows the transformations which are made to the representation of the input

program text as interpretation is performed. The central block diagram is a

simple flowchart showing the series of processing steps that the SEMANOL

metaprogram typically causes to occur. This flow is a consequence of having

an operational specification method. The right side of the diagram reflects

the static structure of a SEMANOL metaprogram and the way in which the various

statement groups are related to the specification logic. Observe that the

SEMANOL metaprogram for Ada, as is customary with SEMANOL usage, expects

programs in L to be given in terms of their concrete syntax; the metaprograms

are thus thorough. This metaprogram structure is considered in more detail in

what follows.
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The declaration section of a metaprogram is composed of SEMANOL statements

that identify SEMANOL global variables and syntactic components. Very few

global variables are normally used in a SEMANOL metaprogram; those of greatest

importance are used to describe the control semantics of the defined language,

and some are explained later. Syntactic components, on the other hand, are

declared in generous number as an optimization measure. They declare the

names of those SEMANOL definitions that produce constant values for a given

parse tree argument, and so inform the Interpreter program to perform the
t

computation of these functions only once for a given argument. The computed

value is then associated with the argument node on the parse tree; later

invocations of the function for that node need only retrieve the saved value

rather than perform the computation. The definitions of the abstract grammar
are the prime examples of syntactic components.

The control-commands section of a SEMANOL metaprogram is conventionally

composed of a few SEMANOL commands. These commands are executed sequentially

and correspond to those available in conventional programming languages.

Interpretation of the SEMANOL metaprogram begins with the first statement of

the control-commands section. These statements impose the overall control,

as suggested in Figure 2; thus this section plays the role of a very high

level main program.

The semantic definitions section of the SEMANOL metaprogram contains the

detailed operational functions needed to define a programming language. The

first operational step invoked in describing a programming language is to

define the lexical transformations that the language includes, if any. These

transformations may cause the source program to be altered as required for

string substitutions or for line format considerations of the language being

defined. They essentially are meant to put the program text into the form

defined by the supporting context-free grammar for the subject language. In

the case of Ada, this specification step will eliminate comments, change lower

case letters to upper case, and map the full ASCII character set to the basic

Ada one. This lexical transformation step is accomplished by parsing the text

with respect to a simple context-free lexical grammar that identifies tokens,
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gaps, and line terminators (including comments); collecting the items to be

retained into a list; putting each list element into its cannonical string

representation form; and reforming the list into the new text string. The

transformed program text then becomes the basis for further specification.

Following the textual alterations, the transformed program text is parsed.

This parse process is invoked by the SEMANOL operator #CONTEXT-FREE-PARSE-TREE

and is directed by the grammar given in the context-free syntax section of the

metaprogram. The product of this operation is a parse tree representation of

the source program or one of two error conditions; the error conditions

occurring if the grammar can lead to more than one parse of the given program

(i.e., the grammar is ambiguous) or if the program cannot be parsed. The

parsed representation reveals the structure of the program and so is a

convenient basis upon which to formulate the later semantic description. The

lexically transformed program text itself is retained as the terminal leaves

of the parse tree. The SEMANOL syntactic definitions used to define the

grammar look much like the productions of the usual treatments of such

programming language grammars.

The context-free syntax used in this parse step to describe the programming

language as written has come to be known as the concrete syntax, in contrast

to an abstract syntax that provides a minimal program structure while still

revealing the full semantic significance of a program. The abstract syntax

strips away the stylistic flavor of a programming language in favor of exposing

the semantic skeleton. SEMANOL employs both forms of syntax. For example,

the concrete syntax of the Ada GOTO statement is given in SEMANOL by

#DF goto-statement => <goto> <gap> <identifier> <gap> <semi-colon> #.

The corresponding partial parse tree is

<goto-statement>

<goto> <gap> <identifier> <gap> <semi-colon>
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However, the only semantically important component of the goto-statement is

the identifier part. An abstract syntax thus need only define a goto-statement

as having an identifier element. In SEMANOL, the abstract syntax is implied

by a set of selector and predicate functions. The goto-statement would thus

lead to the creation of a selector function

#DF id-of(n) => #SEG 3 #OF n #IF n #IS <goto-statement> #.

and a predicate function

#DF is -goto(n) => #TRUE #IF n #IS <goto-statement>;

=> #FALSE #OTHERWISE #.

To assist in the derivation of the abstract syntax and to make explicit the

connection between the abstract syntax and concrete syntax, we have annotated

the SEMANOL concrete syntax for Ada in a standardized way illustrated by the

following:

DF goto-statement ": is-goto"

=> <goto> <gap> "id-if" <identifier> <gap> <semi-colon> .

The two added quoted phrases are comments in the SEMANOL metalanguage, but

they are formed so that they can readily be recognized and transformed into

the selector and predicate definitions previously shown by a mechanical process.

This process is now done manually, but we are weighing the desirability of

extending SEMANOL so that this convention would become part of the metalanguage

itself. In any event, by following this type of procedure, simplified in this

example, we have created complete concrete and abstract grammars and, probably

most importantly, have created a direct correspondence between the two. The

understandability of the Ada specification is thereby improved.

Next comes the imposition of syntactic restrictions that cannot be expressed

in a context-free grammar. That is, not all programs that can be parsed using

the context-free grammar are legal programs in Ada. It is the intent of this

section of the metaprogram to provide an operational algorithm to detect such

illegal programs before an attempt is made to interpret them. The tests are

commonly stated in terms of existence conditions, using the #THERE-EXISTS
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operator of SEMANOL applied to the parse tree. The iterator and sequencing

operators of SEMANOL, combined with the use of an abstract syntactic representa-

tion, allow these restrictions to be expressed succinctly. Since the applica-

tion of these tests is made before interpretation proper, they can cause the

rejection of programs that could be interpreted without encountering the error

condition. That is, these tests correspond to those that a compiler might

make and the consequences can be semantically different than if similar tests

were applied at execution time (e.g., consider unexecuted references to unde-

fined variables). Typical tests included here are those for name uniqueness,

type conformity, formal and actual argument agreement, program accord with

structural rules, data organization consistency, etc. While SEMANOL enforces

these limitations readily, the formulation of rules for syntactic exclusion is

a very difficult problem in language design.

Coincident with the imposition of the context sensitive syntactic restrictions,

the Ada metaprogram also defines the method by which generic instantiation is

to be done. The method used with Ada is new to SEMANOL and is essentially one

of traversing the parse tree in a depth first fashion, recursively applying a

SEMANOL function to each of the descendant nodes. When a generic is encountered,

the body of the generic declaration is specially scanned to produce the string

of terminals of the declaration with actual parameters substituted for formal

ones and global name references replaced by fully qualified name references.

