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FOREWORD

This report contains the results of a thesis prepared for the Aeronautical
and Astronautical Engineering Department of the Ohio State University. The
effort was performed in the Technology Branch of the Turbine Engine Division
of the Air Force Aero Propulsion Laboratory, Air Force Systems Command,
Wright-Patterson AFB, Ohio, under Project 3066, Task 306617 and Work Unit
30661740. A one-tenth scale flow channel was constructed to simulate a
stream tube of the Compressor Research Facility flow conditioning system.
Turbulence decay was then measured throughout the full scale flow distance
of the Compressor Research Facility to determine the turbulence level that
can be expected at the entrance to test compressors.

This effort was conducted by Douglas C. Rabe during the period February
1978 to July 1979.
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I. INTRODUCTION

In the aircraft gas turbine industry, past experience shows that
compressors and fans go through from two to eight redesigns before
reaching operational status. Many of the compressors that do
become operational go through further redesigns in an attempt to
improve their performance. The cost of these redesigns can be
staggering, ranging into the tens of millions of dollars.

Because of these costs and associated program delays, the Air
Force has decided to construct the Compressor Research Facility (CRF).
The facility will enable the government to investigate both steady-
state and transient jet engine compressor performance. In order to
obtain transient compressor performance data, the facility is totally
computer controlled. 1In addition, data is acquired and digitized at
a rate of 100,000 samples/sec.

The inlet air system for the Compressor Research Facility is shown
in Figure 1. To simulate flight conditions at elevated altitudes,
and/or to reduce power requirements, the test compressor is mounted
inside an 18.3 by 6.1 meter test chamber. Using a series of five
inlet control valves (three shown in Figure 1) and a discharge valve,
the tank pressure and/or mass flow can be regulated. A mass flow from
6.8 to 226.8 Kg./sec. can be accommodated through the test chamber with
a minimum allowable static pressure in the test chamber of .14 atmos-
phere which corresponds to an altitude of 14173.0 meters. The compres-

sor itself provides the exhauster capability for the facility. A test

compressor can be driven by either a 22.4 Megawatt electric motor
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which can rotate the test article at a maximum speed of 15,000 RPM or

M TR B 3 3% NSRS 1T S A Y

an 11.2 Megawatt electric motor which can rotate the test article to a

maximum speed of 30,000 RPM.

In order to make valid comparisons of performance between com-~

pressors, the compressor efficiencies must be determined to an

To accurately establish compressor charac-

accuracy of better than 1%.

teristics, the flow quality standards should be chosen to represent the

TR A (v N

minimum flow conditions that will affect compressor performance or

surge margin. Recommendations for the Compressor Research Facility

.
flow quality standards have been reported previously.1 §2 One of

these recommended flow quality standards is a turbulence level at the

T R " SRR TX o v P

inlet to the test compressor of less than 1%. The turbulence level

is defined as the percentage of the root-mean-square of the axial

fluctuation of velocity, ul, to the average value of axial velocity,

U, as shown in Equation (1}.

1
T = EU— x 100% (1) l

Using hot wire anemometers in a 1/10th scale model of the Compres-

sor Research Facility inlet flow system, previous unpublished work by

Ostdiek and Rivir3 determined a method of reducing the incoming

turbulence lewvel of 40 -~ 60% to an acceptable level. This reduction

in turbulence was accomplished by inwvestigating a number of flow con-

ditioning systems and proposing a final configuration described in

However, due to practical limitations, measurements of

Reference 4.

the turbulence level in the scale model were made without the decay

length of 476 cm. found in the actual facility.




For mechanical reasons, the flow conditioning system previously
recommended3 has been changed, and the final design of the Compressor
Research Facility flow conditioning system is shown in Figure 2 while
Figure 1 shows its relationship within the facility's inlet air
system. The present flow conditioner was made as two conditioning
units in ordexr to distribute its weight more evenly over the test
chamber. Further, since stalls and surges are to be investigated
in the facility, the support grids appear on both the upstream and
downstream sides of both conditioning units to support the turbulence
reducing screens for flow in both directions. The large wire diameter
screen located on the downstream side of the conditioning system is
designed to reduce incoming turbulence at low velocities while the
smaller diameter wire screens are designed to reduce incoming turbu-
lence at the higher velocities. The honeycomb sections are designed
for a length to diameter ratio on the order of 20:1 to meet directional
flow quality standards.

