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Abstract:

This paper examines the use of binary trees in the
design of efficient parallel algorithms. Using binary
trees, we develop efficient algorithms for several schedul-
ing problems. The shared memory model for parallel computa-
tion is used. Our success in using binary trees for parallel
computations, indicates that the binary tree is an important
and useful design tool for parallel algorithms. -.
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i. Introduction

Algorithm design techniques for single processor computers
have been extensively studied. For example Horowitz and
Sahni [15] extoll the virtues of such design methods as:
divide-and-conquer; dynamic programming; greedy method;
backtracking; and branch-and-bound. These methods generally
lead to efficient sequential (i.e. single processor) algo-
rithms for a variety of problems. These algorithms, how-
ever, are not very efficient for computers with a very large
number of processsors. In this paper, we propose a design
method that we have found useful in the design of algorithms
for computers that have many processors. The method pro-
posed here is called the binary tree method. While this
method has been used in the design of parallel algorithms
earlier; here we attempt to show its broad applicability to
the design of such algorithms. It is hoped that further
research will bring to light some other basic design tools
for parallel algorithms. One should note that trees have
been used extensively in the design of efficient sequential
algorithms. In fact, devide-and-conquer; backtracking; and
branch-and-bound all use an underlying computation tree
(15]. The use of binary trees as proposed here is quite
different from the use of trees in sequential computation.

With the continuing dramatic decline in the cost of
hardware, it is becoming feasible to economically build com-
puters with thousands of processors. In fact, Batcher [5]
describes a computer (MPP) with 16,384 processors that is
currently being built for NASA. In coming years, one can
expect to see computers with a hundred thousand or even a
million processing elements. This expectation has motivated
the study of parallel algorithms. Since the complexity of a
parallel algorithm depends very much on the architecture of
the parallel computer on which it is run, it is necessary to
keep the architecture in mind when designing the algorithm.
Several parallel architectures have been proposed and stu-
died. In this paper we shall deal directly only with the
single instruction stream, multiple data stream (SIMD)
model. Our technique and algorithms readily adapt to the
other models (eg: multiple instruction stream multiple data
stream (MIMD) and data flow models). SIMD computers have
the following characteristics:

(i) They consist of p processing elements (PEs). The PEs
are indexid 0, 1, ... , p-i and an individual PE may be
raferenced as in PE(i). Each PE is capable of perform-
ing the standard arithmetic and logical operations. In
addition, each PE knows its index.

(2) Each PE has some local memory.

(3) The PEs are synchronized and operate under the control
of a single instruction stream.

........
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(4) An enable/disable mask can be used to select a subset
of the PEs that are to perform an instruction. Only
the enabled PEs will perform the instruction. The
remaining PEs will be idle. All enabled PEs execute
the same instruction. The set of enabled PEs can
change from instruction to instruction.

While several SIMD models have been proposed and stu-
died, in this paper we wish to make a distinction between
the shared memory model (SMM) and the remaining models; all
of which employ an interconnection network and use no shared
memory. In the shared memory model, there is a common
memory available to each PE. Data may be transmitted from
PE(i) to PE(j) by simply having PE(i) write the data into
the common memory and then letting PE(j) read it. Thus, in
this model it takes only 0(1) time for one PE to communicate.
with another PE. Two PEs are not permitted to write into
the same word of common memory simultaneously. The PEs may
or may not be allowed to simultaneously read the same word
of common memory. If the former is the case, then we shall
say that read conflicts are permitted.

Most algorithmic studies of parallel computation have
been based on the SMM ([i], [7], [8], i11], [12], [13],
[24], (25], [30]). This model is, however, not very realis-
tic as it assumes that the p PEs can access any p words of
memory (I word per PE) in the same time slot. In practice,
however, the memory will be divided into blocks so that no
two PEs can simultaneously access words in the same block.
If two or more PEs wish to access words in the same memory
block then the requests will get queued. Each PE will be
served in a different time slot. Thus, in the worst case
O(p) time could be spent transferring data to the p PEs.
All the papers cited earlier ignore this and take the time
for a simultaneous memory access by all PEs to be O(i).

SIMD computers with restricted interconnection networks
appear to be more realistic. In fact, the ILLIAC IV is an
example of such a machine. There are several other such
machines that are currently being fabricated. The largest
of these is the massively parallel processor (MPP) designed
by K. Batcher. It has p-i6K. A block diagram of a SIMD com-
puter with an interconnection network is given in Figure
1.1. Observe that there is no shared memory in this model.
Hence, PEs can communicate amongst themselves only via the
interconnection network.

While several interconnection networks have been pro-
posed (see [33]), we shall describe only three interconnec-
tion networks here. These are: mesh, cube, and perfect
shuffle. The corresponding computer models are described
below. Figure 1.2 shows the resulting interconnection
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Figure 1.1 Bloc k diagram of an SIMO computer.

patterns.

i) Mesh Connected Computer (MCC) I
in this model the PEs may be thought of as logically

arranged as in a k dimensional array A(n n
where n. is the size of the ith dimeni~n an8 pn, -

*n,*.1 *n, The PE at location A( ik-11..., i ) is cWn-
ne idt te PE s at locations A(i .,.. .+, 'i)
0( j<k, provided they exist. Data be ;;trani~iittedtfon
one PE to another only via this interconnection pattern.
The interconnection scheme for a i6 PE MCC with k-2 is given
in Figure i.2 (a) .
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ii) Cube Connected Computer (CCC)

Assume that p-2 q  and let i _.., i(b e the binary
representation of i for i4[0,p-i]:- Let be the number
whose binary representation is 1 .... 1 1 ....
where 'b is the complement of il-And 0*q. In hE cubg

model, PE(i) is connected to PE(i(b)), 0<b<q. As in the
mesh model, data can be transmitted from one PE to another
only via the interconnection pattern. Figure i.2(b) shows
an 8 PE CCC configuration.

iii) Perfect shuffle Computer (PSC)

Let p, q, i and i ( b ) be as in the cube model. Let
i....i^ be the binary representation of i. Define
SggUFLE (f) and UNSHUFFLE(i) to, respectively, be the
integers with binary representation i i ... i i.andi^
1 q...i -. In the perfect shuffle mo e M sqc0nnecte

to PE(i0)), PE(SHUFFLE(i)), and PE(UNSHUFFLE(i)). These
three connections are, respectively, called exchange, shuf-
fle, and unshuffle. Once again, data transmission from one
PE to another is possible only via the connection scheme.
An 8 PE PSC configuration is shown in Figure i.2(c).

101
00010 110

0 1oo 0,

Boxes represent PEs 000 001

(a) 4x4 MCC (b) 8 PE CCC Cc) 8 PE PSC

Figure i.2

It should be noted that the MCC model requires 2k con-
nections per PE, the CCC model requires log p (all loga-
rithms in this paper are base 2) and the PSC model requires
only three connections per PE. The SMM requires a large
(and impractical) amount of PE to memory connections to per-
mit simultaneous memory access by several PEs. It should
also be emphasized that in any time instance, only one unit
of data (say one word) can be transmitted along an intercon-
nection line. All lines can be busy in the same time

W 7--
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instance though.

