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SUMMARY

This report covers the period from I June 1979 to 31 May 1980, and

concerns the third of three phases. This phase concentrated on the develop-

ment and application of the augmented Program Testing Translator (PTT)

described in the July 1979 Interim Report on AFOSR F44620-74-C-008.

'The software required to test FORTRAN programs, first with random

numbers and then by preselected constructed cases, was developed during this

interval. Software modifications were made to permit performance measure-

ments of the degree of coverage to include the results due to the use of con-

structed cases. The automation of the mix of random numbers and

constructed cases was studied and limitations were found.

Two new models for use during the development phase of programming

were developed. These models apply to programs which grow in size during

the debugging period.
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Section 1

IOBJECTIVES AND TASK DESCRIPTIONS

1. 1 WORK ACCOMPLISHED

The primary effort during the contract period encompassed work on three

tasks:

1. Tailor or expand the testing programs that were developed in the

early phases of the contract.

2. Code so as to provide valuations of the program predicates, and

values of the artificial program variables which provide the data for the

search procedures.

3. Modify, install, and test the tool on a laboratory computer when the

scope and size of the test tool are established.

1.2 ADDITIONAL WORK REQUIRED

Continuing studies will be made to assess the practicality of a fully auto-

mated version of testing.

This additional work is included in the major task:

Test the tool and the methodology, using the several constructs

(connection matrix, status vectors, predicate valuations, and input and

output data) through the implementation on a "laboratory" type of computer,

such as the Nanodata QM- 1.



* Section 2

STATUS OF RESEARCH EFFORTS

2. 1 SEGMENT COVERAGE BY RANDOM AND CONSTRUCTED CASES

2. 1. 1 Problem Identification

This particular part of the study reached the point where the methods of

analysis were established and were tested out acceptably. There are three

major software related problems, which were solved. They are discussed in

the following three subsections.

2.1.1.1 Problem 1: Estimation of Number of Residual Tracks

First, the estimated number of tracks through a program obtained by

using random numbers a.s program drivers was solved. This problem had

been solved in principle, but implementation of it heretofore had been effected

by the tedious process of desk checking segment usages against all past

usages. The software required to automate the process has been written.

Although the capability exists to use arbitrary probability distributions for

the random drivers, the usual procedure was to employ the same distribution and

the same range of values for all input variables, this common distribution

was a uniform distribution on a fixed range (of the logarithm). For addi-

tional flexibility, two additions to the total APTT program were added.

First, the range of each real input variable was made selectable, with the

distribution over the logarithm uniform on this range; second, for integers,

the selection was made from a uniform distribution over whatever range may

be selected. A random (50/50) sign selection was also made for the (always

positive) real variables; for the integer variables the range may be extended

to negative integers so that the device is not required.

The selection of random values for the input variables (real or integer)

provides the set of values for one run. The procedure employed for estimating

the number of tracks that will be exercised requires a number of executions

and comparisons. In the automatic version, the track that accompanies one

(input data (random) selection is identified in terms of a zero or one assign-

ment to the arbitrarily ordered set of segments which comprise the list of
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segments: a zero for nonusage and a I for one or more usagea. (Two paths

which differ in their nonzero counts of the usages of segments, or in their (
order of execution, are considered to have the same track).

In the implementation of the estimation process, the above outlined initial

portion is followed (in the postprocessor) by a routine which compares the

sequence of binary n-tuples (one "ordinate" for each program segment) in

order to accomplish two things:

A. Establish whether a newly examined track is the same as some

track earlier examined, effected by comparing the n-tuples ordinate by

ordinate against all previously taken tracks,

B. Marking the trial number of the current track by a zero or 1 in

accordance with the results of the comparisons, a zero if an "old" n-tuple

has been found and a 1 if the examined track is new.

The data for the estimation procedure consist of the pattern of O's and l's

obtained in the above comparisons. The primary observable consists of the

total trials between adjacent l's. These spacings between l's are reported

as X 1, X 2 , ... , X and represent the difference in the indices representingn
trial numbers: XI is the separation between the first trial number (by defi-

nition, the first trial results in the first new track) and the trial number

which produces the second new track (usually this separation is I because of

the high likelihood that a new data set will produce a different track); X2 is

the separation between the third and second new track, etc.

