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THE BRAODENING OF SPECTRAL LINES BY AUTOIONIZATION,
RADIATIVE TRANSITIONS, AND COLLISIONS

I. INTRODUCTION

The shape of atomic spectral lines is seldom determined exclusively by
the spontaneous radiative or autoionization processes. In addition to the
Doppler effect, spectral lines can be appreciably broadened as a result of
collisions with the surrounding particles, classical electromagnetic fields,
and radiation fields. Although natural broadening is neglected in most
theories of collision or pressure broadening, it is desirable to have a com-
prehensive theoretical framework in which all broadening mechanisms can be
treated on an equal footing. Such a theory could be applied to calculate the
shapes of satellite lines which are associated with resonance lines of multiply-
charged ions in the x-ray emission spectra of high-temperature plasmas. Since
the satellite lines are prominent features over a wide range of electron den-

24 cm-3). it is desirable to take into account their natural

sities (1010 - 10
width due to spontaneous radiative decay and autoionization. Another appli-
cation of a more general theory would be the simultaneous treatment of colli-
sion and radiation broadening.

Most treatments of collision or pressure broadening are based on the
evaluation of the autocorrelation function of the dipole-moment operator. The
modern quantum theory of spectral line broadening by plasmas has been developed
from this point of view by Barangerl-3 and independently by Kolb and Griema.
Collision broadening by neutral gases has been treated by Fano5 using a varia-
tion of the autocorrelation-function approach which is directly applicable to
other broadening mechanisms. The key quantity in Fano's treatment is the
frequency-dependent relaxation operator introduced by Zwanzig6. This operator

obeys a Lippman-Schwinger type equation which is defined in the Liouville-space
Manuscript submitted September 2, 1980.

e

oo = e v e v 1z -




representation, in which density matrices are described by vectors. In the
present investigation, we derive the'general form of the overlapping line-shape
formulal_4 by evaluating the Liouville-space expression for the spontaneous
electric-dipole emission rate between states of the complete quantum mechanical
system, which consists of the atomic system, the surrounding particles, and the
radiation field. The key quantity in this treatment is the Liouville-space
scattering operator, employed in the investigations of Ben-Reuven and
co—wotkerss-ul which is defined in terms of the Zwanzig relaxation operator.

The determination of the spectral line shape 1s reduced to the problem of
evaluating the matrix elements of the relaxation operator, whose real and
imaginary parts correspond to the line shifts and widths, respectively. In
this investigation, the explicit expressions for the widths are obtained in the
isolated-line approximation by evaluating the lowest-order nonvanishing contri-~
bution to the diagonal matrix elements of the relaxation operator. We show
that the total width is the sum of the rates for all inelastic transitions from
the initial and final atomic states comprising the spectral line and a term
involving the square of the difference between the elastic scattering amplitudes.
In a treatment of the isolated line shape problem based on the autocorrelation
function, LambropOulos11 obtained only the inelastic contributions and did not
allow for autoionization processes.

The remainder of this paper is organized as follows: In section II, we
review the general theory of transition probabilities within the framework of
the density matrix description of atomic states. 1In section III, the spontaneous
emission rate for electric~dipole radiation is evaluated and shown to have the
same form as the general formula for overlapping lines. In section IV, explicit
expressions are obtained for the widths associated with various broadening

mechanisms in the isolated-line approximation. The variations of these widths




with the atomic states and with the properties of the surrounding particles and

radiation field are discussed in section V.

' II. DENSITY MATRIX DESCRIPTION

A very general theory of transition probabilities can be developed within
the framework of the density matrix description of states in quantum mechanics7.
In order to describe radiative transitions of an atomic system which is inter-
- acting with the surrounding particles through collisions, it is necessary to
first consider the total Hamiltonian

S P R SP VSR + vPR ,

H=H +H +H + VvV + (1) |

where HS is the Hamiltonian for the isolated atomic system, HP is the

Hamiltonian for the perturbing particles, and HR is the Hamiltonian for the

free radiation field. The interaction between the atomic system and the

SP, while the interaction between

the atomic system and the radiation field is denoted by VSR. The interaction

surrounding particles is represented by V

VPR,which describes radiation processes involving the perturbing particles, is
usually neglected in the theory of spectral line shapes. However, a treatment

of perturber radiation interfering with line radiation has been given by

Burgesslz.

