AD=AD91 491 COMMAND AND CONTROL TECHNICAL CENTER WASHINGTON DC

INSTITUTE FOR DEFENSE ANALYSES TECHNICAL WARFARE (TACWAR) NODEL'-ETC(U)
SEP 77 M C FLYTHE: P FINNEGAN, J REIERSON
UNCLASSIFIED CCTC=CSM=MM=237=77~PT~1

92

o
11
J

FtEFEEEE

[4
[3
rE

L

EEEE

EEEE

MICROCOPY RESOLUTION TEST

T

CHART
* NATIONAL BUREAU OF STANDARDS-1963-A

B b

PHOTOGRAPH THIS SHEET
youni o ¢
(op § LEVEL Qovnenand and Control Technuu/INVENTORY
L ﬁ L\J c&;f« V;\L‘U.S '\u D Q. : '
5 Ins‘l’ﬂ’u'\'e.TorJ'SQC,,. . y o
- |3 se PBralysrs Tocti eal |
b 2 Waclare (TACWAR) Model ” «
@ § Doaﬁsm IDENTIFICATION 6 39{"’- 1977
£ P S Teeqrarn Mawntenance Manval Part 1 s
g S Part I
<t
g o D STATEMENT A
- Approved for public release;
% Distril;utigg Unlimited
DISTRIBUTION STATEMENT
ACCESSION FOR R
* NTIS GRA&I z
xouncen . DTIC
UNANNOUNCED O
: JUSTIFICATION ELECTE
¥
NOV 1 3 %80
BY f€v . g e -
: DISTRIBUTION / &0, ’ D
' AVAILABILITY CODES
‘r DIST AVAIL AND/OR SPECIAL DATE ACCESSIONED :
Classified reference, p.389, may remdin, ;
Per: Dennis Konkel, CCTC (202) 6954032, :
pfcooper, ;
DTIC /DDA2 P
13 Nov,.'80 :
DISTRIBUTION STAMP ;
:i
P
DATE RECEIVED IN DTIC !
PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2
|

DTIC ;3,'-“,‘. 70A DOCUMENT PROCESSING SHEET

P R e AR T SN A e

R

COMMAND AND CONTROL TECHNICAL CENTER

& Computer System Manual CSM MM 237-77
g |
£ 6 September 1977 |
gg" -
:5 ' e
£) ?
%’x INSTITUTE FOR DEFENSE ANALYSIS K
} TACTICAL WARFARE (TACWAR) MODEL :
;o
§ ; ¥
E f Program Maintenance Manual
i Part 1
REVIEWED BY: APPROVED BY:
o CAPT RANDALL B. SAYLOR R. E. HARSHBARGE
' Project Officer Acting Deputy Director
NMCS ADP
Copies of this document may be obtained from the Defense ;
Documentation Center, Cameron Station, Alexandria, VA 22314 3 .
;o
DISTRIBUYION STATEMENT A .

Approved fcg public releass;
Distribution Unlimited

ACKNOWLEDGE + T

This manual was prepared for the Command and Control Techni-
cal Center (CCTC) under the direction of the Chief for
Military Studies and Analysis with technical support provided

by Computer Sciences Corporation under Contract Number DCA
100-74-C-0002.

B
e
¥

k3
*
£
4
£
Y

B

7
4
CONTENTS
Section Page
- ACKNOWLEDGMENT . « « « « « o o o « o o o « . ii : :
ABSTRACT « « « o o o o o o = o o o o o o « o« xx :
[] GLOSSARY L) . [. . L) . . . [L] L] [. . [. . xxi .
gi: 1 - GENEML . L) L] L] L L] L] L] L] L] L] *® . L 2 L] - L] L] 1 ;
1.1 Purpose c e s e e e e s e s 1
P 1.2 System Appllcatlon e e o s o s 4 e a 1 'y]
f 1.3 Equipment Environment 3 3 p
1.4 Programming Conventions 3 ; ‘
2. SYSTEM DESCRIPTION « « &« « « o v o o o « o & 5 §
2.1 General Description « « . o & 5 é
2.1.1 Theater Structure 5 ;
2.1.1.1 Sectors . . . « « ¢ o ¢ o ¢ o 5 j
2.1.1.2 Battle Areas « « . & 11)
2.1.1.3 Regions . « &+ ¢ ¢ o s ¢ o o o o 14 ’
2 L) 1 L] 1 - 4 COMMZ . . . L] L] . . L] . . . 1 5
2.1.1.5 Summary of Structure Functlons. 15
= 2.1.2 Supplies Transportation Network . . 16
: 2.1.2.1 Design of the Network 16
T 2.1.2.2 Construction of an Actual
L Network e e e e e 19
’ 2.1.2.3 Usage of the Network o+ e e . 20
i 2.1.3 RESOUXCES . + « « o « o o o o o o @ 21
i 2.1.3.1 Ground Resources+ & 21
£ 2.1.3.2 Air Resources 22
4 2.1.3.3 Target Acquisition Resources . 22
2.1.3.4 Nuclear Resources « .+ 23 «
A 2,1.3.5 Chemical Resources « . 23
3 \ 2.1.4 Air Combat Simulation o e 24 -
-3 2.1.5 Target Acquisition Slmulatlon e e 27
9 2.1.6 Nuclear Warfare Simulation 29
2.1.7 Chemical wWarfare Simulation 31
2.1.8 Ground Combat Simulation 33 :
] 2.1.9 Theater Control Simulation 35
c

4 iii

‘%ﬁmﬁQ?WWﬁWﬂﬁ?WWWW%%?;f”ﬁi;ijyJﬁ

Section

2.1.10 Supplies Transportation Simula-
tion
2.1.11 Remote Terminal Capablllty .o e
2.2 Detailed Description
2.2.1 Root Segment . . .« ¢« <« . ¢ o .
2 . 2 . l L4 l TMIN L L] - - L] . - . . - L]
l.1.1 Programming Specificatio
.1.2 Logic Functions
EIGENV . ¢ ¢ v & o ¢ o o &«
.1l Programming Specifications
.2 Logic Functions
MPROD . « « ¢ &+ =« o o o o o«
.1 Programming Specificatio
.2 Logic Functions
CNTRYC . ¢ ¢ o« o o o o o o
.1 Programming Specificatio
.2 Logic Functions
CVFW . ¢ & ¢ v o o o o o =«
.1 Programming Specificatio
.2 Logic Functions
SECWTH L] . L2 - * . . L] L] L
.1 Programming Specificatio
.2 Logic Functions
GDIST . + o o o ¢ o o o o
1 Programming Specificatio
2 Llogic Functions
AG . L] L] L L4 L] . L] L] . * L]
io
io
ti
io
io

£

s 8 s e

L 4
N
.

N
.

N
.

N N N
L] L] []
NVMNNNNOVDNONNMNOVONNNNNNNONNNNNNONNNNNNNNNNDNNNDNNNNNODNNNNON
. . . L] . .

N
.

7.
7.
T
8.1 Programming Specificati
8.2 Logic Functions . . .
A
9.
9.

[\S]
.

PORTN . ¢ ¢ « ¢ o o o &
1 Programming Specificati
2 Logic Functions . . .
CLR * L] L2 . . L d . . L] .

~
.

1 Programming Specifica
2 Logic Functions . .

® ® @ & & © ® ° 8 & e & e O & o & & o + & e 0 9 e s o o

NNV NVYDNNN NOFEFNDNONENMDODEFENNNEFENDNNEFEMODODENODNNEFHNNODEHENDODNODENONN

N
Ze s O o

ER - . . .

[S I8

Programming Specificati
Logic Functions . . .

N
.

n

n

ns

ns

ns

ns

ns

ns

ns

on

ns

P . . L) L] . L] L) L] - *

ns

Logic Functions
Tz L] L] * L L] > L] L] L] - .

Programming Specifications

Logic Functions

~N
.
NNVWNRONRN = O O = O U W N

3
»
.
3
.
.
.
*
.
.
.
.
.
.
.
.
e
.
.
.
.
.
.
]
.
.
-
.
.
.
.
.
.
.
.
.
.
.

Z
1
2
N
1 Programming Speciflcat
2
C
1
2

NP A g e W",'\F-'"f,"-'i','-‘» “np

b 2e

.

’ I - s o v s 4 N » e e s e e, rag NS
i3 ¥
1
1
¥
3 Section L age
¥ 2.2.3 LINKB . © ¢ + 4 ¢« o « o« o o« o« « « « . 82 ;
3 2.2.3.1 WTZERO . . ¢ o o « o o o o« « « o 82 ;
j 2.2.3.1.1 Programming Specifications . 82 .
b 2.2.3.1.2 Logic Functions 82
" e 2,2.3.2 GCOUT . +¢ & « = o s o s s s o« « o 82
* 2,2.3.2.1 Programming Specifications . 82 :
: 2.2.3.2.2 Logic Functions 82
2 2.2.3.3 TCOUT + . . « ¢« « « o« s « » o « - B84 1
g » 2.2,3.3.1 Programming Specifications . 84 !
¢ 2.2.3.3.2 Logic Functions 84
& 2.2.3.4 SPLYOT « « « s o« « « « « B85
¥ 2.2.3.4.1 Programming Specifications . 85 N
< 2.2.3.4.2 Logic Functions 85 .
2.2.4 LINKC . &« &« & o ¢ o o s o o o o o » « 87
g 2.2.4.1 WTONE . . ¢ ¢ « o « « o o o « » o 87
2.2.4.1.1 Programming Specifications . 87
2.2.4.1.2 Logic Functions 87
2.2.4.2 NUCOUT . . « ¢ o « « o« « » o« o« o« 87
2.2.4.2.1 Programming Specifications . 87
2.2.4.2.2 Logic Functions 88
2.2.4.3 CHOUT . . & & & & « ¢« o« + « o« « o« 88
2.2.4.3.1 Programming Specifications . 88
2.2.4.3.2 Logic Functions 89
2.2.4.4 TACQOT« . . . 89
2.2.4.4.1 Programming Spec1f1cat10ns . 89
o 2.2.4.4.2 Logic Functions 90
¥ 2.2.5 LINKD . . « & 4 o o o o s o o « « « « 91
5 2.2.5.1 AIRMOD . . ¢ ¢ & o o ¢ o o » « o« 91
& 2.2.5.1.1 Programming Specifications . 91
& 2.2.5.1.2 Logic Functions 91
" 2.2.5.2 BINFAC . . v &« & « o o o o « « o 93
i 2.2.5.2.1 Programming Specifications . 93
, 2.2,5.2.2 Llogic Functions 95
® 2.2.5.3 BINOAT . . ¢ ¢ o + o o o o « « o 95
y 2,2.5.3.1 Programming Specifications . 95
g 2.2.5.3.2 Logic Functions 96
3 2.2.5.4 ATSPSS . & v ¢ o« ¢ o o o s o o« « 97
‘ 2.2.5.4.1 Programming Specifications . 97 -
3 ' 2.2.5.4.2 Logic Functions 99 ;
2.2.5.5 ATRTED . . +« o« « + o o o o » » « 100 N
;g 2.2.5.5.1 Programming Specifications . 100
3 2.2.5.5.2 Logic Functions 102
3 2.2.5.6 ATRTSA . . « « & o « o & & . 102
2.2.5.6.1 Programming Spec1f1cat1ons . 102 ..
. 2.2,5.6.2 Logic Functions 104 »

i - ol oi o ot AT g

L I B B e LT TR B R i S T i iz

3 Section Page
3 2,2.5.7 ATRTDA . . « &+ + « « o« « s o+ +» « 104
& 2.2.5.7.1 Programming Specifications . 104
g 2.2.5.7.2 Logic Functions 108
e 2.2.5.8 ATRTSS « « « « « . . . 108
o 2.2.5.8.1 Programming Specifications . 108
® 2.2.5.8.2 Logic Functions 111
P 2.2.5.9 ALLOCT . . ¢« ¢ ¢ o« =« « « « « « « 111
e 2.2.5.9.1 Programming Specifications . 111
& 2.2.5.9.2 Logic Functions 112
{ b2 2.2.5.10 DEG . . &« ¢ o ¢ o o s o « « « « 115
i ¥ 2.2.5.10.1 Programming Specifications . 115
! v 2.2.5.10.2 Logic Functions 115
‘ 2.2.5.11 AIRATT . o « o o o o o o s o o o« 116
2,2.5.11.1 Programming Specifications . 116
2.2.5.11.2 Logic Functions 117
2.2.5.12 AovLl » . 118
2.2.5.12.1 Programming Speclflcatlons . 118
2.2.5.12.2 Logic Functions 118
2,2.5.13 ATTRL ¢ ¢ « « « « « « « 119
2.2.5.13.1 Programming Specifications . 119
3 2.2.5.13.2 Logic Functions 120
2.2.5.14 AOVL2 . . v ¢ « & &« o » o« « « &« 121
2.2.5.14.1 Programming Specifications . 121
2.2.5.14.2 Logic Functions, 121
2,2.5.15 ATTR2 . . v v ¢ o o o s o = . 122
o 2.2.5.15.1 Programming Spec1f1catlons . 122
S 2.2.5.15.2 Logic Functions 122
L 2,2.5.16 ATTR3 . . &« o « & s s s o« « « « 123
" 2.2.5.16.1 Programming Specifications . 123
. 2.2.5.16.2 Logic Functions 123
: 2.2.5.17 ATTRE . . o & « o o o o o« « o« « 124
¥ 2.2.5.17.1 Programming Specifications . 124
5 2.2.5.17.2 Logic Functions 125
§j 2.2.5.18 ATTR5 . &+ v ¢ & o o s o &« « « o 126
f; 2.2.5.18.1 Programming Specifications . 126
e 2.2,5.18.2 Logic Functions 126
¥ 2.2.5.19 ATTR6 . .« &+ &« o « o o o s o o « 127 -
i ' 2.2.5.19.1 Programming Specifications . 127 i
- 2.2.5.19.2 Logic Functions 127
G 2.2.5.20 ATRTWH . . v o « &« o & o & « « o 129
g 2.2.5.20.1 Programming Specifications . 129
3 2,2.5.20.2 Logic Functions 130
g
4
i vi

ORI, S 1 e e s,

Section

N
.

S FRTRREN

L R R I R S B T

LINKE . . ¢ ¢ ¢ v ¢ 6 o o o o o o «
NUC . . & & ¢ o o o ¢ o« o o o &
.1 Programming Specifications
.2 Logic Functions
BLKDA . . . ¢ ¢ ¢ o ¢ o o o o« &
1 Programming Specifications
2 Logic Functions
CDEN . ¢ ¢ ¢ ¢ o o o o o o o« o
1l Programming Specifications
2 Logic Functions
DCDEN . ¢ . ¢ ¢ ¢ ¢ o o o o &
1
2
U

[8] NN
. . e

[\8]
.

N
.

NNANDNNANNANNDNANNMNANNANNANNOANNANNANLNNAIANNAIANNANNDND

Programming Specifications

Logic Functions
Cl & v o e s e s e e e e e
1 Programming Specifications
2 Logic Functions
SCLAT ¢ & ¢ o o o o o o o o
1 Programming Specifications
2 Logic Functions
HINUP . . ¢ &« v ¢ o ¢ o« o o &
1 Programming Specifications
2 Logic Functions
D
1
2
U
1
2

N N
. .
« e e o

N
.

SYINV . . . ¢ + ¢« ¢ ¢« v o o« .

[8]

Programming Specifications
Logic Functions

N
.

8
8
C2 L3 L] . . L L] L L] L) - L - .
9 Programming Specifications
9 Logic Functions
NUCTAR ¢ . & & ¢ « « o o o o =«
10.1 Programming Specifications
10.2 Logic Functions
NUCWPS . . & « ¢« o« o ¢ o ¢ o
11.1 Programming Specifications
1
1
1
1
1
1
1

N
.

N
.

l.2 Logic Functions
NWHINV . . & ¢ & o o ¢ o o o o
2.1 Programming Specifications
2.2 Logic Functions
NUC3 + & v v v o ¢ o« o o o o @
3.1 Programming Specifications
3.2 Logic Functions
NUCE . & & v ¢ o o ¢ o o ¢ o o«
4.1 Programming Specifications
4.2 Logic Functions

[8] [V
L] * L]
NN NNDNODNDNODNNNDNDNNNDODNDNNNNNNDNDONDNODNNDONODRODNONNNDNNNNNDNDNDNNNO

[%]
.

s 6 e ® & & e & & e 8 & 6 2 e * & s & e & S s+ ° & s o 8 o ¢ =

Page

132
132
132
132
132
132
133
133
133
133
134
134
134
134
135
135
135
135
135
138
138
138
139
139
140
141
141
142
142
142
142
143
143
143
145
145
145
146
146
146
147
147
147

AR o

< RTR det B A AP

e

o

e D PSRN T

743, Wﬁ\é W BAT e AR R

-8

PRI R sy T o R S A T T T s AL e

Section

5 NUCS5 e o s s s e & o
.15.1 Programmlng Specifications
.15.2 Logic Functions
6 ZNDST . . ¢ ¢ o o o o o « o =
.16.1 Programming Specifications
.16.2 Logic Functions
7 NUCABS . . ¢ o ¢ « o« o o o

.17.1 Programming Spec1f1cat10ns
.17.2 Logic Functions
8 NBFTGS . ¢ ¢« ¢ ¢ ¢ o o o o o @
.18.1 Programming Specifications
.18.2 Logic Functions
9 NRGTGS . . « . . s e e .
.19. 1 Programming Spe01f1cat10ns
.19 Logic Functions
0 NCZTGS e e e e s e s « e e s
.20.1 Programming Spec1f1catlons
.20.2 Logic Functions
1 PREYLD e e e e .
2
3

N
.

N
.

21.1 Programming Spec1f1catlons
21.2 Logic Functions
DWHINV
22,1 Programming Spec1f1cat1ons
22.2 Logic Functions
NUC6 .« &« ¢ ¢ o ¢ o o o o o &
.23.1 Programming Spe01f1catlons
.23.2 Logic Functions
4 DAMEVL . . ¢ o ¢ o o o o o o o
.24.1 Programming Specifications
.24.2 Logic Functions
S5 PAREA . . ¢ ¢ ¢ ¢ ¢ o &+ o
.25.1 Programming Spec1f1cat10ns
.25.2 Logic Functions
6 FN . . . & ¢ ¢« ¢ ¢« o o o o o @
.26.1 Programming Specifications
26.2 Logic Functions
7 PREFN . . ¢ ¢ +v o o o o o o &«
.27.1 Programming Specifications
.27.2 Logic Functions
8 QKINR . . v ¢ ¢ o o o o o o
.28.1 Programming Spec1f1cat10ns
28.2 Logic Functions
DOSLIM ¢ & & « « o o s o« o »
29.1 Programming Specifications
29.2 Logic Functions

N ~N N N N N [\)
. » .

N
-
NNN

G\O\NG\O\NG\O\NG\O\NG\G\NO\G\NG\O\NO\O\NO\O\NG\G\NG\O\HO\G\F—‘G\G\D—‘G\G\D—‘G\O’\H

s o \De

e e & @ =2 e & a2 o o

s & o 8 e & ¢ o

Page

148
149
149
149
149
150
150
150
151
152
152
153
153
153
154
155
155
156
157
157
158
159
159
le60
160
160
lel
161
161
162
172
173
174
174
174
174
175
175
175
176
176
176
176
176
177

30 WRAD e e e e e s
6.30.1 Programmlng Spec1f1cat10ns
6.30.2 Logic Functions
1] WRADVN ¢ ¢ ¢ o o o o o
31.1 Programming Specifications
.31.2 Logic Functions
OFFCOV &+ & ¢ ¢ o o o o o o o &
32.1 Programming Specifications
32.2 Logic Functions
3 SIMCN ¢ o ¢ o « o o o o s o «
.33.1 Programming Specifications
.33.2 Logic Functions
4 SIRCOV . o ¢ ¢ o« o o e o o o« =
5

[\8
.

N

N

N

[\8)
.

34.1 Programming Specifications
34.2 Logic Functions
CIRCOV . . + « .« . e e e s
5.1 Programming Spec1f1cat10ns
5.2 Logic Functions

l\)

NNVNANNVNANNANNANDNDANNDRND

Et e o o o & o o o ¢ o o 0 o s s e o+ o

N
.
NN

.1 Programming Specifications
.2 Logic Functions

KCODE . & ©v ¢ 4 o o o o o o o
.1 Programming Specifications
.2 Logic Functions
KDCODE . « ¢ o o o o o o o &

.1 Programming Spec1f1cat10ns
.2 Logic Functions
CHEM6G . . « ¢ o o o « o o & .
.1 Programming Spec1f1cat10ns
.2 Logic Functions
CHEMLEV . .« ¢ ¢ ¢ o o o o o o s
.1 Programming Specifications
.2 Logic Functions
EQUIP . . . & & « & o o o o &

.1 Programming Spec1f1catlons
.2 Logic Functions
c
D
C

N
A N e o FU S I B S

3
3
K
1
1
2
2

N

3
3

N
.

e o & & o ¢ o e o s o

NNSNNDNDSNDNNNNNNN SISO
O BT & T I

e

B

N

.
o o
U,

N
.

3
6.
6
3
6.
6.
3
6
6
3
6
6
3
6.
6.
I
1
7.
7.
2
7.
7.
3
7.
7.
4
7
7
5
7
7.
7.
7

[8]

HEMSUP . . . &+ ¢ ¢ o ¢ o o o

1 Programming Spec1f1catlons
2 Logic Functions« . .
ECON . . ¢« ¢ ¢ ¢ ¢ o o o o o
1 Programming Specitications
2 Logic Functions

6
6
7
7

N

8
8

[N
.

HEMl L] . . L] . . L] . L] . . L] -
9.1 Programming Specifications
9.2 Logic Functions

2
2
2
.2
2
2
.2
2
2
.2
2
2
2
2
2
.2
2
2
7
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

7
6
7.
7.
8
7.
7.
9
7.
7.

e » & 8 s o o o

=G

L IS o R SN

Section

2.2. 0 CHEMTAR o o .
2. .10.1 Programming Spec1f1cat10ns
2. 10.2 Logic Functions e . .

2.2. 1 CHEMWPS ¢ + ¢ o « o &
2. 1.1 Programming Specifications
2. 1.2 Logic Functions

2.2. NCRINV . . . + .+« . . « . .

2

.12.1 Programming Spec1f1catlons
.12.2 Logic Functions
3 CHEM2 ¢ ¢« o o o o o =
.13.1 Programming Specifications
.13.2 Logic Functions
4 CHEM3 . . ¢ v v ¢ o o o o o =
5
6

N
P e

NSNS SNNNNN

N
.

4.1 Programming Specifications
4,2 Logic Functions

N

1
1
CHEM4 .,
15.1 Programming Spec1f1cat10ns
15.2 Logic Functions
DUCINV . . &+ ¢ &« o o o o o « «
16.1 Programming Specifications
.16.2 Logic Functions
7 BFTGTS « e e e
.17.1 Programming Spec1f1catlons
.17.2 Logic Functions . .,
8 RGTGTS
.18.1 Programming SpeC1f1cat10ns
.18,2 Logic Functions
9 CZTGTS v o & o ¢ o o o o o @
19.1 Programming Spec1f1cat10ns
19.2 Logic Functions . .

N N N
. -
¢« & o o e o o » s » o

N

a o »

0 PREAGDM e e e
.20.1 Programming SpeC1f1catlons
.20.2 Logic Functions
1 KADMC . . ¢ ¢ o « o o o o o =
2

[\
.

N .
L]

2l1.1 Programming Specifications
21.2 Logic Functions
AIRBASE . v ¢« o o o o o o o @
2.1 Programming Specifications
2.2 Logic Functions
3 CHEMS . . . ¢« ¢ ¢ ¢ o o o« &

.23.1 Programming Spec1f1cat10ns
.23.2 Logic Functions
4 CHEMDAM e e e
.24.1 Programming Spec1f1cat10ns
.24.2 Logic Functions

(5] [\S]
.
NN

N
.
NNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNN
.

e @ ® & 8 e ¢ e & e s & s s s s+ s 6 s o

e e o 8 & 8 e ¢ o o o

PFage

197
197
197
197
198
198
199
199
200
200
200
201
201
202
202
203
203
204
204
204
205
205
205
206
208
208
208
210
210
211
212
212
212
213
214
214
215
215
216
217
217
218
218
219
219

Section

N
L]
(S,

DROPS c e e e e
5.1 Programmlng Spe01f1cat10ns
5.2 Logic Functions

LINFR . . « ¢« ¢« « &

26.1 Programming Spec1f1cat10ns
26.2 Logic Functions . . .

2
2

N
.

NN\INN\I

. t‘. L] . .
HQ\IN\I\IN

Zis ¢ Ne o

TARACQ . . ¢ ¢ ¢ & o o o o &

N
L]
NN

NN&NNWNNCDNN@NN@

K
.1
.1.2 Logic Functions
ARACA . . ¢ o ¢ o o o o o o &
1 Programming Specifications
2
A

N
.

Logic Functions
RACE . ¢ ¢ o ¢ o o o o o o @
.1 Programming Specifications
.2 Logic Functions
TADPAR . ¢ ¢ o ¢ o o o o s o o
.1 Programming Specifications
.2
BL
.1

2

[|8
.

N
.

Logic Functions
KDATA e e e .

Programming Spec1f1cat10ns

Logic Functions

N

.

R UND e e o o e . .
1 Programming Spec1f1cat10ns
2 Logic Functions
C v 6 4 e e e e e e e e
1l
2
E

N
.
[\S I
o o
« o s o

[\
.

Programming Specifications
Logic Functions
BAMT . . . o e e e
1 Programmlng Spec1flcat10ns
2 Logic Functions . « + « +
I ¢ o ¢ o o o o o o o s o o o
AIRGRD ., e e e e .
.1 Programming Spec1f1cat10ns
.2 Logic Functions
ATRTAB ., e o e e s
.1 Programming Spec1f1cat10ns
.2 Logic Functions
QRAFIL . ., & « ¢ & o o ¢ o o =
3.1 Programming Specifications
.3.2 Logic Functions
ASGATR . « ¢ ¢ ¢ 4 o o o o o o
.4.1 Programming Specifications
.4.2 Logic Functions

[\S)
NNNOYONDNDWODNDNDY
.