Each of the four models (including the SMM) described
above has received much attention in the literature.
Agerwala and Lint [i], Arjomandi [2], Csanky [8], Eckstein
[ii] and Hirschberg (i2] have developed algorithms for cer-
tain matrix and graph problems using the SMM. Hirschberg
[i3], Muller and Preparata [24] and Preparata (30] have con-
sidered the sorting problem for SMM. The evaluation of
polynomials on the SMM has been studied by Munro and Pater-
son [25], while arithmetic expression evaluation has been
considered by Brent [7] and others. Efficient algorithms to
sort and perform data permutations on an MCC can be found in
Thompson and Kung [38], Nassimi and Sahni [261 and [27], and
Thompson [37]. Thompson's algorithms [37] can also be used
to perform permutations on a CCC and a PSC. Lang [i9], Lang
and Stone [20], and Stone [36] show how certain permutations
may be performed using shuffles and exchanges. Nassimi and
Sahni [28] develop fast sorting and permutation algorithms
for a CCC and a PSC. Dekel, Nassimi, and Sahni [9] present
efficient matrix multiplication and graph algorithms for
CCCs and PSCs.

The algorithms considered in this paper are described
explicity only for the SMM. The algorithms are readily
translated into algorithms for the other SIMD models. In
some cases, it may be necessary to use the data broadcasting
algorithms developed by Nassimi and Sahni [29] to accomplish
this adaptation to the other models.

Throughout this paper, we assume that no read conflicts
are allowed. To see the importance of this assumption, con-
sider the partition problem. In this problem we are given n
numbers a., a 2 , ... , an and we wish to determine if there is
a subset ! of ii, 2,..., n) such that 1 a i  > a..

This can be done in O(log n) time ii ead confl1gs are
alloweg. The first phase of this algorithm uses I n/log
n-1 2 PEs. PES are divided into 2 groups of n /log n I
PEs each. The PE groups are indexed 0, 1, ... , 2 - Each
PE group, i, considers the subset S. lg{a.I bit j of i is
1). The elements in S. are added in Olog n; time using the
I n/log n-I PEs in thi PE group (this is described later in
this section). Next, the elements in Si are added. If a

J <S.
a3  = £ a. then one of the PEs in group i sets V(i) to 1;

jAS J
otherwise V(i) is set to 0. In the second phase, Valiant's
(39] O(log log m) algorithm is used to determine the maximum
V(i). Since there are 2 V(i) 's, this takes O(log n) time.
The answer to the partition problem is "yes" iff the maximum
V(i) is 1. The total time taken by the above algorithm is
O(log n).

1J. 
-
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The procedure described above has read conflicts in two
of its steps. First, when the PE groups are computing sums,
many PEs will attempt to simultaneously read the same a1.
To remove these conflicts, we will need to make 2n copies of
each ai, one copy for each PE group. This takes O(n) time
using no read conflicts. Second, Valiant's algorithm also
has read conflicts. Removing tiese also takes O(n) time.
So, the complexity of our parallel partition problem algo-
rithm is O(log n) if read conflicts are permitted, and is
O(n) if they are not.

We first illustrate the binary tree method on a very
simpl problem. Let us consider how we might compute the

sum A(i), n>!. The most frequently used sequential algo-
i=i n

rithm for this computation uses the parsing A(i) =

(...((A(i) + A(2)) +.A(3)) + ... + A(n)). To arrive at an
efficient pahallel algorithm, it is necessary to consider
the parsing 1 A(i) = (...((A(i) + A(2)) + (A(3) + A(4))) +

((A(5) + At#) + (A(7) + A(8)))) + ... ) . Computation
corresponding to this parsing scheme is best described by a
complete binary tree with n leaves. Figure i.3 describes
the computation for the case n = ii.

Level

11

11) i 12 13 14 15

A(l) A2) (3) (4) (5 (6)

16 17 18 19 20 21

n
Figure i.3 Compitation tree for A(i)

T=i
The squlare nodes represent nodes at which addition is to be
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performed. The circular nodes represent initial data.
Nodes have been numbered using the standard numbering scheme
for complete binary trees. Node indices appear outside the
nodes. Let V(i) be the corresponding A() value for node 1
if i denotes a circular node. V(i) is initially undefined
for the other nodes. Thus for Figure ±.3, V(i7) A(2);
V(i3) . A(9); V(21) - A(6); etc. Using the tree of Figure

i.3, A(i) may be computed in 4 steps using 4 PEs as fol-

lows:

step 1: Use three PES to compute, in parallel V(8) - V(i6)
+ V(i7); V(9) - V(i8) + V(i9) ; and V(iO) = V(20) +
V(2i)

step 2: Use four PEs to compute, in parallel, V(i) = V(2i)
+ V(2i + 1), 4 < i < 7

step 3: Use two PEs to compute, in parallel, V(i) = V(2i) +
V(2i + 1), 2 < i < 3

ii
step 4: Use one PE to compute V(i) - V(2) + V(3) =

A(i).

From the nature of a binary computation tree, it is
clear that parallel addition needs at most I n/2 I PEs. The
parallel addition algorithm is described more 'ormally in
Figure i.4. In lines 2 and 5, the use of a < b < c means
that this line is to be executed in parallel foF all b
satisfying the inequality. Line 2 can be performed in two
steps using I n/2 I PEs. Line 4 needs at most I _n/2 I PEs.
It is clear that the complexity of procedure SUMi is O(log
n).

line procedure SUMA (A,n)

//compute . A(i) using In/2_ PEs//
llini tiali ll/

i k <- I log n; I; j <- 2k; t <- 2*(n-j); p <- n-i
2 V(p+i)-<- ((i-+ t - i) mod n + !), 1 <i<n
3 for i <- k down to 0 do //add ?y leveli/7,+i
4 V(j) <- V(3 +-V(2'-+ 1), 2<j<minp,2 -11
5 end for
6 return(V(i))
7 end SUM

Figure 1.4

In addition to analyzing the complexity of a parallel
algorithm, one often (see Savage [32]) also computes the
effectiveness of processor utilization (EPU). This is

;- - - . . . .. . . -; ), - -;; , 
'
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defined relative to a specific problem P; the complexity of
the fastest sequential algorithm known for P; and the paral-
lel algorithm A for problem P.

EPU(PA)

complexity of the fastest sequential algorithm for P
number of PEs used by A * complexity of A

For the case of procedure SUMi,

EUO n )=(I
EPUO 'n/2 *logn) O(logn)

Note that 0 < EPU < 1 and that an EPU closen to 1 is
In

considered 'good'. For the case of computing A(i), we

can actually arrive at anO(log n) algorithm wit=n EPU of
Q(i) (i.e., using only I n/lo2 n I PEs) [32]. This is done
by dividing the n A(i)s into I n/log n I groups, each group
containing at most I log n I of the A(i)s. Each of these
groups is assigned to a PE which sequentially computes the
sum of the numbers in the group. This takes O(log n) time.
Now, we need to sum up these I n/log n I group sums. Pro-
cedure SUMi can be used to compute this sum in O(log n)
time.