The resulting new program text is then parsed again, using the same concrete

grammar as before, so as to provide the parse tree used as the basis for

explaining execution semantics.

Having specified these preliminary operations, the semantics of program

execution are next given. Figure 3 illustrates the data structures that are

used to explain execution semantics. The parse tree is (effectively) a static

structure that is traversed and tested by direction of the SEMANOL metaprogram;

the SEMANOL metaprogram then causes the execution effect of the parsed program

to be realized. The semantics of the SEMANOL specification of a defined

language are thus generally expressed in terms of the grammar that corresponds

to the concrete grammar used to create this parse tree. The storage mechanism
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of SEMANOL is used to record the changes that occur as the interpretation is

performed. Note that this overall model corresponds rather closely to that of

any conventional computer; this similarity emphasizes SEMANOL's operational

style of definition.

While there are several interwoven facets to the description of run-time

(i.e., dynamic) semantics, it seems best to begin by describing the overall

structure that we use in SEMANOL to control run-time interpretation.

Essentially, run-time semantics are given with reference to the execution units

that are defined for a given language. Execution units will be statements when

possible, as it was for Basic but, more commonly, are lesser phrases into which

statements must be divided for semantic descriptive fidelity. In the case of

Ada, execution units are defined to be very elementary units (such as a sum or

product operation) in order that exceptions and interrupts can be faithfully

modeled. Based on the execution units chosen, the semantic definition of an

execution-unit is decomposed into an effects-of part and a successor part; the

effects-of part giving changes to the machine state that execution of the unit

causes, with the successor part serving to identify which unit is to be executed

next. Note that the elaboration of Ada declarations is treated in this process,

not in some separate pre-execution phase, since the semantics of declaration

elaboration carry such strong execution implications. Graphically, the control

structure has this form for a sequential language;

effects-of (unit)

successo (unit)

N stpcndto f/;,STOP

While this form of control loop is the one developed for past specifications

and is fine for describing the sequential semantics of a single task, it is

inadequate for Ada because it fails to provide for control transitions between

Ada tasks.
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For Ada, thi control loop is augmented as follows:

non-sequential-condition - op-kernel

effects-of (unit)

I successor-of (unit)

Thus the control loop will cycle through the interpretation of the execution

units until a non-sequential-condition is activated for this SEMANOL processor.

This condition can be set by the task being interpreted, because of an accept

or delay for instance, or by another Ada task interacting with this one,

because of an abort perhaps. All forms of interrupts, exceptions, and cross-

task interaction can be accommodated in this model, and with a resolution

similar to that which will exist in practice.

The recognition of a non-sequential-condition causes the op-kernel to be

invoked. The op-kernel is largely meant to give the semantics of Ada task

scheduling and to complete the effect of control transitions that may involve

task scheduling. The scheduling of Ada tasks is essentially a matter of queue

management and the shuffling of Ada task identifiers between queues as their

status changes (e.g., from a waiting queue to a ready queue when an enabling

condition is recognized.). In effect, an Ada task management subsystem is

given in a set of SEMANOL functions that closely resemble an operating system

kernel. The SEMANOL processes correspond to the hardware processors of a

multiple-processor, shared storage, host system. An implementation is thereby

created, as needed for a truly operational metaprogram, that is meant to make

obvious the issues involved in the semantic definition of Ada concurrency.

The number of SEMANOL processes is determined by a static parameter of the

metaprogram, and this parameterization emphasizes the implementation dependent

character of that aspect of semantic specification.

The.successor semantics of sequential languges have been, by convention, stated

in terms of the declared SEMANOL global variable CURRENT-STEP. CURRENT-STEP
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holds the node of the executable unit (e.g., statement phrase) now being

processed. The active point in the defined language program is defined by

this value, and transitions of control by changes in this value. Because of

parallelism, multiple active execution points may exist in Ada, one in each

task. Thus the metaprogram for Ada provides for having a control frame for

each task, with one element in each frame being the CURRENT-STEP value for

that task. Because SEMANOL process names are appended to the names they use

when referencing storage, each SEMANOL process naturally has a set of names

effectively local to it. Thus each concurrent SEMANOL process can conveniently

maintain its own state variables, such as CURRENT-STEP. The semantics of

sequencing within a task, therefore, can be given with much the same techniques

as used previously for purely sequential languages. Since these techniques

have been proven, their adoption for Ada improves the confidence one may have

in the Ada design.

To support the method of modeling Ada concurrency just outlined, it is intended

that SEMANOL be extended through the addition of the #CO-COMPUTE, #P, and #V

primitives. The #CO-COMPUTE operator activates multiple copies of the SEMANOL

semantic procedure containing the control loop illustrated, and so introduces

concurrency into the SEMANOL metalanguage. The #P and #V operators add binary

semaphores to SEMANOL so that SEMANOL processes can be coordinated and access to

shared variables, such as scheduling queues, regulated. The extensions to

SEMANOL were thus developed to answer the needs of providing a particular, but

generalizable, model of concurrent semantics.

The effects-of semantics are primarily given in terms of the storage model,

evaluation rules, and the input-output model. The nature of the storage model

used depends upon the language being defined and the level of detail that is

being provided. When storage semantics can be divorced from implementation

dependencies, storage names directly derivable from the variable names used in

the program itself may be used, and values stored at these storage locati6ns

can be represented by a convenient syntax. A rather abstract storage model is

thereby provided. It is this type of storage model that is contained in our

Ada design, and it is one natural to SEMANOL's storage operators. If it were
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later decided to include detailed representation specification semantics in

the Ada metaprogram, the SEMANOL design could be readily extended to deal with

the hard realities of bits and computer words. The effect of extension would

be that the names used for storage and retrieval would become (equivalent to)

storage addresses and that the values associated with these names would become

the binary contents of the addressed locations. A form of storage allocation

would thus be defined so that these storage addresses could be established.

The SEMANOL metaprogram thereby becomes appropriate only for a given language

implementation; however, this condition is inescapable if these semantics are

to be completely defined.

Closely related to the storage model is the semantic definition section that

explains the evaluation rules for the language being defined. Here are

explained the semantics of arithmetic operations of the types (e.g., integer,

floating, fixed, location) provided in the defined language, character string

operations, Boolean evaluation, and comparison relations. The description

of evaluation may include consideration of machine effects upon the comput-

ational result produced, type conversions that may be required, and a suitable

interface with the storage model. The general evaluation procedure followed

is largely one of translating the constants and operators of the defined

language to corresponding SEMANOL representations, and then performing the

computation upon the SEMANOL constants. Evaluation is conveniently described

recursively and SEMANOL's recursive abilities are used advantageously here.

