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MODELING SEASONAL ARM& PROCESSES

Jeffrey D. Hart and H. L. Gray
Southern Methodist University

INTRODUCTION

Gray, Kelley, and McIntire (1978) have introduced a method, based

on arrays of numbers called R- and S-arrays, for identifying p and q in

an ARMA(p,q) process. In addition, they have illustrated how the same

method is useful in detecting nonstationary factors in an observed process,

and in suggesting an appropriate transformation to stationarity. In the

present paper special attention is given to the problem of modeling

seasonal ARMA processes using the S-array method. A general definition is

given for a seasonal process, and the procedure for identifying and model-

ing such processes is discussed in detail. Additionally, an interesting

theorem characterizing the S-arrays (based upon the sample autocorrelation)

of seasonal processes is stated and a proof indicated. Finally, a data

set (the international airline data) which exhibits the properties of a

seasonal process is analyzed using the method discussed, and two models

for the data are proposed.

I. Definitions and Theorems

The following definitions and theorems provide the motivation for

the remainder of the paper.

Definition 1. A stochastic process (Xt 1, t - 0, *1, j2, ... is said to

be autoregressive of order p and moving average of order q, or AENA(p,q), if
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p q
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where the k and ek are constants and (Z t -is-a:wh±ta na&a .procesa with

finite variance. If we define the operator B by BX. - then (1) may

be written as

#(B)x t - e(B)Z (2)

where *(B) - 1 - - - - and

9(B) 1i - -2B -... - eq

it is wellknown that {(X t is stationary if and only if all of the roots

of *(x)-O lie outside the unit circle. For our purposes, a nonstationary

process will be one for which one or more of the roots of *(x)-O lie on the

unit circle.

Definition 2. Suppose {Xt I is an ARMA(p,q) process with (B)Xt -

e(B)Z . A factor a(B) of *(B) will be called a seasonal factor if

M (B I--l+B2, lII - 2 or

a(S) -I + B ;

i.e. a factor ci(B) is seasonal if the algebraic equation %(x) - 0 has

complex roots on the unit circle or the root -1.

Definition 3. An ABM(p,q) process will be referred to as a seasonal

process if it has one or more seasonal factors.

Definition 4. Let m be an integer and f be a real valued function.

Further, let fm- f(m),
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The S-array (for the function f) is the following array of numbers:

-11 1 (tl S2 Ic-

... Skiffj)

-1 S 1(f1l) S2(f-2) .. Stf

0 S I(f 0 ) SZ(f1l) .. S k(f -l)~
1 S 1(f 1) S 2(f) S k(f-kq2)

i-k- S1 (f1

k -2.
J- I,-)S 

(i 2



A recursion relationship for calculating S-array values and a

complete discussion of how S-arrays may be utilized in identifying

p and q for an ARA(p,q) process may be found in Gray, [alley, and

McIntire (1978).

Definition 5. Denote by m(XI , . .. , A p) the autocorrelation function of

a stationary ARM(p,q) process whose characteristic equation has roots

X19 Ix2 .... ). Let r2, ... , r be the roots of the characteristic

equation of an ARMA(p,q) process with j roots on the unit circle, which

for convenience are denoted by rl, r 2 , ... , rj. Now, define

PM " OM (rl~r., ... ,rp) ,, .0

and

P - 11= p (ar , a.,arj,rj+,,...,rp), j -1,2,...,p
a 0.1+ 1M ~ * j p

Theorem 1. Suppose an ARMA(p+j,q) process has j roots of its charac-

teristic equation on the unit circle and that M of these j roots are of

highest multiplicity. Let rl5r2 ...,r denote the M distinct roots on the
M*

unit circle which are of highest multiplicity. Then pm satisfies a linear

homogeneous difference equation of order M whose characteristic equation is

(l-rlIx)(l-r 1x) ... (l-rIx) - 0

For a proof of this theorem see Findley (1978) or Quinn (1980). The

importance of Theorem 1 lies in its suggestion of the probable behavior

of the sample autocorrelation function from nonstationary ARMA processes.