Eigenstates of HS, HP

, and H® will be denoted by |ad, |bD, ..., |0,

|q>, ..., and In), |m> .+, respectively. The index p represents the quantum

states of all the surrounding particles, and the index n is understood to

represent a set of photon occupation numbers, one for each mode of the radi-
. ation field. The notation can be further compressed by introducing the single

index o to represent a, p, n; and the index 8 for b, q, m, etc. We shall assume

that the zero-order Hamiltonian eigenvalue problem

H°|a>-6wa|a) , (2)

where i

E
B = w0+ i+, (3) |
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can be solved. The solution of (2)bcan Pe most eaéily obtained if correlations

between the perturbiné particles are neglected. In the theory of spectral line
broadening by plasmas13, [a) and lb) are often taken to be eigenstates of the

atomic system in the presence of the electric-microfield produced by the plasma .
ions, which is usually assumed to be time-dependent on the time scale of the

radiative transition. In order to describe autoionization, part of the electro-

static interaction between the atomic electrons must be removed from Hs and

included in equation (6) below.

A general eigenstate of r° can be represented by the density operator
S P R
Pg= P X P X0p 4)
for the initial state. The separable form implies that initially there are no

correlations between the atomic system, the perturbing particles, and the radi-

ation field. The matrices corresponding to ps, pP, and pR are assumed to be

diagonal in the xepresentations a, p, and n, respectively. For example, the
atomic density matrix ps can then be expanded in the form ;
S
o= 2 o, la><al. (5)
a a

In order to describe the transitions between the eigenstates of H® which

are induced by the interaction

v =SP4 SR FR (6)

it is necessary to investigate the time evolution of the density operator
p(t) for the complete interacting system. After introducing the Liouville-

space operator

1,4{'1 (H I* - T H*), (7

the Schrodinger equation can be written in the form5




e

%E p(t) = ~ iz p(t). (8)

The matrix elements of equation (8) are given by

d* = Z i
dt pab (t) -1 cd ab,cd Pcd (t) 9
where
=1 - %
iab,cd =4 (Hac de 6ac Hbd) : (10)

The asterisk denotes complex conjugation. The solution to equation (8) can

be expressed formally by
p (t) = 2/ (t,to) p(to) . (11)

where Z( (t,to) is the Liouville time-evolution operator defined by

u (t,to) = exp [—i i (t—to) ] . (12)

In order to define the transition probability, it is necessary to intro-

duce the final state projection operator P The spontaneous emission of a

g
->
single photon with wave number k and polarization A can be described by the

final state projection operator

Pf=¥‘b)<bix‘lﬁ>l)(1l—:kx13, (13)

where IB is the unit operator in all other degrees of freedom which will be

treated as bath states, to be defined below. The probability per unit time

for the transition 1 -+ f can then be expressed bylo

A(1 »f) = 1lim %E 1im Tr { Pfu (t,to) o (to)} (14)

t o t *-
o

——
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which is the Liouville-space analogue of the definition given by Goldberger
and Watsonll' . ' V

Equation (14) provides a general description of a collision process in
which the asymptotic states are eigenstates of the Hamiltonian H° for the non-
interacting systems. It has been pointed out:9 that the same description can
be applied to relaxation processes which involve an initial stationary state
(e.g. a state with only diagonal non-zero density matrix elements).

The asymptotic time limits can be taken to obtain the steady-state

transition ratelo
A +f)=-iTr{PfT(+iO)pi}. (15)

The Liouville operator Q]/(z) is the tetradic-space analogue of the T matrix
occurring in ordinary scattering theory. The Liouville-space analogue of the

Lippman-Schwinger equation can be written in the form

Tz - s T H S . (16)

where)i(z) is the Green's operator

Heo = -7 . 17)

The Liouville operatori has been divided according to

: b & S, (18)

where L(’ andVare the Liouville operators corresponding to H° and v,
respectively. The limit z + 10 of the complex variable z in equation (15)
corresponds to reaching the origin from above the real axis. The initial state
density operator Py and the final state projection operator I’f in equation (15)

must correspond to stationary states of 1—0, i.e.

Loo= L p.= 0 (19)
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6,9,10
In the density matrix formulation of relaxation processes '’ 1 , the

transition amplitude is expressed in terms of a scattering operatorTr (z),
which is defined on a subspace of states incorporating only the interaction
between the uncorrelated atomic system and the relevant mode l:)\ of the
radiation field. The scattering operator Tr(z) is then explicitly expanded

in a power series of the relevant interaction’U‘r. The remaining interactions
are introduced as relaxation effects by a self-energy operator. The distinction
between the "free" states of the relevant degrees of freedom and the states in
which they are corre'lated to the remaining (bath) degrees of freedom can be
formally achieved by using the Liouville-space projection operators ‘P and

Q.= 1 - P which were introduced by Zwanzige. These projection operators
play a role similar to that of the dyadic projection operators introduced in
the theory of nuclear reactions by Feshbachls. Their precise definition will

be given below later.

