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? MODELING SEASONAL ARMA PROCESSES

Jeffrey D. Hart and H. L. Gray
Southern Methodist University

INTRODUCTION

Gray, Kelley, and McIntire (1978) have introduced a method, based
on arrays of numbers called R- and S—-arrays, for identifying p and q in
an ARMA(p,q) process. In addition, they have illustrated how the same
method is useful in'detecting nonstationary factors in an observed process,
and in suggesting an appropriate transformation to st;£ionaricy. In the
present paper special attention is given to the problem of modeling
seasonal ARMA processes using the S-~array method. A general definitiom is
given for a seasonal process, and the procedure for identifying and model~
ing such processes is discuqsed in detail. Additionally, an interesting
theorem characterizing the S—-arrays (based upon the sample autocorrelation)
of seasonal processes is stated and a proof indicated. Finally, a data
set (the international airlipe data) which exhibits the properties of a
seasonal process is analyzed using the method discussed, and two models

for the data are proposed,
I. Definitions and Theorems

The following definitions and theorems provide the motivation for ﬂ

the remainder of the paper.

Definition 1. A stochastic process {x:}, t=0, £1, £2, ... is said to

be autoregressive of order p and moving average of order q, or ARMA(p,q), &f
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X, =1 X+ 2, -1 0 ek @
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where the o and ek are constants and {Z:}~is-atvhite noiss process with

finite variance. If we define the operator B by th = xt.l, then (1) may

be written as

¥BIX, = 8(B)Z,

$(B) = 1 - ¢8 - ¢232 -

It is welllnown that {X '} 1s stationary if and only if all of the rocts

of $(x)=0 lie outside the unit circle. For our purposes, a nonstationary

process will be one for which one or more of the roots of ¢(x)=0 lie on the

unit circle.
Definition 2. Suppose {xt} is an ARMA(p,q) process with ¢(B)Xt -

9(3)2:’ A factor a(B) of $(B) will be called a seasonal factor if

a(B) = 1—aB + 8%, la, | < 2 or

a(B) = 1 + B ;

i.e. a factor a(B) is seasonal if the algebraic equation a(x) = 0 has

complex roots on the unit circle or the root -1.

- ] Definition 3. An ARMA(p,q) process will be referred to as a seasonal

process 1£ it has one or more seasonal factors.

Definition 4. Let m be an integer and £ be a real valued function.

Further, lat fn = f(m),




e i it A A L R i Lo

Hn[fm] =

'%[fml 21, and

.Hn.'.l[l; fm] =

Now define

mn-1

ot+2n-2




The S-array (for the function f) is the following array of numbers:

1 . k
5,(£_,)
S
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A recursion relationship for calculating S—-array values and a
complete discussion of how S—-arrays may be utilized in identifying
p and q for an ARMA(p,q) process may be found in Gray, Kelley, and

McIntire (1978).

Definition 5. Denote by p m(xl‘ ey Ap) the autocorrelation function of

a stationary ARMA(p,q) process whose characteristic equation has roots
Al’ 12, cosy Ap. Let rl, r2, ooy rp be the roots of the characteristic
equation of an ARMA(p,q) process with j roots on the unit cirele, which

for convenience are denoted by rl, Tos eces rj. Now, define

* .
pm = pm(rl’r29’°-’rp) P '_O
and
%
o iin{*_ pm(arl,atz,...,crj,rj+l,...,rp), j=1,2,...,0 -

Theorem 1. Suppose an ARMA(p+j,q) process has j roots of its charac-

teristic equation on the unit circle and that M of these j roots are of

iohiamitdeliC

highest multiplicity. Let T sTgesesly denote the M distinct roots on the
*
unit circle which are of highest multiplicity. Then ®n satisfies a linear

homogeneous difference equation of order M whose characteristic equatiom is
-1 ~1 -1
(1 5, x) (].--r:2 X) eee (l--r:M x) =0.

For a proof of this theorem see Findley (1978) or Quinn (1980). The
importance of Theorem 1 lies in its suggestion of the probable behavior
of the sample autocorrelation function from nonstationary ARMA processes.
The next two theorems will illustrate how S—-arrays may be used to take
advantage of the information in Theorem 1.

