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In this paper, we present a few recent results on the

asymptotic behavior of the solutions of a parabolic equation of

the form

ut = Au + f(u) in &I

(1)

u = 0 on D
n

where S is a bounded open set in IRn with smooth boundary.

We also discuss how the qualitative behavior of the stable

equilibria depend upon the shape of 0 and the nonlinear function

f. The function f is supposed to satisfy conditions which

ensure that Eq. (1) defines a strongly continuous semigroup

1Tf(t) on H (Q).
We remark that the boundary conditions in (1) are not

important as far as the spirit of the problems to be discussed.

Of course, the details will depend generally in a very significant

manner upon the boundary conditions.

Let Ef(Q) be the set of equilibrium solutions of (1);

that is, the set of solutions of the equation

Au + f(u) a 0 in n

(2)

au on M.
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If Ql = (O,X) SIR, then the set Ef(O,X) is given by

Ef(O,X) = {periodic solutions of period 2X of the (3)

equation uxx + f(u) = 0)

In the following, we let Wu(¢), WS (¢) denote, res-

spectively, the unstable and stable manifolds for an equilibrium

point * of (1). The following result for n = 1 is due to a

number of authors. The references are in the proof.

Theorem 1. (n=l) If 0 = (0,)L) cAR, then

(i) the w-limit set of any bounded solution of (1) is

in Ef(0,).

(ii) the w-limit set of any bounded solution of (1) is

a single point in Ef(O,X).

(iii) the only stable equilibrium points of (1) are constants.

(iv) If -f(s)ds - as u + , then every solution

of (1) is bounded. If, in addition, Ef(O,X) is a

bounded set, then there is a maximal compact in-

variant set Af(O,X) of (1),

Af(OX) = U0EEf(0,X)Wu(0),

Af(OX) is uniformly asymptotically stable and, for

any bounded set B in H (Q), dist(Tf(t)B,Af(0,X)) 0

as t4 .
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(v) If, in addition to the hypothesis in (iv), all

E Ef(O,X) are hyperbolic, then, for any bounded

set B in H (a), the set

(U stableWs(*)) B

is open and dense in B.

Proof: Ci) This is due to Chafee [4] and is independent of the

boundary conditions. The idea is very simple.

If

V(u) J(u 2-Jf(s)ds)dx

then the derivative of V along the solutions of () satisfies

V(U) u dx < 0.

Since every bounded orbit is precompact, a simple application

of the invariance principle implies the result.

(ii) This result is due to Matano [13] and is independent

of the boundary conditions. He used a rather sophisticated

application of the invariance principle. We sketch a proof based

on the theory of dynamical systems. The details will appear in

Hale and Massatt [6]. The idea is very simple and can be traced

to Malkin [12], Hale and Stokes [7] and perhaps even further.
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If * is an element of an w-limit of an orbit which is not a

single point, then * belongs to a continuum in Ef(O,X) and

0 is not hyperbolic. The linear variational equation about 0

has the simple eigenvalue zero with all other eigenvalues being

nonzero. Thus, 0 belongs to a smooth one dimensional sub-

manifold M of Ef. In modern terminology, * is normally

hyperbolic. One now can show that any solution of (1) which

remains in a sufficiently small neighborhood of M for t

sufficiently large must be of WS(M), the stable manifold of

M. Finally, one shows that each orbit in W S(M) approaches a

single point.

(iii) This result is due to Chafee [4]. The following

proof is taken from a preprint of Bardos, Matano and Smoller [1].

Suppose * is a nonconstant equilibrium solution of (1). Then

v = do/dx 0, v 0 at x = 0, x = X, and v satisfies the

equation

SVx + f'(o)v = 0.

Let aN' 'D be the spectrum of this differential operator with,

respectively, homogeneous Neumann and Dirichlet boundary conditions.

Since inf aN < inf OD and 0 E aD, the result is proved.

(iv) Using the function V(u) in part (i), one easily

shows that every solution is bounded. Thus, the w.limit set of

every solution of (1) belongs to Ef(O,A). Since Ef(O,X) is
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bounded, there is a bounded set B such that every solution of

(1) eventually enters B; that is, Eq. (1) is point dissipative.

Since the semigroup Tf(t) is compact for t > 0, the results

follow from the general theory of dissipative processes (see, for

example, Hale [9,10]).

(v) This result is due to Henry [11]. The idea of the

proof is to observe first that the solution operator for the

linear variational equation of (1) about any point is one-to-one.

This can then be used to show that, for any * E Ef(O,X) which

is not stable, the set Ws(4) n B is nowhere dense in B for

any bounded set B. As remarked by Mafie, the one-to-oneness of

this solution operator implies that the stable manifold Ws()

can actually be given globally a manifold structure. This also

gives a proof of the assertion in (v).

For a = (O,X), we have remarked that the set Ef(O,1)

coincides with the set of 21-periodic solutions of uxx + f(u) = 0.

For any a EIR, let u(x,a) be the solution of this equation with

u(0,a) = a,u (0,a) = 0. If a is such that u(x,a) is periodic

in x, let 2Xf(a) be the period. The function u(.,a) E Ef(O,Xf(a)).

