
-AU91 570 TEXAS UNIV AT AUSTIN DEPT OF ELECTRICAL ENGINEERING F/G 1211
ON THE PERFORMANCE OF A MODIFIED SIGN DETECTOR FOR M-DEPENDENT -- T
OCT 79 D R HALVERSON, G L WISE F49620 77-C-0101

rNCLA7SIFIED AFOSR-TR-8G-1021 NL*~~~~ EEphhh



SECURIY ASW v Entered)RE- OC UMNATO RAG I A -R I-'f tRUCTONS
.. ... DOCMETAIO PGEEFORF- COMPLETING FORM

ON THE PERFORMANCE OF A MODIFIED SIGN DETECTOR FOR) Interim / /
.1-DEPEirENT DATA - -

6. PERFORMING ORG. REPORT NUMBER

T . ktJT-OR0.) INI -P 11
JADon R./lialverson (Texas A&M University) #7 0" '"/4

Gary L./Wise Uvest - AF SR-76- 62

9. PERFORM!NG ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJE "=PrAW

The University of Texas at Austin / .. AREA & WORK UNIT NUMBERS

Department of Electrical Engineering , 2 61102F

0 Austin, Texas 78712

11. CONTROLLING OFFICE NAME AND ADDRESS N/M 12. REPORT DATE

Air Force Office of Scientific Research October 1979

L('j Boiling AFB, Washington, D.C. 20332 13. NUMBER OF PAGES

efrom IS. SECURITY CLASS. (of this report)
, MO.TIGAGENCY E /n f UNCLASSIFIED

ID O S N (Sa. DECLASSIFICATIONDOWNGRADING
SCHEDULE

16.~~~~k DITIUIO TTMET(f

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) Y'4/

10. SUPPLEMENTARY NOTES

Presented at the Seventeenth Annual Alletton Conference on Communication, Control

and Computing, Monticello, Illinois, Published in the Proceedings of the Con-
ference, pp. 143,*1,

19. KEY WORDS (Continue on reverse side If necessary and identify by block number) -

Nonparametric Detection
Dependent Noise Z

20 U.STRACT (Continue on r.ers. side If necesser , and identify by block number)a... A nonparametric detection scheme, the modified sign detector, may be applied
cto the discrete time detection of a constant signal in additive i-dependent
noise. It is shown how the optimal block size for this detector may be selected
for two fidelity criteria, one based on a finite number of samples and the other t-N

0. |L on the asymptotic limit. These results my then be used to exhibit examples of
I -J cases where a small block length is indicated by the finite sample criterion,

SLL_. whereas a large block length is indicated by the asymptotic criterion.A

l DD , jA: 73 1473 UNCLASSIFIED * .}... 977 .,L1
,1 SECURITY CLASSIFICATION OF T4IS PAGE when Det Entered)



SFOSR-TR. 80 - 1021
ON THE PERFORMANCE OF A MODIFIED SIGN DETECTOR FOR M-DEPENDENT DATA

D.R. HALVERSON
Department of Electrical Engineering

Texas A&M University

College Station, Texas 77843

and

G.L. WISE
Department of Electrical Engineering

University of Texas at Austin

Austin, Texas 78712

ABSTRACT

A nonparametric detection scheme, the modified sign detector, may
be applied to the discrete time detection of a constant signal in additive
m-dependent noise. It is shown how the optimal block size for this detec-

tor may be selected for two fidelity criteria, one based on a finite
number of samples and the other on the asymptotic limit. These results
may then be used to exhibit examples of cases where a small block length

is indicated by the finite sample criterion, whereas a large block length

is indicated by the asymptotic criterion.

