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The Fluid Dynamic Limit of the Nonlinear FC
Boltzmann Equation" EeceCLCT

(O~RUSEL E AF ISCHJ

_______ Stanford University ~N V 018

Solutions of the nonlinear Boltzmann equation are constructed up to the first appearance of
shocks in the corresponding fluid dynamics. This construction assumes the knowledge of solutions
of the Euler equations for compressible gas flow. The Boltzmann solution is found as a truncated
Hilbert expansion with a remainder, and the remainder term solves a weakly nonlinear equation
which is solved by iteration. The solutions found have special initial values. They should serve as
"outer expansions" to which initial layers, boundary layers and shock layers can be matched.

Introduction

The Boltzmann equation of kinetic theory gives a statistical description of
a gas of interacting particles. An important property of this equation is its
asymptotic equivalence to the Euler or Navier-Stokes equations of compressi-
ble gas dynamics, in the limit of small mean free path. We propose that, as
one aspect of this asymptotic relationship, the question of existence of
solutions of the Boltzmann equation can be reduced to the existence problem
for the gas dynamic equations. Although the latter problem has received only
partial solutions, the gas dynamic equations are much simpler than the
Boltzmann equation and have been studied extensively.

This paper makes a first step in that reduction of the existence question by
showing that any smooth solution of the Euler equations can be used to make
a corresponding solution of the Boltzmann equation. It does not address the
difficulties of initial values, shocks, and boundaries. The solution produced
here comes from a truncated asymptotic expansion and has special initial
values, is periodic in space, and is valid only until the first appearance of
shocks. It can serve as an "outer solution" to which special solutions, in initial
layers, boundary layers, and shock layers, can be matched.

However, the analysis of these layers is not complete. Grad has given a
formal treatment of the initial layer matching problem in [6]. It requiresi ... solving the spatially homogeneous nonlinear Boltzmann equation and showing
that the solution approaches a Maxwellian asymptotically in time, for anyV initial data. Arkeryd [1] has shown that this is true, but with only weak L,
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652 R. E. CAFLISCH

Scdnvirgence, which is not strong enough for the completion of the expansion. ..

-"Te profile of a weak, steady shock was analyzed by Nicolaenko [11] for the
Boltzmann equatiOn for hard spheres. The effects of time dependence must .
also be included'lor the shock layer analysis. For boundary layer problems,
one must solye.the steady nonlinear Boltzmann equation in a half-space and
show approac#f t a Maxwellian at infinity. Guiraud has analyzed a more
general weakl Qnlinear problem in [9]. *

• Ve results presented here are valid for a physically interesting time ,".
period, until the first occurrence of shocks, and concern solutions which are
far from spatial equilibrium, so that the corresponding gas dynamics is ' .
strongly nonlinear. Previously, Glikson [4] and Kaniel and Shinbrot [10
showed existence locally in time. Global existence of solutions which start off ..
close to absolute equilibrium has been proved by Nishida and Imai [12] and "
Shizuta and Asano [14]. The asymptotic equivalence of the Boltzmann and
the gas dynamic equations was demonstrated by Grad [8] and Nishida [13]
for initial data near to global equilibrium.

The basis for the present work is the paper by Caflisch and Papanicolaou
[2] on the Broadwell model of the Boltzmann equation. The main difficulty in
extending those results is the treatment of the high velocity tail of the
distribution, as described in Section 4. The key to both these papers is the
fact that, after assuming that the nonlinear fluid equations can be solved, the
remaining problem is only weakly nonlinear.

In Section 2, the existence theorem is stated. Its proof occupies the rest of
the paper. The solution is found as a Hilbert expansion with remainder, as
described in Section 3, and the equation for the remainder term is decom-
posed into low and high velocity components in Section 4. This uses a global
Maxwellian distribution wM, as well as the local Maxwellian W associated with
the Euler equations. Linear and nonlinear collision operators involving these
two Maxwellians are defined in Section 4. Basic estimates for these operators
are presented in Section 5. Then a linearized version of the decomposed
remainder equations is analyzed in Section 6. Finally, the nonlinear equations
are solved by iteration in Section 7.