[\S]
L]
NN

N [\S]
. . . .
NNNNNNNNNNNNHNNNNNl\)NNN\ONNNNNNNNNNNNNNNQNMNNNN
v 8 0 O e s o
wro Hra R oo

8]

Page

240
240
241
242
242
242
245
245
245
245
245
245
246
249
250
251
251
251
252
253
253
253
254
254
254
254
254
254
255
261
261
261
265
265
265
265
268
268
270
273
274
274
277
277
278

S AINT WAy

e S T

e

e 8 2 1% AT e e

AU g g s s e e W e R i S L SR R G rmang, e e h i A e e e

4?4
5 i Section Page
2.2.11 LINKT « ¢ « o o o o o o o o o « o o+ 280 ;
2,2.11.1 PSAIR « +« e o « . . 280 &
2.2.11.1.1 Programmlng Spec1f1cat10ns . 280 _
2.2.11.1.2 Logic Functions 280 :
E N 2.2.12 LINKK .+ « & 4 o o o o o o o s & . 282 §
1 2.2.12.1 TC & & 4 v 4 4 4 e e e e e 4. . 282 :
3 2.2.12.1.1 Programming Specifications . 283 5
3 2.2.12.1.2 Logic Functions 284 {
¢ 2.2.12.2 IIBA . « & 2 v 2 s o « o « « « . 300 i
3 2.2.12.2.1 Programming Specifications . 300 ‘
p 2.2.12.2.2 Logic Functions 301
3 2.2.12.3 NXDIV . . . & 4 o o o« o o « « « 301 :
4 2.2.12.3.1 Programming Specifications . 301 i
3 2.2.12.3.2 Logic Functions 302 i
4 2.2.12.4 AIRASG . . . v & o o o o « « « o+ 302 :
4 2.2.12.4.1 Programming Specifications . 302 :
4 2.2.12,4.2 Logic Functions 302 5
2.2.13 LINKL . ¢ & o « « o « o « o« o« « « « 306
2.2.13.1 SUPPLY . . . & ¢ « s « & . . 306 ¢ 2
: 2.2,13.1.1 Programming Spec1f1catlons . 306 . ‘
¥ 2.2.13.1.2 Logic Functions 306 3
¢ 2.2.13.2 TRANPO . . . v ¢ ¢ « o o o & . 309 z -
' 2.2.13.2.1 Programming Spec1f1catlons . 312
i 2.2,13.2.2 Logic Functions 313
; 2,2.13.3 INPUT . . . & ¢ ¢ o o s o o« « « 313
: 2.2.13.3.1 Programming Specifications . 313
: 2,2.13.3.2 Logic Functions 314
: 2.2.13.4 INSOL . . ¢ & & ¢ o o« s o o« « o« 315
§ 2.2.13.4.1 Programming Specifications . 315
; 2,2.13,4.2 Logic Functions 315
| 2.2.13.5 LABELl & & « o o o & . 316
2.2.13.5.1 Programming SpeC1f1cat10ns . 316
: 2.2.13.5.2 Logic Functions 316
B 2.2.13-6 LABEL2 . . - . . . - - 317
4 2.2.13.6.1 Programming Specifications . 317
1 2.2.13.6.2 Logic Functions 318
2.2.13.7 MAIN . & & v o o« o o « o o o« « « 320
2.2.13.7.1 Programming Specifications . 320 L
2.2.13.7.2 Logic Functions 321 5
. \ 2.2.13.8 CYCLE ¢ . & ¢ ¢ o o o & . 321
E: 2.2.13.8.1 Programming SpeC1f1catlons . 322
3 2.2.13.8.2 Logi¢ Functions 322
k- 2.2.13.9 FIXLIJ o &o + o o « « o o o « « o« 325
., 2.2.13.9.1 Programming Specifications . 325
E 2.2.13.9.2 Logic Functions 325

& xii i

Lt M&v’ﬂw‘mﬁwmu-awwa’-w*f\" A T L —
1
¥ Section Page
2.2.13.10 IJFIX . & ¢ & o o « « o« o« o o o« 326
2.2.13.10.1 Programming Specifications. 326
3 2.2.13.10.2 Logic Functions 327
L 2.2.13.11 OUTPUT . « « &« « &« o &« « « « - 328
L 2 2.2.13.11.1 Programming Specifications. 328
3 2.2.13.11.2 Logic Functions 328
f 2,2.13.12 BLOCKl « « « « o« « « « 329
: . 2.2.13.12.1 Programming Specifications. 329
: 2.2.13.12.2 Logic Functions 329
5 2.2.14 LINKM . . . ¢ o ¢ o o« o o « « « o » 330
k 2.2.14.1 TIMET . . « « « « o« « « « « « « 330
£ 2.2.14.1.1 Programming Specifications . 330
3 2.2.14.1.2 Logic Functions 330
. 2.2.14.2 ASSIGN . . . & « « o o o« o o o o« 331 ;
2.2.14.2.1 Programming Specifications . 332 ¢
2.2.14.2.2 Logic Functions 332 :
2.2.14.3 IRATIO . . « & o o o« « « o o « o« 341 ¢
2.2.14.3.1 Programming Specifications . 341 p
2.2.14.3.2 Logic Functions 341 3
2.2.14.4 IFEBA . . ¢ ¢ o« o s & . . . 342 .
2.2.14.4.1 Programming Spec1f1cat10ns . 342 3
2.2.14.4.2 Logic Functions 342 i .
2.2.15 LINKN . & « & o o o o o « o o o« » o 344 '
2.2.15.1 PSUMMY « « o « o « o o« o« 344 %
2.2.15.1.1 Programming Specifications . 344
2.2.15.1.2 Logic Functions 344
3. INPUT/OUTPUT DESCRIPTION . . « « « « « o o« « « 347
3.1 General Description e .+« 347
3.2 Characteristics, Organization, and
Detailed Description . . . « « « . . . 347
3.2.1 Input and Working Files « 350
3.2.1.1 1Input File MIT (User-Selected
Data) . . . s « « & o« o 350
3.2,1.1.1 Types 1 and 2 Data « o s« « 350
3.2.1.1.2 Unit Assignment Data . . . 354 :
: 3.2.1.2 Working File ITTD (Time-T Data) . 354
: 3.2.1.3 1Input File IAD (Airbase Data) . . 356
& 3.2.2 Output Files ., . e o o o e o o & o 357
5 3.2.2.1 Output File JINP .« o . . 357
i 3.2.2.1.1 Alphabetic Listing of Initial
b Data . . . e + « o o« o« « 357
T .3.2.2.1.2 Theater Control Initialized
Data . . e + e« o o« « 360

3.2.2.1.3 Tabular Records of Inputs . . 360

s e

xiii

Section , rage

3.2.2.2 Output Files JCON, JCHEM, JNUC
(Detailed Reports}) 360
3.2.2.,3 Output File JSUM (Summary
Report) . « + « « « ¢« « « « « « 360
3.3 Program Variables . . . « ¢« ¢« « &« « « + « 368-

® 4. PROGRAM ASSEMBLY, LOADING, AND MAINTENANCE

1 : PROCEDURES . 4 4 «¢ « ¢ o ¢ ¢ o« o o o s o o o « 373
* N
: 4.1 Procedures . . .« « « + 4 o o o o & & o o 373
i i 4.1.1 oOffline Routines« o+ 373
% 4.1.1.1 Routine for Changing Blank
: Common 373
i 4.1.1.2 Routines for Readlng "Airbase Data
- Tapes . « . . e + + « « « o 378 N
b 4.1.1.2.1 Program NOTION e+« « < s . 378)
k ! 4.1.1.2.2 Program AFLDS 378 :
a 4.1.2 TACWAR H* File . . . « « « « « « « « 378 :
: 4.1.3 TSS JCL File « « « « « . » o 380 .
i 4.2 Warning and Error Messages 2384 3
’ 4.2.1 Warning Messages . . . e s+« « o 384 .
4.2.1.1 Subroutine EIGENV Message . o . 384 3
4.2.1.2 Subroutine INP Messages 384 i :
4.2.1.3 Subroutine CHEMDAM Messages . . . 385 :
4.2.1.4 Subroutine QRAFIL Messages . . . 385 ;
4,.2.2 Error Messages . . « + s e « o o o 385
4.2.2.1 STOP 201 (in INP) e s s <« « s« o« o 386
4.2.2.2 STOP 1 (in EIGENV) . . « « « o 386
4.2.2.3 STOP 2 (in TAG) . . . « « « o« . 386
4,2.2.4 STOP 60 (in APORTN) 386
s 4,2,2.5 STOP 11111 (inTC) 1387
. 4.2.2.6 STOP 133 (in ASSIGN) 387
» REFERENCES 4 + « & « o« ¢ o o o s o o o o s o o o o o o o 389
g BIBLIOGRAPHY « ¢ &« o « o « s o o s o s s s o s o o o« o« o 391
¢ APPENDIXES
Y A. Flowcharts of TACWAR Routines (Excluding Block , .
3 Data Routines) . « ¢ o« ¢ ¢ o ¢ o o o o+ o o » o« 393 i 4
S B. Instructions for Obtaining Source Listings of g
¢ TACWAR . & & ¢ « « o « s o o o o o o s o « « « 601
B C. Source Listing of Preprocessor Routine COMM , ., . 603
& D. Execution Procedures for the TACWAR Model 609
2 F. Alphabetic Listing of TACWAR Variables 627
F. Variables by Function o e v s « « <« . 1789
G. Cross-Reference Table of Common Varlables and .
Subroutines That Use or Modify Them 799 3

xiv

o

RE NCEDRCIS AR My T e,

TP

Section

DISTRIBUTION . .« . & o + & s ¢ o o o « o o o« o

DD Form 1473 . ¢ ¢ & o o ¢ o o o o s o o o o @

ILLUSTRATIONS

TACWAR Macroflowchart
TACWAR Theater Structure (Blue Slde)
Sector Boundaries+ ¢ o o o o
Distances and Widths Through a Sector
The Supplies Transportation Network .
TACWAR Link Overlay Structure . . .
Sample Transportation Matrix . .
Sample Stepping-Stone Path
TACWAR Information Flow
Formats for TACWAR Input Varlables
Excerpt from Sample Input Data .
Sample Alphabetic Listing of Input
Variables e & s e o .
Sample Input Record Table « e e e e
Sample Page From Detailed Game Report
Sample Summary Game Report

. o o

Procedures for Updating TACWAR Routines

Reflect Changes to Blank Common . .

To

Deck Structure for Creating TACWAR H* File

Example of JCL File for Executing
the Terminal . . ¢ & « & ¢ o o« «
Flowchart of TACWAR Routine TMAIN . .
Flowchart of TACWAR Routine EIGENV .
Flowchart of TACWAR Routine MPROD . .
Flowchart of TACWAR Routine CNTRYC .
Flowchart of TACWAR Routine CVFW .

Flowcharts of TACWAR Routines SECWTH and

GDIST e ¢ e e s s e e .

Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart

of TACWAR
of TACWAR
of TACWAR
of TACWAR
of TACWAR
of TACWAR

Routine
Routine
Routine
Routine
Routine
Routine

Xv

TAG

APORTN

CLR

TZERO

INP
TCTZ

TACWAR From

Page
923
925

352

359
361
367
369

375
381

382
396
398
399
400
401

402
403
404
406
407
408
411

F

AT o

T

R

5 Figure Page
31 Flowcharts of TACWAR Routines WTZERO, GCOUT,
: TCOUT, and SPLYOT . . . ¢« ¢ & « ¢« o o o o 413
: 32 Flowcharts of TACWAR Routines WTONE, NUCOUT,
; CHOUT, and TACQOT . . ¢ v ¢ &« o« o o« o o o = 414
;¢ 33 Flowchart of TACWAR Routine AIRMOD 415
' : 34 Flowchart of TACWAR Routine BINFAC 417
3 35 Flowchart of TACWAR Routine BINOAT 418
. 36 Flowchart of TACWAR Routine ATSPSS 419
37 Flowchart of TACWAR Routine ATRTED 420
38 Flowchart of TACWAR Routine ATRTSA 421
39 Flowchart of TACWAR Routine ATRTDA 422
40 Flowchart of TACWAR Routine ATRTSS 424
41 Flowchart of TACWAR Routine ALLOCT . . . « . 425 .
42 Flowchart of TACWAR Routine DEG 431 ;
43 Flowchart of TACWAR Routine AIRATT . .« e e 433 3
44 Flowchart of TACWAR Routine AOVL1 434 i
45 Flowchart of TACWAR Routine ATTR1 436 T
46 Flowchart of TAC 'AR Routine AOVL2 . . « o . 437 .
47 Flowchart of TACWAR Routine ATTR2 438 .
48 Flowchart of TACWAR Routine ATTR3 439 B
49 Flowchart of TACWAR Routine ATTR4 440 '
50 Flowchart of TACWAR Routine ATTRS 441 I
51 Flowchart of TACWAR Routine ATTR6 . . « . .« 442
52 Flowchart of TACWAR Routine ATRTWH 444
53 Flowchart of TACWAR Routine NUC 445
54 Flowcharts of TACWAR Routines KCDEN and
R KDCDEN . & & & ¢ ¢ & 4 o o « « o o o « « o 446
3 55 Flowchart of TACWAR Routine NUC1 ., 447
- 56 Flowchart of TACWAR Routine ESCLAT 448
s 57 Flowchart of TACWAR Routine WHINUP 450
3 58 Flowchart of TACWAR Routine NDSYINV 452
¥ 59 Flowchart of TACWAR Routine NUC2 o e e e 455
§ 60 Flowchart of TACWAR Routine NUCTAR 456
¢ 61 Flowchart of TACWAR Routine NUCWPS 457
g 62 Flowchart of TACWAR Routine NWHINV 459
5 63 Flowchart of TACWAR Routine NUC3 ., 460
4 64 Flowchart of TACWAR Routine NUCA 46l
5 65 Flowchart of TACWAR Routine NUC5 462 R
3 66 Flowchart of TACWAR Routine ZNDST 463 4
8 . 67 Flowchart of TACWAR Routine NUCABS 464 H
& 68 Flowchart of TACWAR Routine NBFTGS . . « . . 465 :
5 69 Flowchart of TACWAR Routine NRGTGS . « .o 466 E
70 Flowchart of TACWAR Routine NCZTGS . . « . . 469
: S 71 Flowchart of TACWAR Routine PREYLD 471
% ¥ 72 Flowchart of TACWAR Routine DWHINV 473

ay

‘

H
L
A

4
&

et TR

lle

Flowchart of TACWAR Routine NUC6 .
Flowchart of TACWAR Routine DAMEVL
Flowchart of TACWAR Routine PAREA .
Flowchart of TACWAR Function FN . .
Flowchart of TACWAR Routine PREFN .
Flowchart of TACWAR Routine QKINR .
Flowchart of TACWAR Routine DOSLIM
Flowchart of TACWAR Function WRAD .
Flowchart of TACWAR Routine WRADVN
Flowchart of TACWAR Routine OFFCOV
Flowchart of TACWAR Routine SIMCN .
Flowchart of TACWAR Routine SIRCOV
Flowchart of TACWAR Routine CIRCOV
Flowchart of TACWAR Routine CHEM .
Flowcharts of TACWAR Routines KCODE
KDCODE . ¢ ¢ 4 ¢ ¢ o o o o o o
Flowchart of TACWAR Routine CHEM6 .
Flowchart of TACWAR Routine CHEMLEV
Flowchart of TACWAR Routine EQUIP
Flowchart of TACWAR Routine CHEMSUP
Flowchart of TACWAR Routine DECON .
Flowchart of TACWAR Routine CHEI1l .
Flowchart of TACWAR Routine CHEMTAR
Flowchart of TACWAR Routine CHEMWPS
Flowchart of TACWAR Routine NCRINV
Flowchart of TACWAR Routine CHEM2 .
Flowchart of TACWAR Routine CHEM3 .
Flowchart of TACWAR Routine CHEM4 .
Flowchart of TACWAR Routine DUCINV
Flowchart of TACWAR Routine BFTGTS
Flowchart of TACWAR Routine RGTGTS
Flowchart of TACWAR Routine CZTGTS
Flowchart of TACWAR Routine PREAGDM
Flowchart of TACWAR Routine KADMC .
Flowchart of TACWAR Routine AIRBASE
Flowchart of TACWAR Routine CHEMS .
Flowchart of TACWAR Routine CHEMDAM
Flowchart of TACWAR Routine DROPS
Flowchart of TACWAR Routine LINFR
Flowchart of TACWAR Routine TARACQ
Flowchart of TACWAR Routine TARACA
Flowchart of TACWAR Routine TARACE
Flowchart of TACWAR Routine TADPAR
Flowchart of TACWAR Routine GROUND
Flowchart of TACWAR Routine GC . .

xvii

* & & o 2 8 s e e o s s o o s e e 2 e e & s+ s e o s o e o

* s e e e s s s s e e e+ s e e s s s s e s s s e s e s s e o (U

® o o e ® o @ & & & o »

Page

474
476
483
484
485
486
487
488
489
490
491
492
494
495

496
497
498
500
503
505
506
507
508
510
511
512
513
514
515
517
520
522
525
527
528
530
548
549
550
551
555
556
557
558

S SR N

At AR e AL E E

[P P T

P ST v

Ty T

SRR D

Flowchart of TACWAR Routine FEBAMT
Flowchart of TACWAR Routine AIRGRD
Flowchart of TACWAR Routine ATRTAB
Flowchart of TACWAR Routine QRAFIL

Flowchart of TACWAR Routine ASGATR .
Flowchart of TACWAR Routine PSAIR . .
Flowchart of TACWAR Routine TC
Flowcharts of TACWAR Routines IIBA and
NXDIV . . . « ¢« . . . e .
Flowchart of TACWAR Routlne AIRASG o v e
Flowcharts of TACWAR Routines SUPPLY and
TRANPO . . « « « & e o o o o
Flowcharts of TACWAR Routlnes INPUT
INSOL . ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o
Flowchart of TACWAR Routine LABREL1l
Flowchart of TACWAR Routine LABEL?2
Flowchart of TACWAR Routine MAIN .
Flowchart of TACWAR Routine CYCLE
Flowchart of TACWAR Routine FIXLIJ
Flowchart of TACWAR Routine IJFIX .
Flowchart of TACWAR Routine OUTPUT
Flowchart of TACWAR Routine TIMET .
Flowchart of TACWAR Routine ASSIGN
Flowcharts of TACWAR Routines IRATIO and
IFEBA + & ¢ &+ o o o o o o« o o o o s o o o
Flowchart of TACWAR Routine PSUMMY . .
Sample Card Deck To Create TACWAR Data Flles
Sample Card Deck To Execute TACWAR Using Data
Files e e e o o s e s e e o o o
Sample Card Deck To Execute TACWAR Using
Punched Data Decks ¢« ¢« ¢ o o « &
Sample Card Deck To Execute TACWAR Using Tape
Files e e o o & s s o e s s o @
Sample Card Deck To Execute TACWAR Using Data
Files and To Redirect Output to a Remote
Printer . . . e e e e o o @ o
Sample Card Deck To Update Existing Data
Files and To Execute TACWAR . . . «
Sample Terminal Session To Alter and Execute
the TSS JCL File . . . ¢ ¢ ¢« ¢ ¢ o o « o o

3
o N,

¢ o ¢ o ¢ s 0 s e s Do

]
TABLES :
1 3 :
: Number Page :
: £ ’
' vy 1 Maximum Values for TACWAR Limits 8 4
t 2 Air Model Interactions Between Attackers and H
* Defenders . . ¢ ¢ ¢« ¢ ¢ ¢ o o o o o o o 25 %
| 3 TACWAR Program Calling Structure 45 é
®oo 4 TACWAR Labeled Common Blocks . +« « o« « « . « 52 '
¥ 5 Assignment Options for Arriving Units . . . 333
¢ 6 File Codes Assigned to the TACWAR Input/
£ Output Files« .« . . 349
¥ 7 Output Files Used in the TACWAR Model . . . 358 H
8 Listing of Input Table Headings 362 :
9 Listing of Summary Report Headings 370
F - 10 Definition of Array IVARQ 377
, 11 TACWAR System Files 379
12 Input and Summary Output Working Varlables by
Submodel and Function ¢« « . « . 791
13 Cross-Reference Tables for Root Programs and
the Three Links for TZERO, WTZERO, and "
AIRMOD e e e e e s e e e . . 801 v
14 Cross-Reference Tables for Nuclear Combat
Model Routines . . . + + « « « 832
15 Cross-Reference Tables for Chemical Combat
, Model Routines . . . « + ¢ ¢ ¢ &« ¢ « & « » 863
. 16 Cross-Reference Tables for Target Acquisition
¢ Model Routines and the Links for GROUND,
g, AIRGRD, PSAIR, TC, SUPPLY, TIMET, and

PSUMMY . . . v & & & o o o o o o s s+ o« o » 894

VAR

S

SR PRI SR

PRSI
})

g

.

M TN 7 1 i R S < g

o

ABSTRACT

The Institute for Defense Analyses (IDA) Tactical Warfare
(TACWAR) model is a fully-automated combat simulation that
can be used to assess the interaction of combat forces
employing conventional, nuclear, and chemical weapons in a
theater-wide campaign. This document presents the informa-
tion necessary for programmer personnel to maintain the
TACWAR model.

A

-

A e A

¥
P
L

MRS .

Abbreviation

AAR
ABA
ABAE

ABAS

Cas

CASA
CASD
CASE

CASS

CEP
commMz
FEBA
INT
QRA
sSaM
SsM

TOE

GLOSSARY

Meaning
antiaircraft artillery
airbase attacker
airbase attacker escort

airbase attacker diverted to SAM-
suppression

close air support
close-air-support attacker
close-air-support defender
close-air-support escort

close-air-support diverted to SAM-
suppression

circular error probable
communication zone

forward edge of battle area
interdiction of division in reserve
quick reaction alert

surface-to~-air missile
surface-to-surface missile

table of organization and equipment

xxXi

g

R O NG
P TR,

S

B N AP

R e T

SECTION 1. GENERAL

This section explains the purpose of the Program Maintenance
Manual (PMM) and the use of the TACWAR model. Descriptions
of the equipment environment and programming conventions are
also included.

l.1 Purpose

The purpose of the Program Maintenance Manual is to provide
programmer personnel with the information necessary to main-
tain TACWAR. This manual includes detailed descriptions and
flowcharts of each subroutine and discusses program input

and output. Also included are the procedures for maintaining
and updating the files which support TACWAR.

1.2 System Application

The TACWAR model is designed to simulate nuclear and chemi-
cal warfare as well as conventional ground-air conflict of
user-specified duration (in terms of 12-hour combat cycles)
on a theater level. The major functions performed Ly the
model are simulations of air, nuclear, chemical, and ground
combat operations; target acquisition; theater ‘control; and
supplies transportation.

The air-combat model determines the allocation of aircraft

to specific combat missions on the basis of either general

or specific user-input allocations. The model calculates

all air-to-air, ground-to-air, and air-to-ground attrition.
The number of surviving aircraft by type on Close-Air-Support
(CAS) missions calculated by this model is used as input to
the ground combat model.

The target acquisition model determines the expected number
of targets acquired by type and location over the length of
a target acquisition cycle, given various input data on
sensors, targets, and the environment. The model assumes
that the general locations of major combat forces are known
and that both sides operate sensors to acquire candidate
targets for possible nuclear and/or chemical fires.

The nuclear model accounts for the assignment and assessment
of nuclear weapons against various types of targets through-
out the theater. The assignment of weapons to targets is

£
H
:
i
E
F
i
¢
i
i
g
£
]
¢
1S
k

either user-specified or developed from user input by the
internal assignment procedures. Nuclear damage assessments
are made in an expected-value sense, using analytic functions
to provide a rapid determination of nuclear weapon use.
Firing constraints due to population centers are observed,
and civilian casualties are assessed where necessary.

The chemical model accounts for the assignment and assess-
ment of chemical weapons against various types of targets
throughout the theater. This simulation is similar to that
of the nuclear model.

The ground-combat model determines attrition to personnel and
weapons by type within divisions as they interact in battle
areas across the theater. It calculates the destruction of
supplies due to enemy CAS missions. The model also calcu-
lates the capture of territory which is denoted by the move-
ment of the Forward Edge of the Battle Area (FEBA) in each
sector of the theater.

R R D=y

Theater control values for the first cycle of battle are
computed to determine the relative value of one side's
weapons against a standard force of the other side, the
current combat effectiveness of all divisions, various geo-
graphical quantities, and the number and location of divi-
sions in the first and second inactive battle areas of each
combat sector. On subsequent cycles of battle, only non-
battle quantities are computed, i.e., supply consumption,
relocation of divisions, personnel and weapon replacement,
weapon repair, and effectiveness of divisions. The theater-
control model also moves divisions throughout the theater to
allow each side to have the most effective front line possi-
ble with the present resources.

N YR SRS - 0 WY € W ovn, o ITINTIPTER: § 0 Dt AR 1 g

The supplies model determines the flow of supplies within

the theater on the basis of two levels of resupply. A major

resupply cycle uses an efficient transshipment algorithm to

decide how supplies flow in a structured node-arc network

from surplus nodes to deficit nodes. In a minor resupply

cycle, supplies flow from supply nodes to demanding divisions

and airbases to satisfy current needs. When supplies are

low, the effectiveness of combat units is degraded and air .
sorties are reduced.

e o

The model provides the user with the option of either adding
new forces or changing force parameters during the game. .
These values are processed by subroutine TIMET during the

appropriate cycles.

ha ¥ SR PR

1.3 Equipment Environment

The TACWAR model was originally designed to operate on the
CDC 6400 by the Institute for Defense Analyses and has been
converted by Computer Sciences Corporation to operate on the
HIS 6080. The model requires a card reader, a remote termi-
nal (when operating via remote job entry), a disk drive, and
a printer as peripheral equipment. The program requires 80K
words of core for execution and 78K words of core for com-
pilation of the largest routine. The user may update pre-
viously constructed data base files and initiate execution
of TACWAR by remote terminal. Output reports generated by
TACWAR are printed on the central printer and/or a remote
printer.

1.4 Programming Conventions

TACWAR is written in the FORTRAN 6000 language and consists
of approximately 50,000 lines of code. Approximately .22
hours of CPU time and .06 hours of I/0 time are required to
process a typical scenario for six cycles with no detailed
output reports, only two sets of summary output reports, and
no time-t inputs. Each subroutine and variable name con-
tained in the model is mnemonically related to its definition
or its use in the program.

SECTION 2. SYSTEM DESCRIPTION

This section consists of a general and a detailed description
of the TACWAR model. The general description provides an
overview of the processing functions of the model; the
detailed description explains the program logic of each sub-
routine of the TACWAR model. Appendix A to this manual con-
tains flowcharts for all routines described, with the excep-
tion of block data routines. Appendixes B and C provide
information on the source code for the TACWAR rodel and its
support programs.

2.1 General Description

The TACWAR model is a fully-automated combat simulation that
can be used to assess the interactions of combat forces
employing conventional, nuclear and chemical weapons in a
theater-wide campaign. Duration of the war game is set by
the user and is measured in fixed l12-hour cycles. The pro-
gram incorporates facilities that enable the user to model a
specific geographical structure for the theater. This struc-
ture is then used as the foundation for seven simulations:
target acquisition, air combat, nuclear combat, chemical
combat, ground combat, theater control, and supplies trans-
portation. Output reports generated by TACWAR present two
levels of statistical detail: summary game reports and
detailed game reports.

Figure 1 illustrates, through a macroflowchart, the operation
of the model. Table I gives the maximum values for the index
variables that define the structure of the game. The princi-
pal features of the TACWAR model are more fully described in
the following subsections.

2.1.1 Theater Structure. The TACWAR model is designed to

be a theater-level combat model that can simulate the delivery
of conventional, nuclear, and chemical munitions by both air
and ground means anywhere in the theater. The components of
the theater structure include sectors, battle areas, regions,
and the communications zone (COMMZ), shown in figure 2.
Although figure 2 shows only the Blue side of the theater,

the Red side is structured similarly.

2.1.1.1 Sectors. The theater structure is built around a
series of eight nonintersecting geographical sectors that
cover the theater area of interest. These sectors are

‘ START ’

A

TZERO (LINK A)

Read inputs,
nitelize date

WTZERO (LINK B)

Write

conventional
time 2070 INDUTS

WTONE (LINK C)

Write nuciesr
ond chemical
time 2ero inputs

Figure 1.

Set first cycle
of game = |
(ICYCLE)

(O—

A [
(LINK Di

Simulate
air combat

Begin do loop on
nuciesr/chemical
wbcycle

NUC (LINK E}

resitocate

TACWAR Macroflowchart

YES

NO

CHEM (LINK F)

h-'l mine

resilocsts
charmical weepons

employment level.

Begin do l00p
on sector

YES

NUC {LINK E}

Simulate
nuclesr wertere

CHEM (LINK F)

(Part 1 of 2)

NO

O

R

O

CHEM (LINK F)

Stmulere
chemical wartare

l.__

Are
nucla wee-
POnS vesd in aid-
don & are they

I-

NUC 1LINK B)

Shvlon
nuclew veartare

O

GROUND (LINK H)|

End

. of Jo loop

Simvlsw
Found combet

v

AIRGRO (LINK 1}

1 Simulate
W—Pound
combet

l

YES

PSAIR ILINK J}

Prim
s ummary
WS

~ ()

Figure 1.

NO

YE€S

NUC {LINK €)

Determing
saceistion state

OF

TC (LINK K}

Exscum
theswr conrol
modet

‘

resupoly cvcie

YES

SUPPLY iLINK L)

(routing

of mostes

(Part 2 of 2)

TIMET (LINK M)

Read timg—1
nduty

Irint
Summery Aeports

PSUMMY {LINK N}

Print comventionsd
ummary reporty

Y

NO

increment
current cvele by 1

vES

4
4
Y
'

Table 1.

Index Limit

MAD (L)

NAAC (L)

NAB
NAC (L)

NAFS (L)
NAM (L)

wmAS(s)
NBA

NBNLT

NCHDW (L)
NCHSW (L)
NCHTW (L)
ND (L)

NDVNW (L)

NEML

NESC

Maximum Values for TACWAR Index Limits

(Part 1 of 2)

Index Definition

Maximum number of additional divi-
sions for side L (i.e., number of
follow-on divisions in addition

to ND(L))

Number of army air carrier types
for side L

Number of air bases
Number of aircraft types for side L

Number of air force sensor types
for side L

Number of air munition types for
side L

Mo, CoAr A
Number of battle areas
Number of boundary longitude points

Number of division chemical systems
for side L

Number of sector chemical systems
for side L

Number of theater chemical systems
for side L

Number of divisions for side L at
time-zero

Number of division nuclear systems
for side L

Number of chemical employment levels

Number of nuclear escalation states

Maximum

Value

* %

201*

k%

& -

Index Limit

NGS (L)

NINTS

NNSC

NR (L)
NS

NSCNW (L)

NSN

NSU (L)
NSUB

NT (L)
NTHNW (L)
NTR

P A S
NW (L)

NZ (L)

*The maximum value must be played.

Table 1. (Part 2 of 2)

Number

Index Definition

of types of ground sensors

for side L

Number

Number

of intervals

of nuclear subcycles per

conventional cycle

Number
Number

Number
side L

Number
Number
Number
Number

Number

of regions for side L
of sectors

of sector nuclear systems for

of.supply nodes

of §ubunit types for side L
of target subtypes

of type divisions for side L

of theater nuclear systems

for side L

Number

Number
side L

Number
side L

of tactical roles

of division weapon types for

of zones per division for

grammed to accept a smaller value.

Maximum
Value

5

18
3

2%

10

The model is not pro-

**The sum of ND(1) + MAD(1l) + ND(2) + MAD(2) must be < 140.

***The sum of NT(l) + NT(2) must be = 10.

ZWWOD

(9pTS °nd) 2INIdNIIS IIILIUL YYMOVL

+z @2anb14

§ NO193Y 3NT8

| 4————— T NOI93Y 308 | —

Yvad
T NOIO3Y

uv3ay

Y0103

OYVMUO0d

d0103S

\ .\
\ §&§@&wxw y mmwwww

7 ‘
I

-

.

/,

— | m . Q - «

—_—]

aQyvmuo3
1 NOID3Y

v3Iuv
™~ 3711V8

ALYV

10

considered to be avenues of advance that run the length of
the theater and are of variable width. Each sector boundary
is defined by up to seven points which serve as break points
for the sector. The points are selected such that the longi-
tudes of the points are at regular, evenly spaced intervals
with the longitude of corresponding break points of all
sectors being the same. The latitudes corresponding to each
of the seven longitude values are specified by user input.
Thus, the sectors are specified as indicated in figqure 3.
Note that the latitude Pij marks the northern boundary of

sector i and the southern boundary of section i-1 where
(i > 1).

The location of the FEBA and of intervals and battle areas
within a sector are indicated by the distance through the
sector to the element of interest. Distances through each
of the sectors are measured from the base point on the Red
side to the base point on the Blue side along a sequence of
line segments (joining the center of the sectors at their
break points) as shown in figure 4. The distance to any
element in the sector is determined as the distance through
the sector to the intersection of the element with the
sequence of line segments described above. Sector widths
are determined at a given point by calculating the length of
the line segment that joins the sector boundaries and corre-
sponds to the longitude line which passes through the given
point.

Each sector is divided into a stated numkter of intervals that
are used to portray types of terrain and selective defensive
barriers. These intervals are located by indicating the
cumulative distances from the Red base point along the
sequence of line segments, illustrated in figure 4, to the
near edge of the interval and to the far edge of the inter-
val.

2.1.1.2 Battle Areas. Battle areas are additional subdivi-
sions of the battlefield (on a sector-by-sector basis) that
provide for easy location of elements played in the model.
Battle areas are located in the sector by specifying the
ground distance from the Red base point to the leading (i.e.,
far) edge of the battle area. This ground distance is
measured along a series of line segments, the characteristics
of which are illustrated in figure 4.

In addition to its location in a sector, each battle area
has an associated number to uniquely identify it. This
number (N) is determined by consecutively numbering the

11

ny .
;
§ L= ¥ . 4
¢
L
¢

s@TIepunog I03095 ‘¢ aixnbrg
€ H0103S
2401038
v { HOLD3S

3nTeg

a3y

TR e i L s

L N T Ny

St e

103995 © ybnoIyl SYIPTM pue sadueistd

*p 2anbrg

|
| |
“ zl 0 | .
1NIOd el ——"0"" P | 1 1
asvaqay > 0 P | 1 ! _\\._ J_
| | _ |
| _ |
a3y ! _
4 INIOd LV HLOIM
IN3IWO3S HONOYHL IONVISIO
L g .
Wi ionl SRR s ot e s . e

ne

g Vi

battle areas going across the theater from the first sector
to the last. Thus

N=S + rn

where .

3]
"

the number of the sector in which the battle area
is located

r the rank of the battle area within the sector

the total number of sectors

n

For example, in an eight sector theater, sector 1 would con-
tain battle areas 1, 9, 17, 25, etc., and sector 5 would
contain battle areas 5, 13, 21, 29, etc.

