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ABSTRACT

The quality of a product might be determined by several parameters, each

of which must meet certain standards before the product is acceptable. In

this paper, a method of determining whether all the parameters meet their re-

spective standards is proposed. The method consists of testing each parameter

individually and deciding that the product is acceptable only if each parameter

passes its test. This simple method has some optimal properties including at-

taining exactly a prespecified consumer's risk and uniformly minimizing the

producer's risk. These results are obtained from more general hypothesis testing

results concerning null hypotheses consisting of the unions of sets.

Key words: consumer's risk, multiple inference, uniformly most powerful.
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1. INTRODUCTION

In many situations, the quality of a product is determined by several

parameters. The product is of acceptable quality to the consumer only if each

of the parameters meets certain standards. For example, an upholstery fabric nst

meet standards for strength, colorfastness, and fire resistance. Based on some

measurements on the product, the consumer must decide whether the product is

acceptable, i.e., all of the parameters meet the standards, or unacceptable, i.e.,

one or more of the parameters do not meet the standards. In making this decision

the consumer wishes to use a rule which controls the consumer's risk at a small

level.

If there is only one parameter and only one kind of measurement, then a stan-

dard quality controls text such as nurr (1976) or .uncan (1974) -ives methods for

making this decision. Different methods are given depending on whether the para-

meter is a mean, variance or proportion of defectives and on whether the measurements

are counts of defective units (sampling by attributes) or measurements on a continuous

variable (sampling by measurements). But no text that the author has found deals

with the situation in which there are multiple parameters of interest.

This problem will be formulated as a hypothisis testing problem in which the

null hypotheses states that one or more of the parameters do not meet their stan-

dards and the alternative hypothesis states that all of the parameters do meet

their standards. Then the probability of a Type I error will be the consumer's

risk. Thus an a-level test will be one which controls the consumer's risk at

less than or equal to a.

The test proposed herein is so simple it must not ',o n... "tit t"- aut' or "as

not been able to find it described in hypotheses testing or quality control literature.

The test is the following. A hypothesis test is done on each parameter individually

at level a. The overall test rejects the null hypothesis and decides that all of

the parmeters meet their standards if and only if each individual test decides

IL, that the indilLdual parameter meets its standard.
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This test has several interesting properties. First, the individual tests

are performed at level a and yet the overall test has level a. Usually when doing

simultaneous inference about many parameters (see, e.g., Miller (1966)) inferences

about individual parameters must be done with an error rate of less than a to

achieve an overall error rate of a. This, for example is the basis of the

Bonferroni method of simultaneous confidence intervals. Second, under very

mild conditions, the level of this test is exactly a. So the test is not being

too conservative by requiring each of the individual tests to decide that the

individual parameter meets its standard. Third, under more restrictive conditions

a result of Lehmann (1952) can be used to prove that this test is uniformly most

powerful in a reasonable class of tests. In terms of risks this says that this

test uniformly minimizes the producer's risk. These properties indicate that

not only is the test extremely easy to implement, since it deals with only one

parameter at a time, but it also seems to be a reasonably good test.

2. Basic Results

Let X = (X1, -- o, Xn) be a random vector of observations whose distribution

is determined by a vector parameter e a ( 8). Let 8 denote the parameter

K
space. Let B., i a 1, o-o, K, be subsets of 0. Let 0 U 0.. Let A' denote1 i-1 1

K
the complement of the set A. Note that e' a n 0. The problem to be considered

0

is that of testing HO: e . 00 vs Hil: e 6. In the example in the introduction,

0 is the hypothesis that 8. does not meet its standard.

1!

J,1
-I
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if 0i must be greater than c. in order to meet its standard then Ci-(e:8 ic.

If 0 must be between c and d to meet its standard, then e={(e:ei2di or 0 Sc 1.I i* i . I i i
With this formulation, FO is the hypothesis that at least one parameter does not meet

its standard and H1 is the hypothesis that every parameter meets its standard. Note

that K, the number of subsets, may be less than t, the number of parameters. This

will be the case if some of the parameters are nuisance parameters and do Lot have

standards associated with then.