I. INTRODUCTION

The employment of a nonparametric detector is often desirable in
situations where little information about the statistics of the noise is

available. If the noise sequence is independent and identically distri-

buted, a popular choice is the well known sign detector [1]. Because of
modern high speed sampling, however, in many situations it is unlikely

that adjacent samples of the waveform could be considered to be indepen-

dent. What we might expect is that samples separated sufficiently far

apart in time could be considered to be independent, i.e. an assumption
of m-dependence is often reasonable. In these cases the sign detector

unfortunately loses its nonparametric nature. It is thus desirable, when

confronted with dependency in the noise, to modify standard nonparametric

schemes in a way which is easily implemented and yet preserves the non-

parametric nature of the detector under dependent inputs. One promising

approach toward this goal has been considered in [2]. In this paper we

investigate more thoroughly the performance of the method of [2] as applied

to the sign detector, and also illustrate how this investigation provides

insight into some fundamental questions pertaining to the general notion

of optimality of a detector.

II. DEVELOPMENT

Suppose the noise process {Xi; i1-,2,...} is stationary and m- 1
dependent (i.e. k-j>m implies {Xi; i1l,2,...,j1 and {Xi; i-k, k+l,...}

are independent) with continuous diagonally symmetric joint densities of

all orders. We will wish to decide between

HO: Y Xi ; i ,...,N 0

HIl: Yi - Xi+5 ; i - 1,.. ,NO  APProvod for publoi BiN*O;
H Y" distribution unlimited.
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where we observe realizations {Y i1 ...,N } of the process

{Yi; i-i,...,N } and s is a known positive constant. As applied to the
0

sign detector, the method of [2] requires grouping the samples into blocks
of length n with m samples skipped between blocks, resulting in Nn -
G[(N 0+m)/(n+m)] independent blocks, where G(.) is the greatest integer func-

tion. In general, we will allow fewer than the maximal number Nn blocks
and will denote the number of blocks by N. If a summing operation is
performed on each block, we obtain a sequence of independent random
variables Z,n, ..,ZN,n upon which the standard sign detector may be

applied. Note that in this case the "modified signal", if present, has

strength ns. We will call such a detector a modified sign detector.
A question which naturally arises for this detection scheme is what

choice of block length n gives the best performance. The measure of the
fidelity of a nonparametric detector has been traditionally vested in
employment of the Asymptotic Relative Efficiency (ARE) criterion, which
is generally held to be especially appropriate when the signal is weak or
the number of observations N is large. When employing the ARE criterion,

we often make use of an expression for the ARE given by the Pitman-
Noether theorem [3]. In order to apply this theorem, we will need to
consider several regularity conditions expressed as follows in terms of
the test statistics T N(Y, ... Y N) which, for the application considered

here, may be taken to be zero mean unit variance random variables under
H0 for all N. In the following, E s f-} denotes expectation computed under

H with signal strength s and K is a positive constant.

A. a E {T (Y ' .... )}l W 0
as s N 1N s= /

B. -. Es{TN(Y,. ,YN)I= \ :1> .... C.

C. N-' 2 ". -,'$(Y.1

22B. liram EN .. T (T (Y, ...,Y )E/1 {T (I .. ,N 0) }- -1 ,,- ": ,-..

For a large class of noise processes, the problem of choosing the '; ' . / -

optimum block length n is addressed by the following:

Theorem 1: Suppose, for the test statistics (where here N - N )

N
E sgnZI ,nN/2

T ,that conditions A, B, C, D above are satisfied

for all fixed choices of block lengths n and some positive constant K.
Then the modified sign detector which maximizes the ARE relative to any
other such detector has block length n if and only if n maximizes the folwi.
quantity 1.f (o), where £n( . is the univariate density of Z n - +

X2 +..+1X and i = n//n..:-

2ii,
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Proof: It follows from the central limit theorem that TN,n converges in

distribution to a zero mean unit variance Gaussian random variable as
N --, and thus the hypothesis allows application of the Pitman-Noether

theorem [3], with the result that an expression for the ARE is given in
terms of the efficacy n(.). Choice of the optimal block length n thus

amounts to choosing n so as to maximize

s Es sgn ZI,n-N/2 NNoEO(j sgn Zi,n-N/2)
n(n) = lim L = =i

N
But sgn Zi  is binomially distributed with parameters N and

i=Il,

ns= Pr{Zl,n>OIH } and thus

nNPns

n(n) = lim N0  = [s fn(xns)dx ] " 4 (n+m)

= 2
[nf n(0)] 4

Maximizing n(n) thus is equivalent to maximizing nf n(0).