Use of the Hilbert expansion in an existence theorem for the Boltzmann
equation was suggested by George C. Papanicolaou. I also want to thank
Harold Grad for a number of discussions. Most of this work was completed at
the Mathematics Research Center and the Courant Institute of Mathematical
Sciences, whose support I am happy to acknowledge.

2. The Existence Theorem

The Boltzmann equation is

( a 1
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in which V= a/ax. The function F= F(x, t, ) is the density of particles of

velocity E R3 , at position x r[O, 1] and time E [0, M). We look for solutions
which are spatially periodic in [0, 1]. The left-hand side of (2.1) represents
streaming, while Q is a nonlinear integral operator representing collisions.
Following Grad [6], we consider cut-off, hard potentials only. The parameter E
is proportional to the mean free time and is assumed to be small.

There are special distribution functions w, called Maxwellians and given by
(2.2) () = (2T)3/2 f -(-)/2T,

which are in equilibrium with the collision process, i.e.,

(2.3) O(W, W) = 0.

If p, a, T are constant in x and t (as well as in e), w is called a global
Maxwellian: if they depend on x and t, it is a local Maxwellian. The constants
p, a, T are the macroscopic density, velocity and temperature, respectively.
More explicit descriptions as well as derivations and basic properties of the
Boltzmann equation can be found in [5].

The fluid dynamic description of a gas is given by the Euler equations

p+Vpuj=O,
at

aa pu+V(puu)+ Vp = 0,
(2.4) at

a- p(e +2!u) + V(pu(e +2 u')) + V(pu) =0,
at

p=pRT=jpe.

These are the equations of conservation of mass, momentum, and energy, and
the equation of state.

The following theorem shows that there are solutions of the Boltzmann
equation which are nearly local Maxwellian, in which the macroscopic
variables p, u, T evolve according to the Euler equations.

THEOREM. Le (p(x, t), u(x, 0), T(x, t)) be a smooth, spatially periodic
solution of the Euler equations (2.4) for t E [0, T], x E [0, 1]. Construct the local
Maxwellian w(x, t, g) from p, I, T as in (2.2). There is a positive 6o such that,
for each 0 < e < E0 , a smooth solution F' of the Boltzmann equation (2.1) exists
for t E [0, 1], with

PE T]; H'(x, n fc[, Ti; L 2 ), DTIC TAB
L([0, 1-; ) (, , Unannounced C

(2.5) d Justificaton
P E L-([0, T]; L').
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654 R. E. CAFLISCH

Moreover,

(2.6) lIP - Ell-ce,

where the norm is in any of the spaces in (2.5) and c is independent of E.

12(O, T]; L2) means the Banach space of bounded measurable functions
from [0, T] to L 2([0, 1], R 3 ), etc.

Remarks. (1) This theorem assumes a solution of the nonlinear Euler
equations is in hand. Although these equations are much simpler than the
Boltzmann equation, the existence question has been only partially answered.

The smoothness of the Euler equations is expected to last until the first
appearance of a shock, which we would take as the time T. We have not
optimized the amount of smoothness needed, but certainly it is enough for p,
u, T to be in H 9 .

(2). The initial values of P are essentially those of the Hilbert expansion
(see Section 3). This is just what is needed to match to an initial layer.

(3) The one-dimensional spatially periodic problem is handled for simplic-
ity. We could just as well do the multi-dimensional infinite space problem,
which is needed for the matching to boundary layers.

(4) The Navier-Stokes equations could be used instead of the Euler
equations. The viscosity is multiplied by e and uniform smoothness as well as
nice limiting behavior is required of the solutions. The result is an approxima-
tion with error size E2.

