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PROFIT MAXIMIZATION MODELS FOR
EXPONENTIAL DECAY PROCESSES
by

S.P. Sethi, G.L. Thompson and V. Udavabhanu

ABSTRACT

™~

= A number of real world processes can be modelled as exponential decay
processes. Examples are: machine replacement, 0il well extraction, advertising
goodwill, repair and cleaning activities, etc..ébin this paper we analyze a
series of discounted or undiscounted, deterministic or stochastic exponential
decay models. We characterize finite and infinite horizon optimal solutions
for each model. We show that the solution can be characterized for the oil
drillers problem in the following way: Once a well of sufficient capacity is
drilled, oil is pumped from it until the 0il remaining decreases to a fixed
cut-off level; then the well is abandoned, and a new well is drilled. The
resulting process when repeated over time appears to be the same as an oil
source which produces oil revenue continuously at the fixed cut-off level. In
other words, the excess revenue received from an oil well when its capacity
is greater than the cutoff level is just sufficient to pay for drilling costs

for a new well.
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1. Introduction

Several real-world processes are subject to the phenomenon of exponential
decay. Here we analyze various optimization models involving such processes.

Consider, as a first example, a machine replacement problem. The perform-
ance level of the machine - which may be measured in terms of the output quantity
and the production rate -~ can be assumed to decrease exponentially with time.
The machine earns revenue during its lifetime, and then must be replaced at
a certain cost. The question, therefore, is to decide on the timing of &achine
replacement, and the capacity (in terms of initial performance level) of the
new machine [2, 6, 7].

Another example concerns the determination of the optimal drilling times
and capacities of oil wells [7]. The rate of extraction of oil from the well
may be assumed to be directly proportional to the quantity of o0il remaining in
the well, which, in tura, implies that the process is subject to exponential
decay. Profits are generated during the course of o0il extraction; at some
point, the well is abandoned, and a new one drilled. The same model is repre-
sentative of mining operations in general.

Memory is yet another process subject to exponential decay; consequently,
our models may be used to formulate an advertising policy problem [4, 5]. Media
commercials are aimed at generating goodwill in the minds of consumers, leading
to enhanced sales. The loss of goodwill, as a consequence of the decline in
memory, has to be countered by exhibiting further commercials; the timing and
quantity of commercials become the decision variables.

The periodic repainting of inns [3], and the cleaning of swimming pools,
which provide recreational benefits to society at large, are further examples of

gituations which fit into the genersl framework of this paper.
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Section 2 lays down the preliminary groundwork for the models; Sections
3, 4, and 5 analyze the deterministic discounted, deterministic undiscounted,

and stochastic models respectively.

2. The 0il Driller's Problem

We now present several models involving exponential decay, framed in
terms of the oil driller's problem. We assume that at any instant, there is
at most one functioning oil well. The rate of oil extraction is given to be
a constant D times the quantity of oil C(t) remaining in the well at time ¢t.
The oil is sold at a unit profit of P. As the oil reserves get depleted, the
rate of extraction eventually decreases to uneconomic levels, making it worth-
while to abandon the well and drill a new one at a cost of f(v), where v
is the capacity of the well. The function £(v) is assumed to be continuous
and twice differentiable. We may further suppose, without loss of realism,
that v 20, f(0) =0, and f'(v) > 0.

The rate of oil extraction, then, is represented by

C(t) = -DC(t). ¢}

Using the boundary condition

C(0) = v, (2)

the solution to (1) may be obtained as
c(t) = ve OF, (3)

where time is measured from the instant at which the well is drilled. Drilling

is assumed to be instantaneous.
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To complete the model, we specify the objective function:

141
Maximize J = L || PDvie-D(t_ti)dt - fvp) | . (%)
Vit Ly
The drilling times s tz,..., and the corresponding well capacities ViaVaseses

constitute the decision variables.

3. Deterministic Discounted Models

In this section, we shall analyze a deterministic infinite horizon model,

with a continuous discount rate r > C.