The use of binary representations for evaluation is commonly done because

(1) implementation dependencies are most clearly revealed with that

representation and (2) conventional descriptive documents tend to assume an

internal binary orientation.

The semantics of input-output deal with data transmission and possibly with

translations between internal and external representations of data. The

transmissions required are accomplished by the #INPUT operator and the #OUTPUT

operator. In this way, input-output semantics relating to the external world

can be modeled. Input-output that is internal to a program in the defined

language can be described through the use of sequences and a suitable set of

28



representation conventions.

Naturally, this general specification structure is tailored to fit the needs

of the programming language being defined, It is also subject to the stylistic

inclinations of the person(s) writing the SEMANOL code; indeed, a good deal

of individuality will be found among the SEMANOL specifications that now exist.

The writing of SEMANOL specifications does follow a pattern, but it is far

from being a rote exercise. The Ada specification reflects tradition and its

developer's predilections.

This discussion of SEMANOL metaprogram structure is only intended to impart a

sense of the way in which SF.MANOL is used to formulate complete prograrming

language specifications. The programming orientation of this type of descrip-

tion should, nevertheless, be obvious. It should also be clear that this form

of specification can become extremely detailed, and when so used, it becomes

a language processor that is obligated to define language attributes ordinarily

considered to be implementation defined. Languages are defined with allowance

for implementation variability because:

1. At the very least, differences are expected to exist among language

implementations because of differing data representations,

computational incompatibilities, conflicting error treatments,

operating system induced discrepancies, etc. The extent of

differences among implementations will largely be determined by

the range of host environments employed and by how strongly code

transferability has influenced the design of a particular

programming language, but differences are expected even for

languages popularly considered "machine independent".

2. Different language processors are expected to order operations

differently and otherwise generate code that is meant to capitalize

upon the unique features of a given machine. The code produced nay

also be influenced by the compiling techniques that are employed to

improve compiler efficiency. Computing efficiency is thereby realized

but in ways that are hard to describe precisely.
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In short, efficiency is more important than strict uniformity. Thus one goal

in writing language definitions is to construct a specification that describes

the idealized (machine independent part of the) language, while it also

clearly identifies features whose meanings are left to be the consequences of

a given execution environment. If possible, the implementation dependent

parts should be described to the extent that the range of acceptable implement-

ations can be clearly made part of the language defining specification.

While a deliberately incomplete SEMANOL metaprogram intended only for

publication can ignore some of these problems, an operational SEMANOL meta-

program must be made complete through some form of precise specification for

all the machine and implementation factors that could otherwise be dismissed

in a conventional specification method. That is, the complete SEMANOL meta-

program is itself an implementation, and consequently it must include

a specification of semantically significant machine features. This is

possible with SEMANOL because its data representations and operators

are indeed machine independent, and so capable of modeling conventional

machine features.

A conscientious effort is than made, in writing SEMANOL metaprograms, to

separate these machine details from the other code so that they do not obscure

the broader semantic specification. Historically, machine features such as

word size, arithmetic operations, and overflow treatment have been described

by the SEMANOL metalanguage in a distinguished part of the metaprogram that

is meant to describe these machine-dependent elements of the semantics.

Standards for similar computers can then be prepared by revising the SEMANOL

code that expresses these machine dependencies. In fact, a strong effort

has been made in the past to parameterize these features so that a family of

metaprograms can be built, each differing from the other only in the values

given to these machine dependent parameters.

It should also be noted that machine details can oftentimes be given in

external functions. The SEMANOL metalanguage supports this option through the

#EXTERNAL-CALL-OF feature. As a result, a library can be built that contains

30



routines to simulate the hardware and operating system functions that are

needed to complete the description of the language being defined. Implement-

ation dialects can then be distinguished by separate libraries. Parameteriz-

ation and external functions are both used in the design of a SEMANOL

specification of Ada.

The SEMANOL Metalanguage

Now the semantic operator for L, PL$ could certainly be written in conventional

programming languages, such as JOVIAL or Fortran; however, other programmiihg

languages were not designed with formal semantic description in mind. There-

fore, semantic interpreters would be difficult to write in these languages and,

more importantly, the interpreters so expressed would be very difficult to

understand. This lack of comprehensibility means these interpreters would

serve poorly as specification standards. Contrarily, SEMANOL is a meta-

language specifically designed, and repeatedly refined, for expressing the

semantics or programming languages. Because of this, an interpretive

specification stated in SEMANOL is relatively easy to understand; the keywords

and structure of SEMANOL, coupled with the use of proven specification

conventions, provide a "naturalness" to the SEMANOL metaprogram that is not

available with other interpreters. Precision is therewith combined with

relative readability through the use of SEMANOL.

One part of the SEMANOL metalanguage must deal with syntactic forms since

SEMANOL expresses the rules by which programs and input are given in concrete

format. Thus SEMANOL contains syntactic definitions that are combined to

form context-free grammars. The SEMANOL syntactic definitions used to define

a grammar look much like the productions of the usual treatments of such

programming language grammars. For instance,

#DF Program = <'START'> <#GAP> <Statement-list> <#GAP>

"'TERM$'>#.

#DF Statement-list = <Statement> <%<#GAP><Statement5>>#.

describes the syntax class Program as being initiated with a START, terminated
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with a TERM$, and containing at least one Statement. The #GAP set constant

of SEMANOL is context sensitive; it is meant to describe the conventional

rules that govern the use of blank characters in programming languages. The

% states that zero or more occurrences of <<#GAP> <Statement>> may follow.

The grammar so defined is used by the #CONTEXT-FREE-PARSE-TREE operator to

construct a derivation parse tree for a given string relative to this

grammar. The nodes in a SEMANOL parse-tree are ordered by traversing it

in preorder. This corresponds to a left-to-right ordering of substring

occurrences. Each non-terminal node is labeled with its syntactic class

name, its segment number, and its case number. These labels indicate how

the node was obtained by the parser. In lexical terms, the labels describe

the syntax of the string of terminal letters in the subtree of which the

node is the root node. Note that the #CONTEXT-FREE-PARSE-TREE operator is

a generalized parsing algorithm that imposes no artificial restrictions upon

the grammar with which it is used.