With data X 1 , X 2 , ... , Xn obtained by running the program over T trials,

the number of new tracks is estimated from the equation

n
Z 1 - nTi 1 N ( i 1 ) -n ( 1 )

NT- (i-1)X.
i=l

where N is the unknown, Xi are as defined, T is the total number of trials

and n is the number of Xi employed.

4
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The augmented version of APPT achieves this entire process of com-

parison and estimation automatically.

2.1.l.2 Problem 2: Comprehensive Coverage

A certain track is taken in response to any input data set. This track is

characterized by the segments that are exercised, without regard to their

order or their multiplicity of execution. The major problems in completely

automating the cover-testing process are in construction of the software

required to establish the status of testing, maintain suspense files on all

unexercised program segments, insert augmenting variables corresponding

to predicates which define the entry into the (unexercised) computational

segments, search the input variable space to achieve entry, compare the

resulting track with previously obtained tracks, and prune the original tracks

to a set of smaller dimension (manifested in the reduction of the original

n-tuples to tuples of smaller size).

The complete list of tasks required to develop the software follows:

A. Identify unexercised branches (at the end of the initial runs with

random numbers).

B. Pick an unexercised branch and display the listing associated with

the branch (a "back" sort is required which identifies the instruction number

of the involved predicate).

C. Formation of an auxiliary variable based on the nature of the predi-

cate. (For example, if the test, A<B, is the predicate, the auxiliary var-

iable could be C 1 = B-A).

D. Create a variable (with requisite modifications to the object

program).

E. Vary input variables until the auxiliary variable is positive.

Rationale for the variation depends on the program variables identified in

the listing.

F. List all exercised segments and compare with preceding usage.

G. "Release" the variable and proceed to a new unexercised branch.

1T. In an extension of the above procedure, several auxiliary variables

can be inserted at one time and input data chosen in some systematic way (a

search) to achieve arbitrary valuations on all auxiliary variables.

(C011r U



Not all of the software required for this problem has been written and, in

the main, the process of integrating a display into a human/computer/display

interrogative mode has not been accomplished. The progress which has been

made toward that end is described in Section 2.1.2.

2.1.1.3 Problem 3: Formation of Execution Sequences

It is well to state at the outset that only the outline of this problem has

been established. The following paragraphs describe the background and out-

line of the problem.

The use of tracks as proxies for execution sequences is in part necessary

and in part expedient. Tracks are necessary because one usually cannot deter-

mine the actual sequence from alist of usages: with several entrances and several

exits from a node and a different usage number of each, there is usually no way to

determine the actual sequence of the computation that would produce the

usage numbers. On the other hand, information often is available which

would allow the program flow to be determined in a gross or general way,

and that information heretofore has not been employed in our studies. It

would be helpful to program testers to provide a general sequence of the flow

resulting from a given input driver set.

To illustrate this, an example, depicted in Figure 1, shows the set of exe-

cuted segments and their counts as solid lines or arcs between all nodes which

were passed during the first data set employed on the ORLA program described

in the 2nd Interim Report (Reference 1). It will be noted that dotted lines are

also shown emanating from certain of the nodes which were passed. These

are branches which were not taken on the run; they would be important in

coverage testing but can be ignored for the present discussion. The flow of

the computations can be determined unambiguously only in the cases where a

single execution is performed on a segment and no other segment parallels

the segment. For example, there is such a segment joining nodes 355 and

263 in the central lower one-third of the chart. This and others are highlighted

in Figure 2, where they may be easier to locate.

The general flow can be formed from the unambiguous segments which

show a usage of one. In one case, there are (at node 226) two segments, both ()

with a count of 1. shown exiting a node. But this particular ambiguous case

8
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is easily resolvable (i-.e., precedence determined) because the branch along

segment 13, joining nodes 226 and 483, joins to the exit (END), and so cannot

precede the segment joining nodes 226 and 235. This suggests an interesting

problem of which the preceding example is the most trivial: given a set of

nodes and their counts, determine under what conditions the actual flow can

be determined. This "academic" problem will not be pursued in this study.

The application of the simple rule which establishes the one-time used

segments (a "footprint," or better, a "one-print") permits a linking of certain

segments to form contiguous blocks of the program, the General Flow of the

title of Figure 2.