For the rsmainder of this paper we shall define the autocorrelation

* . *
of a nonstatiouary procaess as o a and hence will write P H Pp
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Theorem 2. Let fm denote either p o °F (-l)mpm where pm is the auto~
correlation function of an ARMA(p,q) procesa. Then the condition that
S,(£) 1s constant (as a function of m) for some 2 < p is both' necessary

and sufficient for nonstationarity. Further, 2 = M (where M i3 the same

as that in Theorem 1) and

M
Sn(fn) ce = (-1)M[1 .kilaf'ksk] where

pm-slpm_l-...-aupm_u-o for n;>0 and

l’fm “a

a
£,k
m
(=1) CH

SRS

The proof of this theorem follows from the proof of thercem 9 in

Gray, Kelley, and McIntire (1978) and from the proof of the previous

theorem in this paper.

Theorem 3}. Suppose {xt} is an ARMA(p.q) process and that

N-k - -
) :gl(xt - X)) (T - XY
pn(k) = ¥ .

-2
r.El(x" - XNJ

Then {xt} is nons-utionary if and only if p-lim Sn(an.(k) )’ 2 ¢ for some m<p.
Now ©

Morecver, if S n(pk) is defined for all k, then
n

c= (-l)n(l - Z Bk)’ where
k=1

0.
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This theorem has been proven by Findley in personal communications
to H.L. Gray and by Morton (1980).

Theorems 1, 2, and 3 provide the basis for modeling seasonal data.
Theorems 1 and 2 indicate respectively the effect which seasonal factors
have on the autocorrelation funmction, and the way in which seasonal
factors are manifested in S—-arrays. Theorem 3 assures'us (at least for
reasonably large sample sizes) that the constancy behavior which charac-
terizes the parametric S-array of a seasonal process will also be apparent

in the S—-array based upon the sample autocorrelation.
II. Some General Remarks

Before comsidering a specific example of real data, it will be
helpful to comsider an example which illustrates the consequences of

Theorems 1 and 2. Suppose the process {Xt} is given by

(1-8)2(1-/28 + 8o (BYX, = 8(B)Z,

where the zeroes of ¢(x) are all outside the unit circle. Note

that the equation (l—x)z(l-/fx + xz) = 0 has the three distinct roots 1,

%?(1+i), and %;(1-1) which are all on the unit circle. However, since

the root 1 is repeated, Theorem 1 implies that px(m), the limiting auto-
correlation function of {xt}, gatisfies the first order difference
equation

Yo " Yp-1 * 0.

1f W: = (1-B)x=, we can make the further observatiom that aw(m), the
limiting autocorrelation function of {wt}, satisfies the third order

diffarencé equation

ya = 2+ Dy + 2+ Dy, 5=y = 0




|
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It is also {mportant to see that Theorem 2 implies

- 2,

Sp(p m) 20 , 8 (=1)% @)

and

S5(p,,@)) 2(2+72).

0 4 55D @ =

With this example in mind, we are now in a position to outline the
general procedure for detecting and estimating the parameters of seasonal
factors present in a process which is being observed. In the following
it will be assumed that a realization {xl,.xz, . ..,XN} has been obtained
from an ARMA process of the form in (2), where all of the roots of the

characteristic equation ¢(x) = Q0 lie on or outside the unit circle.

The first étep in simply detecting the presence of seasonal factors
(which should of course follow an initial look at a plot of the da'ta) is
an examination of the sample S-arrays (i.e., the S—-arrays for 8 n and (-l)m;m).
Theorem 2 implies that seasomal factors are in the process if and only if
one of the following situations holds:
(1) sj(fm) 2 ¢ for some j>2
1) 5,0
(111) S (D% ) = 0

-2

If N i3 reasonably large, Theorem 3 assures us that this constancy behavior

in the parametric S-array should also be evident in the sample S-array.
Thus, in order to detect seasonal factors the sample S-array should be
examined for the presence of a near constant column. (The interpretation
of ";car constant” will be elaborated on later.) Upon detecting a nonsta~-
tionarity in the process, T’hgom 1 suggests clearly that the next step
in identifying the full order of the process is to opaerate on the data by

the correct nonstationary operator. The reason for this is that the auto-

correlation function of a nonstationary process may satisfy a difference
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equation of order less than p (where p is the order of ¢(x)); and there~

fore the constancy behavior expected in the pth

column of the sample
S~array may be completely obscured by the presence of nonstatiomary
factors. If, however, the data is transformed by the correct non-

stationary operator, the resulting S~array may be examined for

additional statiomary or nonstationary factors. The example to be
presented later should make these ideas clear.