Note that the d scussion carried out so far concerning

the computation of A(i) applies just as well to the com-
n i=i

putation of * A(i) where G is any associative operator
i=i(for example, max, min, , etc). Hence, max {A(i)};

n 1<i<n

min {A(i)}; fl A(i); etc can all be computed in O(log n)

{. n,,sing I og ni PEs.

n
Suppose that instead of computing just A(i), wej i-i

wish to compute S. - A(i), i< j< n. We shall refer to

this problem as the pari'il sums problem. When computing S
using the sequential algorTth, we obtain S., 1< i< n as
by-product and so, in this case, no additional ehfo~t need
be expended. In the case of procedure SUMi (and its refine-
ment to the case of I n/log n I PEs), however, all the Sis
are not computed during the computation of Sn . Following
the computation of S , the remaining S s can be obtained by
making one pass down the binary tree. In this pass each
node transmits to its children the sum of the values to the
left of the child.

Let A(i:ii) - (1, 1, 2, 3, 1, 2, i, 2, 3, 4, 2). The
computation tree of Figure 1.3 is redrawn in Figure i.5.

,,..', . , . ,... . .. o : o, " . f
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The index ot each node appears outside it. Inside each node
there are two numbers. The upper number is V as defined for
procedure SUMi. The lower number in each node is L; where
for any node i, L is defined as:

10 i=i

L(i)=I L(i/2) i is even

L(i/2)+V(i-i) i is odd

11

4 22

0118 2 9 2 10 11 0 12 13 13 14 6 15 20

Figure 1.5

One may easily verify that if i is a circular node
representing A(j), then L(i) = 2 A(p). Hence, from the

i< <
L values of the circluar nodes, o.-4 2an easily obtain all
the partial sums. Our first algorithm for the partial sums
problem is PSUMi (Figure 1.6). This algorithm simply com-
putes the V(i)s in the first pass and the L(i)s in the
second. Finally, the S values are computed.

As in the case of SUMi, the parallelism of lines 4 and
8 requires only n/2 PEs. Using n/2 PEs, line 2 can be done
in two steps. Actually, procedure PSUMi can be run in O(log
n) time using only I n/log n I PEs. The idea here, is the
same as that for SUM!.

The perfect shuffle connection scheme seems to be well
suited to the binary tree method as it contains an underly-
ing complete binary tree. If we let the PEs represent nodes
in a complete binary tree, then the left child of PE i is PE
2i, and the right child is PE 2i + 1. Since 2i -

Im m
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line procedure PSUMi (A,n S)

//comp te S(i) - . A(j), u<i<n//

i k <- log n _1.f<-2; t<-2*(n-j);p<-n-i
2 V(p+i)-<- A( i+t-1) mod n + 1), 1<i<n
3 for i <- k down to 0 do//add~by Tleels/
4 V(j)<- V(23T -V(23-!), 2 <j<min{p,2 +-ii
5 end for

//compute Ls//
6 L(i) <- 0
7 for i <- ito k+1 do//compute L by levels//
8 L(j) <- if j even then L(j/2)

-- e seL(j/2)+V(j-1)
2 endi U+
2.<j<min +n-i

9 end for
io S((iT-i)mod n + 1) <- L(p+i)+V(p+i),<i<n
ii end PSUMi

Figure 1.6

SHUFFLE(i), and 2i + 1 = EXCHANGE(SHUFFLE(i)); the downward
pass is easily carried out. Also, PARENT(i) = UNSHUFFLE(i) ,
i even and PARENT(i) - UNSHUFFLE(EXCHANGE(i)), i odd. So the
complexity analysis for SUMi, and PSUMi hold even when a PSC
is used. For a binary tree with n leaves, a PSC with n-i
PEs is needed, however.

By using a slightly different computation tree and
rearranging the order of computation, one can arrive at a
one pass algorithm for the partial sums problem. Let
A(0:n-1) be the n numbers kto be added. Let S(0:n-i) denote
the partial sum array. A 2 _block of array elements consists
of all array elements whose indices differ only in the least
significant k bits. The 2 1-blocks of A 0:10) are
(0,±],[2,3],(4,5],[6,7],[8,9], and (10]; the i -blocks are
[0,1,2,3], (4,5,6,7], and (8,9,10]; ek 1 Two 2 -blocks are
sibling blocks iff their union is a 2 -block. Thus, [0,1]
and (2,3] are sibling blocks; so also are [0,1,2,3] and
(4,5,6,7]. However, (2,3] and [4,5] are not sibling blocks.
The one pass algorithm compdtes S by first computing the
partial sums for all 2 -blocks of A. In this case,
S(i)-Aji). Next, S is computed for all 21-blocks; thin for
all 2 -blocks; ... ; and finally for the single 2 -block
where q= log 2 n I.

Let X and Y be two sibling 2k-blocks. Let X be the
block containing all k~iements with bit k equal to 0. The
union of X and Y is a 2 -block. Relative to this 2 -

block, the S values for elements of X are the same as with
respect to the corresponding 2 -block. The S values for
elements in Y however change by the sum of the A elements
correspondinR to the 2 -block X. Figure 1.7 gives the S
values and 2 -blocks when S values are computed by blocks as

Z- -.
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described above. Blocks are enclosed in brackets.

S (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
k4

0 1 2 34
0 [1 [ 2] [2 3] [1 2] [1 11 3] (3 7] [21

0 1 2 3 4

2 [1 2 4 7] [1 3 4 6] [3 7 9]
v t T T TtV i2 3 4

3 [1 2 4 7 8 10 11 13] [3 7 9]
T T T
0 1 2

4 [1 2 4 7 8 10 11 13 16 20 22]

Figure i.7 Computing S by blocks

The updating of S when going from one block size to the
next is easilYkperformed if we keep track of the sum of the
A(i)s in each 2 -block. For this purpoPe, we use an auxil-
liary array T. T(i) ior i in a given 2 - block (except pos-
sibly the rightmost 2 -block) is the sum of all the A(i)s in
that block. Before we can formally specify the partial sums
algorithm, we need a processor assignment scheme. Figure 1.7
shows a processor assignment scheme for our example. Pro-
cessors are assigned only to compute the S values that
change. Thus, when k=0, PE(0) computes S(i); PE(i) computes
S(3); PE(2) computes S(5); and PE(4) computes S(9). When
k=3, PE(0) computes S(8); PE(i) computes S(9); and PE(2)
computes S(i0). PEs 3 and 4 are idle when k-3. Let ... i 3
i2  i. i0 be the binary representation of i. The PE assign-
ment iule is obtained by defining the function f(i,j)
S.i j+1 i ijOi ... i .  For any k, PE(i) computes

kS(f(i,k)+2 ) provided that this index of S is no more then
n-1. The one pass partial sums algorithm is stated as pro-
cedure PSUM2 (Figure 1.8). PSUM2 uses I-n/2 1 PEs indexed 0
through I_n/2_ I - .

It should be easy to see that our earlier ideas regard-
ing the use of only I-n/log n-1 PEs carry over to the case
of PSUM2. So, PSUM2 can be modified to obtain an O(log n)
one pass algorithm using only I-n/log n-I PEs. For the
modified algorithm, EPU=O(1).

