
I AD-AA91 346 NAVAL OCEAN SYSTEMS CENTER SAN DIEGO CA F/ 1 2/1

A LEAST SQUARES ADAPTIVE LATTICE EQUALIZER ALGORITHM(U)
SEP AS E H SAT OR IUS . J D PACK

UNCLASS IF IEO NOSC/TR.575 N



Ity~tI

Technical Report 575

A LEAST SQUARES ADAPTIVE LATTICE
EQUALIZER ALGORITHM

E.H. Satorius
J.D. Pack

2 September 1980

DTII
ELECTE

.e NOV 0,5 1980
ii-

Approved for public release; distribution unlimited

NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CALIFORNIA 92152

8011 3~ c 14

! . _iL . . . ...



NAVAL OCEAN SYSTEMS CENTER, SAN DIEGO, CA 92152

AN ACTIVITY OF THE NAVAL MATERIAL COMMAND ..

SL GUILLE, CAPT, USN HL BLOOD
Commander Technical Director

ADMINISTRATIVE INFORMATION

The work discussed in this report was done under the sponsorship of the Center's
Independent Research and Independent Exploratory Development (IRIED) program
during the period of October 1978 through September 1979.

Released by Under Authority of
PM Reeves, Acting Head RH Hearn, Head
Electronics Division Fleet Engineering Department

.1



UNCLASSIFIED
ECUITY CLASSIFICATION OF THIS PAGE Oft~en Data Enteed)RE DI S UC ON

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
tREPORT NUMBER 2. GOVT ACCESSION -N....--.f.

NOSC Technical Report 575 (TR 575) ~
4-TITLE (and Subtitle)ROCVED

6i.. IRIED - October 1978 Through
W A Least Squares Adaptive Lattice Equalizer Algorithm Spebr17

7. AUTHOR(a) -----

-IE. HtSatorius~ 3d. D.Pack/

g. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASKC

Naval Ocean Systems Center 61 152N - ZR00O/Ol

San Diego, California 92152 ZROI14 08 11 632-ZR94

II Cn ZlLLI*G O FCr N AM~E AND ADDRESS

-4- 12 SepU*Aivr .801Z~222
T4 INTRING AGNC? 044ef S DRESS(i1 different from Controlling Office) 13S SECIJRITY-LA5T "Tout)

UNCLASSIFIED
Ise. DECL ASSI FICATION/ DOWNGRADING

SCHEDULE

16. OISTRIUUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract etfred in Block 20, iftdifferent from Report)

* III. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse atde It noceeemy and identify by block number)

* Equalization
* Adaptive
* Lattice

20. ABSTRACT (Continue an reverso aide it necessary and identify by block number)

In many applications of adaptive data equalization, rapid initial convergence of the adaptive equalizer is of
paramount importance. Apparently the fastest known equalizer adaptation algorithm is based on a least
squares estimation algorithm. The least squares algorithm, which is a special case of the Kalman estimation
algorithm, was first applied to channel equalization by Godard in a seminal paper. One disadvantage with
the Godard algorithm is that the complexity, i.e., number of additions and multiplications, of the algorithm
grows quadradically with the number of filter coefficients. Recently, however, Morf, Ljung, Lee and others
have shown how the complexity of the conventionally implemented least squares algorithms (e.g., Godard's

DO I AN, 1473 EDITION Oil I NOV 66 IS OBSOLETE UCASFE
541 O1O2.L~.O~d46o1 SCURITY CLASSIFICATION OF THIS PAGE(me et ntrd



UNCLASSIFIED
auCOmTV CLASSFCAION OF THIS PAG9 (iMen DOS B*

algorithm) can be made to grow only linearly with the number of fiter coefficients. Furthermore, these
computationally simpler least squares algorithms may be implemented either in tapped delay line or
lattice form. The application of the tapped delay line form, i.e., the fast Kalman algorithm, to channel
equalization has been considered recently by Falconer and Ljung. In this paper, it is shown how the
least squares lattice algorithms originally introduced by Morf and Lee can be adapted to the equalizer
adjustment algorithm. The extremely rapid start up convergence properties of the least squares lattice
equalizer are confirmed by computer simulation.