Besides the node type created by application of the #CONTEXT-FREE-PARSE-TREE

operator, SEMANOL contains a variety of conventional and not-so-conventional

types that, collectively, fit its specialized field of application. These

types are shown in Table 1 in conjunction with the operators that SEMANOL

supplies for each type. While the types and operators are generally familiar,

and so should be roughly understandable without explanation, a few comments

should make SEMANOL somewhat clearer. These comments are organized by type,

and are as follows:

1. The Boolean type consists of #TRUE and #FALSE, and the Boolean

operators have the conventional interpretation.

2. The bit-string type consists of indefinite length strings of zero's

and one's; these operators likewise are to be conventionally

interpreted.

3. The integer type is unusual in that integers are numeric strings

upon which string arithmetic is performed. Thus the range of

SEMANOL integer arithmetic is unaffected by underlying machine factors

and an idealized arithmetic is thereby realized. Note that division
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produces a truncated integer result, #NEG is a negation operator,

and #CONVERT translates integers from one base (2, 8, or 10) to

another. No other arithmetic is provided since, when writing formal

specifications, our experience has been that floating point (and

fixed point) semantics are best modeled through the use of integers.

The high-level iterators permit search algorithms to be stated in an

obvious and understandable way.

4. The string type is largely conventional, but it does provide

facilities so that ordinarily non-represented characters, such as

end-of-line tokens, can be conventionally included. The #CW operator

performs string concatenation, with the meaning of the other operators

being fairly self-evident.

5. The sequence type is composed of groups of ordered elements of any

type; a sequence need not be homogeneous. Since the elements of

a sequence may themselves be sequences, any form of hierarchical

structure is easily modeled. The names of the sequence operators

are meant to be self-descriptive except for the concatenation

operator, #CS.

6. The node type is produced initially by the #CONTEXT-FREE-PARSE-TREE

operator as explained previously. The #PARENT-NODE and #ROOT-NODE

operators traverse a parse tree in an upward (i.e., rootward)

direction, while #SEG moves in a downward direction. #SEG-COUNT

returns the number of immediately descendent nodes for a given node.

The #SEQUENCE collectors scan the parse tree in a uniform way so as

to generate a preordered sequence.
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Table 1: SEMANOL Operators

[Notation: b=bit-string, e=any expression, i-integer, Z=logical,
n=node, s=sequence, w-string, sc=syntax class, x=dummy]

Boolean Type

£1 #AND Y£2

X1 #IFF Z2

£1 #IMPLIES Z2

Z1 #OR Z2

#NOT Z

Bit-String Type

bl #/BAND b2

hi IJBOR b2

bl #BXOR b2

Integer Type

I/ABS (1)

#CONVERT 2/8/10 (i)

#NEG i

#SIGN i

#FRS xi, <x<i *SC-HTZ

#FLST x:il=x<12 #SUCH-THAT(t)

String Type

wl #CW w2

#FIRST-CHARACTER-INw

#/LAST-CHARACTER-IN w

#LEFT i #CHARACTERS-OFw

#RIGHT i #CRARACTERS-OFw

I/LENGTH (w)

I/PREFIX-OF-FIRST wl #IN w2

#SUFFIX-OF-FIRST wl #/IN w2

#SUBSTRING-OF-CHARACTERS ii #ITO i2 #/OF w

#SUBSTRING-POSIT-OF wl #/IN w2

i 11TH-CHARACTER-IN w
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Sequence Type

si 1/CS s2

#FRST x #IN s #SUCH-THAT(J

#LAST x #IN s 1SUCH-THAT (Z~)

i 11TH x #IN s 1SUCH-THAT (Z)

1/FIRST-ELEMENT-IN s

1/LAST-ELEMENT-IN s

i 1TH-ELEMENT-IN s

1/INITIAL-SUBSEQ-OF-LENGTH i #OFs

IITERMINAL-SUBSEQ-OF-LENGTH i #OF s

#LENGTH (s)

1ORDPOSIT e #IN s

#REVERSE-SEQUENCE (s)

#SUBSEQUENCE il #TO i2 #/OF

1/SUBSEQUENCE-OF-ELEMENTS x #/IN s #SUCH-THAT (Z)

Node Type

#PARENT-NODE (n)

#ROOT-NODE (n)

1/SEG i #OF n

11SEC-COUNT (n)I
1SEQUENCE-OF <sci> 1U<Sc2>... 1U<scn> #/IN n

11SEQUENCE-OF-ANCESTORS-OF n

#SEQUENCE-OF-NODES x #IN n #SUCH-THAT (k)

#SEQUENCE-OF-NODES-IN n

#1STRING-OF-TERMINALS-OF (n)

35



--

A few SEMANOL operators are not easily classified and do not appear in

Table 1. #ASSIGN-LATEST-VALUE and #LATEST-VALUE are operators that store and

recall information from what is, in effect, a single level associative memory

wherein information is stored as (name,value) pairs. The names used here are

ASCII strings of any length; the values may be any SEMANOL expression value,

and so may be complex sequence or node structures as well as simple integers

or bit-strings, for example. This abstract storage structure of SEMANOL

permits ready modeling of any storage model needed when defining storage

semantics of a programming language. #GIVEN-PROGRAM reads a string, normally

the defined language program to be interpreted, from one file, while #INPUT

reads strings, commonly data input to the program being interpreted, from

another file. #OUTPUT is a general purpose string output operator. #STOP

and #ERROR are used to variously terminate the interpretation process.

The relational constants of SEMANOL are shown in Table 2 and are generally

the expected ones, with natural extensions of equality and inj!usion to

parse tree nodes and sequences. An ordering relation, #PRECEDES, also

applies to sequences and parse tree nodes. There are two quantifier relations

included within SEMANOL,

#FOR-ALL...#IT-IS-TRUE-THAT...

#THERE-EXISTS... #SUCH-THAT...,

that are very useful. The general inclusion of high level iterative facilities

throughout SEMANOL permits expressive clarity to be provided the reader, and

also aids in the preparation of specifications.

The rules for expression composition in SEMANOL are typical of those found in

contemporary programming languages.