The relevant part of the interaction can be defined by

V- PV P. (20)

The relevant scattering operator ‘rr(z) obeys the Lippmann-Schwinger type

equation

X @ = VT + Y @Y (21)

where

-1
N7 - [z—?jf ?-Ph(z)?} : (22)
The self-energy operator ,R(z) is given by

R =V+ V-0 Q! . (23)

Equations (22) and (23) are analogous to the results obtained for the ordinary

(dyadiec) Greens operator by Mower16. The transition rate can be evaluated

in terms of ‘x r(+ 10) as followslo.

-7~
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A(d +f) = -1 Tx {Pf 'Tt(+ i0) pi}. . (24)

The Zwanzig projection operator canbe defined in the double-space notation

introduced by Bara.ngerl“3 as follows:

P- 10, 01, (25)

where B denotes the bath degrees of freedom. The effect of’Pon a Liouville
operator is to average it over these degrees of freedom. The double-space
vectors in the subspace spanned by ‘6: will be denoted by I ab, nm)) , where

| ab)>> represents the operator | a > ¢ a | in the space of eigenstates of

B> and | nm > ) represents | n ) { m| in the space of relevant photon occupation
number states. The initial state density operator pir and the final state

projection operator P; , which are defined on the relevant degrees of freedom,

can be expanded in the form

oir=§ Py | aa, 00> (26)
and
p; = Zb: |bb, 1122, (27)

The single-photon spontaneous emission rate can now be expressed in terms
r
of the matrix elements ofdx (+ 1 0) as follows:

A6 =-1< P, X +io0) | »

D

=-1ZZ <<pb, 11 | KT & 10) laa, 00>> ¢ . (28)
a b

The summations over a and b are to be taken over all bound and continuum states
of the atomic system. In practice, these summations are restricted to include

only a few discrete states.

S 0 5 RN A3 et i




IIT. SPONTANEOUS EMISSION OF ELECTRIC-DIPOLE RADIATION

In this section,we evaluate the spontaneous emission rate for single-
photon electric-dipole radiation. The objective of this evaluation is to
demonstrate that the formula for overlapping linesl-s, which is usually
obtained by starting with the autocorrelation function of the electric-dipole
moment operator, can be derived from the general equantum mechanical expression
for the transition rate in the Liouville-space representation of density
matrices. Alternative density matrix formulations of the line shape problem
have been given by Cooperl7 and Davisls. In these formulations the time
dependence of the density matrix is treated directly.

Since the second term in equation (21) gives the only nonvanishing con-

tribution to the scattering operatot'iz'r(z), the rate for the spontaneous

emission of dipole radiation is given by

i} r X
Ar W = -1 a b

s/

'<>b, 1 YT +i0) Y aa,o0 <>> 0

L]

=_122bJ ZZZ?

c dn en
a o, d L

f
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where all summations over the relevant degrees of freedom are indicated
explicitly in the second version. .
SR
The. matrix elements of the Liouville interaction operator 'Z/ kA
can be evaluated using the definition which follows from equation (7). The

matrix elements of the dyadic interaction operator V ERA are evaluated

using the expansion

SR | . DY > -
Vﬁx'a'“> b {Vba(“) n|b,n ]>

+Vba(-l?)4n+1.|b,n+1>} ,
where: :

> >
vba<i’>=~i:\13?<bl 57 '> @b
3

We then obtain the result

(30)

1 e
A {Vea (R) 6, ; 8.4 (32)

- ®  (-B
6e, a Gn , 0 Vta (-k) an 1 .
»

We obtain a similar expression for {{ bb, 11 IU g‘ | ed, n, n, >
except for the presence of terms corresponding to n,orn, = 2, These terms
can be neglected because they do not contribute to the dominant spontaneous
emission process.

The frequency-~dependent transition rate Ar(m) given by equation (29) can
now be written as a sum of four terms. These terms may be combined in pairs

by utilizing the Hermitian property

5

v, @ = vr ) (33)




and the Liouville conjugation symmetry relationship9

)!. cd (z) = - )!-*

ba ’ de ("Z*) ’ (34)

ab’

which is a consequence of the microscopic reversibility of the time evolution

operator under time reversal.

