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ABSTRACT

The dependence of ultrasonic attenuation on temperature, sonic

frequency, propagation direction,and superconducting state has been

measured in indium single crystals using low-amplitude longitudinal

waves. These measurements and the experimental apparatus with which

they have been obtained are described.

These data indicate that, in addition to the usual electronic

attenuation described quantitatively by the BCS theory of super-

conductivity (Bardeen et al., Phys. Rev. 108, 1175), there is an

additional source of attenuation. This secondary attenuation is

generally attributed to the interaction of sound waves and crystal

dislocations within the specimen, a process which has been described

most thoroughly by Granato and Lacke (J. Appl. Phys. 27, 583).

A comparison of the measured dislocation attenuations with those

predicted by the theory of Granato and Iucke is given. This theory

is shown to be inapplicable to the situation of this experiment, i.e.,

to indium at low temperatures. Earlier works in which similar data

appear to substantiate the Granato and Licke theory of dislocation

attenuation are shown to be insufficient tests of that theory.
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I. INTRODUCTION
(.

The serious study of ultrasonic attenuation in superconducting

materials was initiated by the independent discoveries by Bommel (1954)

and Mackinnon (1955) of a dramatic decrease in sound attenuation

which accompanied the transition of their specimens into the super-

conducting state. Bommel's original data on a single crystal of

C lead at 26.5 MHz is shown in Figure 1. This phenomenon was first

explained quantitatively by Bardeen,Cooper, and Schrieffer (1957)

(hereafter referred to as BCS) in their theory of superconductivity.

According to the BCS theory, there appears at the Fermi surface an

energy gap 2E(T) which increases in width as the temperature is

lowered below the superconducting transition point. Reevaluation

( of the theory of ultrasonic attenuation in metals (Pippard, 1955)

with considerations to this energy gap model has led BCS to the

following expression for the ratio of superconducting attenuation

to that in the normal state:

a (T)S 2
= _ _ __ _ _ _(1.1)

a (T) £ (T)/kT(n l+e

II
This predicted behavior was first verified experimentally by Morse

and Bohm (1957) and has since been shown by others to apply remarkably

well in many elements, compounds and alloys.

Most superconductors exhibit attenuation characteristics which

agree with the BCS prediction described above. However, in some



(-W

2

0.2B

Normal Conducting

0

superconducting

( 0.17

iS0 Reduced Temperature (T/T C

Figure 1. Attenuation of longitudinal waves in superconducting
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metals, primarily in high purity single crystals of lead and indium,

experiments have disclosed pronounced deviations from the predicted

behavior. The work of Love and Shaw (1964), for instance, reveals a

case in which the ultrasonic attenuation in the superconducting state is

dependent upon the sound amplitude, while in the normal state, it is

not. A subsequent study by Tittmann and B 6mel (1966) shows this

anomalous behavior to persist even at the lowest amplitudes and that,

in this region, the deviations from BCS theory become amplitude

independent. Similar data taken by Morse (1959), which shows the

nature of the deviation, is plotted in Figure 2. The source of these

irregularities has been identified as the interaction of crystal dis-

locations with the ultrasonic waves. A short review of the evidence

for this has been given by Tittmann (1975). Experimental indications

that dislocations play a dominant role in this process include the

dependence of the amplitude effect on specimen deformation, annealing

and purity.

A theory which anticipates the ultrasonic attenuation due to the

presence of dislocations has been developed by Granato and Liicke

( (1956). This work is based on the dislocation-string model of K~oehler

(1952) which considers a dislocation to have mechanical properties

equivalent to those of a taut string. In the low amplitude version

of the KGL theory, sound waves in the crystal are expected to drive

the dislocation-string into damped oscillations. The motion of the

dislocation lags that of the crystal matrix, resulting in a phase

difference between stress and strain. This, in turn, results in an
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behavior (after Morse, 1959).
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attenuation of the sound wave. This theory has found considerable

success in describing a variety of dislocation phenomena. The experi-

ments of Thompson and Holmes (1956), who measure the changes of attenua-

tion of pure single crystals of copper under fast neutron irridation,

confirm the validity of the theory at low frequencies and room

temperature. Merkulov and Yakovlev (1960) have measured the attenuation

as a function of frequency in room temperature NaCl deformed 1%,

and find good over-all agreement with the theory.

Another apparent verification of the KGL theory is to be found

( in the work of Mason (1966), who uses a form of the dislocation-string

model to explain the anomalous behavior observed in superconductors,

as described above. Mason has analyzed low-amplitude attenuation

data collected by several investigators and finds that,in each case,

the deviations of measured attenuations from those predicted by the

BCS relation can be attributed to oscillating dislocation-strings.

In the course of this analysis, Mason extracts from the data implied

values for certain crystal parameters, such as the density and

average length of dislocations within the specimen, which are difficult

to obtain by direct measurement. These results may be criticized for

the narrow scope of data used in the analysis; in only a single case

were attenuations in a particular specimen recorded using more than

one frequency of ultrasound and, in that instance,the frequencies

varied by a factor of only 1.6.

It is the purpose of this investigation to further study the

anomalous behavior of ultrasonic attenuation in superconductors. By

(C"
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recording single specimen data using as wide a range of ultrasonic fre-

quencies as possible, a most rigorous test of the relevance of the KGL

theory to this phenomenon was made. Subsequent to verification that

the dislocation-string model properly explained the observed devia-

tions from BCS-like behavior, it was the intent of this research,

following the example of Mason, to show the viability of employing

ultrasonic attenuation measurements for the nondestructive evaluation

of the dislocation character of a superconducting metal. Development

of an evaluation procedure has been frustrated by the realization that

the interaction of sound waves with dislocations in low temperature

indium is not properly described by the KGL theory of dislocation

damping. This thesis presents a review of the dislocation-string

model of Koehler and the ensuing dislocation attenuation theory of

Granato and Liicke. An experimental system by which this theory has

been tested is described. Finally, the experimental results which

indicate the inapplicability of the KGL theory to low temperature

indium will be discussed.
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II. THEORY

C inspac ofA. Justification for the Koehler Model

An ideal crystal is constructed by the infinite regular repetition

in pac ofidentical structural units. A real crystal differs from

this perfect scheme by the defects it contains. vacancies left by

missing atoms, crowding by extra atoms, impurities, and the surface of

the crystal itself are examples of the possible defects. The defect

of primary concern to this work is a misalignment of atoms within

the crystal. An example of this type of fault is illustrated in the

two-dimensional crystal of Figure 3. Here, the inconsistency of the

atomic pattern in the neighborhood of the point D is termed a dis-

location. At a sufficient distance from the dislocation, at A,for

example, the crystal is only slightly distorted and retains an un-

mistakable local correspondence to the ideal atomic lattice. Regions

of the crystal where such an atom-by-atom correspondence is unistak-

able are labeled regions of good crystal; otherwise, as in the

* i neighborhood of D, regions of bad crystal. The distance to which the

bad crystal surrounding a dislocation extends is determined by the

strength of the interatomic forces %w--.rking to maintain the pattern

of a perfect crystal. Hence, dislocations in a hard material are

highly localized, while in softer materials ,the region of bad crystal

may extend for tens of interatomic distances from the dislocation

center.

In a three-dimensional crystal, dislocations are linear defects.

This will become evident when a second atomic plane is added to that
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Figure 3. Atomic arrangement for an edge dislocation. D and
A indicate regions of bad and good crystal, respec-
tively.
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in Figure 3. If atoms in this plane are arranged so as to maintain

the crystal pattern near the perimeter of the illustration, then a

* misalignment of the atoms in the area above D is unavoidable. The

same holds for a third atomic plane, and so on. The dislocation must

therefore extend through the crystal along a line, though not neces-

sarily a straight one. A dislocation may terminate either at the

crystal surface, or within the crystal at a junction of dislocations.

The dislocation shown in Figure 3 is referred to as an edge disloca-

tion, since it can be viewed as occurring at the edge of a half-plane

of atoms which was inserted into a formerly perfect crystal. This is

shown more clearly in Figure 4c.

In Figure 4, a perfect crystal is compared to one containing an

4 (edge disloc~ation. The closed circuit ABCDA in Figure 4a (referred

to as a Burgers Circuit) is made up of atom-to-atom steps along lat-

tice vectors. In Figure 4b, the same sequence of atom-to-atom steps

forms the circuit A' B'C'D'E' which, as a consequence of the disloca-

* tion it encircles, is not closed. That vector which must be added

to the real crystal Burgers circuit in order to close it, i.e., the

vector E'A' is called the Burgers vector (b) of the dislocation. To

be included in the definition of the Burgers circuit is the require-

ment that it pass only through regions of good crystal. This being

( the case, it is obvious that the Burgers vector must be a crystal

lattice vector (it is generally equal to one of the basis vectors of

the crystal lattice), and that the Burgers vector is independent of
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the particular circuit chosen, being solely determined by the encircled

dislocation. Burgers (1939) has shown that a dislocation is uniquely

characterized by its Burgers vector.

