
7 AD-AU91 648 ARIZONA UNIV TUCSON DEPT OF AEROSPACE AND MECHANICA--ETC F.'6 9'f2
PERFORMANCE OF MINICOMPUTERS IN FINITE ELEMENT ANALYSIS PRE AND--ETC(U)
JUL 80 J M TAN, H A KAMEL NOOOIN-75-C-0837

UNCLASSIFIED TR-6 NL

EEhiIEIIESlflflfllflflfllfll

llll1K

R ERFORMANCE OF.INxCOzMpuTERS IN FINITE .ELEMNT ANALYSIS
AND POST ROCESSING,

IJ. - •aja 1=1-a,.

unersinya 57ineer1
Aerosipace &Mechanical EngineeringTucson, Arizona $5721

St ehnical j o 6

Approved for public release, distribution unlimited

O Department of the Navy
Office of Naval Research

LA Structural Mechanics Progtam (Code-474)
Arlington, Virginia 22217

Ni 0 R - 0l 211

I~~~~ II 1A0[

S: 0-. .1, /

.4-I

1. INTRODUCTION . "

The explosive rate of development of computer hardware has

affected engineering practice, particularly the area of

structural engineering and finite element analysis. Programs are

now available, some on minicomputers, which perform pre- and

postprocessing functions as well as analysis (1,2,3,4,5,6,7,8].

Many small engineering groups, enticed by the availability of

relatively inexpensive hardware, have acquired mini- and

microcomputer systems with the intention of using them for day

to day engineering computations. This paper attempts a study of

the performance of a typical 16-bit minicomputer in a finite

element environment. Tt is hoped that this study will give a

realistic feel for the performance of such systems in a

practical environment, and provide an example of how the

performance of such systems may be measured.

I.

2. THE FINITE ELEMENT ENVIRONMENT

In order to measure the performance of the minicomputer in an

environment representative of a finite element oriented

engineering activity, a certain number of processes were

selected as typical, and very specific combinations of these

were chosen in order to perform the measurements. The following

processes were considered typical:

-1-

a. Text editing :It is expected that a certain amount of

text editing is necessary for engineering report writing,

composition of letters, program development and so on.

b. Mesh Generation : The pre- and post processing activity is

represented by a batch execution of a mesh generation

program to produce the model shown in figure 1. The model

has a total of 120 points, and 78 rectangular plate

elements. It was generated using the BULKM mesh generation

program, which is a part of the GIFTS-5 system [3].

c. Finite Element Computation: 'o represent this activity, a

matrix decomposition was selected. Again the stiffness

matrix for the problem shown in Figure 1 was chosen as the

basis for a typical computation. Although the program used

does not operate on a band width concept, it is still

useful to note that the number of unknowns for the problem

is 624. The maximum half band width is 120, and the

computational (root mean square) half band width is 72.

The program used, DECOM, is part of the GIFTS system. It

uses a hyper-(partitioned) matrix generalization of the

Cholesky decomposition algorithm.

d. FORTRAN Compilation and Program Linking: It was assumed

that program development is an ongoing activity in certain

engineering outfits, and that such development takes part

side by side with finite element computations. For that

purpose the compilation of a set of subroutines containing

I approximately 40 lines of coding each (Process FORT), and

the linking of a main program with four subroutines

(Process FORTLOAD), were included in some job profiles.

At this point it is necessary to explain the process which
4

was selected for the performance measurement, as well as the

limits that must be imposed on the findings. Tt is clear thatii -2-

LOD LO

ra 0;'~ *

-3-

the results obtained are dependent on the type of computer

hardware used, the precise hardware configuration, the operating

system involved, the number of users on the system and the exact

nature of their activities. The performance also depends on many

other extraneous factors, such as how full the disk is. Every

effort was made, as will be described later in section 4, to

reduce the amount of uncertainty and provide a predictable

environment. In spite of this, it must be remembered that the

data presented only address a specific computer system, FORTRAN

compiler, linking editor, mesh generator and matrix

decomposition program. The study should serve as a guide, as

well as provide a basis for comparison with other computers,

finite element programs and methods for benchmarking computer

systems [9,10,11,12].