The question of how to choose the parameters of the nonstationary
(seasonal or nonseasonal nonstationary) operator now arises. In the
discussion of this problem it should be understood that process factors
whose zerces are not on but only close to the unit circle will also
induce a near constant column in the sample S-array. Thus, when
referring to the problem of estimating the parameters of a noastatiomary
operator, we leave open the possibility that the appropriate operator
is mathematically stationary but has zeroes which are clése tc the unit
circle. The procedure to be suggested for choosing the parameters con-

th

sists of two stages. Suppose that the k=~ column of the sample S array

is cear constant, or (as sometimes occurs in practice) that the kth

column and ome or more columns previous to the kth are nearly constant.
The first stage, then, in choosing the parameters of the nonstationary
operator is the fitting of a kth order autoregressive model to the data,
estimating parameters by the Yule-Walker method (see Box and Jenkins
(1976), After fitting the model, the roots of the resulting characteristic

equation should be examined. Associated with each complex conjugate pair

of roots aj : ibJ (which may be indexed by Aj = aj + ibj, bj > 0) is the
b
frequency W = 2—];‘, tan 1(;1),and the modulus I)‘sll - L . For real
] . 2
—— a, +b

3

3




roots, A, = a, and we have

3 3

v

O,aj_l
mj - { and
Y, aj 1

-1 1
Dyl =

iA

The and,lk;ll can be used in the same way that a spectrum would be -
used to compare the relative contribution of each frequemcy to the over-
all variation in the process. The wy and Ik;l[ have an advantage over
the spectrum, however, in that the wj are not "smeared" as they would be
in the spectrum and the Ikgll can be ﬁsed to determine s#ationarity and
ponstationarity. Note that the closer fkgl[ is to 1 the closer the
corresponding factor is to being nonstationary. The mj here may be thought
of as the natural frequencies of the process rather than as the harmonics
in a Fourier series expansion. This initial fitting of a model and the
subsequent examination of roots should be uged as an investigative proce-
dure to simply identify the nature of the nonstationary (or nearly
nonstationary) factors in the process being observed. The preliminary
nature of the initial fit indicates why Ygle—Walker estiﬁates were
suggested rather than, for example, MLEs (under the assumption

zt ~ N(O,cz)) gince the computing time required to calculate MLEs is
usually much greater than that needed for Yule-Walker estimates.

The second stage in the parameter estimation problem involves
choosing between a nonstationary and a stationary model. In part,
resolving this question requires us to elaborate somewhat on the meaning
of the phrase "near constant columm in the sample S-array." Besides a

gimple examination of the kth column (the "constant” column referred to

previously), another method for determining the degree of constancy is

" to form one (or both) of the ratios
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T s, (s ) £ s, ((-1) k+iﬁ_ )
V= k kL
R - - i=2 R - (_l)k'l‘l i=g ,
0,k aN-l ’ 1,k aN-l ot
L8 () L os (D7)

im0=] i=g-l

where ay is some constant which depénds on the record lemgth and % > 2.
A rule of thumb which has proven useful in practice is to give serious
consideration to a nonstationary mcdel whemever |Ri,kl > .95. In order

to see the rationale behind this rule of thumb recall that for a polynomial

2 k
1+alx+azx +...+akx
k -1
la | = ini [e;7] , where T sTgseensly &)

are the k zeroes of the polynomial. It can also be shown (see Woodward

and Gray 1979) that

5,0 ery)
)

L -
el S (DT Poyy)
5, (15 5_)

= (-1) - ¢k s

where $k is the Yule-Walker estimate for the k'® coefficient of an auto-

regressive process of order k. Because of the assumed constancy behavior

th

in the k™ column, is obviously another (and usually better)

Rk s
estimate for the k® coefficient, and thus if (R, kIE > .95 it can be

1]
seen from (3) that most of the Irzll for a fitted model will necessarily
be close to one. (It should be remembered that we have disallowed roots

inside the unit circle in all our discussion.) R is thus informative

i,k
for purposes of choosing betweean a nounstationary and a stationary model.