3. The Hilbert Expansion with Remainder

The solution P is found as a sum

6

(3.1) P = E"F + EFR,

where Fo, " , F6 are independent of e. They are the first 6 terms of the
Hilbert expansion, which solve the equations

(3.2) 0 = Q(Fo, Fo),

(3.4) (y+ + ' V)Fo = 2Q(Fo , 1),

(3.4) Ut + 1*V)F = 20(Fo, F2) + O(FI , FI) ,

(3.5) (at+ 'V)F5 =2(F 0 ,F6)+ I Q)(FS,Fj).i i+j=6
t 

l~ j 5

't .ot.,.
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From equation (3.2) we infer that F0 
= w, a local Maxwellian. The remaining

equations (3.3)-(3.5) involve the linear operator .Y = - 2Q(Fo, • ), an integral
operator over the velocity space (t). This Fredholm operator can be inverted
after checking that the inhomogeneity is perpendicular to the null space
10o,'", 4 } of the adjoint operator .Yt. The appropriate inner product is

4 (f, g) f(t)g(t) dt,

and the 4 are given by

1P

pT
1

(3.6),

.04 = (l-U)2 -3T),

so that (&0, 0)-8j,. The null space of .2 is {(o4,' " -
Equations (3.3) and (3.4) become

(3.7) ,)Fo>=O,

(3.10) F ,=--- ((+ -)F,)+,Lt

in which Y(] 1 "-, l2 =0. Equation (3.7) gives exactly the nonliner Euler
equations (2.4) for the macroscopic density, velocity, and temperature p, a, T
corresponding to w = F0 . From equation (3.8), we see that F, =
(p1 00 + u + + Tc O.4b)+ o + *I in which .'I = - (8I t + 6 V)Fo and 'P, E N(T)'.
The coefficients p1 , a,, T are the macroscopic density, velocity and tempera-
ture corresponding to F1 . According to (3.9) they satisfy inhomogeneous
Euler equations linearized about p, a, T and with inhomogeneity given as an
operator on p, a, T. The terms F2 , • • •, F are found similarly. However since
the expansion is truncated we can take p6 

= V6 = T6 = 0.
A careful treatment of the Hilbert expansion is found in [5] and [7]. Only
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several facts are needed here. We are starting with a smooth solution (p, u, T)
of the nonlinear Euler equations, from which we construct Fo= z, which
solves (3.7). The remaining Hilbert expansion equations are linear and have
solutions which are smooth in (x, t) and decay in f, Consider F,. Grad has
shown in [7] that .L-W preserves decay in E, so that W, -
j exp {-(-u)2 /2T}. Since the inversion is local in (x, t), IF, is smooth in
(x, 0. The remaining terms in F, obviously decay like If I2 exp {-(4 - u)2/2T}, and
they are smooth in (x, t) since coefficients p', a', T solve linear equations
with forcing terms coming from the smooth functions p, u, T. The following
proposition summarizes these facts.

PROPOSmON 3.1. Let (p, a, ) be a smooth solution of the Euler equations
(2.4), and form the Maxwellian Fo = w as in (2.2). Then the terms F1, , F6
of the Hilbert expansion are smooth in (x, t) and have decay given by

(3.11) F (x, t, 9:5c I ~~,t )

where c is a constant independent of C, x, t.

Next we find an equation for the remainder Pt, by putting the expansion
(3.1) into equation (2.1) and subtracting the Hilbert expansion equations
(3.2)-(3.5). After dividing by e 3 and regrouping, the equation becomes

(3.12) (+ lv)FR=,Q(oV FR)+2Q(F +EF2 +E 2F 3, FR)

+L_2Q(FR, FR)+e 2A,

where

For initial values we take

(3.14) FR(t = O) = O.

The superscript E on FR has been dropped. Once the remainder equation
(3.12), (3.14) is solved, we have the desired solution of the Boltzmann
equation. By writing the solution as in (3.1) we have reduced the Boltzmann
equation to an equation in which the nonlinearity and inhomogeneity are
both small.
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4. Decompaithm of Fa

In the past the linearized Boltzmann equation has been analyzed by
symmetrizing the operator .Y - 2Q(w,. ) to get L = - 2& 12 Q(W, to-I2.)
Since L is non-negative the (1/e)L term does not cause growth. This is fine if
w is constant in (x, ), but otherwise the symmetrization procedure results in a
new term {Wt1 2(8/at+ 1 O/ax)(w112 )}f which is like IlI3f and has an uncontrol-

led sign. Thus at large velocities, the distribution function may be growing
rapidly due to streaming. Similar problems occur in the study of soft
potentials (cf. [3]), shocks (cf. [11]), and boundaries.