The changes in the present flow conditioning system to what has
been previously investigated,3 &4 as well as the importance of the
test facility, make it highly desirable to investigate the effects of
downstream distance on turbulence decay for the present flow condition-

ing system and its components.
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II. BACKGROUND

Turbulence decay has been previously studied by many authors.
Batchelor and Townsend5 & 6, in two reports, studied both the initial
and final periods of decay behind screens. The incoming turbulence
level in these studies was less than 1% and was considered isotropic
where isotropic turbulence possesses the characteristic that the three
components of fluctuating velocity have the same magnitude. It was

found that the initial period of decay behaved according to

et (2)

where t is the time for decay. During the initial period of decay,
the viscous and inertia forces are of comparable importance. After

a transition period which begins at approximately 150 mesh lengths
downstream of the screen, turbulence reduction tends towards what is
called the final period of decay. 1In the final period inertial forces
become negligible and turbulence reduction is predominated by viscous

forces and follows the characteristics of

5 . 70/2
2=t (3)

Subsequent work by Schubauer, Spangenberg and"l(lebanoff7 experi-
mentally investigated four previously proposed empirical theories of
turbulence reduction. These theories relate the turbulence reduction
factor £, defined as the ratio of the turbulence level found after the

flow has passed through a screen to the turbulence level at the same

point in the absence of the screen, as a function of the screen pressure

drop. Defining the pressure-drop coefficient K in terms of the screen

pressure drop AP as

. 'v_i; D one frils

.
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K= ———mrm
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the four empirical theories can be summarized as follows:

Prandtl £1 = Tig (5)
Collar £ = =X 6)

Taylor and Batchel £ = B Siniad (7
ay chelor 1 l+=+K

1/2
Dryden and Schubauer fuv = (I:E) (8)

0f the four theories, Prandtl, Collar and Taylor and Batchelor dis-~
tinguish £; as the longitudinal turbulence reduction factor where
fuv in the Dryden and Schubauer theory is the reduction factor for
either the longitudinal or lateral turbulent energy.

It can also be shown that Equation (7) reduces to Equation (5)
when « = 0 and to Equation (6) when « = 1. The value of « is defined
in terms of flow angles measured with respect to the screen normal and
is the limiting value of the exit flow angle to the incident flow
angle as the incident angle approaches zero. Therefore, the Prandtl
theory would be useful for screens of high solidity and the Collar
theory for screens of low solidity while the Taylor and Batchelor and

bryden and Schubauer theories are more general.

.
e T A = g

T, o avpe o

o TR




The experimental investigatioﬁ7of the applicability of the four
theories for turbulence decay was conducted in air with an incoming
turbulence level on the order of 1%. Again, as in Batchelor and
Townsend,5 &6 only screens were investigated, and the incoming
turbulence could be considered isotropic. Their investigation con-
cluded that when the velocity equalled or exceeded the value necessary
for the initial shedding of eddies by the screen, the longitudinal and
lateral turbulence was reduced as the theory of Dryden and Schubauer
predicted [Equation (8)].

In their report, Dryden and Schubauer8 derived the reduction
factor for longitudinal and lateral turbulence. During their deri-
vation, it was assumed that the change in the mean kinetic energy of
turbulence per unit volume would occur only on the upstream side of
the screen. Thus, the mean kinetic energy of turbulence per unit
volume loss due to the screen KE! was written

3

KE, = E - E3 (9)

1
where El and E§ are the values of the mean kinetic energy of turbulence
per unit volume upstream and downstream, respectively, of the screen.
From Equation (9) the ratio of downstream to upstream turbulent kinetic

energy can be written as

10)
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Since the mean kinetic energy of turbulence per unit volume for the

axisymmetric case is

E1 = 1/2p(u2 + v2) (11)

172

fuv =
(12)

For isotropic turbulence where uy = v1 and u3 = v3, f would
become the previously discussed turbulence reduction factor independent

of direction and would be

1\1/2 1/2
E
fV='-§' - _.l_.
u 1 = 1+K (13)
B

which was given in Equation (8). Therefore, the theory of Dryden and
Schubauer has the restriction of isotropic turbulence entering the
screen. When several screens are used, and there is sufficient space
between them so they can act independently, the reduction factor

applies to each screen separately. Thus, the theory of Dryden and

Schubauer for the multiple screens becomes

n/2
fuv = 2
1+K (14)

where n is the number of screens.
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From the above discussion, it is noted that the previous

investigations considered relative values of incoming turbulence on
the order of 1% and assumed isotropic turbulence. In the Compressor
Research Facility, the incomiing turbulence level does not follow this
assumption because of the shorter decay length from the generating
source and the high levels of turbulence. Consequently, due to the
nonisotropic nature of the incoming turbulence and the more compli-
cated structure of grids, honeycomb and screens, it is highly
desirable to conduct detailed experiments of turbulence decay for

the present conditioning system and its components.
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III. EXPERIMENTAL HARDWARE

In order to conduct a valid investigation of turbulence decay
on the Compressor Research Facility flow conditioning system, the
Reynolds number, Mach number, incoming turbulence level and turbulence
decay length had to be maintained at full-scale values. However, for
practical reasons, the experiment was conducted on a 25.4 cm.diameter
channel. Because the experiments were conducted on a smaller diameter
channel, it is necessary to compare the boundary layer growth for the
25.4 cm. channel and the 304.8 cm. barrel of the full-scale facility
(Figure 1).