Such linkings are shown in Figure 2, where the defined flow consists of

the following:
Block 1: Segments 1, 113,4,6,112,8,102,11,87,101

Block 2: Segments 96, 18, 86

Block 3: Segment 26

Block 4: Segments 30, 32, 33,45, 36

Block 5: Segments 41, 42, 13, 15, 17 (END)

Even the undefined flow can be combined to form pseudo segments if there

are no dotted lines: thus, the series/parallel segments 20,21,84,22.23,24,
and 25, which are between nodes 319 and 355, can be treated as a single

pseudo segment with a usage of 150, the entry and exit counts at the two

joined nodes. In addition to these pseudo segments, another type of merging

is possible in certain areas. For example, some of the segments from

Block 4 of the above list can be joined with the segment of Block 3 to form a

superblock. Since all possible paths to and from nodes 263 and 273 have been

exercised, these can be eliminated from further consideration, permitting

formation of a pseudo segment with which to join segment 30 to segment 26.

Also, since node 291 has all exits exercised, it too can join to form a larger

block (26, pseudo segment, 30, and 32). Because node 292 has a dotted line

out of it, there is no further merging possible between the two blocks.

Even though the remainder of the program flow is undefined, there are

many points which are internal to the undefined blocks where reduction is



possible. A trivial example is the pair of parallel paths 91 and 99 between

nodes 191 and 209, which can be merged into a two-use segment; more

interesting cases can be identified in the lower left portion of Figure 2. Thus,

between nodes 401 and 415 are segments 53, 68, 54, 55, 57, 56, and 58, all

of which can be merged to a 118-use pseudo segment.

Figure 3 shows a considerably pruned version of the flow diagram. As

with the preceding, it is developed from the one-prints and more is required

to establish the sequence. For example, segment 42 appears to follow

(dynamically) 41, but there is no reason to think a priori or in a local context

that it actually does. In a global context, however, it is known that segment

42 is the later exit from node 385, because 42 joins to 226 and from there out

to the END.

2. 1.2 Software Implementations

2.1.2.1 The Program Testing Translator

The PTT and its augmentation, APTT, are the primary software tools

supporting the Software Quality Metrics effort. Use of the PTT tool in earlier

phases of the study allowed individual subroutine driving by employing random

variables for each subroutine parameter. In applications, data was used to

drive the subroutine repeatedly; this was followed by collecting statistics on

execution counts and branchings. Then a postprocessing step was performed

which presented, in tabular form, a list of segments and the corresponding

segment usage statistics. This process in the early phases required a manual

connecting of segments into possibly larger segments. Noticeably absent

from the early version of the PTT tool were branches implied in DO-LOOP

termination, and in END= and ERR= branches in file operations.

To alleviate some of the shortcomings, the PTT was modified in several

respects. First, it was altered to operate on the entire program instead of

subroutines. This allowed analysis of all FORTRAN modules in a program

to occur at one time. The PTT was also upgraded to recognize the implicit

DO, END, and ERR branches. Along with these changes, the segment anal-

ysis was completely redesigned to allow composition of complete dynamic

10
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segments automatically and, to a small degree, to pinpoint unreachable

portions of code. This redesign also caused a more efficient allocation of

segment monitors.

2.1.2.2 Augmentations of PTT

Since the redesign, the three problems discussed in Section 2.1.1 have

arisen and these required further modifications to the PTT. The first was

to obtain, automatically, an estimate of the number of residual tracks remain-

ing to be found. The solution involved addition of an input description record

by the user to control ranges on the random variables used as drivers, and to

get a new set of input variables upon calling of the input routine. The gathered

execution statistics numbered each case run and determined, with use of the

postprocessor, the X. required to calculate the residual number of tracks.
1

The second problem required software assistance in the selection of test

data, first by identifying the unexercised branches and, second, to allow the

user to add one or more new temporary auxiliary variables to be monitored.

Cases would then be run and the values of the input variables varied until

a positive valuation of the temporary auxiliary variables occurred. The

choice of the auxiliary variables and the equations which define them are left

to the user in this version of PTT. The PTT assists the user by compiling

so as to incorporate the auxiliary variables, generating a monitoring code,

and by updating the list of unexercised branches.

The third problem, discussed in Section 2.1.1.3, was to assist the user

with a method of determining the program flow. This problem presented a

level of difficulty such that no immediate assistance from the PTT per se

was deemed possible.