The next two theorems will illustrate how S-arrays may be used to take

advantage of the information in Theorem 1.

For the remainder of this paper we shall define the autocorrelation

of a nonstationary process as P0 and hence will write 0m a P •
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Theorem 2. Let f denote either Pm or (-I) p where P is the auto-

correlation function of an ABMA(p,q) process. Then the condition that

S9z(fM) is constant (as a function of m) for some Z < p is both necessary

and sufficient for nonstationarity. Further, Z a M (where M is the same

as that in Theorem 1) and
M

S,( ) c, (-l)Ml E af jk] where

PM -i 1m-" "' - m-M - 0 for m > 0 and

a(_ l)kV fm (-l)mo

The proof of this theorem follows from the proof of theroem 9 in

Gray, Kelley, and McIntire (1978) and from the proof of the previous

theorem in this paper.

Theorem 3. Suppose {X } is an ARMA(p.q) orocess and that

N-k

t . (zx t ~ (Xt~ - IN)
- -1,-

Then {Xt} is nonstationary if and only if p-la S.(N(k)) c for some m<p.

Moreover, if S3( ) is defined for all k, then

m

-(-i) 3 (1 -~+), where

k-1

k- 02k-3 . . -mpkm - 0



This theorem has been proven by Findley in personal communications

to .L. Gray and by Morton (1980).

Theorems 1, 2, and 3 provide the basis for modeling seasonal data.

Theorem 1 and 2 indicate respectively the effect which seasonal factors

have on the autocorrelation function, and the way in which seasonal

factors are manifested in S-arrays. Theorem 3 assures us (at least for

reasonably large sample sizes) that the constancy behavior which charac-

terizes the parametric S-array of a seasonal process will also be apparent

in the S-array based upon the sample autocorrelation.

II. Some General Remarks

Before considering a specific example of real data, it will be

helpful to consider an example which illustrates the consequences of

Theorems 1 and 2. Suppose the process {X t} is given by

(1-B)2(3-/-. + B2) (B)Xt - O(B)Z t

where the zeroes of O(W) are all outside the unit circle. Note

that the equation (l-x)2(l-V2x + x2) 0 has the three distinct roots 1,

SCl+i), and !1(1-i) which are all on the unit circle. However, since

the root I is repeated, Theorem 1 implies that Px(m), the limiting auto-

correlation function of {Xt 1, satisfies the first order difference

equation

y -Ym-l " 0.

If Wt M (I-B)Xt , we can make the further observation that Pw(m), the

Limiting autocorrelation function of {Wt 1, satisfies the third ordeT

difference equation

y - (/2 + 1 ( + + 1)m 2 - y 3 0.



It is also important to see that Theorem 2 implies

S l(X(m)) 0 , St(-11)mx(m)) - 2,

and

3 ( ) W 0 , s3 ((-)p(m) -2(2+2).

With this example in mind,.we are now in a position to outline the

general procedure for detecting and estimating the parameters of seasonal

factors present in a process which is being observed. In the following

it will be assumed that a realization fzx,...,r} has been obtained

from an ARMA process of the form in (2), where all of the roots of the

characteristic equation *(x) - 0 lie on or outside the unit circle.

The first step in simply detecting the presence of seasonal factors

(which should of course follow an initial look at a plot of the data) istM
an examination of the sample S-arrays (i.e., the S-arrays for p ani (-I)m ).

Theorem 2 implies that seasonal factors are in the process if and only if

one of the following situations holds:

(i) S (fa) 2 c for some J > z

(i) S ( a) = -z

(iii) SI((-l)3 02)

If N is reasonably large, Theorem 3 assures us that this constancy behavior

in the parametric S-array should also be evident in the sample S-array.

