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A SIMPLE FORMULA TO CALCULATE SHALLOW-WATER TRANSMISSION LOSS

BY MEANS OF A LEAST-SQUARES SURFACE FIT TECHNIQUE

by

Ole F. Hastrup and Tuncay Akal

ABSTRACT /

AA semi-empirical formula TL = 15 log R + [A + B(log f) + C(log f)] R + D
(in dB) is proposed to express sound transmission loss in shallow water as
a function of range and frequency. The four coefficients A, B, C and D are
determined from either experimental or model data by the use of a least-
squares surface fit and the formula usually gives a standard derivation of
the order of a few dB. The formula can be used for studying system perfor-
mances, sonar range predictions, and as a compact data storage.

INTRODUCTION

The numerical calculation of transmission loss in shallow water has always
been considered with a certain reluctance due to the apparent lack of
systematics in the measured results and the rather complicated and lengthy
mathematics involved.

Numerous attempts have therefore been made to express the losses by simple
empirical or semi-empirical expressions using the knowledge obtained from
experiments in model tanks and at sea. Such transmission formulas have
especially been adapted for military planning and operational use.

Generally they give transmission losses as function of range for a given
fixed frequency, using logarithmic terms to describe the geometrical
spreading loss and some additional terms to take the extra boundary and
volume attenuation into account. The coefficients in the formulas are
usually obtained using experimental results and curve fitting for given
discrete frequencies or frequency bands. This means that in order to
calculate transmission loss over a wide frequency band a large set of
coefficients are needed, thereby reducing the practical value of such
formulas.

By recognizing that the general transmission loss is a two-dimensional
function of only range and frequency, assuming the pertinent environmental
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condition to be invariant during the period of observation, it would be
more obvious to use a two-dimensional expression for the transmission loss
TL , such as

TL = g (f, R, A1 , A2 ... An) , (Eq. 1)

with f being the frequency, R the range, and the coefficients Ai
determined not by a set of line fits but by a proper surface least-squares
fit. In order to keep n as small as possible for a required standard
deviation between measured and calculated values, it is extremely important
that the chosen formula represents as closely as possible the true physical
character of the problem.

1 SOME EXISTING ONE-DIMENSIONAL FORMULAS

The development of semi-empirical one-dimensional transmission loss for-
mulas have been given a significant attention during the last 25 years.
One of the earliest works was reported by Brekhovskikh <1>, who calculated
the decay of the acoustic intensity averaged over the water column. It
shows that for ranges much larger than the water depth the average inten-

sity decreases with distance as R-  , a compromise between the cylindrical

law R"1  associated with total reflection from the boundaries and the

spherical law R-2 associated with the absence of boundaries, as in deep
water for example. At longer ranges, when one assumes the presence of only

one mode, the average intensity varies with R e- , corresponding to
cylindrical spreading with an extra exponential damping.

Marsh and Schulkin <2>, using a large number of data, suggested generalized
formulas for the loss calculations, dividing the range into short, medium

-2, -3 /2  -1
and long and using respectively R R , and R types of expression
with additional terms and coefficients depending on frequency, sea state,
and bottom type. The data should be considered with some caution since,
for example, they do not predict the important optimum frequency often
observed in shallow-water propagation. A simple expression used by
several, such as Schelstede and Petersen <3>, gives the transmission loss
as

TL=A log R+ B • R+ C dB , (Eq. 2)

where the coefficients A, B, and C are determined for each frequency band
by a least-squares fit.

The validity of the above transmission loss laws have been studied in
detail by Murphy and Olesen <4>, <5>, <6> using a very large number of
experimental data covering frequencies from 100 to 8000 Hz and ranges up to
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40 km. The result is that both R 31 2  and R 1 eGR are usually equal

contenders, with R being best around the optimum frequency and R

e-aR  being best when considering the whole frequency range. All the
previously mentioned studies have been made only in the range domain and
have used not the fact that the loss is equally dependent on frequency.
The result is therefore a lack of function fitting in the frequency domain
and a creation of a new set of coefficients for each frequency.

Considering the desirability of having a simple formula with only a few
coefficients for each acoustic propagation condition, this clearly leads to
an approach using an expression of the type of Eq. 1, with coefficients
obtained by two-dimensional, surface, least-squares fits from broadband
experimental or predicted data.

2 SIMPLE TWO-DIMENSIONAL TRANSMISSION-LOSS DATA

One of the simplest and clearest ways to display functions of two variables
is to use iso-contours, which in this case means iso-loss contours in the
frequency/ range plane. An inspection of such loss contours from approxi-
mate 170 cases examples in shallow water <7> indicates that we are dealing
with two characteristic cases, as shown on Figs. la and lb.
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Figure la shows the case where an optimum frequency has been observed
within the studied frequency interval; it usually represents propagation
over a hard or semi-hard bottom. In Fig. lb no marked optimum frequency
was found in the studied frequency interval; this usually corresponds to
propagation over a softer bottom. So the requirement for our general ex-
pression, Eq. 1, is that it should contain families of curves similar to
the ones in Fig. 1 and include both logarithmic and linear terms of the
range R.