2. 1. 2. 3 Examples of Applications

To illustrate each of the first two problems and the PTT solution, the

matrix triangularization example will be reexamined. This example is

extensively discussed in the 2nd Annual Report (Reference 1), where directed

graphs of the potential program flow and examples of the coverage by random

numbers and constructed cases were given. Listings of the MAIN and

TRIANGULARIZATION subroutine comprise Figure 4.

12
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Appendix A contains tables and reports of the PTT output for three

separate test runs. The reports show the testing coverage provided by using

the user-described input routine INROUT. INR6UT returns a new set of

random distributed data values for the input matrix A. The data values are

uniformly distributed over the logarithm in the range -2 to 1. The sign of

the individual data items is also selected randomly.

The first three cases of test run No. 1 (see Pages A-1 to A-3 in Appendix

A) show coverage of code for the MAIN program as 100% in the column marked

Summary. Subroutine TRIANG gets a summary coverage of 86.96%. The

remaining segments to be tested are numbers 3, 12, and 16, as seen in the

segment reference report (Page A-Z of Appendix A). The segment reference

tables are used to relate the segment numbers and their corresponding

program statement numbers together. As an example, it is seen that segment

3 contains lines 34, 35, 36, and 37 in subroutine TRIANG (see Figure 4).

These lines correspond to:

IF(A(K, K). EQ. 0) 3 4 IP(N) = 035

6 CONTINUE - K = K+l36 IF (K. LE.N) 3 7 loop

(DO-loop termination includes an implied conditional branch)

Following the summary reports and the segment reference tables, the

trial statistics appear on Page A-3, for example. These are the Xi that are

needed to calculate the estimate of the number of remaining tracks. (Actually,

more than three cases are required for the estimation and the three entries

on Page A-3 form only a part of the data used.)

Supplied as part of the testing package is a program that interacts with

the user and calculates the difference of the two sides of equation (1) in

Paragraph 2. 1. 1. 1 based on trial solutions supplied by the user.

To explain how the Xi are formed the formation of X and X2 will be

considered. Case I of run I (see Page A-1) shows the number of times each

segment of MAIN and TRIANG were executed. Since this is the first test

case, the first unique track is automatically formed. Case 2 of run I for

TRIANG (Page A-1) shows the same segments being executed (the number of

15



executions of each segment listed happen to be the same, but this is irrelevant;

the comparison is made on the basis of whether or not the segment was execu-

ted, not on how many times) as in case 1, run 1. The MAIN routine shows a

difference in execution. Therefore case 1 and case 2 are different, so we form

X 1 = 1. This means that one case occurred Since the last unique track. If we

compare case 3 of run 1 against cases 1 and 2 we also find a difference in the

MAIN routine (see segment 3 execution counts). This gives us our third

unique track. Hence, X2 = 1, also, since only 1 case occurred since the last

unique track.

Continuing in this fashion, by comparing cases 1 through 9 (in Appendix

A), in order, we find unique tracks for cases 1, 2, 3, 4, and 8. (A summary

of the nine cases is found on Page A-9.) The Boolean tokens associated with

the sequence are shown below:

1 2 3 4 5 6 7 8 9

NW/I 1 1 1 1 0 0 0 1 0
OLD'

(1, =0)[

XlI=1 X 2=1 x 3=1 X 4=4

By using the estimation equation, it was determined that there existed 9. 1

new tracks to be found.

Appendix B contains reference tables of the PTT output for a constructed

case. The constructed case shows the use of monitor variables (Page B-2).

For constructed cases, the user is required to supply input data to the pro-

gram, and to supply the monitor variables. It is seen that the user-supplied

input is in the DATA statement in the MAIN program. Subroutine TRIANG

shows the use of monitors inserted into the program of branch points.

By analyzing the unexercised segments, 3, 12, and 16 of the three test

runs of Appendix A, where they are marked by asterisks in all three of

the segment reference tables (Pages A-2, A-5, A-8), it can be determined

16



from the listing that the variable T holds the key to exercising these segments.

4 Further examination suggests that if A[3,31 is equal to zero then segment 3

will be exercised.

Segment 12 requires variable T to be zero. For this to be true, A[l, 1]

could be equal to zero or[32]icould be greater thanIA[2,Zjand A[l,2] must

be equal to zero.

