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PROFIT MAXIMIZATION MODELS FOR

EXPONENTIAL DECAY PROCESSES

by

S.P. Sethi, G.L. Thompson and V. Udayabhanu

ABSTRACT

21A number of real world processes can be modelled as exponential decay

processes. Examples are: machine replacement, oil well extraction, advertising

goodwill, repair and cleaning activities, etc.. in this paper we analyze a

series of discounted or undiscounted, deterministic or stochastic exponential

decay models. We characterize finite and infinite horizon optimal solutions

for each model. We show that the solution can be characterized for the oil

drillers problem in the following way: Once a well of sufficient capacity is

drilled, oil is pumped from it until the oil remaining decreases to a fixed

cut-off level; then the well is abandoned, and a new well is drilled. The

resulting process when repeated over time appears to be the same as an oil

source which produces oil revenue continuously at the fixed cut-off level. In

other words, the excess revenue received from an oil well when its capacity

is greater than the cutoff level is just sufficient to pay for drilling costs

for a new well...
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1. Introduction

Several real-world processes are subject to the phenomenon of exponential

decay. Here we analyze various optimization models involving such processes.

Consider, as a first example, a machine replacement problem. The perform-

ance level of the machine - which may be measured in terms of the output quantity

and the production rate - can be assumed to decrease exponentially with time.

The machine earns revenue during its lifetime, and then must be replaced at

a certain cost. The question, therefore, is to decide on the timing of tr achine

replacement, and the capacity (in terms of initial performance level) of the

new machine [2, 6, 7).

Another example concerns the determination of the optimal drilling times

and capacities of oil wells [7]. The rate of extraction of oil from the well

may be assumed to be directly proportional to the quantity of oil remaining in

the well, which, in turn, implies that the process is subject to exponential

decay. Profits are generated during the course of oil extraction; at some

point, the well is abandoned, and a new one drilled. The same model is repre-

sentative of mining operations in general.

Memory is yet another process subject to exponential decay; consequently,

4 our models may be used to formulate an advertising policy problem [4, 5]. Media

commercials are aimed at generating goodwill in the minds of consumers, leading

to enhanced sales. The loss of goodwill, as a consequence of the decline in

memory, has to be countered by exhibiting further commercials; the timing and

quantity of commercials become the decision variables.

The periodic repainting of inns [3], and the cleaning of swimming pools,

situations which fit into the general framework of this paper.
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Section 2 lays down the preliminary groundwork for the models; Sections

3, 4, and 5 analyze the deterministic discounted, deterministic undiscounted,

and stochastic models respectively.

2. The Oil Driller's Problem

We now present several models involving exponential decay, framed in

terms of the oil driller's problem. We assume that at any instant, there is

at most one functioning oil well. The rate of oil extraction is given to be

a constant D times the quantity of oil C(t) remaining in the well at time t.

The oil is sold at a unit profit of P. As the oil reserves get depleted, the

rate of extraction eventually decreases to uneconomic levels, making it worth-

while to abandon the well and drill a new one at a cost of f(v), where v

is the capacity of the well. The function f(v) is assumed to be continuous

and twice differentiable. We may further suppose, without loss of realism,

that v Z 0, f(O) - 0, and f'(v) > 0.

The rate of oil extraction, then, is represented by

C(t) - -DC(t). (1)

Using the boundary condition

C(O) - v, (2)

the solution to (1) may be obtained as

-Dt

C(t) - ve , (3)

where time is measured from the instant at which the well is drilled. Drilling

is assumed to be instantaneous.
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To complete the model, we specify the objective function:

I i + l  
]Dt-j

Maximize J - Z P D(ttidt - f(vi) (4)

Vitt i  i Lf ti I

The drilling times ti, t2 ..., and the corresponding well capacities v1 ,v2,...,

constitute the decision variables.

3. Deterministic Discounted Models

In this section, we shall analyze a deterministic infinite horizon model,

with a continuous discount rate r > 0.

It is clear by symmetry that the interval T between drillings will re-

main constant; so will the capacity v of the oil well; see Figure 1. Note its

V

-DTye

.r I
0 T 2T

Figure 1. Oil well capacity over time.

similarity to the simple EOQ lot size model. If J represents the infinite

horizon profit function, we may write

T -Dt -rt -rT
J f PDve- e- dt- f(v) + Je - , (5)

0
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which may be more conveniently expressed as

t J LT ' (D+r) v

(l-e T )

The objective is to maximize J with respect to v and T. Further analysis

depends on the form of the cost function; we consider two cases.