The frequency-dependent transition rate can now be written in the form

2 * K
- —2-1m2 X Xy (k)ﬂbd’ac(w) Ve W o,

Ar(w)

A a b ¢ d db ac
(35)
-> T
- - ;—zlm Tr[V(k)/’i(m) p V (k) ] :
where the reduced Green's operator u (w) is defined by
}i‘bd ,ac @ = <<bd 01 | M+ 10) |aco 1>>
(36)

<<bd, 10| M@ 10) |ago 1>>

The second term, in which the photon occupation numbers are interchanged in the
bra, doesnot give a sharp resonant contribution to the spectral line

shape and will therefore be omitted.

Using the relatiomship

FL1°P (v nm>> "[“’a‘“’b+ (n-m) w] | ab, nm>> (37

and neglecting the relaxation operator ;z , the reduced tetradic Greens operator

generally defined by equation (36) has matrix elements given by

-1
A @=1Un (w -w +o+tim ™8 &, . (38)
bd,ac n+o © a ba dc

Consequently, the frequency-dependent transition rate in the absence of relaxation

effects simplifies to
-11-
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A_(w) = % § {-‘ | v, ® | 2 b, Sumu, + 0y (39)
which is the familiar Fermi Golden Rule formula for spontaneous emission from
the levels a to the levels b.

In order to obtain the differential transition rate for the emission of
a photon per unit solid angle and angular frequency intervals, equation (35)
must be multiplied by the density of final states factor w2/(2nc)3. This factor
would have been introduced automatically if the final state projection operator
(27) had been more carefully defined to take into account the continuous distri-

bution of modes of the radiation field. Using the electric-dipole approximation

vba(k)=—i"2"ﬁm <b|DA|a>, (40)

where DA denotes the component of the total atomic dipole-moment operator in the

direction of polarization, the differential photon emission rate for a given

polarization A is obtained in the form

3
A e = 5 L, ). (41)
Zrfhc

The line shape function LA (w,?), which depends on the angles ? of photoemission,

is given by
LJ\ (w,2) =-"L Im Tr [D)‘ )i_(w) P DA] . (42)

Usually, one is interested only in the total spontaneous emission rate per

unit frequency interval

3
AW = Z fan A} w,0) =3 2=y 1w, (43)
c

where

L) = - > InTr [ﬁ’-){,(m) p-ﬁ’]. (44)
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Equation (44) has the same form as the results derived by Barangerl_S, by

Kolb and GriemA, and by Fanos. Note, however, that equation (44) is more
general than the formula usually employed for overlapping lines13 in that no
restriction has as yet been imposed on the subspace of the atomic states over
which the trace is to be taken. Consequently, equation (44) provides a

general framework for the description of the entire emission spectrum due to

all bound-bound transitions, including transitions involving autoionizing levels.

IV. The Isolated Line Approximation

If only the diagonal matrix elements a ab, ab (w) of the reduced

Green's operator‘Z:L(m) are included in the line shape formula (44), we obtain

2
L =- £ m = zb: 1 Babl ‘a (45) !
' ° wre, Fowy, _’Rab’ ap ‘

where

’Rab,ab(w) =<<ab'°1|'P'R(+io)?Plab. o>>. (46)

From the definition of the tetradic relaxation operatot~)2 (z) given by equation

(23), it follows that

RY ) = Rzv (47)

where the Hermitian conjugation of )z is defined by

* | .}

(RN Gg, 08 =R csas - (48)

Consequently, the procedure of Goldberger and Watsan14 can be followed to

obtain

«13-
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n-+o

"R(xiin) = A(x) +1 T(x) |2, | (49)

where A(x) and T(x) are Hermitian operators. ’R ab.ab (w) can therefore be
»

expressed in the form

’R ab ,ab(m) - Aab,ab(w) —irab,ab W |2,

where Aa b. a b(w) gives the shift associated with the line a + b and
H]

r aba b(m) corresponds to the full-width at half maximum.

It i1s clear that equation (45) corresponds to an incoberent superposition
of the Lorentzian profiles associated with each atomic line a-+b. The isclated
line approximation is expected to be valid provided that the separations of the
lines are large compared with their widths. In this section, we evaluate the
lowest-order nonvanishing contributions to the widths arising from autoionization,
spontaneous and induced radiative transitions, and collisions.