Daily combat activity creates movement of the FEBA in a for-
ward or rearward direction within a battle area and hence
within a sector. Battle areas within which ground combat
occurs are termed active battle areas, while all others are
termed inactive battle areas. Units directly involved in
ground combat are assumed to be located in the active battle
area, while units not involved in combat are located in one
of the inactive battle areas within the theater. Battle
areas are also used to locate the following model elements:

a. Tactical airbases by battle area, so that airbases
overrun by advancing enemy forces can be accounted for

b. Supply depots, for use by the supplies model
c. Garrison and reserve positions of combat units

d. Fixed combat elements (e.g., surface-to-surface
missile (SSM) and surface-to-air missile (SAM) sites)

e. Combat divisions, as they move through the theater
to the front, at the rate of a given number of battle areas
per cycle.

2.1.1.3 Regions. Regions consist of the rear portions of
one or more geographical sectors beginning at the rear of

the active battle area and extending to a predefined depth.
This grouping of sectors need not be the same for both sides.
Each region is divided into two parts, i.e., a forward region
and a rear region.

Gl

B ahiin g g 08

B)

AR

v e, A

P AT L

A LTI .

The depths of the forward and rear regions are user-controlled
via input and are specified in terms of an integral number of
battle areas. The depth of the forward region is measured
from the rear boundary of the active battle area back to the
depth specified by input. The depth of the rear region is
measured from the rear boundary of the forward region to its
proper depth as specified by input. The depth of each region
stays constant (as user-provided) until one side advances to
the point where existing land area precludes these defined
depths. As the one side advances, the COMMZ of the opposing
side shrinks to one battle area. As further advance is made,
the rear region shrinks to one battle area and then the for-
ward region to one. Next, the rear region collapses into the
COMMZ. Finally, a point is reached where there is insuffi-
cient land area to consider that a COMMZ still exists, at
this point, only a forward region remains. In a similar
manner, each sector is divided into two parts (corresponding
to the region subdivisions) and referred to as sector forward
and sector rear.

2.1.1.4 COMMZ. There is one COMMZ for each opponent in the
theater. ~The COMMZ is an area to the rear of the rear region
of each sector and spans all sectors in the theater. The
COMMZ is used for receiving the arriving combat units, tacti-~
cal aircraft, supplies, and replacement weapons and personnel.
The COMMZ serves as a holding area for combat reserves and
provides airbase facilities for long-range tactical aircraft.

2.1.1.5 Summary of Structure Functions. The theater struc-
ture of the TACWAR model provides for sectors, battle areas,
regions, and a COMMZ. Any element used in the model can be
located by its association with a specific (active or inac-
tive) battle area. All other components of the theater
structure are used as controlling mechanisms to assign
various resources to particular areas of the theater. Sectors
are used as the mechanism for assigning units to combat and
for subsequent movement of forces. Regions are used for
assigning both tactical aircraft to missions throughout the
theater and combat forces to sectors. The COMMZ is used for
the central control and storage of all resources entering the
theater.

AE,

AT 2L T o

s terera sy

2.1.2 Ssupplies Transportation Network. As described in the
previous subsection, each combat sector is partitioned into
battle areas. A supplies transportation network is super-
imposed on the battle areas and consists of 95 nodes with
arcs joining adjacent nodes. The nodes represent entities
such as ports, supply depots, and transportation centers;

the arcs represent transportation links between the nodes.
Associated with each arc is the length of the actual route(s)
it represents.

The purpose of the supplies network is to provide a gross
means of representing the transportation network that exists
for shipping supplies within the theater--from sources of
supplies to their users. The users of supplies are active
and reserve forces in the field and at tactical airbases.
The sources of supplies are ports where supplies are stock-
piled for future use.

2.1.2.1 Design of the Network. Figure 5 is a schematic
representation of a portion of the theater and the supplies
network. The numbered dots represent the supply nodes,

while the lines joining them are the arcs. For simplicity
the battle areas are shown as rectangles in the figure and

a particular FEBA location is indicated. (Though a similar
supplies network exists for the Red side, it has been omitted
from the figure.) Since there are usually more battle areas
than supply nodes, some battle areas contain no supply nodes.
However, others may contain two or three nodes. Neverthe-
less, every battle area is assigned to a supply node in such
a way that forces in the field and airbases are always con-
nected to the supply network.

If the FEBA advances in Red's favor in a sector, Blue will
lose any supply node which is overrun by Red units or which
falls within a user specified distance DFASN (as specified
for Blue) of the new FEBA location. If a Blue supply node
is overrun, it will be added to Red's network provided it is
at a distance of at least DFASN (as specified for Red) from
the FEBA. A supply node lost by one side but not taken over
by the other side is considered to have no owner until one
side can legitimately claim it. For example, in figure 5,
supply node 83 belongs to neither side because it is too
close to the FEBA. Whenever a supply node belongs to one
side, then all arcs joining that node to adjacent nodes which
also belong to that side are in the same network.

16

AR I

L § e AT

fbiia.

'

= A SRR

[

T Y i £ T T (0T FTEMMSTT At A RP TS SR T

e e

Yaom3zaN uorjezxodsuex], sar11ddns syl

R g

AL pr e

L

€9

3

a3y

ve3d4

*G 2ambTg

Each battle area owned by Blue must be associated with the

Blue supplies network so that the Blue forces within the

battle area can be supplied by the logistics system. A rule

for assigning battle areas to supply nodes is that a battle

area is assigned to the supply node in its sector, which is: ’

(1) in the same battle area, if such a node exists; or (2) -

closest in a rearward direction, if no node of the first type

exists. If the FEBA crosses or comes within a distance of

DFASN of a supply node, all battle areas assigned to that

node are assigned to the next rearward supply node in the -
network. Thus, all forces in a battle area are always sup-

plied, either from a supply node within the battle area or

the closest node to the rear. In figure 5, for example,

battle area A would be assigned to node 84, while battle

area B would be assigned to node 71.

The distribution network, which runs from supply nodes to
the ultimate users of supplies (the divisions and the air-
bases), is not modeled explicitly. Rather, barring their
destruction, it is assumed that supplies available at supply
nodes will be distributed successfully to the users in the
field. The reason for omitting this last stage in the dis-
tribution process is that the network over which the supplies
travel is very complex and contains many arcs. In some
instances the supplies could be envisioned traveling cross-
country, in which case the number of arcs would be immense.
Inherent in this assumption is that enough vehicles are
available to carry the required supplies without undue delay.

Each division in the theater is supplied by that node which
serves the battle area in which the division is located.
The forward airbase in a sector is supplied by that node
serving the last battle area in the sector forward. The
rear airbase is similarly supplied by the node serving the
last battle area in the sector rear. In addition to these
direct sources of supplies, divisions and airbases are
served by other supply nodes called stockage points.

For each sector there are three stockage points, each of

which serves any division or airbase located in an area
forward of it. The first stockage point, which is that supply
node assigned to the first battle area in the sector forward,
stocks supplies for divisions in the active battle area. The
second stockage point, which is the supply node assigned to
the first battle area in the sector rear, stocks supplies for
divisions in the active battle area and the sector forward,
and for aircraft at the forward airbase. The third stockage

]

18

F gy egamr o~

DA TR T

oy T T T T .
- ; " .
T a2y . i

point, which is that supply node assigned to the first battle
area in the COMMZ, stocks supplies for all divisions and air-
bases forward of the COMMZ.

. 2.1.2.2 Construction of an Actual Network. Although the
- user may construct his own supply network, it would involve é

inputting via cards the location of the supply nodes and the

modification of the Data statements which describe the lengths 4

of arcs between the nodes. The actual network constructed i
. for the TACWAR model, and partially defined by the above men- 2

tioned Data statements, is now described. The supply nodes :

are first located by battle area. Then, for use in resupply,

the battle areas are assigned to specific supply nodes.

Finally, the position of each supply node (as measured

linearly along the sector) is given. The latter quantity

allows the model to know when the FEBA overruns or comes

within the distance DFASN of a supply node. Two notional

nodes are located in the Red and Blue COMMZs and indexed 1

and 95, respectively. The remaining nodes in the theater are

indexed consecutively, starting in each sector from the Red

COMMZ and going toward the Blue COMMZ and advancing through

the theater from sector 1 to sector 8. For example, supply

nodes 2 through 13 might be located in sector 1 and nodes 14

through 27 in sector 2.

An additional feature of the two notional nodes located in
the COMMZs is that they represent a last resort source of
supply for any battle area or airbase when all other supply
nodes have been overrun. Thus, a unit will not be unsupplied
just because the supply network specified does not contain a
supply node in every battle area. The number of supply nodes
in battle areas near the ends of the theater has been mini-
mized, since supply nodes increase computer running time and
it is doubtful whether the model will be used to the point
where the FEBA reaches these extreme edges of the theater.

In addition, the lengths of the arcs that connect the nodes .
of the supplies network are required to construct the network. >
The TACWAR model selects a 95 node network which covers an
eight sector theater structure stretching from western France
to eastern Poland. The distances, which are input to the
model through Data statements, are taken from highway maps
of the countries considered. Each represents the road dis-
tance of the most direct road link between two nodes--assuming
that the road distance is a reasonable measure of the distance

- involved in using the different available modes of transpor-

¥ tation. As mentioned earlier, the arcs of the network are

assumed to be unconstrained--probably a reasonable assumption,
since the European transportation network is very dense and
has a high capacity relative to the demands likely to be
placed on it by military requirements.

2.1.2.3 Usage of the Network. When discussing the distri-
bution of supplies from sources to users, two types of supply
cycles are distinguished--major and minor. 1In a major cycle,
supplies are shipped among the nodes of the supplies network;
in a minor cycle, the divisions and airbases are resupplied
from the supplies available at their assigned supply nodes.

A minor cycle is of 1l2-hour duration and an integral number
of minor cycles make up each major cycle. 1In a minor cycle,
the users of supplies (divisions and airbases) attempt to
stock up to desired inventory levels by ordering supplies
from the supply node to which they are assigned. If enough
stock is available at that supply node, the order is filled;
otherwise, the order is only partially filled, since avail-
able supplies are distributed to users in proportion to
demand. No stock is shipped from other supply nodes.

In a major cycle, supply stocks are permitted to be shifted
among supply nodes, so as to minimize the total number of
ton-miles shipped. 8Since the algorithm used to make this
shift is relatively time-consuming, its use is restricted to
once each major (rather than minor) cycle.

The theater control model simulates distribution of supplies
during minor cycles and the supplies model simulates the
shipment of supplies between nodes in a major cycle.

2.1.3 Resources. Each side can be armed with a variety of
combat resources for the purpose of simulation. These
resources are of four types: ground, air, nuclear, and
chemical.

. 2.1.3.1 Ground Resources. Only one type of personnel is
played by TACWAR. The index NW(L) in table 1 gives the maxi-
mum number of divisional weapon types that may be played by
each side. There are no restrictions on weapon types except

N that nuclear and chemical weapons are accounted for separately
in TACWAR. Because of the way certain sections of the model
are programmed, the highest numbered weapon type on either
side must be surface-to-air missiles, and any second ground-
to-air weapon played, e.g., antiaircraft artillery (AAA),
must always be input as the next-highest-numbered weapon.

The maximum number of actual divisions played by side L is
given by the sum of the number at time-zero, ND(L), and the
"maximum number of add-on divisions, MAD(L). The total number
of actual Blue and Red divisions played cannot exceed 140.
Even though the TACWAR model maintains bookkeeping on
individual divisions, the maximum number of division types
for a side is fixed by the index NT(L). The total number of
Blue and Red division types played cannot exceed 10. Each
division type is associated with a TOE (table of organization
and equipment) which defines the level of personnel, weapons
by type, and subunits considered desirable for the division
type. Divisions may be located in an active battle area, in
a region, or in the COMMZ. Divisions in the active battle
area are considered to be engaged in combat and, thus, to be
able to cause and suffer casualties. Divisions in regions
or COMMZs are considered to be in reserve and so are unable
to cause casualties. Divisions in the first inactive battle
area, however, may suffer casuvalties due to attacks by enemy
aircraft and all divisions in the theater may suffer casual-
ties due to nuclear or chemical attack. Replacement pools
of weapons and personnel are maintained in the COMMZ of each
side. There are also weapon repair pools in each COMMZ for
damaged but repairable weapons. Repaired weapons are then
transferred to replacement pools for distribution to divi-
sions.

Only one supply type is played, but that type may be charac-
terized as general supplies to include ammunition, food, fuel
for ground forces, and fuel for aircraft. (This class does

. not include nuclear or chemical warheads, which are handled

o e .

S VA SO SR

EEE

roe 3 AT -y

separately). Supplies are measured in tons, and each combat
division and each aircraft by type consumes a certain amount
of supplies per time period. The consumption rate for air-
craft is by sortie.

2.1.3.2 Air Resources. Each side may play several types of
aircraft as designated by the index NAC(L). The Quick
Reaction Alert (QRA) aircraft are accounted for separately
because they are not assigned to conventional air missions
but are reserved for nuclear combat.

In assessing conventional air combat, the TACWAR model con-
siders that for each side two notional airbases exist per
combat sector, corresponding to forward and rear sector air-
bases. In addition, each side's COMMZ is assumed to contain
a notional airbase. Each notional airbase is an aggregation
of one or more actual airbases located in its area. The
actual airbases are described in detail by the airbase data
file IAD. This detailed data is also used to assess the
effect of nuclear and chemical strikes on specific elements
of the actual airbases.

Notional airbases within each sector automatically become
targets for airbase attack and areas for airbase defense
assessments. Aircraft at each notional airbase may or may
not be sheltered depending on the number of shelters at the
airbase and the user-specified sheltering priority scheme
for aircraft by type. OQRA aircraft have high priority for
sheltering. When actual airbases are overrun, the resources
at the airbases (e.g., shelters and other fixed installations)
are lost by the side that previously owned them. All air-
bases that are located in the active battle area are assumed
to be abandoned and are not owned by either side. However,
any airbase that is located in a side's territory is assumed
to be taken over by that side.

Several types of air munitions may be played by each side,

as given by the index NAM(L). Air munitions are not accounted
for explicitly (i.e., the air model does not keep track of a
stockpile for each type of munition to determine when that
type of munition is exhausted). Notional air munition loads
carried by each type of aircraft are adjusted according to

the distance that the aircraft must fly on a particular
mission.

2.1.3.3 Target Acquisition Resources. Three types of sensor
resources are used to acquire candidate targets for possible
nuclear and/or chemical fire, namely air force sensors,

22

S vy I T Yo PR T NE L apyee RPN

army-air sensors, and ground sensors. The indexes NAFS (L),
NAS (L), and NGS(L) give the maximum number of these types
played by each side. Some of the sensors (e.g., ground
sensors) are used within a sensing division, while others
(e.g., air-carried sensors) are associated with aircraft
stationed at fixed geographical positions and are allocated
to different target divisions by sensor allocation rules.

2,1.3.4 Nuclear Resources. Nuclear weapon systems fall into
three categories: division weapon systems, sector systems,
and theater systems. Division systems are located in the
active battle area, sector systems in the sector forward or
rear and the theater system in the COMMZ. Each system con-
sists of a delivery vehicle and a warhead. The defining
characteristics of the nuclear system are the following:

(1) the number of division, sector, and theater nuclear
weapon system types; (2) the set-back distance from the FEBA
for deployment of each weapon system; (3) the range of each
system; (4) the number of different yields available for each
system; (5) the size of each yield (in kilotons) available

to each system; and (6) the weapon delivery error for each
system.

2.1.3.5 Chemical Resources. Chemical weapon systems also
fall into three categories: division weapon systems, sector
systems, and theater systems. A chemical system consists of
a delivery vehicle, a dissemination mode, and an agent. The
defining characteristics of chemical systems are similar to
those listed above for nuclear systems. They are (1) the
number of division, sector, and theater chemical weapon sys-
tem types:; (2) the set-back distance from the FEBA for
deployment of each weapon system; (3) the range of each sys-
tem; (4) the number of different dissemination modes available
to each system; (5) the type and weight of each chemical
agent for each chemical weapon system by specific dissemina-
tion mode; and (6) the weapon delivery error for each system.

2.1.4 Air Combat Simulation. The air combat model performs
air combat calculations once each combat cycle. This model
begins with the aggregation and allocation of air resources
for both sides. Air resources are aggregated into notional
airbases--a forward and rear notionalized airbase in each
sector and a notionalized COMMZ base. The number of aircraft
on each notionalized base is calculated utilizing user-
specified weighting factors. These factors influence the
subsequent assignment of airbase attack missions. The
resources of the notional sector airbases in each region are
combined into total resources for the region.

Mission assignments are made for all aircraft as a function
of the aircraft resources in each region and in the COMMZ as
well as the input values of fractional assignments for each
mission. The number of aircraft available at each notion-
alized base is degraded to account for destruction while the
sortie rate is degraded to account for the lack of supplies
and the loss of airbase operating capability in the previous
combat cycle. The number of sorties of each mission type for
a cycle, by each aircraft type, is calculated using the
mission assignments, the degraded numbers of aircraft at each
notionalized base, and the degraded 12-hour sortie rate. In
addition, air munition load factors are calculated for CAS
missions and SAM defenses are initialized.

When the above calculations have been completed, attrition
routines are called to perform air combat calculations.

Table 2 summarizes these attrition calculations. This table
lists attacking and defending variable names and the section
of the subroutine making the calculations. The sections are
executed sequentially. After all sections have been executed
for side 1 attackers vs. side 2 defenders, they are executed
again for side 2 attackers vs. side 1 defenders. The table
shows, for example, that type IAC aircraft attacking enemy
region forward bases ABAAFA(IAC) are engaged by defenses in
the following sequence: SAM and AAA (PSRSCA) defending com-
bat units, aircraft defending combat units (CASDA), medium-
range belt SAMs in the forward area (BMRSA), aircraft defend-
ing region forward airbases (ABADFA), and SAM point defenses
(PSRSFA) for region forward airbases. Those defenses are
degraded by escort (ABAEFA) and suppression (ABASFA) aircraft
accompanying the attack aircraft. Attrition calculations are
made using a single-engagement binomial attrition function.
After each interaction, the numbers of attacker and defender
sorties alive and continuing on their mission, aborting
damaged, killed, suppressed, and aborting undamaged is updated
to reflect the results of that interaction.

24

25

({SS1) vzSusd
00SY 00ty seseqiye buypuajsp
PHLLY PHILY sWvs obhuex.yaoys 2
700y O00RE (SS1)VZISWIV SWVS m
PHLLY PULLY evae sbuex-buot
00LE 00LE 009¢ (o) v2dvey
CALLY PHLLV PHLLY 3jrvioaye burpuajep
(SST)VuSsuSa
saseqite z
00¥eE 00Z¢€ avex burpuajop a
CHLLY CHLLY sWys abuea.jaoys m
006Z 00OLZ 006Z 006 00L2 {SSI) VUSY'IV SWVS
£HLIV CULIV CHLIV | CULIV CHLIY ea1e abuei.buoy m
009 009 0082 009 0092 00SZ (OWI) wavav
CULLY CHILY €HLLY | CYLIV EYILLY €ANILV ajeadaye buipuajep
(LS ‘SSI)VISUSd
s38b1ey UOTIDYP
00€Z 0012 -183ut buipuajep 4
THLLY 2¥ILV sHVS ebuei-3a0ys 2]
Q
z
(SSI)Vvasusd
sIseqite piea 3
0081 0091 -103 Hutpudjep]
THLIV THILY sWys @buex-jaoys m
000T 0001 006 000T 0001 006 000t Oo01 006 0001 000T 006 (o) vaavev
THLLY THILV THLLIY | THLLY THILY TUHLLY | THILV TILLY TNILVY | THILVY THILV TMLLV Ijexnxte builpuajep
008 00L 008 008 00L 008 008 0uL 008 008 00L [+J1].] 00y (SHI)VSHWER SHVS
THLLVY THLLY THIJVY | THLLY TALLY TILLV | THLIV THLLY TYLLY | THLLV THLIV THILV TTAOV 319q abuei-wnipaw
(IST°SST) VOSUSd ov
as1 303088 | woly
utr JeqwWod uy mm.
002 (11114 00Z aoz 002 00z 002z 00z 002 (14 002 00z o0z 002s 000S s3tun hutpuejep M&m
TTAOY TIACY UIAOY | T'IAOV TTAOV TTTIAOY | 1IAOY TTAOV TUTAOY | ITAOVY TIAOV TTAOV TTAOV | SHILV SH.LLY sWvs obuei-3xoys HY..“
(ol
009 009 00S 009 009 00S 009 009 00S 009 009 00S 00¢ 008y 008Y 00t OV) vasvd » o
TTAOY TUTAOV T'IAOV | TTAOV TTAOV TTAOVY | T7TAOV TIAOY T'TAOV | T'IAOV IIAOVY TTAOY TTAOVY } SHILIVY SHIJLV ITAO0V _luuﬂuo.:c butpusjsp
» 7 ™ > v »n g %)] > M HM WOY » %) ™
" e L] o e " " & '] Z e % zZw wco o < »
£i B¢ Ef [Ef B9 B |Ef B2 Ei 3 9% 98 28% | BE 93 B8
go gy \s] a an zn »a o gy m: " En q o [" HIGNIL3a
x [” x] [—~% >0 >t x >0 . PO —_~% ~® ~t A IALS
—~ —~n - - - — lal -~n - - ~ " — —~n m " -0 (ol
5 BB IE BEOE |Z EEE iE ELE ELElE® 3 B R
3} no 0 a 0o 0 - 009 2] 3} ago a 0o ~ ~Q ~ o
-~ -1 ~ — -] ~— -~ ~— ~— ~ 0 ~— -3 3 WANOVLIIV
SASVAN IV ZWWOD SASVAI 1Y uVaY SISVEHIV NOILOIAYWILINI |I¥04d4dNS WIV a.‘ﬂtﬁ ‘1 3QI1S [
(et (1. {eX § a1ardTNTIve ADIOVILY YIuY

si9puazag pue

SI9)oe331Y U29M3ISE SUOTIORIIIUI TIPOW ITVY

‘¢ °19qeL

- i a2 D

el

ik 4 it g

x cpt e 18

et A rAE R fme s e

The number of attacker sorties delivering ordnance on their
targets is set equal to the number of sorties alive and
continuing on their mission after engaging the point defenses
protecting their targets. After the results of the engage-
ments listed in table 2 have been calculated, the attrition
of aircraft returning home is set equal to a user-input
fraction of inbound attrition. Finally, the aircraft sortie
attrition results are converted to numbers of aircraft
undamaged, damaged, and killed in this cycle on each side
from each actual airbase.

The air-ground simulation, although part of the air model
logic assessments, is performed after the nuclear and chemi-
cal routines in order that attack aircraft initially set
aside for either nuclear or chemical employment, but not
used, can be reallocated to one of the primary conventional
attack roles of CAS, ABA, or INT. In the air-ground simula-
tion, aircraft are assigned to shelters at each notional
airbase, according to user-specified priorities. Attrition
to aircraft on the ground and to shelters from ABA missions,
and to reserve divisions, SSM sites and supplies from INT
missions is assessed. The inventories of QRA aircraft at
each notional airbase are adjusted in order to maintain a
user-specified minimum number of aircraft assigned to the
QRA role. Repair of damaged aircraft and SAMs is included
in the air-ground simulation.

e Ly ey o v

2.1.5 Target Acquisition Simulation. The target acquisition
simulation is performed for both sides once during each com-
bat cycle in which nuclear or chemical weapons are to be
employed. The target acquisition model covers the same time
frame as a nuclear/chemical subcycle and the same results are
used for each subcycle of the current combat cycle. The
purpose of this simulation is to compute, by subunit type,
the probability that a subunit in a particular location is
detected and to compute the average sensor error and delay
time associated with such a detection. The user has the
option to bypass the target acquisition model by providing

as input the detection probability, sensor error and delay
time for each sensor type. Within the target acquisition
model, targets in the active battle area are assumed to be
subunits located within rectangular divisions. Divisions are
subdivided into smaller rectangles, called zones, which are
distinguished by their distances from the division front.
Target subunits may also be located in reserve divisions in
the first inactive battle area. Sensors may be ground sensors
or they may be carried on army-air carriers or on air force
reconnaissance aircraft. Sensors operate in one of four
modes: standoff (fixed or vertical), standoff (moving),
penetrating (forward area search), or penetrating (deep area
search). Both glimpse and continuously-operating sensors

are modeled.

The target acquisition model computes the size and location
of the sensing and target divisions within a sector based on
division type, combat deployment, posture and sector width.
Allocation of ground sensors to target divisions depends on
the relative numbers of opposing divisions online. If S/T

is the ratio of sensing divisions to target divisions, then
exactly S/T of the sensing divisions (and their sensors) are
assigned to acquire target subunits within each target divi-
sion. Army-air carriers and air force reconnaissance aircraft
are apportioned into single-sensor groups which are allocated
equally among all target divisions within the sector.

For targets in the active battle area, the probability that

a subunit is detected is calculated, for each sensor type,

as a function of target and sensor characteristics, the dis-
tance from the sensor to the target, weather factors (ceiling
and visibility) and terrain factors. For targets in the rear,
the detection probability depends on the effective swath
width at which a sensor will detect a subunit, the velocity
of the aircraft, the total search time and the average divi-
sion area. The detection probabilities for individual sensor

G B i e e Rt R S C

O3y i SR AR Ny AP W

i en e ey i 4

types are combined to give the overall probability that a
subunit is detected. The average sensor error and delay
times are computed using the individual detection probabili-

ties as weighting factors.

i eepreg ey -

B oy

S e et 10, S 1T e e

2.1.6 Nuclear Warfare Simulation. The nuclear model of
TACWAR consists of subroutines which assess the damage from
nuclear munitions delivered against preselected targets by
enemy and friendly forces.

First, nuclear escalation states, which govern the use of
nuclear weapons against different types of targets are
determined. 1In addition, certain other functions are also
performed. These are the determination of the number of
weapon systems that deliver nuclear munitions, and the
allocation, within each sector, of the stocks of nuclear
warheads to weapons in the division, sector, and theater
pools. Then nuclear warfare is simulated on a sector-by-
sector basis as described below. A list of targets, in
order of priority from highest to lowest, is constructed from
battlefield targets (by division, subunit, and zone), and
from region and COMMZ targets (airbases, missile sites, sup-
ply nodes, and divisions in the rear). Also, a single weapon
priority list is produced from division, sector, and theater
nuclear weapon systems allocated to a given sector. Each
weapon system is classified by yield and within each yield
class, weapon systems are ordered by weapon system response
time, distance from the FEBA, range, and CEP. Next, the
expected number of battlefield targets (subunits) detected
is determined from the number of each type of subunit in a
given zone that is allowed to be targeted. The total number
of potential targets is then reduced by the number of targets
precluded from targeting by civilian population collateral
damage constraints. Weapons are assigned to allowable
(battlefield, region, and COMMZ) targets by the selection of
a weapon system with the preferred yield from the list of
weapons. The actual weapon system that is assigned to a
given target is the first one with the desired yield within
range of the target. A second choice of yield is considered
wgfn a weapon system with the preferred yield is not avail-
able.

Finally, the damage inflicted by nuclear weapons is calculated,.
For each weapon the weapon radius for moderate and severe
damage to each target type is calculated. These radii are
used to calculate the fraction of targets of each type damaged
outside the targeted subunit. The effects of prompt radiation
are gs?imated by updating, for each weapon, the distribution
of military personnel that exist within several defined pools
of accumulated radiation. Civilian casualties and fatalities
from blast and prompt radiation are also calculated for each
nuclear weapon.

Ly R SR AT

T e e ke o 3 TR e T

-

R

4

Except on the last cycle of the game, after the ground and
air-ground combat simulations have been performed the nuclear
model may be accessed again. On this call, which is made
only if nuclear warfare is played, the nuclear escalation
states are recomputed for input to the theater control model.

£ I8

N

R T W

S o

s RET T

Yo R R

R T e

o AT

2.1.7 cChemical Warfare Simulation. The chemical model of
TACWAR consists of subroutines which assess the impact of
chemical munitions delivered against preselected targets by
enemy and friendly forces.

First, chemical employment levels, which govern the use of
chemical weapons against different types of targets, are
determined. In addition, certain other functions are per-
formed. These are the decontamination of equipment that has
been contaminated in a previous cycle by a chemical agent and
the determination of the number of weapon systems that deliver
chemical munitions. 1In addition, within each sector, the
supplies of chemical rounds are allocated to weapons in the
division, sector, and theater pools. Then chemical warfare

is simulated on a sector-by-sector basis as described below.

A list of targets, in order of priority from highest to low-
est, is constructed from battlefield targets (by division,
subunit, and zone), and from region and COMMZ targets (air-
bases, missile sites, supply nodes, and divisions in the
rear). Also, a single weapon priority list is produced from
division, sector, and theater chemical weapon systems allocate:
to a given sector. Each weapon system is ordered within each
category of chemical agent and dissemination mode by increas-
ing weapon system response time, distance from the FEBA,
range, and CEP. Next, the expected number of battlefield
targets (subunits) detected is determined from the number of
each type of subunit in a given zone that is allowed to be
targeted. The total number of potential targets is then
reduced by the number of targets precluded from targeting

by civilian population collateral damage constraints. Weapons
are assigned to allowable (battlefield, region, and COMMZ)
targets by the selection of a weapon system from the list of
weapons with the preferred combintion of chemical agent and
dissemination mode. The actual weapon system that is assigned
to a given target is the first one with the desired agent and
dissemination mode within range to reach the target. Alter-
native combinations of agent and dissemination mode are tried
when a weapon with the preferred choice is not available.

Finally, the damage inflicted by chemical munitions is cal-
culated. Damage calculations can be made for liquid, vapor,
or semivolatile agents disseminated by a point source, line
source or in a uniform area coverage mode. For each weapon,
the number of casualties and the number of fatalities may be
calculated. The area covered by a medium incapacitating or
lethal dosage of agent is calculated. This dosage is applied

31

A

T o AT

to all personnel in each chemical protection category within
each class of physical shielding to determine the number
incapacitated and the number killed. Bonus effects outside
the targeted subunit are included. The number incapacitated
is subtracted from each unit and placed in a pool for some
user-specified amount of time. Civilian casualties and
fatalities are also calculated. Contaminated equipment is
removed from each unit and placed in a pool for some user-
specified time,

Except on the last cycle of the game, after the ground and
air-ground combat simulations have been performed, the chemi-
cal model may be accessed again. On this call, which is made
only if chemical warfare is played, the employment levels

are recomputed for input to the theater control model.

32

> s o

2.1.8 Ground Combat Simulation. When the current cycle's
air combat and, 1f required, the nuclear and chemical warfare
simulations have been completed, the TACWAR ground combat
model is processed. This model considers each combat sector
in turn, repeating the computations of ground force ..ttrition
and FEBA movement until all sectors have teen examined.