SEMANOL metaprograms are then composed of semantic definitions and semantic

procedures. A semantic definition is similar to a function declaration and

has the following possible formats:

#DF f(vI .... ,V) => exp #.

or

36



Table 2: SENANOL Relations

Bit-String: #EQ, #NEQ

Integer: #,= ,IN=, >,

#FOR-ALL x: il<= x<=12 #IT-IS-TRUE-THAT(t,),

#THERE-EXISTS x:il =x<=i2 #SUCH-THAT(9

String: #EQW,#NEQW,#IS

Sequence: #EQW,#NEQW,#IS-IN,#PRECEDES,

IDOES-NOT-PRECEDE,

IFOR-ALL x #/IN s IIT-IS-TRUE-THAT (k)

ITHERE-EXISTS x #IN s #SUCH-THAT (Z)

Node: I/EQN ,#NEQN ,#IPRECEDES, #DOES -NOT-PRECEDE,

#15//NODE-IN ,#IS-I/NOT#NODE-IN,

IIS <sc> ,#IS#CASE
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#DF f(vI,... v)

> exp n #IF B;

=> expq #IF BI;q
=> expo #OTHERWISE #.

Here, f is the name of the function being defined, vl, ... ,vn are dummy

parameters serving as the variable arguments of f (there may be no parameters),

and the expi are SEMANOL expressions built up from constants, global variables,

the parameters v. and possibly references to other functions defined elsewhere1

in the metaprogram. The Bo are boolean expressions, only one of which should1

be true for any particular set of actual values of the v, that determine

which exp will be evaluated to become the value of f. Semantic definitions

can be applied recursively without restriction (apart from common sense).

In addition to the semantic definitions, SEMANOL includes facilities for

writing sequential programs composed of commands (or statements). Commands

are grouped together in semantic procedures and used to form the #CONTROL-

COMMANDS section of a metaprogram. A semantic procedure is denoted by a

#PROC-DF of the general form

#PROC-DF f(vI ... vn )

where f is the procedure name and the v. 's are parameters. Procedures can1

return values, change the values of arguments, and affect the computational

state as a side-effect of execution. The sequential listing of commands

allows the operations they denote to be synthesized into sequential algorithms

in the usual manner of programming languages. However, the SEMANOL commands

are few and simple. The structures for synthesizing metaprograms are also

fairly simple and ones known to most programmers. Commands are built up

recursively starting with three atomic commands:

#COMPUTE! exp (Evaluate expression exp.)

#ASSIGN-VALUE! x = exp (Assign value of exp to x.)

#RETURN-WITH-VALUE! exp (Terminate #PROC-DF, returning value of exp.)
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Here, exp is any SEMANOL expression and x is a declared global variable.

The synthesis of commands into composite commands is done recursively with

the following synthesizers:

#BEGIN c1c2. ..c #END (Causes the sequence of commands cl, ... ,cn

to be treated as a unit.)

#IF Bexp #THEN c (Bexp is a boolean expression. If it is false,

command c is skipped.)

#FOR-ALL i: m<=i<=n #DO c (Iterative loop. Execute command c for

m<i<n, incrementing i by 1 each execution.)

#FOR-ALL i: m<=i #DO c (Iterate c for m<i.)

#FOR-ALL i #IN seq #DO c (seq is a sequence, say (xI .... x).

Execute c for i=xl, i=x 2 ,... ,i=x.)29 n-

#WHILE Bexp #DO c. (Execute c as long as Bexp is true.)

For standardization of sequential algorithmic programming languages, these

have proved to be effective. They define the semantics of "control" (i.e.,

sequencing of statement execution) in such languages in detailed precise

operational terms, using simple programming constructs that are well under-

stood.

SEMANOL Extensions for Ada

Prior to this contract, SEMANOL had been used to formally describe programming

languages that were purely sequential in their control semantics and so devoid

of parallel execution. SEMANOL, as just described, worked admirably in these

cases. However, to model the concurrency of Ada, as decided upon from our

analysis of Ada semantics, required that SEMANOL itself be extended to include

a form of parallel SEMANOL process execution. By adopting this approach, the

execution of concurrent Ada tasks can be simulated much as they might occur

on a multiple processor host computer, and a clear picture of the implications

of parallelism thereby presented. It is only for the addition of concurrency

that SEMANOL changes are needed.
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Before describing the additions required by our approach, it may be helpful

to describe a few changes that were not made to the metalanguage but provided

as external functions. SEMANOL's #EXTERNAL-CALL-OF feature permits operational

extension of the SEMANOL metaprogram to procedures defined outside the meta-

program. Such external functions must exhibit certain characteristics, but

the detailed algorithm is not considered part of the formal specification.

The #EXTERNAL-CALL-OF feature is infrequently used, but it has been employed

as a device to graphically isolate programming language semantics considered

to be implementation defined. For Ada, a time and choice function are

presumed. The time function is used to provide some form of value that can

provide support when defining the CLOCK, DELAY, and SECONDS semantics of Ada.

The choice function is used by the SEMANOL-expressed scheduling algorithm for

Ada tasks to resolve scheduling choices that are arbitrary to the Ada semantics.

Either could certainly have been added to SEMANOL as a new primitive; the

choice not to do so reflects the implementation dependent nature of each, and so

the difficulty of generalizing their definitions, as well as a desire to

minimize the extent of SEMANOL changes. Indeed, the way in which either is

eventually provided makes little difference since a SEMANOL interpretive

implementation cannot meaningfully correspond to a conventional implementation

where timing is a factor. The implementation dependent nature of these

functions is emphasized by their relegation to external functions.

The changes to SEMANOL(76) that the Ada specification design presumes are

these (presented much in the style of the current metalanguage reference

manual):

1. The inclusion of a facility by which concurrent SEMANOL tasks may

be initiated. This is the new #CO-COMPUTE! command. Its syntax

is given by

#DF simple-statement => <'#CO-COMPUTE!'> <gap>

<Semantic-def-name> <gap> <'#WITH-NAMES'> <gap>

<'('> <gap> <sequence-expression> <gap> <')'> #.
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Given

#CO-COMPUTE! a #WITH-NAMES ( bI,... ,b) #.

returns

<error> if a is not a semantic definition taking zero arguments.

<error> if bl ...,b are not string convertible.l'n

<error> if there is currently an active task with name b

or b2 or .... b .2 n

otherwise: A set of n SEMANOL tasks is created, with each task body con-

sisting of the semantic definition a as defined by a #DF or

#PROC-DF. These tasks are given the names bl,... ,b. These

SEMANOL tasks may be executed concurrently with each other and

with the task issuing the #CO-COMPUTE!, but the number of such

tasks actually running concurrently, their relative interpret-

ation rates, the nature of task scheduling, etcetera are not

defined, except that processes cannot be delayed indefinitely.

Nevertheless, an Interpreter option will be provided that will

impose an arbitrary deterministic order on the interpretative

cycle (thus creating a repeatable trace) so that SEMANOL

specification testing and debugging can be more easily done.