Segment 16 also requires variable T to be equal to zero. This condition

will result if Al1, I is not zero and A[1,2] is equal to zero.

These findings determined the initial values of A for the DATA statement.

By observing the segment reference for subroutine TRIANG, we find that seg-

ments 3, 12, and 16 have been executed and the test coverage is complete.

2.2 ERROR-DETECTION MODELS

Z.2.1 Summary

Two variations of the Jelinski-Moranda model were developed for esti-

mation during program development. The first permits estimation of the

error content of the completed software package using data which is taken

on only portions of the package. That model is applicable when the eventual

size of the program is known at the outset.

The second model permits a similar analysis during the development of

any software package which is homogeneous with respect to its complexity

(error making and finding).

These models should assist analysts in an early determination of error

content. They should also eliminate the present practice of applying models

to the wrong regime (decreasing failure rate models applied to growing-in-

size software).

2. 2. 2 Introduction

In normal usage of the Jelinski-Moranda model, the software package

under test is assumed to be of fixed size with a fixed number of incipient

mwti WELL I17



errors. The size of the package does not appear explicitly in the model as a

parameter, and its effect is only indirectly realized by the way it affects the

number of incipient errors which exist at the start of testing (there is a direct

relation between instruction count and error count).

That model could not be employed legitimately on software packages

which were incomplete. Several workers attempted to fit the model to an

initial period of time when its error rate was, indeed, increasing, due to the

growing size, and they met with no success. (As a matter of fact, the only

models which produced reasonable estimates when applied during this regime,

were the increasing failure rate models).

It would be helpful if, at the outset, an estimate could be obtained of the

total error count which will be realized in test and usage of a package.

Recent work by IBM (Reference Z) has prompted a reexamination of

the original Jelinski-Moranda model for the purpose of incorporating the

(changing) program size. This turns out to be very easily effected if good

record keeping can be maintained during program development so that the

size of the package is recorded as a function of some convenient timing

metric (CPU or calendar). Following is a description of the analysis.

The original model is depicted in Figure 5, where the two parameters

are shown in Figure 5(b), and a typical realization of the error-finding proc-

ess is shown in Figure 5(a). N is the initial error content (of a completed

program) and * is the contribution to the error rate due to a single error.

While the meaning of is maintained in the two models, the meaning of

"initial error content" needs to be clarified. This is done below in the

description of Model 1, where, in effect, N maintains its meaning as the

number of errors in a completed package. In the second model, a fixed

error rate per instruction is assumed, and growth of the package is meas-

ured by the count of instructions (under test) versus time.
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Figure 5. Purification Process and its Realization

2.2.2.1 Model 1

Let S (t) denote the fraction of the total number of statements which a

complete program will have. The metric t is measured in terms either of the

accumulated CPU time, or of the amount of calendar time, which has been

used for testing the package.

The simplest way of introducing the effect is to use S(t) as a "modula-

tion" of the error detection rate Z(t) of the original model. In the notation

formerly employed, this combined or modulated rate, denoted W(t), is:

W(t) = S(t) Z(t)

S(t) f(N-i+-l)0] for T!_ s t s T! (2)

and T , T , T3,..., denote the times of detection for the errors. (Primes

are employed on T's to distinguish them from the times of the original proc-

eas.) The effect of S(t) on the T! should be made clear at the outset. When
• 1
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S(t), the fraction of the total count, increases, the composite error rate will

generally increase, as will the liability for error for the "modulated" process.

For this reason, the times T! for the composite process, W(t), will be differ-
1

ent from the T i of the Z(t) process. Since N in the original model represented

the total error content of a complete software package, a proper correspond-

ence which preserves the meaning is that N is the error content at a time

corresponding to the completion of the software package, S(t) = 1.00. This

necessarily presumes that the size of the package which will be developed

is known at the outset. (S (t) would represent the fraction of the total which

is accomplished at time t.) This may or may not be a serious barrier. Some

modules can be sized at the outset, but large complex programs may not be.

An alternative to this is offered subsequently in Model 2.

For the present model, So(t) is a nondecreasing function which starts at

zero at TI and achieves its maximum value at some unknown-at-the-outset

time, TI.

Thus, 0 - So(t) < 1, with SoiT0 ) = 0 and So(Tc) = .