. .



f 4

* - i3 -

line procedure PSUM2 (A,S,n)
77n pass partial sums//

i declare A(0:n-i),S(0:n-i), T(0:n-I)
2 for each PE(i) do in

77-initialize S and T for 2"-blocks//
3 j<- f(i,0)
4 S(j)<- T(j)<- A(j)
5 S(j+i)<- T(j+il<- A(j+1)
6 for k<- 0 to I log n 1-ido

7/combine- 2 -blo9ks//
7 j<- f(i k)
8 if j+2 <n hen

9S( (+2 ) <- S(j+ 2k)+T(j)
10 T(j+2k )<- T( +2 )+T(j)
ii T(j)<- T(j+2
12 endif
3 end for

14 end for
15 end PSUJM2

Figure 1.8 One pass partial sums algorithm

2. Parallel Scheduling Algorithms

In this section, we develop fast parallel algorithms for a
variety of scheduling problems. Each of these algorithms is
arrived at using the binary tree method of section 1. We
shall refrain from providing explicit formal statements such
as those of Figures 1.4, 1.6, and 1.8, of these algorithms.
Instead, we shall describe the algorithms informally and
illustrate them with an example. One should note that we
are interested in both the complexity as well as the EPU of
the algorithms developed.

All the scheduling problems to be discussed assume that
n jobs have to be scheduled on m identical machines. Asso-
ciated with job i is a four-tuple (r., di, pi! w.) where riis its release time; d. is its due ime; p. is its process-

renquirement; and w. is its weght, <i<h. The process-
ing of no job can co mence until its release time. No job
can be scheduled for processing on more than one machine at
any time instant. Job i is completed after it has been pro-
cessed for p. time units. If a job does not complete by its
due time, it is tardy. In a nonpreemptive schedule, job i
is scheduled to process on a single machine from some start
time s. to the completion time s.+p., 1<i<n. In a preemp-
tive schedule it is permissable to'spfit The processing of
jobs over machines as well as over non-adjacent time inter-
vals.

. . . . . . . .. . .. .. , ,. -., " . - .. .. , ., .% : ; .,: " : " .I
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2.i Minimizing Maximum Lateness

Let S be a schedule for the n jobs (r d., p., w.). Let c.
be the completion time of job i. 4el tenss 6f job i ii
defined to be c.-d.. The maximum lateness, L , is
max~c.-d). We wish to obtain an m machine nonp~lmtive

s~hedule that minimizes L This problem is known to be
NP-hard [22]. So, we sff! consider only special cases of
this problem, i.e., cases for which a polynomial time
sequential algorithm is known. Specifically, we shall con-
sider the following cases: (i) Pi-1, i<i<n and all release
times are integer; (ii) m-i (i.e, the n-umber of machines is
1) and preemption is allowed; and (iii) cases (i) and (ii)
with precedence constraints. These three cases are con-
sidered in sections 2.1.1, 2.1.2, and 2.1.3 respectively.
Since the weights w. play no part in the Lmax problem, we
shall only consider triples (ri, di, pi) in these sub-sections.

2.i.1 p=i, 1<i<n and all release times are integer.

Jackson [16] has shown that when m=1 and all jobs have the
pame release time, L is minimized by scheduling the jobs
in nondeacreasing ord fxof due times. Horn [14] and Baker
and Sue [3] have generalized this method to the case when
mi- and all jobs do not have the same release time. An
optimal one machine schedule is now obtained by assigning
jobs to time slots, one slot at a time starting at time 0.
When we are considering the time slot [i,i+i], we select a
job with least due time from among the set of available
jobs.( The set of available jobs consists of all jobs not
yet selected that have a release time less than or equal to
i.) If this set is empty, then this slot is left idle.
This strategy can be implemented to run in O(nlog n) time on
a single processor computer. Blazewicz [6] has extended
this idea to the general case, m>i. His algorithm also
schedules by time slots. Let J be-the set of jobs aVailable
when slot [i,i+i] is to be scheduled. If IJI<m then all the
available jobs are processed in [i,i+1]. If IJI>m, then we
select m jobs with least due times.

In developing the parallel algorithm, we first consider
the case Mi-. The algorithm of Horn is readily seen to be
highly sequential. No decision concerning time slot [i,i+1]
can be made unless we know the jobs that are available at
this time. This of course depends on which jobs were
selected for the earlier time slots. So, a straightforward
adaptation of Horn's algorithm would need n steps (one for
each time slot). The overall complexity of the resulting
parallel algorithm would be fl(n). This is not very good. We
are really interested in algorithms with complexity O(log kn)
for some k.

I M
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Despite the highly sequential nature of Horn's method,
his idea can be 2used to arrive at a parallel algorithm with
complexity O(log n). 'This is accomplished using the binary
tree method. It is helpful to consider an example. Suppose
we have 14 jobs with r., and d i as specified in Figure
2.1(a). The first siep in our proposed parallel algorithm
is to sort the jobs by release times (into nondecreasing
order). Jobs with the same release time are sorted into non-
decreasing order of due time. Let R., R2 1 ..., and R be the
k distinct release times of the n jobs (R.<R2 <... <kk). Let
R .=oo. For our example, the sorted sequence of jobs is
sn~n in Figure 2.1(b); k-4; and Ri 2, R2 .5, R3 '6, R4 =9, and
R 5=00.

1 1 2 3 4 5 6 7 8 9 10 11112 1 13114

r 5 2 2 512 2 6 2 5 6 9 9 919

d 8 17 17 10 3 6110 1512 121614 15 16_

(a)

i 5 8 6 2 3 1 4 9 7 10 12 13 11 14

r 2 2 2 2 2 5 5 5 6 6 9 9 9 9

d 3 5 6 7 78 0 12 7 17 11 15 16 16

(b)

Figure 2.1

Next, a binary computation tree is associated with the
problem. The tree used is the unique complete binary tree
with k leaves. With each node in this tree, we associate a
time interval (tL,tR). Assume that the leaf nodes are num-
bered 1 through k, left to right. The ith leaf node has
associated with it the interval (R.,Ri+ ), i<i<k. The inter-
val (t ,tR) associated with a nonliaf n~de, N,- is obtained
from he intervals associated with the two children of this
node. tL (N)- t (left child of N) and t (N)- t (right child
of N) . For bur example, the binary comutation tree
together with time intervals is shown in Figure 2.2.

A schedule that minimizes L is now obtained by mak-
ing two passes over this compuIifion tree. The first pass
is made level by level towards the root; the second is made
level by level from the root to the leaves. Let P be any
node in the computation tree. Let the interval associated
with P be (tL'tR). The set of available jbs, A(P) for P
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(2,6) ,(6,-)

(2,5) (5,6) (6,9) (9,®)

Figire 2.2 Computation tree for the example of Figure 2.1.

consists 6xactly of those jobs that have a release time r.
such that t <r.<t .  This set of jobs may be partitione
into two subsets, rtspectively called the used set and the
transferred set. The set of used jobs cons sts exactly of
those availabT-ejobs that will be scheduled between tL and
tR for the Lmax problem defined by the job set A(P). The
remaining jobs in A(P) make up the transferred set. For our
example, the set of available jobs for the node representing
the interval (2, 6) is 15, 8, 6, 2, 3, 1, 4, 9}. If Horn's
algorithm is used on this set of jobs, then jobs 5, 8, 6,
and 2 will get scheduled in the interval from 2 to 6.
Hence, the used set is (5, 8, 6, 2} and the transferred set
is {3, i, 4, 9}.