Since the Compressor Research Facility's mass flow rate can vary
from 6.8 to 226.8 Kg./sec., the incoming velocity in the barrel can

range from 61 to 2591 cm./sec. The nondimensional inlet length,

L= :15}3 (15)
presented in Schlictingg, can be used to determine the velocity profile
of both the full-scale and scale devices. 1In Equation (15), u is the
kinematic viscosity of air, .1486 cm.z/sec. at 20°C, a is the radius
of the channel, 152.4 cm. for the full-scale facility, 1z.7 cm. for
the small-scale channel, x is the distance into the channel and U is
the velocity inlet to the channel.

Table 1 shows the values of this parameter at two locations in

the full-scale facility and scale channel over the velocity range of

interest.
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TABLE 1
Values for L for the Full-Scale Facility and Scale Channel

X U L L
Location into Velocity for CRF Full- for Small-
Channel (cm.) (cm. /sec.) Scale Facility Scale Channel

-6 -3

76 61 8 x 10 -7 1.15 x 10_5

76 2560 1.9 x 10 2.74 x 10_3

640 61 6.72 x 196 9.68 x 194
640 2540 1.6 x 10 2.3 x 10

A value for L of .00l or less indicates the velocity profile is con-
stant over 80% of the diameter of the channel. It is indicated from
the values in Table 1 that in order to maintain a constant velocity
over 80% of the small-scale channel, the velocity cannot be less than
600 cm./sec. Therefore, with respect to boundary layer considerations,
the investigation of this central region could be conducted on the
25.4 cm. channel over the velocity range of 600 to 2591 cm./sec.

The incoming turbulence in the Compressor Research Facility is
generated by jets from the five inlet valves (Figure 1) which range in
size from 35.6 to 91.0 cm., in diameter. Since it can be assumed that
the geometric scale of turbulence is on the order of the valve diameters
producing these jets, the incoming scale of turbulence for the full-
scale facility cannot be maintained in the 25.4 cm. channel. However,
since the turbulence level, Reynolds number and Mach number were main-
tained at the full-scale values, the scale of turbulence exiting either
the full-scale or scale flow conditioners should be the same; and,
therefore, the turbulence decay results of the scale experiments are

applicable to the full-scale facility. In the scale experiment the

initial turbulence was produced by the generator shown in Figures 3 and
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4. This generator produced a pattern of turbulence similar to what
would be expected in the full-scale facility while producing an

incoming level of turbulence on the order of 40% at the entrance to

:
§

the scale test configurations.
The experiments were conducted on the channel shown in Figures
5 and 6. The dimensions shown in Figure 5 are the hot wire traverse

locations most often used when traverses in the vertical and horizon-

tal reference planes were made. Other axial locations were obtained
by rotating the center section of the channel, shown in Figure 5,
180°. The dimensions for these locations are listed in Table 3 in

Section V where these locations were used. In Figure 6, the actual

TP TR R L L e

ports in the channel can be seen as well as the traverse mechanism

I | e A

installed in the vertical position midway down the channel. The inlet

to the channel is shown schematically in Figure 5.

All of the configurations tested in the experiment are described
in Table 2, and a picture of the various components is presented in
Figure 7. Structural grids used to simulate the full-scale flow
conditioner of Figure 2 are shown in detail in Figure 8. Figure 9

shows the full flow conditioner tested in the scale channel. The

major difference between the full-scale hardware of Figure 2 and the

test components occurs with the grids. Using a 1/2 grid on the downstream
side of the three flow conditioners shown in Table 2 provided an
intersection in the grid at the center of the scale channel where the
turbulence measurements are of importance. In order not to signifi-
cantly affect the pressure drop of these conditioners, the full-scale

grid was used on the upstream side of the conditioners.
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TABLE 2 [
DESCRIPTION OF TEST CONFIGURATIONS

YT

TEST CONFIGURATION DESCRIPTION

Baseline Consisted of the turbulence generator only.

Bellmouth Consisted of a bellmouth inlet to the channel
with no generator or flow conditioning
element.