The SEMANOL tasks are initiated as though by a conventional

call invocation without parameters. Tasks are terminated,

and so removed from the SEMANOL system and their names re-

released, when they complete normally or invoke #STOP or

#ERROR. Normal termination occurs when the selected expres-

sion is evaluated for a #DF or a #RETURN-WITH-VALUE is inter-

preted in a #PROC-DF. The values returned in both cases are

disregarded (but should be #NIL for the sake of clarity).

The execution of #ERROR causes all tasks to terminate; but

the state of the SEMANOL machine on an #ERROR termination

cannot be predicted in the face of concurrency. #STOP like-

wise causes all tasks to be stopped, and will return an error

condition if any other SEMANOL task exists within the system.
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In view of this SEMANOL extension for concurrency, the nature of

the #CONTROL-COMMANDS section has changed slightly. The metaprogram

will still start execution with the first command of the #CONTROL-

COMMANDS, but the #CONTROL-COMMANDS section is now considered to be

executed by a SEMANOL task with name #NIL. Note that this extension

has no effect upon existing SEMANOL specifications.

2. The addition of features by which parallel SEMANOL tasks can be

coordinated. We have found integer semaphores to be adequate

for our approach to modeling Ada concurrency, and have adopted

these because of their relative simplicity and wide familiarity

within the programmer community. Syntactically, semaphores are

included in SEMANOL by adding the syntax class Concurrency-statement

to Simple-statement and defining Concurrency-statement as follows:

#DF Concurrency-statement

=><'#V!'><gap><String-expression>

=><'#P!'><gap><String-expression>#.

The semantics of semaphores are conventional and given as follows:

#V! a

<error> if a is not string-compatible.

otherwise: The value of the integer variable a is incremented by

one, with the reference, addition, and storage of a

being a single indivisible operation. This is equivalent

to the indivisible execution of the following:

#COMPUTE! V(A) where

#DF V(a)

=> #ASSIGN-LATEST-VALUE(a,#LATEST-VALUE(a)+I)#.
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#P! a

<error> if a is not string-convertible.

otherwise: The SEMANOL process giving the #P is delayed on this

operation until the integer variable a becomes greater

than zero. The nature of the wait is unspecified and

carries no scheduling or queueing implications. When

the test is passed, the value of a is reduced by one

coincident with the process continuing. In SEMANOL

terms, this is

#COMPUTE! P(a)

#PROC-DF P(a)

#BEGIN

#WHILE test-and-set(a) = 0 #DO null-action

#RETURN-WITH-VALUE #NIL

#END #.

where test-and-set is the following indivisible action:

#PROC-DF test-and-set (a)

#BEGIN

#ASSIGN-VALUE! temp = #LATEST-VALUE(a)

#IF temp > 0 #THEN

#COMPUTE! #ASSIGN-LATEST-VALUE(a, temp-l)

#RETURN-WITH-VALUE! temp

#END #.

The null-action can be any statement that does not seman-

tically affect the state of the SEMANOL machine. Note

that #V! and #P! are commands, and so appear in #PROC-DF's

or the #COMMAND-CONTROL section.
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3. The augmentation of the references to declared variables so that

the name of the SEMANOL process making the reference will now be

made a prefix to the declared name. Thus a reference to a SEMANOL

global variable is now taken as an abbreviation for the semantic

expression #LATEST-VALUE(name #CW 'x'), where name is the name of the

SEMANOL process evaluating the expression. The statement

#ASSIGN-VALUE! x = semantic-expression

is an abbreviation for the statement

#COMPUTE! #ASSIGN-LATEST-VALUE(name #CW x, semantic-expression).

This change is a direct consequence of the style used with SEMANOL

in that declared variables are ordinarily used when describing control

semantics. With concurrency, a set of such variables will be needed

by each SEMANOL process and each set is conveniently qualified with

the SEMANOL process name to distinguish it from the others. By

adopting this convention, we also believe descriptive clarity is

gained. Because of this convention, there is no operator available

by which a SEMANOL process may obtain its name.

The SEMANOL changes can thus be seen to be few in number and without affect

upon existing SEMANOL metaprograms (e.g., JOVIAL or BASIC).

The Operational SEMANOL System

The specification of a programming language expressed in the SEMANOL meta-

language is made into an operational system by the SEMANOL Interpreter. The

SEMANOL Interpreter accepts a SEMANOL specification of a programming language

and uses that input specification to realize the semantic effect of (i.e., to

execute) p:ograms written in the language thus defined. By virtue of the

Interpreter, SEMANOL specifications can themselves be tested and debugged.

Furthermore, an operational standard for the defined language is thus created.
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The operation of the elements that constitute the SEMANOL system is shown

in Figure 4. The broken line encloses the SEMANOL Interpreter, which can be

seen to actually consist of two loosely connected programs identified as the

Translater and the Executer. The Translator processes the SEMANOL description

of a programming language and so generates an intermediate code form known

as the SEMANOL Internal Language (SIL) file. This translation phase also tests

the SEMANOL description for its syntactic correctness, much as a conventional

compiler would do, and continues only for acceptable descriptions. The SIL

representation corresponds to a list of operators, operands, and direct

transfers that are used to control the Executer. The Executer program is

essentially a stack oriented processor that then interprets the SIL code and

so performs the operational interpretation of a program in the defined language.

As shown in Figure 4, this interpretive processing commonly includes the

reading of input and the production of output at the direction of the defined

language program, p, being processed.

A set of user commands provide the means by which the Interpreter programming

system can be directed and by which the features of incremental translation

and testing can be controlled. The nature of incremental translation and

testing control are explained in what follows.

Incremental translation provides a means by which a metaprogram presently

being processed by the Executer can be dynamically modified. Incremental

translation is invoked by commands during execution; it causes user-supplied

SEMANOL metalanguage statemenisto be processed by the Translator, as if part

of the active metaprogram, and then merged into the metaprogram being processed.

Since only changed statements are translated, rather than the entire meta-

program, computer processing time can be reduced during a testing session.

As the computational state at the time of incremental translation is saved

by the Executer, it is often possible to continue the computation with the

nE metaprogram without repeating the processing to the incremental trans-

lation point. Thus further time savings are possible. Since SEMANOL meta-

programs are often large, since metaprogram interpretation is intrinsically
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rather slow, and since processing is ordinarily done interactively from

remote sites, the savings provided by incremental translation are very

helpful.