3. COMPUTER HARDWARE AND OPERATING SYSTEMS

Before proceeding further, it might be useful to introduce

some terms, which will be helpful in discussing performance

evaluation of FEM programs in minicomputers. A computer system

can be divided into two logical parts: hardware and software.

*The hardware covers the central processing unit(s) (CPU), fast

access memory to store programs and data and peripherial devices

(such as disks and printers) which interact with the CPU.

An Operating System [13] is a set of programs used to assist

in the operation and efficient use of the computer system

resources. The operating system provides the user with tools

which allow easy design, debbuging, coding and maintenance of

programs, thereby permitting the efficient transformation of

algorithms into code. In order to describe the activities of an

-4-

operating system in a multiprogramming enviroment, i.e. when the

computer excecutes several memory resident programs

simultaneousely, measurements have to be made rather carefully.

The basic entity controlled by an operating system is the

process. A process consists of an address space and both a

hardware and a software context. A user (or job) is the

accounting equivalent of the set of processes, that it and its

subprocesses create. it is assumed, because of physical

limitations, that each process is restricted to a limited

address space, and to a limited amount of system resources. In

such an enviroment processes have to compete to obtain control

over the necessary resources. it is the task of the operating

system to control the activities within the environment to

assure a high level of system performance.

Modern finite element programs are usually fairly complicated

in terms of their internal logic flow. The level of complication

increases when such programs are implemented on a minicomputer

with tight limitations on system resources. This implies the

necessity of an in-depth analysis of the environment.

Unfortunately, the user, and sometimes the program developer,

It has limited information regarding the operating system, and

* specifically the algorithms used to implement it. Computer

science literature abounds with studies of the behavior of a

variety of operating system algorithms. However, most such

studies assume access to internal operating system code and

data (14,151.

4. DESCRIPTION OF THE IGEL COMPUTER ENVTROMENT.

The performance meaurements were conducted at the Interactive

Graphics Engineering Laboratory (IGEL) of the University of

Arizona. The computer system in question is a DGC Eclipse S/230

minicomputer running under the AOS operating system. The system

functions in a multiprocessing time sharing mode. The main

memory of the Eclipse has 224K of 16 bits words. The external

memory is in the form of a single 200 Megabyte disk drive. In

addition, 2 floppy disk drives of 315 KB each, and one magnetic

tape unit are supported by the operating system. Access to the

system is possible through 12 terminals supporting both

alphanumeriCs and graphics, as well as two dial-up ports and one

4800 baud line for communcation with other computer

installations. The most popular programming language used is the

DGC FORTRAN 5, which is a superset of standard ANSI! FORTRAN.

The ECLIPSE S/230 [16) is a general purpose minicomputer with

a hardware floating point unit. It's CPU has 8 accumulators

(four 32 bit and four 16 bit regiters) and two 16 bit

accumulators, which can be used as index registers. Its

instruction set has been implemented using microprogramming. The

machine makes extensive use of the stack concept, which is

supported by the hardware. Because of the word length (16 bits)

the user address space is limited to 32 KW. However, the

ECLIPSE, with it's special memory management unit (MAP), can

accomodate up to 256 KW. In the configuration with the MAP, it

is the AOS operating system which is responsible for memory

allocation to the users.

The AOS operating system (17] is a multiprogramming, time

sharing operating system which allows up to 64 users working

concurrently. AOS provides high level language support in

addition to symbolic editors, binders, library routines and

4 - 6-

77 other software development tools. As of this point, only those

aspects of AOS which are relevant to the present work will be

addressed.

The Command Line Interpreter (CLI) is the basic interface

between the operating system and the user working at the

console. The CLI is used by the programmer to create and control

job execution in the system. Similar facilities are found in

other operating systems. It is possible to create CLI

macrocommands, i.e. commands which consist of one or more simple

CLI commands or macrocommands with associated dummy arguments.

The recursive macrocommand feature has been used in the

implementation of the system performance tools necessary to

obtain the desired measurements.

To enable the operating system to manage physical memory, The

memory is divided into 1 KW blocks - PAGES. Each process being

executed is allocated a number of pages, which fulfill its

ACTUAL demand. The operating system (AOS) keeps track of all

activities within the various processes. From that it is clear

that one of the most important parts of an operating system in a

multiprogramming environment is that dedicated to memory

management. Because of the limitation of the physical memory, it

is advantageous to share some parts of the code between several

users executing the same program simultaneousely. This does not

allow the user more address space, but allows the system to have

more RESIDENT users within the available physical memory. Users

who can not get memory are SWAPPED ,i.e. their core image is

stored on disk.