In the first of the two passes mentioned above, the
used and transferred sets for each of the nodes in the com-
putation tree are determined. For a leaf node the used and
transferred sets are determined by directly using Jackson's
rule. If P is a leaf node for the interval (t ,t ), then
the used set is obtained by selecting jobs fro& t~e avail-
able job set A(P) for P in nondecreasing order of due times.
Since jobs with the same release time have already been
sorted by due times, the used set consists of the first
min( IA(P) I , t -t k jobs in A(p) . The remaining jobs form
the transferreg s t. For our example, for the interval
(2,5), the set of used jobs is (5,8,6} while the set of
transferred jobs is 12,31; for the interval (5,6}, the used
set is fi) and.the transferred set is (4,9); etc. Figure
2.3 shows the used and transferred sets for each of the leaf
nodes for our example. The solid vertical line separates
the used jobs from the transferred jobs.

L.A.,j""
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For a nonleaf node, the used and transferred sets may
be computed from the used and transferred sets of its chil-
dren. Let P be a nonleaf node and let U , UR, TL, and T be
the used and transferred sets foI it! left and -ight 2c il-
dren respectively. Let (t ,t ), (t , t ), and (tr, t ) be
the intervals, respecti el , asociated with.hode P, i~s
left chil , and its right child. Clearly, t -t ; t= t ;
and t -=t It should be clear that if Horn s k1gorithm Ts
used t§ s hedule the available jobs A(P) then the jobs in U
will be the ones scheduled from t to tI. The set of job6
scheduled from tI, to t will be so e sub et of T U U
Let Q denote the min{I. U URI, t -tg] jobs of TL b U th§t
have least due times. I is Hot t~o §ifficult to see that Q
is the subset of A(P) hat is scheduled by Horn's algorithm
in the interval t to t . Hence, the used set for P is UL U
Q and the transferred s~t is T U A(P) - Q. Observe that if
U U , T t, and T are in nond5creasing order of deadlines,
then he et Q cal be obtained by merging tygether U and T
and selecting the first min{IT U U I, t -tR) jobs fgom th.
merged list. Q can next b merged wfth UL to obtain the
used set in nondecreasing order of due times. Another merge
yields the transferred set in nondecreasing order of due
times. Figure 2.3 gives the used and transferred sets in
nondecreasing order of due times for all nodes in our exam-
ple computation tree.

In the second pass, the used sets are updated so that
the used set for a node representing the interval (t ,tR) is
precisely the subset of jobs (from amongst all n jobk) that
is scheduled in this interval by Horn's algorithm when solv-
ing the L problem for the entire job set. This is done by
working R86n the computation tree level by level starting
with the root. The used set for the root node is unchanged
in this pass. If P is a node whose used set been updated
then the used sets for the left child and the right child of
P are obtained in the following way. Let the interval asso-
ciated with P be (tr,tR) and .let the interval associated
with its left chilb be (t ,t ). Let V be the subset of the
used set of P consisting shle~y of jobs with a release time
less than t . Let U be the current used set (i.e. the one
computed in the first pass) for the left child of P. Let W
be the set obtained by merging U and V (note that U and V
are disjoint and t~at both are ordered by due times). The
new used set, .U , for the left child of P consists of the
first min[IWI, tR-t jobs in W. The used set for the right
child of P consiisof all jobs in the used set for P that
are not included in U1 .

Let us now go through this second pass on our example.
Let P be the root node. (t ,t )= (2,0o) and V- . Hence,
the new used set for the left &hid of P is simply its old
used set. The used set for the right child of P becomes [3,
7, 1, 4, i2, 9, 13, 11, 14, 101. Now, let P be the right
child of the root. (tL,tR)- (6,oo); V-13, 1, 4, 91; W{3,
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5 623 7 1 412 9 13 11 14 10

2 2 2 2 2 6 5 5 9 5 9 9

3 5 6 7 7 7 8 0 112 5 6 17

5 8 6 2 3 1 4 9 7 12 13 11 14 10

II2222255 5 6 19 9 9 9 6

35677810 12 711 15 16 16 17
(2,6) (6,)

used transferred [used tra sferredi used transferred used

5 8 6 2 31 4 9 7 10 12 13 11 14

r 2. 2 2 2 2 5 5 5 6 69 9 9 9
d 356 77 8 10 12 7 111 15 16 16

I I. LJ LL _ -(2,5) (5,6) (6,9) (9,-)

Figure 2.3 First pass of the Lmax algorithm

7, 1, 4, 9, 101. The new used set for the left child of P
is 3, 7, i}. The new used set for the right child of P is
14, 12, 9, 13, ii, 14, 10). Figure 2.4 shows the new used
sets for all the nodes in the computation tree.

From the definition of an updated used set, it follows
that the schedule defined by the leaf nodes (for our exam-
ple, this is: job 5 at time 2, job 8 at time 3, job 6 at
time 4, job 2 at time 5, etc.) minimizes L . The correct-
ness of the node updating procedure is eas'?f seen. If P is
the root node, then it represents the interval (R ,oo). All
jobs are necessarily scheduled in this interval y Horn's
algorithm. Hence, the updated used set for this node con-
sists of all n jobs. Now, let P be any nonleaf node for
which we have obtained the updated used set. Assume that
this is in fact the correct updated used set, i.e., it con-
sists exactly of those jobs scheduled by Horn's algorithm in
that interval. We shall show that. the updating procedure
gives the cofrect used sets for the left and right child of
P. Let tL, t , t , V, W, U, and U be as defined in the
updating pro edu e. Let X be the used set for P. From the
way the first pass works, it follows that only jobs from N-
U U V are candidates for scheduling by Horn's algorithm, in
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5 8 6 2 3 7 1 4 12 9131140

2 2 2 2 2 6 5 5 9 5 9 9 9 6

3 5 6 7 7 7 8 10 11 12 15I16 16 17

(2 6) 6-
5 8 6 2 3 7 1 4 12 9 13 11 14 10

2 2 2 2 2 6 5 5 9 5 9 9 9 6

3 5 6 7 7 7 8 "10 11 12 15 16 16 17

25) 5,6) (6.9) .L91-.....
586 2 37 1 4 12 9 13 11 14 10

222 2 2 6 5 9 5 9 9 9 6

35 6 7 7 8 10 11 12 15 16 16 17

Figure 2.4 Results of second pass.

the interval (tL i). It is a simple matter to see that
only min{JWI, tt } of these can be schedulded in this
interval; further thesh jobs are selected in nondecreasing
order of due times. Hence, U is correctly computed. From
this i follows that the used set for the right child must
be X-U

Having established the correctness of our parallel pro-
cedure, we are ready to determine its complexity as well as
the required number of PEs. The first step2 consists of
sorting the jobs. This can be done in O(log n) time using
IJn/2 I PEs (4]. In both the first and second passes over
the computation tree we are essentially performing a fixed
number of merges of ordered sets at each node. Using Batch-
ers bitonic merge scheme ([4] ,[18]), a p element ordered
set can be. merged with a q element ordered set using
I_(p+q)/2_1 PEs in O(log(p+q)) time. Hence, t~e overall
complexity of our parallel L algorithm is O(log n). The
number of PEs usel is I n/2 T' The EPU of this algorithm is
O(nlog n/(n/2 log n)) -O(l7log n).

4.. U........................ • .. .. .... . . .. "
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Our parallel L algorithm for the case m=i easily
generalizes to them se m>i. The two passes over the compI-
tation tree are changed so that all uses of tR-t and tI-t.
are replaced by m(t -tL) and m(t -t ) respeciivey. Thk
schedule is obtained fpom the updateg uked sets of the leaf
nodes. The ith job in this used set is assigned to the i
mod m + ith machine.