Case 1: f" (v) 0.

Here f(v) is concave in v, so that v is nonincreasing with respectv

to v. A cursory examination of (6) makes it patent that J is maximized by

letting v become as large as possible. Hence we need an upper bound on the

drilling capacity; we assume that v ! V <

For the reason just mentioned, the optimal drilling capacity must be at

the upper bound, provided that it yields a positive profit. Thus we may write

* if PDV(l-e- ( D+ r)T * ) > (D+r)f(V)

v =.(7)

0 otherwise

The optimal drilling interval is obtained by differentiating J with

respect to T and equating it to zero; hence T* is determined from the

relation

(D+r)e - DT* - De- (D+r)T* . r [1 - • f(V)lPD V(8

which is valid under the hypothesis that v - V. Any solution to (8) yielding

T* 0 implies that v 0; further, T* - only if PDV - (D+r)f(V), in

which case, we must have v - 0, from (7).
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Case 2: f"(v) > 0.

Here f(v) is strictly convex in v, so that v is an increasingv

function of v. This property of decreasing returns to scale eliminates the

need for an upper bound on v so that v will always be finite.

Equating to zero the derivatives of J with respect to v and T, the

optimal values v and T* are obtained as the simultaneous solutions to the equations

f'(v*) PD(l - e- (r)T*)

and

e -l = r f(v 1 (10)

e(D+r)T* 1  (D r) v f'(v)

We now show that it is always optimal to drill a positive quantity.

Proposition i: v > 0.

Proof: Using (9), the profit function (6) may be evaluated at the optimum as

J lerT,  I v f'(v*) - f(v)] (11)

Now strict convexity of f(v) implies that f'(v) > f(v); further, sincev

f'(v) > 0 by assumption, it may be deduced from (9) that T* > 0. Consequently,

(11) implies that J > 0, from which we may infer that v > 0.

Q.E.D.

Equations (9) and (10) may be employed to further simplify (11), yielding

-DT*J V e •(12)
r
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It is easy to infer from (12) that J < and T* < . Thus v , T*, and J

are strictly positive and finite-valued. In Figure 2 we have sketched the

optimal solution. Equation (12) affords an interesting interpretation.

Dv

Dv e-'*/

-, / / / . /,

, / / /
0 T* 2T*

Figure 2. Optimal oil extraction rate over time.

Notice that

*f PDv*e-DT*e-rtdt = PDv e-
S0 ed r

Thus J is the infinite horizon discounted profit which would be obtained by

-DT*
selling oil at the constant rate of Dv e , with no drilling costs; further,

this constant rate is precisely the rate of oil extraction just at the instant

before the well is abandoned in favor of a new one. In Figure 2, J is the

discounted value of the shaded area. Therefore the discounted value of the cross-

hatched area equals the discounted value of the drilling costs.

Example:

Suppose D 1, r 0.1, P 100

[I
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Case 1: f(v) = 50v, V = 40.

SEquation (8) reduces to

-T* -1.T
l.le - e.T* = 0.045,

yielding T* 1.759,i *
so that v = 40 from (7).

Case 2: f(v) = 50v2 .

Equation (10) reduces to

0.1T* I.IT*
22e - e = 21,

which yields T* - 1.236.

Equation (9) reduces to

* ~.1T*
v = 0.909(1 - e

yielding v 0.676.

4. Deterministic Undiscounted Models

4.1 Finite Horizon Models:

Let T be the horizon length, and n the number of drillings; then the

objective is to

4 Maximize J n Z f - f(v (13)
vit

i  n =l i

where t - 0 and tn+1 = T.

Equation (13) may be rewritten as] n . [pvWe n t -D(tt+octae) s, abfr
Jn n

We need to analyze two cases, as before.



Case 1: f"(v) 0.

As in Section 3, the concavity of f(v) implies, from (14), that Jn

is maximized by letting v. become infinitely large; so we assume that1

V. V <1

First suppose that only a single well may be drilled in the interval [0,T].

For the afore-mentioned reason, the optimal drilling capacity must be at the

upper bound, provided that it yields a positive profit. Thus1/

V if PV(l-e-D T ) > f(V)

V = 0 otherwise

and, of course, tI  0.