Another techique which is used mainly to fit large codes in

limited physical memory is that of OVERLAYING. In this method

4 -7-

part of the code is kept on disk, until needed. Whenever

necessary, it is read into a specified part of the core, and

then executed.

An interesting example of dynamic memory allocation is given

by the execution of FORTRAN programs under AOS. The DGC FORTRAN

operates on the stack principle. One of the advantages of such a

method of language implementation is that FORTRAN is recursive.

On the other hand, excessive amounts of core are often used.

The AOS accounting functions record the details of user

activity for charging purposes. It enters into the daily log

file the amount of CPU time used by each process, the elapsed

time (i.e. how long it has been in the system) , and the number

of 512 byte blocks transferred to and from the disk. it also

keeps record of how many pages of physical memory the task has

used and for how long (in page-milliseconds) . Those measurements

define the measurable characteristics of the process.

5. PERFORMANCE MEASUREMENT

The measurements presented here were made on a computer

loaded with the operating system kernel and test only. 'This

controlled environment was chosen to Assure stable repetitive

measurements.

it has been stated that each process has a summary of its

activity recorded on the daily log file under its name. In

addition, another set of data was recorded on a separate file by

the CLI. The two sets of data contain:

1. Test start and stop clock time, as well as console name

-recorded by the CLI.

I -8-

2. Elapsed time (clock time between creation of the process

and its termination), CPU time (in milliseconds), number

of I/O transfers (in 512 byte blocks) and page residency

time (in page-milliseconds)- recorded by AOS.

The tests conducted are defined in table 1. The first column

consists of the name of the test. The second shows the name of

the activity, or activities, involved and the number of

concurrent executions.

Test limitations

Originally the plan was to measure the system behevior in an

interactive environment. Later it was realized that auxilliary

hardware was needed to simulate user activities on the console.

Since this would have been beyond the available resources, it

was decided to change the approach somewhat. However, in order

to assure close similarity with the interactive environment,

each executing process was assigned to one of consoles. It was

also necessary to ensure that if two or more processes use the

same code, that each has a different data base. A special

starting program was created. Its task is to synchronize the

execution of the CLI macros for all concurrent jobs. Each macro

is associated with a specific console. All necessary input for

the programs was prepared on disk input files. Such an

arrangement allows for at least a partial simulation of the use

of the character device driver.

The ECLIPSE system, even with 9 majorprocesses, maintained an

acceptable response, as has been clearly demonstrated by a user

who, by mistake, performed some text editing during the test.

9

Table 1. Test Profiles

I name of the test I structure name#name#... I

I BMI.TEST I BULKM*l I

I BM3.TEST I BULKM*3 I

I BM7.TEST I BULKM*7 I

I BM9.TEST I BULKM*9 I

I DMI.TEST I DECOM*l I
I DM3.TEST DECOM*3 I

I DM7.TST I DECOM*7 I

I DM9.TEST I DECOM*9 I

I BM1DMI.TEST I BULKM*I DECOM*l I

I BM2DM2.TEST I BULKM-2 DECOM*2 I

I BM4DM4.TEST I BULKM*4 DECOM*4 I

I BMIDMIF51F5LDI. I BULKM* DECOM*l FORT*I FORTLOAD*I I

I BM2DM2F52F5LD2. I BULKM*2 DECOM*2 FORT*2 FORlLOAD*2 I

6. CHOICE OF ACTIVITY PROFILES.

In order to simulate typical activities, and make meaningful

measurements, it was decided to first measure the amount of

resources taken by each process under ideal circumstances. This

was accomplished by allowing only the desired process to reside

in the computer and execute with minimum overhead. This was

repeated several times for all processes described in section 2.