2.i.2 m-i and preemptions permitted

Horn's (14] algorithm for this problem is quite similar to
the sequential algorithm for the case discussed in section
2.1.i and also has a sequential complexity that is O(nlog
n). A schedule with minimum L is obtained by starting at
the first release time and considering an available job, .i,
with least due time. Let the processing time of this job be
p. Let the time to the next release time be t and let the
current time be T. Job i is scheduled from T to T +
min{p,tI. The current time changes from T to T + min{p,t}
and the remaining processing time for job i becomes p-
minip,t}. Next, from the available job set at the current
time T a job with minimum due time is selected for process-
ing, and so on.

The parallel algorithm of section 2.1.1 can be adapted
to this case. Jobs are sorted as before and two passes are
made over the tree. In the first pass, used and transferred
sets are computed for each node. In the second pass, the
used sets are updated. For the first pass, the used and
transferred sets for the leaf nodes are obtained by comput-
ing the partial sum sequence for the ordered set of avail-
able jobs for each leaf (see the algorithm of Figure i.8).
Next, for each leaf we determine the first partial sum, j,
(if any) that exceeds the value of tR -t for that node. If
there is no such partial sum, then all the available jobs
are used. If there is, then the used set consists of jobs
i, 2, ..., j-i together with a fraction, f, of job j. This
fraction is chosen such that the sum of the processing times
of jobs 1, 2, ... , j-i and f times that of job j equals t R
t . The transferred set consists of i-f of job j together
with the remaining jobs.

For nonleaf nodes, the used and transferred sets are
computed from the corresponding sets for the left and right
children. Let P be a nonleaf node. Let Q and S be its left
and right children respectively. The used set for P is
obtained by merging (according to due times) the transferred
set of Q with the used set of S, to obtain W. The partial
sums for W are computed and W is partitioned into Wi and W2
such that the sum of the processing times for thl jgbs in WI
eq~all minisum of processing times in W, t -t where
(tLtR) is the interval associated with node S. Bbserve that
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this partitioning of W may require us to split one of the
jobs in W in the same way as was done for leaf nodes. The
used set for P is obtained by merging together Wi and the
,ised set for Q. The transferred set for P is obtained by
merging together W2 and the transferred set for S.

The updating of the seond pass is also carried out in a
manner similar to that used in section 2.i.i. The updated
used set for the root node consists of all n jobs. Let P be
a node for which the updated used set has been computed.
Let (tTtR) be the interval associated with P. Let Q and S,
respec ively, be the left and righl children of P. Let the
interval associated with Q be (tr,tR) . Define V to be the
set of all jobs in the used iet of P that have a release
time less than t Merge V and the current used set of Q
together. Let he resulting ordered set be W. Compute the
partial sums for W and partition W into WI and W2 as was
done in the first pass. Once again, it may be necessary to
split a job into two to accomplish this. The used set for Q
is Wi. The remaining jobs in the used set of P (including
possibly a remaining fraction of a job that went into WI)
constitute the used set for S.

Once the updated used sets for the leaves have been
computed, a schedule minimizing L is obtained by schedul-
ing the used sets of the leaves in the intervals associated
with them. For each such interval, the scheduling is in non-
decreasing order of due time.

The correctness of the algorithm described above fol-
lows from the correctness of Horn's algorithm and the dis-
cussi~n in section 2.1.1. The algorithm can be run in
O(log n) time using at most 3n/2 PEs. Note that because
jobs may split, we may at some level have a total of n+2k
jobs (or job parts). Recall that k denotes the number of
distinct release times and that at each node at most one
additional job split can occur. Because of the effective
increase in number of jobs, more than I n/2 I PEs are needed
here, while only I n/2 I were needed in bection 2.i.1. The
EPU is still 0(1/lo- n)-.

Example 2.i: Figure 2.5 gives an example job set. Since
the job4 -are already in the order desired, we may begin
directly with the first pass over the computation tree.
Figure 2.6 gives the result of the first pass. Figure 2.7
gives the restlt of the second pass. [

F.¢
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Sorted input
i 1 2 3 14 5 6 7 8 ;9 10

Pi 2 2 6 6 6 6 11 20 20 20

4 25 8 14 22 25 14 21 24 30

Pi 2 1 2 8 4 1 2 1 3 8]

Figure 2.5

1 3 41 42 7 8 5 912 6 10

2 6 6 6 11 20 6 20 2 6 20

4 8 14 14 14 21 22 24 25 25 30

2 2 3 5 2 1 4 3 1 1 8

1 3 41 2 42 5 6 7 8 9 10

2 6 6 2 6 6 6 11 20 20 20

4 8 14 25 14 22 25 14 21 24 30

2 2 3 1 5 4 1 2 1 3 8

used used used used

± 1 2 3 41 42 5 6 7 8 9 10

r 2 2 6 6 6 6 6 11 20 20 20

i  4 25 8 14 14 22 25 14 21 24 30

(262 1 2 3 5 4 1 2 1 3 8

Figure 2.6

i 'L" .V ., ..- - . .-. .
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11 3 4 4 7 8 5 I9 2 6 10L

r* 2 616 6 11 20 6 20 2 b 0d
d1  4 8114 14 14 21 22 24 25 25130

P 2 2 3 5j2 1 4 3[1

1 3 47, 24 4217 j8 5 9 6 10

2 6 6 2 6 1120 6206 [20

4 18 _4 25 14 114 21 22 24 25 30

2 3 41 42 7 51 8 52 96 10

2 2. 6 '6 6 11 6 20 6 t20 16 20

4 25 8 14 14 14 22 21 22 24125 301

[21 r23 5 22 1 2 3L., 1

Figure 2.7

2.1.3 Procedence Constraints

Suppose that the set of jobs to be scheduled defines a par-
tial order <. i < j means that the processing of job j can-
not commence until the processing of job i has been corn-
pleted. Let (r. d.,p) be the release, processing, and
due times of job E. MIfM the release and due times as
below:

r maxti, max~ p)
i<j

dL - max(d., max~d.- H1

Rinooy Kan [31] has observed that a schedule minimizing Lma
when p.-i the r s are integer, and < is a partial order can
be obtiied by simply using Horn's algorithm (cf. section

imaw
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2.i.i) on the jobs (r.,Pi-,d 1<i<n with no precedence
constraints. Since thi zodfiedlreleisi and due times can
be computed in O(log n) time using the critical path algo-
rithm of [9], a schedule minimizing L in the presnce of
precedence constraints can be obt'fTied in O(log n) time
(m=i,p:=i) 3  The number of PEs needed by the algorithm of
9 is n /log 2n, so the EPU of the resulting algorithm is

O(n log n/(n log n))) =o(I/(n2og n)).
When m=!, a partial order < is specified, and preemp-

tions are allowed, a schedule minimizing Lmax can be
obtained by computing modified release and due times as
above and then using the algorithm of section 2.1.2 on the
modified jobs. The resulting algorithm has complexity
O(lo? n); uses O(n /log n) PEs; and has an EPU that is
0 ( nlogn)•