( In Figure 4b, the Burgers vector is perpendicular to the disloca-

tion line (t?) which extends normal to the surface of the figure. This

is characteristic of edge dislocations. There can also be a situation,

shown in Figure 5, in which the Burgers vector is parallel to the

dislocation line. In this case, completion of the burgers circuit

ABCDE which would be closed in a perfect crystal, requires a displace-

ment along the direction of the dislocation line. Because of the

screw-like nature of this circuit, defects of this type are known as

screw dislocations. In general, the line of a dislocation may make

any angle with the dislocation%- Burgers vector. An arbitrary dis-

location can always be considered as the sum of a pure screw (Mb)

and a pure edge (tLb) dislocation. The curved dislocation in Figure 6

( serves to illustrate this. At A, the dislocation is screw-like. At B,

however, it is an edge dislocation. Note that it is the direction

of the dislocation line which changes; the Burgers vector is constant

along the entire length of the dislocation.

Dislocations are mobile defects, travelling through the volume

of a crystal by means of atomic rearrangements within the region of

bad crystal. It is possible to distinguish two types of motion. The

more difficult, climb, is illustrated in Figure 7. Here, the dis-

location has moved from point D to D' by the small displacements of

IL
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a few atoms and, mast significantly, by the addition of an atom to the

crystal lattice. The extra atom essential to this process must be

obtained either from interstitial atoms already present within the

crystal, or by the creation of an atomic vacancy elsewhere in the

crystal. The diffusion of atoms or vacancies through a crystal is

such a slow process that the requirement of mass transport severely

limits this type of motion.

The other manner in which a dislocation moves, glide, is shown

in Figure 8. This process, which involves only the small displacement

of a few atoms without the necessity of mass transport, is preferred

tc that of climb. The ease with which a dislocation glides is pri-

marily determined by the width of the dislocation. By dislocation

width is meant that length in the direction of glide over which the

atoms are out of register by some prescribed amount. Figure 9 com-

pares the motion of a wide and a narrow edge dislocation undergoing

equal translations. In the case of the wider dislocation, more

atoms are involved in the process. Consequently,the displacement

required of each atom, and thus the resistance to glide, is less than

for a narrow dislocation. Nabarrow (1947) has shown that the dis-

location mobility increases by several orders of magnitude and the

width of the dislocation is doubled. A dislocation's width is deter-

mined by the strength of the atomic bonds acting between those

planes of atoms along which the dislocation glides. The stronger

these bonds act to maintain the regular crystal pattern, the more

narrow will be the dislocation. Since the forces binding the closely

II
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Figure 8. Atomic displacements corresponding to dislocation
glide. Open circles represent atom positions after
the motion from D to D'.

Odo



17

((

(

0 0 0 0 0 00 00 0

* 0 0 0) aQ 0 0 0

* * * W soo * go 0 *

0 0 00 0 0 0 0

(B)

D toD D'

(B)

i Figure 9. Comparison of atomic displacements corresponding to the
glide of a narrow (A) and a wide (B) dislocation. Open

'! circles represent atom positions after the motion from
I D to DD.

I

I



18

packed planes of a crystal are significantly less than those between

other crystal planes, a dislocation gliding along these planes will

be wider and hence more mobile than other dislocations in the crystal.

As Figures 7 and 8 illustrate, an edge dislocation climbs in a

direction parallel to the additional half-plane of atoms, and glides

in a direction perpendicular to this plane. The motion of an edge

dislocation in some arbitrary direction may be viewed as the sum of

a climbing and a gliding motion. Screw dislocations, by virtue of

their axial symmetry, do not climb, but move in any direction by

glide alone. As was the case with edges, a screw dislocation will

be widest, and thus most mobile, along the closely packed planes of

the crystal. So dominant is the motion in these planes that both

* (climb and glide along other planes can be disregarded. Those planes

along which this predominant glide takes place are referred to as

the glide planes of the crystal.

Dislocations will move when an external stress is applied to the

crystal. Figure 10 illustrates the manner in which a gliding disloca-

tion allows the crystal to yield to an applied stress(0). As the dis-

location moves through the body, the material above the glide plane

is displaced with respect to that below by an amount equal to the

Burgers vector (b). Consider,as in Figure 11, a sheared crystal in

which a length (k) of dislocation moves a small distance (x). That

part of the crystal which is displaced during this process has a

surface area kx on which the shearing force is Ox. The work done on

I
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this surface during its displacement (which is also the work done on

the crystal itself) is equal to Oxb. This dependence of the work on

the dislocations position indicates that there is a force on the dis-

location equal to ab per unit length. In general, the force on a

dislocation with Burgers vector b is given by:

4.
F = V x (b.a) (2.1)

(Peach and Koehler, 1950),where V is a unit vector tangent to the dis-

location,and a (a tensor) is the stress applied to the crystal. This

force,F above, is to be viewed as acting upon the dislocation line itself,

considered as a distinct physical entity. The response of the dislocation

to this force is determined by the inertia of the surrounding atoms whose

actual displacements constitute the dislocation motion. It is rea-

sonable,then, to attribute to the dislocation itself an inertia of

approximately the same magnitude as that of a row of atoms, i.e.,

pa per unit length, where p is the mass density of the crystal,and

a is the interatomic distance. Various authors derive slightly

different expressions for the effective mass of a dislocation (see,

for example, Brailsford, 1966). For the purpose of this work, the

effective mass per unit length is taken to be that used by Granato

and Lucke (1956) which is 7pb2.

It is convenient, at this point, to indicate the crystal strain

that results from the motion of a dislocation. Consider the situa-

tion of Figure 11. As the dislocation moves, sweeping out an area A

in the glide plane, an equivalent area on the crystal' surface under-

goes a displacement b. The average displacement of the crystal's
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surface is then bA/wd. The crystal strain, which is pure shear, is

given by bA/wdh, equal to bA/V,where V is the crystal volume. This

result will be of use later in the chapter.

The internal energy of a crystal which contains either a disloca-

tion or an impurity atom is greater than that of an equivalent perfect

crystal. The difference in energies, equal to the work that must be

done to distort a perfect crystal' regular atomic scheme into the

configuration of a real, defect bearing crystal, is termed the misfit

energy. The crystal system, acting in such a way as to minimize this

misfit energy, endows the dislocation with properties relevant to

this study. The first is the propensity of a dislocation to main-

tain a straight-line configuration. By minimizing the dislocation

length, the volume of bad crystal, and hence,the misfit energy, is

minimized. It is thus both convenient and valid to view the dislocation

as having a line tension which, when the dislocation is curved, pro-

duces a side-wise restoring force. Several authors (see Read and

Brailsford, 1974) have calculated this line tension and find that

it is approximately 1 Gb2 ,where G is the shear modulus of the crystal.

Secondly, dislocations will be pinned at the sites of impurity atoms

(Cottrell,1948). For a crystal which contains both an impurity atom

and a dislocation, the misfit energy is reduced if the two defects

are made to coincide. Since work must be done on the impurity-disloca-

tion defect to separate the two, there is a force which binds them

together. If any external force is applied to the dislocation, it

is possible for the dislocation to move while dragging the impurity
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atom with it. However, this is a slow process and does not need to be

considered in this study. An external force which is larger than the

- pinning force will cause the dislocation to break away from the

impurity atom. This situation can be avoided experimentally by

limiting the magnitude of the stress applied to the crystal.

There remains to be considered one other force which acts upon

a dislocation. This is a drag resulting either from the inter-

action of a moving dislocation with electrons and phonons, or from

the radiation of energy by an accelerating dislocation. Electrons

C or phonons which impinge on a dislocation are scattered by the in-

homogeneous strain field and density near the dislocation center,

thereby exerting a force on the dislocation. If the distribution

of particle velocities is isotropic, then the net force on a stationary

dislocation will be zero. When the dislocation is moving, however,

more particles are encountered on its leading side than on the

( trailing side, and so it experiences a net force opposing the motion.

* In addition to this, if the dislocation is undergoing an acceleration,

it will radiate energy in the form of elastic waves. For the dis-

4 location to lose energy in this manner is equivalent to its working

j against an additional damping force. In each of these cases, the

drag force is found to depend linearly on the velocity of the disloca-

tion. The damping force on an oscillating dislocation may therefore

be expressed as:

F =-(B p+ B e+ B)v ,(2.2)
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where B p, Be, and B are, respectively, the phonon, electron,and radia-
p e r

tion drag coefficients, and v is the velocity of the dislocation.

Various expressions for the drag coefficients are derived in the litera-

ture. Leibfried (1950) has calculated the phonon contribution and finds

that the drag coefficient varies as T5 below the Debye temperature. By

all accounts, at liquid helium temperatures, the phonon drag is neglig-

ible. Brailsford (1969) has determined that the electronic drag coef-

ficient is temperature independent, but is proportional to the free

electron density in the crystal. Specifically, B varies as thee

number of conduction electrons which are not bound in Cooper-pairs.