While S (t) is, in the large sense, random, the records of progress will

permit specific values of S (t) to be determined and the randomness is of no

concern. In particular, it is necessary that S0 t) can be determined at the

epoch times T , T ,..., T' at which the errors are detected.
Tn

When the completion time, Tc, is reached and for times thereafter, the

software package is complete (S 0 (Tc )=) and, formally, the density given in

Equation (1) is the same as that given in the original paper (Reference 3).

It has been mentioned earlier that the time pattern of errors will be dif-

ferent for the "modulated" process, and it is interesting to see just what

would happen if So(TI), or for short, So(0), were 0. 10 (10% of the package is

initially available for test), and it did not increase beyond that for a long

period of testing. The time pattern of errors T , T,..., Tn' which would

occur, would have associated separations X1 = T - T , X11 T2 - T, ... ,

X' = T' - T'
n n n-1V
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Because S(0 = 0. 10, the composite detection rate for the first error

would be (0. 10) N , that is, 10% of the original error-detection rate. This

means that the first detection time T', would (on the average) be 10 times

as long as the time for the corresponding error of the unmodulated process.

The second error would have the same property (on the average), and so

forth. The implications of this fact can be seen from the following. The

likelihood function would be

L(X , ... , X'

nn

II So(0)[N-(i-l)] exp { -[So(0)*(N-i+I)Xj]).
i=l

The likelihood equations obtained by, differentiating the logarithm of the

likelihood with respect to N and € are:

nl n
LN~- S(0) X, = 0 (3a). N- (i- 1) o
j=1 i=1

and

n
n - So(0) [N-(i-l)]X! = 0 (3b)

As noted above, the observables X! would be (about or on average)

10 times as large as before. Thus, from Equation (3b), the solution * will

be (on average) the same as its value for the unmodulated process, or for the

completed software package.

Using the solved-for value of $ in Equation (3a) and the fact that S (O)X I

in the new process is the same as Xi in the original process, it is seen that

the solution N is also the same as before.
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The analysis then shows that if it is known that a package under test

represents (in all respects) a certain percentage of the total, then the total

eventual error content can be estimated by using these slightly modified likeli-

hood equations.

The result is encouraging for the outlook for success in the following
simple generalization of the above example. In this generalization, the So(t)

modulating function is constrained to be constant during each test interval.

Using essentially the same notation as before, the likelihood equations for

the generalized modulated process are

n
iN-i+l ¢2 si-

-,1i . (4a)

and

s. (N-i+1)X! 0 (4b)~i - I I

where Si-l is the percentage completion achieved prior to the start of the it h

interval.

Solutions for the parameters can be carried out as indicated above in

the example.

The mean-time-to-next error MTTF (n+l st in the present context) can

be estimated by evaluating the rate at time T' and taking the reciprocal of it.
n

In the present case (using a subscript on the left side to correspond to the

model number):

MTF STn-)ln)(

where N and * are solutions to the Maximum Likelihood Equations (MLE's).
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2.2.2.2 Model 2

Let E denote a characteristic rate of error-making for the programmerp
(or programmer team) and the program type. This rate will be estimated

by application of the model described subsequently, but there are some useful

facts concerning this parameter.

In 1975, it was observed (Reference 4) that there appears to be a

... 'universal' coding - error rate... ," which has a value of about 2 errors

per 100 instructions (of the language in which the program has been written).

This observation was based primarily on the data (now famous) provided by

F. Akiyama, but also on earlier observations made by B. J. Hatter, et. al.

Subsequently, the validity of this "thermodynamically stable" parameter has

been reinforced by several other studies.

The interesting feature of some of this later data (Reference 5) is that

the error rate of two per hundred was observed on programs which had

completed their development and integration phases; they were under test

before the relevant error counting was initiated. This is surprising since the

coding error rate is thought of as being similar to a typist's miskeying, and

should be purifiable by edit routines and by code checking due to early mis-

starts of the program.

These features of an hypothesized entity are fortunately not used in the

following analysis.

The error rate at any point in the development of a program whose cur-

rent instruction count is G(t) is assumed to be proportional to the current

error content

V(t) = * [G(t).E - n(t)] (5)P

where n(t) is the accumulated number of error corrections, and Ep is the

per instruction error rate.