If the noise is Gaussian with the "triangular" autocorrelation
function, the following corollary to Theorem 1 provides more specific
information:

Corollary: Suppose the noise is zero mean Gaussian with autocorrelation

= m+l-i 2

• 0 , jij > m

Then nf (0) increases strictly monotonically for n > 2m, and thus the
n

optimal block length, as measured by the ARE, is obtained for n > 2m by
taking n as large as possible.

Proof: It is straightforward to show that the hypothesis of Theorem 1 is
satisfied for this noise process. Note that the assumptions on the

admissable noise densities imply that the noise is zero mean. Letting

a denote the variance of Z l,n' we have

2 R0+2{(n-1)RI+(n-2)R2+ + (n-)R}
2 -ni n+ ... +nmR

- [n(m+l) - 2 l '2+2(u -1)+ 
' ' '+ *'l]1W+l °2"

n
We then note that nfn (0) is proportional to , and hence would need

to show h(n) n2 n

(nu)[n(m+l)-2 1.+2(u-l)+...4m.]
3+l
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is strictly increasing on {n:n>2m}, i.e. h(n) A n 2/(n 2+an-b) is strictly
increasing on fn:n>2m}, where

a = m-2 1.m+2(m-l)+...+m1 and b 2 m+2(m-)+...m1

(m+l) 2  (M+l) 2

A function of the form of h may be seen to possess a positive derivative

for n > 2b/a (it is routine to show a > 0). It thus suffices to show

n > 4m(l-m+2(m-l+...+rel) , and hence since n > 2m, we must show
m(m+l) -2 (l.m+2(m-l)+...+m-l)

1> 2 (1-m+2 (m-l)+...+m. i)

m(m+l) -2 (l.m+2(m-l)+...+ml)

This may be seen to follow from an induction argument on m.
QED

As a consequence of these results, we would expect that in many cases
best performance, as measured by the ARE, can be achieved by employing as
large a block size as possible. In the next section we will see how,
from a more pragmatic viewpoint, the opposite conclusion may be drawn.
The resolution of this apparent disparity will turn out to lie in some
limitations associated with the employment of an ARE fidelity criterion.

III. THE FINITE SAMPLE CASE

We have seen that in many cases employment of the ARE fidelity
criterion, as applied to the modified sign detector, leads to a choice of
block length n as large as possible. From the engineering viewpoint,
because of the necessity of utilizing only a finite amount of data, the
preferred measure of fidelity would be relative efficiency and not the
ARE. The chief reason for employing the ARE is that such an approach is
generally more tractable than one based on relative efficiencies. It is
generally assumed that if the number of samples is large, whatever can be
said about the fidelity of a detector as judged by the ARE also applies
if one elects to employ relative efficiency as the measure of fidelity.
This is certainly true if the number of samples is sufficiently large, but
there is a difficulty in determining what number of samples is sufficient,
especially when the true noise statistics are known imperfectly. Because
the ARE is a common choice of fidelity criterion for nonparametric detec-
tors, the question of whether or not the ARE consistently reflects the
measure of fidelity inherent in the relative efficiency criterion is of
genuine concern.

In many cases, we would like to have the design of the detector not
depend on a preassigned value of the detection probability 8. One way to
accomplish this would be to approach the measure of fidelity of the
detector through a method which, for a finite number of samples, chooses
the block length n so as to maximize B for small signals. This will also
turn out to maximize the relative efficiency for certain values of 0 and
signals s. The following theorem will show how this may be accomplished,
and will allow addressing the question raised in the previous paragraph.