.&COO8iOn For

NTIS GRA&I
WIC TAB
Unbannounced
Just if icati±on

Distributton/

Availe~gity Codes
Avail and/or

Di1st. specialAj

UNCLASSIFIED
SSCURITY CLASIFICAION OF THIS PAGR(fte. Doft Rnter@*



SECTION 1. INTRODUCTION

Traditionally, equalization of a baseband pulse amplitude modulated (PAM) system
has been accomplished with a tapped delay line (TDL) filter.' However, the application of
lattice structures to channel equalization was presented in a recent report by Satorius and
Alexander. 2 Lattice structures offer a number of potential advantages over TDL filters.
First, an N-stage lattice filter automatically generates all of the outputs which could be
generated by N different TDL filters with lengths ranging from 1 to N filter taps. This
property of lattice structures allows the dynamic assignment of the particular length of the
lattice equalizer that proves most effective at any instant of equalization. A second advan-
tage is that longer lattice filters may be built up from shorter ones simply by adding on more
lattice stages. This property should prove useful in designing large scale systems which
employ lattice equalizers. Finally, an important property of lattice structures in general is
their high insensitivity to round-off noise. 3 The implications of this property with regard to
adaptive lattice equalization will not be examined in this paper but that is an important area
for future investigation.

This report is concerned primarily with the adaptation algorithm used to update the
filter coefficients in the lattice equalizer. In particular it will demonstrate how the recently
developed least squares lattice estimation algorithms of Morf, Lee and others4 ,5 ,6 ,7 can be
used to provide the extremely rapid start up performance of the lattice equalizer. This
rapid initial convergence is characteristic of least squares algorithms as observed in References
8, 9 and 10. These references note, by contrast, gradient estimation algorithms tend to con-
verge much more slowly during the initial training portion of equalization. This slower con-
vergence behavior is also characteristic of the gradient lattice algorithms (which were ex-
amined in Reference 2) as compared with the least squares lattice algorithms. Comparisons
between gradient lattice and least squares lattice equalizers will be presented in this paper.
First we will briefly review the general least squares problem from which the least squares
lattice equalizer arises, then, in Section 3, present the least squares lattice equalizer algorithm
and, finally, in Section 4, the simulation results.

SECTION 2. LEAST SQUARES CHANNEL EQUALIZATION

As noted in Reference 10, apparently the fastest converging equalizer algorithm
(which is a special case of the Kalman estimation algorithms 8 ,9 ,10) arises in the context of
the classical least squares problem: at each sampling instant, find the set of equalizer tap
coefficients that minimize the accumulation of the squared errors between the filter output
and a desired output up to that time. In particular, suppose a(0), a(l).... a(t) is a training
sequence of data symbols which are known by the equalizer adjustment algorithm. Further,
assume that the a(n) sequence is transmitted over a channel, resulting in a sequence of
equalizer inputs, x(0), x(l)... , x(n) and define XN(n) to be an (N+l) - dimensional vector
consisting of time-delayed samples of x(n), i.e.,

XN(n) = (x(n), x(n-I), .. ., x(n-N) T  (1)

where superscript T denotes transpose and x(n-i) = 0 when i > n. The least squares problem
is equivalent to finding the (N+ 1) - dimensional vector of equalizer tap values, FN(n), which
minimizes the following sum of squared errors:
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p=0

The parameter w is a real constant, O<w<, and is included in the sum of squared errors to
allow the equalizer to track slow time variations in the channel. Typically, w is close to I.
The inverse of (1-w) is, approximately, the memory of the equalizer.

Differentiating the above sum with respect to the components of FN(n) and setting
the result to zero leads to the following equation for the FN(n) vector:

n

LqN(n) FN (n) - wn-P a(p) XN(P). (2)
p--0

In Equation 2, the (N+l) by (N+l) matrix, 6ZN(n), is given by:

n T

=n) wn-P XN(P) (XN (p) (3)
p=0

The solutions of Equations 2 and 3 provide the least squares equalizer tap vector, FN(n), at
the nth data sample. Notice in the above equations the limits on all the summation signs
extend from p=0 to p=n. The lower limit, therefore, imposes the assumption on the data
that x(p) = 0 for p = -1, . . . , -N. These limits lead to the so-called "pre-windowed" least

squares algorithm (which will be considered in this paper). If the limits are p = N and p = n,
the un-windowed or "covariance" algorithm is obtained. A more complete discussion of the
different windowing methods may be found in Reference 5.