7.09 Mesh Screen Consisted of a 7.09 wires/cm. screen with

a wire diameter of .0432 cm. with inlet
located 152.4 cm. downstream of generator.

1.18 Mesh Screen Consisted of a 1.18 wires/cm. screen with a
wire diameter of .2667 cm. with inlet located
152.4 cm. downstream of generator.

Honeycomb Consisted of a 7.62 cm. thick honeycomb with a
wall thickness of .012 cm. and a cell width
of .510 cm. with inlet located at 144.78 cm.
and exit at 152.4 cm. downstream of generator.

Full Grid Consisted of a square grid, 14.60 cm. x 14.60
cm. x 11.43 cm. long. Made of .794 cm. thick
material with inlet located at 140.97 cm. and
exit at 152.4 cm. downstream of generator.
See Figure 8.

1/2 Grid Consisted of a square grid 7.3 cm. x 7.3 cm.
x 11.43 cm. long, made of .794 cm. thick
material with inlet located at 140.97 cm. and
exit at 152.4 cm. downstream of generator.
See Figure 8.

Perforated Plate Consisted of a plate .0625 cm. thick with
.1875 cm. diameter holes in a 60° array with
a center-to-center spacing of ,3125 cm. with
inlet located 152.4 cm. downstream of

generator.
Upstream Flow Consisted of a grid, 7.09 mesh screen, honey-
Conditioner comb, 7.09 mesh screen, 1/2 grid configuration

with inlet located at 133.44 cm. and exit at
163.74 cm. downstream of generator. See
Figures 2 and 7. .
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TABLE 2

DESCRIPTION OF TEST CONFIGURATIONS

TEST CONFIGURATION

Downstream Flow
Conditioner

Full Flow Conditioner

DESCRIPTION

Consisted of a grid, 7.09 mesh screen, honey-
comb, 1.18 mesh screen, 1/2 grid configuration
with inlet located at 133.44 cm. and exit at
163.74 cm. downstream of generator. See
Figures 2 and 7.

Consisted of the configuration shown in Figure
9 using the upstream and downstream flow
conditioners with inlet located at 72.66 cm.
and exit at 163.74 cm. downstream of generator.
See also Figures 2 and 8.
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IV. DATA ACQUISITION

Measurements were made to determine:
1. Steady-state pressures
2, Steady-state temperature
3. Time-dependent and mean velocities
Each of the above was measured using independent techniques.

A. Test BEquipment

The steady-state static pressures were measured using a scani-
valve which consisted of a rotary valve coupled to a single pressure
transducer unit. Seven static pressures were measured
down the test channel. Two known pressures, atmospheric and near
vacuum, were supplied to the scanivalve to determine the calibration
of the transducer during the experiments. The atmospheric pressure
was measured on a standard laboratory mercury barometer while the
near vacuum pressure was measured on a Wallace and Tiernan gauge.

Measurements of temperature in the test channel were made
using a platinum resistance Stolab electric thermometer Model 911PL.

A digital voltmeter, DYMEC model 2401C was used to read the output
from the thermometer. The sensor for the thermometer was mounted

near the exit of the channel in order not to disturb the flow under
test conditions. Figure 10 shows the scanivalve system and temperature
read-out voltmeter.

Fluctuating and mean velocities were measured using the Thermo-
systems Incorporated (TSI) hot wire anemometer system also shown in
Figure 10. The hot wire system consisted of a constant temperature

anemometer, TSI model 1050, a power supply, TSI model 1051-2, a digital
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Figure 10 View of the instrumentation system used in
the experiment
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A

voltmeter, Hewlett Packard 2401C, and a root-mean-square (RMS) volt-
meter, Hewlett Packard model 3400A. Since only axial velocities and
turbulence levels were to be measured, a single element hot wire,

TSI model 1210, was used. Calibration of the hot wire was performed
on a TSI calibrator model 1125. 1In the velocity range of interest,
this unit had a velocity measuring accuracy of %1% when a water micro-
manometer was used in the setup. While calibrating a hot wire, all

of the related electronic anemometer hardware was used, and a calibra-
tion of the complete system, except for the RMS voltmeter, was
performed.

All of the data measured during the turbulence decay experi-
ments were recorded with a digital computer, ModComp model II. The
computer data acquisition enhanced the capability for sampling a large
number of measurements and, therefore, obtaining the average value of
turbulence level in the test channel.