The testing features give the user control over the information provided

during SEMANOL metaprogram execution and the ability to interact dynamically

with the running metaprogram. The test features fall into two classes:

1. Trace features, that are provided so that control flow through

a SEMANOL metaprogram can be followed. The trace provides a

time-ordered sequence of semantic definition (i.e., function)

invocations and returns. This trace can be directed to a file

of the user's choice. The user is also given wide control over

the content of the trace through several commands that permit

naming the specific definitions to be traced and controlling

whether subsidiary definitions are traced or not. Trace volume,

which can become overwhelming, can thereby be restricted and the

test process itself facilitated since the user need investigate

only trace information significant to the immediate problem. The

current trace status is always available to the user.

2. Break features, that are provided so that user interaction with

the running metaprogram can be obtained. The essential characteristic

of this feature is that the user can establish points within the

metaprogram at which processing will be suspended and control

relinquished to the user. The user can then interrogate the

state of the computation or otherwise interact with the running

metaprogram. Breakpoints are set on semantic definitions, and

can be easily established or removed by the user through Executer

action. Breakpoint status is also readily available to the user.

The user action upon a break, apart from altering the break

conditions themselves, is accomplished by the processing of SEMANOL

statements. Such statements can be interactively introduced by use

of the incremental translation feature or initially included in the
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metaprogram to provide this run-time support. This code is then

executable upon user command at the break. Thus the SEMANOL meta-

language also serves as the language of user interaction. Associated

with this break procedure is an interrupt option that uses the escape

mechanism of Multics to provide a user with the ability to suspend

Executer processing before the next semantic definition is inter-

preted. That is, a break is forced at the next convenient point in

the metaprogram. A high-degree of user control is supplied through

the break features.

In all, a series of twenty-one user commands is provided. The command set

provides the user with a convenient way in which to direct the SEMIANOL

Interpreter programming system, and makes available an interactive test

facility that corresponds closely to those available with the better conven-

tional programming language support systems. The effectiveness of the

SEMANOL Interpreter for users is therby increased.

The Interpreter was not modified in performance of this contract as that

was not within the scope of work. Thus the SEMANOL metalanguage extensions

defined earlier are not yet operational. Their implementation would

obviously be required were an operating SEMANOL specification metaprogram

for Ada to be created in the future. Besides the metalanguage changes

themselves, certain other changes to the Interpreter would also be expected

to accompany the implementation of the new SEMANOL concurrency primitives,

to wit:

1. The trace output would be augmented so that each trace message

would include the name of the SEMANOL process responsible for

its generation.

2. The name of the SEMANOL process would likewise be added to each

break message initiated by that process.
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3. While trace and break output would be associated with a SEMANOL

task, it is expected that the setting of trace and break conditions

would not be changed. Thus they would be effective for all SEMANOL

tasks, rather than for only a stipulated task or group of tasks.

4. While the semantics of the SEMANOL metalanguage do not call for

parallel SEMANOL processes to duplicate their execution order from

one run to the next, an option would be provided that would cause

a predictable execution path to be followed. The repetition of a

pre-determined order would aid metaprogramming debugging by giving

consistent results for parallel processes, insuring trace repeat-

ability, and providing a sequence of break states that are likewise

historically comparable.

With these modifications, the existent Interpreter would be naturally extended

to support concurrent metaprogramming.
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AMBIGUITIES IN ADA

In analyzing the Ada Reference Manual 121] during contract performance, a great

number of questions about the intended nature of Ada arose that we ultimately

could not resolve from the information given in that Manual. In preparing our

design, we have had to choose solutions to some of these questions as noted in

our reports. Other questions did not affect our design, because their level of

detail was lower than that of our design in these areas, and so were otherwise

disregarded. The purpose of this section is to list a representative collection

of these definitional problems that we found. Unless otherwise noted, page

references are to [21].

1. There is an ambiguity that makes it impossible to distinguish character-

strings of one character from one-character literals in many possible

cases. The syntax of each is the same, and the context cannot always be

used to resolve the ambiguity. For instance,

procedure x(y:in character) is

procedure x(y:in string) is ..

leads to confusion about which x is meant in the call statement.

2. The interchangeability of " and % as string brackets is unclear. There

is a suggestion in page 2-3 that only one or the other can appear, but

that is not an explicit statement. Otherwise, the desired meaning of

such forms as "AB", "AY%, and %"% is nowhere stated.

3. The values of the attributes 'FIRST and 'LAST when applied to types with

empty ranges appear to be unspecified. (Empty ranges are explicitly

allowed, see page 3-5.) Note that the answer here will also affect 'ORD.

4. It is unsaid which label on a loop-statement is to be matched by an

identifier in the end loop statement. For example, is
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<<L2>> «<Li

loop

end ioop Li

correct, as we have assumed, or should L2 appear in the end ioop

statement?

5. The aliasing restrictions for subprogram calls are vague. In particular,

it is not said whether such restrictions are meant to be enforceable

at compile-time or are such as to require run-time checking.

6. It is unclear whether or not any subrecord of an access record can be

of variant type and, if so, whether its discrfiinant can be altered.

The specification of page 5-2 is too brief to cover this issue fully.

7. The order of evaluation for a given precedence level is specified

to proceed in textual order from left to right on page 4-6 (line 1).

However, it is stated that function calls in expressions (because of

the lack of side-effects) can be evaluated in any convenient order on

page 6-5 (paragraph 2). A contradiction thus exists, and the rules

for evaluation ought to be made precise.

8. On page 6-4 it is stated that a subprogram specification given in its

body must be identical to the specification given in the corresponding

subprogram declaration, if both appear. Unfortunately, "identical" is

not explained: it might mean lexically identical, semantically

equivalent, lexically identical and appearing in equivalent environments,

etc. One needs a rule that is precise enough to determine when the

intended effect of this rule has been satisfied (since lexically identical

texts can appear in environments that are different and so lead to results

we would think are undesired).

9. The point at which the NO-VALUE-ERROR exception is raised when attempting

to leave a function without giving a return statement is not given. If

raised in the function, it can be handled therein; otherwise, it is the

handler in the calling program unit that will be invoked.
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10. It appears that the syntax of generic instantiation is wrong, and ought

to use new designator instead of new name. The changed syntax would

then allow instantiation of defined (overloading) generic operators.

11. The syntax of page 12-1 for generics appears to allow (1) generics toV

be nested and (2) for generics to be used as formal arguments to

generics. However, this seems to be unintended or, if intended, 1

unexplained. Clarification of these issues is needed.