In the non-superconducting state, Be is constant. For a metal which

is in the superconducting state, however, B will vary with tempera-e

ture as does the density of quasiparticles according to an expression

derived in the BCS theory of superconductivity. The final drag term,

that due to radiation losses, has been studied by Garber and Granato

(1970) for the case of an oscillating dislocation. They find that the

radiation drag coefficient is simply given by Aw/8, where w is the

angular frequency of the oscillation, and A is the effective mass

( per unit length of dislocation. The damping force on a dislocation

may therefore be expressed as:
II

F = -B(w,T)v (2.3)

and

B(w,T) = B0 8(T) + Aw/8 , (2.4)

where B0 is a constant, and $(T) is the temperature dependent BCS quasi-
p

particle density.
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The justification for the Koehler model is now evident. Disloca-

tions exhibit properties of mass, tension, viscous drag,and endpoint

pinning that are identical to those of a taut string. A study of

the dynamics of an oscillating dislocation may therefore follow the

example set by classical studies of an oscillating string.

B. Dislocation Damping Theory of Granato and LIucke

Granato and Lucke's (1956) calculation of the ultrasonic attenua-

tion caused by crystal dislocations is based on Koehler's (1952) sug-

gestion that the motion of a segment of dislocation is equivalent to

that of a taut string. Since these two systems exhibit identical

properties of mass, tension, viscous drag, and endpoint pinning, it

is expected that a dislocation will obey the equation of motion for

a string given by Rayleigh (1894). For an element of unit length,

this equation is:

a 2  a a2

A- + B C F (2.5)
at

2  2

In this expression, A is the effective mass, B is the damping coef-

ficient, and C is the effective line tension. F is the driving force

on the dislocation. is the displacement of the dislocation from

its equilibrium position. The coordinate system is chosen such that

the undisplaced dislocation lies parallel to the y-axis and the

dislocation glide is in the x-y plane (see Figure 12). The force

which drives the dislocation is determined from the stress being

applied to the crystal using Equation (2.1). The only component

L. ..... . .m. ..... .... ...... ..
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Figure 12. Displacement of a bowed dislocation.
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of the applied stress which will be effective in causing dislocation

motion is a shear normal to the dislocation and in the glide plane of

the crystal, i.e., along the x-axis in Figure 12. Other stress com-

ponents have negligible effect on the dislocation and need not be

considered. Of all the possible stresses which may be used, the one

of interest corresponds to a longitudinal sound wave. In this case,

0 = G0 e ei(wt27TX) (2.6)

Here, 00 is the effective stress amplitude. w and A are, respectively,

the sound wave frequency and wavelength. a, the attenuation coefficient,

describes the rate at which the stress is diminished as it passes

through the dislocation bearing crystal. The driving force on the

dislocation is given by:

F=bO (2.7)

In general, the dislocation displacement will be a function of three

space coordinates and time. In the problem just described, however,

there is no z-coordinate dependence and we write E =(x,y,t). Com-

bining Equations (2.5), (2.6), and (2.7) gives the dislocation equation

of motion as:

a2  
_ a2 (wt-27tx/X)

A E (x,y,t)+B T E(x,y,t)-C - C(x,y,t) b 0 e -  e
at

2  ay
2

(2.8)
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The displacement is subject to the boundary conditions

(x,o,t) = (x,9,t) = 0 (2.9)

imposed by the endpoint pinning. In Appendix A,it is shown that a

solution to this equation is:

ba i (wt-2Trx/X-6)

e 1 4b n-x 1 sin (2n+l) Try e

(2n+l) 
1 /

(2.10)

( where 6 =arctan { A2~V~~~2
and W [C0 A

is the resonant frequency of the dislocation loop.

The contribution of dislocations to the ultrasonic attenuation is

determined in the following manner. Consider an element of crystal

which contains a dislocation and is subjected to an external stress.

The equation of motion for this system is:

a(2
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where c is the crystal strain. This strain is made up of two kinds,

the elastic strain and an additional strain due to the motion of

dislocations, i.e.,

C (e + 5dis  (2.12)

The elastic strain is:

5eZ = G/G (2.13)

where G is the shear modulus of the crystal. In a unit volume of

crystal, the dislocation strain is given by:

E dis = b j(x,y,t) dy , (2.14)
)0

where, using the notation of Figure 12, this integral is the area

swept out by the moving dislocation. Substitution of Equations (2.12),

(2.13), and (2.14) into Equation (2.11) allows that equation of motion

to be written as:

K2 G- t = pTb j(xty~t) dy (2.15)

This equation is solved simultaneously with those for the applied stress

-[Equation (2.6)] and the dislocation displacement [Equation (2.10)] in

order to obtain an expression for the attenuation coefficient, a. The

result, derived in Appendix A, is:
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1= (2.16)

V 4n=O (2n+1)2  2 - Q 2(2n+i) 2- + D2

where D = -- 0 Q and w 0  C

( In the literature, it is customary to discuss the acoustic

characteristics of dislocations in terns of decrement (A) rather than

attenuation (0). The decrement is defined as the ratio of the energy

lost per cycle to twice the total vibrational energy stored in the

specimen. It is simply related to the attenuation by the equation

27Tv

where a is measured in nepers per cm. Following this convention,

Equation (2.16) is rewritten as:

16 1 D2

n=O (2n+l) 2 (2 (
(2n+i) +D2

Most authors have followed the example of Granato and Lucke, and

assume that the first term in Equation (2.17) is an adequate approxima-

tion to the full series. The expression thus obtained is:

16 £3 DS
Aapprox _ (2.18)

apro

ClJ
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This approximation is justified by pointing out that if the ultrasonic

frequency is on the order of the constant w or less, and the damping

constant B is not too small, then higher order terms in the series go

-6
down as (2n+l) . For frequencies higher than wI, however, the

approximation may be a poor one, as a comparison of Figures 13 and

14 shows. Granato and Licke further assume that the constant W will

be of sufficient magnitude that 2«< for all frequencies of interest.

If this is the case, then Equation (2.18) reduces to

16 Z' DQ (2.19)
approx T3 1+D 22

which, since it depends only on the product of D and Q and not on their

individual values, is a considerable simplification of the exact expres-

sion. Results similar to this have been obtained by other workers.

mason (1966), after presuming the bowed dislocation to have a para-

bolic shape and that (2<<l, determines the dislocation decrement to

be:

A (2.20)
Mason 72

1 + -jT D2Q2

Oen et al. (1960) consider the case of damping-limited dislocation

motion (i.e., an inertia-free model) and obtain as an expression for

the decrement

A T3 sinh 4+sin (.1
-Oen 

3 [ cosh + cos t1
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(W.) "2
where

These three approximate solutions (Equations (2.19) through (2.211 do not

differ significantly in their characters.

Since the validity of Granato and I~acke's approximations is not

proven, the following calculations employ the exact expression (2.17)

for the decrement. For the purpose of later discussions, however,

the results obtained when the approximate expression (2.19) is used

( will also be presented.

Equation (2.17) gives the decrement for a single dislocation loop

of length Z.. Any real crystal will contain a large number of dis-

* locations having a wide variety of loop lengths. [A cubic centimeter

of pure single crystal can be expected to contain on the order of

101 dislocation loops whose average length is 10- cm (Mason, 1958).]

( The decrement that results from an assembly of dislocations is

A A= NM9. d2. (2.22)

wher N(X-dZis the number of dislocations with lengths between k and

Z. + dt. The distribution of loop lengths is determined by the

arrangement of pinning points (i.e., impurity atoms) along the dis-

location line. It is generally expected that this pinning point arrange-

ment will be a purely random one, in which case, the distribution
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function for loop lengths will be given by (Koehler, 1952):

N(9) A - , (2.23)

where A is the total length of dislocation line per unit volume, and

L is the average loop length. In Appendix B, it is shown that the

net decrement that results from this distribution of loop lengths is

( given by either

Io x' DQ dx
A = A0  (2.24)

sinh (x) [(l- 2x 2 )2+D202x4 1]

or by

Sx5 e x D dxA 2A, (2.25)
o 1 + D2n2X4

where

D = (B/A) Q
"00 LO0

(2.26)

W 0  M '/2 and A0 -= 2

L A IT3

depending on whether the exact or the approximated expression [i.e.,

Equation (2.17) or (2.19)] for the single loop decrement is used for At.

In the final expressions for the decrement, the variable parameters are

Q, which is proportional to the ultrasonic frequency, and D, which

varies with both frequency and temperature through the drag coef-

ficient B. It is convenient at this time to indicate specifically
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the frequency and temperature dependence of the parameter D. If the

expression for B [Equation 2.4)] is substituted into the definition of

D [Equation C.26)] then one obtains:

1

D D Do a (T) + -1 (2.27)

where D, is a constant.

( Equation (2.24) is the final expression of the KGL theory. It

specifies the manner in which the decrement is expected to vary with

changes in ultrasonic frequency and dislocation drag. The integral

in this equation, as well as the one in Equation (2.25), must be

solved numerically. When this is done, the curves shown in Figures

15 and 16 are obtained.

,!
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III. EXPERIMENTAL EQUIPMENT AND PROCEDURES

A. Specimens

The specimens of indium employed in this study were taken from an

ingot of MARZ grade indium (99.999% pure) purchased from the Materials

Research Corporation. This ingot was approximately 1.3 cm in dia-

meter, 10 cm in length, and was a single crystal of random orientation.

The orientation of the crystal was determined by photographing x-ray

diffraction patterns in the Laue-back-reflection method (Wood, 1963).