B. Data Collection and Reduction

The hot wire data obtained from the anemometer system during
the calibration and experimentation were treated in the same manner
as References 4 and 10. Since the hot wire sensor responds to varia-
tions in fluid velocity, temperature and density, the temperature and
density variations between calibration and experimentation must be
determined. Using Nusselt number, Nu, and Reynolds number, Re, the

temperature and density variations can be reconciled by the following

relationship:
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£/0w
ﬂKf(Tw-Tf) a7

Nu =
where A, B and m are arbitrary constants, Hf is the heat transfer rate,
K¢ is the thermal conductivity at T™m, ¢w is the wire length and Tw and
Tf are the static temperature of the wire and fluid respectively. The
mean temperature, Tm, is the average temperature between the wire and

the fluid, given by Tm = 1/2 (Tf + Tw). The Reynolds number used in

Equation (16) is

Re = (18)

where He is the kinematic viscosity of the fluid evaluated at Tm and
the static pressure of the fluid.

For the low wire Reynolds numbers of this experiment it has
been suggested4 that the constant m in Equation (16) be equal to .45.
Using the above procedure, a calibration curve for one of the wires
used during the experimentation is shown in Figure 1ll.

As stated in Reference 4, Equation (16) is restricted to
forced convection conditions and is only valid when

Re > 26r/3 (19)

where Gr is the Grashof number which is defined as
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Gr =

This condition was always satisfied during this experimentation.
The calibration relationships can also be extended to the

fluctuating component of the flow and

, Nu(g)'” ot
< = Tm E
.45 B(Re)'45 (21)

Equation (21) is restricted to

w () 2
Tm 17 E < <1 (22)
v (Z)7 -
Tm

which was satisfied in the experiment even for the high turbulence
levels.

Because the turbulence level entering the channel was on the
order of 40%, possible heat transfer and non-linear effects of the hot
wire must be considered. Sandborn11 shows that, when the scale of tur-
bulence is very small or very large compared with the hot wire
diameter, the effect of turbulence level on heat transfer is relatively
small regardless of intensity of turbulence. For example, with a
turbulence level of 12% and a ratio of the scale of turbulence to the
diameter of the hot wire of 10, a 10% increase in heat transfer would

result. Therefore, since it is estimated that for this experiment,
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this ratio is greater than 100, heat transfer effects should be less
than 10% at the turbulence level of 40% and even less at lower

turbulence levels.

Because the lowest mean velocity is greater than 600 cm./sec.,
there should be minimal non-linear effects of the hot wire. Rivirlo
estimated that at a mean velocity of 150 cm./sec., a turbulence level
of 60% would cause an error of 7% in the mean value of velocity.

Since this experiment is conducted at four times the mean velocity
of 150 cm./scc., this error should be greatly reduced. Therefore, a
non-linear correction to the mean velocity was not considered neces-~
sary for this experiment.

Velocity calibration of the hot wire was carried out in the
above manner which, as previously indicated, calibrated the anemometer
system. The remaining elements of calibration interest are the RMS
voltmeter and the computer.

A calibration check of the RMS voltmeter was performed in
the test setup. A signal generator was applied to the input of the RMS
voltmeter and to an oscilloscope. The output on both the oscilloscope
and the RMS voltmeter was observed to indicate the same RMS values.

Since the hot wire RMS and DC voltage and the temperature were
recorded on the computer, the interactions of the various meters with
one another and with the computer were investigated. It was found
that the hot wire DC voltage meter (Hewlett Packard model 2401C)

introduced some AC noise picked up by the RMS voltmeter which would

PO iy e,

TR

P 2




indicate approximately a 10% higher turbulence level. This inter-
action was eliminated when the system was completely interfaced with
the computer. Apparently, the computer grounding system alleviated
the problem. A calibration check was performed on the computer by
observing no difference between meter read-out and computer print-out.

The scanivalve data were also recorded by the computer. No
calibration checks of this sytem were considered necessary because
the computer calibrated the scanivalve transducer during the experi-
ment, using the two known pressures of the atmosphere and the near
vacuum reference.

It was found that the RMS voltmeter would not accurately
record the low voltages observed in the center of the flow while con-
currently being set up to read the higher values of voltage found at
the walls. Because of this high dynamic range of turbulence across
the channel, a traverse of the center 11.34 cm. was used throughout
this experiment.