Once these basic measurements were conducted, the effect of

running several of these processes simultaneousely was

considered. Each process was selected in turn, and several of

the same process were initiated simultaneousely again on an

4 otherwise unencumbered system. The number of parallel processes

possible was restricted by the number of terminals available,

which was ten. Next, certain combinations of processes were

- 10 -

selected to simulate specific environments. For example, a

mixture of pairs of mesh generation and decomposition operations

represents a pure finite element computational environment, with

no program development. One pair was executed, then more, until

the number of available terminals were exhausted. The most

varied environment was that involving mesh generation,

decomposition, FORTRAN compilation and program linking. Of that

only two sets could operate simultaneousely under the given

restrictions.

7. TEST RESULTS

After each test run, the performance data were recorded on

log files, as described above, by AOS and the CLI. These data

were later processed to estimate the mean value and standard

deviation of the measured characteristic.

Characteristics of test programs BULKM and DECOM.

Both programs use several files during their execution, and

the code was longer than the user address space. This last

characteristic forced the use of overlays. There was, however, a

difference in the utilization of the overlays between the two

programs. BULKM accesses its 13 overlays in an irregular

pattern, whereas the DECOM program uses only 3 overlay areas,

accessed sequentially. Whereas DECOM is essentially a batch

program, which provides some output on the console, and is
relatively compute bound, BULKM is interactive, and I/O bound to

a great degree.

Characteristics of the Software environment

The Software enviroment characteristics is described by a

memory utilization map for the AOS processes (without the

kernel) and test processes. This data, presented in table 2, was

obtained using the Process Enviroment Display Program (PED)

, - 11 -

which allows periodic snapshots of memory statistics. In the

table, PMGR stands for "Program Manager", OP stands for

"Operator", EXEC for "System Executive", XLPT for line printer

handler, and CONSOLE.CLT is the test monitor. PED, DECOM and

BULKM have been described previousely.

Table 2. Memory Utilization

System Processes

I name of the I Shared I Unshared I

I Process I Code I Code I

I PMGR 1 0 1 12 1

I OP 1 18 T 2 T

I EXEC 1 0 T 21 1

I XLPT 1 3 1 3 1

I PED 1 0 1 9 1

Test Processes

I CONSOLE.CLI 1 18 T 3 1

I DECOM T 9 1 23 1

I BULKM T 23 T 9 1

I FORT (9 overlays) 1 6 - 13 1 variable I

I FORTLOAD T 12 T 13 1

Observations:

1. AOS uses a maximum of 101 KW of main memory (kernel uses

32 KW). A substantial part of the system routines are

normally swapped out to disk, so that as a rule somewhere

between 70 KW and 95 KW occupy fast memory.

- 12 -

2. DECOM and BULKM have different memory utilization patterns

which should have an influence on their behavior.

3. During the test, the swapping activity was observed. It

was found that up to 3 DECOM, or 4 BULKM processes can fit

in memory without swapping.

8. DISCUSSION OF RESULTS

Figures 2 through 9 show plots of performance variables.

Three environments are described. Environment 1 is a homogeneous

environment with only one test, singly or multiply excecuted.

Environment 2 is a mixed finite element environment with the

process pair BULKM and DECOM, one or more pairs executing

simultaneousely. Environment 3 is a mixed finite element and

program development environment which includes a set of

processes encompassing BULKM, DECOM, as well as a FORTRAN

compilation (FORT) and a program linking process (FORTLOAD).

Again one or two sets may execute at a time. Each type of

environment is represented by a different curve.

Due to the scatter in measurements, each point on the plot is

accompanied by a vertical line giving the minimum and maximum

values measured. In addition, the population and standard

deviation are supplied in brackets. The only exception was in

the case of the third test, where the population was too small

to provide acceptable satistical parameters [18].

J
Elapsed Time Measurements

The presented results are primarily concerned with the

observed execution characteristics of the BULKM and DECOM

4 programs. The overall behavior is similar for all plots. The

-13-

- Ewireewm I I /**~i
21

Invvs em..... 3 ,}//

19/ -

15 ///__

13

11 /"

9¢

- -r
- a a - - -

kA J

2 3 S 6 7 8 9 Mum1er

Figure 2. Elapsed Time BULKM

-14-

431

ITZ

30
3:14 -, - -

3:12

2-58 2
366 0 " l

3:06

3:04 - -,-

3:02 ". 13 7

3i00 - C

258-1

2:56 - -. 37, ?e

1 2 3 4, * 7 3 g numb~er

Figure 3. CPU Time DECOM

'.5i- S

.- 20

2 3

240 4 / r s I24410 .. Lm0w \w _- - -

I- } *...- .m ml

2 4 , , numb~er

1 Of users

tFigure 4. I/O Transfers DECOM

- 16-

S....