To remedy this difficulty, we decompose FR into essentially low velocity
and high velocity parts using two different Maxwellians--w, as above and

(4.1) T= (2 TM) 1 exp{- 2/2T,},

in which TM is constant, and TM >max,,, T(x, t) so that > cto for all
(x, t, t). We shall employ various operators which are linearized about these
Maxwellians.

Notation.

(4.2) Lf = -2 1/ 2Q(W, V112f) =(v+K)f,

where v is a function of g and K is a compact integral operator over ,

(4.3) v(g) f w.dfl

(4.4) VFV, g) = W -Q '(W~f Wo g) .-

The definitions above are those of Grad [7], [8] (the cross section dl is
defined there). The following are new, but are analogous to Grad's defini-
tions:

(4.5) LMf = - 2wM-'/ Q(w, o)." 2f) = (v + KM )f,

(4.6) Lf = 2wM/2 Q(F, + DF2 + e2 F3 , 4o2f),
(4.7) VM rM(f, g)= OM /2O)Wf, =M1,g),

(4.8) _,_(_) f- _ _ _
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We also define

1i for II4(4.9) x(O)= 1ofr

(4.10) RIX
(4.11) a(fa)1

(4.12)a+ ')

(4.13) aw"/A

Note that o, is exponentially decaying since TM > T for all x. 1.
Now decompose FR as

Essentially, W 112g is the low velocity part and w~2 h the high velocity part; the
precise definitions are that g and h solve

(4.16) +V)h= - wg ! (P +;iK&)h + LI(rg +h)

+ E-vm r(ag + h, ag +h) + E'a,

(4.17) g(t =0) =h(t =0) = 0.

If (4.15) is multiplied by w'1 and (4.16) by w442, and the two are added, the
result is just equation (3.12) for FR defined by (4.14). After solving for g and
h, the solution F of the Boltzmann equation (2.1) will be complete.

5. Bsic Estmates

Before analyzing equations (4.15) and (4.16), basic estimates are needed
for the operators defined in the last section. First we define some norms.

(51)IIV sup sup(1 + 19IY(J f(X. g, ()2 d)

(5.2) Ilfl.l = i Iraf "t
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(5.3) IIf011= (x, 4, t)' dt dx)

n-0

In the estimates of this paper we use c as a generic constant. Any other
constant, e.g., C2+ 1, will be replaced by c. Often all constants will be
omitted.

Basic Estim~ates. Grad [7], [81 proved the following estimates:

(5.5) IIKfl SI1f 1,,

(5.6) 11K&II&5 sup 1filII

(5.7) IIIKfjj ---5 JjhfjjIll 1IfJ12,

(5.8) (4Lff) 0,1

(5.9) 11w ,f g)II, : hjflI,, 11gh, r 9; 1

(5.10) C_ ()- 9

There are analogous estimates for the operators KM and rm:

(5.12) hhKmfhlo:S sup hhffhhh,

(5.13) JjIKMfjjI SII JIII jllf V112

(5.14) I11'.(f, 9)I11l~1  h1gH,, r 1

We also need the following new estimates:

(5.15) L1 f 1r~~I,

(5.16) ~!(VL M)f~ Ifh,

(5.17) !( VL,)f IfI,
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(5.18) h!(VK)fjIfI+ 2

(5.19) v u

(5.20) Vv<_ci,.

The integral operator K" is written explicitly, as in the analysis of Grad
[7], in the form

( (,A) +( )

X I exp { g(2 +W)20Q(V, w) dw,

where v = - =, 2 (t +1q) = C, + t2, with ul the component of n parallel to W,
C, the component of C parallel to v. The estimates' (5.11), (5.12), (5.13) are
proved using the bound

(5.22)
V

The estimate (5.14) is exactly (5.9) with w, replaced by w.. The ine-
qualities for v, PM, Vv are derived directly from the definitions (4.3), (4.8).
Bounds on LI, VL,, VLM, VK are proved using (5.9) or (5.14), (5.19), and
(5.20), and the smoothness and decay of the F.