The width and shift operators I' (x) and A(x) can be expressed in terms of
the relaxation operatorR, (x+ 1 n) by following the procedure used by -

Goldberger and Watsonu'. From the definition (23) and the identity

(z-Q2AHIAV = z- Q00T AR (@, (51)

which is analogous to the dyadic relationship used by Mower16, we obtain the

results

n =*o

I(x) = 27 lim ['R+ «+1nQ § x-AL°CIARK+1 n)] (52)

and

rn = Re Y - LI" I(x') dx '

' -
2n o X X

where P denotes the Cauchy principal value. Similar results have also been

derived by Lambropouloall.
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The lowest-order nonvanishing contribution to the width operator I(x),

which is obtained from the approximation of R (z) by U » 1s

M -2r Y Qsx-QL° QLAY . (54)

Using the compressed notation introduced in section II for the eigenstates of

(o]
i , the general matrix elements of I'(x) can be expressed in the form

<a B | r» | a s>> = 123 2 8(xu vy + wge)
- N £ a'? va o]

o (G ) (om0
= 2—;2 v llv ' 36 '5(x-—w"+m)
£2 o aa a o BB a £
(55) 5
' -
+ 2 ,
hz E vgﬁ” B*'B' 60;6!' 6(X‘ma+w8n) 1
- 2r \'f V'] S -w '+ w) :
ﬂz aa' "RB' a 8
- 2r ' vk § (x-w +uw'")
*'2 aa' BE a g 7
where we have made the approximation ¢ W 1, discussed by Ben—Reuvenlg. t

To obtain the line width, we must evaluate the expression

T b ab(w)-<<ab,01 | Pr (+10) 'IPIab,o1>> s (56)

s s o P g

-15-
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It is now necessary to introduce the. bath degrees of freedom n and P, where n
represents the set of all photon occupation numbers and p is the quantum state

of the perturbing particles. The frequency-dependent width can then be expressed

in the form

rab ab (w) = Z Z Z Z <<ab, 0l,nn pp| (o
? n n' P P'

1 . (57)
] ab, 01, n'n’, p'p>> p'n p'p.

It is necessary to make the somewhat artificial distinction between the relevant
and bath photon modes in order to obtain the frequency-dependence, which occurs
in the delta functions in equation (55). In subsequent equations, reference to
the relevant photon mode numbers will be omitted whenever it becomes unnecessary.
After substituting equation (55) into equation (57), the lowest-order non-

vanishing contribution to the isolated line width can be obtained in the form

b(‘")' "‘ ZEZEZ <anp |v| a" " p" |2

r
ab, a a'*a an

x 8w -wmtuy cwete coete) oo

P
+ 2 Z ZZZ b'ﬂplvl b"n"p"> |2
b"*b n 'n"
(58)
x6(w-“’a."mb"-wp+wp"-mn+wn") pnpp

2
* 5 z Xz | Car |V|8p> - <’p|V|b p>
A P p'

xé(w-ma+mb—mp,+wp) Pp? .

e =il
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The first two terms describe all inelastic transitions from the initial and

final states of the radiating atomic system. Note that the states of the radi-
ation field are not involved in the last term, which describes only elastic
collisions. This is a consequence of the assumption that photons are emitted
only by the atomic system and the neglect of correlations between the atomic
system and the perturbers. The radiation emitted by the perturbers can be

described by the use of higher-order perturbation theory.

A. Autoionization

Autoionization results form the electrostatic interaction VS between
a discrete state and the continuum states of the atomic system having the same
energy. The definition of the zero-order atomic states can be made in an
unambiguous manner by using the dyadic projection operators introduced by
Feshbach15 or by the alternative procedure introduced by Fanozo. Autoioni-
zation can be included in the present theory by transferring strom H® to v,
as discussed in Section II. The width arising from the possibility of auto-
ionization from both the initial and final states of the radiating atomic

system is obtained from the inelastic terms in equation (58) and can be

. > s |
I‘ab,ab(m)=‘h_; c |<3|V |C> |2 G(w—wc+mb) l

(59)

+_212'.z:|<b|'vs|c> |2 §w - w_ +w), l
A a ¢

o]

written as

where the sum over c ranges over allcontinuum states which are allowed by the

energy and symmetry selection rules. If we now make the approximation
W, = W, in which the frequency-dependence is neglected, we obtain the

result

17~
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i 2
| A _u21(a|v|c>|c<w->
ab,a'b 52 c N
(60) !
+2—; Z | <a|VS| c> |2 G(mb-m) .
8° ¢
which is the sum of the autoionization rates from the initial and final atomic B

levels. In its most general form, equation (60) gives the autoionization con-
: tribution to the line width for a radiative transition between two autoionizing
levels a and b.

It is well-known that the mixing between the discrete and continuum states
produces an asymmetric profilezo. However, to the best of the authors knowledge,
no theories have been developed which incorporate the effects of radiative
tramsitions and collisions into the asymmetric line shape function. In the limit
where the line profile parameter q introduced by Fan020 becomes large, the line
shape function approaches a Lorentzian function, which is generalized in the
present investigation in order to treat all broadening mechanisms on an equal

footing.