Let a, Oasal be fixed. For i-l,...,E,let 0,(x) be an a-level test of Hei:Oeei

vs F!iee-iqi.e., E (X)!Ea for all Wei . Let Y be the test of I0 vs 1i1 which re-

jects H3 if and only if every 'i rejects !!i"

Other authors such as Birnbaum (1954). Birnbaum, (1955), Lehmann (1955) and

Spjotvoll (1972) have consider testing hypotheses E and I? . But in all these

papers, except the one result of Lehnann to be discussed in Section 3, the null

hypothesis is of the form E1 .

Tsutakawa and Hewett (1978) propose the test T for a problen comparing regression

lines. Theorems 1 and 2, which follow, are bonrd generalizations of a result they

prove about a test based on a bivariate t distribution.

Tilkinson (1951) has proposed a test like T but in a very different situation.

Ifilkinson assumes that the individual tests are a-level tests for all of POP not just

!0i" !Tlkinson also assumes the individual tests are independent which typically will

not be the case in the problems considered herein.

The facts that T is always an a-level test and under mild conditions has size

exactly equal to a are presented in the following two theorems.

Theorem 1. Y is an a-level test of V vs 1l' i.e., E.'(X)Ia for all Oe".
- V

Proof: Let R be the event that *I rejects HOi. Then = is the event that

T rejects 1O . Fix e C eO . Then e 0 efor some i and

E Y (X) p8 (R) IP0 (E E0 *1 (X) I a since ce9 and is an a-level test of
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Theorem 2: Suppose 0 - :5nepc1 }, i-i,..., K. Suppose the power of 'i depends

only on 0i and BK I
, . ., 6e- Suppose E-4i* (X)Ua if einc i " Suppose there are upper

bounds bi (possibly infinite) such that for any fixed values of eK+1'*-', e,

lm E0 pi (X)-1. Then V has size exactly a, i.e., sun E 'P(X) = a.

eI i

Proof: Let R and R be defined as in the proof of Theorem 1.

Let 0 ( i-,2,.., be a sequence of parameter points satisfyin

a1ii c for all i, 0 b. j =2, .- , =, nd 0 (K+1)i, "", 6 are fixed for all.i.

Then 0 E 0 1 for all i andP (R ) P 1-E- (X M 1-a for all i. Also, for

J=2, --. , K, lir p0  (R) - 1- li Ps (Ri) - 1-1-0.

Therefore,

sup Ee T(X) t lin E T(X)
e c 0  .- -f " -i

K
= lir. P ( J.)

i-.' i j=l J

K
lin (I ( U R'))

i- P-i j- 1
K> - lin E pe ni(R?)

K

- 1 - lir ((1-a) + E P (R'))

j2

1 - (1-a) -0 a.

From Theorem 1, sup Ee T(X) g a.
ee -

Thus the size of ' is exactly a.

The proof of Theorem 2 shows that for the test T the naxr.u'n of the consumer's

risk, the naxinm of the probability of a Type I error, occurs when one parameter

just fails the standard, 01- cl, and all the other parameters are very good (large).

This is exactly whet would be expected. If many of the parameters do not meet their

standards, it should be easy to decide that the product is unacceptable.
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But if all the parameters but one are very good and the one exception nearly

meets the standard, it will be most difficult to decide that the product is

unacceptable.

The Conditions of Theorem 2 will hold if 6i is a normal mean and *i is a one

tailed t-test or if 6.1 is the proportion of non-defective items and *i is a one

tailed binomial test. An important case in which the conditions of Theorem 2

will not hold is the case in which 6. is a normal mean, the standard is1

ci < e0. < di and ci and di are finite numbers. No a-level test will have a power

approaching one on this set of alternatives.

3. An optimality Result.

Lehmann (1952) considered multiparameter hypothesis tests. lie was primarily

concerned with testing the null hypothesis H1 vs the alternative H0. But he proved

one result, Theorem 4.2, for the situation in which I' is the null hypothesis.

Although Lehmann did not speak in terms of combining individual tests to get an

overall test, his Theorem 4.2 says that under certain conditions the test T we

have proposed is uniform.ly most powerful in a certain class. The remainder of

this section is a review of Lehmann's result in terms of our notation.