After some trial and error the following formulas have emerged:

TL=15 logR+ [A+B (log f) +C (logf) 21 R+D , dB , (Eq. 3)

giving the loss contour equation h(f, R) for a fixed loss L

h(f, R) = 15 log R + [A + B(log f) + C(log f) 2 1 R+D-L = 0 (Eq. 4)

Let us have a short look at some of the characteristic features of this
family of curves.

Partial differentiation yields:

(B + 2C -logf) R (Eq. 5a)
aog f

ah*1(q bR 15log e + A + B(log f) + C(log f) 2  (Eq. 5b)BRR

From Eq. 5a we get, for (
~og f)

e , (Eq. ,6)
log f = - 2 1

which corresponds to the characteristic optimum frequency (OF) of shallow
water.

3h

Using Eq. 5b we get, for - =0

16.5 + A + B (log f) + C (log f) 2 =O , (Eq. 7)

where 6.51 = 15 log e
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The behaviour of the h (f, R) curves depends on the number of solutions
to Eq. 7, which again depends on the following classical condition

B2 - C (6.51 + 4A) R= 0SR

When S < 0 for all values of R , Eq. 7 has no solutions and- $ 0,

which corresponds to the situation of Fig. la where the contours have a
"parabolic" type of look. The other, for us, important case is where
S < 0 for small values of R and S > 0 for large values of R , the
latter corresponding to the situation of Fig. lb where the contours now
have a "hyperbolic" type of look. One can define a critical range Rcr

that divides between the two cases. From S = 0 we get:

R 26.04 C
cr- B2 - 4 AC

In other words the point (R f) with the coordinates 26. 4 C '10-/2C
B 2- 4 AC'

is a singular point.

To illustrate this general behaviour, Fig. 2 shows some selected contours
for the following values:

A=4.175, B= 3.320, C= 0,640 and D= 50.0

demonstrating the two types of solutions with Rcr t50. We can therefore

conclude that Eq. 4 represents the characteristics of the transmission-loss
contours observed in most cases of propagation in shallow water and that
Eq. 3:

TL = 15 log R + [A + B(log f) + C(log f)21 R + D dB

can be considered as a valid, semi-empirical, transmission-loss law for
shallow water.

3 COEFFICIENT CALCULATIONS

To calculate the four coefficients A, B, C and D, a standard, least-
squares, surface-fit technique has been applied. The problem has been
programmed for the SACLANTCEN 1106 UNIVAC computer, giving the possibility
to use both experimental data and data from models <8>.
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As an example, Figs. 3a and 3b show the results using the measured contours
seen on Figs. la and lb. It will be noticed that the calculated loss
contours closely resemble the measured ones and that the standard deviation
is of the order of a few decibels. This figure can be considered to be
acceptable when working with real, measured transmission losses. The
largest difference between measured and calculated losses occurs for very
short ranges. This is partly due to the choice of a 15 log R term, rather
than a 20 log R term, (see Ch. 4), and that the measurements were usually
initiated at this range. Since we are interested only in the prediction
for longer ranges this difference is of no major importance.

To get an idea of the general validity of the formula, the standard devia-
tion has been calculated for approximately 40 measured, depth-averaged,
transmission-loss surfaces. This yields a mean of 2.7 dB ± 1 dB, generally
with the highest deviation for upward refraction condition and the lowest
for downward or internal-duct conditions.
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GENERAL CONTOURS FOR TL= 15 log R + (A + B log f + C (log f) 2) R+ D
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4 COMMENTS

The choice of 15 as the coefficient for log R was made after testing 10,
12.5, 15, 17.5 and 20 on several acoustic runs. The smallest error was
almost equally distributed between 12.5, 15 and 17.5, with 15 being
slightly better.

In a few of the experimental cases the optimum frequency varied with range,
which means at least one extra coefficient is needed to create this effect.
It would not be difficult to include this feature but is is felt that this
is not worthwhile since tests show only a small reduction in standard
deviation for an extra coefficient.

On some occasions more than one optimum frequency is measured. This is
caused by one or more internal sound channels and in order to obtain the
best fit to the exprimental data one has to include higher-order terms of
log f in Eq. 3, at least up to the fourth degree.

Concerning the use of Eq. 3 to extrapolate results to larger ranges, some
caution should be observed. Where we have a marked optimum frequency in
the frequency interval, the environmental condition being of course in-
variant with range, tests show that such extrapolations seem to be possible
without serious errors.

But where no marked optimum frequency is observed, and data exist only for
a limited range, one has to be very cautious in making significant extrapo-
lations, especially near the optimum frequency. This usually corresponds
to the case of S > 0 (Eq. 7) where frequencies exist that satisfy the

condition 3h= 0, meaning that losses could decrease with range.

On the other hand, test calculations have shown that Eq. 3 can be used to
extrapolate results to frequencies at least one octave higher, a technique
that could be useful where poor signal-to-noise ratio makes high-frequency
measurements difficult at long range.

CONCLUSIONS

We can therefore conclude that the transmission loss in shallow water can
be expressed as a function of both range and frequency by

TL = 15 log R + [A + B(log f) + C(log f) 21 R + D dB

By the use of only four coefficients this formula normally gives results
that, inside the frequency and range intervals given by the basic data, are
accurate to within a few decibels.
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