The crystal was rotated on a two-circle goniometer until the photo-

graphed pattern was recognized to be that of a high symmetry crystal

axis. The direction thus defined by the x-ray beam was identified

as a particular crystal vector by comparison of the observed Laue

pattern with those in the Laue Atlas (Preuss et al., John Wiley,

1974). By carefully symmetrizing the observed laue pattern through

slight rotations of the crystal, the principle axes of the crystal

were determined within one degree of arc. Two specimens were cut

from this inot, such that each specimen had flat, parallel surfaces

perpendicular to a specific crystal vector. The two crystal vectors

chosen for this study were along the [100] and [110] directions.I'
These are the directions in the body-centered tetragonal (b.c.t.)

system. A b.c.t. crystal may also be viewed as a face-centered

tetragonal (f.c.t.) system (Cisney, 1959),in which case the direction

indices are different.)
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insure against damaging the crystal structure of a specimen during

its preparation. The indium crystaliwas cut, and the specimen sur-

faces were planed on a Materials Research, Ltd., Servomet SMD,

spark cutting machine. The details of this procedu're are given by

Dinnie (1971). The Servomet SMD cuts and planes metal by means of

an electric spark jumping between the work and a servo-controlled

tool. During this operation, the work and tool are submerged in

a kerosene bath which serves to cool the work and also provides

a dielectric medium for the sparking. Surface damage to the speci-

men was minimized by using the lowest power spark available.

Following the planing of the specimens, this surface damage,

estimated to be 10 uim deep, was reduced by etching the specimens

for 30 seconds in a 50% solution of nitric acid. The shape of the

finished specimen was that of a 1.2 cm diameter cylinder with a

( length of approximately 1 cm. (The actual lengths of the specimens

were 1.14 cm and 0.817 cm for the (100] and (110] crystals, respec-

tively.) This length was used in order that the specimen exhibit a

measurable net attenuation at the lowest ultrasonic frequency

employed (2 MHz). Since the attenuation in a crystal varies as the

frequency, there is an upper limit, dependent upon the specimens

length, on the frequency of ultrasound that can be transmitted

through a particular specimen. Had the experimental results war-

ranted it, these specimens would have been shortened to allow the
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collection of further data at frequencies higher than those eventually

employed.

Two identical Valpey Fisher Corporation x-cut, 2 MHz, quartz

( transducers were bonded to the parallel surfaces of each specimen.

These transducers produce purely longitudinal sound waves at the

fundamental frequency and its odd harmonics. A small drop of Dow

( Corning 200 fluid, 600 stokes viscosity, was placed on the specimen

surface. A transducer was then placed on top of this drop and

gently pressed against the specimen to leave a thin, uniform

film of fluid between the transducer and specimen surface. This

pressure was maintained for several hours, and resulted in a very

thin fluid film which, at room temperature, produced an "atmospheric

pressure" bond that held the transducer in position during handling

of the specimen. As the specimen was cooled to liquid nitrogen

temperature, the fluid film solidified and the transducer was thus

* i rigidly bonded to the specimen. Bonds made in this way could be

* cycled between liquid helium temperature and room temperature

without deter~.oration.

B. Specimen Holder

The specimen holder illustrated in Figures 17 and 18 was used

to suspend the specimen in a bath of liquid helium. The liquid

4 - helium cryostat was connected to a vacuum pumping system by which

the temperature of the helium bath was lowered to approximately

1 Kelvin. The holder consists of a copper block which encloses
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Figure 17. Schematic representation of the specimen holder.
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the specimen, and is itself enclosed by two coaxial cans. This

assembly is hung by a pair of thin-wall stainless steel tubes from

a flange which caps the helium cryostat. The twa-can design allows

a controlled variation of the specimen block temperature to any

temperature above that of the helium bath. Elimination of the need to

vary the bath temperature (through changes in the helium vapor pres-

sure) in order to vary the specimen temperature has been a significant

improvement to the procedure of this experiment. Copper radiation

shields placed along the supporting tubes reduce the heat transfer

to the helium bath. All electrical connections, with the exception

of four rigid coaxial conductors to be described later, pass through

the helium bath, thus eliminating heat transfer to the lower assembly.

At the top flange, these wires exit the cryostat by an epoxy feed-

through. The epoxy used was Stycast epoxy #2850 with #9 catalyst.

An 0-ring sealed fitting at the top flange provided access for a

liquid helium transfer tube. Two carbon resistors (approximately

170 Q2 at ambient temperature) placed along the supporting tubes act

as liquid helium level indicators. An external electromagnet is

used to generate a magnetic field at the specimen location when

required. The lower assembly of the specimen holder is constructed

entirely of non-magnetic materials in order to eliminate distortion

in this field and to prevent any trapped flux from sustaining a non-zero

residual field when the electromagnet is removed.

The outer can (made of brass) serves as a counter-dewar, thermally

insulating the inner can and specimen block from the liquid helium
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bath. This can and its conical plug have a precisely machined four

degree taper joint which is sealed by an intersticial film of Dow

Corning 200 Fluid, 600 stokes viscosity. The procedure for sealing

the can is as follows. A thick layer of Dow Corning 200 Fluid is

applied to both the tapered surfaces. The can is closed and then

evacuated by means of the tubing which extends through the top

flange to a vacuum pump connection. As the atmospheric pressure

closes the joint, excess fluid is squeezed out and removed. The

can is then cooled to liquid nitrogen temperature. At that point,

the fluid has solidified to form an excellent vacuum seal. Electri-

cal connections to the specimen block enter the outer can at a

Stycast epoxy feed-through in the top of the can.

The inner can is designed to maintain a thermally homogeneous

environment for the specimen block. This can is a copper tube

with a syntane bottom and brass top. In order to minimize the

mechanical (and hence, that part of the thermal) contact between the

inner and outer cans, the direct contact has been limited to the

electrical connections going to the specimen block. These include

four rigid stainless steel coaxial conductors. The top of the

inner can is supported by these four rigid conductors, and hangs

approximately 1 cm below the top of the outer can. The inner can

screws onto its top, thus allowing it to be removed whenever the

specimen block must be handled. Other electrical connections to the

specimen block pass through the top of the can at a small hole which

also serves as a gas escape when the outer can is evacuated. The

'4 .. III I III I - -
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thermal contact between the inner can and the specimen block is

maximized by machining these pieces so that one fits quite tightly

over the other. A coating of Dow Corning Silicone Grease between

the contacting surfaces optimizes the thermal contact. A bifilar

nichrome wire with 250 9 net resistance was wound about the entire

length of the inner can. This heating element was epoxied in place,

and afterward the wall of the can was covered by several alternating

layers of epoxy and paper tissue. In this way, the heater is made

to have good thermal contact with the can, while the contact between

the can and the gas surrounding it is reduced. The epoxy used was

Hysol epoxy resin R9-2039 with H2-3561 hardener.

The temperature of the specimen block is determined by the

balance of joule heating in the current carrying nichrome filament

and of cooling by a partial pressure of helium exchange gas main-

tained in the outer can. The details of the temperature control

( will be given later.

The specimen block is a copper cylinder into which a cylindrical

cavity has been machined. The specimen is confined in this cavity

by a spring-loaded copper piston which has a diameter equal to that

of the cavity. The dimensions of the cavity allow specimens up to

2 cm in length and 1.5 cm in diameter to be employed. Copper "buttons"

in the parallel cavity and piston faces contact the transducers bonded

to the specimen surfaces. The buttons are electrically insulated

from the block by a layer of Stycast epoxy. Each button is connected

to a pair of rigid, 3.2 mm diameter, 50 Q impedance coaxial conductors
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* made of stainless steel and teflon. The cavity button is soldered

* directly to the rigid conductor while the piston is made moveable by

an intervening connection of flexible copper coaxial conductor. Micro-

cracks in the outer cylinder of the rigid conductors are pervious to

superfluid helium which can also diffuse along the teflon insulation.

In order to maintain a vacuum in the outer can at temperatures below

the superfluid transition temperature, the rigid conductors pass

through the vacuum lines connecting the outer can to the top flange,

thus avoiding contact with the liquid helium bath. At the top

flange, the rigid conductors exit the vacuum space through a flex-

ible seal of General Electric Clear Silicone Auto Seal, and are

attached directly to General Radio Type 874 coaxial connectors.

During operation of the experiment, one of these is connected to a

stub-tunner which allows impedance matching between the high impedance

transducer and the 50 Q coaxial cable.

A copper washer with outside diameter equal to that of

the cavity and inside diameter greater than that of the transducer

is attached to one surface of the specimen by a coat of silver

conductive paint. This washer serves a four-fold purpose. It

insures the placement of the transducers directly opposite the

buttons, electrically grounds the specimen to the block, improves

the thermal contact between specimen and block, and finally, acts

to shield against the in-cavity radiation of radio-frequency signals

from the input to the output buttons.
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The temperature of the specimen was measured with a germanium

resistance thermometer embedded in the specimen block. Since most of

the heat transfer between the sensing element of the thermometer and

the environment takes place through the thermometers electrical

connections, the last 35 cm of these wires before the thermometer

were either Stycast epoxied to the specimen block, or were contained

within the block itself.