*

a.

I Ia
I Eq2660 i

2640 - -

.6o __- Ii
7600oi

Eq I

230 - - 4~ 7-

2430 - _ .

244

2440

2360 r - I

- IIvle

-, ******* p

1 2 a 5 6 7 a 9 numoor
of srs

Figure 5. Page Residency Time BULKM

17

.1i

44

40 _ E ,,,m,. I
- Itwftmg 2

36 3.7.,4 A

32 Ji/ / N
28/ .

28/ / /

24

20 / /6

12

- I ./ . 2/ -

CI

t0

2 a a 7 8 9 number
of users

Figure 6. Elapsed Time DECOM

- 18 -

1:12 37I

1:09

1:07 __

1:06

Figure 7. CPU Time BULKM

-19-

00

- i r

3U

a

3r. 14 T - -

,_ --- I03900 __ i iI 1

3700 - -

.. 1f - -

I. -

3300

oii

-- 20

7000 1 , 1

6900 I

6800 ,. .6700 --
f

6600 __-

6800
" ..

6700 ,I I, /t 4

6400' i 1
6500- -

6200 I-t_ mfooemm 2

33,7,14

I I I
7umlber
of users

Figure 9. Page Residency Time DECOM

Li21-

elapsed time grows nonlinearly with the number of users in the

system. The main factors affecting the performance are the

paging demand and overlay requests.

1. In order to evaluate the results of the analysis, a

certain amount of discussion is needed. Let us consider an

overlayed process which has relatively little code and a

sequential mode of access to the overlays, such as DECOM.

In a situation where a large number of identical users of

the same type exist, there is a strong likelihood that a

requested overlay is already present in physical memory

and can therefore be shared between several users. there

is a reduction of residence time for multiple processes,

up until the core is saturated. This is illustrated by the

different curves obtained for environments 1 and 2 in

Figure 9. On the other hand, BULKM has a large number of

randomly accessed overlays, and the total program size is

such that it will take a corsiderable amount of physical

memory to store all pages simultaneousely. In this case,

the benefit is minimal. It can be observed that in the

case of BULKM curves of environment 1 and 2 are the same,

to within the error margin.

2. The CPU time variation can not be discussed without

V reference to t/O operations. It is assumed that the amount

of CPU required to perform the required computation, and

the CPU overhead associated with problem data I/O, is

essentially constant. 'he only variable portion of the CPU

must therefore be associated with paging due to overlay

loading. A reduction is observed in the CPU time between

the single user case and the three user case for program

DECOM in environment 1. This can be explained by the fact

that the single user has to load all overlays once,

- 22 -

whereas some overlay loading may be saved in a multiple

user situation. The same is not true for BULKM due to the

large number of overlays and the random access pattern.

One expects to find a continuous increase in I/O and CPU

values from the point of saturation of physical memory,

which seems to occur here at an early stage. Another

contributing factor to the nonlinear behavior of the CPU

curve is the simple fact that in a time-sharing system the

operating system uses more CPU time to reestablish user

status with more users, whenever it gets its time slice.

3. The analysis of the page residency time in memory is based

on.the observations made in the last two sections. The

page residency for program DECOM in environment 1 drops as

the number of users increases from 1 to 3 for similar

reasons as described above. An interesting point is how

the behavior of DECOM influences that of BULKM in

environment 2. Since BULKM performs more I/O operations

than DECOM in the course of its execution. This results in

DECOM being allocated proportionally more CPU, while BULKM

is waiting for its I/O requests to be granted. This may

explain the fact that in environment 2 DECOM uses less CPU

time and page residency compared to environment 1.

4. It is not always easy to explain the behavior of complex

dynamic environments, such as the one we are dealing with.

The behavior of DECOM and BULKM in environment 3 is

particularly interesting. It is important to note that the

compilation and linking processes are heavily 1/O bound.