12. It is unclear whether or not labels may be redeclared; if they can, then

the scope of a label is unclear. For instance, given

«<A > declare

beg in

goto A

«<A > declare

begin

end

end

which label is the destination of the goto statement (assuming this is

legal)? The rules of page 8-2 seem to support multiple answers to that

question.

13. The point at which a package body is elaborated is unspecified. Since

elaboration involves initialization, this is a question whose answer has

semantic significance.

14. The semantics of unblocking a task T blocked on two or more open

alternatives, one being an accept and another a delay, is ambiguous.

On page 9-7, it is stated that "an open alternative starting with a

delay statement will be selected if no other alternative has been

selected before the specified time interval has elapsed." First, notice

that the converse must also hold; if an accept alternative has been

selected before wake-up time, then the delay alternative must not

subsequently be selected. Now, the implementation of entry-call in the
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Rationale illustrates the possibility of a timing ambiguity. In this

implementation, when an entry-call is made, the called task is removed

from the delay-list without checking the clock on the assumption that

if it is on the delay-list when the entry-call is made, then wake-up

time has not yet occurred. However, because of a queue on a delay-list

semaphore, which we claim is required, it is possible that the entry-call

is made after wake-up time, in which case the delay alternative should

be selected since "no other alternative has been selected before the

specified time interval has elapsed". To be consistent with the Rationale's

implementation, the semantics of select would have to be stated as follows:

"An open alternative starting with a delay will be selected at some time

t after wake-up time if and only if no other alternative has been selected

prior to t.11 It seems unlikely that this is the intent embodied in the

manual, which seems inclined to give preference to the delay option after

wake-up time.

15. The precise timing of exception raising is unspecified in many cases, and

this can have significant semantic effect. For example, the Reference

Manual discussion of the initiate statement does not specify when the

exception INITIATE-ERROR is raised in the initiating task; in particular,

if there are inactive tasks in the task list as well as active ones, it

is unclear whether all of these must be initiated, or perhaps only those

which appear before the first active task, and wheti'er all initiations

need take place before the raising of the INITIATE-ERROR.

16. The interaction between raising FAILURE exceptions in other tasks and

their performance is unclear. Clearly, there are difficulties in dealing

with unrelated rates of execution of separate tasks which will remain

intractable. But even within a task, there are unspecified circumstances.

For example, since binding a raised exception to its handler may involve

many synchronization steps, and thus is assured to be an interruptable

process in some cases, it is uncertain whether raising FAILURE must be

always delayed until such binding is completed for a previously raised

exception, or whether binding to a FAILURE handler may "interrupt" and

take precedence over the prior binding process.
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17. Whether certain exceptions may even be required to be raised or

whether "new", surprising,exceptions may suddenly appear in expression

evaluation is uncertain, since expression reordering by the Ada

processor (say, compiler) is permitted in at least some cases; see

paragraph 2, page 6-5.

18. The wording of the Ada manuals can be interpreted to mean that generic

parameters are passed using copy semantics, or reference semantics, or

macro-substitution semantics. Macro-substitution is the most likely

semantics, and the one we adopted, but if it is used then it is nearly

impossible for a compiler to share code between instantiations.

Further, users of a generic program unit must be aware of the definition

in order to avoid undesirable effects.

19. Several syntactic problems were discovered. The syntax production for

character-literal was missing. The grammar for declarative-part was

ambiguous, allowing distinct derivations for a module-specification

as (1) a declaration or (2) a body.

The grammar for expressions was ambiguous, allowing distinct derivations

for a single parenthesized identifier as (1) a parenthesized expression

or (2) an aggregate. The use of the type-mark prefix to indicate both

type specification and type conversion was troublesome.

Several structures were misleadingly allowed in the grammar but excluded

in the text; for example "delta simple-expression [range-constraint]"

appears where "delta simple-expression range-constraint" is more accurate.

Not true ambiguities, these grammatical deceptions often simplify the

formation of the abstract grammar at the expense of general comprehension.

20. Since our interpretation of the semantics of the abort statement had a

critical effect on the design of the SEMANOL specification of Ada, we list

this issue here. The last paragraph of page 9-9 indicates that the

abort statement "causes the unconditional asynchronous termination" of

the indicated tasks. The key points in our interpretation of this

description are: the moment of termination is not fixed, but the

aborted task cannot indefinitely delay its own demise. Thus the
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underlying model must allow for the preemptive termination of a task

which is, say, ignoring its environment, perhaps in an infinite loop.

We feel this interpretation arises naturally, but may not be universally

taken - thus we question whether the phrase is sufficient to avoid

ambiguity.
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CONCLUSIONS

This project was successful in achieving its goal of creating a design for a

SEMANOL specification for the Ada programming language. Many of the techniques

used in prior SEMANOL efforts in formal specification were rather directly

transferable to Ada, so this project can be viewed as a natural progression

from prior work. At the same time, the need to deal with Ada's form of task

concurrency caused us to extend the SEMANOL system so that it would incorporate

our approach to modeling the semantics of concurrency. This extension to the

semantic model, in turn, required that additions be made to the SEMANOL meta-

language; however, the additions were few in number and so consistent with the

existing metalanguage that upward compatibility was able to be maintained. In

sum, we were able to use many proven SEMANOL techniques with Ada because the

SEMANOL extensions for concurrency were designed to retain a maximum amount of

consistency with the existing approach and metalanguage. By using previously

successful methods, our confidence in the Ada design has been strengthened.

Additionally, the ability to borrow from the results of earlier projects meant

that greater attention could be given to the novel features of Ada. The major

consequence of this was that added emphasis could be given to developing a

SEMANOL approach to modeling the semantics of parallel execution. We have

developed a practical approach that seems more satisfying than other proposed

methods. A practical design basis has thus been established from which a

complete, operational, SEMANOL specification of Ada can be implemented.

Implementation of the SEMANOL specification of Ada from TRW's design would

create a formal operational definition for Ada. This type of Ada definition

would appear useful in an integrated program to promote the acceptance and use

of Ada in the near future. The practical, operational, flavor of a SEMANOL

specification of Ada recommends its use in efforts to develop hardware

architectures for efficient Ada program execution as well as the corollary

efforts to design supportive software environments for Ada program development.

The critical issue of an intermediate language would benefit from the applica-

tion of SEMANOL techniques since (1) a precise definition of the intermediate
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language could be created and (2) its relationship to the Ada language

formalized. In this and other ways, the availability of a formal SEMANOL

specification of Ada can support Ada's orderly development. The time is

appropriate to introduce formal semantic descriptive methods into the

programming language development and control process; this project's

results can contribute to that.
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