The model computes the percentages of opposing ground weapons
killed by each side. This is accomplished by using the
standard allocations previously computed to calculate the
adjusted allocations of Red/Blue ground weapons when Blue/
Red is on attack (defense). That value and the values of an
individual ground weapon against an opponent's ground weapon
are used to determine the percentages of each type weapon
destroyed. The percentages of air kills to opposing ground
weapons 1is similarly computed using the allocation and value
of each side's air munitions against the ground weapons of
its opponent.

Values of individual weapons and aircraft sorties are com-
puted by the antipotential potential method. This method

is a complex approach to the problem of computing the value
of a weapon based on its capabhility to destroy the value of
the enemy's weapons. The antipotential potential technique
uses an iterative eigenvector procedure to place both sides'
weapons on a common scale of values that is based on the
value of a single Blue reference weapon. The procedure yields
a constant, derived from the eigenvalue of a weapon-on-weapon
kill rate matrix, that is used for ground weapons. The model
determines personnel effectiveness on attack and defense, as
a function of personnel strength, and supply effectiveness

as a function of supplies on hangd.

The model next determines which side is the attacker in the
sector under consideration. (The theater attacker is
designated by the user at the beginning of the game and is
changed, if appropriate, by the theater control model.) To
determine which side is attacking in a sector, TACWAR computes
the sector force ratios, considering each side's total air and
ground weapons' value con defense and on attack. Even though
one side may have a superior force in a sector, that side will
not be designated the sector attacker unless the force ratio
equals or exceeds a user-specified threshold. A holding
posture may exist if neither side is strong enocugh to attack.

Since the computation of personnel and weapon attrition
depends upon the computation of force ratios, it is obvious

that the most important operation performed by the ground
model is the determination of each side's weapon values and

the force ratios derived from them. The force ratios devel-
oped by the model have both air and ground components. For
the purpose of computing force ratios, the ground strength

of a side consists of the collective value of that side's
ground weapons. The air strength of a side is the collective
value of the successful CAS sorties that side flies. A
standard force ratio is the ratio of the attacker's total air
and ground strength to the defender's total air and ground
strength.

To calculate the value lost for both sides, force ratios are
recomputed as the sum of the value of ground forces and air
forces (times the fraction of CAS sorties considered) divided
by the value of the opponent's ground and air forces. The
model computes the casualty percentages as a function of
posture and force ratios. The value lost for each side may
then be determined from these percentages. Another important
feature of the ground combat routine is the modeling of supply
consumption and destruction. The consumption of supplies by
ground forces is based on division consumption rates input

by the user. Supplies may be destroyed by attacking aircraft
on CAS or INT missions, or by ground weapons during the course
of battle. Each type of attacking weapon is assumed to
destroy some user-set amount of enemy supplies in the combat
sector. Each successful CAS sortie is assumed to destroy some
fixed amount of supplies in addition to the weapon and per-
sonnel losses it causes. Pure supply-interdiction missions
may also be modeled.

Since some weapons lost in combat are only damaged and are
thus able to be repaired, the ground combat model maintains
a pool of recovered and repairable weapons. The user desig-
nates the percentage of such weapons that can be repaired
each cycle. The model adds such repaired weapons to the
COMMZ replacement pool.

e

AU s e et "~

N

2.1.9 Theater Control Simulation. Provided the target
acquisition model was used, the TACWAR theater control model
first determines the assignment of reconnaissance aircraft
and calculates attrition to army-air carriers and reconnais-
sance aircraft. The remainder of the theater control model
is executed regardless of how target acquisition is deter-
mined. It determines the width of each combat sector based
on the current FEBA location. Preparations for the next
cycle's combat are made by the theater control model in
several ways. The model computes the total tonnage of sup-
plies consumed by combat units that are located in region
areas and in the COMMZ. It then determines the sectors of
main attack (if not input by the user) within each region
based on opposing effective combat units. As a result of the
FEBA movement calculated in the ground combat model, the model
updates the location of combat divisions and supply nodes.
Then, based on the new FEBA location, the region forward and
region rear depths are adjusted, if necessary.

An important function of the theater control model is to
compute the number of noncombat weapon losses that arise each
cycle and to send the broken weapons to the repair pools.

The model conducts the operation of weapon repair and sends
repaired weapons to the replacement pools. A major activity
of the theater control model is the relocation and upgrading
of divisions for effective combat readiness on the next cycle.
The model first computes the change in combat mode, if appro-
priate. Next, it computes a new combat effectiveness for
each division based on people, weapons and supplies available
in the units. Then the model withdraws from the active battle
areas any ineffective divisions and replaces them with divi-
sions of higher effectiveness, if available. For each divi-
sion in the active battle area, the model computes its demand
for replacements of people, weapons by type, and subunits by
type. The theater control model then assigns to these
divisions the required replacements, provided they are avail-
able in the replacement pools. 1In addition to making these
adjustments, the model replaces divisions in the active
battle areas with divisions of higher strength, if available,
from the first inactive battle area and assigns required
replacements, if available, from the replacement pools. Next
the model determines which actual airbases must be abandoned
because of advancing enemy forces. Then it computes the
total supply demands of the tactical airbases and of the
combat units in the rear areas, and ships supplies to
requesting areas according to available inventories. The

35

D W‘-f‘g‘“k’?s**ﬂgmﬁgr«m L
-

YT O T

Wl o nds vt runn i il it il

model also computes the effectiveness of all divisions and
orders the divisions in the first inactive battle area
according to effectiveness. Next, the theater control model
moves divisions from rear areas forward by the appropriate
movement rate. Finally, if the present cycle is one in which
the supply model is executed to distribute supplies between
nodes, the theater control model updates the node assign-
ments,

2.1.10 Supplies Transportation Simulation. The TACWAR
supplies model 1is executed every major cycle to simulate the
redistribution of supplies among supply nodes. The model
utilizes a fast-running transportation algorithm to decide
the most efficient way to route supplies through a simplified
node-arc network of Central Europe. The transportation prob-
lem is to minimize the total cost of shipping supplies from
supply nodes within the theater that have adequate supplies
to supply nodes that are short of supplies. The algorithm
and code were developed by Srinivasan and Thompson at
Carnegie-Mellon University (see reference 1) but are now
available at the National Bureau of Standards.

SRRy Iy LRI e g

Subsection 2.1.2 describes the TACWAR supplies transportation
network, which contains a total of 95 supply nodes serving
both Blue and Red divisions and airbases. This network
structure and the amount of supplies at each of the nodes

are the quantities used to formulate the problem as a trans-
shipment problem, which is then converted to a transportation
problem as described in reference 2. The primal transporta-
tion algorithm known as the MODI model (or the row-column

sum method described in reference 3) is used for solving the
problem. Standard perturbation procedures are used to prevent
the circling of the algorithm. (See reference 3).

Subroutine SUPPLY, the entry routine of the supplies model,
determines the surpluses and deficits for each supply node
based on the amount of supplies demanded by divisions and
airbases served by the node. Then, for one side at a time,
subroutine TRANPO is called to determine the optimal routing
of supplies from surplus nodes to deficit nodes. The input
to TRANPO is the TACWAR network of 95 nodes and their con-
necting arcs, and the surpluses and deficits for each node
with the restriction that supply nodes not belonging to the
side for which the routing is being determined have no sur-
pluses or deficits.

Subroutine TRANPO is the driver for the series of subroutines
which solve the transshipment problem using the algorithm
mentioned above. Subroutine INPUT initializes the supply
node data. The initial basic feasible solutuion is found in
INSOL (using a variant of the row-minimum rule). LABEL] sets
up the labels corresponding to the list of initial basic
cells. LABEL2 determines the values for the dual variables
corresponding to the initial basis. The program then iter-
ates, making a number of adjacent basis changes, until an
optimal basis is found. MAIN finds a nonbasic cell to pivot

on using the row-minimum rule. CYCLE finds the loop created
by the addition of the nonbasic cell (using a modification
of the predecessor-index method described in reference 4).
Subroutine FIXLIJ modifies the labels to correspond to the
new basis and IJFIX modifies the dual variables accordingly.
Finally, OUTPUT prints out the optimal primal solution.

When the optimal routing is returned to subroutine SUPPLY,
the model then ships supplies according to that routing and
determines the arrival times of the supplies. It is assumed
that supplies leave surplus nodes immediately and arrive at
deficit nodes during some minor cycle which occurs no later
than the next major cycle. The theater control model adjusts
the supplies at the nodes to reflect the arrival of goods at
the deficit nodes.

38

. SN+ 0 T T

IS

A T

CERT T T

S AL Ul AN L

2.1.11 Remote Terminal Capability. The TACWAR model can

be executed from a remote terminal through a JCL file in
Time~Share-System (TSS) format. Appendix D describes the
procedure for executing TACWAR through such a file and sub-
section 4.1.3 discusses the procedures for updating the file.

S 22

IR A g e

THIS PAGE INTENTIONALLY LEFT BLANK

40

SRR AN <.

Rt o

- T S——
.

$ -
&

o

2.2 Detailed Descript n

This subsection contains descriptions of all TACWAR subrou-
tines, including the processing functions performed by each

. routine. Descriptions of the subroutines are presented in
their nominal order of execution; that is, the input routines
and the time-zero write routines followed by the air, nuclear,
chemical, target acquisition, ground, air-ground, air summary,
theater control, supply, time-t, and summary output routines.

= TR ik TRy ;M ~Pgn’ oy o o e

The TACWAR model consists of a main program, TMAIN, and 136
subroutines written in FORTRAN 6000. The main routine, plus
12 subroutines, serve to call the other 124 subroutines.

The program overlay structurg% as implemented on the HIS 6080,
is organized into a root segment, 14 primary overlays, and X
19 secondary overlays. The root segment includes TMAIN, '
blank Common, and the subroutines EIGENV, MPROD, CNTRYC,

CVFW, SECWTH, GDIST, TAG, APORTN, and CLR, each of which may

be called at frequent intervals during a game. As illustrated

by figure 6, the remainder of the program structure is seg-

mented according to function. Table 3 lists each routine and

the routines it calls.

The majority of the TACWAR subroutines refer to variables in
blank Common. However, the program does employ labeled
Common blocks in certain subroutines. Table 4 lists these
labeled Common blocks and the routines in which they appear.
The functions of each TACWAR routine are described in the

following subsections. :

. > /Y*mM\QA , $ek CSC je¥e Ve o 3 TRCIUME Cornl 1 BuCT 2s)
'1 AA LA, Ceve To YL Sabite k),
2)

4 -
J !
b i
ROOT
) d
TMAIN]
EIGENV
3 MPROD 4
CNTRYC %
CVFW . '
SECWTH
GDIST - ;
TAG !
APORTN H
CLR
INPUT/ INPUT AIR NUCLEAR CHEMICAL TARGET
THEATER WRITE COMBAT COMBAT COMBAT ACOUISITION N y
SETUP ROUTINES MODEL MODEL MODEL MODEL i
I i
I LINKA Lum&a l LINKC l LINKD Lunxs lum(s | LINKG
TZERO WTZEROQ WTONE AIRMOD NUC CHEM TARACQ
INP GCOUT NUCOUT BINFAC BLKDA KCODE TARACA
TCT2 TCOUT CHOUT BINQAT KCDEN KDCODE TARACE
SPLYOT TACQOT ATSPSS KDCDEN TADPAR
ATRTED BLKDATA
ATRTSA
ATRTDA
ATRTSS M

T

| LINKF S

CHEMS !

; CHEMLEV i
3 EQUIP 1
CHEMSUP i

3 DECON {
:

1 H
0

§

i

] LINKEY l LINKE2 ¥

NUCI NuC2 ;

ESCLAT NUCTAR {

WHINUP NUCWPS :

NDSYINV NWHINY ‘

ey o1

¢
: | LINKD1 Tmeoz L.mxos
!
' ALLOCT AIRATY AOVLY -

; DEG R,

Figure 6. TACWAR Link Overlay Structure (Part 1 of 2)

42

T
E
3
SN}
2
i,
¢ I
;;
3 ".
3
»
¥ L]
GROUND AIR/GROUND PRINT THEATER TIMEY-T
L] COMBAT COMBAY SUMMARY OF CONTROL SUPPLY INPUT PRINT SUMMARY
MODEL MODEL AIR MODEL MODEL MODEL ROUTINES REPORT
3 l LINKH [LINKI Lmu Lum(x Lumu. I LINKM I LINKN d
GROUND AIRGRD PSAIR TC SUPPLY TIMET PSUMMY
GC ATRTA8 11BA TRANPO ASSIGN
i FEBAMT QRAFIL NXDIV INPUT IRATIO ;
ASGATR AtRASG INSOL IFEBA i
LABELY
LABEL?
MAIN
CYCLE 4
FIXLIJ)
1SFIX .
OUTPYT N
8LOCK1 3
.
#
£
‘men lunxn lumcu [LINKF5 —[mers £
CHEM1 CHEM2 CHEM3 CHEM4 CHEMS
CHEMTAR ZNDST CHEMDAM §
CHEMWPS NCRINV DROPS :
NCRINV DUCINV LINFR i
BFTGTS SIMCN i
RGTGTS OFFCOV &
- C2TGTS CIRCOV v
] PREAGDM F
KADMC 1
AIRBASE 5
H
H
¥
l LINKE3 ILINKE‘ l LINKES F_mkss :
¢
NUC3 NuC4 NUC5 NUCE é
: ZNDSY DAMEVL t
. NUCABS PAREA :
S NBFTGS FN !
. NRGTGS PREFN }
s NCZTGS QKINR i
a : PREYLD DOSLIM i
1 . OWHINV WRAD N
: NWHINY WRADVN ’
- OFFCOV . i
N SIMCN . !
3 . . SIRCOV K :
CIRCOV
4 EE
i . 3
3 i
E I LINKD4 l LINKDS l LINKDS [unxm
I
: o ATTRY AOVL2 ATTRS ATTRE
§ ATTA2 ATRTWH
' ATTRI
- ATTR4
¢

Figure 6. (Part 2 of 2)
43

AT N et e a e e
3o Aoy Ty ~

= s e e e e wvs—y » -

<l
3
. g
s 3

o R A

rore

THIS PAGE INTENTIONALLY LEFT BLANK

T TR NI o <
R e L~

Table 3.

Link Name

TACWAR Program Calling Structure
(part 1 of 7)

Routines in Link

: . ROOT
! SEGMENT

LINK A

LINK B

LINK C

TMAIN

EIGENV
MPROD
CNTRYC
CVFW
SECWTH
GDIST
TAG
APORTN
CLR
TZERO
INP

TCTZ

WTZERO
GCOUT
TCOUT
SPLYOT
WTONE

NUCOUT

45

Routines Called

TZERO, WTZERO,
AIRMOD, NUC,
GROUND, AIRGRD, PSAIR, TC,
SUPPLY, TIMET,

MPROD

GDIST

CLR, TAG

INP, TCTZ

APORTN} TAG

CVFW, EIGENV,
SECWTH, CLR

GcouT, TCOUT,

CHOUT, NUCOUT, TACQOT

Cm by BE

CHEM,

WTONE,
TARACQ,

PSUMMY

MPROD,

SPLYOT

T

RV A)

RN SRR

s
;

Table 3. (Part 2 of 7)

Link Name Routines in Link Routines Called
LINK C CHOUT ‘
TACQOT)
LINK D AIRMOD ALLOCT, AIRATT, AOVL1,
ATTR1, AOVL2, ATTRS, ATTRS6, -
APORTN
BINFAC
BINOAT
ATSPSS BINOAT
ATRTED BINOAT
ATRTSA BINOAT
ATRTDA BINFAC
ATRTSS BINOCAT
LINK D1 ALLOCT DEG
DEG CLR, TAG, CVFW
LINK D2 AIRATT
LINK D3 AQVL1 ATRTDA, ATRTED, ATRTSA,
ATRTSS
LINK D4 ATTR1 ATRTDA, ATRTED, ATRTSA,
ATRTSS, ATSPSS
LINK D5 AOVL2 ATTR2, ATTR3, ATTR4
ATTR2 ATRTSA, ATSPSS
ATTR3 ATRTDA, ATRTED, ATRTSA, ’

ATRTSS, ATSPSS

ATTR4 ATRTDA, ATRTED, ATRTSA, *
ATRTSS, ATSPSS

46

TSI TI

S i Rty ke -

AT KR

Link Name

LINK D6

LINK D7

LINK E

LINK E1

LINK E2

LINK E3
LINK E4

LINK ES5

Table 3.

Routines in Link

ATTR5
ATTR6
ATRTWH

NUC

BLKDA
KCDEN
KDCDEN
NUC1
ESCLAT
WHINUP
NDSYINV
NUC2
NUCTAR
NUCWPS
NWHINV
NUC3
NUC4
NUCS
ZNDST
NUCABS
NBFTGS

NRGTGS

(Part 3 of 7)

Routines Called

ATRTDA, ATRTSA, ATSPSS g

ATRTWH

NUC1l, NUC2, NUC3, NUC4,
NUCS5, NUC6, CLR

P A e

ESCLAT, NDSYINV, WHINUP

TR AN S AT X W p .

NUCTAR, NUCWPS

CLR, KCDEN, KDCDEN, NWHINV

NBFTGS, NCZTGS, NRGTGS

7 ;
GDIST, SECWTH ’

PREYLD, ZNDST .

NUCABS, PREYLD

LINK E5

LINK E6

LINK F

Link Name

Table 3.

(Paxrt 4 of 7)

Routines in Link

NCZTGS

PREYLD

DWHINV
NWHINV
NUC6

DAMEVL

PAREA
FN
PREFN
QKINR
DOSLIM
WRAD
WRADVN
OFFCOV
SIMCN
SIRCOV
CIRCOV

CHEM

KCODE

KDCODE

48

Routines Called

NUCABS, PREYLD

DWHINV, KDCDEN, NUCABD
(ENTRY IN NUCABS), NWHINV,

ZNDST 7
KDCDEN &—

DAMEVL, KDCDEN
CVFW, DOSLIM, FN, OFFCOV,

PAREA, PREFN, SIRCOV,
WRAD, WRADVN

QKINR

CIRCOV

CIRCOV, SIMCN
SIMCN

CHEM1, CHEM2, CHEM3,
CHEM4, CHEMS, CHEM6, CLR

PN T,

e MY

ri WL U PR Coap i S e

2 ledadee

YAl

ppapva

P

3 L TSR AT

AT RIINER T , pl T7C ~

oS e

Link Name

LINK Fl

LINK F2

LINK F3
LINK F4

LINK F5

Table 3. (pPart 5 of 7)

Routines in Link

CHEM6

CHEMLEV
EQUIP
CHEMSUP
DECON
CHEM1
CHEMTAR
CHEMWPS
NCRINV
CHEM2
CHEM3
CHEM¢4
ZNDST
NCRINV
DUCINV

BFTGTS

RGTGTS
CZTGTS

PREAGDM

KADMC

AIRBASE

Routines Called

CHEMLEV, DECON, EQUIP,
CHEMSUP

CHEMTAR, CHEMWPS

CLR, KCODE, KDCODE, NCRINV

BFTGTS, RGTGTS, CZTGTS

KDCODE

DUCINV, KADMC, KDCODE,
NCRINV, ZNDST

AIRBASE, PREAGDM
AIRBASE, PREAGDM
AIRDIST (ENTRY IN AIRBASE),

CLR, DUCINV, KADMC, KDCODE,
NCRINV

DUCINV, KDCODE, NCRINV

GDIST, SECWTH

P e——T——

0 CRENADIET VRN el T T

AT T

B R

Py

Link Name

Table 3. (Part 6 of 7)

Routines in Link

LINK F6

LINK G

LINK H

LINK I

LINK J

CHEM5
CHEMDAM
DROPS
LINFR
SIMCN
OFFCOV
CIRCOV
TARACQ
TARACA
TARACE
TADPAR
BLKDATA
GROUND
GC

FEBAMT

AIRGRD

ATRTAB
QRAFIL
ASGATR

PSAIR

Routines Called

CHEMDAM, KDCODE

DROPS, LINFR, OFFCOV, SIMCN

SIMCN

CIRCOV
SIMCN
TARACA, TADPAR

TARACE

GC, FEBAMT

EIGENV, MPROD, CVFW,
CNTRYC

CVFW

APORTN, ASGATR, ATRTAB,
QRAFIL '

1100 v o v sesestlil

Link Name

Table 3.

(Part 7 of 7)

Routines in Link

LINK K

LINK L

LINK M

LINK N

TC

IIBA
NXDIV
AIRASG
SUPPLY

TRANPO

INPUT
INSOL
LABEL1
LABEL2
MAIN
CYCLE
FIXLIJ
IJFIX
OUTPUT
BLOCK 1
TIMET
ASSIGN
IRATIO
IFEBA
PSUMMY

51

dis ik

Routines Called

AIRASG, CNTRYC, CVFW, IIBA,
NXDIV, SECWTH

CLR
TRANPO
INPUT, INSOL, LABELI1,

LABEL2, MAIN, CYCLE,
FIXLIJ, IJFIX, OUTPUT

ASSIGN, CVFW

IFEBA, IRATIO

A B RN + X I SR s TS e e

L PRI T U

ry

P R T

9YULIV ‘SULIV ‘PALIV
‘€YLIV ‘ZYLLV ‘ZTIAOY ‘TYILY ‘TTAOV ‘LIVNIV ‘93A ‘IDOTIV ‘AOWdIV

9IILVY
‘SYLIV ‘PULIV ‘€¥IIV ‘ZHIIV ‘ZTAOY ‘THLIV ‘TTIAOV ‘LIVINIV ‘dOWNIV

9y LIV
‘SULIV ‘PULLY ‘€YIIV ‘ZULIV ‘ZTIAOV ‘THYIIV ‘TTIAOV ‘IIVIIV ‘AOWNIV

9ILLY
‘SULIV ‘PMLIV ‘E€YILV ‘ZUILV ‘ZTTIAOY ‘THIIV ‘TIAOV ‘IIVNIV ‘QOWMIV

NULLY ‘SYULLV ‘pAIIV
‘€dLIV ‘ZYIIV ‘ZTIAOV ‘TULLVY ‘TIAOV ‘IIVMIV ‘53d ‘IOOTIV ‘AOWdIV

9ULIV ‘SULLV
'PYLIV ‘€YILIV ‘ZULIV ‘ZTIAOY ‘TULIV ‘TIAOV ‘LIVNIY ‘IDOTIV ‘QOWNIV

9YLIV ‘SYLLV
'PULIV ‘€ULLIV ‘Z¥LIV ‘ZTAOV ‘THLILV ‘TIAOV ‘LIVMIV .ﬁUOAqﬂ ‘aomdIv

1ODOVL

IASWVYA ‘90N

‘ANTHMA ‘@TXTYG ‘SOLOUN ‘SOHLIAN ‘SHYONN ‘SONN ‘VONN ‘€O0N ‘ANIHMN
‘SAMONN ‘dUVIDNAN ‘ZONN ‘ANIXSAN ‘dNNIHM ‘IVIOS3 ‘TONN ‘vay1d ‘ONN

vaxig

Jeaddy A9YL YOTYM UT sSaurnoy

(€ 30 T 3Ieg) SHOOTE UOUMO) PITIqRT WYMOVL °p 9Tqel

R

EIN

WVYQWIHD ‘SWIHD ‘FSVENIV ‘OWAWV ‘WASVINd ‘SIO9L2ZD
‘SLOLOY ‘SI9LJd ‘ANIONA ‘YWIHD ‘EWIHD ‘ZWIHD ‘ANIYUON ‘SJIMWIHD
‘UVIWIHD ‘TWIHD ‘NOD3IA ‘dNSWAHD ‘dIN03 ‘ATTWAHD ‘9WIHD ‘WAHD

TATRVYd
‘90NN ‘ANTHMA ‘QTIX3dd ‘SOILOUN ‘SOLJEN ‘SEYOINN ‘SOAN ‘¥ONN ‘E€I0N
'ANTHMN ‘SdMOON ‘¥YIOAN ‘ZOAN ‘ANIXSAN ‘dONIHM ‘IWIOSE ‘TIDAN ‘ONN

WYAQW3HD ‘SWIHO ‘ISVENIV ‘OWAW ‘WAOVIId ‘SIOHLZD
‘SIOLOY ‘SIO5LJL ‘ANIONG ‘PWIHD ‘EWIHD ‘TZWIHO ‘ANINON ‘SIMWIHD
‘AVINIHD ‘TWEHD ‘NODIA ‘dNSWAHD ‘dINd3 ‘ATTWIAHD ‘9IWAHO ‘WAHD

TATWVA
‘90NN ‘ANIHMA ‘ATIXTAd ‘SOILOUN ‘SOLJIEN ‘SEYONN ‘SONN ‘$OAN ‘€O0N
‘ANIHMN ‘SdMONN ‘dVIDONN ‘ZOAN ‘ANIXSAN ‘dONIHM ‘IV7IDST ‘TONN ‘ONN

IWVE3a ‘09

9YLIV ‘SULIV ‘PYLLV
‘€YLILV ‘Z¥LIV ‘ZTTIAOVY ‘TILIV ‘TTAOV ‘LIVYIV ‘93d ‘IOOTIV ‘AOWNIV

XWWNSd ‘LOOHD ‘LNODONN ‘INOIM ‘LOXTIdS ‘LNODLI ‘LA0DD ‘O¥IZIM

YWIHO ‘EWIHO
‘TWIHD ‘SAMWIHD ‘¥VIWIHO ‘TWEHD ‘dIN0d ‘ATTWIHD ‘9WIHD ‘WIHO

WYAWIHD ‘SWHHD
WYAWIHD ‘GWIHD ‘ISVIMIV

‘ONAYY ‘WAOVYIId ‘SIOLZD ‘SIOLOY ‘SI1oldd ‘ANIONA ‘yWIHD ‘E€WIHD
‘ZWIHD ‘ANI¥ON ‘SAMWIHD ‘TWIHD ‘NODJIA ‘dNSWIHD ‘dIND3 ‘9IWIHD ‘WIHD

xeaddy AdYJ, YOTYM UT S3UTINOY

(€ 30 Z 3aed) °p 9TqelL

9YILY ‘GULIV ‘pULLIVY
‘eULIV ‘ZULIV ‘ZIAOV ‘TYILVY ‘TIAOV ‘LIVNIV ‘930 ‘LO0OTIV ‘dOWNIV

94 LLY
‘GULIV ‘PULIVY ‘€UIIV ‘ZYLIV ‘ZIAOV ‘THLIV ‘TIAOY ‘IIVVIV ‘AOWNIV

A LLY
‘GULIV ‘PYILY ‘€YLIV ‘ZUIIY ‘ZIAOY ‘TiLLV ‘TIAOV ‘LIVYIV ‘AOWNIV

LNdLAO
‘XIJCTI ‘CITXIS ‘FTIOXD ‘NIVW ‘Z7T38VT ‘TT7d€¥T ‘TOSNI ‘INANI OdNWHL

VIVANTE ‘YVddyvl ‘JOVHVI ‘VOWHVLI ‘OOVHVL
LNANI ‘X71d440S

UNIND ‘NI ‘Nd

INdlNno ‘TOSNI ‘INdNI ‘X71d4dNS

TXO0TE ‘OdNVElL

NIVAL

VIVANTE ‘¥Vdavi ‘FOVHVL ‘VOWIVI ‘DJOVHVL

aeaddy A3YJ YOTYM UT SsauTinoy

(¢ 30 € 3xRg) °p 9Tqel

e e oy ; T bk b

2.2.1 Root Segment. This subsection describes the routines
in the root segment of the TACWAR model.

2.2.1.1 TMAIN. Program TMAIN serves as the control execu-
. tive for the TACWAR model. TMAIN sets up a cycle counter
which is used in controlling the performances of certain
intermittant model functions. The program activates the air,
nuclear, chemical, target acquisition, ground, supplies, and
theater control models. 1In addition, TMAIN calls routines
to read input data and to write input data or summary reports.

2.2.1.1.1 Programming Specifications. The following table
summarizes the principal specifications of program TMAIN:

Characteristic Specification
Formal parameters None
Common blocks Blank Common, MASS

Subroutines called TZERO, WTZERO, WTONE, AIRMOD,
. NUC, CHEM, TARACQ, GROUND,
AIRGRD, PSAIR, TC, SUPPLY,
TIMET, PSUMMY

2.2.1.1.2 Logic Functions. The code in this program is
divided by comment cards which label the functions performed
by the logic.

a. Section 10 - Initialization. TMAIN begins by call-

ing overlay segment LINKA and transferring control therein
to subroutine TZERO, which governs the reading of all input
data and the initialization of various theater control arrays.
Upon return of control to TMAIN, the value of NEPD(3) is
examined. If NEPD(3)=0, segment LINKB is overlaid on LINKA
and control is passed to WTZERO, which directs the printing
of all conventional time-zero input read under the control
of TZERO. TMAIN next determines if nuclear or chemical
warfare is to be played. If either one is to be played and

. NEPD(3)=0, segment LINKC is overlaid on LINKB and control is
passed to WTONE, which directs the printing of all nuclear,
chemical, and target acquisition time-zero inputs. Next,
TMAIN initializes variable ICYCLE, the game cycle counter,
to a value of 1, and initializes ICSM, the major supply cycle
counter, to NCSM. The variable NCSM is the number of combat
cycles in a major supply cycle.

55

b. Section 20 - Execute Air Model. The code in sec-
tions 20, 30, and 40 are executed for each cycle of the game.
The program compares the current value of the cycle counter,
ICYCLE, with each element of the array IPRDO. If a match is
found, IPRD is set to 1. IPRD is used at many points in the
simulation to direct the printing (=1) or suppression (=0)
of detailed reports. The segment LINKD is called next, and
control is passed to subroutine AIRMOD, which in turn calls
the subroutines that comprise the air combat model.

c. Section 30 - Execute Nuclear and Chemical Models.
Upon return of control to TMAIN, the value of IOMU is tested
to determine if nuclear or chemical weapons are played this
cycle. If they are not played, control is passed to section
40.

P R S A WP R e T T

First, the flag KNUCH, which is the sum of the number of
sectors in which nuclear weapons are played and the number
in which chemical weapons are played, is set to 0. The fol-
lowing steps are performed for each nuclear/chemical subcycle,
INCYL, with the exception that if, after the first subcycle,
no nuclear or chemical weapons have been played {(KNUCH=0),
then control is passed to section 40. The program sets the
flag IPRS to 1 if the current cycle is one on which summary
reports are requested. Summary reports are printed only for
the first subcycle when requested on the cycle. Then, if
nuclear weapons are to be played in the model, TMAIN calls
in segment LINKE and control is transferred to subroutine
NUC, which will on this call (KFLAG=1) determine the escala-
tion state and perform certain initialization functions for
the nuclear model. If chemical weapons are to be played,
TMAIN then calls in segment LINKF and control is transferred
to subroutine CHEM, which will on this call (KFLAG=1) deter-
mine the chemical employment level and perform certain
initialization functions for the chemical model.