Of course, once a ¥*® order model has been fit the lr;ll can be examined

directly as has already been described. The use of Ri k? though, is still
. ok?

11




helpful as a preliminary means of checking whether an observed "comstancy"
behavior is evidence of a nonstatiomarity in the process. Ultimately,
however, the decision to fit a nonstationary model should also be based
upon an understanding of the physical aspects of the time series under
consideration and/or the desired nature of the forecast function.

Once the decision has been made to fit a nonstationary model, a
method of estimating the parameters of the model is needed. In order to
outline one method, first suppose that it has been decided to treat the
factors associated with Al,Az,...,Ai (where the Aj's are 3 subget of the
roots obtained:in the prelimimary Yule-Walker fit) as nonstatiomary

factors. The suggested procedure for obtaining the seasonal or non-

seasonal nonstationary model is to adjust these factors from

(1-2718y (1%, 1252
3 b :
to l- GjB + B2 where

1 =12 -
B) l-ujlxj |“B + |xj

2
d, = sgn{tan(2muw,)]
i 1 feanZ(Zra )+l

Note that the frequency associated with the adjusted factor (1-a B+Bz)

b
is still the natural frequency “j but that the zeroes of this factor are
on the unit circle. This adjustment is analogous to what is frequently

done in the special case mj = 0 when the data is differenced. (If w, = 0

]
or %, Xj is real and the adjusted factors are 1l-B and 1+B respectively.)
Since the adjusted factor depends only upon wj, another possible method
for obtaining the nonstationary factor is to determine wy from a spectral
analysis. A spectral analysis alone is not sufficient to determine that

a factor isnonstationary, but it may be helpful in determining w, precisaly

3

12
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once it is determined that.the factor associated with wj is nonstationary
(1.e., that [x;"ln).

In order to identify the full order of the model, the data should be
transformed by either the operator from the initial Yule~-Walker fit or the
adjusted operator. Since it has been observed that the S-arréy values for
transformed data are sometimes sensitive to slightly different transform-
ing operators, it is not always clear which of the two operators should
be used. For this reason, examining the S-arrays for both transformations
is oﬁten useful for purposes of identifying the full order of the model.
In practice it will sometimes happen that one transformation will induce
a clear patterm of constants in some column of the S-array, whereas the
other transformation will not. Since such a pattern of constants indicates
that the sample autocorrelation of the transformed data nearly satisfies a
difference equation, examining the S-arrays of both transformations may

actually indicate which one of the original transformations provides a

better fit to the data.
III. Modeling the International Airline Data

In order to illustrate the method which has just been discussed for

modeling nomnstationary data, we will obtain models for the well~known

international airline data using this method. The airline data (see Fig.1l)
was firﬁt analyzed by Box and Jenkins (1970) and is made up of 144 monthly
totals of airline passengers. As Box and Jenkins have pointed out, if

{Y:} is the airline series and xt - ZnYt, then the series {Xt} is more
compatible with the linearity and homoscedasticity assumptions inherent in
ARMA models than {s the series {Yc}' Their model is thus for {X.} as will |

be the models in the present analysis. The Box and Jenkins model is

e . gt o
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(1~B) (1-312)xt = (1-0.4B) (1-0.6B%)Z . (4)

which is arrived at by a consideration of the physical aspects of the
airline data. It will be shown in the present analysis how models similar
to (4) may be obtained by allowing the data to "speak for itself."
Following the outline in the previous section, the first step in our
analysis is an examination of the sample S-array. A portion of the S~array