Thus, in order to detect seasonal factors the sample S-array should be

examined for the presence of a near constant column. (The interpretation

of "near constant" will be elaborated on later.) Upon detecting a nonsta-

tionarity in the process, Theorem 1 suggests clearly that the next step

in identifying the full order of the process is to operate on the data by

the corect nonstationary operator. The reason for this is that the auto-

correlation function of a nonstationary process may satisfy a difference
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equation of order less than p (where p is the order of O(x)); and there-

fore the constancy behavior expected in the p column of the sample

S-array may be completely obscured by the presence of nonstationary

factors. If, however, the data is transformed by the correct non-

stationary operator,, the resulting S-array may be examined for

additional stationary or noustationary factors. The example to be

presented later should make these ideas clear.

The question of how to choose the parameters of the nonstationary

(seasonal or nonseasonal nostationary) operator now arises. In the

discussion of this problem it should be understood that process factors

whose zeroes are not on but only close to the unit circle will also

induce a near constant column in the sample S-array. Thus, when

referring to the problem of estimating the parameters of a nostationary

operator, we leave open the possibility that the appropriate operator

is mathematically stationary but has zeroes which are close to the unit

circle. The procedure to be suggested for choosing the parameters con-

sists of two stages. Suppose that the kth column of the sample S array

is rear constant, or (as sometimes occurs in practice) that the kth

column and one or more columns previous to the k th are nearly constant.

The first stage, then, in choosing the parameters of the nonstationary

operator is the fitting of a kth order autoregressive model to the data,

estimating parameters by the Yule-Walker method (see Box and Jenkins

(C176)). After fitting the model, the roots of the resulting characteristic

equation should be examined. Associated with each complex conjugate pair

of roots a t ibj (which may be indexed by - aj + ibi, b > 0) is the

frequency wa Itan the modulus 1
j 2w a i a
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roots, Xj -a and we have

10 "I : I and

Ta~T

The , and IX 11 c be used in the same way that a spectrum would be

used to compare the relative contribution of each frequency to the over-

all variation in the process. The w and IX-1I have an advantage over

the spectrum, however, in that the ' are not "smeared" as they would be

in the spectrum and the IXLI can be used to determine stationarity and

nonstationarity. Note that the closer {7, is to 1 the closer the

corresponding factor is to being nonstationary. The w here may be thought

of as the natural frequencies of the process rather than as the harmonics

in a Fourier series expansion. This initial fitting of a model and the

subsequent examination of roots should be used as an investigative proce-

dure to simply identify the nature of the nonstationary (or nearly

noustationary) factors in the process being observed. The preliminary

nature of the initial fit. indicates why Yule-Walker estimates were

suggested rather than, for example, MLEs (under the assumption

2Z ". N(O,a )) since the computing time required to calculate MLEs is

usually much greater than that needed for Yule-Walker estimates.

The second stage in the parameter estimation problem involves

choosing between a nonstatiouary and a stationary model. In part,

resolving this question requires us to elaborate somewhat on the meaning

of the phrase "near constant column in the sample S-array." Besides a

simple examination of the kth column (the "constant" column referred to

previously), another method for determining the degree of constancy is

to form one (or both) of the ratios

'" .. . . . .. =,-L, . . ..Ann - . . . . . . . . . .. = " -m 'lll . . . . ' ' . . . .



a. aN-+

-i- R k+l i- 1R0, I - k-i i-,k -1 '

where a. is some constant which depends on the record length and X > 2.

A rule of thumb which has proven useful in practice is to give serious

consideration to a nonstationary model whenever IRitk ii 1_ .95. In order

to see the rationale behind this rule of thumb recall that for a polynomial

1 + alx + a2x + ... + kx

k
1  "k Ir- 1 j where .. ,r (3)i=

are the k zeroes of the polynomial. It can also be shown (see Woodward

and Gray 1979) that

( (_)k l s(C1)k+' k+1 )
Sk(pk+l) S ((-I) -k+l) =

- k(ak) (jk k

where 'k is the Yule-Walker estimate for the kth coefficient of an auto-

regressive process of order k. Because of the assumed constancy behavior

in the kth column, Ri,k is obviously another (and usually better)
th 1

estimate for the k h coefficient, and thus if (R i,kI > .95 it can be

seen from (3) that most of the Ir1 II for a fitted model will necessarily

be close to one. (it: should be remembered that we have disallowed roots

in. the unit circle in all our discussion.) Rik is thus informative

for purposes of choosing between a nostationary and a stationary model.