B. Radiative Transitions

The width arising from all radiative transitions from the states a

and b which is obtained from the inelastic terms in equation (58) is given by

I‘(R)ab, a b((n) = 21'2. Z Z I <an| VSR a"n"> |2

A n* a n"

x 8 (m-ma,. + W= W + wn) G 61

Ly X E < V3R | p" g >I2

h2 b" + b n"

x$ (w- wy + W = 0 + wnn) G

=18~
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We now introduce the expansion of the interaction VSR in terms of modes K\ of
the radiation field and replace the summation over K in this expansion by inte-
grations over the frequency Wy and the solid angleS)k. In the electric-dipole

approximation, the total radiative contribution to the width is given by

R _ 1
M ab,ap @ = 3 fo W do
2nhc” A

a"*-a

+ <1)‘ (wk, Qk)> § (w - w " + wy = mk)

+ <n)\ (wk, Qk> § (w - W + wy + mk)]

(62)

>
+b§b | <h | D)\ I b"/.' (wb - bu)z[‘(S (U)—u)a+ Wy + wk)

N
+ <:§A (wk, Qk)//’ § (w - w, towpe t wk)

+ <\A (mk, wk> § (w - wa + wbu - “’kf] ’

where < n, (0, , Q > denotes the average number of photons per unit frequency,

K
per unit solid angle, which have polarization .

The contribution from all spontaneous radiative transitions can be obtained
from the terms which are independent of the averagé'ﬁumbet of photons by per-
forming the integration over Qk and the sum over A. If we now make the approxi-

mation w = W, "W we obtain the result

-19-
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fab, 2 b - 36 3 " *a (o, - ma")3 I <a |6} | a> |2 0w, = w )
| 4 Z 3 -> 2 (63) '
*o3ked b Wt oy) |<" I D |b> l 0wy, = wpw)s .
where

g 06k) = {1" ’1}, (64)

0 x < 1

which is the sum of all spontaneous emission rates out of the states a and b
comprising the spectral line.

The contribution from all induced radiative transitions is conventionally
expressed in terms of the specific intensity I)\(m’ ) which is related to the

average number of photons by

< n, (w,A\) > -

81r3c2 1 ( ) 6
3 y @), (65)

A

If we again make the approximation w = Wy ~ Wy, we obtain the result

IR 49 Z[
l"ab,a,b“ ;2: A d'n‘k

(66)

2 -
Z l <a ! D Ia"> I [IA(“’ -wai; "n'k)e(wa-ma" ) +I)\(wa"-‘”a’n‘k) © (wa"-wa)J
a"*a a

E b lD |b" Iz IX( '(l’-blu-n.k)e((l-’b"'mbu)"'IA(‘l‘bn"-ﬂ'b’-n-k)ve (mb"-mb) ’
*'b..:';b %

which gives the contribution to the width from all stimulated radiative emission

and absorption processes out of the states a and b. Results similar to those

=20-
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given by equations (63) and (66) have also been obtained by Lambropoulos11 .

The starting point in his work is the autocorrelation function.

C. Collisions
The contribution to equation (58) from collisions between the
perturbers and the radiating atomic system is given by

rc <m>=252 Zzl<ap|"sp|a"p"> |2

ab_.ab

* a"fa  p" p
x 8 (W=t u.\b—u)p,.+w)pp
RN NI A T
xuw-mmb,,-mpm.,)@ 67)

+

T Tl - Golerho I

»

8 (w-—wa + wy = wp' + wp). P, -

P

We now treat electron collisions in the binary-collision approximation, and set
W W W, which corresponds to the impact approximation in the theory of

spectral line broadeningl3.

It is conventional in electron-atom collision theory to introduce the

inelastic scattering cross section

-21-
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<k ap ' :>> l G(w “ugn = Wyn + w, ) (68)
'ﬁ

and the elastic scattering amplitude

m -»>
£ .0, B = - =55 <ap|vc|a3'> : (69)

2rh

(Y P S S W AT A g

where ﬁ> denotes the wave vector describing the electron scattering by the
atomic system,and V¢ is the appropriate collisional interaction. These ]
quantities can be defined without the use of lowest-order perturbation theory
by replacing ve by the scattering matrix T.