Theorem 2: Let a be a fixed false alarm probability, and let rN and tN

be the respective randomization probability and integral threshold
required to achieve s for the test statistic
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sgn . Then - - (l-rN) 1 ) + rN -)
i-i in ds s 0  2 N- N t N tN

d8 Nnf n (0)r N

if t < N - 1, and A- = N otherwise.
N -ds 1sO 2 N-1

N
Proof: Note that tN and rN do not in fact depend on n since sgn Zi,n

i=1

is binomially distributed under H0 independently of n. We have, if

t N<N - i,

[iN (N /N\ N-ti
8 ns l-ns)N i + r N Pns (-ns)

i-=it N+N

-of fn(X-ns)dx

where p ns . Thus if tN < N
0

d 8 o __8_I dpns

ds s0 dP d s0

Pns

tN+l (tN-(N-t] nf(0)

Nnf (0) N N -

(0 [i.tN+l (:2)- ( ) Y r N( ~ (Nl I

N- (0-rN) ( Ni) 1 )]

The desired result, if tN < N - 1, thus follows. If tN N an approach

similar to the above completes the proof.
QED

The following lemma will simplify application of Theorem 2:

Lema 1: For fixed block length n and false alarm probability a, let 81

be the detection probability obtained from employing N1 blocks, and 82

from employing N2 blocks, where N1 > N2.A

d81  d 2 2
Then d 20 ds s0

Proof: Since n is fixed, this is equivalent to showing that the classical

sign detector for N1 and N2 pieces of data respectively has this property.

Notice that

!.
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d 81  d 82 /d8 B,_ d,\n f(0

-sl= ds s = dpn n= dp nsn=) n nO
\ Ins =  Pnsfi

Since the sign detector is the locally optimal detector for independent
stationary Laplace noise, we see that in this situation,

d 1 d 2

dpj _insdI
'' ns n ns =

since the detector using N2 samples may be regarded as a detector using

N1 samples (which ignores the extra samples). However, this inequality

does not depend upon the assumption of Laplace noise, and we see that it
holds in general.

QED

The importance of Lemma I is that it allows checking the relevant
quantity given by Theorem 2 for fewer combinations of N and n. For each
block length n we need only check the corresponding Nn = G[(N 0+m)/(nm)],

which is the largest number of blocks permitted by the data. Note that
because of the presence of f (0) in the quantity to be checked, we wouldn

not in general expect to be able to specify the optimal block length non-
parametrically. It would be possible, for example, to estimate f (0) by

the methods of [4] and [5], which provide pointwise estimates of a density.
The great advantage here is that we only need to know the value of the
density at the origin, and not elsewhere as in most parametric schemes.
We remark that rN and tN do not depend on the underlying (symmetric)

noise densities.
Suppose now that the noise is 10-dependent zero mean unit variance

Gaussian with "triangular" autocorrelation
i<1-1

Ri , Iil > 11
and suppose we have a large fixed number of samples N 0fi 300. We will,

using Theorem 2 and Lemma 1 find the proper choice of block length n and

corresponding Nd which maximizes . To reduce the possibilities tocorespnd n Nwihmxmz s 18s.

be checked, we first need the following lemma.

Lemma 2: Suppose the noise is Gaussian with autocorrelation

im+l-i 2 ,lil< m
Ri 0 , jil > m , 4

For fixed number of blocks N and false alarm probability a, let B1 be the

probability obtained from employing a block length n1 , and B2 from a

block length n2, where n1 > n2 > m.
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Then d 1  
d 2The d--Is=0 >' ds Is=0

Proof: From the proof of Theorem 2, it suffices to show nlf n(0)

> n2fn (0). This follows from methods similar to the proof of the

corollary to Theorem 1.

