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, /( ABSTRACT

The quality of a product might be determined by several parameters, each
of which must meet certain standards before the product is acceptable. In
this paper, a method of determining whether all the parameters meet their re-
spective standards is proposed. The method consists of testing each parameter
individually and deciding that the product is acceptable only if each parameter
passes its test. This simple method has some optimal properties including at-
taining exactly a prespecified consumer's risk and uniformly minimizing the
producer's risk. These results are obtained from more general hypothesis testing

results concerning null hypotheses consisting of the unions of sets.

y)

Key words: consumer's risk, multiple inference, uniformly most powerful.
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1. INTRODUCTION

In many situations, the quality of a product is determined by several

parameters. The product is of acceptable quality to the consumer only if each

4 of the parameters meets certain staﬁdards. For example, an upholstery fabric rust
meet standards for strength, colorfastness, and fire resistance. Based on some
measurements on the product, the consumer must decide whether the product is
acceptable, i.e., all of the parameters meet the standards, or unacceptable, i.e.,
one or more of the parameters do not meet the standards. In making this decision

the consumer wishes to use a rule which controls the consumer's risk at a small

level.

If there 18 only one parameter and only one kind of measurement, then a ston-
dzrd quality controls text such as Surr (1¢76) or Duncan (1974) nives nethods for
making this decision. Different methods are given depending on whether the para-

{ meter is a mecn, variance or proportion of defectives and on whether the measurements
: are counts of defective units (sampling by attributes) or measurements on a continuous
! variable (sampling by measurements). But no text that the author has found deals ]

with the situation in which there are multiple parameters of interest.

This problem will be formulated as a hypothisis testing problem in which the

null hypotheses states that one or more of the parameters do not meet their stan-

dards and the alternative hypothesis states that all of the parameters do meet
! their standards. Then the probability of a Type I error will be the consumer's

[ 3
’ risk. Thus an a-level test will be one which controls the consumer's risk at

less than or equal to o.
The test proposed herein is so simple it must not “e ner. "™ut t"m author “as

not been able to find it described in hypotheses testing or quality control literature.

The test is the following. A hypothesis test is done on each parameter individually

: . at level a. The overall test rejects the null hypothesis and decides that all of

Sl

; the parameters meet their standards if and only if each individual test decides

that the individual parameter meets its standard.




This test has several interesting properties. First, the individual tests
are performed at level a and yet the overall test has level a. Usually when doing
simultaneous inference about many parameters (see, e.g., Miller (1966)) inferences
about individual parameters must be done with an error rate of less than a to
achieve an overall error rate of a. This, for example is the basis of the
Bonferroni method of simultaneous confidence intervals. Second, under very
mild conditions, the level of this test is exactly a. So the test is not being
too conservative by requiring each of the individual tests to decide that the
individual parameter meets its standard. Third, under more restrictive conditions
a result of Lehmann (1952) can be used to prove that this test is uniformly most
powerful in a reasonable class of tests. In terms of risks this says that this
test uniformly minimizes the producer's risk. These properties indicate that
not only is the test extremely easy to implement, since it deals with only one

parameter at a time, but it also seems to be a reasonably good test.

2. Basic Results

Let X = (xl, LN xn) be a random vector of observations whose distribution

is determined by a vector parameter § = (el,ev-, ez). Let © denote the parameter

K
space. Let ei, i=1, 2o, K, be subsets of 0. Let 8y = Y ei. Let A” denote
iel
K
the complement of the set A. Note that e& = n 9;. The problem to be considered
i=1

is that of testing H.: 6 ¢ 0, vs H.: 6 € ©.

o o 1 or In the example in the introduction,

ei is the hypothesis that ei does not meet its standard.




(3)

If ai must be greater than c; in order to meet its standard then C -{6 eisci)

1f 9 must be between e and d to meet its standard, then © -{6 ] zd or eisci}

tith this formulation, HO is the hypothesis that at least one parameter does not meet

its standard and H, is the hypothesis that every parameter meets its standard. Wote

1

that X, the number of suhsets, may be less than £, the number of parameters. This

will be the case if some of the parameters are nuisance parameters and do ot have

standards associated with then.