C. Temperature Measurement and Control

The germanium resistance thermometer (Cryocal, Inc., Model CR500,

* Seri.al No. 1150) used to measure the temperature of the specimen

block has been calibrated by Binnie (1971) to within 0.01 Kelvin.

This thermometer is a four-probe device in which the resistance of

the sensing element (a germanium single crystal) varies from approxi-

mately 10 M~ to 50Q~ as its temperature changes from 1 K to 4.2 K.

The temperature is determined by measuring the voltage drop associated

( with a constant current of 1.1908 pa through the element. This vol-

tage is precisely amplified (10 x gain) by a Hewlett-Packard 740 B

Differential Amplifier/Standard Voltmeter and is measured simul-

taneously on the x-axis of an x-y chart recorder and on a Kiethly

5-digit microvolt meter with digital output. The temperature cor-

responding to this voltage can be obtained by the interpolation of

a temperature vs. voltage table calculated from the thromtr

temperature vs. resistance calibration for the case of a 1.1908 pja

current through the element.
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During operation of the experiment, the specimen block/inner can

assembly is cooled by approximately 300 m Torr of exchange gas in the

outer can. This is the gas pressure measured by a gauge at the pump-

ing port above the top flange, when the helium bath temperature is

approximately 1 K, and there is no current in the heater. It has

been found that significantly less gas than this results in tempera-

ture instability, while more gas provides an excessive and wasteful

transfer of heat to the helium bath. The specimen block is heated by

a direct current of between 0 and 30 ma through the nichrome heater.

This is sufficient to vary the temperature of the specimen from a

low of approximately 1.2 K to above 3.4 K, the superconducting transi-

tion temperature of indium. A current ramp is used to increase (or

decrease) the heater current at a prescribed rate. This rate, chosen

to be slow enough that the data measuring systems are quasi-static

and yet not so slow that inefficient use was made of the helium bath

liquid, was such that approximately 20 minutes were required to sweep

the temperature between 1.2 and 3.4 K.

D. Ultrasonic Apparatus

U Of the two identical transducers bonded to the specimen, one is

used to generate, and the other to detect, ultrasound. The apparatusIused to generate, detect,and measure this ultrasound is diagrammed
in Figure 19. A master timing circuit controls the operation of several

components for which synchronization is necessary. The generating

transducer is driven by a pulsed radio-frequency (rf) oscillator

operating at an odd multiple of the transduceA natural frequency
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(2 MHz). These rf pulses have a width of 1-2 ps and a 500 Hz

repetition rate. Ultrasonic waves impinging on the detecting trans-

ducer produce small rf pulses which have amplitudes directly

proportional to that of the ultrasound. These signals are processed

by a wide-band rf amplifier followed by a video detector/amplifier.

The rf amplifier is built of six cascaded Optimax Inc. modular ampli-

fiers. These are three AH-401, followed by two AH-402, followed

finally by a single AH-403. The input to this amplifier is protected

from large signals (as might arise from leakage of the driving pulse)

by a Micro-Dynamics MD-30L2 Coaxial Diode Limiter. The video detector/

amplifier consists of a standard video detection circuit followed by

a Burr-Brown 3554 wide-band operational amplifier. The rf trans-

mission lines adjacent to the specimen holder include line-stretching

segments that are tuned to optimize the signal reaching, or produced

by, the transducers.

If the width of the driving pulse is less than twice the transit

time for sound waves in the specimen, the detected sound waves will

appear as exponentially decreasing "echos" of the initial pulse,

which persists in the specimen through reflection at the specimens

plane parallel surfaces. A typical video amplifier output for such

a case is shown in Figure 20. The magnitude of the nth of these echo

voltages indicates the sound wave amplitude after 2n-1 transits

through the specimen. The magnitude of a particular echo is measured

by a sample-and-hold circuit (Computer Labs, THC-0300 Track and Hold).
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Figure 20. Ultrasonic pulse echo pattern.
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This high speed circuit has a 100 ns wide gate which is set to coin-

cide, in time, with the peak of the echo to be measured. The sampling

rate, however, is twice the repetition rate of the pulsed oscillator

so that the sample-and-hold circuit alternately measures the echo

magnitude plus the video detected background noise and the level of

the video detected background noise alone. The output of this circuit

is therefore a square wave for which the peak-to-peak amplitude

equals the magnitude of the echo peak voltage,and the frequency equals

the repetition rate of the pulsed oscillator. This signal is input to

a lock-in amplifier which measures the echo peak voltage, averaged

over many cycles. (Typically, a 1.25-second time constant allows

the averaging of 600 echo amplitudes). This averaged peak voltage,

obtained from the lock-in output, is measured simultaneously on the

y-axis of an x-y chart recorder and by a Digitec 4-digit millivoltmeter

with digital output.

Changes in the ultrasonic attenuation of the specimen are observed

*as variations in the peak voltage of an echo. A correlation between

* I the attenuation and the echo height is obtained by a pulse comparator

( calibration of the amplifier system. In this process, a pulsed signal

from an auxiliary pulsed oscillator is substituted for the signal

normally received from the detecting transducer. This substituted

pulse is made equal to the original pulse in frequency, width and

time delay, and is given an amplitude which is slightly greater than

the maximum amplitude observed in the original pulse. The substituted

pulse is then decreased in steps of known amount (approximately 1
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decibel each) by a precision step attenuator (Weinschel Engineering,

Model AD94-59-2, calibrated by the manufacturer to ±0.05 dB) while

corresponding values of the lock-in output are recorded. The sub-

stituted pulse is reduced until its amplitude is less than the

minimum observed in the original pulse. A calibration of the rela-

tive attenuation vs. lock-in output is thus obtained. Absolute

values of the attenuation, which cannot be measured in this way, are

obtained by a process to be described later.

E. Recording of the Data

The principal data of this experiment, the ultrasonic attenuation

as a function of temperature, is collected in the form of the ultra-

sonic echo peak voltage and the corresponding thermometer voltage.

Two independent devices were used to record these data. The first

is a punch system which simultaneously samples the digital outputs

of the Digitec and Kiethly meters and records these values on a punched

paper tape. In this form,the data are readily subjected to analysis

by digital computer. The sampling rate was chosen to be approximately

20 per minute, as this was found to produce sufficient data points

without overburdening the punch system. The data was also plotted

on an x-y chart recorder. These charts serve as a permanent visual

record of the collected data.

F. Procedure of the Experiment

During the entire experiment, the liquid helium bath is maintained

at the lowest possible temperature, approximately 1 K. When collecting
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a set of data, the initial situation has the specimen heated to a

temperature of approximately 3.8 K (i.e., above the 3.4 K transition

temperature of indium) and no applied magnetic field. The temperature

is slowly decreased to approximately 1.2 K while the echo voltage and

thermometer voltage are simultaneously recorded. The relative attenua-

tion change is then calibrated by the pulse substitution method des-

cribed earlier. After calibration, the original signal is reconnected

and a magnetic field of approximately 400 Gauss is applied to the speci-

men causing it to be in the non-superconducting state, regardless of

temperature. Data is collected again as the temperature is raised to

3.8 K. This complete temperature cycle and the associated measure-

ments are referred to as a single data set, and approximately one hour

is required for their collection. Each data set is duplicated one

or more timps, under identical conditions, as a test of the repeat-

ability of the experiment.

Depending on the frequency and amplitude of the ultrasonic driving

pulse, up to a dozen sonic echos may be seen in the normal state speci-

men. The attenuation data is recorded using one of the later echos

available, thereby maximizing the total length of material through

which the sound wave has passed. In this way, though the attenuation

per unit length may have become small, the measured attenuation remains

large. This serves to minimize the relative error in the attenuation

In order to avoid the possibility of amplitude-dependent effects

influencing the data, measurements are made using as small a driving
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pulse amplitude as practical. The absence of an amplitude dependence

is guaranteed through the collection of equivalent data sets using

various ultrasonic echos and (small) driving amplitudes, with the

subsequent observation of no variation in the specimens attenuation

per unit length.

During this experiment, secondary data were collected in order

( to determine the absolute attenuation at the lowest temperature

obtained. In this case, the specimen is maintained at the minimum

temperature while the sample-and-hold circuits gate delay is slowly

increased from zero to some practical upper value. In this way, the

gate sweeps through the "echo pattern" and the detection circuitry

measures the signal shape as a function of time. The lock-in output

is plotted on the y-axis of a time swept x-y recorder, producing a

chart like the one shown in Figure 20. This data was not digitally

recorded. After the pattern has been plotted, the system is again

calibrated as described above. By thus measuring the ultrasonic

attenuation after successive sound circuits through the specimen, an

_bsolute value for the attenuation is obtained. This value serves

as a reference point by which the measured relative attenuations can

be gauged. Unfortunately, this procedure is inherently less accurate

than that used to collect the primary data, so that while relative

attenuation measurements are quite reliable, absolute measurements

are not. This will be discussed further.
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IV. DATA ANALYSIS AND EXPERIMENTAL RESULTS

A. Data Reduction

A single set of the principle experimental data consists of two

(tables of ultrasonic echo peak voltage vs. thermometer voltage (one

for the superconducting state and one for the normal state of the

specimen) and a calibration table of relative attenuation vs. echo

peak voltage. The echo and thermometer voltages were simultaneously

measured at specimen temperatures which were arbitrarily distributed

between 1.2 and 3.8 K. Analysis of this ta requires that it be in

the form of pairs of attenuation values for normal and superconducting

states of the specimen, corresponding to known values of temperature

between 1.2 and 3.4 K. Reduction of the data to this form is

accomplished by digital computer (IBM 370) using numerical inter-

polation subroutine programs from the International Mathematical

and Statistical Library of Subprograms, and employs a table of thermo-

meter voltage vs. temperature obtained by numerical interpolation of

the thermometer's resistance vs. temperature calibration. This table

specifies the thermometer voltage corresponding to temperatures

between 1.0 and 3.5 K in increments of 0.01 K.