for (-l)m'ﬁm is shown in Table 1. Note the strong degree of constancy in

the first column. With £ = 2 and a, = 8 we have |Rl’1| = .96, which is :
evidence that a nonstationary or nearly nonstationary first order factor
is in the process. From our discussion earlier, an estimate for this
factor is (1-.96B). The constancy behavior seen in column thirteen of
the S—-array may be explained after the data is transformed by (1-.96B).
The S-array (using ﬂm) for the transformed data is seen in Table 2.
Column twelve of this array exhibits a constancy behavior which seems

to be of the type which characterizes stationary autoregressive processes
(see Gray, Kelley, and McIntire 1978). However, upon fitting a 12‘h
order Yule-Walker model to the transformed data and examining the roots
of the resulting characteristic equation (Table 3), it is seen that the
observed comstancy behavior is actually indicative of an operator which
is quite nearly the seasonal operator (1-312). From Theorem 2, 1f a

process is of the form

] 12
3 (1-B )¢S(B)Xt - G(B)Zt

(where ¢S(B) is a stationary operator), them Slz(pm) £ 0. It is now

clear, then, that the values in column 12 of the sample S-array are

estimates (in the sense of an average) of some value near zero, and the

observed constancy behavior is thus consonant with the theory which has

e caniea
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previously been discussed. By considering lRo,lzll for the transformed

data the initial coufusion could have been avoided. lRO,lZI =

970 (2 = 2, ay = 6), which clearly indicates that the constancy in the

12ch column is evidence of a seasonality in the data.

12
Table 3 exhibits clearly that an operator quite similar to (1~B™") .

should be included in our model for the airline data. The frequencies

assoclated with the roots of the fitted characteristic equation are quite

compatible with those of 1 - xl2 = 0, and the root ~1.0811 is the only

one which might not be comsidered sufficiently close to the unit circle.

For reasons of simplicity and parsimony, then, the models in the present

analysis will include the operator 1-312. At this point, if it is not

desired to treat the factor (1-.96B) as nonstationary, a reasonable
procedure would be to fit a model to the series (l-Blz)Xt. The S-array

for the data transformed by (1-812) indicates that the transformed data

h

may be adequately modeled as a 13t order, stationary autoregressive

process. A reasonable initial model for the airline data would thus be

12
(1-8 )¢1(B)Xt =2, (5

where

3 4 5

$,(8) = 1 - .535B - .27282 + .05783 - .o188% - .0873

- .0618% + .07687 - .0388% - .1588% + .13681°

12 13

+ .1558M + .2a781% - .29581°

An cscina;e of the variance of Zt for this model is 3: =°,00127. If the

original data is transformed by (1-35(1—312), a 12th order, stationary

autoregressive process is a satisfactory model for the transformed data.
Another contending model would thus be - '
a-3) -8, x, = 2, (6)
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. e Table 3.

-

Roots (Ai) of characteristic equation from
model fitted to transformed data

<ii frequency () Ilel
1.0607 0 .9427
.8747 + (.5039)1 .0832 .9906
.5012 + (.8757)1 .1673 .9911
.0165 + (1.0285)1 .2474 .9721
~.5091 + (.8763)1 .3338 .9867
-.8912 + (.5025)1 .4183 .9774
-1.0811 ' .5000 .9250
Roots (ri) of
1-x2a0
T frequency (fil lr;1|
1 0 I
.8660 + (.50)1 .0833 1
.50 + (.8660)1 .1667 1
+ .2500 1 |
-.50 + (.8660)4  .3333 1 3
-.8660 + (.50)1  .4167 1 |
-1 .5000 1
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_32(3) =1 + .3588 + .0548% + .151B° + .1108”

5 . .0898% + .01587 - .03138 - .1648°

12 .00136 .

-.0478
-.0368*° + 0818 + .3398'2 and o,
For illustrative purposes ;I(B) and ;2(3) were fit by the Yule-Walker |
method, although MLEs may be desirable for a more refined model.
Approximate standard errors for the coefficients in these operators
are given in Table 4. (The standard errors were found under the
assumption that Zt~N(o,cz) by using the approach of Box and Jenkins
(1976) .)