Now we assume that exactly n wells must be drilled in the interval

[0,T]. Again, the concavity of f(v) implies that

v1 = .... =v =V.1 n

Equating to zero the derivatives of Jn with respect to t, i

we can show that

S * T * (n-l)T
,tI =0, t2  n n''tn n

(The above is true subject to profitability).

The profit function is evaluated at the optimum as follows:

3* = nPV(l e-D T / ) - nf(V) (15)
n

The circumstances under which n wells are more profitable than (n-i) wells

may be determined by comparing J w nth J ; the condition
n n-i

J n J n-l >0 (6
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reduces to

1 f(V) + (n- 1 )e - DT/(n - 1 ) - -DT/n > 0 (17)PV-ne >0(7

in this case.

Define

Yn =J n -J n- (18)

The following properties enable us to propose a mEthod for determining

the optimal number of wells n Note that

lim J = -
n

thus we may be certain that n <

Proposition 2: J is strictly concave in n, for 0 <
n

Proof: It is easily shown that

n PVD T -DT/n

dn n

Q.E.D.

Proposition 3: Y is monotonically decreasing in n, for 1 n < .

Proof: The result is a direct consequence of the strict concavity of J
n

Q.E.D.

Note that

Yl J1 < C (19)

Proposition 3, in conjunction with (19), permits us to conclude that

there exists some value of n, say n , satisfying

IJ



Y 0,
n

(20)

Y*+l < 0.

n +1

Then J attains a maximum at n = n , so that (20) represents the conditionn

for optimality of n

Condition (16) may also be viewed in a different light. Replacing the

inequality with an equality, we may solve for T to obtain various "points of

indifference" Tn * for different values of n. Suppose TI is the solution for

n = 1; then T may be interpreted as the minimum horizon length for which n I

(or equivalently, the maximum horizon length for which n = 0). These points

of indifference possess the following property:

Proposition 4: Tn * is monotonically increasing in n , for 1 n .
dTn,
ncProof: We seek to show that > 0. Replacing the inequality in (17) with

du
an equality and letting T = T n *, n n , we implicitly differentiate T n

with respect to n to obtain

I d~ n, k '--- '-=e +D nN -D n / * ,-=_l e Dn -DT n d (n -1)

:-DD
dT* _1T~ )) en

D (l~~~~ n Dn~ (,-~

Clearly the denominator > 0; so we need to show that the numerator > 0. Letting

Zn =(l + DT) e-DT/n,

we see that

dZ 2T2,n D - DT/n
d-- 3-- e > 0

~completing the proof.

Q.E.D.



As a consequence of Proposition 4, the optimal number of wells n

must satisfy

T , T < T, (21)
n n +1

Case 2: f"(v) > 0.

As in Section 3, the strict convexity of f(v) implies that v. <

so that no upper bound is required on v,.1

Differentiating .J with respect to ti, vi, i = 1,...,n, we can shown

that

t* Tt (n-l)T
tI = 0, t n2 

= n . tn n '

and v1  Vn = V n' where Vn is the solution to

f'(V n ) = P(l - e - DT /n) (22)

It is easily shown, as in Proposition 1, that V > 0.

Substituting for t. and v. in (14), we get
1 3-

S* -DT/n)

J= nPV (I - e _ - nf(Vn) (23)
n n n

Defining Y as in (18), we may use (20) or (21) to determine n
n

Example:

Suppose T 20, D 1, P 100.

Case 1: f(v) = lOv, V - 40

We first evaluate

Y n -4000[0.9 + (n-l)e- 2 0 /(nl) ne-20/n

-nn1

and use condition (2) to obtain n - 28.

Then the drilling interval 0.526, and vi - 40.
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Case 2: f(v) = 10v2

As before, we compute

Y =250 [n(l - e-20/n)2 - (n-l)(l - e20/(n-l))2]

n*

and use condition (20) to obtain n = 16.

Then the drilling interval = 1.25, and v. = 3.567.:1

4.2 Infinite Horizon Models:

It is clear by symmetry that the interval T between drillings will

remain constant; so will the capacity v of the oil well. If K represents

the average profit, the objective is to

Maximize K = T f PDve- Dtdt - f(v) (24)
v,T 0

The above expression may be rewritten as

K = [?v(l - e - f(v) (25)
We analyze the two cases as follows:

Case 1: f' (v) r 0.

As before, the concavity of f(v) forces us to impose an upper bound

on v, so we let v - V < -. Then the optimal oil well capacity is given by

V if PV(l - e- DT ) > f(V)
v =(26)

0 otherwise .