The data reduction is a two-step process. First, the recorded

tables of echo voltage vs. thermometer voltage are interpolated to

obtain specifically the echo signals which would correspond to the

specified thermometer voltages; i.e., to particular values of speci-

men temperature. Then, the calibration table of relative attenua-

tion vs. echo voltage is interpolated to obtain the attenuations



58

corresponding to these specific echo signals. When these attenuations

are divided by the total distance transversed by the ultrasound

[(2n-l)Z,where n is the echo number,and k is the specimen length],

the result is a table of superconducting state and normal state

attenuations per unit length vs. specimen temperature. Considering

the precision of the IMSL interpolation subprograms and the great

care given to accurate measurements of the echo and thermometer volt-

ages, the principle source of error in the final values of attenua-

tion and temperature is seen to be the calibrations of the precision

step attenuator and the germanium resistance thermometer. The uncer-

tainties which are thus associated with the reduced data are ±0.01 K

and ±J.05 dB for temperature and net attenuation, respectively.

An experimental value of interest, the difference of attenuations

in the normal and superconducting specimen at the lowest temperature

of measurement (1.2 K), is plotted in Figure 21 as a function of

ultrasonic frequency. In the absence of a quasiparticle density

dependent dislocation attenuation, these attenuation values would be

a measure of the total normal state electronic attenuations at 1.2 K

as a function of frequency.

B. Data Analysis

The data analysis follows a method used by Mason (1966) and others.

It is assumed that the measured attenuation (a ) consists primarily ofm

freqv ncy and temperature dependent attenuations due to both free

electrons (ae) and dislocations (ad). At the temperatures of these

m~measurements, attenuation by other mechanisms will be either negligible
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in magnitude (the case, for example, with anharmonic and phonon proc-

esses) or will be temperature independent (as with specimen to trans-

ducer band losses). These latter effects are accounted for by

including a residual system attenuation (a r ) in the list of contribu-

tions. The measured attenuation is therefore expressed as:

a(w,T) = ae (,T) + ad(w,T) + a (w) (4.1)
m e r

which applies to both the normal and the superconducting state. This

expression is used to calculate the electronic components of the

attenuations:

a es(wT) = a ms(,T) - ads (WT) - ar (w)

and (4.2)

a en(w,T) = a mn(w,T) - a dn(W,T) - ar (w)

where the subscripts s and n indicate the superconducting and normal

states, respectively. Since the temperature dependence of the dis-

location damping arises solely through the varying density of non-

superconducting quasiparticles, normal state specimens will have

temperature independent dislocation attenuation. One can therefore

* write

a dn dn c,T = ds (W,T (4.3)

where T is the superconducting transition temperature. With this, c

substitution, the subscript s on the dislocation attenuations can

therefore be dropped without ambiguity, giving for Equation (4.2):
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a (t ,T) = a (w,)-a(,)-e(s
es ms ,T) -ad (wT) -r (W)

and (4.4)

a n(w,T) = a (w ,T) - d(w,Tc) - ar(W)
en mn d c r

If the value of dislocation and residual attenuations used for

this calculation are correct, then the electronic attenuations thus

obtained will be related by (Bardeen et al., 1957):

a (w,T)2es 2________a (WT) 2 E (T) (4.5)
Xen (,T) (1 + eE(T)/kT)

where E(T) is half the BCS superconducting energy gap. There is no

closed analytical expression for C(T). BCS theory gives it in an

integral form, and Muhlschlegel (1959) has tabulated it, but it is

most convenient to use an approximate expression from Bliss and Rayne

(1969) which is accurate to 0.5%:

(t) _ 2 3 3 8 t= os t - 1.15 x 10s e in 5.46(i-t ,

(4.6)

where t = T/T and, for indium, C. = 1.85 kT and T = 3.404 K. Valuesc c c

for the dislocation attenuation are obtained by applying the conversion

a(db/cm) = 8.686 A (4.7)2Tr v

to the decrement equations taken from KGL theory. As shown in Chapter

II, the dislocation decrement is predicted to be given by either
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= 0 DS X 5 dx (4.8)

sinh (x)((-2 2x 2 ) 2 + D2Sj2 x4]

or

- 10 - x5  e- dx(49x

(D1)+2XD (4.9)

where D = DO(T) + §2/8, = /w0 ,and Do , w0 and A0 are constants. As

described earlier, these constants depend exclusively on crystal

dislocation characteristics, and must be independent of the frequency

and temperature of measurement. Since the value of these constants,

as well as that of the residual attenuation, are not known, they are

treated as variable parameters. A digital computer (Systems 85) is

used to determine that set of values for the parameters which results

in a best fit of the equality

a (w,T) - d(w,T) - (w)ms r _ ()(.0

a mn(w,T) - d (w,Tc) - ar (w)

over the temperature range of interest. If there is a set of para-

meter values for which this equality holds, these are taken to be the

correct values of A0 , W 0 and D o as specified by the KGL theory.

The problem of determining the best fitting values of A0 , 0 and

D [i.e., the simultaneous solution, for a large number of temperature

dependent data points, of Equations (4.10) and either (4.8)or (4.9)] does
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not lend itself to an analytical solution. A computer algorithm which

was developed to resolve this difficulty allows a systematic search

of the possible parameter values. A reasonable domain for each con-

stant is identified and then divided into a large number of intervals.

For each possible combination of the parameter values thus obtained,

the dislocation attenuation is calculated from the KGL theory and the

subsequent goodness of fit for Equation (4.10) is determined. Parameter

combinations which allow a good correspondence between theory and data

are identified in this way. Despite optimization of this algorithm,

approximately fifty hours of computer time is required to extract

from one data set reliable best fit values for A01 WO and D0.

C. Results

Attracted by its relative simplicity (as compared to the exact

expression) and following the example of Granato and Lucke, the first

attempts at analysis of the data employed the approximated form of the

KGL theory [Equation (4.9)]. working with a single data set, it

was found that there is indeed a triple of values for the parameters

A WO and Do which, through Equation (4.9), provides a correction that

brings the data into good agreement with the BCS prediction. A

comparison of the corrected and uncorrected data with the BCS curve

is shown in Figure 22. In this case, the data was recorded using

10 MHz ultrasound and the best fitting values of the parameters were

0~=.0053, wo 12.6 MHz, and D= 0.50. This result is similar

to hatof aso (166)forattnuaion intin. When the corrections
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determined by these parameter values were applied to data taken at

other ultrasonic frequencies; however, little or no improvement in

the correlation of theory and data were obtained. This is demonstrated

in Figure 23 with data taken at 6 and 50 MHz. Mason did not work with

a sufficiently large range of frequencies to observe this inconsistency,

and hence,he has concluded his form of the approximated theory to be

valid.

It has been determined that, for any set of the data,there is some

triple of parameter values by which a correction equivalent to that

shown in Figure 22 can be obtained. These values, however, differ

greatly for data sets taken at different ultrasonic frequencies, thus

contradicting the invariant nature of the constants A0, W0 and D0 .

In addition, it was found that for each best fitting triple of para-

meters, the ratio w/w0 is approximately equal to unity, this violating

the assumption (w/w0)
2<<l which was fundamental to the approximated

theory. For these reasons, the approximated KGL theory [Equation

(4.9)] was determined to be inapplicable to the analysis of this data.

Following rejection of the approximate form of the KGL theory,

( the analysis was repeated using the exact expression of the theory,

rFquation (4.8). The results of this analysis showed no significant

change from those obtained formerly. Again,it was determined that

for any set of the data, there is some triple of values for the

constants A0 , W0 and Do through which the KGL theory provides just

the correction necessary to explain the deviation of that data from

the BCS prediction. A typical matching of the corrected data to the



66

iI 1--

B
0
4J

*1 50

10 Mz

1.0 Temperature (Kelvin)

Figure 23. Result of applying 10 Mz data corrections to
6 and 50 Mz data.

. ___._._



67

BCS relation is shown in Figure 24. The constants determined from

different data sets, however, continue to fluctuate widely, showing a

dependence on ultrasonic frequency that is not consistent with the

invariant nature of these parameters.