th
Of course, once a k order model has been fit the I rI can be examined

directly as has already been described. The use of Ri,k, though, is still

......
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helpful as a preliminary means of checking whether an observed "constancy"

behavior is evidence of a noustationarity in the process. Ultimately,

however, the decision to fit a nonstationary model should also be based

upon an understanding of the physical aspects of the time series under

consideration and/or the desired nature of the forecast function.

Once the decision has been made to fit a nonstationary model, a

method of estimating the parameters of the model is needed. In order to

outline one method, first suppose that it has been decided to treat the

factors associated with Ai, 2 ... ,i (where the Aj's are a subset of the

rects- obtained: in the preliminar* Yule-Walker fit) as nonstationary

factors. The suggested procedure for obtaining the seasonal or non-

seasonal nonstationary model is to adjust these factors from

(1-.X~B)(l~) 13)~- 2 aj 10112B + IX-112 2

22
to L M B+ B 2 where -

01 sgn~tan(2nww) 2

Note that the frequency associated with the adjusted factor (1- B+B2 )

is still the natural frequency w but that the zeroes of this factor are

on the unit circle. This adjustment is analogous to what is frequently

done in the special case w, - 0 when the data is differenced. (If NJ a 0

I
or , X. is real and the adjusted factors are I-B and 1+B respectively.)

Since the adjusted factor depends only upon wj, another possible method

for obtaining the nonstationary factor is to determine Wi from a spectral

analysis. A spectral analysis alone is not sufficient to determine that

a factor isnoustationary, but it may be helpful in determining w precisely
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once it is determined that the factor associated with wj is nonstationary

(i.e., that IX 1 :1).

In order to identify the full order of the model, the data should be

transformed by either the operator from the initial Yule-Walker fit or the

adjusted operator. Since it has been observed that the S-array values for

transformed data are sometimes sensitive to slightly different transform-

ing operators, it is not always clear which of the two operators should

be used. For this reason, examining the S-arrays for both transformations

is often useful for purposes of identifying the full order of the model.

In practice it will sometimes happen that one transformation will induce

a clear pattern of constants in some column of the S-array, whereas the

other transformation will not. Since such a pattern of constants indicates

that the sample autocorrelation of the transformed data nearly satisfies a

difference equation, examining the S-arrays of both transformations may

actually indicate which one of the original transformations provides a

better fit to the data.

III. Modeling the International Airline Data

In order to illustrate the method which has just been discussed for

modeling nonstationary data, we will obtain models for the well-known

international airline data using this method. The airline data (see Fig. 1)

was first analyzed by Box and Jenkins (1970) and is made up of 144 monthly

totals of airline passengers. As Box and Jenkins have pointed out, if

[Y ) is the airline series and It - ZnYt, then the series {Xt} is more

compatible with the linearity and hooscedasticity assumptions inherent in

ARMA models than is the series {Y }. Their model is thus for [X as willt t

be the models in the present analysis. The Box and Jenkins model is
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(l-B)(1-B1 2 )X - (1-0.4B)(1-o.6B 12)Z (4)

which is arrived at by a consideration of the physical aspects of the

airline data. It will be shown in the present analysis how models similar

to (4) may be obtained by allowing the data to "speak for itself."

Following the outline in the previous section, the first step in our

analysis is an examination of the sample S-array. A portion of the S-array

for (-l) p is shown in Table 1. Note the strong degree of constancy in

the first column. With Z - 2 and a. - 8 we have IR .96, which is

evidence that a nonstationary or nearly nonstatiouary first order factor

is in the process. From our discussion earlier, an estimate for this

factor is (1-.963). The constancy behavior seen in column thirteen of

the S-array may be explained after the data is transformed by (1-.963).