As a result, both programs reside longer within the

computer, as expected, while their page memory residency,

CPU time, and amount of E/O operations all decrease. This

may be due to the fact that, since the program developm .it

- 23-

activities are I/O bound, DECOM and BULKM get more time

slices, and are swapped less out of core. One should

however be somewhat careful about reaching conclusions,

since the number of samples were small in this case. This

was necessary because of time limitations. For example the

elapsed time for one execution of DECOM is about 30 min.

5. The results presented above will hopefully provide some

measure of the performance of a typical minicomputer, and

some possible explanations of observed behavior. Because

of the heuristical nature of the process, some inaccuracy

is expected. Other factors complicate matters. For

example, the careful reader will observe that the CPU time

recorded in the file for DECOM is longer than the elapsed

time. The only possible explanation for that is a

consistent, and hopefully minor, error in the system.

9. CONCLUSIONS

1. It is possible to conduct performance measurements to

evaluate the effectiveness of a minicomputer in a finite

element environment.

2. Altogether the 16 bit minicomputer used for these

measurements behaved well under a variety of conditions

representative of finite element computations, as well as

a mix between that and program development activities.

3. It is important that the measured values are interpreted

correctly and carefully, and that unnecessary

generalizations are avoided.

4. It is expected that as more jobs are run simultaneousely

on a time sharing system, the turn around time (elapsed

-24 -

time) for the individual executions increase. It takes

longer to perform the calculations, but the computer is

performing more work during the given period.

5. Some jobs compliment others so that the presence of one

job may actually result in the reduction of computer

resources required to execute the other.

6. A higher residency time does not always mean higher

resource utilization and higher computer costs.

7. Should the system run without overhead, and if the system

treats all jobs equally, the turn around time should go up

linearly with the number of jobs being executed. In

practice a nonlinear overhead exists. Trhe amount of this

overhead, and nature of its nonlinearity, is a measure of

the efficiency of the operating system.

8. It is possible to configure a system on the basis of

measurements of program characteristics, in order to

retain a certain throughput.

9. Some of the conclusions refer only to the specific

computer system under consideration. Many of the methods'

used, however, and some general remarks may be extended to

other installations [9,10,11,12].

10. It is possible to construct finite element benchmarks,

such as those discussed here, in order to evaluate

relative performance of minicomputer systems in a finite

element environment.

4 -25-

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of the Office

of Naval Research under contract number N00014-75-C-0837, and

that of the National Science Foundation under contract number

ENG77-17013.

10. BIBLIOGRAPHY

1. FASTDRAW Interactive Graphics System, McDonnel-Douglas

Automation Co., Document B1298083,1973.

2. Gingerich, M.M. Abe, Vinecore, R.L., Romans, G.J. and

Ratihn, B.M., A Stand-alone Interactive Graphics Finite

Element Modeling System. Sixth NASTRAN Users' Colloquium,

NASA Conf. Pub. 2018, Oct. 77.

3. Kamel, H.A. and McCabe, M.W., GIFTS: Graphics Oriented

Interactive Finite Element Time-Sharing System. Structural

Mechanics Software Series, Vol I, Perrone N., Pilkey, W.

(Eds.) U. P. of Virginia, 1977.

4. Buck, K.E., Bodisco, U.V., Winkler, K., SUPERNET, Data

Generation for Finite Elements, BBC Report, Dept. ZKN/C,

Mannheim, June 1977.

5. Shoppee, G.J.V., Jeanes, P.J. and Griffin, T.B., A Finite

Element Modeling and Analysis Language for Engineering the

Program FEMALE, Advances- Engineering Software, Vol. 1,

No. 1, p 37-41, 1978.

6. Johansson, T., FEMGEN - A General Finite Element Mesh

Generator. Application using ADINA, Bathe, K-J. (Ed.),

April 77.

- -

9. Mamrak, S.A.; Abrams, M.D.,"A taxonomy for valid test

workload generation", Computer, vol. 12, number 12, 1979.

10. Agrawala, A.K.; Mohr, J.M.; Bryant, R.M.,"An approach to

the workload characterization problem", Computer, vol. 9,

number 6, 1976.

11. Ferrari, D.,"Workload Characterization and selection in

computer performance measurements", Computer, Vol. 5,

number 4, 1972.

12. Nolan, L.E.; Strauss, J.C., "Workload characterization for

time-sharing system selection", Software - Practice and

Experience, Vol. 4, 1974.