Program TMAIN then simulates nuclear and chemical warfare on
a sector by sector basis. First, it determines if nuclear
weapons are played and then determines if chemical weapons
are played in the sector. Then, if it is the first subcycle
and either nuclear or chemical weapons are played, TMAIN
calls in segment LINKG and transfers control to subroutine
TARACQ, which in turn calls the routines of the target
acquisition model. When control is returned to TMAIN, the
program determines in which order the nuclear and chemical
weapons are to be played. Then the nuclear (LINKE) and

chemical (LINKF) models are called in appropriately, provided
that type weapon is to be played in this sector. The models
will simulate nuclear and chemical combat on these calls
(KFLAG=0) .

d. Section 40 - Execute Remaining Model. Upon comple-
tion of nuclear and/or chemical warfare, TMAIN calls in LINKH
and transfers control to subroutine GROUND, which governs
the ground combat model. When this model has been executed,
segment LINKI is overlaid on LINKH and subroutine AIRGRD is
called. AIRGRD calls the routines of the air-ground combat
model. Upon return of control to TMAIN, it is determined if
the current cycle is one on which summary or detail reports
are requested, or if it is the first or last cycle of the
game. If any of these conditions exist, segment LINKJ is"
called and control is passed to subroutine PSAIR, which prlnts
summary tables for the air and air-ground routines.

If the present cycle is not the last one of the game, TMAIN
calls the nuclear and/or chemical routines, provided nuclear
and/or chemical weapons are played by the model. On these
calls, KFLAG is set to 2 indicating that only calculations
to determine the nuclear escalation state or the chemical
employment level are to be performed. On the last cycle,
these calls and calls to TC and SUPPLY are omitted.

Next TMAIN calls in segment LINKK and transfers control to
subroutine TC, the theater control model. Then if the cur-
rent cycle is a major resupply cycle, TMAIN calls in segment
LINKL and transfers control to subroutine SUPPLY. This link
contains the supplies model. Upon return to TMAIN from
SUPPLY, the resupply cycle counter ICSM is properly incre-
mented to indicate the next resupply cycle. If the current
cycle is one on which time~t variables are to be input,
TMAIN calls in segment LINKM, and transfers control to sub-
routine TIMET, which reads the appropriate inputs from a
working file. Upon return of control to TMAIN, it is deter-
mined if it is the first or last cycle of the game, or if

~~ .summary or detail reports have been requested on the current
cycle. If any of these conditions exist, TMAIN calls in
segment LINKN and transfers control to PSUMMY, which prints
summary tables for ground, theater control, and supply vari-
ables. If the present cycle is the last of the game, TMAIN
terminates execution. If not, the cycle counter ICYCLE is
incremented by 1 and TMAIN begins the simulation for the
next cycle.

2.2.1.2 EIGENV. The purpose of this subroutine is to cal-
culate the numerical values (eigenvectors) for Red and Blue
weapons such that the magnitude of the values indicate the
relative worth (in terms of combat effectiveness) of each
side's weapons. One Blue weapon is chosen as a reference
weapon, and the values of all other Blue weapons, as well as
those of all Red weapons, are measured relative to the value

of tHe reference weapon.

EIGENV is called to determine each side's weapon values and
the resulting force ratios by means of the antipotential
potential method. A crucial figure computed by EIGENV is

the eigenvalue, or characteristic number, of the kill rate
matrix. The square root of this figure represents an average
kill rate for the weapons in the matrix. The average kill
rate is used to relate the Red weapon values and the values
of air munitions to the same reference weapon used to measure

ground weapon values.

The methodology used by subroutine EIGENV is described in
detail in appendix D of the NATO Combat Capabilities Analysis

II (COMCAP 1I) Report (see reference 5). This report states
the following two equations from which the desired eigenvalue
and corresponding eigenvectors are determined:

= _ 2 —_
Vb = C BR Vb (1)
and
\ Vr = cR Vb (2)
wﬁége

ﬁh = a column vector for the Blue type weapon values
V}>§\? column vector for the Red type weapon values

the average kill rate (eigenvalue = cz)

o4 =

B = Blue's "kill rate matrix" (Blue weapons kill Red
weapons)

R = Red's "kill rate matrix" (Red weapons kill Blue

weapons)

M

SaK A

YIS

YT o .

WS,

T IRE T=P P~ owx. ' am = DT T

The unknowns to be found are VB, V;, and c. Starting with

initial values for Vs in the right side of equation (1),
values for the two unknowns (Vb and c) can be determined

using an iterative procedure as described in reference 5.
As more iterations are performed, the value of ¢ will con-

verge and the calculated approximation of VB will approach

its true value. When these unknowns have been computed to
within a specified degree of accuracy, equation (2) is used
to calculate the Vr values., It should be noted that the

vectors Vb and Vr are:

—_
F'biw riT (3,4)
b, ry
b r
_ 3 : _ 3
Vb =l 3 and Vr = r,
b
5 r5
- * J “— * J

where b4 has been chosen (by the user) as the Blue reference

weapon and maintains a combat effectiveness of 1. Thus, upon
successful completion of this procedure, the combat effective-
ness of any other Blue weapon or any Red weapon can be com-
pared to this reference weapon.

2.2.1.2.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine EIGENV:

Characteristic Specification

Formal parameters AA

Blue's "kill rate matrix"”
(i.e., B in equation (1))

BB = Red's "kill rate matrix"
(i.e., R in equation (1))
v = Initial Vg column vector

for starting the iter-
ative process

O AT TR

k Characteristic Specification

VB = Blue weapon values, a_
column vector (i.e., V,

in equation (1))

VR = Red weapon values, a _
column vector (i.e., Vr

in equation (2))

N = Number of Blue weapon
types

M = Number of Red weapon types

I1 = Index for the Blue refer-

ence weapon

MNIE = Maximum number of itera-
tions to be attempted

EFCE

The degree of accuracy
required for the eigen-
value

ALAM = The final eigenvalue

Common blocks None

Subroutines called MPROD

Called by TCTZ, GC
2.2,1.2.,2 Logic Functions. Subroutine EIGENV contains
adjustable dimensions except for two working arrays (R and
W) which are dimensioned for maximum weapon types. The
adjustable arrays are dimensioned by the arguments N and M,

which also determine loop iterations. Because SAMs have no
ground value they are excluded from the computation.

EIGENV is called twice by the calling subroutine; once for
the values of Blue weapons on defense and the values of Red
, weapons on attack, and again for the values of Blue weapons
: on attack and the values of Red weapons on defense. In each
case, the iteration procedure must begin with initial values

W TARTERRST T T e e

for the column vector, Vb (the Blue weapon value array, VB,
in the program) on the right side of equation (1). s

The initial values for the Blue weapons (array V) are ini-
tialized in subroutine TCTZ prior to the first call to
EIGENV. Subsequent calls use, as initial values, the values
calculated for the Blue weapons value array (VB) during the
previous call. EIGENV calls subroutine MPROD to perform an
inner multiplication of the two "kill rate" matrices AA and
BB (B and R in equation (1)) yielding as a matrix product
the working array R.

An iteration loop is run, for a maximum of MNIE attempts, in
order to bring the eigenvalue, ALAM, to convergence. The
first step in the convergence loop is a call to MPROD for
the matrix product of R and the current Blue weapons value
column vector, VB. The resulting column vector, W, repre-
sents the Blue weapons' values prior to normalization by the
Blue reference weapon.

The reference weapon's value, in vector W, is now compared

to a minimum acceptable value. If the value of the reference
weapon is less than a value of .00001 an error message is
printed and the program terminates since force ratios and
dependent computations based on antipotential potential cal-
culations would be meaningless.

The current approximation of the eigenvalue, ALAM, is taken
to be the inverse of the Blue reference weapon value. Each
element of array W is normalized by the eigenvalue and stored
in array VB. Thus, the rzference weapon in VB always main-
tains a value of 1.

The subroutine tests the ratio of the current value of ALAM
to the eigenvalue computed during the previous iteration,
ALAMO. If the ratio is within the tolerance EFCE of unity,
the eigenvalue is assumed to have converged satisfactorily
and an exit is made from the convergence loop. If not, the
iterations continue. When the loop has run MNIE times with-
out convergence, a warning message is printed and the current
eigenvalue and its corresponding eigenvectors are used for
succeeding computations.

At this point, the Red weapons' values are calculated by
taking the square root of the eigenvalue and using the root

.to solve for VR (V; in equation (2)). Program control then

returns to the calling routine.

61

2.2.1.3 MPROD. Subroutine MPROD performs an inner product
multiplication of two matrices, one N by M and the other M
by L in dimension. The resulting matrix, therefore, has the

dimensions N by L.

2.2.1.3.1 Programming Specifications. The following table

summarizes the principal specifications of subroutine MPROD:

Characteristic

Formal parameters

Common blocks
Subroutines called
Called by

2.2.1.3.2 Logic Functions.

Specification

A = Input matrix, dimensioned
N by M

B = Input matrix, dimensioned
Mby L

R = Output matrix containing
inner products of [A]
times [B], dimensioned
N by L

N = Number of rows in A and
rows in R

M = Number of columns in A
and rows in B

L = Number of columns in B
and columns in R

None
None
EIGENV, TCTZ, GC

MPROD consists of three nested

DO loops. The algorithm produces a value for each member of
matrix R which has N rows and L columns. Each value of
matrix R is an inner product, i.e., the sum of the products
obtained by multiplying in turn each member of a given
column of the first input matrix by the corresponding member
of a given row of the second input matrix. In other words,

the R matrix value specified by R(I,J) is found by multiplying

the first member of the Ith row in matrix A by the first
member of column J in matrix B and adding the resulting
product to that obtained by multiplying the second member of

the Ith row in matrix A by the second member of column J in
matrix B. This process is continued through the Mth member
of the Ith row in matrix A and the Mth member of column J

in matrix B. When all members of matrix R have been computed,
control returns to the calling routine.

2.2.1.4 CNTRYC. Function CNTRYC determines the index of
the country to which a division belongs. Presently this
routine is a dummy routine in that it sets the country code
to 1 for any division. If the user desires to play more
than one country, he must change this routine to make the
assignments of divisions to various countries. He must also
make numerous coding changes to other routines since they

do not always call CNTRYC to determine the country associa-
tion for a given division. Therefore, the number of changes
needed to play more than one country in the TACWAR model are
not as minimal as might be expected.

2.2,1.4.1 Programming Specifications. The following table
summarizes the principal specifications of CNTRYC:

Characteristi¢ Specification
Formal parameters ID = Division index
Common blocks None
Subroutines called None
Called by GC, TC

2,2,1.4.2 Logic Function. The function returns a value of
1 for CNTRYC for any division index ID.

2.2.1.5 CVFW. Subroutine CVFW is used to calculate an
ordinate value of a piecewise linear function given the
corresponding abscissa value and the coordinates of several
endpoints defining the function segments. CVFW is called
for the purpose of computing casualty percentages as a func-
tion of posture and force ratio; combat effectiveness as a
function of division type and percent personnel strength;
and supply effectiveness as a function of supplies on hand.
The user must input coordinates for two sets of functions,
one for Red and one for Blue. Within each set, individual
function types such as casualty percentage must be defined
as a family of lines, each of which corresponds to a particu-
lar type of posture, with a set of endpoint coordinates

;
’
t
14
i
{
:
f

s o

specifying predicted casualty rates paired with graduated
force ratios. The calling subroutine selects the proper
function, given posture and computed force ratio, and CVFW
determines casualty percentages by interpolating from the
endpoint abscissas that most nearly match the force ratio

figure.

2.2.1.5.1 Programming Specifications. The following table

summarizes the principal specifications of subroutine CVFW:

Characteristic Specification
Formal parameters NVF Number of endpoints used
in the function
VFX Array holding X-values
at the function end-
points
VFY = Array holding Y-values
at the function end-
points
Input abscissa value
v Computed ordinate value
corresponding to W
Common blocks None
Subroutines called None
Called by TCTZ, DEG, DAMEVL, GC, FEBAMT,
TC, TIMET .

2.2.1.5.2 Logic Functions. CVFW tests to determine if W is

equal to the X-value of any endpoint of the function being

used. If an equality is found, V is set equal to the Y-value

of the matching endpoint before returning control to the

calling routine.

If W is found to lie between two endpoints, the subroutine
uses the displacement between W and the lower endpoint's
X-value to compute a proportionate displacement for the

Y-value.

64

':) }}4 »,-7;.,‘,:'

B

BT

T NG

R e Y e

o e

2.2.1.6 SECWTH.

Subroutine SECWTH determines the width of

the sector at a given point along the path of FEBA advance.

2.2.1.6.1 Programming Specifications.

The following table

summarizes the principal specifications of subroutine SECWTH:

Characteristic

Formal parameters

s
GD

NBNLT

SBNDLT

WDTH

PILT

P1LN

P2LT

P2LN

Specification

Sector index

Ground distance to
the point where the
width is to be deter-
mined

Number of boundary
longitude points along
the sector

Boundary latitudes at
the set longitude
points along the
sector

width of sector at
point GD

Latitude of midpoint
of line joining the
sector breakpoints

at the near edge of
the segment containing
the point GD

Longitude correspond-
ing to PlLT

Latitude of midpoint
of line joining the
sector breakpoints

at the far edge of

the segment containing
the point GD

Longitude correspond-
ing to pP2LT

L 7 5V, F ST

T VSTV T o dii —— g -~

4
H

Characteristic ' Specification

AL = The ratio of the dis-
tance from the near
edge of the segment
to the point GD, and .
the length of the
segment

DST = Length of the segment, .
, measured as the dis- .
i tance between the mid-
points of the lines
joining the break-
points at the near and
far edges of the

P EARTINeS T o T

segment
Common blocks None
Subroutines called GDIST
Called by TCTZ, NUCABS, AIRBASE, TC
2.2.1.6.2 Logic Functions. Subroutine SECWTH first deter-
mines that segment of the sector which contains the point P
at ground distance GD and then determines the width of the

sector at that point. Each sector boundary is defined by

up to seven points which serve as breakpoints for the sector.
These points are selected such that the longitudes of the
points are at regular evenly spaced intervals with the longi-
tude of corresponding breakpoints at each sector being the
same. Thus each sector is divided into a maximum of six
segments whose near and far edges fall on these longitudes.
See figure 3 for a schematic of a sector. For the purpose

of calculations, longitudes starting at 24 degrees and
decreasing in intervals of 4 degrees are used to cover the
theater from the Red COMMZ to the Blue COMMZ. For each
sector the latitudes corresponding to each of the longitude
values, the last of which lies in the Red COMMZ, are speci-
fied by the input array SBNDLT. *

Since the distance GD is measured from a point in the Red
COMMZ, the routine first checks for point P in the last seg-
ment of the sector. The latitudes and longitudes of the .
break points which define the segment are used to determine
the midpoints of the near (i.e., closer to the Red COMMZ)

66

and far edges of the segment. Function GDIST is called to
calculate the ground distance between the two midpoints.
The distance DST is the length of the segment. If DST exceeds
the ground distance GD, then the last segment is the one which
contains the point P. If not, the lengths of each of the :
remaining segments are similarly calculated one at a time ¢
h) from higher to lower index until the total distance (SUM) '
through the searched segments exceeds GD. Then, for the
segment containing P, the routine calculates the ratio (AL)

P O s]

. of: (1) the distance from the near edge of the segment to ?
* the point P, and (2) the length of the segment. This ratio f
is used to determine the intersections (in terms of latitude .
and longitude) of the longitude line, which passes through |

the point P, with the upper and lower boundaries of the
sector. (Recall that three parallel lines always divide any
intersecting line segment bounded by the two outer lines in
the same proportion.) The distance between these two inter-
sections, which is determined by GDIST, is the width of the
sector at the point P.

2.2.1.7 GDIST. Function GDIST determines the ground dis-
tance between two points, given their latitudes and longi-
tudes.

2.2.1.7.1 Programming Specifications. The following table é
summarizes the principal specifications of function GDIST: {

Characteristic Specification

T

Latitude of the first
point

Formal parameters RLAT1

b4

.

RLNl = Longitude of the first ;
point _ :

s RLAT2 = Latitude of the second
‘ point

RLN2 = Longitude of the
second point

. Common blocks None

§ Subroutines called None ;

. Called by SECWTH, AIRBASE, NUCABS

2.2.1.7.2 Logic Functions. PFunction GDIST uses the prop-
erties of spherical triangles to determine the ground distance
between two points. The spherical triangle under considera-
tion is the one formed by the great circle arcs joining the
two points and the closer pole. The complement of each of

the two latitudes is converted from degrees to radians to
yield two sides of the triangle. The polar angle, which is
the difference in longitudes of the two points, is also con-
verted to radians. The arc between the two points is deter-
mined from the following formula:

cos(a) = COS(b) COS(c) + SIN(b) SIN(c) SIN(A)

where a, b, and ¢ are the sides of the spherical triangle and
A is the angle opposite side a.

The arc length is converted from radians to kilometers to
yield the ground distance between the two given points.

2.2.1.8 TAG. Subroutine TAG provides an identifying code
for each battle area in the theater to indicate a change in
status due to FEBA movement. Battle areas so identified may
be in the COMMZ, region rear, or region forward for either
Blue or Red or may be the active battle area of a particular
sector.

2.2.1.8.1 Programming Specifications. The following table
summarizes the principal specifications of TAG:

Characteristic Specification

Formal parameters NBA = Number of battle areas
in the theater

NS Number of sectors

FEBA = FEBA location by
sector

GDBA = Ground distance to
leading edge of each
Lattle area in each
sector

IABAS = Index of the active
battle area by sector
for the last cycle

g e 1

T e e werp=

Characteristic Specification
: & NDFAB = Number of battle areas
1 3 in the region forward
' B . by side
b F NDRAB = Number of battle areas
3 in the region rear by
¥ side
'% : ISAT = Identifying codes
Y assigned by TAG to
é battle areas
% Common blocks Blank Common
Subroutines called None
Called by APORTN, INP, DEG

2.2.1.8.2 Logic Functions. Subroutine TAG determines the
status of a battle area last cycle and its status this cycle.
Then a code is assigned to indicate the change in status,

A battle area is assigned a status code of 1 through 7 with
the following relationship to location:

1

N e WwN

*

YA 2

Red COMMZ

Red Rear

Red Forward
Active Battle Area
Blue Forward

Blue Rear

Blue COMMZ

If I is the status of the battle area at the last cycle,
and J is the current status, the matrix ITR gives the fol-
lowing assignments:

69

T VR A7 RV ¢ TN ORI Syl Ty~ v g

B R "

T g AT T ‘-« S Tt . AR

Ll STt - e vm

I J
1l 2 3 4 5 6 7
1 17 19
L
2 10 15 8 »
3 6 13 4 _
4 2 11 1l .
5 3 12 5
6 7 14 9
7 18 16
where blanks indicate zeros. The meaning of the assignment
code is as follows: .
Code 014 Owner of B/A New Owner of B/A
1 Active B/A Blue Forward
2 Active B/A Red Forward
3 Blue Forward Active B/A
4 Red Forward Active B/A
5 Blue Forward Blue Rear
6 - Red Forward Red Rear
7 Blue Rear Blue Forward
8 Red Rear Red Forward
9 Blue Rear Blue COMM2Z
10 Red Rear Red COMMZ
11 Active B/A No Change
12 Blue Forward No Change
13 Red Forward No Change
14 Blue Rear No Change
15 Red Rear No Change
16 Blue COMM2Z No Change
17 Red COMMZ No Change g
18 Blue COMMZ Blue Rear .
19 Red COMMZ Red Rear
The calculations in this routine are performed sector by .
sector. Subroutine TAG first determines the new active battle R

area INUBA in the sector, based on the new FEBA location.

A, KNI~ A S

o R

A F L

¥ e 2 n

S T e Y

P Sepgns g oo o

ey

I T . R, BT~

Then for each of the seven locations (from Red COMMZ to Blue
COMM2), the highest numbered battle area in the location for
the last cycle and the one for the current cycle are deter-
mined and stored in array IVAL. If the index for a Red loca-
tion is calculated to be less than 1, then the index is set

. to 0. If the index determined for a Blue location is greater

- than the number of battle areas, then the index is set to the
largest battle area in the sector or to 999. (Either will
suffice for the calculations which follow.)

ewinh, 1 s

- Finally, for each battle area, its status last cycle and this
cycle are determined by comparing its index to the values of
IVAL. The change in status, ISTAT, of the battle area is
obtained from array ITR.

[

R

i~

2.2.1.9 APORTN. Subroutine APORTN provides the logic for
apportioning resources such as aircraft, military personnel,
and shelters from each notional airbase to the actual air-
bases which make up the notional base.

2.2.1.9.1 Programming Specifications. The following table
summarizes the principal specifications of APORTN:

b o I SRR ST RN
. D

Xl e

Charécteristic Specification
Formal parameters None
Common blocks Blank Common
Subroutines called TAG
Called by INP, AIRGRD, AIRMOD , Tt

2.2.1.9.2 lLogic Functions. Subroutine APORTN first calls
TAG to determine the change in status for each of the actual
airbases. Then each airbase is assigned a 3-digit tag
ISAB, with the leading digit indicating sector location, the
second one indicating current area location (1, 2, and 3 for
region forward, region rear, and COMMZ, respectively), and
the last digit indicating side. For airbases in the COMMZ,
. the sector location is considered to be 1l; airbases in the
active battle area are tagged as 0 and are not used in any
of the following calculations.

Y N e e TR o RS 0 RGN, . M 5 I

i . For each of the locations (indicated by side, sector, and
area), the actual airbases in that location are identified.
(If the number of actual airbases in a location exceeds 60,

s
[

71

the program terminates with an error message to that effect.)
Then each type of aircraft from the notional airbase for this
location (e.g., ACFS for the forward region) are reallocated
to the actual airbases that make up the notional. This allo-
cation is made in proportion to a weighted number of the sum
of that type aircraft that existed on the actual airbase in
the initial image (IMAGE) and the level of that type aircraft
at the actual airbase at the end of the last cycle (IWORD).

If there were no aircraft of that type in the initial image
of any of these actual airbases or at these actual airbases
during- the last cycle, then that type aircraft at the notional
airbase will be reallocated in proportion to the weighted
number of all aircraft in the initial image. Similarly, the
military personnel (after being adjusted to reflect losses
this cycle) and shelters at the notional airbases are reallo-
cated to the actual airbases which make up the notional. When
all reallocations have been determined, the values are rounded
off and their integer values are stored appropriately in array
IWORD.

When called from INP before the start of the battle, APORTN
also sets the number of aircraft by type, the total number

of aircraft, the number of shelters, and the number of mili-
tary personnel in the original image of the actual airbases
(IMAGE) equal to the values just determined for allocation to
them from the notional airbases in the location.

2.2.1.10 CLR. Subroutine CLR, which contains entry point
CLR2, initializes each item of an array to a value specified
by the call. In general, this routine is called to clear an
array by setting it to zero. To initialize a real array
CLR(Z,N,V) is called; to initialize an integer array
CLR2(IZ,N,IV) is called.

2.2.1.,10.1 Programming Specifications. The following table
summarizes the principal specifications of CLR:

Characteristic Specification
Formal parameters 2 or IZ2 = Array ndme
N = Size of array

V or IV = Value to which
each item of the
array is to be set.

72

i
!
t
¥
i
)
]

Ll

.
F e T

VISR 0 of W v

Characteristic Specification
Common blocks None
Subroutines called None
Called by APORTN, TCTZ, DEG, NUCWPS,

CHEMWPS, AIRASG, CHEM, PREAGDM

2.2.1.10.2 Logic Functions. If subroutine CLR is called,

each of the N 1tems of the array Z is set to the value V.
If entry is made at CLR2, each of the N items of the array
I1Z is set to the value IV.

e

TR

4
i
?
v

2.2.2 LINKA. This subsection describes the routines con-
tained In LINKA. These routines are input and initialization
routines.

2.2.2.1 TZERO. Subroutine TZERO calls two subroutines, one
to read the time-zero inputs and one to initialize the pro-
gram variables and geographic quantities.

2.2.2.1.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine TZERO:

Characteristic Specification
Formal parameters None
Common blocks Blank Common
Subroutines called INP, TCTZ
Called by TMAIN

2,2.2.1.2 Logic Functions. Subroutine TZERO first calls
subroutine INP to process all data input by the user via
cards or card image files. INP screens the information for
format errors and prepares certain data for efficient load-
ing into proper data arrays at a later time. TZERO then
calls subroutine TCTZ to determine certain geographic quan-
tities and to initialize a number of working arrays. TZERO
is called only once during a game.

2.2.2.2 INP. Subroutine INP processes all user-specified
data input via cards or card image files. The program serves
two main functions. First, it checks that the cards are for-
matted correctly according to one of three format types.
Secondly, it prepares the data for loading into the proper
data array in blank Common. The card formats may be input

in any order. The only restriction is that the cards be

arranged in ascending order of days. Cards that are of the

first two format types contain four column integer data and
six column noninteger data, respectively, that are applicable
to the variable name specified on the card. Cards that are
of the third format type contain data that characterize units
arriving in the theater after the war has already bequn.
Finally, airbase image data is read and is used to determine
the number of actual airbases and the resources of each air-
base which compose each notional airbase.

AD=AQ91 491 COMMAND AND CONTROL TECHNICAL CENTER WASHINGTON DC F76 9/2
INSTITUTE FOR DEFENSE ANALYSES TECHNICAL WARFARE (TACWAR) MODEL«~=ETC(U)
SEP 77 M C FLYTHE, P FINNEGANs J REIERSON
UNCLASSIFIED CCTC=CSM=MM=237=77-PT=1

J

fl2
lllllig“

“|I25 |

FEEEEEEE
EEEE

Ei'zlsra

H
:

IIlI'o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

PPN Sl g

2.2.2.2.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine INP:

Characteristic Specification
Formal parameters ’ None
Common blocks Blank Common
Subroutines called TAG, APORTN
Called by : TZERO

2.2.2.2.2 gggic Functions. The code of INP is divided by
comment cards whic el the functions performed by the
logic.

a. Section 10 - Read Input File MIT and Determine
Format %*2 . A card image containing user input 18 read from
nput e MIT. If all data cards have been read, then con-

trol is transferred to section 40. Otherwise, this section
performs the following functions. The last field on the
card, regardless of format, is the day number field, and is
decoded and stored in variable IDAY. The first field is
checked to determine whether it contains an array name or the
word UNIT, indicating that the card contains unit assignment
data. 1In the former case, control is transferred to section
30 and in. the latter to section 20.

b. Section 20 - Process Unit Assignment Data. The
format for unit assignment data consists of fields which
describe the unit ID, the unit strength (the actual number
of people in the division), the unit supplies, the battle
area, sector, region, nationality, and sector tag. Subsec-
tion 3.2.1.1.2 discusses how unit assignments are coded and
what they mean.

If the day number (IDAY) for which the unit data apply is
zero, then the unit strength, the number of unit supplies,
the unit type, and the index to the battle area are decoded
and stored as initial values into the proper input arrays.
The sector, region, nationality, and sector tag are decoded
and stored in an input buffer (IREC). The input arrays and
IREC, together with IDAY and the unit index (ID) are written
to output file JINP. If IDAY is greater than zero, then the
data is decoded and stored into IREC, which is then written
to an unformatted working file (ITTD) of time~t data. 1In

PORIRE, PFTPITLN . T SEPRES

o

ik an

N gy o g s e R Rt O
A AR L TTUtGRAL A T 20 s e .y <1 S LAl e S 1 N A PN N G Y S AT A WA 7T 1o e AT : g

-
-

addition the same information is written to output file JINP.

For a fuller description of the files ITTD and JINP see sub-

sections 3.2.1.2 and 3.2.2. Control is then returned to ‘
section 10, which will read the next input card.

c. Section 30 - Process Array Name Input. First, data . :
array IVARQ is searched for the array name. iVARQ(JV,7) a £
contains information necessary for processing the user-coded
data. Each JV corresponds to the index of the array into
which the input data on the card is to be loaded. There are .

, seven items of information associated with each numbered array -

f name. A more complete description of the contents of IVARQ

3 can be found in subsection 4.1.1.1. If a match is not found
between the input array name on the card and the array names
contained in IVARQ, then an error message is prompted indi-~
cating that the input name is not in the list and the card
is therefore ignored. Control is then returned to section
10. Otherwise, once a match has been found, certain items
of information associated with the array in IVARQ are
retrieved. These items include the maximum index values of
each dimension of the array which, when retrieved, are
stored in variables MAXI, MAXJ, and MAXK. Also, the number
of dimensions of the array is computed and stored in variable
ICL.

Data may be input to an array in a variety of ways. A single
item of data may be input into a specific location of an
array by coding the index fields I, J, and K with values that
indicate the desired location. When a value is coded in the
I field for a one-dimensional array (J and K are left blank),
the item of data on the card is input to that Ith element of
the array. Similarly when values are coded in the I and J
fields for a two-dimensional array or in the I, J, and K
fields for a three-dimensional array, then the single item

of data is input to the Ith by Jth element or the Ith by Jth
by Kth element of the array, respectively. Data may also be
input to an array by specifying several data values on the
same card. Subsection 3.2.1.1.1 discusses coding data in .
this manner. *%

Next, a series of tests are performed comparing the maximum .
index values against the coded values of the I, J, and X
fields on the input card to ensure that the card has been
coded correctly (i.e., I, J, and K should not exceed the
values of MAXI, MAXJ, and MAXK, respectively). If a card .
has been coded improperly, then an error message is prompted
indicating that the card will be ignored. In addition, the

tests on variable ICL determine how the input data was coded
and, consequently, how the data is to be entered. For
example, if ICL=1 and a value greater than zero has been
coded in the 1 field, then the array in question is one-
dimensional (as indicated by ICL) and a single item of data
is to be entered into the location indicated by I. If how-
ever, ICL=1 and I, J, and K have been left blank, then the
data is entered into the one-dimensional array for I =
1,2,3’.0.“1.

Once the method of coding the input has been determined, a
check is made to ensure that the input data lies within the
starting and ending locations of the area in Common that has
been reserved for it by IVARQ. This is done by first deter-
mining the dimension index (I, or J, or K) for which the data
is being entered. Next, variables IST and IMAX are used to
keep track of the relative array index values of the first
and last items of data, respectively, on the input card.

Suppose array A(3,4) is input on three data cards, each of

which contains data for a fixed I index and the four J values.

Bach array in Common is stored such that the first index

varies more rapidly, i.e., the order is a(1,1), A(2,1),

A(3,1), A(1,2), etc. Therefore, when the first data card for

array A (which contains A(1,1), A(1,2), A(1,3), A(1,4)) is

read, IST is set to 1 and IMAX to 10. When the second card {
is read, IST is set to 2, and IMAX to 1ll. ‘

For each card, the relative values that IST and IMAX take on

are added to the starting location of the given array in

Common. If either value lies outside the interval defined :
by the starting and ending locations of the array in IVARQ 5
then, again, an error message is prompted indicating that the
card was coded improperly and is therefore ignored. Control :
is then returned to section 10 which will read the next data

card.