23
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As before, if G(t) can only change at error-discovery epochs, T 1 , T 2 ,

Tn, and, if n(t) also has this feature, then the rate has the form

V(t) = [Gi_ 1 Ep - (i-1)] for Ti. 1 _< t 5 T i  (6)

where G = G(Ti_), and n(t) is i-i for the interval starting at T i_.

Since G(t) is a function or process which takes place without any apparent

dependence on the error-finding process (except that the error epochs are

assumed to be the points of entry of new code) it is reasonable to assume that

the random time separations between errors (X 1 , X2 , ... Xn) are statis-

tically independent.

Under these conditions, the constant rate implies an exponential

distribution for the Xi, and the likelihood function for n errors is:

L(X I , X .. ,X)=
21' 2' n

n
ii d [G i 1 Ep - (i-1)] exp {-Xi[Gi_ 1 E - (i-I)] (7)

i=lp

The MLE's obtained by differentiating the logarithm of the likelihood

function with respect to 4 and E are:
p

n G n

Gil O E -(i-l) G -lG X = 0 (8a)
i-I pj1i- i

n
- [--- [G i E - (i-i)] X. = 0 (8b)- p 1

The MLE's are solved as before: Equation (8b) can be algebraically

solved for 6; this is substituted in Equation (8a), and the resulting key equa-

tion is solved for E by trial and error.

P
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It is recalled that the desired performance parameter is Ep, which can

then be used with either the current (known) or peojected (estimated) instruc-

tion count to determine the total error content.

Estimates of the MTTF at any time can be obtained by the formula

MTTF 2 = I (9)
[Gn Ep - n)

2.2.3 Conclusions

The two models presented in the analysis are both very tractible

analytically.

Model 1 would be of use for those programs whose eventual size is known

at the outset. It requires that a record of the times of error occurrences be

maintained as well as a record of the percentage of completior. at each of the

error-detection times. It provides, at any stage of testing, an estimate of

the error content of the untested complete package.

Model 2 applies to any developing software package which is homogenous

with respect to the complexity of programming and with respect to the talents

of the programmers. The important property is that Ep, the error-making

rate (or error-finding rate), must be a constant across the entire software

package. In case of inhomogeneity separate analyses are advised.

2.2.4 Glossary

Terms and symbols used in the preceding sections are identified as

follows:

S (t) A "modulation function" which ranges from
0

0 -5 S 0 (t) < 1. 0 and is nondecreasing. it represents

the fraction of the code completed up to time t. It

is a given for the problem.

Z(t) The Jelinski-Moranda detection or purification

process.

W(t) The product of S(t) and Z(t). It represents the error-

making or error-detecting rate versus time for

Model 1.
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N The number of errors in the completely coded soft-

ware package. This is estimated from data.

The contribution of one error to the detection (failure)

rate. This is estimated from data.
.th

T' The time at which the iL- error is found, measured in

any convenient timing metric. An observable.

X The separation between the i h and the i- I error.

An observable.

n The cumulative number of errors found in testing up

to time T n .n
S. Is the percentage of completion during the (i+l) 1t

interval. This is provided as exogenous data.
MTTF i  The estimated meantime to error obtained by using

Model i (i = 1,2).

G(t) The nondecreasing function representing the total

instruction count of the package at time t. This is a

given for the problem.

E The error making rate for a given program-program-
p

mer mix. It is estimated from data.

n(t) The number of errors found during test up to time t.

An observable.

V(t) A stochastic process representing error-making or

error-detecting rate versus time.

L(X1 , X 2 ,..., Xn) The generic representation for the likelihood function.
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Trial Statistics

Number of trials(T)= 3

Value oF Yi:

XI ?1 : 1

IlumoIur of X ( 2
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Case 4 Case 5 Case o Summary
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OUTPUT FROM A CONSTRUCTED CASE
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P(PQ4o3"UN

2 N~3

4k "=1

5 TY) 10 (=1,

1 (*ALL ?RIAqr((tP,AN)

14
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SUI3RfltTP'E Tg[At4l(lP,A#N)

0 A. W'NT T 01

0- 1

3- 1 TF(K.Sj.N) G,]TG 9

13-

15 = s

13 ''IF= R (T

21 noI 2 j=,rPlv

22- 23
24 t'4 JK1'
25 TA(4 J

27 A( V,J)=T

29- 30FT~~0,~t 4

31 DO 3 f=KP1'!

34- 311 '7JP;TNUE

41
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