The isolated~line width produced by electron collisions is then obtained

in the form

ab,ab = Y oo X V o (aa", B) + '§ V, o (bb", B)
a"#za a"¥b

! >

i P

| (70)
% a. le @ any | 2

: +v, fan e @B -5 @

where Ne is the electron density and Ve is the electron velocity. The density
matrix f)(p) corresponds to the electron velocity distribution. This result is
| in agreement with the work of Baranger1-3- Note that the total width due to

collisions is the sum of the rates for all inelastic transitions and a term

involving the square of the difference between the elastic scattering amplitudes.

We have shown that the approximation of R(z) by 1Drimplies that the isolated
? { line width can be obtained by adding up the partial widths arising from auto-
ionization, spontaneous and induced radiative transitions, and collisions, as ’

expressed by equations (60), (64), (66), and (70).
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Tab,ab =T ab,ab *T ab, ab*T ab,ab *Tab,ap (7D

Although the final results have been worked out explicitly in the approximation

w = w, - W, it should be emphasized that the general theory predicts that each

partial width will have a frequency dependence.

5. RELATIVE IMPORTANCE OF VARIOUS BROADENING MECHANISMS

In order to determine the relative importance of various broadening
mechanisms for a particular spectral line, the expressions obtained for the
isolated line widths in section IV must be evaluated using realistic atomic
wavefunctions. In this section, we discuss approximate evaluations of the
widths which reveal their dependence on the states a and b comprising the line
and on the physical properties of the surrounding particles and radiation field.
The shifts, which are not considered in this investigation, may be important,
particularly in the case of induced transitions.

Even when the atomic lines are assumed to be isolated, the upper and
lower levels a and b usually consist of degenerate magnetic sublevels. The
result of superimposing the contributions from each allowed magnetic component

13,17 to be the same as the expression obtained from equation (45)

can be shown

after both | ] | 2 and”R (w) are summed over the magnetic sublevels of
ab ab,abdb

b and averaged over the magnetic sublevels of a. The density matrix P, must

be replaced by the number density of atoms in the state a, regardless of the

magnetic sublevel quantum numbers. In the remainder of this section, all atomic

states will be specified by giving only the principal and angular momentum quantum

numbers of the active electron.

A




A. Autoionization

Consider the autoionizaton process corresponding to the ejection of

an nf-electron accompanied by the deexcitation naza +n lc of one of the
c

- remaining bound electrons. Using quantum-defect theory21

, the autoionization
rate for large n can be related to the cross section for the excitation

nckc -> naza induced by electron impact. 1In a previous paperzz, we showed that

the autoionization rate due to the dipole part of the electrostatic interaction

can be approximated by

2 222 + 1)
A(M@2L,nl »ng)= | (8")(22) c
a a a c’e A

73\, a3 2(22, + 1) 2 (2L + 1)
(72)
EH £f(n 2 -*nl)z (es' »>¢)
Ea-EC cc a a 2, g c Ea ga =0,

where f(n £ -n_% )is the oscillator strength and g (e 2' » €. 2)| 0 1is the
c’e a"a c a i;=
threshold value of the partial-wave Gaunt factor for the free-free transition
of an electron in the field of the ion with residual charge Z. In the non-
relativistic approximation employed here, equation (70) is practically inde-
pendent of Z, The n-3 dependence which 1is predicted is a well-known property.
The f-dependence is difficult to derive, but experience in evaluating the free-
free Gaunt factor indicates that the autoionization rates decrease rapidly with

increasing 2, typically like 2-5.

B. Spontaneous Radiative Transitions

The properties of radiative transition rates are so well-known that
only a brief discussion will be necessary. Using the asymptotic behavior of
the hydrogenic oscillator strengths for large n, the spontaneous radiative decay

rate due to all downward transitions can be estimated by23

24—




10
Ar(n) = 1.6 x 10 9/2 Sec . (73)

i It should be kept in mind that equation (73) describes only An:# o
transitions, for which the radiative decay rates increase like Z4 with increasing

= Z. The n-9/5 dependence indicates that the dominant radiative decay mode for a

doubly-excited state with the outer-electron in a high-n level will be the
radiative deexcitation of the inner-electron.

The total spontaneous radiative width is estimated by

SR 10 4

= -9/2 -9/2

m, "+ 0,7, (74)

with the understanding that n, and nb refer to the lowest values for which a
dipole transition can occur.

In medium- and high~Z ions, the most prominent emission lines have radiative
decay rates which are at least comparable to any autoionization rates. Con-
sequently, equation (74) can be used as an estimate for the total natural
width. It should be emphasized that prominent absorption lines can arise from

transitions to autoionizing levels whose spontaneous radiative decay rates are

relatively small.