A subset of A of 4 is called monotone if x E A and yi 2 xi, i = I, ..., K,

implies v c A. Suppose K = . The parameter space is the finite or infinite

open rectangle ai < i < bi, i = 1, ---, K. Let Y 1, .o Yk denote K statistics.

Suppose p () is the joint density of the Y's and the positive sample space of

the Y's is the open rectangle ui < yi < v. independent of the O's. Suppose the

marginal distribution oF Y. depends only on 6. and Y converges in probability to
1 1 i

v. as e bi. Suppose the joint distribution of the Y's has the property that

if Q and Q" are two parameter points with e 0 ', i - 1, *-K, then- i~ 1'
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Pe(Y e A) < Pe,(Y e A) for every monotone set A. Let i = {e 0 ci.

Let i be the test which rejects H 0i if Yi > w. where w. is chosen so that

PfJ(Yi > wi) = a if e. = c. Under these assumptions the following result

car be proven.

Theorem 3. (Lehmann's Theorem 4.2).

Under the above assumptions, the test P which rejects I 0 : E 0 i f and only

if each *i rejects Hoi : Q e. is uniformly most powerful among all non-

randomized tests which have monotone rejection regions.

Although Lehmann did not discuss nuisance para.eters, the results of

Theorem 3 will continue to hold if the assumptions hold for each fixed set

of values for 0K+l' o, 0V

Lehmann gives some techniques for verifying the monotonicity property

assumed about the joint distribution of Y ° Yk" It will hold, for

example, if the Y's are independent t-statistics and the i Is are normal means.

4. AN EXAMPLE

An example of specifications given in terms of many parameters may be

found in the textile industry. Table 1 lists specifications for upholstery

fabric from the American Society for Testing and Materials. The specifications

give standards for nine parameters related to strength, dimensional stability,

colorfastness and flammability.

The first four paraeters night be assumed to be normal means; mean breaking

strength, mean tear strength, etc. The first three standards say the mean must

be greater than some value. The dinensional change standard gives an upper and

lower bound for the mean. These four hypotheses right be tested using t-tests.

An upper bound on the variance of the dimensional change measurements will have

to be assumed in order to construct an a-level test based on a t-statistics because
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of the hypothesis' two sided form.

The last five parameters might be measured by binomial variables, each

variable counting the number of units in a sample which pass the corresponding

test. Each parameter would then be the proportion of units in the population

% particular manufacturer's output) which achieve one of the standards. The

usual binomial test could be used to test each of these five, one-sided hypotheses.

It would be very difficult to posit a realistic multivariate model for

these nine variables. Some are discrete and some are continuous. Some are

likely to be correlated. Yet it is relatively easy to construct an a-level test

for each parameter individually.

These tests can be combined into the overall T to test the hypothesis H 0 with

a consumer's risk of a. Thecrems 2 and 3 indicate that, in certain situations,

the resulting acceptance plan is fairly efficient in terms of both producer's

and consumer's risks.

5. CONCLUSIONS

Acceptance sampling procedures for individual parameters are well known. This

paper proposes a way of combining these procedures in the situation in which the

-.uality of a product is measured by st-.ndards on several parameters. Not only is

the method easy to implement but it controls the consumer's risk at exactly a pre-

assigned level in typical situations when the standards are one-sided (either upper

or lower bounds). Under slightly more restrictive conditions this method also

uniformly minimizes the producer's risk. This method can be used in hypothesis

testing problems other than acceptance sampling if the null hypothesis is a union

of sets.
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TAIL7 1

Standard Specification for Woven Upholstery Fabric
Plain, Tufted or Flocked

Test 'inimum Standard

Breaking Strength 50 pounds

Tongue Tear Strength 6 pounds

Surface Abrasion (heavy duty) 15,000 cycles

Dimensional Change 5% shrinkage, 2% gain

Colorfastness to:

Water class 4

Crocking

Dry class 4

Wet class 3

Light-40 AATCCF Fading Units class 4

Flaimnability Pass

Source: 1978 Annual Book of ASTI! Standards, American Society for Testing
and !!aterials, Philadelphia, Part 32, page 717.

E
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