S

If the values fall within the size limits of the array, the

data will be processed. If the data is time-~zero data, then !
it is loaded into the proper array in Common and control :
returns to section 10. If the data is for a later day, an :
output record .is built and written to the unformatted working i
file ITTD for subsequent reading by subroutine TIMET. 1In !
addition, a record is built for each array name and written M
to output file JINP. The record contains the day number; §
the words "RPLACE" or "INCREM", indicating that the data is :
either replaced or incremented; the array name; the number

OIS SO ‘MWWW\W‘WW‘W"WWvaM\

I

1
[
R
v
i
i
E
d

of the continuation card (blank is taken as zero):; the index
values coded in the I, J, and K fields, if applicable; and
finally, the input data to be loaded. Control is then trans- .
ferred to section 10, which will process the next data card.

3 ; d. Section 40 ~ Read Input File IAD and Determine .
: Actual Airbase Resources. When all of the input cards from

L ¥iTe MIT have been processed, subroutine TAG is called to ‘
H ; assign a logic code to each battle area in each sector of
» the theater to indicate its current status. Corresponding

to each logic code there is a two-digit number or a zero in .
; data array MPD. The leftmost digit of the number gives the
3 battle area location for a given airbase (1 designates sector

forward, 2 designates sector rear, and 3 designates the
- COMMZ) and the rightmost digit indicates the side to which
! the battle area currently belongs. A zero value indicates '
that the location is the active battle area and that no
ownership has been established.

ot e TR A

Input file IAD (see subsection 3.2.1.3 for a description of

the file), which contains airbase image data, is then read. }
If any index associated with the number of the airbase is
out of sequence, an error message is prompted indicating the
number of each division force against the standard force,
and combat effectiveness based on resource levels. All
quantities computed in TCTZ are written on output file JINP
when requested by the user (NEPD(2)=0).

AR e Ae

2.2.2.3 TCTZ. Subroutine TCTZ, Theater Control Time Zero,
determines various quantities such as the number of people
and weapons, by type, for each division, the weapon values

of each division force against the standard force, and com-.
bat effectiveness based on resource levels. All quantities
computed in TCTZ are written on output file JINP when request-
ed by the user (NEPD(2)=0).

2,2.2.3.1 Programming Specifications. The following table
sumarizes the principal specifications of subroutine TCTZ:

Characteristic Specification ﬁ%
Formal parameters None . t
Common blocks Blank Common :
Subroutines called SECWTH, EIGENV, MPROD, CVFW,)

CLR
Called by TZERO . 4

78

Eo iy

PR

e R L]

o A P AT e L e

T

2.2,2.3.2 Logic Functions. The code of subroutine TCTZ is

divided by comment cards which label the functions performed
by the logic.

a. Section 5 - Set Division Resources not Specificall

Input b¥ User to TOE Levels. This section of TCTZ 1s per-
orme or each side. The user may input specific values
for the elements of four arrays - PDIV, SDIV, wWbiV, and
NSUTD - the actual number of people, supplies, weapons (by
type), and subunits (by type) in each division. If user
inputs have not been provided, this section of TCTZ sets the
values of these arrays equal to the TOE resource levels for
each division.

b. Section 10 - Comgute NLSR(IR), NLSNS(IS), and Set
FEBA (IS).” This section of TCTZ begins by determining the
Towest numbered sector in each region for each side (NLSR(IR))
based on the user-input highest numbered sector in each
region (NHSR(IR)). The lowest numbered supply node (exclud-
ing node 1) in each sector (NLSNS(IS)) is determined simi-
larly. The location of the Forward Edge of the Battle Area
in each sector (FEBA(IS)) is set to the input value for the
FEBA location at time zero (FEBATZ(IS)).

c. Section 15 - Compute Sectors of Main Attack. In
this sectIon of TCTZ, the index to the sector of main attack
(ISMA (IS)) is set equal to 1 for the sector in each region
that will be the sector of main attack on the first day of
the battle, and equal to 0 for all other sectors. This
section begins by checking the value of ICSMA, which is the
index used to compute the sector of main attack. If ICSMA=2,
then ISMA is set to user input values and the logic flow
branches to section 20. If ICSMA=l, then the model computes
ISMA. The sector of main attack in a region is assumed to
be the sector of maximum FEBA advance in that region, i.e.,
the sector in which the FEBA is the furthest into the
enemy's territory.

d. Section 20 - Calculate Geographical Quantities. The
logic of this section of TCTZ is performed for each sector.
Subroutine SECWTH is called to compute the width of the
sector at the FEBA. The location of the FEBA is compared to
interval boundaries (BNDIS) in order to determine the inter-
val in which the FEBA is located (INTRVL). The kind of
:gsture (KPS) and terrain (KTER) at the FEBA are then deter-

ned.

e. Section 40 - Calculate Weapon Values Against a
Standard Fbrce‘By Using APP. This section of TCTZ begins by

computing values for the elements of the kill potential

79

ek WD, AT s TR

Y
IR T

g R L R RECE S

matrices used in the antipotential potential method of
computing weapon values. Kill potential matrices are con-

structed for Blue ground weapons and air munitions for Blue
on attack and on defense against a Red standard force and,
similarly, for Red ground weapons and air munitions for Red
on attack and on defense against a Blue standard force.

Then, individual ground weapon values on attack and defense
are computed for both sides by subroutine EIGENV. Subroutine
MPROD is used to compute individual air munition values.

f. Section 45 - Compute Effectiveness of All Divisions.
The logic of this section of TCTZ 1s performed once for each
side. First, the total TOE weapons values for a division on
attack and on defense (WVDATS, WVDDTS) are computed for each
division type. Then, the total actual weapon values for a
division on attack and defense (WVDAC, WVDDC) are computed
for each division. The fractional personnel strength is
calculated for each division as the ratio of the actual num-
ber of people in the division to the TOE number of people for
the division. Subroutine CVFW is called twice in order to
evaluate the functions which give PEA and PED, which are the
fractional effectiveness of a division, based on personnel
strength, for attack and defense, respectively. The number
of days of supplies on hand is computed and CVFW is called
to evaluate the function which gives SEF, the fractional
effectiveness of a division due to supply shortages. The
effectiveness of each division on attack (EFFDA) is then
computed based on the values of PEA and SEF, and the ratio
of actual to TOE weapon values. The effectiveness of each
division on defense (EFFDD) is similarly computed from PED,
SEF, and the ratio of actual to TOE weapon values.

g. Section 48 - Coggute IDLIBA{IDViIs,LI and
NDIBA (IS,L). e logic of this section is performed for each
sector and for each side. The index to the battle area
location of each division (IBALD(ID)) is compared to the
//’index of the first inactive battle area in the sector (JBA).

Based on these comparisons, the index to the division in each
location of the first inactive battle area of the sector
(IDLIBA) and the number of divisions in that battle area
(NDIBA) are computed.

h. Section 50 - Initialize Variables. This section of
TCcTz initIalizes, for both sides, a number of arrays which _
will be used to maintain cumulative results and a number of , i
model indices for both sides. Also, veapon inventories,
which were input in hundreds, are converted to units in this
section.

3 80

4
¥
2

3
.
£
ks

4
¥
K

[T

i. Section 55 - Convert Hourl* and Daily Rates to
12-Hour Rates. 1In s section, shipping and supply consump-
tion rates for each side are converted to 12-hour rates.

j. Section 60 - Compute Number of Army-Air Carriers.
This sectIon of TCTZ computes the number of each type of
army-air carrier in each sector for each side by summing the

TOE number of army-air carriers associated with each division
in the sector. Control is then returned to TZERO.

[V FREE S ReEtIc SR, W

S
-i‘"

o RS SO A A R TR S R DY 5T, AN T IS DAY~ T T B et e I PR S 1 Rt Rt g oy G T FRTI Ty TR R ey e

!
i
!

2.2.3 LINKB. This subsection describes the routines con- ;
tained Tn LINKB. These routines produce tables of input '
variables fpr conventional warfare. .

2.2.3.1 WTZERO. Subroutine WTZERO is a calling routine
which controls the printing of the ground combat, theater .

R o i

control, and supply related time-zero inputs read by sub- .
routine INP.
2.2.3.1.1 Programming Specifications. The following table . é
summarizes the principal specifications of subroutine WTZERO: »
Characteristic Specification
Formal parameters None
Common blocks Blank Common, CW
Subroutines called GCouT, TCOUT, SPLYOT
Called by TMAIN

2.2.3.1.2 Logic Functions. WTZERO calls subroutines GCOUT,
TCOUT, and SPLYOT to print input tables on output file JINP. !

2.2.3.2 GCOUT. Subroutine GCOUT writes input tables Il
through 122 on output file JINP. These tables describe model
parameters and contain data about divisions (including loca-
tion, people, weapons, munitions, and supplies), weapon and
munitions values, FEBA movement, and similar data.

2.2.3.2.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine GCOUT:

Characteristic SPecificatio;l
Formal parameters None
Common blocks Blank Common, CW -
Subroutines called None ?
Called by WTZERO : :
2.2.3.2.2 Logic Functions. GCOUT uses formatted write state- ,
2:2::'?nd loops where appropriate to generate the following R

82

Tables Headings
Il Model Parameters \

3 ; 12 Variables That Represent Physical Quan- ;
i . tities .
é A8 I3 Division Data g
f 14 Division Location in Active Battle Area :

L . . (by Sector) : i

I5 Number of People and Weapons by Type
Division (TOE Level)
16 Ground Parameters
17 Aircraft Munitions Load
18 Supply Effectiveness Function (by Days _
of Supplies on Hand) :
19 Blue Percent Casualties : |
' 110 Red Percent Casualties !
I11 Blue Effectiveness Function (by Percent s
Personnel Strength) '
I12 Red Effectiveness Function (by Percent
Personnel Strength)
113 Blue Standard Allocation of Air Munitions
Against Weapons
§ I14 Red Standard Allocation of Air Munitions
i ' Against Weapons
115 Blue Standard Allocation of Weapons
Against Weapons .
* 116 Red Standard Allocation of Weapons %
a Against Weapons b
117 Values for Blue, an Air Munition Against
;e a Weapon
I 83
']

Tables Headings

I18 Values for Red, an Air Munition Against
a Weapon

119 Vvalues for Blue, Weapon Against Weapon
120 Values for Red, Weapon Against Weapon

121 FEBA Movement and Mobility Factors

R gt K s F 5

I22 Movement Constraints Based on Flank
Exposure and Security Force Ratios
(Attacker to Defender)

2.2.3.3 TCOUT. Subroutine TCOUT writes input tables I23
through 132 on output file JINP. These tables describe the

initial structure of the theater in terms of posture, bound-
aries, depth, and width parameters, etc.

2.2.3.3.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine TCOUT:

Characteristic Specification

Formal parameters None

Common blocks Blank Common, CW
Subroutines called None

Called by WTZERO

2.2.3.3.2 Logic Functions. TCOUT uses formatted write state-

ments and loops where appropriate to generate the following
tables:

Tables Headings

I23 Kind of Posture and Terrain in Intervals
in Sectors

124 Number of Intervals, Boundary Latitudes,
and Boundaries in Sectors

Cumulative Ground Distance to Leading
Edge of Battle Area (KM)

Tables Headings

126 Theater Structure, Theater Attacker, ;
and Method for Computing Sector of Main t
Attack !
X I27 Division and Subunit Depth and Width z
Parameters §
z
. 128 Parameters for Division Movement %
I29 Parameters for Reinforcements, Withdrawals, i
and Replacement :

130 Percentages for Weapon Repair
I31 Blue Subunit Data . .

132 Red Subunit Data

2.2.3.4 SPLYOT. This subroutine writes input tables I33
through I36 on output file JINP. These tables describe
supply information such as supply to battle areas, days of
supply on-hand, inventory, and supply consumption rates.

2.2.3.4.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine SPLYOT: :

S Ry T e

Characteristic Specification ;
Formal parameters None i
Common blocks Blank Common, CW Z
Subroutines called None i
Called by WTZERO :

2.2.3.4.2 Logic Functions. SPLYOT uses formatted write
statements and loops where appropriate to generate the fol-

o
<
¥
[

. lowing tables:
% . Tables Headings
% . I33 Supply Nodes Supplying Battle Areas by
. Sector
134 Days of Supply On-Hand

85

R O R 1 R T R S

B e

” ” e i R «w-‘!‘P'w
et o et e et = . S R . . : o

Tables Headings

L 4
135 Supply Nodes...Inventory, Ownership and

Location
3
136 Supply Data and Consumption Rates >
k ?
L
<
|
!

2.2.4 LINKC. This subsection describes the routines con-
tained in LINKC. These routines produce tables of input
variables for nuclear and chemical warfare and target acqui-
sition.

2.2.4.1 WTONE. Subroutine WIONE is a calling routine which
controls the printing of the nuclear, chemical, and target
acquisition related time-zero inputs read by subroutine INP.

2.2.4.1.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine WTONE:

Characteristic Specification

Formal parameters None
Common blocks Blank Common, CW
Subroutines called NUCOUT, CHOUT, TACQOT
Called by TMAIN
2.2.4.1.2 Logic Functions. WTONE calls subroutines NUCOUT,
and CHOUT to print input tables on input file JINP. If the

target acquisition model is played, TACQOT is called to print
additional input tables.

2.2.4.2 NUCOUT. This subroutine writes input tables I37
through I48 on output file JINP. These tables describe such
items as nuclear strike characteristics, targeting information,
escalation criteria, protection categories, nuclear weapon
system resources, etc.

2.2.4.2.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine NUCOUT:

Characteristic Specification

Formal parameters None
Common blocks Blank Common, CW
Subroutines called None

Called by WITONE

s R X i WA W B R Ty

T R R T A BN G RN e e S PR

2.2.4.2.2 ic Functions. NUCOUT uses formatted write
statements and loops where appropriate to generate the fol-
lowing tables:

Tables Heading
137 Escalation State Characteristics 'Y
138 Characteristics of a Preemptive Nuclear
Strike s
[]
. 139 Priority Listings of Preferred Nuclear
Targets
I40 Parameters for Nuclear Targeting
I41 Index to Allowable Target Types (Nuclear)
I42 Criteria for Nucleadr Escalation -
Worsening Tactical Situation
I43 Nuclear Escalation Criteria - Initial
or Increased Use of Nuclear Weapons by
Other Side !
144 Parameters for Surface Burst Targets
145 Protection Categories
I46 Elements for Calculating Blast and Radia-

tion Damage to Personnel from Airburst and
Surface Burst Weapons

147 Vulnerability Numbers
I48 Nuclear Weapon System Resources

2.2.4.3 CHOUT. This subroutine writes input tables I49

through I%5 on output file JINP. These tables describe char- :
acteristics of chemical strikes, target information, employ- ‘%
ment criteria, weapon system characteristics, etc. ‘

2.2.4.3.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine CHOUT:

T S
ia Characteristic Specification
Formal parameters None
Common blocks Blank Common, CW
. Subroutines called None
Called by WTONE
N 2.2.4.3.2 Logic Functions. CHOUT uses formatted write
statements and loops where appropriate to generate the fol-
lowing tables:
Tables Heading
I49 Characteristics of a Preemptive Chemical
Strike .
150 Priority Listings of Preferred Chemical ;
Targets i
I51 Index to Allowable Target Types (Chemical) .
152 Chemical Employment Criteria - Initial or ﬁ
Increased Use of Nuclear Weapons by Other E
Side
IS53 Chemical Employment Criteria - Initial or
Increased Use of Chemical Weapons by Other
Side
154 Weapon System Characteristics (Chemical)
155 Chemical Weapon Systems, Agents, and
, Dissemination Modes
2.2.4.4 TACQOT. Subroutine TACQOT writes input tables I56
. through 164 on file JINP. These tables display ground sensor .
4 and air carrier data, sensor detection rates and probabili- ¥ :
. 12 ties, TOE numbers and factors for sensors and carriers, and # T
i, assignments and attrition rates for army and air force recon- 1
g naissance aircraft. :
£, 2.2.4.4.1 Programming Specifications. The following table :
summarizes the principal spec cations to subroutine TACQOT: f

NP

-.»,
,
W O

89 4

Characteristic Specification

Formal parameters None

Common blocks Blank Common, AL
Subroutines called None

Called by WTONE

2.2.4.4.2 Llogic Functions. Subroutine TACQOT uses formatted

write statements and loops where appropriate to generate the

following tables:

Tables
156
157
158

I59
I60

I6l
I62

I63
I64

Heading

Ground Sensor Data--Operating Altitude,
Index for Target Acquisition Equation
Location

Air Carrier Data--Velocity, Location, Dis-
tance to Target

Detection Rates of Subunits by Air and
Ground Sensors

Army-Air Carrier and Sensor Data

TOE Number and Factors for Ground Sensors
and Army~Air Carriers

Mission Assignments and Attrition Rates
for Reconnaissance Aircraft

Reconnaissance Carriers and Aircraft in
Theater

Reconnaissance Aircraft and Sensor Data

Probability of Subunit Detection

o gy M

W s g e -

+®

2.2.5 LINKD. This subsection describes the routines in
LINKD. These are the air combat model routines.

2.2.5.1 AIRMOD. AIRMOD controls air attrition calculations.
During each cycle AIRMOD is called once to perform the follow-
ing functions: initialize air variables, call attrition sub-
routines, and apply the air combat attrition results to SAM
and aircraft inventories.

2.2.5.1.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine AIRMOD:

Characteristic Specification
Formal parameters None
Common blocks Blank Common, CCCl, CCll,

cccecl, ccc2, czzz, 2z, CCC3,
CCC3a, cCc4, 22, 23

Subroutines called ALLOCT, AIRATT, AOVLI, ATTR1,
AOVL2, ATTRS, ATTR6, APORTN

Called by TMAIN

2.2.5.1.2 Logic Functions. AIRMOD performs air combat cal-
culations for air and SAM resources aggregated into regions.
The code is divided by comment cards which label the functions
performed by the logic.

a. Section 10 - Initialize Air Combat Variables for
Both Sides. Subroutine ALLOCT is called to calculate the
number of aircraft on each notional airbase representing
region forward, region rear and COMMZ airbases. ALLOCT also
calculates the sortie assignments for all aircraft in the .
current cycle and the air munitions load factors for combat
air support aircraft.

After ALLOCT has been called, AIRMOD calculates air-to-air
kill probabilities. The input probability of kill by a side
L type IAC defender of an enemy type KAC escort if they are
engaged is PKDE(IAC,KAC,L). The following kill probabilities
are obtained by multiplying each PKDE by input factors FAPKDA
(L), FAPKAD(L) and FAPKED (L), respectively: PKDAS, the proba-
bility of kill by a defender of an enemy attacker or SAM sup-
pressor; PKAD, the probability of kill by an attacker of an

R e S L

v e s g & e

;
!

enemy defender; and PKED, the probability of kill by an escort
of an enemy defender. After the kill probabilities have been
calculated, arrays for air combat results are initialized.
Aircraft variable names specify the mission and combat status.
For example, ABAERA(IAC) specifies the number of surviving
(alive) escort (E) sorties of type IAC aircraft accompanying
airbase attack aircraft to region-rear (R) airbases. The

last letter of the variable name specifies combat status:

A = alive and continuing on mission, D = aborting damaged,

K = killed, H = aborting undamaged, S = suppressed (for SAMs).

b. Section 5700 - Air Combat Attrition Calculations for
Side L Attackers vs, Side K Defenders, This section, except
for write statements at the end, consists of a single Do loop
which is executed twice-- once for L=1, K=2, then for L=2,
K=1., The first part of this Do loop initializes and aggreg-
ates SAM resources into regions. Air combat attrition cal-
culations are then made for each defending region. The
following table lists the air attrition subroutines called
by AIRMOD to perform those calculations:

Subroutine Function

AIRATT Initialize aircraft and SAM variables

AOVL1 Calculate results of engagements in
forward area

ATTR1 Calculate results of additional engage-~
ments in forward area

AOVL2 Call ATTR2, ATTR3, and ATTR4

ATTR2 Calculate results of engagements
between interdiction sorties and point
defenses

ATTR3 Calculate results of engagements in
rear area

ATTR4 Calculate results of engagements in
the COMMZ

ATTRS Calculate results of engagements

involving close air support attack
sorties

A R o] .

e. e

. L R T

Subroutine Function
ATTR6 Calculate attrition on way home from

mission; convert final sortie results
to numbers of aircraft

Table 2 in subsection 2.1.4 lists the variables calculated

in these subroutines. The depletion of attacker and defender
resources is cumulative from each subroutine section to the
next. If the detail print flag IPRD is set equal to 1,
engagement results are printed out at the end of each section.
The above attrition subroutines perform attrition calculations
using a single-engagement binomial attrition function.

After these attrition calculations, the numbers of SAMs in
each region is updated to reflect attrition during the cycle.
Array WD1IV, the number of weapons remaining in each combat
division, is equal to the number before attrition multiplied
by the fraction of short range SAMs defending that unit which
are still alive.

c. Section 5800 ~ Apg%y Air Combat Xills and Damages
to Aircraft Inventories. The number of aircraft on each
notionalized base in each region is calculated by subtracting
those killed and damaged in air combat in this cycle. Dam-
aged aircraft are added to the maintenance pool DAMPL(IAC,L).
The aircraft numbers are deaggregated from regions back to
sectors. Finally subroutine APORTN is called to allocate
aircraft from notionalized airbases to actual airbases.

2.2.5.2 BINFAC. BINFAC calculates FK, an attrition factor
that is used in ATRTDA to calculate the number of attacking
aircraft sorties killed by defending aircraft.

2.2.5.2.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine BINFAC:

Characteristic Specification

Formal parameters S = Array giving the number of
type I air defense air-
craft in the active battle
area of a given region

923

N 39 T R b

O S

ot

A T SO Ry 901 S0 b MR i L T | rum ettt s g ey b o T

Characteristic

Common blocks

Subroutines called

Called by

CA =

NI =

e B L T N,

Specification

Array giving the average
probability that a type 1
air defense aircraft located
in the combat region will
detect an attacking air-
craft

Array P(I,J) giving the
probability that a type 1
air defense aircraft will
engage and kill a type J
attacking aircraft, given
that the attacking air-
craft was detected

Total number of attacking
aircraft

wWidth of the region at the
current FEBA divided by
the width of the normal
combat area in the region
utilized by the penetra-
ting aircraft

Number of different types
of air defense aircraft

NJ = Number of different types

of attacking aircraft

FK = Array specifying the

None
None

ATRTDA

single engagement binomial
attrition factor calculated
by this routine for each
attacking aircraft type

2.2.5.2.2 Logic Functions. BINFAC calculates the single~
engagement bInomlal attrition factor FK(J). The calling
program ATRTDA calculates AK(J), the number of attacking
aircraft of each type J killed by defending aircraft from
AK(J) = AT(J)* (1-FK(J)). The factor FK(J) is calculated in
BINFAC for each J according to the following equation:

s

NI TTC CA
FK(J) = 1 [1 - 2%%691- (1-(1-9(1)))]
I=1

This equation aggregates the effects of the different types
of defending aircraft. For a more detailed discussion of
this equation see subsection 2.2.5.3.2.

2.2.5.3 BINOAT. Subroutine BINOAT is called by the air
attrition subroutines. BINOAT calculates TK, the number of
targets (aircraft or SAMs) killed when engaged by searchers
(SAMs, defense aircraft, or penetrating aircraft).

2.2.5.3.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine BINOAT:

Rk e

Characteristic Specification g
Formal parameters s = Array dgiving the number C G
of searchers of each v

type ISE

T = Array giving the number
of targets of each type
ITE

D = Array giving the average
probability that a
searcher of type ISE
detects a target

P = Array P(ISE,ITE) giving
the probability that a
type ISE searcher will
engage and kill a type
ITE target given that
the target was detected.

e g i LA BRI gt

g s

Characteristic Specification

C = A factor used to specify
the fraction of the total
number targets that can
be engaged

NSE = Number of different types
of searchers

NTE = Number of different types
of targets

TK = Array giving the number
of targets of type ITE
killed in this engagement

Common blocks None
Subroutines called None
Called by ATRTED, ATRTSA, ATRTSS, ATSPSS

2.2.5.3.2 Logic Functions. BINOAT calculates TK(ITE), the
number of targets killed of each type ITE (ITE=1l,2, ..NSE).
A single-engagement binomial attrition equation is used.
This equation aggregates the effects of the different types
of searchers. A derivation of this equation can be found
in reference 6.

The equation is based on the following assumptions:

a. At a fixed time all targets become vulnerable to
detection and attack.

b. The probability that a searcher of type ISE detects
a target is D(ISE). D(ISE) represents a detection probabil-
ity which is averaged with respect to the numbers of targets
of each type ITE.

c. From the targets (of all kinds) detected by a
searcher, he chooses one to fire upon according to a uniform
distribution.

d. Given that he detects and fires upon a target of
type ITE, a searcher of type ISE destroys that target with
probability P(ISE,ITE).

96

M b

pe? W R

e. A searcher detects different targets independently
of one another.

f. No searcher may fire at more than one target.

g. The detection and firing processes of all searchers
are mutually independent.

The single-engagement binomial attrition factor TOT based on
these assumptions is:

S (ISE)
NTE TTC c
TOT = I [1 -‘ ziz%gézzgl l 1 - (1-D(ISE)) l]
ITE=1
where
NTE
TIC = % :E: T (ITE)
ITE=1

The number of targets killed is TK(ITE) = T(ITE) * (1-TOT).

2.2.5.4 ATSPSS. Subroutine ATSPSS calculates the attrition
resulting from engagements between short-range SAMs and
enemy attack or suppression aircraft.

2.2.5.4.1 Programming Specifications. The following table

summarizes the principal specifications of subroutine ATSPSS:

Characteristic Specification

Formal parameters S = Array giving'the number
of SaMs of each type
. alive and operating

A = Array giving the number
of attacking aircraft
of each type alive and
continuing on mission

97

NPT R S TN

T

Ee R R

Characteristic

FSM

PDA

PSA

PKA

FKLA

ANM

PDS

PKS

FKLS

CA

NX

NI

SA

Specification

Fraction of aircraft
that use standoff muni-
tions to avoid being
shot at by SAMs

Probability that an air-
craft detects SAMs

Probability of suppres-
sion of SAMs by aircraft

Array giving the proba-
bility of kill of SAMs
by aircraft

Fraction of kills that
are lethal when an air-
craft shoots at SAMs

Actual number of SAM
missiles in theater
(including munitions for
AAR)

Probability that a SAM
detects aircraft

Probability that a SAM
kills aircraft

Fraction of kills that
are lethal when a SAM
shoots at aircraft

Number of penetration
corridors

Number of types of SAMs

Number of types of
aircraft

Array specifying the
number of SAMs alive and
operating after this
engagement

g

STE ey s

Characteristic Specification

SS = Array specifying the
number of SAMs suppressed
in this engagement

SK = Array specifying the
number of SAMs killed
in this engagement

sD = Array specifying the
number of SAMs damaged
but not killed in this
engagement
AA = Array specifying the
number of aircraft alive
and operating after this
engagement
AK = Array specifying the
numbexr of aircraft
killed in this engage-
ment
AD = Array specifying the
number of aircraft
damaged but not killed
in this engagement
Common blocks None
Subroutines called BINOAT
Called by ATTR1, ATTR2, ATTR3, ATTR4,
) ATTRS

2.2.5.4.2 Logic Functions. Subroutine ATSPSS calculates
the engagements between short-range SAMs and enemy attack or
suppression aircraft. The numbers of SAMs killed, damaged,
and suppressed .are calculated by calling subroutine BINOAT,
which uses a single-engagement binomial attrition equation.
ATSPSS also calls BINOAT to calculate the number of aircraft
killed and damaged by the SAMs. BINOAT calculates both air-
craft and SAM kills using the number of aircraft and SAMs
available at the start of the engagement. The actual number

99

Ay A

Py

T T NN Y. ST

S o N RN - VAN - o et T T AP me - end 1 o

e g g ST 25

of SAMs in the theater after this engagement, ANM, is equal
to the number in the theater before this engagement minus
the number fired at aircraft.

Y

2.2.5.5 ATRTED. Subroutine ATRTED calculates the attrition j
resulting from engagements between defense aircraft and y

attack escort aircraft. .
2.2.5.5.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine ATRTED: * a
Characteristic Specification
Formal parameters ET = Array specifying the

number of attacking
escort aircraft sorties
of each type

DT = Array specifying the i
number of defending air- !
craft sorties of each
type

PDE = Probability of detection
by escort aircraft of
defending aircraft

PDD = Probability of detection
by defending aircraft of
escort aircraft

PKE

Array specifying the
probability of kill by
escort of defending
aircraft

PKD = Array specifying the
probability of kill by
defending aircraft of
escort aircraft

FKLE = Fraction of kills that .
are lethal when attack
escort shoots at
defender .

100

[E RSP W

PRy §

e

Characteristic

FKLD

CA

N1l

N2

AEE

AED

EA

EK

ED

EH

Specification

Fraction of kills that
are lethal when defender
shoots at escort air-
craft

Fraction of the sector
width occupied by the
combat area

Number of attack escort
types

Number of defending
aircraft types

Average number of addi-
tional engagements (in
addition to 1) that an
escort can make

Array specifying the
number of additional
engagements (in addition
to 1) that a defender
can make

Array specifying the
number of escort sorties
alive and continuing on
their mission

Array specifying the
number of escort sorties
killed in this engage-
ment

Array specifying the
number of escort sorties
damaged but not killed
in this engagement

Array specifying the
number of escort sorties
aborting and returning
home undamaged

Characteristic Specification

DA = Array specifying the
number of defender
sorties alive and con-
tinuing on their mission

DK = Array specifying the
number of defender
sorties killed in this
engagement

DD = Array specifying the
number of defender
sorties damaged but not
killed in this engage~-
ment

DH = Array specifying the
number of defender
sorties aborting and
returning home undamaged

Common block None
Subroutines called BINOAT
Called by AOVL1, ATTRl, ATTR3, ATTR4

2.2.5.5.2 Logic Functions. Subroutine ATRTED calculates’ the
results of engagements between attack escort aircraft and
defending aircraft. This subroutine calculates the number
of escort and defending aircraft sorties of each type that
are alive, killed, damaged, and aborted after the engagement.
The calculations are made using subroutine BINOAT which uses
a single-engagement binomial attrition equation. The number
of sorties of escort and defending aircraft aborting their
mission and returning home undanaged is set equal to the
number of those aircraft sorties detected by enemy a1rcraft
minus the number killed and damaged.

2,2.5.6 ATRTSA. Subroutine ATRTSA calculates the attrition
of penetrating aircraft (attack, escort, and suppression) as
they fly by SAM defenses.