- C. Induced Radiative Transitions

The result obtained after averaging equation (66) over the magnetic

quantum numbers can be written in the single-particle approximation as
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ab , ab 3‘ﬁc

max(2 ,% u) s 2
Z e ‘ <n..l.. 2 n2> |
(22'3 + 1) a a a a

na,, R'a" :‘:n‘ILa

IR T lnre Z J an,

X [Ik(wa-wa"’nk) O(wa-wa,.) + IA (u)a,.—wa, Qk) O(wa"_wa)] (75)
+ max(ll,b . zb,.) 2 2

D LA G Y A
nb" B" :‘:nb b

x [Ik(mb-mb"’ﬂk) G(wb-wb") + Ik(wb"-wb’nk) @(wbn"mb)]

We note that the electror{ impact width associated with inelastic transitions

can be obtained in the Bethe approximation from equation (75) simply by
f (V ) 28

\3

The application of the r2 sum rules given by Bethe and Salpeter24 is

replacing E ;\ ! I (w,n) da by e N !

prevented by the photon-frequency dependence of the radiation field intensity

I)‘ (w, ). If we define a total intensity by

I (w) = Zf d.ﬂ.k I, (w,.ﬂ.k) (76)
A

and replace I(w) by a suitable frequency-independent average intensity I, the
summations over the complete sets of states na,.la., and nb""b" can be carried
out, and the absorption and stimulated emission contributions can be combined to

give the result




» 22 _ N \
_ I’;lz’ab = ;2: I [ <nala|r2|"aza/ + <‘b2b|r2|“bp“ly ]. 77)

The expectation values of r2 will now be approximated by using the hydrogenic

formula
- (nll |nz =—i(:mz+1-311(2+1))a2
/ 22 o
(78)
N gn_"_ a2
Z2 o

where the last version corresponds to an 2~independent approximation.

Let us consider a thermal equilibrium distribution of radiation character-
ized by a radiation temperature TR' We assume that this radiation is incident
from one side only, so that the integration over & Kk reduces to multiplication
by 27 We choose the frequency-independent intensity

GeTp)>

2n2c%h2

(79)

il
]

which is about 2/3 the maximum value of the Planck distribution function

corresponding to TR. The estimated width due to induced radiative transitions

is then given by

3 4 4
IR o E_H) KTy (na +n )
ab, ab 3 h E 2

H z
(80)
3
kT n 4 né
- 2.67x109( ER) (a *2’ b ) sec L.
H z
SR IR

In contrast to equation (74) for T ab,ab ’ rab, ap Lncreases with increasing

principal quantum number and decreases with increasing residual charge. The

1 (k TR)3 dependence on the radiation temperature is also an important property.

=27~ )
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Unless the induced radiative transitdns have frequencies within the region of

the maximum in I(w), equation (80) is probably an overestimate of the actual

width.

D. Electron Collisions

It has been pointed out by Griem25 that the Bethe approximation for
the electron;impact width due to inelastic transitions can be modified to take
into account some of the effects of elastic scattering. This is done by
beginning the integral over the Maxwellian distribution at zero velocity rather

than starting it at the excitation threshold. The result can be written as

iy N RV R (ﬁ) By
ab,ab 3/3 °o'e \s/ N kT

(81)

3kT

2
2 n g ( e )
r a‘a g zlnd.-nal

5 3T
O . N |

7Teg 5]

2
r

Z max (2, l <ng .

ay trdn s (22, T + 1)

where g now denotes the thermal average of the free-free Gaunt factor.

If the Gaunt factors in equation (81) are now replaced by suitable average

values, the r2 sum rules can be employed to obtain the result25

~28-
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3KT
X |<na L | 2 | n za> | g(ZAEZ) (82)

3KT
|<“b"b'r2|“b“b> |g(2AE:)

where AEa and AEb should be chosen to be the smallest threshold energies. We
now use equation (78) and set the average Gaunt factors equal to unity, which
is a good approximation for An=0 transitions in multiply-charged ions. The

electron impact width is then estimated by

E
P C _ 64 % 3 N(_H) [Eu ( +“b)
b, b '
a a 3/3_ o e\ & N kTe ZZ
(83)
4 4
E n +n
_ =7 H a b
=2.1 x 10 Ne T ( 2 ) .
e Z

As expected, the electron impact width has the same n- and Z- dependences
as the width due to induced radiative transitions. The f-dependences would
also be the same if they had been retained in the approximation for the
expectation values of rz. The condition for thermal radiation broadening to be

dominant over electron impact broadening is found from equations (80) and (83)

to be

p——

kT E
(—E;‘i Sexw0 w0 (84)
e
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