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ABSTRACT . jI-
This paper discusses autoregressive random field (ARE)

models and derives a unilateral representation driven by
uncorrelated noise.
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I. Introduction %A N~

In this paper we shall deal with a subset of stationary ",","..
(wide sense) processes with absolutely continuous spectral

distributions which are rational functions of the two quan-e 1 ie 2
tities ,e . More precisely we shall study the process

Xim,n] ERd,[m,n]E2.x2Z on an infinite lattice, with covariance

structure
E(XL+t X*

[m+s,n+t* [m,n])

2-f-Ir f e -iS1-ite2f(01 0 2 )dOld12, (1.1)

and zero mean.

We assume f(61, 2 exists and is finite at every (9,,at 2vr (,2),

and
S f(81,02)- = (a[0,0]+ 1 csz,,m0)+(a a ]cos (m, 8,+m22 )2 110+[Ml~2 N [ml'm 21

(1.2)

a [0,,a[m1 ,m are p x p matrices satisfying a s,t]=a[0 0 2 =a [_s,_t]*

V* is the complex conjugate transpose of the vector V. NP

denotes the deleted p x p neighborhood of [0,0], that is,

{ [mlFm 2 ] -Imll-P, m2 I -p, [ml'm 2]#[0,0 1.

Models of this type have been used as models of texture

images [1,2]. In the case where X is a Gaussian process,

it can be shown [3] that X[ is a Gauss-Markov process with

respect to NP; that is,



P-ob(X im,nl x s , t ] , [ s,t ] O[m,n l ) =

Prob(X [m,n]IX[s,(t,[s,t]e[m,n]+NP ) (1.3)

In fact, the process with spectral density f(ele 2) satisfies

the conditional model

E(X [m,n]IX[s,tl, [s,t]#[m,n-)

-a[ 1 ( E a X m) (1.4)100 fml'm2]ENp [ml'm2] I-inm2

Conditional models of this type have been found useful in

the modeling of spatial patterns [7]. It is also known (see,

for example, page 26 of (7]) that no finite one-sided repre-

sentation for this model exists of the type (with S finite

subset of 2 x Z)

b10,0] X[m,n] +mm]E S (ml,m2 Xm-ml,n-m2] =Z(m,n]

where Z[m,n] is a process of uncorrelated noise.

The purpose of this paper is to show that the collection

of spectral representations of the process X along one

of the coordinates is representable as a one-sided finite

order "time series" model along the other coordinate. Thus,

in this sense it is seen that all ARF's have a "causal"

representation.

This method of producing a one-sided representation can be

contrasted with the so-called NSHP (non-symmetric half plane)

representation of [31 and (6].
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2. A Unilateral Representation

We consider the process X with spectral density

f(1 ,e 2) = (a [0,0] + [m E ,2] a [ml,m 2 ] cos (m1 01 +m2 a2 )]
Im 11m2 ]E 2

(2.1)

which is a p-th order autoregressive process.-iG1 -iG2
Let z=e ,w=e , and rewrite the above equality as

f(611 2) =a 0 (w)+a 1 (w)z+...+ap (w)zp

+a*(w)z 1+...+a* (w)z - p .
p

For each fixed w we can consider f(011 02 ) as a spectral

density in 01. We next produce a causal factorization of

f(01 '02 ) in the form

* f(0 1 1 0 2) -1= (2.2)
** *

[c (w) +cl (w) z-+...+cp(W) z- p ] [c o (w)+c I (w) z+...+cp(w) zp ] ,

-i82
where, for each w=e , c0 (w)+c1 (w) +-...+c p (w) p has no

roots inside and on the complex unit circle ItI=I. ([4],

page 65).

We next consider the spectral representation of the

process X along the second coordinate:I..]

71 imO ,
X f dYn ( (2.3)XEn,m]=_ C n(23

where Y n() is the spectral representation of the process

X, ((51, page 481).

Next expand each of co (w),...,cp (w) in a Fourier expansion

....*n 4 im, 
"

- t
= '

-i i- i - i
'



ikO2
c . W)=e C~jiki.

Then (14], page 61) the process satisfies the autoregression

E E=cjkX n-j,m+k]~ [n,m] (2.4)
j=0 k -wJ1~

where Zis an uncorrelated white noise process. Let

Wn (O) be the spectral representation of the process Z~n.

Z = f (2.5)
z(n,m] =_f dWn(()*

$We conclude with the following

Theorem: Let LYn (0)), N{n (6)1 be the spectral representations

of the processes defined above. They satisfy the stochastic

differential equation

E ke dY nk''dWn(0) (2.6)

Proof: In the above autoregressive representation we sub-

stitute the spectral integrals and get (after combining terms)

'IT p 0 A i(m+k)O imeVm: f {E E c e dY .(0-e dWn(0)] =0
-~j0 k=-oo [j,k] n-jn

Factoring out eim we have

'~ime P A -ie
Yin: fe {E c.(e- )dY .(0)-dW,(e)} =0

-71 j=0 j n-)

As any continuous function f(e),0fi[-Yw,v)can be approximated in

mean square by linear combinations of ekime, the result follows.



3. The finite version.

The above calculation can be carried out in the case

where we have a finite number of values

X[n,0],'- X[n,M-l]

in the vertical direction.

Let Me i/M The finite versions of the above spectral

representations are as follows:

M-1
X I:A,m] M E - Mkmy (nk) (3.1)

k=0

or 1 M-1 -km(
AY(n,k)=-- M M X [n~j].(3.2)

Tnat is, AY(n,') is the finite Fourier transform of the data

x ] Similarly

1 M-1
AW(n,k)=- E -km (3)M j=0 M [nj

Te finite analogue of the above Theorem is

M-1 mk p -k
E O E bj(*M )AY(n-j,k) - AW(n,k)} =0k=0 m j=

concluding with

P -k )A A
Sb. (0 )Y(n-j,k)= W(n,k). (3.4)

j=0O
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