It is clear by symmetry that the interval T between drillings will re-

main constant; so will the capacity v of the oil well; see Figure 1. Note its

—
T

2T

Figure 1. O0il well capacity over time.

similarity to the simple EOQ lot size model. If J represeats the infinite

horizon profit function, we may write

T
3= [ Pove Pt T4 - £(v) + JeTT, (5)
0
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which may be more conveniently expressed as

v PD(1l-e

-(D+r)T) £ -
(1-e7°T)

(D+r) v y

J =
The objective is to maximize J with respect to v and T. Further analysis

depends on the form of the cost function; we consider two cases.

Case 1: f" (v) = 0.
f(v)

Here f(v) 1is concave in v, so that is nonincreasing with respect
to v. A cursory examination of (6) makes it patent that J 1is maximized by
letting v become as large as possible. Hence we need an upper bound on the

drilling capacity; we assume that v SV < =,

For the reason just mentioned, the optimal drilling capacity must be at
the upper bound, provided that it yields a positive profit. Thus we may write

V if pDpV(l-e”(D¥TIT*

) > (H)E(V)
0 otherwise

The optimal drilling interval is obtained by differentiating J with

respect to T and equating it to zero; hence T* is determined from the

relation
(D+r)e DT* - pem(DFOIT* [1 - ) ——f“,")] , (8)

*
which is valid under the hypothesis that v = V. Any solution to (8) yielding

*
T* <0 .implies that v = 0; further, T* = ®» only if PDV = (D4r)f(V), 1in

*
which case, we must have v = 0, from (7).
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Case 2: f£"(v) > 0.

f(v)

Here f(v) 1is strictly convex in v, so that is an increasing

function of v. This property of decreasing returns to scale eliminates the
*

need for an upper bound on v so that v will always be finite.

Equating to zero the derivatives of J with respect to v and T, the

*
optimal values v and T* are obtained as the simultaneous solutions to the equations

_ —(D+r)T*
f'(v*) e (§+r) ) 9
and
rT* *
e -1 - r 1 - f(v) . (10)

We now show that it is always optimal to drill a positive quantity.

*
Proposition 1: v > 0.

Proof: Using (9), the profit function (6) may be evaluated at the optimum as
% 1 * *
J = — v £l (vk) - f(v ) |. (11)
-IT*
l-e
£(v)

Now strict convexity of £(v) implies that £'(v) > et further, since
£'(v) > 0 by assumption, it may be deduced from (9) that T* > C. Consequently,

* *
(11) implies that J > 0, from which we may infer that v > 0.
Q.E.D.

Equations (9) and (10) may be employed to further simplify (11), yielding

* ~DT*
*

- - . ——— - ~
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* * *
It is easy to infer from (12) that J < » and T* <». Thus v , T*, and J
are strictly positive and finite-valued. In Figure 2 we have sketched the

optimal solution. Equation (12) affords an interesting interpretation.

///////
0 / / / j / g //

Figure 2. Optimal oil extraction rate over time.

Notice that

© * ~DT*
* ~DT%* -

f PDv e DT e rtd PDv : .

0

Thus J* is the infinite horizon discounted profit which would be obtained by
selling oil at the constant rate of Dv*e-DT*, with no drilling costs; further,
this constant rate is precisely the rate of oil extraction just at the instant
before the well is abandoned in favor of a new onme. In Figure 2, J* is the

discounted value of the shaded area. Therefore the discounted value of the cross-

hatched area equals the discounted value of the drilling costs.

Example:

Suppose D=1, r =0,1, P =100




; , Case 1: f(v) = 50v, V = 40,

Equation (8) reduces to

-

=T* -1.1T*
-e

1l.1le = 0.045,

yielding T* = 1.759,

%
so that v = 40 from (7).

Case 2: flv) = 50v2.

Equation (10) reduces to

2200-1T% _ _1.1T* _

which yields T* = 1.236.