Precise values for the three constants are not acquired through

this analysis. It has been observed that parameter values varying

by as much as 25% from the best fitting values may also give an

acceptably good fit to the BCS relation. The tolerable variations

for the three parameters are interdependant, however, and a good

fit can be maintained only if the values are changed in a particular

way. (Generally, a decrease in womust be accompanied by increases

in A.and D..) This latitude in the best fitting values is a result

of fluctuations in the data and the slowly varying nature of the KGL

equations. The considerable tolerance in parameter values is not

sufficient to allow a triple of numbers which will suitably correct

more than a single frequency of data. There is no set of values for

the constants which allows the KGL theory to account for the deviations

in multifrequency data.

The uncertainty in the best fit value for the parametersA,

wo, and Do makes it difficult to describe the manner in which they

vary with the ultrasonic frequency. At best, one can say that the

values of the latter two appear to increase linearly with frequency

(the proportionality constants are wo /w - 1.7 and D -/ 1.9) while

Aremains constant (-0.005). No physical significance can be

ascribed to this behavior. This discussion only serves to emphasize
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the manner in which failure of the KGL theory has been recognized. The

values given above pertain to data measured in the specimen for which

sound propagation was along the (100] crystal axis. Otherwise, the

experimental results described apply to the data collected in both this

specimen and the one with the (1101 orientation.

The theory of ultrasonic attenuation by dislocations formulated

( by Granato and Liicke is unable to account for the attenuation,

additional to that caused by conduction electrons, which has been ob-

served in superconducting indium. It is therefore necessary to conclude

that the KGL theory is inapplicable to the situation of this experiment,

i.e., to indium at low temperatures.

D. Empirical Description of the Data.

The contribution of dislocations to the net ultrasonic attenuation

could be determined from the experimental data in the following way.

The measured relative attenuation is considered to vary as the sum

of four terms:

1) a (W,T) - The electronic attenuation which is frequencye

and temperature dependent.

2) a (w,T) - The dislocation attenuation which is also
d

frequency and temperature dependent.

3) p(w) - A residual attenuation, inherent in the ultrasonic

system, which may vary with frequency.

4) CMw - An undetermined shift in the attenuation calibration

associated with the arbritrary assignment of a level of zero

decibels to the maximum observed echo signal.
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The measured attenuation is then expressed as:

a(w,T) = a (w,T) + ad (w,T) + p(w) + a(w) (4.11)

This applies to both the superconducting state and normal state data,

so Equation (4.11) cai. be written as:

L ms(w,T) = es (w,T) + a ds(w,T) + p(w) + a(W) (4.12)

and

mn (w,T) a aen (w,T) + a dn(w,T) + p(W) + a(W) (4.13)

As discussed earlier, the normal state dislocation attenuation is expect-

ed to be temperature independent and equal to the superconducting state

attenuation at the superconducting transition temperature. That is:

a (wj,T) = ad(W,T) ads (w,T ) (4.14)

Again, the subscripts n and s on the dislocation attenuations can be

dropped without ambiguity. The electronic attenuations in the super-

conducting and normal states are related by:

aes (w,T)

Sen(w,T) = 8(T) , (4.15)en

where O(T) is the well known BCS relation defined in Equation (4.5).

Equations (4.12) to (4.15) can be combined to give as an expression

for the dislocation attenuation:

ad(w,T) =+ma (w,T)-8(T)aL (w,T) (T) (W)+Y(W)+B(T)ad(W,T c )

(4.16)
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At the lowest temperature of measurement (T0), the ultrasonic signal

measured in the superconducting specimen is a maximum, and Equation

(4.12) becomes:

ms (,oT es (,T 0 ) + L (w,T ) + p(W) + 0(W) = 0 , (4.17)ms 0 esd 0

so that

P(W) + 0(w) -(e(W,T 0 ) + a d(w,TO) (4.18)

Making this substitution into Equation (4.16) then gives:

ad (w, T) =[(wT)-a(T)a (wT]+[-(T)]a(wT, t(WTo)]

+ a(T)a d (W,Tc ) (4.19)

In order to use this expression to calculate the dislocation atten-

uation, two absolute attenuation values, in addition to the measured

relative attenuations (the a ), must be known. One, ae(w,T0)+ d(W,T
m es (wT d (, 0)

is the sum of the electronic and dislocation attenuations at the

lowest temperature of superconducting state measurement. This is
(

determined from secondary data recording the rate of exponential

decrease of the ultrasonic echo amplitudes at that particular frequency

and temperature. These measurements are subject to errors [such as

signal losses due to non-parallelness of the specimen surfaces,

diffraction of the ultrasonic waves, and transducer bond losses

(Morse, 1959)] which do not affect single-echo measurements of rela-

tive attenuation. Values of absolute attenuation obtained in this
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way, therefore, can only serve to indicate the general variation of

the data.

The other value which must be known, a (w,T ),is the dislocation
d

attenuation at the superconducting transition temperature. This can-

not be determined with the experimental apparatus available, which

makes no provision for distinguishing explicitly between the contribu-

tions of electrons and of dislocations to the net attenuation. To do

so, a system like that used by Thompson and Pare (1966) would be

required. In their experiment, the dislocation attenuation is directly

indicated by the change in net attenuation which results from extensive

neutron bombardment of the specimen; the neutron damage introducing

pinning centers which eventually lock the dislocations into fixed

positions. Lacking the value of a d (w,T c) prohibits an empirical

description of the dislocation data. The available data may, however,

suggest the nature of the temperature and frequency der-eadence of the

dislocation attenuation.

The second and third terms on the right side of Equation (4.19) are

already separated into factors which depend uniquely on temperature or

on frequency. The first term of that equation is found empirically

to also have separable temperature and frequency dependencies. Its

normalized temperature dependence is plotted in Figure 25, and the

frequency dependent amplitude of that curve is included in Figure 26.

The frequency variation of the second term, also plotted in Figure 26,

is equal to that of the first, within experimental error. If the
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third term were shown to have this same frequency dep,- .idence, then the

dislocation attenuation itself could be neatly expressed as the product

of separable temperature and frequency factors.

( The fact that the first term in Equation (4.19) is negative has no

real significance, since these terms do not have any physical meaning

if taken individually. It is necessary, of course, that the sum of the

terms be always positive since a negative attenuation would indicate

the spontaneous generation of ultrasound. The second and third terms

of Equation (4.19) are everywhere positive. The magnitude of the

second, which is known, is not always sufficient to balance the nega-

tive going first term. It is thus possible to determine a minimum

value for a d(w,T c) which makes the attenuation invariably positive.

A lower limit on a d(wT c) derived in this way can only serve as an

indication of the nontrivial contribution of dislocations to the

normal state attenuation of the specimen. For example, the data

measured at 10 MHz in the [100] specimen indicates a minimum normal

state dislocation attenuation of 0.1 dB per cm. The actual value

of the attenuation can only be described as greater than this.

The results described above pertain to data collected in that

crystal which had its [1001 axis parallel to the direction of sonic

propagation. Analysis of data taken with the second specimen, for

which propagation was along the [110] axis, yields results consistent

with those already described. In this case, calculation of the

individual terms in Equation (4.19) again shows the difference
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a (w,T)-B(T)m (W,T) to have the temperature dependence plotted inms mn

Figure 25. As expected, the amplitude of this term, as well as that

of the measurable absolute attenuation aes(w,T) + ad(w,TO) are found

to be directionally dependent. These amplitudes, for the second

specimen, are plotted in Figure 27.

(
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V. CONCLUSION

The ultrasonic attenuation in a superconducting material is expected

to vary with temperature according to the BCS relation:

x (T) 2
es- =

w en(T) 1 + e
E (T)/kT

where E(T) is half the BCS superconducting energy gap. There are cases,

however, in which the measured attenuations are seen to deviate from

this behavior. This is generally attributed to an interaction between

the sound waves and crystal dislocations, one mechanism for which is

given by the theory of Koehler (1952) and Granato and Lucke (1956).

This theory has found considerable success in describing a variety

of dislocation phenomenon, and was applied to the superconduction

anomaly by several authors, Mason (1966) most notably. The research

described in this thesis has expanded the investigation of this

anomaly by recording temperature dependent attenuations for a wide

range of ultrasonic frequencies. Formerly reported data consist

mostly of single frequency measurements. By analysis of this expansive

data, it has been shown conclusively that the KGL theory is not able to

explain the deviation in indium of measured attenuations from BCS-like

behavior. It has thus been determined that the KGL theory is

inapplicable to the case of low temperature indium. Earlier work

which appears to contradict this result has been shown to be an

insufficient test of the theory.
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The failure of the otherwise successful KGL model to describe the

superconducting phenomenon may be attributed to either of two apparent

weaknesses in the theory. First is the possibility that, at very low

temperatures, the crystal through which the dislocation moves can no

longer be viewed as a continuum, as Granato and Lucke have assumed.

The possible effect of crystal structure on a dislocations .hape and

motion are reviewed by Seeger and Schiller (1966). Most work on this

topic has been concerned with phonon-dislocation interactions in non-

conducting crystals (e.g., Seeger and Engelke, 1968). No conclusive

theory relating crystal structure to dislocation dynamics for a low

temperature metal has been published. The other possible fault lies

in the expression [Equation (2.4)] used to calculate the electronic

component of the dislocation drag. The relevant drag coefficient

has not been measured directly, so that while this expression is

generally believed to be accurate, the discussion of Huffmann and

Loaut (1970), for instance, shows that a reasonable doubt does exist.