It 1is clear that many other reasonable models could be obtained by
using different operators of the foﬁn (1-¢B) ¢12 (B) where ¢12(B) is some
12th order operator similar to 1-312. Models (5) and (6) certainly seem
adequate, however, and they illustrate well the method for modeling
seasonal data through S—arrays. Note that model (6) has two roots of
unity and will thus have a forecas; function possessing a linear trend;
whereas the forecast function for model (5) will not contain the linear
trend for forecasts at long lead times since, instead of two units roots,
this model has one unit root, one root equal to 1.345, and an additional
low frequency component. In general, this kind of a difference between
the forecast functions of stationary and nonstationary models can provide
a means of choosing between cowpeting models.

A comparison of forescasts obtained from models (4) and (5) may be seen
in Fig. 2-4. The. forecasts are made from origins 24 months, 36 monchs, and
48 months prior to the end of the data set. SSE (i.e. 121(1:: o t +1) )
for model (4), the Box~Jenkins model, is seen to be more erratic than that
of model (5) in the sense that it does not incresase monotonically as the

aaxizmum number of staps ahsad to be forecast increases. The reason for this

appears to be that the trand component of the forecast function for model
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Coaefficient

1,1
1,2
*1.3
1,4
*,5
41,6
Model (5) 41,7

1,8
*1,9
%1,10
¢1,11
*1,12

$1,13

2,1
2,2
%2,3
2,4
%2,5
Model (6) 9, ¢
92,7
%2,8
2,9
%2,10
2,1
2,12

Table 4
Estimate

.535
.272

' -.057
.018
.087
041
-.076
.038
.158

.047
.089
-.015
.031
.164
.036
-.081
-.339

Standard Error

.083
.092
.094
.09?
.092
.093
.092
.093
.092
.093
.094
.092
.083

.082
.088
.088
.088
.088
.088
.088
.088
.088
.088
.088

.082




Model (4) SSE = .6888
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Model (5) SSE = .0203
Figure 2

Airline Data 24 Month Forecasts
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Model (4) SSE = .1656

1958 1959 1960
Model (5) SSE = .3066

Figure 3

Airline Data 36 Month Foracasts
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Model (4) SSE = .4627

1957 . 1958 1959 1960

Model (5) SSE = .3335

Figure 4

Airline Data 48 Month Forecasts




(4) is determined by only 13 values previous to the forecast origin; whereas
the corresponding component for model (5) is determined by 25 preceding
values. Since a close inspection of the data reveals evidence of a 24 month
period, it is understandable why a forecast function using only 13 months
prior to the forecast origin might perform eratically. When one considers
that model (5) was fit through a purely data amalytic approach it is not
surprising that its forecast function contains the low frequency component
not found in model (4).

For an interesting and more complete discussion of forecasts obtained

from (4), (5), and a model proposed by Parzen see Gray and Woodward (1980).
IV. Conclusion

A method of modeling nonstationary ARMA processes (with special emphasis
on seasonal processes) has been examined in this paper. A brief outline of
this method is as follows:

(1) Detect the presence of nonstationary factors by examining

the sample S—~array.
(i1) Determine the nature of the detected nonstatiomary factors
by fitting an appropriate Yule-Walker model to the data.
(44{) Transform the data by the operator obtained from the Yule-
Walker fit or an adjusted operator and examine the S-array
of the transformed data for the presence of additiomal
stationary or nonstationary factors. ;

(iv) After identifying the full order of the model, decide which

factors are to be treated as nonstationary. Transform the




j i
¥
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P |
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data by the nonstationary factors and fit a model of

appropriate order to the transformed data.
Using this methodology, it has been shownr how models for the intermatiomal
airline data may be obtained through a data analytic technique rather than by

simply considering the physical aspects of the data.
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and the procedure for identifying and modeling such processes is discussed
in detajl. Additionally, an intaresting theorem characterizing the S-arrays
(based upon the sample autocorrelation) of seasonal processaes is stated and
a proof indicated. Finally, a data set (the international airline data)
which exhibits the properties of a seasonal process is analyzed using the
method discussed, and two models for the data are proposed.
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