QED

Using Lemma 1 and Lemma 2, it thus suffices to consider only those pairs
of n and N given in the following table, where

d8I  is computed from Theorem 2 for CnN):
ds s=0

Table 1. Values of dO for Gaussian noise
ds =

with "triangular" autocorrelation

(n,N) 
_Ls 0

(300,1) .210
(145,2) .293
(93,3) .354
(67,4) .405
(52,5) .382
(41,6) .374
(34,7) .394
(28,8) .380
(24,9) .375
(21,10) .393
(18,11) .374
(15,12) .370
(13,13) .376
(12,14) .372
(10,15) .375
(9,16) .376
(8,17) .379
(7,18) .391
(6,19) .385
(5,20) . 391;
(4,22) .402
(3,23) .409
(2,25) .419
(1,28) .431
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Note that for this example, with 300 samples, the highest detection
probability for weak signals is achieved with the smallest block length

(nI = 1), and the lowest detection probability for the largest block

length (n2 = 300). However, if one were using the ARE as a measure of

fidelity, a choice of large block length (n 300) would be indicated
by the corollary to Theorem 1. Table 1 thus provides examples of cases
where the relative fidelity between two detectors is not preserved as
one passes from a finite sample situation to the asymptotic limit. It is
likely that one would want to include Gaussian densities, or small pertur-
bations of them, in the nonparametric class considered, and in this case
we would know that within this class there exists a nonempty family of
densities which exhibit a reversal in relative fidelity as one passes to
the asymptotic limit. It is quite common practice to employ the ARE
fidelity criterion without attention to the question of how many samples
are required to insure that a reversal does not occur. The existence of
such a family calls into question the appropriateness of that practice.

Similar difficulties arise when the problem is approached from the
viewpoint of relative efficiency. The previous example guarantees that

there exist two detectors DI (with n1=20) and D2 (with n 2=300) such that

for a fixed false alarm probability a, we have 81 > 82 for sufficiently

small s. If we let 8 = 81, then at most 300 samples are required to

achieve (a,8) with DI, but since 82 < 8, Lemma 1 implies that more than 300

samples are required for D2. Thus the relative efficiency RE(DI,D 2 ; L,8,s)

> 1. But n1 < n2, so the Pitman-Noether theorem, together with the

proof of Theorem I and its corollary, guarantee that ARE(DI,D 2 ) < 1.

The relative efficiency curve RE(DI,D2; 0,.,S), regarded as a function of

s, thus lies above unity for certain values of s before finally crossing
unity to converge to the ARE below. Note that the point at which the
curve crosses unity corresponds to a reversal in relative fidelity between
the two detectors. From the remarks earlier in this paragraph, it is
known that at least 300 samples are required before this crossover occurs.

We thus have nonpathological examples of cases for which one might
be led to a choice of a large block length n if the ARE criterion is
employed, but a small block length if the situation is viewed from the
finite sample perspective. This is further evidence to suggest that the

difference between relative efficiency and its asymptotic limit is more
than simply that of a mathematical definition, and should be considered
to be of genuine engineering concern. These results raise questions
concerning the appropriateness of universal application of the ARE fidelity
criterion as applied to nonparametric detection in dependent noise.
Because one must work with a finite amount of data, it would appear that
any indication of detector fidelity obtained through the ARE criterion
must be interpreted with caution.

IV. CONCLUSION

We have shown how the optimal block size for the nonparametric

modified sign detector may be selected for two fidelity criteria, one

based on a finite number of samples and the other on the asymptotic limit.
We have found by way of example that it is possible for the two criteria

to disagree radically on the optimal block size, and that this occurs
even when what might be regarded as a large amount of data is available.
Viewed in the large, we have produced examples of pairs of nonparametric
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detectors (D1 ,D2 ) for which D1 is the "best" and D2 the "worst" as judged

from the asymptotic viewpoint, but with the opposite situation when judged
from the finite sample viewpoint. It would thus appear that cautious
employment of the ARE criterion as applied to nonparametric detection in
dependent noise would be indicated, with attention given to the minimal
number of samples required to insure consistency between the two measures
of fidelity whenever possible.
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