Considering these weaknesses, it is not very surprising that the KGL

model does not explain the attenuation anomaly observed in super-

conducting indium. The need for further theoretical investigation

of this topic is now apparent.

This work has exhausted the possibilities for experimental study

of the phenomenon. Without a more reliable theory by which to evaluate

the data, no practical further effort can be conceived.
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APPENDIX A

Expressions for the dislocation displacement, F(x,y,t), and the

dislocation attenuation, a(x,y,t), are obtained by the simultaneous

solution of

a2  at a 2
A- + B - C - =ba , (A.l)

G-= e cosO ; 8 =t - 2nx/X (A.2)
0

and

a2  pa 2  a2 ro.
- O- - O = pb- dy (A.3)
ax2  G at2  at 2

subject to the constraint E(x,o,t) = E(x,Z,t) = 0.

A. Dislocation Displacement

A function which is defined on the interval 0 y : £ may be

expressed as a Fourier sine series. If the dislocation displacement is

described in this way, only the odd terms in the series need to be

considered since even terms represent an asymmetric displacement for

14 which the net strain, and hence,the contribution to the attenuation,

is zero. The dislocation displacement is therefore written as:,!0
(2n+l)r (A.4)

n(x,y,t) = [ Tnx't) sinlnYi n 9(
n=o

Using the standard notation of dots and primes to represent partial

derivatives with respect to t and y, respectively, one calculates

4J
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from Equation (A.4):

00

= TsinO y (A.5a)n n
n=o

I n sinn y (A.5b)
n=o

and

- T Tn2 sinn y (A.5c)
nfn n

n=o

A useful identity is:

(2n+l) sin ny 0 < y < 2 (A.6)
n=o

Substitution of Equations (A.2), (A.5) ,and (A.6) into Equation (A.1) leads to

I (AT + BT + C4 Tn)sino y= D cos sinn y (A.7)
nnn o n n non nVn=o n=o

where

-ctx
4b00 e

D Wx 0
n (2n+l)I

Equating the coefficients of the sinn y gives:
n

A T + i T + C02 T = D cosO (A.8)In n ni n n

for each n. This equation has a solution of the form:

Tn (x,t) = E(x) cosO(t) + F(x) sin6(t) (A.9a)

. . . . ..n. i , L I
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for which

T = -w E sine + W F cose (A.9b)n

and

n= -w E cose - w2 F sine (A.9c)n

Substitution of Equations (A.9) into Equation (A.8) and equating the

coefficients of cose and of sine gives

-A w2 E + B W F + C4 2 E = D (A.10a)

and

-A 2 F - B W E + C42 F = 0 (A.10b)

n

From this, the factors E(x) and F(x) are determined to be:

-D (Aw2 - C2)
E -=

B2W 2 + (Ad - c 2 )2  (A.lla)

n
and

BwD
n F = (A. lib)

The dislocation displacement, determined by Equations (A.4),(A.9a), and

(A.11) is therefore given by:

-D (Aw2 - C 2 ) BwD
cose + n sine sin(nY

.2  (&) C 2 )2  B2 2 + (W2 -q
2)2  n

(A.121
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where

4baO e -ax

Dn (2n+l)I ' (A. 13a)

(2n+l)Tr (A. l3b)
n =

.

and

w=t -2x/ (A.13c)

This expression will bear considerable simplification. By using

the identity

E cosO + F sine = (E2 + F2 ) /2cos(O-6) , (A.14a)

where

6 = arctan (F/E) , (A.14b)

the dislocation displacement may also be written as:

0D
(x,y,t) = n cos (e_6 n )sin n y

, n=o [B2W2 + (AW2 - C 12)2l/2

(A.15a)

where D n, n' and e are as defined above and

nnn
6n  arctan -- C A. 15b)

n C,~2
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Finally, by substituting for Dn and n , and defining the constant

'it (CP"
W 2 (A. 16a)o

one writes the dislocation displacement as:

4ba0 -ax 00 1 (2n+l) ry
(x,y,t) = --- 2e n+-- sinT -o(2n+l)

n=o

i(wt - 2Trx/X - 6 n)
e (A. 16b)

[(2n+1l2w2i - W2)2 + (B/A) 2)]/2

with

6 n =arctan [(2n+1 )2W2 W 2] (A.16c)

B. Dislocation Attenuation

If the dislocation displacement [Equation (A.12)] is expressed as:

= ( (E cosO + F sine) sinn Y (A.17)

n=o

then one calculates

J dy - ( CE cose + F sine) sinonY
o" nwO

108
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Recall that n = (2n+l)W/t, so that

fsinn= 2Z
n (2n+1)n

0

and

dy G 2 (E cos0 + F sine)
(A18

I (2n+l)7r
n--o

From this, one calculates

S=o 2n I (E cose + F sine) (A.19)

which, by the definitions of E and F [Equations (A.11)] is equivalent to:

a2 21X2 00-J = 2d 1
n7o (2n+1)

0t n=o

I D AW2 _ C02) DEW
Sn - n cose - n sine
BE2 W2 + (Aw 2 _ co2 )2  B2 W2 + (Aw2 o2

(A.20)

From Equation (A.2), one obtains:

a2  
2 a

- 0 - -w200 e cosO (A.21a)at 2

I.



and

-- C=0 e
-  [(a cos6 - -i- sin . (A.21b)

axx2i 21(A1b3x2  L A

Substitution of Equation (A.20) and (A.21) into Equation (A.3), and

equating the coefficients of sinO:

a0 e-aX 47 2pb2k 2  1 D (A.22)0 IT (2n+l) 22 +a 2
n=o B + ( _c

Substituting for Dn from Equation (13.a) and solving for the dislocation

attenuation, C, gives:
!U

= 2pb 1 (A.23)

i 3 n-o(2n+l) 2 B 2w2 + (Aw2  C2)2

Using the relations

wX=2v

v2 - G/p

and

C Gb2
2

Equation (A.23) reduces to:

a = - 2 (A.24a) A.
nwo (2n+1) 2 (2n+i) 2 _ 22 + D n2
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where

D (B/A) (A. 24b)
W10

Wo (A. 24c)

( ~and C)

0 ~J/ (A. 24d)

aw&
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APPENDIX B

The decrement that results from an assembly of dislocations is

obtained by solving

A - fo A N(k) dl B1
(B.l)

where N(Z). dt, the number of dislocations having loop lengths between I

and 9 + dt, is given by:

N(2) A e-Z/L (B.2)
L2

and A., the decrement from a single loop of length t, is given by either

16 R£ 1 D__ _ __ _ _
16 3 DQ(B.3)

n=o (2n+l) (2n+1) -2 22 2 + 9.

or

16 3 O D2o (B.4)
A 7 1 + D2 2

depending on whether the exact or the approximated solution of the KGL

theory is sought. The factors D and Q have been defined such that

D11 =(B.5)
72 C

and

(31/, (B.6)

7r CA
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A. Exact Solution

With substitutions from Equations (B.5) and (B.6), Equation (B.3) can

be written as:

16 BW £ (B.7)

7T5C n=o (2n+l)2 (2n+1)2 - - 2
72 C 77 c

(

Rearranging terms and substituting this, along with Equation (B.2), into

Equation (B.1) gives:

1 B I e 2 (B.8)

1
r5C no(2~)2L2(2n+1)2 

IT
22£2 7r 1C %

Introducing the change of variables, x = (2n+l)L

CO -(2n+l)x
16 16wA x ne ndxn

Srx n ~ n .(B.9)
Tr C Jnlo ( W A2

-nx 2 IT 221

Considering the equation Jf(ax)d(ax) Jf(x)dx , the subscript of x

is seen to be unnecessary and is therefore dropped. Removal from the

summation of terms which are independent of n leads to:

A i e-(2n+l)u x dx (B.10)

o WAL 
22 2 L2X2 1

Jf2 f2
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Substituting for the series, its solution

oo.e- (2n+1) x 1 (.1
= 2 sinh (x) (B.11)

n-o

gives

sinh x) 1• +x2)2

Defining the constants

AO = 8L2A (B.13a)
T 3

( 0 =7 C/ 2 (B.13b)

D - (B/A) (B.13c)wo

and Q = w/W 0  ' (B. 13d)

the net dislocation decrement can be written as:

A AO ID x + dx (B.14)

-10 B n (X) [(l -S2X
2 ) 2  + D2=X4

9 |go - -,
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B. Approximate Solution

Using definition (B.5) ,Equation (B.4) can be written

16 Bs (B.15)

C , c + (- "  4

Substituting this and Equation (B.2) into Equation (B.1), one obtains:

CO1

16 BwA 2 9s e' d9 (B.16)
7T CL Jo 1 + 294

0 TC

Introducing the change of variables, x = t/L, this becomes:

A = 16BwAL4 x ] e -  dx(.17)

Tr S JC 1  + B- -2

Using the definitions in Equations (B.13),this, the approximated net

dislocation decrement, is written as

A =2AO W + XS e -xdx (B.18)J0 1 + D2Q2 X4

0|
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