2.2 Minimizing Total Costs

Let (r., d., p., w. , 1<i<n define n jobs. Let S be any one
machine schedule or these jobs. The completion time c. of
job i is the time at which it completes processing. Jo i
is tardy iff c. > d.. The tardiness T. of job i is

1 1 1max{0,c.-di1. When p.=1, Horns [14] algorithm described *in
section 2.1.2 also finds a schedule that minimizes w hin

A schedule that minimizes Ywic. when pi =i, i<i<n and

m=1 can be obtained by extending mith's rule (sei Rinnooy
Kan (31]). Smiths rule [35] minimizes Sw.c i when ri=0,
i<i<n. It essentially schedules jobs in nonsecreasing order
of Pi/w. The extension to the case when p.=1, 1<i<n and
the r. may be different (but integer) wo ks in -ollowing
way. cheduling is done time slot by time slot. From the
set of available jobs for any slot, a job with least i/w.
(or equivalently, maximum wi) is selected and scheduled
this slot. This procedure is quite similar to that used for
the L problem with p.-1 (see section 2.1.1). The only
diffe'Plce is that mith's rule replaces the use of
Jackson's rule 2.1.1. The used and transferred sets are
now kept in nonincreasing order of weights.

Since the preemptive schedule obtained by the algorithm
of section 2.1.2 also minimizes 5Ti, this problem is easily
solved in parallel. When lci is to e minimized, m=i, and
preemptions are permitted, the algorithm of section 2.1.2
can can still be used. This time, however, the used and
transferred sets are maintained in nondecreasing order of pi
rather than di [3i].

_______________
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Number of Tardy Jobs

Now, let us consider the problem of minimizing the number of
tardy jobs when m=i and all jobs have the same release time.
Without loss of generality, we may assume that all jobs have
a release time r .0. The fastest sequential algorithm for1

this problem is due to Hodgson and Moore [23]. It consists
of the following three steps:

Step i: Sort the n jobs into nondecreasing order of due
times. Initialize the set R of tardy jobs to be
empty.

Step 2: If there is no tardy job in the current sorted
sequence, then append the jobs in R to this
sequence. This yields the desired schedule. Stop.

Step 3: Find the first tardy job in the current sorted
sequence. Let this be in position j. Find the job
with the largest processing time from amongst the
first j jobs in this sequence. Remove this job
from the sequence and add it to R. Go to step 2.

The time complexity of the Hodgson and Moore algorithm
is O(nlogn). As in the case of the Hodgson and Moore algo-
rithm, our parallel algorithm for this problem begins by
sorting the jobs ...to nondecreasing order of due times.
Within due times, jobs are sorted by p.. Let D., D,, ... ,
andD (D.<D<...<Dk) be the k distinct due timis asiociated
with he A jgbs. Let D =O. We next consider the unique
complete binary tree that has exactly k leaves. If the leaf
nodes of this tree are considered from left to right, then
with the ith leaf we associate the interval (D. ,D.). The
interval associated with a nonleaf node is (t.,i f iif there
exists t such that (t-,t ) and (t ,t ) areI thi intervals,
repectively, associated itR its lefi ind right children.
If the interval (t.,t ) is associated with some node P, then
all jobs with a due t~me d such that, t1 <d<t 2 are associated
with that node.

The set J(P) of jobs associated with any node P may be
partitioned into two sets S(P) and R(P). S(P) and R(P) are
defined in the following way. Consider the problem of
obtaining a schedule that minimizes the number of tardy jobs
for J(P) assuming that all jobs in J(P) have a release time
t. ((t ,t ) is the interval associated with P). S(P) is the
s~t of'nog tardy jobs in this schedule while R(P) is the set
of tardy jobs. It is well known [i6] that if all jobs in
S(P) are scheduled in nondecreasing order of due times then
no job in S(P) will be tardy. From the definition of S and
R, it is clear that S(root) defines the set of non tardy
jobs in a schedule for all n jobs that minimizes the number
of tardy jobs. These jobs may be scheduled at the front of
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the schedule in nondecreasing order of due times. The
remaining jobs can be scheduled, in any order, after the
jobs in S(root).

For a leaf node P, S(P) and R(P) are easily compited.
First the partial sum sequence for J(P) is obtained (recall
that the jobs associated with P are in nondecreasing order
of pi ) . Let the interval associated with P be (tft ). All
jobs with a partial sum that is less than or eq:a t3 t 2tare in S(P). The remainder are in R(P).

Let us consider an example. Figure 2.8(a) shows a set
of i jobs. In Figure 2.8(b), these jobs have been ordered
by due times and within due times by p.. There are four
distinct due times, and we have D(0:4)10,8,i5,17,25). Fig-
ure 2.9 shows the complete binary tree with four leaves.
The interval associated with each node is also given. The S
and R sets for each of the leaf nodes are also shown.

i 1 2 415 6 7 8 910

P 4 3 5 6 4 3 3 4 3 3

d 15 25 8 8 15 25 17 25 8 25
(a)

± 9 3 4 1 5 7 2 6 10 8

P 3 5 6 4 4 3 3 3 3 4

d 8 8 8 15 15 17 25 25 25 25

(b)

Figure 2.8

The computation of S and R for a nonleaf node P is done
using the S and R sets of its left child Q and its right
child T. Let the interval associated with Q and T, respec-
tively, be (t ,t R) and (t' tR). It is clear that S(T) c
S(P) and that R Q) c R(P). To get the remaining jobs in
S(P), we merge together the jobs in S(Q) and R(T). Let the
resulting ordered set be W. The partial sum sequence of the
processing times of the jobs in W is next computed. Let V
be the subset of W consisting yf jobs that have a partial
sum sequence no more than t t.. Let XW-V. Clearly, V c
S(P). However, V U S(T) may not iqual S(P) as it is possi-
ble for (at most) one of the jobs in X to also be in S(P).
To determine this job, we first determine for each due time
D t1 < Di < tR ' a job in X that has least processing timeDi , t R _ O
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9 7 2 6 10 1 85

3 3 3 3 33 4 j3 4

8 17 25 25 25 15 15 25 8 1

(0,25)

9 1 5 3 4 2 6 10 7 8

3 4 4 5 4 3 3 3 3 4

di 18 8 15 15 .25 25 25 17 25

(01)(15,25) -

S RS R R R

1 9 3 4 1 5 7 26 10 8

Pi3 5 6 3 3 3 4

d.i 8 8 87 15 151 25 2

(0,8) (8,15) (5,17) (17,25)

Figure 2.9

amongst all jobs in X with due time D_. If there are no
jobs in X with a certain due time D., then no job
corresponding to this due time is selected. Let the set of
jobs determined in this way be U - {J,J,,. ,J . Let

SL - 1 p. For each due time D., tR <D i <" t deter-
Rt L R i ?

mine the ls4 Ym of the processing times of all jobs in S(T)
with due tjmes no more than D.. Let this sum be Yi. Let .
- Di-Yi-tR. Now, compute y -min[.}. It can be seen that

the job (if any) in U with due -tme Di can be in S(P) only
if its processing time is less than or equal to 6 + ).. This
information is used to remove from U those jobs that cannot
possibly be in S(P). From the remaining jobs, the job r
with minimum processing time is selected and added to S(P).
R(P) - R(Q) U (X-{r}). The S and R sets for all nonleaf
nodes in our example are specified in Figure 2.9.