21,

i Equation (9) reduces to

1.1T*

i v’ =0.909(1 - & )s

*
yielding v = 0.676.

’ 4. Deterministic Undiscounted Models

4.1 Finite Horizon Models:

Let T be the horizon length, and n the number of drillings; then the

objective is to

. n
) Maximize J_= I |[ v e W gyl , a3

Vi)ti i=1 t

where tl = 0 and tn+l = T,

Equation (13) may be rewritten as

n -D(t
J = T Pvi(l -e

i=1

~t,)
#1717y f(vi)] ) (14)

—r - M

We need to analyze two cases, as before.
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Case 1l: £f"(v) 0.
As in Section 3, the concavity of £(v) implies, from (14), that Jn
is maximized by letting vy become infinitely large; so we assume that

. V<o,
Vls

First suppose that only a single well may be drilled in the interval [0,T].

For the afore-mentioned reason, the optimal drilling capacity must be at the

upper bound, provided that it yields a positive profit. Thus

v if pv(l-e 2Ty 5 £(vy

V1
0 otherwise

and, of course, tl = 0.

Now we assume that exactly n wells must be drilled in the interval

(0,T]. Again, the concavity of f(v) implies that

Equating to zero the derivatives of Jn with respect to ti’ i=1l,...,n,
we can show that

* * T
t] =0, £, =yt

* {n-1)T
1 2 )

n n
(The above is true subject to profitability).

The profit function is evaluated at the optimum as follows:

-DT/n

J: = nPV(l - e Yy = nf(V) . - (15)

The circumstances under which n wells are more profitable than (n-1) wells

* *
may be determined by comparing Jn with Jn- the condition

1}

J -3 >0 (16)
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Define

Y =5 - 8

n Jn - Jn--l ‘ (18)

The following properties enable us to propose a method for determining

*
the optimal number of wells n . Note that
. *
lim J = - = 3
n->x n
*
thus we may be certain that n < =

* ;
Proposition 2: Jn is strictly concave in n, for 0 =n < = ,

Proof: It is easily shown that
a%5" 2.2
Ja _ PVD"T" -DT/n
= - —e < 0.
2 3
dn n
Q.E.D.
Proposition 3: Yn is monotonically decreasing in n, for 1 <n < =,
*
Proof: The result is a direct comsequence of the strict concavity of Jn.
Q.E.D.
Note that
Y, = J) (19)
= x
1 Jl < .

Proposition 3, in conjunction with (19), permits us to conclude that

*
there exists some value of n, say n , satisfying
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Y, =0,
n .

Yn*+l < 0.

* *
Then Jn attains a maximum at n =n , so that (20) represents the condition

*
for optimality of n .

Condition (16) may also be viewed in a different light. Replacing the

inequality with an equality, we may solve for T to obtain various "points of

1

(20)

indifference" Tn* for different values of n. Suppose T, 1is the solution for

n = 1; then Tl

*
(or equivalently, the maximum horizon length for which n = 0). These points

of indifference possess the following property:
r) [} ] . * *
Proposition 4: Tn* is monotonically increasing in n, for 1 gsn .
dT_.,

Proof: We seek to show that —= > 0, Replacing the inequality in (17) with

*
dn

*
an equality and letting T = Tn*, n=n, we implicitly differentiate Tn*

#
with respect to n to obtain

*
+ DTn* -DT@/(n -1)

*
1+DT_%) -DT ,./n 1
n n =/

dT & —r— Je -
—t_ n
- w E3
dn* ( -DTd#n -DT54(n -1)}
D \e - e

Clearly the denominator > 0; so we need to show that the numerator >

7 =<1 + E) e—DT/n’
n n

we gee that

dZn D2T2 -DT/n .
dn -~ 3 °© > ’
n

completing the proof.

*
may be interpreted as the minimum horizon length for which n

0.

Q.E.D.