The S-array (using m) for the transformed data is seen in Table 2.

Column twelve of this array exhibits a constancy behavior which seems

to be of the type which characterizes stationary autoregressive processes

(see Gray, Kelley, and McIntire 1978). However, upon fitting a 12th

order Yule-Walker model to the transformed data and examining the roots

of the resulting characteristic equation (Table 3), it is seen that the

observed constancy behavior is actually indicative of an operator which

is quite nearly the seasonal operator (1-B 12). From Theorem 2, if a

process is of the form

(1-B12), (B)Xt - e(B)Z
5 t t

(where *s(B) is a stationary operator), then S12(02) 3 0. it is now

clear, then, that the values in column 12 of the samle S-array are

estimates (in the sense of an average) of some value near zero, and the

observed constancy behavior is thus consonant with the theory which has
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1
previously been discussed. By considering I , 1212 for the transformed

data the initial confusion could have been avoided. IRO,121

.970 (U - 2, a, 6), which clearly indicates that the constancy in the

12 h column is evidence of a seasonality in the data.

Table 3 exhbits clearly that an operator quite similar to (1-B 1)

should be included in our model for the airline data. The frequencies

associated with the roots of the fitted characteristic equation are quite

compatible with those of 1 - x 0, and the root -1.0831 is the only

one which might not be considered sufficiently close to the unit circle.

For reasons of simplicity and parsimony, then, the models in the present

12analysis will include the operator 1-B . At this point, if it is not

desired to treat the factor (1-.96B) as noustationary, a reasonable

procedure would be to fit a model to the series (1-B 1 2 )X . The S-array

for the data transformed by (1-B 2 ) indicates that the transformed data

may be adequately modeled as a 13 th order, stationary autoregressive

process. A reasonable initial model for the atrlina- data would thus be

(l-' 2 )0t(B)X t  , (5)

where

( 1 - .535B - .272B + .057B3 - .0183 - .08735

.04136 + .076B
7 - 038B8 - .18B9 + .136B10

+ .155B + .287B12. . 295B .

An estimate of the variance of Z for this model is a ='.00127. If the

original data is transformed by (1-B) (I-B2), a 12 th order, stationary

autoregressive process is a satisfactory model for the transformed data.

Another contending model would thus be

(-B)(13-1')#2,()xt - t  (6)

where
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- - Table 3.

Roots (.X) of characteristic equation from

model fitted to transformed data

Ifrequency ( 1xX

1.0607 0 .9427

.8747 + (.5039)1 .0832 .9906

.5012 + (.8757)i .1673 .9911

.0165 + (1.0285)1 .2474 .9721

-.5091 + (.8763)1 .3338 .9867

-.8912 + (.5025)1 .4183 .9774

-1.0811 .5000 .9250

Roots (r1) of
1 - x12 - 0

r frequency (r1) -1
ij =,,,,, =L I=i i

10 Z

.8660 + (.50)1 .0833 1

.50 + (.8660)1 .1667 1

+:L .2500 1

-.50 + (.8660)1 .3333 1

-.8660 + (.50)1 .4167 1

-1 .5000 1

I.
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2 2(B) - 1 + .358B + .054B2 .151B3 +

5 -. 0 6 57 .0318 -.l69-.047B - .089B + .015B -031 164B

10 1112 ~ 2 -. 00136-. 036B .081B + .339B and a 0

For illustrative purposes 1 (B) and 02(B) were fit by the Yule-Walker

method, although ML s may be desirable for a more refined model.

Approximate standard errors for the coefficients in these operators

are given in Table 4. (The standard errors were found under the

2assumption that Zt N(o,a ) by using the approach of Box and Jenkins

(1976).)