The next lemma uses the basic estimates, the exponential decay of o,, and
the smoothness and decay of the F.

LEMMA 5.1. The following estimates hold:

(5.23) sup (1 + gI)"o'( ) c,
S
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(5.24) IIag~L., - c llgIlo.,

(5.25) ll1 wr(rg,+hj, 0'g2 +h 2)l +Ilhi,.r)(Ug2Iks+Iih U..,),

rIl, sa!,

(5.26) la~ c

In Section 6, the following modified Gronwall inequality is used.

LEMMA 5.2. Let u(t)0, a>0, 13>0, and suppose that

(5.27) u(t)<a sup u(s)+13(t).
dt o,,,",

Then

C,
(5.28) u(t) < u( O)e"' + t e (1-)3(s) ds.

6. The Lineaized Equation

The linearized version of equations (4.15) and (4.16) is:

(6.1) (+ lV)g = Lg -1xa-'Kh ,

(6.2) a +,V h=- og -I

(6.3) g(t = 0) = h(t = 0) = 0.

The estimates in the next lemma are the key steps in this paper.

LEMMA 6.1. Let g, h solve equations (6.1), (6.2), (6.3). Then

(6.4) IJI,. jb1 v1/4 IbvB,+i.,

(6.5) Ilhll,, - " , 11b/vIl,,

for r- 3, s 1.
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Proof: (A) Estimates on h. The integral version of (6.2) is

I { }(6.6) h (x, t, fj) exp{-ts) v(4),)e I gag -l jKmh+ LI(ag +h)+E2 b)

x (x -(t- s)f.1, g, s) ds .

Using Grad's basic lemma, [8], p. 164, we estimatejj,,: 5 E i I1 ogl1,+ I1 11'R hl,+  EI1 LIog 1+  +E3 b11, i
(6.7)

;-- lgllo+ ' Ilhll, + e(Ilgl +Ilhll,)+ __ IIb/I'lr,
Co

making use of (5.10), (5.11), (5.15), (5.24), (4.10). By choosing fo large
enough, it follows that

(6.8) 11hll,:_ E- 1 tgllo+ e' lib/vi,.

We differentiate (6.2) to get an equation for Vh:

(6.9) a +f,V)Vh = -(iorVg+(V o.)g)_l (v+*iKM)Vh - (p + jKM)h

+ L1 (oVg + Vh + (Vo)g) + (VL1 )(org + h) + e2 Vb,

and continue as before to obtain

(6.10) iVhII 1 IjgjIo.t + e 3 jIb!Vjj,+ E
3  I Vbl

Combined with (6.8), this says that

(6.11) Ilhil,.i- 11g1k.1 + __3 Ib/vII,..

(B) Estimates on g. The integral version of (6.1) is

g(x, t, )

(6.12) exp { (t- s) v(9)} -1Kg 1X -'Kmh} (x - ( t - s Of f s ) d s

' I
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Making use of Grad's lemma we find

(6.13) 11gII, --< IIKgl, +llxar K ,hII,.

But

1I_' xKhII, _ exp {c0} IflKhIl,

(6.14) _exp {cfg}(e Ilgl + IIb/1,-II,)

using (5.11) and (6.8) and choosing E small enough so that E exp{cf2}<6E.
The first term in (6.13) is estimated by (5.5) or (5.6), with the result that

(6.15) Iughl, --Ilgll,-, + 65/2 IIb/,',II, , r => 1

(6.16) IlghI6-- sup IlgIII+6 ,21IIb1v1t.