Let a, 0<a<l be fixed. For i=1,-+-,K,let ¥ (x) be an a-level test of H, :0€0;

nic.
vs Ullieie‘i,i.e., ngi(g)sa for all geeiv Let ¥ be the test of H, vs I, which re-
jects HO if and only if every wi rejects Hni'

Other authors such as Eirnbaum (1954). Birnbaum, (1955), Lehmann (1955) and
Spjotvoll (1972) have comsider testing hypotheses Ho and Hl. But in all these
papers, except the one result of Lehmann to be discussed in Section 3, the null
hypothesis is of the form Hl.

Tsutakawa and Hewett (1978) propose the test ¥ for a2 problem comparing regression
lines. Theorers 1 and 2, which follow, are board generalizations of a resglt they

prove about a test tased on a bivariate t distribution.

Yilkinson (1951) has pronosed a test like ¥ hut in a very different situation.

tl{lkinson assumes that the individual tests are a-level tests for all of Ro, not just i

“01' Tilkinson also assumes the individual tests are independent which typically will

not be the case in the prohlems considered herein.
The facts chat ¥ is always an a-level test and under mild conditions has size
exactly equal tc o are presented in the following two theorems.

Theoren 1. ¥ is an a-level test of H vs ”1’ f.e., E V(Y)Su for all eeeo-

Proof: Let R:l be the event that ¥y rejects Ho g Then " m {1 lR is the event that

¥ rejects Ho. Fix 0 ¢ eo. Then © ¢ 91 for some 1 and

Eg ¥ (X) =Py (R) <P, (R) = E, ,(X) < a since § € 6 and y, is an a-level test of




(%)

; Theoren 2: Suppose 01 = {e-eisci}, i=1,¢-+, K. Suppose the power of wi depends

cee ° LN V= = .
only on ei and ek}l’ , e£ Suppose ‘ewi (2) a if 0i g Suppose there are upper

bounds bi (possibly infinite) such that for ary fixed values of 6K+l’.." ez,
lim E, ¢, (X)=1, Then ¥ has size exactly o, i.e., sup E_ ¥(X) = a-.

8.+ b 0 i ~ 6e0d ;
A S ~ 0 -

: Proof: Let Ri and R be defined as in the proof of Theorem 1.

t Let 6i = (611,---, ezi) , i=1,2,++- be a sequence of parameter points satisfyine
\ eli=-c1 for all i, > bj,j &2, s+, %, and 9(K+])i’ oo, °ei are fixed for all.i.

Then 0, € O, for all {f and P (R?) = 1-E_ ¢_ (X) = l-a for all 1. Also, for
~1i 1 0 1 Gi 1

911

j=2, +++, K, lin Pei (Rj) =1~ 1lin P (Rj) = 1-1=0.

iveo fro O
Therefore,
sup  Eg ¥(X) 2 lin E; ¥(X)
eeeo ~ = iv0 4 T

; K
; =lr P, (R
oo & g d

K
; = 1lin (1 - Pg (v k7))
. i+ -i j=1]

K
1-1n I pg (RY)
{+o J=1 .4

v

K
; 1- Um ((1~0) +I P (R7))
‘! o0 =2 4 i

.
]

From Theorem 1, sup E_ ¥Y(¥) < a.
b e -~
) 9€90 -

Thus the size of ¥ ie exactly a. ||

The proof of Theorem 2 shows that for the test ¥ the —aximun of the consumer's
risk, the ~axirum of the probability of a Type I error, occurs vhen cne parameter
X just fails the standard, 01- €ys and‘all the other parameters are very good (large). J

i ] This 18 exactly whot would he expected. If many of the parameters do not meet their

standards, it should Le easy to decide that the product is unacceptable.
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But if all the parameters but one are very good and the one exception nearly

neets the standard, it will be most difficult to decide that the product is

unacceptable.

The conditions of Theoren 2 will hold if ei is a normal mean and wi is a one
tailed t-test or if ei is the proportion of non-defective items and wi is a one
tailed binomial test. An important case in which the conditions of Theorem 2
will not hold is the case in which ei is a normal mean, the standard is
c; < ei < di and < and di are finite numbers. No a-level test will have a power
approaching one on this set of alternatives.

3. An optimality Result.

Lehmann (1952) considered multiparameter hypothesis tests, He was primarily

| concerned with testing the null hypothesis H1 vs the alternative Hy- But he proved
. one result, Theorem 4.2, for the situation in which "0 is the null hypothesis.
Althopgh Lehmann did not speak in terms of combining individual tests to get an

. overall test, his Theorem 4.2 says that under certain conditions the test Y we

have proposed is uniformly most powerful in a certain class. The remainder of

this section is a review of Lehmann's result in terms of our notation.