It is clear that many other reasonable models could be obtained by

using different operators of the form (1- B) 12 (B) where *12(B) is some

12
12th order operator similar to 1- B . Models (5) and (6) certainly seem

adequate, however, and they illustrate well the method for modeling

seasonal data through S-arrays. Note that model (6) has two roots of

unity and will thus have a forecast function possessing a linear trend;

whereas the forecast function for model (5) will not contain the linear

trend for forecasts at long lead times since, instead of two units roots,

this model has one unit root, one root equal to 1.345, and an additional

low frequency component. In general, this kind of a difference between

the forecast functions of stationary and nonstacionary models can provide

a means of choosing between competing models.

A comparison of forecasts obtained from models (4) and (5) may be seen

in Fig. 2-4. The. forecasts are made from origins 24 months, 36 months, and
k

48 moths prior to the and of the data sat. SSE (i.e. A( - )

for model (4), the Box-Jenkins model, is seen to be more erratic than that

of modal (5) in the sense that it does not increase monotonically as the

z mim mer of steps ahead to be forecast increases. The reason for this

appears to be that the trend component of the forecast function for model
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Coefficient Estimate Standard Error

11 .535 .083

41,2 .272 .092

11,3 -.057 .094

$1,4 .018 .093

41,5 .087 .092

01,6 .041 .093

Model (5) 01,7 -.076 .092

$1,8 .038 .093

$1,9 .158 .092

$1,10 -.136 .093

1,1 -.155 .094

1,12 -.287 .092

01,13 .295 .083

#2,1 -.358 .082

42,2 -.054 .088

*2,3 -.151 .088

#2,4 -.110 .088

42,5 .047 .088

Model (6) 42,6 .089 .088

02,7 -.015 .088

42,8 .031 .088

42,9 .164 .088

#2,10 .036 .088

,2,11 -.081 .088

42,12 -.339 .082
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1959 1960
Model (4) SSE -. 6888 v/

1959 1960
Model (5) SSE - .0203

liguze 2

Airline Data 24 Month Forecasts
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1958 1959 1960
Model (5) SSE -. 366

Figure.3

Airin Dat 36 Mot7Frcat
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1957 1958 1959 1960

Model (4) SSE - .4627

("* I W' S 'D

1,h/,' \b, \'Iv /

1957 1958 1959 1960

Model (5) SSE - .3335

Figure 4

Airline Data 48 Month Forecasts
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(4) is determined by only 13 values previous to the forecast origin; whereas

the corresponding component for model (5) is determined by 25 preceding

values. Since a close inspection of the data reveals evidence of a 24 month

period, it is understandable why a forecast function using only 13 months

prior to the forecast origin might perform eratically. When one considers

that model (5) was fit through a purely data analytic approach it is not

surprising that its forecast function contains the low frequency component

not found in model (4).

For an interesting and more complete discussion of forecasts obtained

from (4), (5), and a model proposed by Parzen see Gray and Woodward (1980).

IV. Conclusion

A method of modeling nonstationary ARMA processes (with special emphasis

on seasonal processes) has been examined in this paper. A brief outline of

this method is as follows:

(i) Detect the presence of nonstationary factors by examining

the sample S-array.

(ii) Determine the nature of the detected nonstationary factors

by fitting an appropriate Yule-Walker model to the data.

(1±1) Transform the data by the operator obtained from the Yule-

Walker fit or an adjusted operator and, examine the S-array

of the transformed data for the presence of additional

stationary or nonatationary factors.

(iv) After identifying the full order of the model, decide which

factors are to be created as nonstationary. Transform the
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data by the nonstationary factors and fit a model of

appropriate order to the transformed data.

Using this methodology, it has been shown how model. for the international.

airline data may be obtained through a data analytic technique rather than by

simply considering the physical aspects of the data.
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Abstract (con't)

and the procedure for identifying and modeling such processes is discussed
in detail. Additionally, an interesting theorem characterizing the S-arrays
(based upon the sample autocorrelation) of seasonal processes Is stated and
a proof indicated. Finally, a data set (the international airline data)
which exhibits the properties of a seasonal process is analyzed using the
method discussed, and two models for the data are proposed.
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