2.2.5.6.1 Programming Specifications. The following table
summarizes the principal spec cations of subroutine ATRTSA:

102

N

Characteristic

Formal parameters

PD

PK

PARH

FKLSA

AVGSS

CA

NTS
NTE

103

Specification

Array specifying the
number of SAMs of each
type alive and operating

Array specifying the
number of penetrating
aircraft sorties of
each type

Probability of detection
of penetrating aircraft
by SAMs

Probability of kill by
SAMs of enemy aircraft

Probability that an
aircraft returns home
when engaged by SAMs

Fraction of kills that
are lethal when a SAM 4
shoots at an aircraft 3

Actual number of missiles
in the theater

Average number of possi-
ble shots per SAM fire
control center

Number of penetration
corridors in region

Number of types of SAMs

Number of types of
aircraft

Array specifying the
number of penetrating
aircraft sorties alive
and operating after this
engagement

v AT

-,

Characteristic Specification

AK = Array specifying the
number of penetrating
aircraft sorties killed
in this engagement .

AH = Array specifying the
number of penetrating
aircraft sorties aborted .
and returning home .
undamaged before this
engagement

AD = Array specifying the
number of penetrating
aircraft sorties damaged
but not killed in this

engagement
Common blocks None
Subroutines called BINOAT
Called by AOVL1, ATTR1l, ATTR2, ATTR3,

ATTR4, ATTRS

2,2.5.6.2 ic Functions. Subroutine ATRTSA calculates

the results of engagements between SAMs and fly-by-penetrating
aircraft. Subroutine BINOAT is called to calculate the fol-
lowing quantities using a single-engagement binomial attri-
tion equation: (1) the number of aircraft sorties of each
type alive and continuing on their missions (AA), (2) the
number of aircraft sorties aborting their missions and
returning home (AH), (3) the number of aircraft sorties killed
by the SAMs (AK), and (4) the number of aircraft sorties
damaged but not killed (AD). The actual number of SAMs
remaining in the theater after this engagement (ANM) is set
equal to the number in the theater at the start of the
engagement minus the SAMs fired at aircraft.

2,2.5.7 ATRTDA. Subroutine ATRTDA calculates the results
of engagements between defending aircraft and penetrating
attack and defense suppression aircraft.

2.2.5.7.1 Programming Specifications. The following table .
summarizes the principal specifications of subroutine ATRTDA:
104

FHVCIP TN SRS " P N,

. e

Characteristic

Formal parameters

AT

ss

PD

PKD

PKS

PAJO

PSJO

105

Specification

Array specifying the
number of defending
aircraft sorties of each

type

Array specifying the
number of attack air-
craft sorties of each

type

Array specifying the
number of attacking

suppression aircraft
sorties of each type

Probability of detection
by defending aircraft of
an enemy aircraft flying

by

Array specifying the
probability of kill by
defender of attack air-
craft if they are
engaged

Array specifying the
probability of kill by
suppressor of defender
if they are engaged

Array specifying the
probability that an
attacker, when engaged,
jettisons its ordnance
and returns fire

Array specifying the
probability that a
suppressor, when engaged,
jettisons its ordnance
and returns fire

As ut PirabamaLed o

Ml e Rl

Characteristic

PKDNS

FKLAS

FKLD

N1

N2

DA

DK

DH

106

Specification

Array specifying the

probability of kill by

defender of suppressor .
if they are engaged .

Fraction of kills that

are lethal when an .
attacker or suppressor .
shoots at a defender

Fraction of kills that
are lethal when a
defender shoots at enemy
aircraft

Average number of addi-
tional engagements (in
addition to 1) that a
defender can make

Fraction of the sector
width occupied by the
combat area

Number of attack and
suppression aircraft
types

Number of defender air-
craft types

Arsay specifying the
number of defender
sorties alive and con-
tinuing on their mission

Array specifying the
number of defender <,
sorties killed in this
engagement

Array specifying the .
number of defender
sorties aborting and
returning home undamaged

N

o e A

s w o SIS BN

Characteristic

DD

AK

SA

SK

SH

107

Specification

= Array specifying the

number of defender
sorties damaged but not
killed in this engage-
ment

Array specifying the
number of attack air-
craft sorties alive and
continuing on their
mission

Array specifying the
number of attack air-
craft killed in this
engagement

Array specifying the
number of attack air-
craft aborting and
returning home undamaged

Array specifying the
number of attack air-
craft damaged but not
killed in this engage-
ment

Array specifying the
number of suppression
aircraft sorties alive
and continuing on their
mission

Array specifying the
number of suppression
aircraft sorties killed
in this engagement

Array specifying the
number of suppression
aircraft sorties aborting
and returning home
undamaged

B B LT oW s

Characteristic Specification

- R

sD = Array specifying the
number of suppression ‘ ¢
aircraft sorties damaged
but not killed in this .

. WA, . T -

engagement .
Common blocks None | ;
Subroutines called BINFAC . X
Called by AOVL1, ATTR1l, ATTR3, ATTR4,
ATTRS

2.2.5.7.2 Logic Functions. Subroutine ATRTDA calculates

the results of engagements between defending aircraft and

penetrating enemy aircraft. The enemy penetrators are attack

aircraft accompanied by defense suppression aircraft. The

numbers of penetrating aircraft sorties killed, damaged, or -)
aborted by defenders are calculated after calling subroutine :
BINFAC to calculate single-engagement binomial attrition

factors. These factors are based on the assumption that each

defender may detect several penetrators simultaneously, but

can engage only one at a time. When detected, penetrators

may jettison ordnance and return fire. The number of defender, '
sorties killed in an engagement is obtained by multiplying ?
the number of penetrators returning fire by the probability . !
that the attacker kills the defender.

2.2.5.8 ATRTSS. Subroutine ATRTSS calculates aircraft and
SAM attrition resulting from engagements between suppression
aircraft and medium and long-range belt SAMs.

2.2.5.8.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine ATRTSS:

Characteristic Specification
Formal parameters S = Array specifying the e
number of SAMs alive e :

and operating

AVGSS = Average number of possi-
: ble shots per SAM fire -
control center

108

IERpr x| 4
.

Characteristic

PDA

PSA

PKA

FKLA

PDS

PKS

FKLS

CA

NX

NI

Specification

Array specifying the
number of attacking sup-
pression aircraft

alive and continuing

on mission

Probability that a sup-
pression aircraft detects
SAMs

Probability of suppression
of SAMs by suppression
aircraft

Probability of kill of
SAMs by suppression
aircraft

Fraction of kills that
are lethal when an air-
craft shoots at SAM

Actual number of SAM
missiles in theater
(including munitions for
AAR)

Probability that SAM
detects SAM suppression
aircraft

Probability that SAM
kills enemy aircraft

Fraction of kills that
are lethal when SAM
shoots at aircraft

Number of penetration
corridors

Number of types of SAMs

Number of types of air-
craft

A NG Ny T e o

BT =

PPy RN

Characteristic

Common blocks
Subroutines called

Called by

Specification

SA = Array specifying the
number of SAMs alive and
operating after this
engagement

ss = Array specifying the
number of SAMs suppressed
in this engagement

SK = Array specifying the
number of SAMs killed in
this engagement

SD Array specifying the
number of SAMs damaged
but not killed in this

engagement

AA = Array specifying the
number of suppression
aircraft sorties alive
and operating after this
engagement

AH Array specifying the
number of suppression
aircraft sorties aborted
and returning home undam-

aged after this engagement

AK = Array specifying the
number of suppression
aircraft sorties killed
in this engagement

AD = Array specifying the
number of suppression
aircraft sorties damaged
but not killed in this
engagement

None

BINOAT

AOVL1, ATTR1, ATTR3, ATTR4

110

2.2.5.8.2 Logic Functions. Subroutine ATRTSS calculates

the results of engagements between attacking suppression
aircraft and medium or long range belt SAMs. The calcula-
tions are made using subroutine BINOAT which uses a single
engagement binomial attrition equation. First SK, SD and
SS, which represent the number of SAMs killed, damaged

and suppressed, respectively, are calculated. The number
of SAMs alive after the engagement (SA) is set equal to
the number killed, damaged and suppressed. The number of
missiles in the theater after this engagement (ANM) is set
equal to the number at the start of this engagement less
those shot at the aircraft.

The number of missiles capable of firing at the start of the
engagement is used to calculate the numbers of suppression
aircraft sorties damaged (AD) and killed (AK). The number
of aircraft sorties returning home undamaged after the
engagement (AH) is set equal to the number of suppression
aircraft sorties that detect SAMs minus the aircraft sorties
killed or damaged. AA, the number of suppression aircraft
sorties alive and continuing on their mission after this
engagement, is set equal to the initial number (A) minus the
sum of the number returning home undamaged, the number
damaged and the number killed.

2.2.5.9 ALLOCT. Subroutine ALLOCT calculates air resource
variables for use by attrition and assessment subroutines.
ALLOCT first calculates the weighted number of target air-
craft on each notional airbase. Assignments for aircraft
based in the COMMZ are then computed. The next section
computes assignments for aircraft from region rear airbases.
The following section computes assignments for aircraft

from region forward airbases. The number of sorties on each
mission is calculated next. This is done after subroutine
DEG has been called to compute the degradation of sortie
capability. Finally, the last section computes air munition
load factors for aircraft flying CAS missions. The aircraft
assignments and sortie calculations are made to maximize

the destruction of enemy resources. The equations used in
ALLOCT result from the marginal allocation of aircraft to
targets to obtain this maximum destruction. Marginal allo-
cation is discussed in reference 2.

2.2.5.9.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine ALLOCT:

=y

B

Characteristic Specification
Formal parameters None
Common blocks Blank Common, CCCl, CCll1l,
ccccl, ccc2, Cczzz, 22 .
Subroutines called DEG '
Called by AIRMOD v .

2.2.5.9.2 Logic Functions. Each section of ALLOCT is exe-
cuted twice, once for Blue aircraft against Red targets and
defenses and.again for Red aircraft against Blue targets and
defenses. The subroutine code is divided by comment cards

which label the functions performed by the logic.

a. Section 100 - Compute Weighted Number of Target
Aircraft on Each Notional Alrbase. The alir resources are
represented by a notional airbase in each sector forward, a
notional airbase in each sector rear and a notional airbase
in the COMMZ. The weighted number of target aircraft is
calculated for each of the notional bases in each sector,
and then the weighted number of target aircraft on the
notional COMMZ airbase is calculated. The calculations are
made by adding the weighted numbers of aircraft on all of
the bases in the sector forward (or rear or COMMZ) and divid-
ing by the actual number of airbases in the sector forward
(or rear or COMMZ).

The weighting procedure influences the subsequent assignment
of airbase attack missions causing more firepower to be
directed toward the unsheltered aircraft. Input weighting
factors for side K include

WFCNSA(K) -- nonsheltered aircraft vs. sheltered
aircraft
WFCQRA (K) -- quick reaction aircraft vs. nonquick
reaction aircraft .
WFCRA(K) -- rear based aircraft vs. forward based .
aircraft

WFCZA(K) -- COMMZ aircraft vs. forward based aircraft .

N

R R R

T AT g, TRt 3 o e

Sty

e

b. Section 105 - Convert Sectors to Enemy Regions. The

notional airbases in the sectors within each region are com-
bined into a region forward and a region rear airbase. This
aggregation reduces the number of allocations and sortie
assignments required. The number of actual forward and rear
enemy airbases ABASEF (IR) and ABASER(IR) in each region IR
is obtained by summing the actual number of bases in the
sectors in each region. The weighted numbers of aircraft
WTAFS (IR) and WTARS (IR) in region IR are obtained by summing
the weighted numbers of aircraft in the sectors of region IR.

c. Sections 110, 120, and 130 - Fractional Aircraft
Assignments. These three sections are part of a single DO
loop over each attacking aircraft type IAC. These sections
compute the fraction of attacker aircraft from COMMZ, region
rear or region forward bases assigned to each mission in each
enemy region. Each section begins by initializing the frac-
tions of aircraft allocated to each mission. Then the appro-
priate marginal allocation equations (selected by aircraft
range) are used to calculate the fractions allocated to each
mission. These fractions depend on input values of frac-
tional assignments for various missions and the weighted
number of target aircraft in each enemy region.

The fractions are stored in arrays specified by six-letter
array names, e.g., FAIARF(IAC,IS,I). The third and fourth
letters of the array name of each fraction specify the
mission.

The following missions are specified:

AA Air base attack (ABA)°

AD Area defense

AE ABA escort

AS Sam suppression for ABA missions
BS Belt SAM suppression (BSSUP)
CA Close air support attack (CASA)
CD Battlefield defense

CE CAS escort

CSs CAS SAM suppression

IA Interdiction attack (INTDA)

IE INTDA escort

IS INTDA SAM suppression

The fifth letter of the array name specifies the base loca-
tion of the assigned aircraft: F=region forward, R=rear,
2=COMMZ. The sixth letter specifies the enemy region to

which these aircraft are assigned. Thus FAIARF (IAC,IS,I)
specifies the fraction of side I type IAC aircraft assigned
from rear bases in region IS to fly INTDA missions into the
enemy forward region.

Section 110 computes COMMZ-based aircraft assignments, sec-
tion 120 computes rear-based aircraft assignments, and section
130 computes forward-based aircraft assignments.

d. Section 140 - Compute Number of Sorties on Each
Mission. Subroutine DEG is called to compute degraded sortie
rate capabilities for both Red and Blue forces by considering
supply shortages or loss of other operating capabilities at
airbases. The remainder of Section 140 is then executed
twice, once for Red attackers and once for Blue attackers.

The number of aircraft available in each region is calculated
by applying the degradations calculated by DEG to the region
forward, region rear, and COMMZ airbases. Then the number

of aircraft sorties of each aircraft type assigned to each
mission in each enemy region is calculated. The number of
sorties are calculated by summing the product of the frac-
tional aircraft assignments, the number of aircraft available
in each region, and the 12-hour sortie rate.

e. Section 150 - Compute Air Munitions Load Factors
for CAS Mission. The air munition load per sortie depends
on the distance flown from base to target. This section
calculates AMLFD(IAC,IS,L), the average air munition load
factor for each side L close-air-support attack aircraft of
type IAC flying to targets in enemy sector IS,

AMLFD (IAC,IS,L)

1 [TEMP + TEMPl* (AMLFR(IAC,L)) + TEMPZ*(AMLFZ(IAC,L))]

T NS(K)* TEMP + TEMP1 + TEMP2
where
TEMP = Number of side L CASA aircraft of type
IAC based on region forward bases
TEMP1 = Number of side L CASA aircraft of type

IAC based on region rear bases

TR

DA T AR

L S

TEMP2 = Number of side L CASA aircraft of type
IAC based on COMMZ bases

AMLFR(IAC,L) Air munition load factor (input) for

rear-based aircraft

AMLFZ (IAC,L) Air munition load factor (input) for
© COMMZ-based aircraft
NS (K) = Number of enemy (side K) sectors

2.2.5.10 DEG. Subroutine DEG determines the current oper-
ating capability and supply level at each notional airbase.

2.2.5.10.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine DEG:

Characteristic Specification

Array specifying the
degraded sortie rate
capability of sector
forward airbases

Formal parameters DEGSRF

DEGSRR = Array specifying the
degraded sortie rate
capability of sector
rear airbases

DEGSRC = Array specifying the
degraded sortie rate
capability of COMMZ
airbases

Common blocks Blank Common, CCCCl, CcCcC2,

Cczzz, 7z

Subroutines called CLR, TAG, CVFW
Called by ALLOCT

2.2.5.10.2 Logic Functions. The sortie rate capability at
an airbase can be degraded by destruction resulting from air-
base attacks or by inadequate supply levels. DEG calculates
the average capability (before degradation) for bases in each
sector, applies the current degradations, and converts the

i
§

degraded sortie rate capabilities from sectors to regions.
The following paragraphs describe the three sections of code
which perform these calculations.

a. Section 100 - Operational Capability Before Current
Degradation. After variables have been initialized, the
current operational capability (before degradation) of each
actual base is obtained by adding to the operating capability
the fraction of destroyed capability which has been recovered
since the previous cycle. The initial degraded sortie rate
capability is calculated for the notionalized base in each
sector by summing the operational capabilities of all of the
actual bases in the sector and then dividing by the number
of actual bases in the sector,

b. Section 200 - Apply Current Degradations. This
section reduces the degraded sortie rate capability for the
current cycle. Two reductions are considered: supply short-
age and airbase capability destroyed by enemy air attacks.
The degraded sortie rate capability for each sector is set
equal to the smaller of these two degradations. The degraded
sortie rate capability due to shortage of supplies is the
ratio of the tons of supplies available to tons of supplies
required by all of the aircraft at a base. The degraded
sortie rate capability after enemy attack is the degraded
sortie rate capability calculated in the first section of
this subroutine multiplied by the fraction of base capability
surviving the attack as determined by an exponential damage
function.

c. Section 300 - Convert Degradation Factors From
Sectors to Regions. This section converts the degraded
sortie rate capabilities from sectors to regions in the fol-
lowing way: The number of aircraft on each sector forward
(rear) base of the region is multiplied by the degraded
sortie rate capability of the notionalized base in that
sector forward (rear) to obtain a degraded number of aircraft.
The degraded sortie rate capability of the region forward
(rear) notionalized base is the sum of the degraded numbers
of aircraft for all sectors on the region forward (rear)
bases divided by the total number of undegraded aircraft
based on region forward (rear) bases.

2.2,5.11 AIRATT. Subroutine AIRATT initializes the numbers
of aircraft and SAMs alive, damaged and killed.

2.2.5.11.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine AIRATT:

116

Characteristic Specification

]

‘ Formal parameters None

L Common blocks Blank Common, CCCl, CCll
* ccccl, ccc2, czzz, CCC3,
b CCC3A, CcCC4, 22, 22, 23

Subroutines called None

; Called by AIRMOD

2.2.5.11.2 Logic Functions. AIRATT is called by AIRMOD to
initialize the numbers of aircraft and SAMs alive,' damaged
and killed before the attrition routines are called by AIRMOD.
AIRATT is called once for each region IS. %ide L attacks
side K. The first section of AIRATT calculates the total
number of aircraft sorties in the region assigned to each
attack and defense mission. The second section calculates
the number of SAMs that are operating in the region.

a. Section 100 - Aircraft Calculations. In this sec-
tion, the number of alive attacking aircraft sorties of each
type IAC is set equal to the value calculated in subroutine
ALLOCT; for example, ABAAFA(IAC) = ABAFA(IAC,I1S,L). These
numbers of alive attacking aircraft sorties are also added to
the cumulative totals (e.g., CAAFSK(IAC,1l,L)) for all regions.
The numbers of aircraft killed, aborted, and damaged in the }
current cycle are set equal to zero.

The last half of this section initializes similar variables

. for the defending aircraft of each type KAC on side K. FWPC,
the fraction of defenders able to engage attackers, is calcu-
lated as follows:

FWPC = (Width of penetration corridor + lateral range
of defender)* (number of penetration corridors)/
(width of region)

The number of alive area defense sorties capable of engaging
. attackers (e.g., ABADGA(KAC)) is equal to the number of
defense sorties as calculated in ALLOCT multiplied by FWPC.

b. Section 200 - SAM Calculations. This section of
. AIRATT initializes the number of SAMs of each type alive,
killed, damaged, and suppressed. Calculations are made for

PV

.

117 .

i&\ A 2 AN .‘.', .
IR
g : £

short-range SAMs (or AAA) defen
medium-range belt SAMs and fina
viding area defense in front of

For short-range SAMs, the numbe
to the number of SAMs multiplie

ding airbases, then for
lly for long-range SAMs pro-
rear and COMMZ airbases.

r of alive SAMs is set equal
d by the fraction of actual

airbases under attack. The number of alive medium- and long- .

range SAMs capable of engaging
number of those SAMs multiplied
lated in the same manner as for

2.2.5.12 AOQVL1. Program AOVL1
engagements between penetrating
and SAMs in the forward area of

attackers is equal to the
by a fraction FWPC, calcu-
aircraft.

calculates the results of
aircraft and defense aircraft
the theater. Calculations

are made by calling the appropriate attrition subroutines.

2.2.5.12.1 Programming Specifications. The following table
summarizes the principal specifications of AOVL1:

Characteristic Specification

Formal parameters None
Common blocks Blank Common, CCCl, CC1l1l,
CcCcccl, ccc2, czzz, CCC3,
CCCc3Aa, ccc4, z2, 23, 22

Subroutines called ATRTED, ATRTSA, ATRTDA,
ATRTSS
Called by AIRMOD

2.2.5.12.2 Logic Functions. Subroutine AOVL1 calculates
aircraft sortie and SAM attrition in the forward area of the
theater. The code is divided by comment cards which label
the functions performed by the logic.

a. Section 100 - Combat Air Support Escort Vs. Battle-
field Defense Aircraft. The results of engagements between
escort (CASE) and defense (CASD) aircraft are calculated
using subroutine ATRTED. .

b. Section 200 - Fly-by Penetrators Vs. Short-Range
SAMs Defending Combat Units. The attrition of penetrators
(ABAAF, ABAEF, ABASF, ABAAR, ARAER, ABASR, ABAAZ, ABAEZ, .
ABASZ, INTDA, INTDE, INTDS, BSSUP) as they fly past short-

range SAMs (PSRSC) defending combat units is calculated using
subroutine ATRTSA.

118

c. Section 300 - Belt SAM Suppression Aircraft Vs.
Battlefield Defense Aircraft. The results of engagements

between suppression (BSSUP) and CASD aircraft are calculated
using subroutine ATRTDA.

d. Section 400 - Belt SAM Suppression Aircraft Vs.
Medium-~Range Belt SAMs. The results of engagements between
SAM suppression aircraft (BSSUP) and medium~range belt SAMs
(BMRS) are calculated using subroutine ATRTSS.

e. Section 500 - Attack Escorts Vs. Battlefield Defense
Aircraft. The results of engagements between defense (CASD)
and attack escort aircraft (ABAEF, ABAER, ABAEZ, INTDE) are
calculated using subroutine ATRTED.

f. Section 600 - Attack and Suppression Aircraft Vs.
Battlefield Defense Aircraft. ATRIDA 1s used to calculate
results of engagements between defense (CASD) aircraft, and
airbase and interdiction attack and suppression aircraft
(ABAAF, ABAAR, ABAAZ, ABASF, ABASR, ABASZ, INTDA, INTDS).

At the end of each section of AOVL1l, the number of attackers
and defenders alive and able to continue on their missions

is recomputed to reflect the attrition calculated in that
section. If the detail print flag IPRD=1, engagement results
are printed out at the end of each section. Additional cal-
culations involving engagements between penetrators and
forward area SAM (BMRS and PSRSF) and aircraft (ABADF)
defenses are made in subroutine ATTR1l. Engagement results
for CASD aircraft vs. CASA and CASS penetrators are calcu-
lated in ATTRS.

2.2.5.13 ATTR1. ATTR1l calculates additional results of
engagements between penetrating aircraft and defending air-
craft and SAMs in the forward area of the theater. The
number of successful airbase attack (ABA) sorties to forward
airbases is calculated.

2.2.5.13.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine ATTR1:

Characteristic Specification
Formal parameters None
Common blocks Blank Common, CCCl, CCll1,

CcccCl, cCcc2, Cc2zz, CCC3,
CCC3A, CCC4, Z2, 23, 22

TIPSR PP S

Characteristic Specification

Subroutines called ATRTSS, ATRTED, ATRTDA,
ATSPSS, ATRTSA

Called by ¢ " © AIRMOD
2.2.5.13.2 Logic Functions. Subroutine ATTR1l calculates

aircraft and SAM attrition in the forward area of the theater.
Calculations are made as described below.

a. Section 700 - Suppression Aircraft Vs. Medium-Range
Belt SAMs. The results of engagements between penetrating
suppression aircraft (ABASF, ABASR, ABASZ, INTDS) and medium-
range belt SAMs (BMRSA) are calculated using subroutine
ATRTSS.

b. Section 800 - Fly-by Penetrators Vs. Medium-Range
Belt SAMs. The attrition of attack (ABAAF, ABAAR, ABAAZ,
INTDA) and escort (ABAEF, ABAER, ABAEZ, INTDE) aircraft as
they fly past the medium~range belt SAMs (BMRSA) is calculated
using subroutine ATRTSA.

c. Section 900 - Attack Escort Aircraft Vs. Defendlng
Aircraft in the Forward Area. Subroutine ATRTED is called
to calculate the results of engagements between defense air-
craft assigned to forward regions (ABADF) and attack escort
aircraft (ABAEF, ABAER, ABAEZ, INTDA).

d. Section 1000 - Attack and Suppression Aircraft Vs,
Defendlng Alrcraft in the Forward Area. Subroutine ATRTDA
1s called to calculate the results of engagements between
ABADF defense aircraft, and attack (ABAAF, ABAAR, ABAAZ,
INTDA), and suppression (ABASF, ABASR, ABASZ, INTDS) aircraft.

The remainder of ATTR1l addresses the attack of airbases in
the forward region.

e. Section 1600 - Suppression Aircraft Vs. Forward
Airbase POint Defenses. Subroutine ATSPSS is called to

calculate the results of engagements between the short-range «
SAMs (or AAA) providing point defenses for forward airbases
(PSRSFA) and suppression aircraft assigned to forward air- .

bases (ABASF).

120

f. Section 1800 - Airbase Attack Aircraft Vs. Forward
Airbase Point Defenses. Subroutine ATRTSA 1s called to
calculate the attrition of the forward airbase attack air-
craft (ABAAF) when they encounter the surviving point defenses
(PSRSFA) ,

g. Section 1900 - Accumulate Results for Forward Area.
This section sums up the results. CSABAF(1AC,L) 1s the
cumulative number of successful side L ABA sorties of type
IAC against side K forward airbases. SABAF (IAC,IS,L) equals
the number of successful sorties against forward airbases in
region IS. The number of ABAAF aircraft sorties alive
(ABAAFA (IAC)) is set equal to the number alive at the target
plus the total number that have aborted and returned home
undamaged.

At the end of each section of ATTR1 the numbers of attackers
and defenders alive and able to continue on their missions
are recomputed to reflect the attrition calculated in that
section. If the detail print flag IPRD=1, engagement results
are printed out at the end of each section.

2.2.5.14 AQVL2. AOVL2 is a control program which calls
attrition subroutines ATTR2, ATTR3, and ATTRA4.

2,.2.5.14.1 Programming Specifications. The following table
summarizes the principal specifications of program AOVL2:

Characteristic Specification
Formal parameters None
Common blocks Blank Common, CCCl, CCll,

ccccl, cccz, Czzz, 7z,
CCC3, CCC3Aa, CCc4, Z2, 23

Subroutines called ATTR2, ATTR3, ATTR4
Called by AIRMOD

2.2.5.14.2 Logic Functions. The AOVL2 program consists of
three call statements. ATTR2 is called to calculate attri-
tion resulting from engagements between interdiction aircraft
and opposing ground defenses. ATTR3 is called to calculate
aircraft and SAM attrition in the rear area of the theater.
ATTR4 is called to calculate aircraft and SAM attrition in
the COMMZ.

121

2.2.5.15 ATTR2. Subroutine ATTR2 calculates the results of
interactions between interdiction aircraft and opposing
ground defenses prior to these aircraft delivering their
ordnance on interdiction targets.

y 2.2.5.15.1 Programming Specifications. The following table
t summarizes the principal specifications of subroutine ATTR2:

s Characteristic Specification
Formal parameters None
Common blocks Blank Common, CCCl, CCl1,

cccel, cccz2, czzz, 72,
CCC3, CCC3A, CCC4, Z2, 23

Subroutine called ATSPSS, ATRTSA
Called by AOVL2

2.2.5.15.2 Logic Functions. The ATTR2 subroutine calculates
the results of engagements between interdiction attack (INTDA)
and suppression (INTDS) aircraft on side L, and the opposing
ground point defenses (PSRSIA) in each sector IST of the enemy
region. The input variable FINTRS (IST,L) specifies the
fraction of side L aircraft on interdiction missions into

each enemy region that are sent to sector IST of that region.
The code is divided by comment cards which label the functions
performed by the logic.

a. Section 2100 - Interdiction Suppression Aircraft Vs.
Point Defenses. In this section, subroutine ATSPSS is called
to calculate the results of engagements between interdiction
suppression aircraft sorties and opposing SAM or AAA point
defenses defending combat divisions in the first inactive
battle area of each sector.

b. Section 2300 - Interdiction Attack Aircraft Vs.

Point Defenses. Subroutine ATRTSA 1s called to calculate
the attrition of interdiction attack aircraft sorties when
engaged by the surviving point defenses PSRSIA., After this
calculation, the point defenses remaining for future engage-
ments is set equal to the number alive after this engagement
plus the number suppressed. The input variable PIAIM(IAC,2,L)
specifies the fraction of interdiction aircraft sorties

. assigned to attack combat divisions in the inactive battle
area.

122

) ‘ . " - . - - —
“ Lo ' -
K ; X . . .

BRI (25 5™ " ey S
e

SR

3

TR B A I S PO TS

c. Section 2400 - Accumulate Results for Interdiction
Missions. This section sums up several results. SINTDA (IAC,
IST,L), the number of successful interdiction attack sorties
in sector IST, is set equal to the number of interdiction
attack sorties from side L of type IAC alive after engaging
the point defenses. CSINDA(IAC,L) is set to the cumulative
number of successful side L type IAC interdiction attack
sorties. The number of interdiction attack and suppression
sorties remaining alive (INTDSA(IAC) and INTDSS(IAC)) is set
equal to the sum of the number of successful sorties plus
the number aborting undamaged.

2,2.5.16 ATTR3. Subroutine ATTR3 calculates the results of
engagements between penetrating aircraft and opposing ground
and air defenses in the rear area of the theater.