13. Shaw, Alan C.,"the logical Design of Operating Systems",

Prentice-Hall, 1974.

14. Chu, W.W.; Opderbeck, H., "The page fault frequency

replacement algorithm", Proceedings of the AFIPS 1972 Fall

Joint Computer Conference.

15. Opderbeck, H.; Chu, W.W., "Performance of the page fault

frequency replacement algorithm in multiprogramming

enviroment", Proceedings of IFIP Congress 74.

16. "Programmer's reference manual, ECLTPSE-line Computers",

DGC.

17. "Advanced Operating System (AOS), programmer's manual",

DGC.

18. Kobayashi, H.,"Modeling and Analysis an Tntroduction to

System Performance Evaluation Methodology",

Addison-Wesley, 1978.

19. Grochow, J.M., "Utility functions for time-sharing system

performance evaluation", Computer, Vol. 5, number 8, 1972.

-27-

ABSTRACT

The explosive rate of development of computer hardware has

affected engineering practice, particularly the area of

structural engineering and finite element analysis. Programs are

now available, some on minicomputers, which perform pre- and

postprocessing functions as well as analysis. Many small

engineering groups, enticed by the availability of relatively

inexpensive hardware, have acquired mini- and microcomputer

systems with the intention of using them for day to day

engineering computations. This paper attempts a study of the

performance of a typical 16-bit minicomputer in a finite element

environment. It is hoped that this study will give a realistic

feel for the performance of such systems in a practical

environment, and provide an example of how the performance of

such systems may be measured.

I28

I I e

SECURITY CL.ASSIFICATION OF THIS PAGE (When 0a1a Entered)

REPOR DOCMENTTIONPAGEREAD INSTRUCIONS
______ REPORT___DOCUMENTATION_____PAGE___ EFORECOMPLETINGFORM

I REORTNUMBR Z. GOVT ACCESSION -NO.,) RECIPIENT'S CATALOG NUM61"

4. TITL~E (and S.btitlej S. TYPE OF REPORT & PERIOD COVERED

Element Analysis Pre and Post Processing Technical 5/20/80
6. PERFORMING ORG. REPORT NUMBER

7. AU THOR(s) 8. C0ONTRACT OR GRANT NUMSER(s)

Mai Tan, J. & Kamel, H.A. N0014-75-c-0837

S. PERFORMING ORGANIZATiON NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. rA5~
A;AEA & WORK UNIT .4UMUERS

University of Arizona NR 064-531/12-1I7-75
Aerospace & Mechanical Engineering Dept.
Tucson,_AZ 85621 ____________

II. CONTROLLING OFFICE NAME AND AOORESS IT. RepoRT DATE

Dept. of the Navy, Office of Naval Research 7/29/80
Structural Mechanics Program (Code 474) 13. NUMBER OF PAGES

Arlinctona, VA 22217 28
4 ONT ING AGENCY NAME I AOORESS(If different fromn Controiling Ofite) 15. SECURITY CLASS. (*I this report)

Same as above Unclassified
ISa. OECLASSIFICATION4, OWNGRAOING

SCHEDULE

1C. DISTRIBUTION STATEMENT ,at this Report)

Approved for public release, distribution unlimited

17. DISTRIBUTION STATEMENT (of the abetted .entered In Block 20. It different from Repo"t)

1S. SUPPLEMENTARY NOTES

Presented at ASCE Spring Convention, Portland, Oregon
April 14-18, 1980

19. KEY WORDS (Continue on reverse aid* It necessary And Identity by biock number)

Finite Element Method, Minicomputers, Performance Measurements,
Computational Algorithms.

Z0. ABSTR ACT (Continue on ,ormiii aide It necessaryv end Identity by bloCk numiber)

:-The paper presents a study of the performance of a typical 16-bit
minicomputer in a finite element environment. The study gives a
realistic feel for the performance of such systems in a practical
environment, and provides an example of how the performance of
such systems may be measured.TIDO """I 1473 COITION OF I NIOV 63 IS OOSOLETZ

j A S / 0 1 0 2 L F 0 1 -6 6 0 1s ac u nrI y C L A S S IF IC A IO N O F T H IS P A E (E lle f D a ta B nfft fWa d)