For f(u) an arbitrary cubic polynomial in u, Smoller and

Wasserman [15] have shown that the function Xf(a) has a finite

number (<2) of maxima and minima and the second derivative of 1

at these points is different from zero; that is, 1f(a) is a

Morse function.
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The above result has important implications for the

applications. In fact, for f any cubic polynomial in u, and

for X fixed and different from the maxima and minima of the

function Xf(a), the set Ef(0,A) consists only of hyperbolic

points. For X equal to one of the extreme values of Xf(a),

there is a bifurcation of the saddle-node type.

The following qualitative result of Brunovsky and Chow [2]

has recently been proved.

2
Theorem 2. There is a residual set _F E (2 R) with the Whitney

topology such that, for any f E _F, the function Xf(a) above

is a Morse function.

The proof is not trivial because the function f depends

only on u and not on (x,u). The proof is based on a detailed

analysis of an analytic expression of Xf(a) as a function of

f,a. It is not a trivial exercise because there is no simple way

to determine the qualitative properties of the derivatives of this

function in a from the derivatives of f. In fact, there are

nonlinear functions f for which Xf(a) is constant (see, for

example, Urabe 116]).

Theorem 2 can be appropriately generalized to other boundary

conditions (see Brunovsky and Chow [2]). Smoller and Wasserman

[15] have also considered other boundary conditions.

Our next objective is to discuss the extent to which the

above results are valid for a bounded set n in Jn
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Theorem 3. If a is a bounded set in IRn with smooth boundary,

then

(i) the w-limit set of a bounded orbit is in Ef(r).

(ii) the w-limit set of a bounded orbit is a single point

if the following condition is satisfied:

If 0 E Ef(Q) is not hyperbolic and k is the

dimension of the null space of the operator A + f'() in 9

with homogeneous Neumann conditions, then 0 belongs to a smooth

submanifold of dimension k.

(iii) convex implies the only stable equilibrium points

are constants.

(iv) Same statement as (iv) in Theorem 1 holds.

(v) Same statement as (v) in Theorem 1 holds.

Proof: The proof of (i), (ii), (iv) and (v) are essentially the

same as the corresponding assertions in Theorem 1.

(iii) This result was independently discovered by Casten

and Holland [3], Matano [14]. The proof exploits

special properties of the Laplacian on convex regions

to prove that the linear variational equation has a

negative eigenvalue for any nonconstant equilibrium.

An analogue of Theorem 2, as far as hyperbolicity of

equilibrium and saddle node bifurcations, is not known for S1 in

3Rn and seems to be rather difficult.

ItI
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We remark that part (iii) of Theorem 3 is also valid for

9 convex and the equations

ut = Au + f(u), in 0

Vt = -g(u,v)

0 on 3n

provided that the spectrum of the operator ag(C,n)/av belongs

to the set {z:Rez > 0) uniformly in E,n (see Bardos, Matano

and Smoller (1]).

The remainder of the discussion centers around the case

when 1 is not convex and the objective is to understand more

about the set of stable equilibrium. Before doing this, we make

the important remark that, when Q is convex, the qualitative

structure of the stable equilibria is independent of the non-

linearity f. When Q is not convex, this will no longer be

the case.

The following result is due to Matan [14].

Theorem 4. There is a nonlinear function f and n aIR n n > 2,

such that (1) has a stable nonconstant equilibrium.

Idea of proof: Suppose f has zeros only at a < 0 < b, they

are simple and f(s)ds - - as u ± . Suppose a has the

0
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shape shown in Figure 1 and let X2 be the minima of the

Figure 1

second eigenvalues of the Laplacian on 01 and QV Matano [

gives a specific continuous function G R 2 -*R such that the

set where G < 0 is nonempty with the property that, if A2 , 3

are such that G(X2, meas S3) < 0, then there is a nonconstant

stable equilibrium of (1). For fixed l, 2' he shows there is

an S3 such that the above inequality is satisfied.

The idea of the proof is the following. Let Y be the

subset of functions u in HI (0) such that [ u > 0, [ u < 0.

If meas Q3 is small enough, it is then shown that the set Y has

a certain invariance property with respect to Tf(t). A careful

application of the maximum principle gives a minimal equilibrium

solution v in Y stable from below and a maximal equilibrium
m

solution v M in Y stable from above. If it were known that
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there are only a finite number of equilibrium solutions, then the

proof would be complete. Since this is not known, another argument

must be used. Matano first proves that any solution unstable

from above must be strongly unstable from above in the sense

that it can be isolated from equilibrium solutions from above

uniformly in Y. He then puts an ordering on the solutions from

above, uses Zorn's lemma and the above property of solutions unstable

from above.

In the proof of Theorem 4, the nonlinear function f has

the three simple zeros at a < 0 < b. The equilibrium points

a,b are stable and zero is a saddle point. A stable, nonconstant

equilibrium solution was shown to exist. The argument of Matano

can be used to show there must be another nonconstant equilibrium

solution with J u <0, f u > 0. Thus, there are at least

four stable equilibrium solutions and one unstable equilibrium

solution. This is impossible dynamically and there must be some

other equilibrium solutions which are unstable. In fact, an index

argument implies there must be at least three unstable equilibria.