2.2.5.16.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine ATTR3:

-Characteristic Specification
Formal parameters None
Common blocks Blank Common, CCCl, CCll,

ccccl, cccz, czzz, 2z,
ccc3, ccc3a, ccc4, 22, 23

Subroutines called ATRTED, ATRTDA, ATRTSS,
ATRTSA, ATSPSS

Called by AOVL2

2.2.5.16.2 Logic Functions. Subroutine ATTR3 calculates

the results of engagements between penetrating aircraft flying
to rear or COMMZ areas and aircraft and SAM defenses in the
rear area of the theater.

a. Section 2500 - Escort Aircraft Vs. Rear Defending
Aircraft. Subroutine ATRTED is called to calculate the
results of engagements between escort aircraft (ABAER and
ABAEZ) and defending aircraft (ABADR) in the rear area of
the theater.

b. Section 2600 - Airbase Attack and Suppression Air-
craft Vs. Rear Defending Aircraft. Subroutine ATRIDA is
called to calculate the results of engagements between air-
base attack (ABAAR, ABAAZ) and suppression aircraft (ABASR,
ABASZ), and defending aircraft (ABADR) in the rear area of
the theater.

c. Section 2700 - Suppression Aircraft Vs. Belt SAMs
in the Rear Area. SuSroutine ATRTSS 18 called to calculate
alrcraft and SAM attrition resulting from engagements between

suppression aircraft (ABASR, ABASZ) and SAMs (ALRSR) providing
area defense in the rear area of the theater.

d. Section 2900 - Attack and Escort Aircraft Vs. Belt
SAMs in the Rear Area. Subroutine ATRTSA is called to cal-
culate the attrition of attack (ABAAR, ABAAZ) and COMMZ
attack escort (ABAEZ) aircraft when engaged by SAMs providing
area defense in the rear area of the theater.

e. Section 3200 - Suppression Aircraft Vs. Rear Air-
base Point Defenses. Subroutine ATSPSS is called to calcu-~
late the results of engagements between suppression aircraft
(ABASR) accompanying rear airbase attackers and SAMs (PSRSR)
providing point defense for rear airbases.

f. Section 3400 - Airbase Attack Aircraft Vs. Rear
Airbase Point Defenses. Subroutine ATRISA is called to cal-
culate the attrition of aircraft attacking airbases in the
rear area of the theater (ABAAR) when engaged by SAMs (PSRSR)
providing point defense for those airbases.

g. Section 3500 - Accumulate Results for Rear Airbase
Attacks. ~The number of successful airbase attack sorties
of type IAC for side L to rear airbases in region IS (SABAR
(IAC,IS,L)) is set equal to the number of attack aircraft
sorties surviving engagements with the point defenses.
CSABAR (IAC,L) is the cumulative number of successful airbase
attack sorties to rear airbases. The number of rear airbase
attack aircraft sorties alive after these engagements is set
equal to the number of successful sorties plus the number of
sorties aborting undamaged.

2.2.5.17 ATTR4. Subroutine ATTR4 calculates the results of
engagements between penetrating aircraft and opposing ground
and air defenses in the COMMZ.

2.2.5.17.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine ATTR4:

Characteristic Specification
Formal parameters None
Common blocks Blank Common, CCCl, CCll1,

cccel, ccc2, czzz, 22,
ccc3, ccc3a, ccc4, z2, Z3

124

Ry

v

Cmasf L e £

o KT AT

Y . g

G

I

LT AR T L SRV Ak n ok

g o

i e

e

Y

Characteristic Specification

ATRTED, ATRTDA, ATRTSS,
ATRTSA, ATSPSS

Subroutines called

Called by AOVL2

2.2.5.17.2 Logic Functions. The ATTR4 subroutine calculates
the results of engagements between penetrators flying to the
COMMZ, and aircraft and SAM defenses in the COMMZ.

a. Section 3600 ~ Escort Aircraft Vs. COMMZ Defending
Aircraft. Subroutine ATRTED 1s called to calculate the
results of engagements between escort aircraft (ABAEZ) and
defending aircraft (ABADZ) in the COMMZ.

b. Section 3700 - Airbase Attack and Suppression Air-

craft Vs, COMMZ Defending Aircraft. In this section subrou-
tine ATRIDA 1s called to calculate the results of engagements
between airbase attack (ABAAZ) and suppression (ABAS2Z) air-
craft, and defending aircraft (ABADZ) in the COMMZ.

c. Section 3800 - suppression Aircraft Vs. Belt SAMs
in COMMZ. Subroutine ATRTSS 1s called to calculate aircraft
and SAM attrition resulting from engagements between suppres-
sion aircraft (ABASZ) and SAMs (ALRSZ) providing area defense

in the COMMZ.

d. Section 4000 - Attack Aircraft Vs. Belt SAMs in the
COMMZ. Subroutine ATRTSA 1is called to calculate the attri-
tion of airbase attack (ABAAZ) aircraft when engaged by SAMs
(ALRSZ) providing area defense in the COMMZ.

e. Section 4300 - Suppression Aircraft Vs, COMMZ Air-
base Point Defenses. Subroutine ATSPSS 18 called to calcu-
late the results of engagements between suppression aircraft
(ABASZ) accompanying COMMZ airbase attackers and SAMs (PSRSZ)

providing point defense for COMMZ bases.

f. Section 4500 - Airbase Attack Aircraft Vs. COMMZ
Airbase Point Defenses. Subroutine ATRTSA is called to cal-

culate the attrition of aircraft attacking airbases in the
COMMZ when engaged by SAMs (PSRSZ) providing point defense
for COMMZ bases.

R T T T

Tty e RNt TN, P v T

L e T YT

L

‘ g. Section 4600 - Accumulate Results for COMMZ Airbase

Attacks. The number of successful airbase attack sorties of

type IAC for side L to COMMZ airbases (SABAZ(IAC,L)) is set

equal to the number of attack aircraft sorties surviving

engagements with the point defenses. CSABAZ(IAC,L) is the

cumulative number of successful airbase attack sorties to R
COMMZ airbases. The number of COMMZ airbase attack aircraft .
sorties alive after these engagements is set equal to the

4 number of successful sorties plus the number of sorties

aborting undamaged. R

2.2.5.18 ATTRS. Subroutine ATTR5 calculates results of

engagements between close-air-support (CAS) attack and sup-
pression aircraft and opposing aircraft and point defenses.

2,2.5.18.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine ATTRS:

Characteristic Specification ;

!

Formal parameters None s
Common blocks Blank Common, CCCl, CC11l,

ccecl, cccz, czzz, 22,
CCcC3, CCC3A, Ccc4, 22, Z3

R T

Subroutines called ATRTDA, ATSPSS, ATRTSA

Called by AIRMOD

2.2.5.18.2 Logic Functions. Subroutine ATTRS calculates
the results of engagements between CAS aircraft and battle-

field defenses.

The capability of the defense was degraded earlier in the
cycle by attrition calculations in program AOVL1.

a. Section 4800 - Attack and Suppression CAS Aircraft
Vs. Battlefield Defense Alrcraft. sSubroutine ATRIDA 1s
called to calculate the results of engagements between pene~

B o Wi 7 e TP M A

trating CAS attack (CASA) escorted by suppression aircraft -
(CASS) and enemy battlefield defense aircraft (CASD).

b. Section 5000 - Suppression Aircraft Vs. Battlefield
Point Defenses. In this section subroutine ATSPSS 1is called -
to calculate the results of engagements between suppression

aircraft (CASS) and SAMs or AAA (PSRSC) providing point
defense for combat units.

126

c. Section 5200 - Attack Aircraft Vs. Battlefield Point
Defenses. Subroutine ATRTSA 18 called to calculate the
attrition of close air support attack (CASA) aircraft when
engaged by (PSRSC) point defenses for combat units.

0L PIEFST 7N S0 o T T TR I T

d. Section 5300 - Accumulate Results for CAS Attacks.
The number of successful CAS attack sorties of type IAC tfor
side L in sector IST (ACSABA(IAC,IST,L)) is set equal to the
number of attack aircraft surviving engagements with the
point defenses. CSCASA(IAC,L) is the cumulative number of
successful CAS attack sorties. The number of CAS aircraft
sorties alive after these engagements is set equal to the
number of successful sorties plus the number of sorties
aborting undamaged.

2.2.5.19 ATTR6. Subroutine ATTR6 calculates the attrition
of aircraft on the way home (outbound) from their missions.
The cumulative results of all attrition calculations for
this cycle are converted from sorties to numbers of aircraft.
Finally these attrition results are expressed as the number
of aircraft in each basing region.

2.2.5.19.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine ATTR6:

Characteristic Specification

Formal parameters None

Common blocks Blank Common, CCCl, CCll1,
CCCCl, Ccc2, czz2z, 7z,
CCC3, ccc3a, ccc4a, 22, 23

Subroutines called ATRTWH

Called by AIRMOD

I T R B TOPY 3 P ST i Yo = U SR VI TN R T T TR B M e AR ey O

2.2.5.19.2 Logic Functions. Subroutine ATTR6 is the last
attrition subroutine called by subroutine AIRMOD during each
cycle. The code is divided by comment cards which label the
functions performed by the logic.

a. Section 5400 - Attrition on the Way Home. Subrou-
tine ATRTWH 1s called for each aircraft sortie type to
calculate the attrition of aircraft as they return to their
home bases. Attrition is calculated for aircraft sorties
returning home after aborting their missions as well as for

B3 55 - e N

ey
S
Ry oy

- &
e i

aircraft which have successfully completed their missions.
At the conclusion of these calculations, the numbers of
sorties of each aircraft type alive, damaged, and killed
reflect the results of all air engagements for the current
cycle.

b. Section 5500 - Convert Sorties to Numbers of Air-
craft. All of the air attrition calculations have been made
in terms of sorties. This section calculates the number of
side L aircraft of each type IAC alive, killed, and damaged
during this cycle by dividing the number of sorties alive,
damaged, and killed by the 12-hour sortie rate (SRACM(IAC,J,L))
for each mission type J.

c. Section 6500 - Allocate Aircraft Killed and Damaged
in Air Combat to Airbases. The six arrays calculated in
this section are as follows:

Array Name Description
ACFKC Aircraft from forward bases killed
ACRSKC Aircraft from rear bases killed
ACCZKC Aircraft from COMMZ bases killed
ACFSDC Ajrcraft from forward bases damaged
ACRSDC Aircraft from rear bases damaged
ACCZDC Aircraft from COMMZ bases damaged

For example, ACFSKC(IAC,KS,L) is the total number of side L
type IAC aircraft based on forward bases in region KS that
are killed in air combat during this cycle. ACFSKC is cal-
culated from

ACFSKC = ACFS * TEMP

where
ACFS (IAC,KS,L) = Number of side L non-QRA aircraft of
type IAC on forward airbase in region
KS
and
TEMP = E SRACM*F*AK/A

All mission types J

128

FREIE NS 1

where, for type IAC aircraft on side L,

SRACM = l2-hour sortie rate

F fraction of total sorties assigned to mission J

. AK number of sorties killed on mission J

A total number of sorties on mission J

The other five arrays are calculated using equations of this
same form.

2.2.5.20 ATRTWH. Subroutine ATRTWH adds the numbers of
attacking aircraft sorties killed and damaged on their way
home to the numbers of aircraft sorties killed and damaged
while on the way to their targets.

2.2.5.20.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine ATRTWH:

Characteristic Specification

Formal parameters AA = Array specifying the num-
ber of attacking aircraft
sorties of each type alive
and continuing on their
mission

AD = Array specifying the num-
ber of attacking aircraft
sorties damaged in this
engagement

AK = Array specifying the num-
ber of attacking aircraft
sorties killed in this
engagement

FAC = Factor for computing the
number of aircraft killed
on their way home

NX = Number of types of
. : attacking aircraft

Characteristic Specification
Common blocks None
Subroutine called None
Called by ATTR6 ’

2.2,5.20.2 Logic Functions. Subroutine ATRTWH calculates » |
the number of attacking aircraft sorties of each type IAC]
killed and damaged while returning home from their targets. '
The calculations assume that attrition while returning home
is proportional to attrition suffered while flying to the
targets. Thus PK, the probability of being killed while
returning home, is:

PK = (AK (TAC) >* FAC

AA (IAC) + AD(IAC) + AK(IAC)

where AD(IAC) and AK(IAC) are the numbers of aircraft sorties
damaged and killed, respectively, on the way to their targets
and AA(IAC) is the number of aircraft sorties alive at their
targets. It should be noted that in all the routines that
call ATRTWH, the number of aircraft sorties aborting undam-
aged AH(IAC) is added to AA(IAC) before ATRTWH is called.
Similarly PD, the probability of being damaged while return-
ing home, is:

_ AD (IAC)
PD = <AA(IAC) T AD(IAC) + AK(IAC)>* FAC

The probability of being killed or damaged is: PDK=PK + PD,
The number of aircraft sorties returning home undamaged

AA' (IAC) is equal to the number alive at their targets minus
the number killed or damaged while returning home:

AA' (IAC)=AA (IAC) (1-PDK)

The following calculations of the total aircraft sorties
killed and damaged are made assuming that an aircraft dam-
aged on the way to target is killed if it is either damaged *
again or killed while returning home.

130

@

The total number of aircraft sorties killed AK' (IAC) is:

AK' (IAC)=AK(IAC)+AA (IAC) *PK+AD (IAC) *PDK

where
AK (IAC) = Number of aircraft sorties killed on their
way to target
AA(IAC)*PK = Number of aircraft sorties reaching their
targets that are killed while returning
home
AD(IAC) *PDK = Number of aircraft sorties damaged on

their way to target that are killed while
returning home

Similarly, the total number of aircraft sorties returning
home damaged is:

AD' (IAC)=AD (IAC)+AA (IAC)*PD~AD (IAC)*PDK.
In subroutine ATRTWH, the calling variables AA, AD, and AK

are returned with the values of AA' (IAC), AD'(IAC), and
AK' (IAC), respectively.

2.2.6 LINKE. This subsection describes the routines in
LINKE. These routines comprise the nuclear combat model.

2.2.6.1 NUC. Subroutine NUC is the main calling program for
the nuclear routines.

]
2.2.6.1.1 Programming Specifications. The following table .
summarizes the principal specifications of subroutine NUC:
Characteristic Specification N
Formal parameters None
Common blocks Blank Common, AFSTF2, LOCAAl,
LOCAL1
Subroutines called NUC1l, NUC2, NUC3, NUC4, NUCS,
NUC6, CLR
Called by TMAIN

2.2.6.1.2 Logic Functions. If KFLAG#0, subroutine NUC1 is
called to determine nuclear escalation states, the number

of nuclear weapon systems, and to allocate supplies of nuclear
warheads to division, sector and theater weapon systems. If
KFLAG=0, the call to NUCl is skipped. 1If, upon return from
NUC1l, KFLAG=l or 2, the rest of the nuclear model is skipped
and control is returned to TMAIN. Otherwise, the rest of

NUC is executed as described below. Subroutine CLR is called
three times to initialize certain arrays that are used later
in the cycle to accumulate weapon usage. Subroutine NUC2

is called to construct priority lists of nuclear weapons and
targets. If, upon return from NUC2, KFLAG=1l, the rest of

NUC is skipped. Otherwise NUC3 is called to determine the
expected number of battlefield targets (subunits) detected.

If variable IPOPCH#0, subroutine NUC4 is called to determine
the fraction of possible targets precluded from targeting due
to civilian population centers. The weapon to target assign-
ments are completed by subroutine NUCS5, which is called next.
Finally, NUC6é is called to calculate the damage inflicted on
the targets. .

2.2.6.2 BLKDA. Program BLKDA assigns values to the data
statements described below.

2.2.6.2.1 Programming Specifications. The following table .
summarizes the principal specifications of program BLKDA:

132

Characteristic Specification
Formal parameters None

Common blocks AFSTF, AFSTF2
: Subroutines called None
Called by N/A

d 2.2.6.2.2 Logic Functions. This program is a block data
routine and, therefore, contains no executable code. Array
AFDIM is assigned specific data values which represent size
dimensions for a given airbase. Array IAFBA is assigned index
values representing the battle area location of each airbase.
Finally, array IAFWDI is assigned values that pertain to
latitude and longitude for each airbase.

2.2.6.3 KCDEN. Function KCDEN packs the weapon data listed
below into a single word.

2.2.6.3.1 Programming Specifications. The following table
summarizes the principal specifications of function KCDEN:

Characteristic Specification
Formal parameters IWC = Index to weapon category
IWS = Index to weapon system

IPOS

Index to weapon system
position

IYL = Index to yield

Common blocks None
Subroutines called None
Called by NUCWPS

2.2.6.3.2 Logic Functions. The parameters specified above
are packed Into a 4-digit word from left to right as follows.
: First, parameter IWC is multiplied by the third power of
f . ten (1000) in order to pack the fourth or left most digit

into the word. Added to this number is the next parameter,
IWS, multiplied by the second power of ten (100) in

order to pack the third digit. The remaining parameters are
multiplied by the first power of ten (10) and the zeroth
power of ten (1), and then added together to pack the second
and first digits.

2.2.6.4 KDCDEN. Function KDCDEN unpacks the weapon data .
listed below from the specified value of INDEX.

2.2.6.4.1 Programming Specifications. The following table
summarizes the principal specifications of function KDCDEN:

Characteristic Specification
Formal parameters INDEX = Word containing packed
data
IWC = Index to weapon category
Iws = Index to weapon system
IPOS = Index to weapon system
position
IYL = Index to yield
Common blocks None
Subroutines called None
Called by PREYLD, DWHINV, NUCWPS, NUC6

2.2.6.4.2 Logic Functions. The 4-digit representation of

the packed data contained in INDEX is unpacked from left to

right in the following manner. First, INDEX is divided by

the third power of ten (1000) in order to unpack the fourth,

or leftmost digit. This value is the index to the weapon

category and is stored in variable IWC. Now, IWC is multi-

plied by the same power of ten and the product is subtracted

from INDEX. This new 3-digit value of INDEX is divided ,

by the second power of ten (100) in order to unpack the . -
third diqgit, which is the index to the weapon system, and is ‘ i
stored in variable IWS. The remaining parameters, located

in the second and first digits, are unpacked in the same man-
ner.

2.2.6.5 NUCl. Subroutine NUCl is the main calling program
for the routines that determine nuclear escalation states,

e

Ln e

P o ik I e Lt 3 R

determine the number of nuclear weapon systems and allocate
nuclear warheads to supply pools.

2.2.6.5.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine NUCl:

Characteristic Specification
Formal parameters None
Common blocks Blank Common, LOCAAl, LOCAL1,
AFSTF2
Subroutines called ESCLAT, NDSYINV, WHINUP
Called by ' NUC

2.2.6.5.2 Logic Functions. NUCl first calls subroutine
ESCLAT to determine nuclear escalation states: If KFLAG#2,
then the reéemainder of NUC1l is executed. If the index to

the escalation state in a given sector against a given
target category for a given side is # 0, a call is made to
subroutine NDSYINV and to subroutine WHINUP. The former
determines the number of nuclear weapon systems and the lat-
ter allocates supplies of nuclear warheads to supply pools.

2.2.6.6 ESCLAT. Subroutine ESCLAT determines the state of
escalation for each side according to current conditions and
the tactical nuclear escalation doctrine selected by the user.

2.2.6.6.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine ESCLAT:

Characteristic Specification
Formal parameters None
Common blocks Blank Common, LOCALl, LOCAAl, .
AFSTF2 §
Subroutines called None
Called by NUC1

2.2.6.6.2 Logic Functions. The calculations of this routine
are made for each sector IS and each side L. Each of the

following four escalatory stimuli may be a criterion for
upgrading the escalation state: (1) a preplanned decision
to make a preemptive strike; (2) a response to a worsening
tactical environment; (3) a response to the enemy's initial
or increased use of nuclear weapons; and (4) a response to
the enemy's use of chemical weapons. For each criterion,
the program first checks to see if the user has selected the
criterion and then, if necessary, determines if conditions
require an increase in the escalation state.

a. Section 10 - Preemptive Strike Considered. 1If
the first criterion is chosen by the user (INDI=1) and the
choice is not overridden because a strike is to end this cycle,
the program tests to see if the present cycle is the one in
which a pre-emptive strike is to take place. If it is, for
each target category ITC, the escalation state IESC is set
equal to the proposed state ISCL1l, provided the proposed state
is higher than the present state.

b. Section 20 - Has a Tactical Event Occurred Which
Stimulates Firing of Nuclear Weapons. The second criterion
has seven events, any of which may be selected by the user
(IND2=1) for changing the escalation state. The testing of
conditions for each of these events is described bhelow.

The first event is border incursions. If the FEBA has moved
into this side's territory as measured from the FEBA location
at time zero, then for each target type escalation state IESC
is set to the proposed state ISCL2 provided the proposed state
is higher.

The second event is the advance within the sector beyond the
advance in adjacent sectors. If the enemy is attacking in all
adjacent sectors and if the distance between the FEBA in
sector IS and the FEBA in every adjacent sector is greater
than DPTH2, then for each target type the escalation state
IESC may be increased.

The third event is a cumulative enemy advancement in the
sector of more than a specified distance. If the total FEBA
advancement by the enemy in the sector is greater than the
threshold depth DPTH3 for side L, then for each target type
the escalation state IESC may be increaseq.

The fourth event is an enemy advancement in the sector of
more than a specified distance since the last cycle. If the

Yy

e

R

pRrmpnoh= ey

e e e e s

PO Ly on BT L SR e gyt e

a3

enemy advancement since the last cycle exceeds the value of
DP2 for escalation state J, the escalation state IESC may be
increased to state J for those target types selected by the
user (IDEL2=1).
3]
A The fifth event is the cumulative loss of QRA aircraft beyond
3 - a specified level. If the fraction of QRA aircraft lost is

f greater than the threshold fraction THFRC, then for each
| target type the escalation state may be increased.

M O A i

’ The sixth event is the cumulative loss of nuclear delivery

systems (missiles and artillery) beyond specified levels. If
 § the fraction of missiles (artillery) lost is greater than the
ot threshold fraction THFR for missiles (artillery), then for
each target type the escalation state may be increased.

A A7 N A

The seventh event occurs when the rate of advancement is too
slow in sectors of main attack. If side L is not the theater
attacker or if the sector IS is not one of main attack,

event 7 is not considered. If side L's total advancement
since time zero does not exceed a specified distance DPTH7

by day NDOB7 and the side L advancement during the present
cycle does not exceed a distance DP7, then for each target
type the escalation state may be increased.

c. Section 30 - Is the Use of Nuclear Weapons Beyond H ’
Thresholds. 1f the third criterion is selected by the user ! i
(IND3=1), the program considers the number of nuclear weapons ;
delivered by the enemy into target areas in the battlefield,
region and COMMZ. First, the number of nuclear weapons
delivered to the active battle area (NWABA) is compared to the
threshold levels NB3 to determine the proposed escalation
state. Then, for each target type against which the side
wishes to escalate (IDELB3=1), the escalation state may be
increased. Next, for each target subtype, the number of
nuclear weapons delivered to the region (NWREG) is compared
to the threshold levels NR3 to determine the proposed esca-
lation state. Then, for each target type against which the
side wishes to escalate (IDELR3=1), the escalation state may
be increased. Similarly, for each target subtype, the number
. of nuclear weapons delivered to the COMMZ (NWCZ) is compared
o to the threshold levels NCZ3 to determine the proposed esca-
' lation state. Then, for each target type against which the
side wishes to escalate (IDELC3=1l), the escalation state may
. be increased.

G e - o T
J - N Rt B ’ "
- ko

L

d. Section 40 - Is the Use of Chemical Weapons Received
uUsed as Threshold. 1If the fourth criterion is selected by the
user (1IND4=1), the program considers the number of chemical
weapons delivered by the enemy into target areas in the bat-
tlefield, region and COMMZ. First, the number of chemical
weapons delivered to the active battle area (NCWABA) is
compared to the threshold levels NCBN4 to determine the pro-
posed escalation state. Then, for each target type against
which the side wishes to escalate (INDLB=1l), the escalation
state may be increased. Next for each target subtype, the
number of chemical weapons delivered to the region (NCWREG)
is compared to the threshold levels NCRN4 to determine the
proposed escalation state. Then, for each target type
against which the side wishes to escalate (INDLR=1l), the
escalation state may be increased. Similarly, for each
target subtype, the number of chemical weapons delivered to
the COMMZ (NCWCZ) is compared to the threshold levels NC2ZN¢§
to determine the proposed escalation state. Then, for each
target type against which the side wishes to escalate,
(INDLC=1), the escalation state may be increased.

2.2.6.7 WHINUP. Subroutine WHINUP determines the number
of nuclear weapon systems for both division and sector weapon ,
systems and reallocates the inventory of nuclear warheads
to division, sector and theater pools. }

2.2.6.7.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine

_ WHINUP:
r Characteristic Specification
Formal parameters None
Common blocks Blank Common, AFSTF2, LOCAAl,
LOCAL1
Subroutines called None
Called by NUC1

2.2.6.7.2 Logic Functions. The total supply of nuclear
warheads in the theater are allocated to division and sector 4
nuclear weapon systems.

a. Section 10 - Allocate Nuclear Supplies to Division

GRRE ton ol a gil £ o v

Nuclear Weapon Systems. For each side, the number of divi- .
- sion nuclear weapon systems is determined from array NDVNW,

: . <138

The number of different yields available for a given division
nuclear weapon system is obtained from array NYDL. However,
if the system has multiple yield options, that system is said
to have only one yield. The total number of warheads of a
particular yield in a given division nuclear weapon system is
obtained by adding the warheads of that yield which have been
allocated to the theater pool to the sum of the warheads
allocated to the division and sector pools in each sector.
The total is placed in variable N.

Nuclear warheads are reallocated to the division and sector
pools on a sector by sector basis for each division nuclear
weapon system and for each type of yield. First, the number
of division weapon systems in a given sector for a particular
type of nuclear weapon system is divided by the total number
of division weapon systems in the entire theater for that
type of nuclear weapon system. The result is stored in
variable FRAC. Then, the number of division nuclear warheads
reallocated to the division pool is determined by obtaining
the product of: (1) FRAC; (2) the fraction of division
nuclear warheads in the theater allocated to the division
pool, given by array FDWALD; and (3) the total number of war-
heads in the division nuclear weapon system, given by N.
Similarly, the number of division nuclear warheads reallocated
to the sector pool is determined from the product of FRAC,
FDWALS and N. The total number of division nuclear warheads
which have been reallocated to the division and sector pools
in all of the sectors combined, given by NSUM, is subtracted
from N to obtain the number of remaining warheads which are
then reallocated to the theater pool.

b. Section 20 - Allocate Nuclear Supplies to Sector
Nuclear Weapon Systems. The logic for determining the number
of sector nuclear weapon systems is identical to the logic
described above for division nuclear weapon systems, with the
exception that sector nuclear warheads are reallocated to
sector and theater pools only.

2.2.6.8 NDSYINV. Subroutine NDSYINV determines the inven-
tory of division, sector and theater weapon systems that
deliver nuclear munitions for each side.

2.2.6.8.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine NDSYINV:

e T Y

N AR O s Fr A IR oy st 17 T

ECF T Srenr pansy

T TN g SR o e

T N S e T

Characteristic Specification
Formal parameters None
Common blocks Blank Common, AFSTF2, LOCAAl,
LOCALl
Subroutines called None
Called by NUC1

2.2.6.8.2 Logic Functions. The code in subroutine NDSYINV
is divided by comment cards which label the functions of the
logic.

a. Section 10 - Determine Number of Division Nuclear
Weapon Systems. The number of division nuclear weapon systems
is determined from array NDVNW. A particular reference weapon
type (IW), used in combat divisions, is chosen from array
IDSWTN (IWS,L) as being characteristic of a given division
nuclear weapon system. Then, an inventory of the number of
division weapon systems that employ such a typical nuclear
weapon is determined in each sector for each division nuclear
weapon system. This is accomplished by obtaining the product
of two factors. One is the actual number of reference
nuclear weapons used in a division inside the active battle
area, given by array WDIV (IW,ID). The other factor is the
fraction of the number of reference weapons that are repre-
sentative of the given nuclear weapon system, given by array
FDSWTN. The product is then summed over all divisions in
the active battle area in a given sector and the result is
stored by sector in array NDWSI.

b. Section 20 - Determine Weighting Factors of Aircraft
for Making Air Allocations to Sector and Theater Systems.
The sector and theater systems both include air weapon systems,
The number of available aircraft in each region and the
weighting factors of aircraft in each sector of a region need
to be determined before making air allocations to the sector
and theater systems. For each region, beginning with the
highest numbered sector, the escalation state for nuclear
weapons against a particular target category is determined.
A weighting factor (WT) is determined from the fraction of
aircraft assigned to a given target at the specified escala-
tion state and is summed for each sector to yield a region
weighting factor (WTT). Also, for each type of aircraft, the
number of available aircraft in each region, stored in array
TACT, is determined by counting the number of successful CAS,
ABA and INTD sorties.

~140

T 1 ... UM T

A R RN 3 NI S R K8 -

mar c gt

poteeTIg

MY TR

A R RS T O S AR K T (TR SR

B D i ol o2

c. Section 30 - Determine Number of Sector Nuclear
Weapon Systems. The logic for determining the number of
types of sector nuclear weapon systems is as follows. For
each sector nuclear weapon system, array ISSWTIN(IWS,L) gives
an index to a particular weapon type. An index value of one
(1) or two (2) indicates medium- or long-range sector missile
systems, respectively. An index value >2 indicates air
weapon systems. The number of sector nuclear weapon systems
that are medium-range (or long-range) missile systems is
determined by counting the number of medium-range {(or long-
range) missile sites in each forward sector times the
fraction of medium-range (or long~range) missiles that repre-
sent the given sector nuclear weapon system. The number of
sector nuclear weapon systems that are air systems is deter-
mined for each sector by obtaining the product of three
quantities. These are: (1) the number of available aircraft
dedicated to nuclear missions (FADTMN), (2) the fraction of
air systems that represent the given sector nuclear weapon
system (FSSWTN), and (3) the ratio of the weighting factor
of the assigned aircraft in the sector to the weighting
factor of aircraft in the region (WT/WTT).

d. Section 40 -~ Determine Number of Theater Nuclear
Weapon Systems. The logic for determining the number of
theater nuclear weapon systems is identical to the logic for
determining the number of sector nuclear weapon systems with
the exception that only long-range missiles are considered
for theater missile weapon systems.

2.2.6.9 NUC2. Subroutine NUC2 is the main calling program
for the routines that create a list of nuclear targets, in

order of priority, and a list of nuclear weapons and their

characteristics.

2,2.6.9.1 Programmigg Specifications. The following table
summarizes the principal specifications of subroutine NUC2:

Characteristic Specification
Formal parameters None
Common blocks Blank Common, AFSTF2,

LOCAAl, LOCALl

Subroutines called NUCTAR, NUCWPS

Called by NUC

2,2.6.9.2 lLogic Functions. NUC2 begins by calling subrou-~
tine NUCTAR to create a priority list of nuclear targets.
Upon return, if KFLAG=-1 subroutine NUCWPS is called to
create a single priority list of nuclear weapons.

2.2.6.10 NUCTAR. Subroutine NUCTAR creates a single list

of preferred nuclear targets from battlefield targets, region
targets and COMMZ targets and arranges them in order of
priority from highest to lowest. Battlefield targets have
the highest priority, region targets have the next highest,
and COMMZ targets have the lowest priority.

2.2.6.10.1 Programming Specifications. The following table
summarizes the principal specifications of subroutine NUCTAR:

Characteristic Specification
Formal parameters None
Common blocks Blank Common, AFSTF2,
LOCAAl, LOCALl
Subroutines called None
Called by NUC2

2.2.6.10.2 Logic Functions. The logic that follows is
executed for both sides. In the