The sets U and (6, can be computed in O(log n) time
using O(n) PEs if and R are available in nondecreasing
order of due times (so it is necessary to keep two copies of
each S and R; one ordered by processing times and one by due
times). The Y.s may be computed in O(log n) time using
0(n/log n) PEA using a modified version of the partial sums

-t& M ,--.,
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algorithm. Merging S(Q) and R(T) by processing times or by
d-e times requires O(log n) time and n/2 PEs. So, all the
work needed to be done at any level can be accomplished in
O(log n) time with O(n) PEs. The oveiall complexity of our
parallel algorithm is therefore O(log n) and its EPU is
0(1/log n).

Job Sequencing With Deadlines

The problem of minimizing the sum of the weights of the
tardy jobs is commonly referred to as the job sequencing
with deadlines problem [i5]. It is assumed that r. 0, and
p=i, i<i<n. When the assumption p.-i is not iade, the
piobem "s-known to be NP-hard [17]. We ihall now proceed to
show how the binary tree method leads to an efficient paral-
lel algorithm for this problem. We shall explicity consider
only the case mi-. When m>i, the problem can be transformed
into an equivalent mi- problem. Further, all the dis are
assumed to be integers.

An O(n log n) sequential algorithm for this problem
appears in [15]. This algorithm builds an optimal schedule
by first determining the set of jobs that are to be com-
pleted by their due times. This is done by considering the
jobs in nonincreasing order of weights. The job currently
being considered is added to the set of selected jobs iff it
is possible to schedule this job and all previously selected
jobs in such a way that all of them complete by their
respective due times.

In our parallel algorithm, we begin by sorting the jobs
by due times. Jobs with the same due time are sorted into
nonincreasing order of weight. Figure 2.iO(a) shows an
example job set. Figure 2.10(b) shows that result of sort-
ing this job set. Let the distinct due times be D.,
D ,...,D (D1 D<D ..<D ). Let D -0. The computation trie

use I the un que complete binafy tree with k leaves.
Consider these leaves left to right. With leaf i, we asso-
ciate the interval (D ,D.), 1<i<k. Let P be a nonleaf
node. Let the inter ;as issocTaTed witb its left and right
children, respectively be (t ,tR) and (t ,t ). The interval
associated with P is (t,tRT. The inte'va" associated with
the root is therefore (0,DY. Figure 2.11 shows the compu-
tation tree for our example. The interval associated with
each node is also shown.

The set J(P) of jobs associated with node P consists
precisely of those jobs that have a due time d. such that
t <d i<t where (tL,tR) is the interval associateA with P.
With elch node P, we may also associate two sets of jobs,
S(P) and R(P). Consider the job sequencing with deadlines
problem defined by the job set J(P). Assume that all jobs
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1 1)2 3 4 5 6 7 8 9 10 11 12 13 14;

d 3 6 6 3 6 1 6 6 7 3 7 3 7 6

w 50 55 65 40 70 20 60 80 75 60 85 30 50.1

(a)

i 6 10 1 4 12 8 5 3 7 2 14 11 9 13

di  1 3 3 3 3 6 6 6 6 6 6 7 7 7

w. 20 60 50 40- 30 80 70 65 60 55 10 85 75 50
(b)

Figure 2.10

have a release time tL  S(P) consists exactly of those jobs
in J(P) that will be scheduled to finish by their due times
in an optimal schedule for J(P). R(P) consists of the
remaining jobs in J(P). Once S(root node) is known, the
optimal schedule for the overall job sequencing problem is
also known.

For the leaf nodes, S(P) and R(P) are easily obtained.
For each leaf node P, S(P) consists of the tR tL jobs of
J(P) with largest weight (see Figure 2.11). If P is a non-
leaf node, S(P) and R(P) are computed from the S and R sets
of its children. Let Q and T, respectively, be the left and
right children of P. Let the intervfls associated with Q and
T, respectively, be (tL, tA) and (t , t ) Let W = S(9 ) U
R(T) and let V be the set consistifg ot the minfiWi, t -t J
jobs of W with largest weights. It is not too difficult io
see that S(P) - V U S(T. Hence R(P) -J3(P) -S5(P) = R(Q) U
(W-S(P)). The S and R sets for each of the nodes in our
example are also given in Figure 2.±i.

Once the S and R sets have been computed, the optimal
schedule can be obtained by sorting S(root) by due times and
appending the jobs in R(root) to the end. For our example,
the optimal schedude is ±0, 8, 5, 3, 7, 11, 9, 2, i, ±3, 4,
12, 6, ±4. The sum of the weights of the tardy jobs is 255.

Since the S and R sets are maintained in nonincreasing
order of weights, the merging required at each node to com-
pute S and H can be carried out using a parallel bitonic
merge. Hence, all the computation needed at each level of
the computation tree can be performed in O(log n) time using
n/2 PEs. The overall complexity for our job sequencing with

J:I
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11 8 9 5 3 10 7 2 1 13 4 12 6 14

7 6 7 6 6 3 6 6 3 7 3 3 161

85 80 75 70 65 60 60 55 5050 40 30 20 10

(0,7)

1014 126 1189 5 37 21314

3 3 3 3 1 7 6 7 6 6 6 6 7 6

60 50 40 30 20 85 80 75 70 65 60 55 50 10

S S R S R S R

6 101 4 12 8 5 3 7 2 14 11

d 1 3 3 3 3 6 6 6 6 6 7 7 7

Pi 20 60 50 40 30 80 70 60 55 10 85 75 50

(0,1) (1,3) (3,6) (6,7)

Figure 2.i±

deadlines algorithm is O(log2 n) and the EPU is O(i/log n)
(In [iO] Dekel and Sahni show how to solve the job sequenc-
ing problem in O(log n) time. This algorithm does not use
the binary tree method and has an EPU which is considerably
inferior to that of the algorithm developed here.)

Finally, we note that the parallel algorithm developed
to minimize the number of tardy jobs when m-i and r.-0, can
be adapted to obtain a one machine schedule that minimizes
the sum of the weights of the tardy jobs provided that all
jobs have agreeable weights. (All jobs have agreeable
weights iff p.<p. implies w.>w. for all i and j.) The
sequential algofithm for this piblem is an extension of the
Hodgson-Moore algorithm to minimize the number of tardy
jobs. This extension is due to Lawler[2i]. Also, Sidney's
[34] extension which takes into account jobs that must
necessarily be completed by their due times can also be
solved by a modified version of our algorithm.
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3. Conclusions

We have demonstrated that the binary computation tree is a
very important tool in the design of efficient parallel
algorithms. The binary tree method is closely related to the
divide-and-conquer approach used to obtain many efficient
sequential algorithms [i5]. While divide-and-conquer algo-
rithms do use an underlying computation structure that is a
tree, the use of this tree is implicit. Further, only one
pass over this tree can be made as partial results computed
in the various nodes are not saved for use in further
passes. In this respect, the binary tree method is more gen-
eral than divide-and-conquer. The single pass algorithms
discussed in this paper can, however, be just as well viewed
as divide-and-conquer algorithms.

While all the parallel algorithms discussed in this
paper have assumed that as many PEs as needed are available,
they can be run quite easily using fewer PEs. The complex-
ity of course will increase by a factor of q/k where k is
the number of PEs available and q is the number assumed in
the paper.

L ,.
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