Using more of the detailed information from the paper of Matano,

one can show there must be at least five unstable equilibrium

solutions. Consequently, there are at least nine equilibrium

solutions for this nonlinear function f and region Q.

The basic problem is to understand in more detail how

variations in the shape of the domain (2 cause these additional

solutions to appear. We now summarize some work of Hale and Vegas

[8] which give a possible explanation.
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Let us begin with an intuitive discussion of how the

stable nonconstant equilibrium solutions could appear as

secondary bifurcations. Suppose U E [0,o), P6 is a bounded

set in ]R2 with smooth boundary with the property that 90 is

convex and the second eigenvalue X2 (p) of -A on

Q 1is a monotone decreasing function of V, approaching zero

as u w. Also, suppose the third eigenvalue X3(1) of

-A on Q satisfies X3(p) > 6 > 0 for all j. Let

f(Vu) = v2u - u3, v > 0, and let A be the maximal compact

invariant set for the equation

ut = Au + f(vu) in a

Du = 0  in aQ
an

Fix v sufficiently small so that v2 < 6 and the only equilibrium

solutions in 90 are the constant functions 0, ±v. The set

A V,0 is then the constant functions ±v and the unstable manifold

of 0, which is one dimensional. Let V0 be such that

X2(VO) = f'(0) = v 2. At the point V = VO, the zero solution

bifurcates creating two new equilibrium solutions which are unstable.

They are unstable because the unstable manifold of zero becomes two

dimensional - the direction of bifurcation is independent of the

direction of the original :unstable manifold in A , for U < V0 .

The set A for V > V0  but close to V0  is then two dimensional

with three unstable and two stable equilibriums.
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Now suppose that sl has the shape shown in Figure 1

and that meas 0 0 as oD. Then we can find a

such that the inequality in the proof of Theorem 4 is satisfied.

Thus, there is a stable nonconstant equilibrium solution. It

is conjectured that this occurs as a secondary bifurcation from

the unstable nonconstant equilibria discussed above. In Figures

2 and 3 we have depicted, respectively, the set A as a

function of V and the conjectured bifurcation diagram.

.s
uso WE 0 B3 S s SsS

v near p 0 S> >1

Figure 2

U=U

: j s

u u

Ip

u = vi

Figure 3
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To do things more analytically, we have tried to discuss

the neighborhood of V = w treating it as a bifurcation problem
-1

from a double eigenvalue zero. More specifically, suppose v = c

and the region 0y is shown in Figure 4, two circles Q1' 02 and

a small channel between them.

Figure 4

For e = 0, it is clear there are nine solutions consisting of

all combinations of 0, ±v on QI and Q2" Five of these are

saddles and four are stable nodes. Let X2 (c) be the second

eigenvalue of -A on Q and let w be a unit eigen-

vector corresponding to X. Let u be the constant function

(meas R that is, ue is a unit eigenvector for the eigen-

value 0 of the Laplacian on 0 "

One can now show that it is possible to apply the method

of Liapunov-Schmidt for the solutions of (1) near u = 0 for

e,v near zero. More specifically, for real a,$ sufficiently

small and e,v sufficiently small, there is a function u*(a,O,e,v)

continuously differentiable in a,B,v and continuous in c such

that u*(0,O,0,0) - 0, au*(0,0,0,0)/a(a,B) - 0 and
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Au* +f(v'au +Ow e+u*) - wf(v,cu +8w +u*) =0

where nru is the projection of u onto the span of the constant

function u~ and the function w that is,

7ruz J u+ w wu.
C

If u*Cca,O,e,v) satisfies the above, then

u = atu + Ow C + *c,,e)

is a solution of (1) if and only if (ct,O,e,v) satisfy the bi-

furcation equations

J f(v'tu£ +OW +u*(ct,a,e,v))dx = 0

J wf(v'u +Ow +u*Ca,o,c,v))dx =0

are satisfied.

If we let (,)=y, then one can show that these equations

have the form

c(y) + eLly *vL 2Y + h.o.t. = 0 (4)

where h.o.t. denotes higher order terms in Y,c,'v, L1 ,L 2 are



constant two by two matrices and c(y) is a homogeneous cubic

two vector in the components of y. One can now apply the method

in, for example, Chow, Hale and Mallet-Paret 15] to obtain the

complete bifurcation diagram for the solutions of (4), These

are shown in Fiture 5. Figure Sa shows the number of solutions

V solution v>0

9

3

Figure Sa Figure Sb

for a fixed (e,v) and Figure 5b shows the way the solutions

bifurcation as a function of c for a fixed v.

In the verification of the previous results, it is crucial

to show that the third eigenvalue of the Laplacian on 0 isC

bounded away from zero. It would be very interesting to obtain

general geometric conditions on a region a. to have this latter

property satisfied.
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