Letting

1
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*
As a consequence of Proposition 4, the optimal number of wells =n

must satisfy

T,sT<T, . (21)
n n +1

Case 2: £f"(v) > 0.
%
As in Section 3, the strict convexity of f(v) implies that \ < ®
so that no upper bound is required on vy

Differentiating Jn with respect to ti, vi, i=1,...,n, we can show

that
* * _ T *# _ (n-1)T
5= 0, G a0t n i
* *
and vl = =v =V, where V is the solution to
n n
£1(v ) = B(L - ~DT/my . (22)
It is easily shown, as in Proposition 1, that Vn > 0.
* *
Substituting for t:i and vy in (14), we get
* -DT/n
Jn nPVn(l - e ) - nf(Vn) . (23)
%
Defining Yn as in (18), we may use (20) or (21) to determine n .
Example:
Suppose T = 20, D=1, P =100,
Case l: f(v) = 10v, V = 40

We first evaluate

Yn = 4000{0.9 + (n_l)e‘ZO/(n‘l)_ne‘ZO/n]’

*
and use condition (2) to obtain n = 28,

*
Then the drilling interval = 0.526, and v, = 40,
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Case 2: f(v) = 10v2.

As before, we compute

¥ =250 [a@ - e 20/M2 L (a1 - 20/ (012

*
and use condition (20) to obtain n = 16.

*
Then the drilling interval = 1.25, and v, = 3.567.

4.2 Infinite Horizon Models:

It is clear by symmetry that the interval T between drillings will
remain constant; so will the capacity v of the oil well. If K represents

the average profit, the objective is to

T

Maximize K = = I [ PoveTfar - £(v) ] . (24)

T
v,T 0

The above expression may be rewritten as

k=1 {Pv(l - Ty f(v):’ . (25)
We analyze the two cases as follows:
Case 1: £f'(v) =<0.
As before, the concavity of f(v) forces us to impose an upper bound

on v, sowe let v ¢ V <« Then the optimal oil well capacity is given by

%*
v if pv(l - e 2Ty > (V)

(26)
0 otherwise

The optimal drilling interval is determined by differentiating K with respect

*
to T; thus T is the solution to

*
~DT LN £(V)
e (1 +DT) 1 - T
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Case 2: £f'(v) > 0.

As we have explained, no upper bound is required on v, as a consequence

of the convexity of £(v).

The optimal values are obtained by differentiating K with respect to

* %*
v and T respectively; so we solve for v and T from the equatioms

¥

frovy = p@L - e DTy (28)

and

VB - £

T = 7 % *V (29)
bv (P - £'(v))

*
It is easily shown, as in Proposition 1, that v > 0, so that it is
always optimal to drill. Using (28), (29), in (25), the maximum average profit

is given by
% * *
K =PDve oF | (30)

*
Note that K is equal to the average profit obtained by selling o3l at the

®
* -DT iy
constant rate of Dv e , with no drilling costs.

5. Stochastic Models

It is often the case that the outcome of a drilling operation is, a priori,
unknown; so we now treat the capacity v of the oll well as a random variable,
instead of as a decision variable. Let ¥P(v) be the probability density
function, $(-) the cumulative probability distribution, and v the expected
value of the random variable v. We assume that a fixed cost Q is incurred per

drilling. J now represents the expected profit functiom.
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5.1 Finite Horizon Models:

Single-well Model:

Here we admit the possibility of drilling no more than a single well in

the interval [0,T], where T is finite. The objective is to

rr ‘}
. -Dt
Maximize J, = E Lf PDve dt - Qi
0

' J

or equivalently,

5. =3 -y - q, (31)

1
where v 1is the expected value of v. It is obvious, from (31), that the

*
optimal policy is to drill (at L, = 0) iff

vP(l - e’DT) > Q. (32)

Two-well Model:

We assume that no more than two wells may be drilled in the interval [0,T].
We first remark that consideration of the two-well case implies that it must be
profitable to drill the first well; that is, (32) holds. The issue, therefore,
reduces to deciding if, and when, a second well is to be drilled, contingent
on the realization of the initial drilling, which we shall denote by w. We

then seek to

t
2 ( T e
Maximize J, = [ PDwe ‘dt + E|[ PDve D€ ge | - 20
2 0 L t2

or equivalently,

-th -D(T-t

I.=Pw(l-e 2)+Pe(L-e 2)y _ 2, (33)

2

where £, represents the time at which the second well is drilled, given that two

wells must be drilled in the interval [0,T]. Differentiating (33) with respect
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to tz, we obtain the optimal solution

%
t2=

1

~ 35 (Mz"} - W) . (34)

(SIS

Further analysis is necessary to identify the best course of actiocn
*
depending on the outcome w of the first drilling. Notice that t2 is a

monotonically increasing function of w. Let w, and w, represent the values

1 2
of w for which t: =0 and t; = T, respectively (see Fig. 3). Then from
(34),
w =7 et (35)
and
wy = v et (36)

*
The plot of t2 as a function of w 1is shown below:

£ X--- - -

[
N
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We now analyze several cases:

Case 1: w > wz.

*
Here (34) and (36) together imply that tz > T (see Fig. 3); consequently,

an optimal policy will not include a second well.

Case 2: w1 < w < wz.

*
It is easily inferred from (34), (35), (36) that 0 < t2 < T (see

*
Fig. 3), so that a second well should be drilled at t, if

* * ’
Iy >3 (35)
* %
Jl’ J2 are computed based on the realization of the initial drilling;

thus (31) reduces to

5y =wet - &N - g, (36)
while (33) and (34) together yield

= w+ 9P - 2w e DT/ g0, (37)

Then condition (35) may be restated as follows: A second well should be drilled

*
at c2 if
W< Wy, (37)
where
vy = (F - V7E) 2 PN (38)
Case 3: w < Wy

*
Equations (34) and (35) together imply that t, < 0 (see Fig. 3); then

the optimal policy is to abandon the first well and redrill immediately (at
%*

2 0), provided this action enhances the expected profit.

t
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Treating the cost incurred in the initial drilling as a sunk cost, the profit

DT).

generated by retaining the first well throughout the interval [0,T] is wP(l-e

" ;
On the other hand, abandoning the first well and drilling anew at t2 = 0 yields [
an expected profit of GP(I - e-DT)'— Q. The latter course of action is de-

sirable, therefore, if

DT

vra-ey qswe@-eh
or equivalently, if

vo<w,, (39)
where

w4=;-;?1—(_2t_5;r—)— : (40)

Note that w2 is larger than wl, w3, ané'wé; the relative magnitudes

of the latter three quantities, however, depend on Q, P, and T.

1
The analysis is summarized below: .
1. w > W, do not drill.
*

2. Wy < W < Wy drill at t, iff w < Was

*

where t, 1is given by (34).
*

3. W< Wy drill at t2 =0 1{ff w< W,

The values of Wis Wyy Wa, and w, are obtained from (35),

(36), (38), and (40) respectively.

Example:
Let T =5, P =100, Q=1000, v=15, D= 1.

First note that
- -DT
v P(l -e ) = 1489.89 > Q = 1000,

b
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so that the condition for drilling the first well is satisfied.

Using (35), (36), (38), and (40), we get

} w, = 0.101
v, = 2226.2 ,
v, = 74.96 '
' w, = 4.93

Notice that w1 < w4 < w3 < w2 .

Since w3 > Wy, decision rules 1 and 2 reduce to:

1. w > 74,96: do not redrill.

%
2. 0.101 < w < 74.96: redrill at tz.
Since w4 > Wl’ decision rule 3 reduces to:

3. w < 0,101: redrill immediately.

Suppose w = 10; then the optimal policy is to drill a second well at

*
t, = 2.297  (from (34)).

5.2 Infinite Horizon Model:

Assume a continuous discount rate r > 0.