A subset of A of ™* is called monotone if X € A and Y; 2 x4, 1 =1, °°, K,

implies ¥ € A. Suppose K = £. The parameter space is the finite or infinite

. open rectangle a; < 8 < bi’ i=1, .-, K. Let Y1,°°° Yk denote K statistics.
) Suppose pﬁ(x) is the joint density of the Y's and the positive sample space of
, the Y's is the open rectangle u; <Y <Yy independent of the 6's. Suppose the

narginal distribution of Yi depends only on ei and Yi converges in probability to

v; as ei i bi' Suppose the joint distribution of the Y's has the property that

if 9 and ©@° are two parameter points with Bi s 0{, i =1, °<°K, then




T Ty ey ” . oy

L a (6)

Pe(Y € A) € Pe,(! € A) for every monotone set A. Let 0; = {e : ei < ci}‘

Let wi be the test which rejects H

. i . > W, .
0i if Y1 LA where LA is chosen so that

PG(Yi > wi) = a if ei =cy. Under these assumptions the following result
car be proven.

Theorem 3. (Lehmann's Theorem 4.2).

Under the above assumptions, the test ¥ which rejects b, : 8 € 0y if and only

| if each ¥y rejects HOi 18 € 05 is uniformly most powerful among all non-
randomized tests which have monotone rejection regions. !

Although Lehmann did not discuss nuisance parameters, the results of
Theorem 3 will continue to hold if the assumptions hold for each fixed set

of values for 9K+1, LN ez.

Lehmann gives some techniques for verifying the monotonicity property

assumed about the joint distribution of Y LI ¢ It will hold, for

1’ K’
example, if the Y's are independent t-statistics and the ei's are normal means.

4. AN EXAMPLE

An example of specifications given in terms of many parameters may be
found in the textile industry. Table 1 lists specifications for upholstery
fabric from the American Society for Testing and Materials. The specifications
give standards for nine parameters related to strength, dimensional stability,

colorfastness and flammability.

The first four parareters might be assumed to be normal means; mean breaking
strength, mean tear strength, etc. The first three standards say the mean must

be greater than some value. The dimensional change standard gives an upper and

lower bound for the mean. These four hypotheses might be tcsted using t-tests.

An upper bound on the variance of the dimensional change measurements will have

to be assumed in order to construct an a-level test based on a t-statistics because
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of the hypothesis' two sided form.

The last five parameters might be measured by binomial variables, each
variable counting the number of units in a sample which pass the corresponding
test. Each parameter would then be the proportion of units in the population
7a particular manufacturer's output) which achieve one of the standards. The
usual binomial test could be used to test each of these five, one-sided hypotheses.

It would be very difficult to posit a realistic multivariate model for
these nine variables. Some are discrete and some are continuous. Some are
likely to be correlated. Yet it is relatively easy tc construct an a-level test
for each parameter individually.

These tests can be combined into the overall ¥ to test the hypothesis Ho with
a consumer's risk of a. Thecrems 2 and 3 indicate that, in certain situations,
the resulting acceptance plan is fairly efficient in terms of both producer's

and consumer's risks.

5. CONCLUSIONS

Acceptance sampling procedures for individual parameters are well known. This
paper proposes a way of comtining these procedures in the situation in which the
nuality of a product is measured by st-ndards on several parameters. Not only is
the method easy to implement but it controls the consumer's risk at exactly a pre-
assigned level in typical situations when the standards are one-sided (either upper
or lower bounds). Under slightly more restrictive conditions this method also
uniformly minimizes the producer's risk. This method can be used in hypothesis
testing problems other than acceptance sampling if the null hypothesis is a union

of sets.

—— s . e - -



TALT 1

Standard Specification fbr Woven Upholstery Fabric
Plain, Tufted or Flocked

Test Minimum Standard
Breaking Strength 50 pounds
Tongue Tear Strength 6 pounds
Surface Abrasion (heavy duty) 15,000 cycles
Dimensional Change 5% shrinkage, 27 gain

Colorfastness to:

Hater class 4
Crocking
Dry class 4 |
Vet class 3 J
Light-40 AATCCF Fading Units class &
Flammability Pass l

Source: 1978 Annual Book of ASTM Standards, American Society for Testing
and !aterials, Philadelphia, Part 32, page 717.
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