To obtain one turbulence level data point across the test
channel, the computer would sample and record 63 points as the hot wire
was traversed across the center 11.43 cm. A traverse was made in both
the vertical and horizontal planes, and a total of 126 data points per
location was obtained. An average of the 126 readings would then be
used to indicate the turbulence level of a.particular station in the

channel. The traverse mechanism with a hot wire installed is shown in

Figure 12,
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V. EXPERIMENTAL RESULTS

In order to determine if low turbulence levels could be measured
with the experimental hardware, a bellmouth was installed on the
channel inlet (see Table 2). It was felt that this configuration would
produce the minimum turbulence level profile down the channel while
exhibiting an inlet turbulence level of less than 1%. At first, rela-
tively high values of turbulence were obtained. 1In an attempt to
correct this high turbulence condition, a 91 cm. cubic filterhouse was
installed (see Figure 4). Although the filterhouse reduced the turbu-
lence level, it was also necessary to seal the cracks in the doors of
the laboratory near the inlet to the channel before a turbulence level
of less than 1% was obtained at the inlet to the channel. Apparently,
colder outside air leaking into the laboratory while the experiment was
in progress caused significant temperature fluctuations within the
channel, and these fluctuations were observed as higher turbulence
levels.

The velocity and turbulence level profiles for the bellmouth con-
figuration are shown in Figures 13 and 14. At 750 cm. downstream from
the bellmouth throat, the turbulence level is significantly affected
by the walls of the channel as noted in the profile. For comparison,
the velocity and turbulence level profiles for the full flow condi-
tioner (Table 2) are shown in Figures 15 and 16. The velocity and
turbulence levels are both affected by the grid in the center of the
channel. At 587 cm. downstream from the exit of the conditioner, the

turbulence level is less affected by the wall than in the bellmouth
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configuration. It is felt that the boundary layer is being energized

by the full flow conditioner and, therefore, is thinner at the down-
stream location than for the bellmouth configuration.

Because of the effect of the walls on the profiles of turbulence and
velocity, an averaging technique across the complete traverse would
be misleading at the downstream locations of the channel, and also
where the profile is significantly affected by the grid of a flow con-
ditioner near the inlet to the channel, an average near the centerline
would be misleading. Therefore, it was decided that an average across
the traverse would be used at the two locations nearest the inlet to
the channel while a centerline average of ten points (five points each
from the horizontal and vertical traverses) would be used for the
remaining four downstream locations.

All of the configurations listed in Table 2 except the full grid

were tested for turbulence decay, and the data are presented in Table
3. From Table 3 it is observed that the average velocity in the chan-
nel generally increases down the channel. This increase in velocity
is the result of the boundary layer thickness increasing down a chan-
nel with constant mass flow. It is noted that the velocity recorded
at 34.3 cm. downstream from the channel inlet for all test configura-
tions, except the bellmouth, is exceedingly high. This high velocity
is a result of the jet produced by the center hole in the generator

(see Figure 3). The inlet turbulence level measured at this location

determined the consistency between test configurations.
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TABLE 3

AVERAGE LEVELS OF VELOCITY AND TURBULENCE LEVEL AT

SEVERAL DOWNSTREAM POSITIONS FOR é
VARIOUS TEST CONFIGURATIONS '
ONFIGURATION i
k
DOWN-~ BELLMOUTH BELLMOUTH ¥
STREAM i
DISTANCE 4
CENTIMETERS v 1 = 1
secC secC
34.3 534, .59 1441. | .o913
153.9 555. .97 1494. | 1.36
306.3 594. | 1.30 1571. | 1.37
458.7 616. | 1.40 1631. | 1.17
575.6 630. | 1.80 1305. } 1.37
750.8 633. | 2.24 1308. | 2.28
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A comparison of the turbulence decay for the bellmouth and
baseline configurations is shown in Figure 17 for 700 cm./sec. and
Figure 18 for 1340 cm./sec. It can be seen in both figures that
the centerline turbulence level increases down the channel for the
bellmouth case. Corrsin12 has indicated that the wall's effect on
the centerline turbulence could be significant when investigating
the final period of decay. The wall's effect was not investigated
further in this experiment; however, the bellmouth tests provide

a minimum turbulence level for the experiment.

The baseline shown on both Figures 17 and 18 shows the untreated
turbulence decay and forms a basis for applying any of the turbulence
reduction theories presented earlier. It should be noted that the
turbulence for the baseline configuration cannot be considered
isotropic. The baseline decay curve shows only initial period of decay
characteristics. As shown in the figures, there is a difference in
entrance turbulence level between the full-flow conditioner and both
downstream and upstream conditioners. The inlet location to the test
compressor in the full-scale facility is shown in these figures in
relation to the exit plane of the flow conditioner configurations
tested.

A comparison of Figures 17 and 18 shows that the turbulence decay
for the baseline behaves the same for both velocities. This similarity
would be expected because the mechanism for producing the turbulence
has not changed. The lower velocity of 700 cm./sec. is above the value
of velocity required for shedding of eddies, and the flow has not

become sonic in the generator at the higher velocity of 1340 c¢m./sec.