The depletion of 0il reserves in the well is accompanied by a decrease
in the rate of 0il extraction, so that a stage is reached when it becomes de-
sirable to abandon the current well and drill a new one. The state of the process
is completely determined by the o0il reserve C. Thus there exists a level ¢
such that the optimal policy assumes the following form:

Retain the current well if C > é,

Drill a new well if C S ¢,
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In view of the random nature of v, the above policy has the following implica-
tions: if v = é, the well is abandoned and a new one drilled immediately;
while if v > E, the well is operated until ve-Dt = ¢, where t 1is the length

of time for which the well has been in operation. We seek an expression for c.

4

-Dét }
e

e — e e — — ——

C

——— e

t t+ét t

Figure 4

Let J(C) be the value function representing the expected profit from ¢t
to infinity, given that the oil reserve at time t is C. It is easy to see

that
J(C) = J(&) for C sC, : (41)

since the optimal policy involves redrilling whenever C = C. On the other

hand, suppose C>C (see Fig. 4). Then the quantity of oil in the well will

Dst

decrease from C to Ce in the interval [t, t + §t] (from (3)), generating

-Dét

a profit of PC(lL - e ). Thus we may write

|
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DSt e-rﬁt Ce—D5 t)

J(C) = PC(L - e ~°F) + J( . (42)

Using the Taylor series expansion for e, writing
-Dét, . e\ Rz '
J(Ce ) ®J(C - CDSt) =J(C) - J'(C)CDse,

and omitting the square and higher powers of §&t, (42) may be reduced to the

following differential equatiom:
31(e) + 28 - p, (43)

where = t/D.

P
Using c as the integrating factor, (43) may be solved to obtain

J(C) = c+rc” (44)

_F__
(e+1)

where K 1is a constant of integration.

When C decreases to C, the well is abandoned and a new one drilled.

Conditioning on the outcome of the drilling, we may write
J(€) = Prob(v>C) [J(v)-Q] + rrob(v<C)[J(C) - Q1 , (45)

which simplifies to

-

L (] Iy - Ql . (46)
1 - %(C) c

J(C) =

-

Note that (46) holds only for C > 0; if C = 0, then the optimal policy

involves only a single drilling (at t = 0), so that

dt-Qs—Pv—— - Q, for &-0.

=Dt -rt
e (140)

J(C) = [ PDve
0

e dion,
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If the above expression is negative, that is, if

<Q, (47)

then it will never be optimal to drill.
Our objective here is to maximize the value function at t = 0. Assuming

that there is no functioning 0il well at the beginning of the process, it follows

from (41) that the objective is to

Maximize J(C) ,
C

where J(é) is given by (46). To evaluate (46), we substitute for J(v)
from (44); but first we need an expression for the constant of integration K.
As a boundary condition, we require that J(C), evaluated at é from (44),
equals J(é) from (46), so that J(C) 1is continuous at €. We now demonstrate
intuitively that the boundary condition we have just imposed is entirely
appropriate.

Suppose J(C) takes a downward jump at c (see Fig. 5). Then we are

clearly better off by increasing 6, and we can keep doing this until the two

parts of J(C) intersect.

J(C) ?

1@ T




On the other hand, suppose J(C) takes an upward jump at C (see Fig. 5).

i Then we can increase profits by decreasing C, and this process continues until
the two parts of J(C) intersect.

i , J(C)
|
| Ve - i
J(@) .
' {
' |
L
i . >
‘ ¢ c
Figure 6

~=0 1 r

L _c+ré™ -

. -0
— [ [.2() L ke >dv -Q{ ,
1-e(® | ¢ (0+1)

. e ——

frem which we solve for K as a function of E:

! {

t : As a consequence of the assumed boundary condition, we have
i

|

4

:

|

P fﬁ p(v)(v-a)dv -Q
(p+1) ¢ (48)

-

[ 9@ €= v av
C

.

g(C) =

e DN e e s

It is easily verified from (48) that K(0) = 0, and Eim K(é) = - ®,

Coroo

Now K(C) merely represents the value of the comstant of integration K

-

-~
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which equates J(C), evaluated at C from (44), with J(é) rom (46). Further,
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J(C) is increasing in K (from (44)). Thus, if J(é) attains a maximimum
~% - - ~k
at C , it is clear that K(C) must increase with respect to € in ({0,C ],

-

and decrease thereafter; in other words, K(C) also attains a maximum at C

(see Fig. 7).