Employing (6.15) for r and then for (r- 1), recursively, and finally using
(6.16), yields

(6.17) IgII, --5 sup IIglIl+ _-5/ IIb/1vl,_ .
O;91 r

To estimate III gill, we multiply equation (6.1) by g and integrate over x and
. We use the spatial periodicity and the non-negativity of L to drop the /,ax

and the L terms, the result is

(6.18) 1 I - 1II -'xKM hlll" III

Thus

a III g(t)111 - exp Ic e}.1 IlhIh
at1

(6.19) -exp {cf}(IgI 0+ 2 b/ l2)

Sincxp t is tn1ruefr(anysp te ded Ioll i t

Since this is true for any T", T2-t, the modified Gronwall inequality is
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applicable and implies that

IIg(t)jjj- r lb/ijl exp {t exp {c o }}(6.20) 5E'1lvi

by choosing e small enough so that f exp {T exp {c 2}} - 1. Substitution into
(6.17), gives the result

(6.21) gll <-- 2 E" IIb/ll,-,, r- 3

(C) Estimates on Vg. The equation for Vg is

at +6v)Vg= =-(v+K)Vg-(Vv+VK)g

(6.22) _ X(V(o.')KM + oU -(VKM))h -- xa- Km(Vh),e e

and proceeding as before we find

(6.23) IVgll,- sup IIlVg11[+ e3 2 11b/vi,+ 11,.

The L2 estimate on Vg is found by multiplying equation (6.22) by Vg and
integrating over x and f. As before, the x derivative and L, g terms can be
omitted. Hence

1a

111 VgJI _2 -- ((Vi+VK)gVg)

(6.24) -- (x(V(r-')K + cr-(VK))h, Vg)

-1 (Xa-KM(Vh), Vg).e

We use the Schwartz inequality to estimate

SIlllVglll:-!- IIl(V' + VK)glll+l [ llx(V(a,-')KM + o,-(VKM))hlll

+ - [llxcr' KMqhII <-- llgll4 + - exp {c~o} [Ihll2.1
(6.25) e 1 e

E 81/ lb/i'l3 + exp {C2}(lgjfo I + e2 llbfrfl.)

_exp {c2} sup jIIVgJ +1 e"11Ub/i'h13 •

xp 01
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From the Gronwall inequality we obtain

(6.26) -I Vg() 1/ b/ll 3j.1 exp {exp jc '}) 9- 1b/V131.

by choosing e sufficiently small. Combining this with (6.23), (6.21), (6.8), and
(6.11), we get

(6.27) gl. 1  O lbvl 11 ,r2

The same estimates are true with s > 1; thus the proof of Lemma 6.1 is
complete.

7. Solution of the Nonlinear Equations

The nonlinear equations (4.15), (4.16), (4.17) are solved by the implicit
function theorem or direct iteration on the linear equations. Let g,+,, h.+, be
the solution of equations (6.1), (6.2), (6.3), with

and goho0 . Then b=v .(g ,o.+h)+a

and from Lemma 6. 1, we get

(7.2) ~ jgljh+1 ,l E 114(j 1f~1 2+ll, + C)

By iteration we find

(7.3) 119-+ 111,1  C , llh,,+illr.I 5C,

in which c is independent of n. The differences g,+1 - gf, h+-litsolve
equations (6.1), (6.2), (6.3) with

b p. Fm(og. + h. + og-, + hl-, an+h -g.-.-. 1 -I~),

(7.4) IbI (lg - -loi+I,- l-.r)

111bil
IP
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so that

(7.5)g. 1+ 1 '5 g Il "c(g. - g.,11~.,, +Jjh - h-~)
(7.5)- h_ "e11 c(Ig& - g.-&,, +1h -

From this it follows that g.- g, It., - It in 11 - l,,. By standard arguments one
then finds that g, It are solutions of (4.15) and (4.16). This completes the
proof of Theorem 2. 1.
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ERRATA: *The Fluid Dynamic Limit of the Nonlinear Ertzmann Equation" by Russel E. Caflisch
Commn. Pure Appi. Math.2 33 (1980), pp. 6514566.

Replace line (2.5) by

Fe C- Bd FeG BF B 31  Ht 30'

4nwhich 8 if: If < "IwthI defined by (5.2).

3-rs ~