The optimal drilling interval is determined by differentiating K with respect

to T; thus T is the solution to

-DT * f(V)I( + DT*) 1 P (27)
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Case 2: f'(v) > 0.

As we have explained, no upper bound is required on v, as a consequence

of the convexity of f(v).

The optimal values are obtained by differentiating K with respect to

v and T respectively; so we solve for v and T from the equations

* -DT

f'(v) P(l - e ) (28)

and

T* =v f'(v) - f(v*) (29)

Dv (P -f'(v

It is easily shown, as in Proposition 1, that v > 0, so that it is

always optimal to drill. Using (28), (29), in (25), the maximum average profit

is given by

* * -DT
K PDv e (30)

Note that K is equal to the average profit obtained by selling ol1 at the

* -DT
constant rate of Dve , with no drilling costs.

* 5. Stochastic Models

It is often the case that the outcome of a drilling operation is, a priori,

unknown; so we now treat the capacity v of the oil well as a random variable,

instead of as a decision variable. Let ;(v) be the probability density

function, D(.) the cumulative probability distribution, and ; the expected

value of the random variable v. We assume that a fixed cost Q is incurred per

drilling. J now represents the expected profit function.
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5.1 Finite Horizon Models:

Single-well Model:

Here we admit the possibility of drilling no more than a single well in

the interval [0,T], where T is finite. The objective is to

Maximize J E f PDve tdt -Qi

or equivalently,

-DT
Jl = vP(l - e )- Q (31)

where v is the expected value of v. It is obvious, from (31), that the

optimal policy is to drill (at tI  0) iff

VP(l - e-DT ) > Q. (32)

Two-well Model:

We assume that no more than two wells may be drilled in the interval [0,T].

We first remark that consideration of the two-well case implies that it murt be

profitable to drill the first well; that is, (32) holds. The issue, therefore,

reduces to deciding if, and when, a second well is to be drilled, contingent

on the realization of the initial drilling, which we shall denote by w. We

then seek to

t2tUMaximize J 2 .tPDweDt dt + E FfT DD(tt)l- 2Q

t2 2 0 L t 2 Z

or equivalently,

'I-Dt 2  -D(T-t2)J 2 = Pw(l - e + Pv(I - e )-2Q, (33)

where t2 represents the time at which the second well is drilled, given that two

wells must be drilled in the interval [0,T]. Differentiating (33) with respect
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to t2, we obtain the optimal solution

* T _I
t 2 2D - w) (34)

Further analysis is necessary to identify the best course of action

depending on the outcome w of the first drilling. Notice that t2  is a

monotonically increasing function of w. Let w1  and w2  represent the values

of w for which t2 = 0 and t2  T, respectively (see Fig. 3). Then from

(34),

- -DTw v e (35)

and

- DTw v e (36)

The plot of t2  as a function of w is shown below:

t 2

u1

i Figure 3
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We now analyze several cases:

Case 1: w > w2 .

Here (34) and (36) together imply that t2 > T (see Fig. 3); consequently,

an optimal policy will not include a second well.

Case 2: w1 < w < w 2.

It is easily inferred from (34), (35), (36) that 0 < t2 < T (see

Fig. 3), so that a second well should be drilled at t2  if

J > J (35)

2 1

Jl' J2 are computed based on the realization of the initial drilling;

thus (31) reduces to

* -DT)
i wP(l-e - Q, (36)

while (33) and (34) together yield

* -DT/)

J2 - (w + v)P - 2V e -2Q. (37)

Then condition (35) may be restated as follows: A second well should be drilled

at t2  if

w < , (37)

where

2DTw3 - V-Q/P) e .(38)

Case 3: w < w1 .

Equations (34) and (35) together imply that t2 < 0 (see Fig. 3); then

the optimal policy is to abandon the first well and redrill imediately (at

t2 0), provided this action enhances the expected profit.
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Treating the cost incurred in the initial drilling as a sunk cost, the profit

generated by retaining the first well throughout the interval [0,T] is wP(l-e-DT)

On the other hand, abandoning the first well and drilling anew at t2 = 0 yields

an expected profit of ;P(l - eDT)- Q. The latter course of action is de-

sirable, therefore, if

P(l - eDT) - Q > wP(l - eDT)

or equivalently, if

w < w4, (39)

where

w4 =v -DT (40)
P(l - e )

Note that w is larger than wl, w3, and w4; the relative magnitudes

of the latter three quantities, however, depend on Q, P, and T.