At this point, it should be noted that solving Equations 2 and 3 could proceed along
one of two possible lines of development. In the first FN(n) obeys the following time update
relation (References 8 and 10):

FN(n) = FN(n-1) - PN(n) t(n), (4a)

where

PN(n) = 63N(n) -1 XN (n) , (4b)

and
tf(n) -- a(n) + FNnI )T XN(n ) .(c

The major computational burden in this formulation lies in computing the (N+ I) - dimensional
vector, PN(n) , at each iteration. Conventional methods of computing IJN(n) (i.e., the Godard
algorithm, Reference 8) require on the order of N2 operations (additions and multiplications)
per update. However, by exploiting certain shift properties of XN(n), it is possible to com-
pute PN(n) at each iteration using a number of operations which depends only linearly on
N (i.e., the fast Kalman algorithm, Reference 10). In any case, this formulation (i.e.,
Equation 4) of the solution to Equation 2 leads to a TDL equalizer structure for which
-FN(n) represents the vector of equalizer taps and -FN(n-1)l XN(n) represents the equal-
izer output.
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A second solution to Equation 2 incorporates the lattice method. In this method,
certain properties of 6?N(n) (these are discussed in the Apl.ndix) are exploited to derive
order update equations for the outputs Ym(n) = -Fm(n-l) Xm(n) (m = 0,1,... ,N). In
particular, lattice recursion relations are derived which relate ym(n) to Ym1(n) as well as
certain other auxiliary variables. In this way all of the least squares outputs, Ym(n)
(m = 0,... , N), are automatically generated. This is in contrast to the TDL formulation
where only YN(n) is computed every iteration. The least squares lattice equalizer algorithm
is presented in the next section.

SECTION 3. THE LEAST SQUARES
LATTICE ALGORITHM

This algorithm is a modified version of the least squares algorithm originally presented
in References 4, 5, 6, and 7. The Appendix contains a derivation of the algorithm. A more
complete discussion of least squares lattice algorithms in general and their properties may be
found in References 4 through 7 and I I through 13.

In the least squares adaptive lattice equalizer (LSALE) algorithm, the following scalar
quantities are stored and updated every iteration:

(1) em(n), e r(n), r (n), em(n), Cm(n), km(n), y m = 0,1 .... N).

(2) yr(n), km(n) (m = 0,1,. . . ,N-l).

To initialize the algorithm, we set:
em_) =r re-)=e mr (-2) = e mr (-I) = (5a)

rm(-l) km() =Tm(-l) = m(-) = 0. (5b)

Then, the following computations are performed starting with n = 0:

eo(n) = ro(n) = x(n) (6a)

e e (n)= er(n) = w ee (n-l)+ x2(n) (6b)
0 0 0

y-l(n) = y._l(n) = 7_1 (n-l) = 0 (6c)

"-I (n) = a(n) , (6d)

km(n) = w km(n-l) + (l--ym.l(n-l)) em(n) rm(n-l) (7a)

. km(nI) rm(n-Il)
em+1 (n) = em(n) - (7b)r (n-2)

kin(n-l)

rm+3 (n) = rm(n- I kmi(n- (n) (7c)

:2 ~ ~~~~~ eIN-li I ill In ..



V

k 2(n)
er (n) = .e(n) - __ (7d)

ir (n-i)em

ki(n)
jme (n)

'm(n)= Vm-l(n)+ + - m-I(n) (7f)
irn)

kin(n-l)
Ym(n) = YmI(n) + - rm(n) (7g)r(n-1 )

-Fm(n) = a(n) -Ym(n) (7h)

The recursions in Equations 7a through 7f are computed form = 0,1,... N-1. The recursions
in Equations 7g and 7h are computed for m = 0,1,... ,N. Finally, the coefficients, km(n), are
updated by the recursion:

km(n) = wkm(n-I) + (I - 7ml(n) ) 'ml(n) rm(n) (8)

m--0,... ,N.

It should be noted that 6 in Equation 5a is a small positive constant which is used to ensure
nonsingularity of the 6?N(n) matrix.

Equations 5 through 8 represent the LSALE algorithm. The scalar, YN(n), represents
the LSALE output. A schematic diagram of the lattice equalizer is presented in Figures Ia
and lb. During the initial phase of operation the training sequence, [a(0), a(l), . . . , a(t)],
is known to the equalizer. Using these data, the equalizer determines the channel character-
istics and adapts to them. As noted in Reference 2, when actual data are being transmitted,
the LSALE output, YN(n), is first thresholded to produce a reference sequence,a"(n). Then
m(n) is computed as in Equation 7h with a(n) replaced by a(n), andlm(n) is updated by

Equation 8. It should be noted that the above formulation of the LSALE is for the scalar
input case (i.e., a linear equalizer). Extensions to the vector input case, which is required,
for instance, in the case of decision feedback equalization (Reference 10), are straight-
forward and are discussed further in References 4 through 7.