Since the objective is to maximize J(é), or equivalently, K(é), with
respect to é, we differentiate (48) with respect to C and equate it to zero;

A%

accordingly, C is obtained as the solution to

-]

[ 3 -y -

§:§l+o)
c’ e

[ o @ P- v Pyay = L (4
C

~

Differentiating (48) twice with respect to C, and using (49), we may

show that

~%
k(" = - £ < 0,

é* fAf(v)(é*_p—v-p)dv
ot

so that the condition for a maximum is satisfied.
%k
K(C ) is evaluated using (48) and (49):

Pé* (1+a)

N3
K@) = 0 (1+p)

(50)

The value of the objective function at the optimum is obtained from

(44) and (50):

R
PC

18 =
T

(51)

Equation (51) affords am interesting interpretation. Note that

-

K
e o

[ PpC e it = B

0 e
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Thus the optimal choice of 6 for the original problem yields an infinite
horizon discounted profit which is eractly equal to that derived from a constant
supply of oil at the rate Da*, with no drilling costs; further, this constant
rate is precisely the rate of oil extraction from the well at the instant prior
to abandonment.

We show diagrammatically the relationship between J(C), J(C), and K(é)
in Figure 7:

J(C), for different

values of 6

| >
A% - o
c ‘5K(C) c
Figure 7
nk

Finally, we study the effect of variation of different parameters on C .

Representing the left hand side of (49) by F, we can show that

3F (o+1)

| " F 7 0 2)
3F Q(p+1)

_a'p = - Pz < O, (53)
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' -a_E. = 9

} . 3 > > 0. (54)

! 1

{ Further, ;

|

,f 1

3 1+p) %o o Sakep - !

?A* = - (—é-‘-’l c? f@* PN (C P=vP)av < 0. (55) :
J

From (52) and (55), we have

[

A%
aC

g <0 (56)

while (53) and (55) yield
( XL o . (57)

By the implicit function theorem, we have

A%

3¢ _ _ 3F/3p
¥

% 3F/3C

’

! which, in conjunction with (54) and (55), yields

> 0. (58)

%]
(@]

A
From (56), (57), and (58), we conclude that the optimal redrilling level C
decreases with the drilling cost Q and the decay constant D, while it increases

with the unit profit P and the discount rate r.

Example:

We evaluate (49) for the uniform demsity om [0,1], thus:

Ak A% %
¢ [C° —pC + p-1] + L1 -¢%2 « Q0)
p(1-p) 2 P
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e —————— * 3 s BT

ST N <N

For

P = 1000, Q =100, r=20.1, D=1, the above equation reduces to

~d
_ ~%
.1C 0.9] +% 1-é )2 = 0,11,

%
which may be solved to yield C = 0.282.

of practical applicatioms. Situations calling for slightly different sets of

assumptions could easily be analyzed in similar fashion.

(1]

(2]

(3]

(4]

(51

(6]

(71

6. Concluding Remarks

The models developed in this paper appear to permit a fairly wide range
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capacity is drilled, o1l is sumped Svom it until cthe 0il remaiaing decra2ases
<0 a fixed cut-0fZ leval; zthen the well is abandoned, and 2 new well is driliecd.
The resulting oprocess when repeatad over time apnears %o Ye the same 35 an oil
sgurce which produces oil ravenue continuously at the Sixed cut-of’ level. In

ocher words, the excass ravenue raceivad from an oil well when its capacicr is
graatar than the cutoff level is just suificient to 2avy for drillimg costs for

a new well.