The analysis is summarized below:

1. w > w2: do not drill.

* 2. wI < w < w2 : drill at t iff w < w
1 *

where t2  is given by (34).

3. w < wl: drill at t2 a 0 iff w < w4 .

The values of Wl, W2P w3, and w4  are obtained from (35),

(36), (38), and (40) respectively.

Example:

Let T - 5, P i00, Q 1000, -15, D = .

First note that

P(. - e D T ) 1489.89 > Q - 1000,
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so that the condition for drilling the first well is satisfied.

Using (35), (36), (38), and (40), we get

w1  = 0.101

w2 = 2226.2

w3  i 74.96

w4  - 4.93

Notice that wI < w4 < w3 < w2

Since w > wl, decision rules 1 and 2 reduce to:

1. w > 74.96: do not redrill.

2. 0.101 < w < 74.96: redrill at t .

Since w 4 > W., decision rule 3 reduces to:

3. w < 0.101: redrill immediately.

Suppose w = 10; then the optimal policy is to drill a second well at

t2 = 2.297 (from (34)).

5.2 Infinite Horizon Model:

Assume a continuous discount rate r > 0.

The depletion of oil reserves in the well is accompanied by a decrease

in the rate of oil extraction, so that a stage is reached when it becomes de-

sirable to abandon the current well and drill a new one. The state of the process

is completely determined by the oil reserve C. Thus there exists a level

such that the optimal policy assumes the following form:

Retain the current well if C > C,

Drill a new well if C C.
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In view of the random nature of v, the above policy has the following implica-

tions: if v e, the well is abandoned and a new one drilled immediately;

while if v > C, the well is operated until ve -D = e, where t is the length

of time for which the well has been in operation. We seek an expression for C.

C

C
ce-D6t

I I

.1 I
JPol

t t+6t t

Figure 4

Let J(C) be the value function representing the expected profit from t

to infinity, given that the oil reserve at time t is C. It is easy to see

that

J(C) - J(d) for C --.C, (41)

since the optimal policy involves redrilling whenever C z C. On the other

hand, suppose C• C (see Fig. 4). Then the quantity of oil in the well will

decrease from C to Ce"D t in the interval (t, t + 6t] (from (3)), generating

a profit of PC(I - e-D6t). Thus we may write

i
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J(C) - PC(l - e-D t ) + e-r~ t J(Ce -D t) . (42)

Using the Taylor series expansion for e, writing

J(Ce-D dt) J(C - CDt) ;J(C) - J'(C)CD6t,

and omitting the square and higher powers of 6t, (42) may be reduced to the

following differential equation:

SJ'(C) + J(C) P (43)

C

where p = r/D.

Using C 0 as the integrating factor, (43) may be solved to obtain

J(C) C + KC , (44)

where K is a constant of integration.

When C decreases to C, the well is abandoned and a new one drilled.

Conditioning on the outcome of the drilling, we may write

J(C) = Prob(v>C)[J(v)-Q] + 2'rob(v<C)[J(C) - Q] , (45)

which simplifies to

J(6) 1 .(v)J(v)dv - Q] (46)1 (6) c

U Note that (46) holds only for C > 0; if C = 0, then the optimal policy

involves only a single drilling (at t - 0), so that

J() /PDWe -rdt Q Pv T=o Q, for 0 .

0
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If the above expression is negative, that is, if

Pv < (47)

then it will never be optimal to drill.

Our objective here is to maximize the value function at t = 0. Assuming

that there is no functioning oil well at the beginning of the process, it follows

from (41) that the objective is to

Maximize J(C)

C

where J(C) is given by (46). To evaluate (46), we substitute for J(v)

from (44); but first we need an expression for the constant of integration K.

As a boundary condition, we require that J(C), evaluated at C from (44),

equals J(C) from (46), so that J(C) is continuous at C. We now demonstrate

intuitively that the boundary condition we have just imposed is entirely

appropriate.

Suppose J(C) takes a downward jump at C (see Fig. 5). Then we are

clearly better off by increasing C, and we can keep doing this until the two

parts of J(C) intersect.

J(C)

J(C)

I I

C C

Figure 5
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On the other hand, suppose J(C) takes an upward jump at C (see Fig. 6).

Then we can increase profits by decreasing C, and this process continues until

the two parts of J(C) intersect.