43




e e SR Gkttt S S il N

HLION3T AVO3Q 3¥D  QJ3LVINWIS ONIMOHS ¢ 'DJ3S/ND 00L 1V
NOILVHNDIANOD HINOWTTIE ANV 3NM3SVE YO4d Vvivd AVO3d 3IDONITNGHNL 21 3HN9I4

WD ¢ 13INI I3NNVHD  WOHd WYIHLISNMOQ 3DNVLSIA

008 009 ooV 0oz o
i 1 | 1 o
-5 A2 Y—HInOWTI39 gz (2
L _.X_._ Z —
= [¥,]
3NIT3IS v - | =
f ; : [a
O T -0l
TIES I m
A Py
AU @
2le% Ig =
M M < M z -
/ > ”
o\|loz |0 —-0¢&
> s m oo |9
wm S & b
04 4 = =
o 0 | = Q r
m - 210 p4
®a m\& P Z
m > w P
- 7 -0¢ o
[ 82
592
S
T3
i
o+ ﬁOQ
x
-




'HLON3T  AVI3Q 44D J3LlviInnIS

ONIMOHS {*D3S/ID OvEl

iv

i NOILVHNOIINOD HLNOWTI3E ANV 3NM3ISVE HO4 VIva AvD3d 3IDNIINGHNL 34NO14
WD “137INI 13NNVHD WOH4 WVY3HISNMOJ 3DNVLSIA
on_uo omvo OmV.v oan 0
= \ N A A ¢|I o
- v V- THLNOWT38 Vv Vics |3
& o 2 ISF
A X |=m fn
- |Z23
o |4 -
aNIT3sve S35 P
= |5C |q =]
I F C
o} c Ir
s T r
nw
B i
0 1o D b
= W 2
3 \0Q < 0 (0Y-4
L m c |9
on o | -
r v |© e}
m Z 4
— m m
@ Q P P
F > n
M 3 -0t
o
Q2
l
l
To
~
o0
o 4 -o¥
Y

T3A37 3ONIINGHNL

NI

%

45




In order to compare the turbulence reduction across a conditioning
element to the theories presented earlier, the pressure drop of the test
configurations must be measured. The pressure drop was measured with
a water micromanometer while the configuration was installed in the
test channel. Figures 19a and 19b present the pressure drop data for
the test configurations over the range of velocity of interest for the
Compressor Research Facility. Figure 20 shows the turbulence reduction
factors measured directly downstream of the flow conditioning element at
700 and 1340 cm./sec. as a function of the test configuration pressure
drop coefficient. The theoretical reduction factors given by Equation

(8) are represented by the curve in the figure.

In order to eliminate the contiquous effect of the screen, Ref-
erence 8 computed a reduction factor for a screen using a decay theory
and data obtained further downstream. By applying the initial period
of decay law Equation (2), a value of turbulence level directly behind
the test configuration can be projected from the data obtained at 133.4
cm. downstream of the conditioning element exit. Figure 21 shows the
turbulence reduction values obtained in this manner as a function of
the pressure drop coefficient. It is observed from Figure 21 that this
method of computing the turbulence reduction factor improves the corre-
lation to the theory for the data of individual elements. However, there
is no improvement for the three flow conditioning systems. One possi-
bility for this result may be in the way the pressure drop was measured
for the test configurations. For the three flow conditioning systems,
the downstream pressure reading may be in error due to the velocity pro-

file directly behind the system (see FPigure 15) whcre the pressure
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measurement was made. However, to result in a better correlation,

the measurement of the pressure drop across the flow conditioning ele-
ment must be 300% too high. Therefore, it is believed that the

three flow conditioning systems do not behave as Dryden and Schubauer
would predict.

Turbulence decay for the 7.09 and 1.18 mesh screens is presented
in Figure 22 for 700 cm./sec. and Figure 23 for 1340 cm./sec. The
curves in the figures are the result of applying the initial decay
theory, Equation (2), to the 7.09 mesh screen at 133.4 cm. downstream
of the screen. Close agreement with the data beyond 130 cm. is
observed. Except for the turbulence level at the first position down-
stream from the screen, the actual decay behind the screen behaves

similarly to the baseline decay. Also, if an attempt were made to

apply the final period of decay, Equation (3), to the data, a correla-

tion would not be observed. Therefore, it is suggested that at these

high levels of turbulence, both viscous and inertia forces are of
importance, and the turbulence will not decay as the final period of

decay equation would predict until much further downstream where turbu-

lence levels would be below 1%. Thus, to obtain final period of decay

characteristics, the turbulence must decay to less than 1% and become
. . . 11
isotropic as Corrsin™~ has suggested.