J(C)I

JOc)i-

J(C) I

C

Figure 6

As a consequence of the assumed boundary condition, we have

( + C KG = L( P v+Kv dv -Q(CI -- (+11 L - (dl

frcm which we solve for K as a function of C:

P f y(v)(v-C)dv - Q

K(C) = (0+l) C (48)

Y(v)( vO) dv
C

It is easily verified from (48) ths.t K(O) - 0, and Urn K(C)-

Now K(C) merely represents the value of the constant of integration K

which equaes J(C), evaluated at from (44), with from (46). Further,
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J(C) is increasing in K (from (44)). Thus, if J(C) attains a maximimum

at C , it is clear that K(C) must increase with respect to C in [0,C ],

and decrease thereafter; in other words, K(C) also attains a maximum at C

(see Fig. 7).

Since the objective is to maximize J(C), or equivalently, K(C), with

respect to C, we differentiate (48) with respect to C and equate it to zero;

accordingly, C is obtained as the solution to

f ,(v)(v-Cd)dv v-P)dv = Q(p+l) (49)P P

Differentiating (48) twice with respect to C, and using (49), we may

show that

K * PDSK"(C ) =- < 0 ,
* . *-p -p

CSJ~j(v) (C -v )dv

so that the condition for a maximum is satisfied.

^*

K(C ) is evaluated using (48) and (49):

* - P (i+o) (0
K(C ) (l+p)0)

h The value of the objective function at the optimum is obtained from

(44) and (50):

*(a*) P (51)
P

Equation (51) affords an interesting interpretation. Note that

Sp*-rt PC
0 PDCe dt
0
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Thus the optimal choice of C for the original problem yields an infinite

horizon discounted profit which is exactly equal to that derived from a constant

supply of oil at the rate DC , with no drilling costs; furthEr, this constant

rate is precisely the rate of oil extraction from the well at the instant prior

to abandonment.

We show diagrammatically the relationship between J(C), J(C), and K(C)

in Figure 7:

J(C), for different
values ofC

J(C )

Figure 7

1 Finally, we study the effect of variation of different parameters on C

Representing the left hand side of (49) by F, we can show that

I (p+l) a o (52)
3 Q P (52

aF Q(p+l) < , (53)
P 2
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q > 0. (54)
3p P

Further,

._ (l+C) (v ) ( -P -v -odv < 0. (55)

3C C

From (52) and (55), we have

aC
3 < 0 (56)

while (53) and (55) yield

_C >0 (57)
3P

By the implicit function theorem, we have

which, in conjunction with (54) and (55), yields

_ >0 . (58)

From (56), (57), and (58), we conclude that the optimal redrilling level C

decreases with the drilling cost Q and the decay constant D, while it increases

with the unit profit P and the discount rate r.

Example:

We evaluate (49) for the uniform density on [0,1], thus:

0 Q(l+P)
C E --C p] + i (1-C)
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For P 1 1000, Q 1 100, r - 0.1, D = 1, the above equation reduces to

S*.*0. * .92
C [ - O.lC - 0.9] + 1 -* 2 o

0.09 f _c) 0.11,

which may be solved to yield C = 0.282.

6. Concluding Remarks

The models developed in this paper appear to permit a fairly wide range

of practical applications. Situations calling for slightly different sets of

assumptions could easily be analyzed in similar fashion.
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* Exponential decay processes, Oil driller's problem
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A number of real workd processes can be modelled as exponential decay

processes. Examples are: machine replacement, oil well extraction, adver-
tising goodwill, repair and cleaning activities, etc.. In this paper wA

J analyze a series of discounted or undiscounted, determinisitic or sto jtic
exponential decay models. We characterize finite and infinite horizon optimal-
solutions for each model. We show that the solution can be characterized for,,.
the oil drillers problem in the following way: Once a well of sufficient
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c a pac i ,. i s d r i l l e d , o i l i s i ' m n e d f r o m i t u n c i l t h e o i l r e m a_ ..a. d e c r e a s e s
to a f4xed cut-off level; :hen the well 4s abandoned, and a new -well is drilled.
The resultin3 ?rocess when reoeated over cime aooears to be :he same as an oil
source which produces oil revenue continuouslv at the fi:ced c :-oi level. :n
ocher words, the excess revenue received from an oil ¢el! -when its caoacitv is
greater than the cutoff level is 4usc sufficient to Tay rdrillig costs f r
a new well.
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