Again, as in Figures 17 and 18, the data at 700 and 1340 cm./sec.

are similar, and as before, the turbulence producing mechanisms of the

generator and the screen are the same for both velocities.
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Turbulence decay for the three flow conditioners listed in Table

2 is shown in Figure 24 for 700 cm./sec. and Figure 25 for 1340 cm./sec.

s AP AT FORToo '

The curve in these figures is the result of applying the initial period

of decay equation as above to the full-flow conditioner data. In these

figures, the first downstream location shows close agreement with what

would be expected by this theory. 1In contrast, Figures 22 and 23 for

the screens show the observed turbulence level significantly below that

This difference is probably

predicted by this theory at this location.

due to the turbulence generated by the shear layer of the grid.

With the turbulence level of 1.5% at the simulated entrance to

the Compressor Research Facility test article inlet, a contraction

From

ratio must be used to obtain a turbulence level of less than 1%.

Batchelor13, the contraction ratio based on area required to reduce

the turbulence level from 1.5% to less than 1% would be 1.5 to 1.

Therefore, in the full~scale facility, the largest allowable diameter

bellmouth for a test article would be 2.48 meters which is larger than

required to accommodate the maximum flow rate of the facility.

The turbulence decay for the remaining flow conditioning elements

is shown in Figure 26 for 700 cm./sec. and Figure 27 for 1340 cm./sec.

However, if the theory is

No theory is shown on these figures.

applied to the honeycomb configuration at 24.8 cm. downstream from the

honeycomb, it is observed that the measured turbulence is less than

what would be predicted by the theory, similar to the screens of

On the other hand, if the theory is applied to the

Figures 22 and 23.

1/2 grid, again at 24.8 cm. downstream from the grid, the measured
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turbulence level is higher than the predicted level, similar to the

full-flow conditioner of Figures 24 and 25. This effect substantiates
the fact that the shear layer of the grid creates more turbulence than
a screen or screen type element.

It should be noted that for the honeycomb structure, the parameter
L in Equation (15) would be 2.5 to .8 for the velocity range in the
Compressor Research Facility. This condition would indicate a highly
developed flow and would probably counteract any of the effects of the
upstream screen on turbulence reduction. Further, the full-flow
conditioner probably behaves as one conditioning unit because the two
individual units are not separated by a significant distance and the
downstream honeycomb counteracts much of the turbulence reducing
effects of the upstream conditioning unit. However, it should be
noted that the flow conditioning system for the full-scale facility
must meet other flow quality standards. Therefore, a judgement on

the overall performance of the flow conditioning system cannot be

made from this investigation alone.
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VI. CONCLUSTONS AND RECOMMENDATIONS

1. From the data obtained in this work, it is concluded that the
full-flow conditioner for the Compressor Research Facility will reduce
the 40 to 607 of incoming turbulence level to less than 1% at the test
compressor inlet. Therefore, from a turbulence level standpoint, the
full-scale facility will be able to accurately establish test compres-
sor characteristics within its design goals.

2. The turbulence behind any of the flow conditioning configura-
tions tested decayed in a manner similar to the initial period of decay
law reported in Reference 5. 1t is concluded that turbulence on the
order of 10%, as in this experiment, will decay due to both inertia
and viscous effects until the level of turbulence becomes on the order
of 17%.

3. The turbulence reduction data for individual components
obtained in this work correlates well with the theory of Dryden and
Schubauer as applied in Reference 8. This agreement would tend to
validate the approach taken to investigate turbulence decay for the
flow conditioning system of the Compressor Research Facility.

4. From the data obtained in this experimentation, the turbulence
reduction factor for the three flow conditioning configurations do not
agree with the Dryden and Schubauer theory. It is concluded that this
disagreement is a result of the interaction between the individual ele-
ments in these configurations.

5. From the results of this work, it can be concluded that the

velocity profile within the honeycomb structure probably negates much

) YA

TV 2, N TEET Vg e i




of the turbulence reducing effect of the upstream screen in a single

conditioning unit. For the same reason, the honeycomb located in the
downstream unit probably reduces much of the effects of the upstream
unit in the full-flow conditioning configuration.

6. The interactions of the various components were not studied;
however, as indicated above, these interactions are of great importance
and should be studied.

7. Obviously, experiments of turbulence measurement on the full-
scale facility are advantageous, and at this date they are being formu-
lated. The validity of the present work and other small-scale experimenta-
tion conducted on the flow conditioning system will be determined by the

experiments conducted in the full-scale facility.
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