A count of the number of operations needed to calculate each equalizer output and
update the LSALE algorithm, Equations 5 through 8, indicates that approximately 19L-1 2
multiplications and 11 L-7 additions are required where L=N+I is the total number of equal-
izer taps. This counts divisions as multiplications. It is interesting to compare these figures
with those corresponding to the fast Kalman 10 as well as the gradient lattice equalizer algo-
rithm, referred to as ALCE in Reference 2. The results are summarized as:
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Algorithm Multiplications Additions

LSALE 19L-12 11L,7

ALCE 13L-8 10L-7

Fast Kalman 10L+4 12L+5

For all of these algorithms, divisions are counted as multiplications. As is seen, both of the
lattice algorithms have more multiplications than the TDL fast Kalman algorithm. This is
due to the power normalizations that are required at each stage of the lattice. It is
interesting to note that LSALE is more complex than ALCE. This increased complexity is
the price which must be paid for the faster convergence rate of the LSALE algorithm. The
improved convergence performance of LSALE over ALCE will be observed in the next
section.

SECTION 4. SIMULATION RESULTS

For purposes of examining the convergence performance of LSALE, we have simu-
lated this algorithm for two channels representing pure, heavy amplitude distortion. The
impulse response structures of these channels are identical to those considered in Reference 2.
The two channels had eigenvalue disparity ratios, that is, ratio of largest-to-smallest
eigenvalues of channel correlation matrix, of II and 21. In all simulations 11-tap equalizers
were used, N = 10 in Equations 7 and 8. The symbol sequence a(n) was a known, random
bipolar training sequence (a(n) = ± I), suitably delayed so that the minimum mean square
error TDL equalizer taps would be symmetric about the center of the equalizer, as discussed
in Reference 2. Also, a small amount of uncorrelated Gaussian noise, noise variance = .001,
was added to the output of the channel.

The results of the simulations are presented in Figures 2 and 3, corresponding to
eigenvalue ratios of 11 and 21, respectively. In these figures, 6 in Equation 5a was set equal
to .001 and w in Equations 6 through 8 was set equal to 1. Additional simulation revealed
that the start up performance of LSALE was highly insensitive to the choice of 6. It was
found in our simulation studies that the best start up performance for the LSALE algorithm
was obtained by suppressing the update of the lm(n) coefficients in Equation 8, i.e., holding"Rm(n) = 0, mn = 0, ..... N, until after the main part of the first data pulse was received. The

number of iterations in Figures 2 and 3, however, is reckoned from the initial updating of
Equations 6 and 7 and not from the initial updating of the Rm(n) coefficients. The improved
performance of LSALE which results from suppressing the km(n) update is analogous to the
improved start up performance of the fast Kalman equalizer which results from initially
suppressing the tap update, FN(n) in Equation 4a, as discussed in Reference 10.

For sake of comparison, Figures 2 and 3 include corresponding learning curves for
the gradient lattice algorithm (ALCE) described in Reference 2, as well as the simple

gradient TDL equalizer algorithm, also described in Reference 2. In fact, the parameters of
the ALCE algorithm and the simple TDL gradient algorithm are identical to those parameters
used in Reference 2 which provided the best start up performance, i.e., the Po = .075 curves
in Figures 5 and 6 of that reference. As is clearly seen in Figures 2 and 3, the convergence
rate of both lattice algorithms is highly insensitive to the channel eigenvalue disparity.
However, the LSALE algorithm converges in approximately 40 iterations for both channels,

6
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whereas ALCE required approximately 120 iterations to converge. The improved
convergence performance of both lattice algorithms over the TDL gradient algorithm is
clearly observed.

SECTION S. CONCLUSIONS

In this report we have shown how the new least squares, lattice algorithms may be
applied to data equalization. In particular, a new least squares adaptive lattice equalizer
(LSALE) algorithm was presented and the improved initial convergence performance of
LSALE over gradient based algorithms (implemented in either TDL or lattice structure) was
clearly observed in Section 4. Additional properties of least squares lattice algorithms are
examined in References 12 and 13.
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APPENDIX: DERIVATION OF THE LEAST SQUARES ADAPIVE
LATTICE EQUALIZER ALGORITHM

In deriving the least squares lattice algorithm, considerable use is made of the
following properties of the Rm(n) matrix, which may easily be derived from its definition,
Equation 3:

QT(n)

6?m(n) = J (Ala)
Qm(n)l am- 1 (n-1)

tqm-1I (n) Vm(n)"

= [ (Alb)

V(n)(n)

The dashed lines in Equations Ala and Alb are used to denote partitioning. The quantities
qm(n) and vm(n) denote scalars which are given by:

n
qm(n)= wn-P x2(p) , (A2a)

p=0

and

n
vm(n)= n x2 (p-m) (A2b)

p=0

Also, Qm(n) and Vm(n) in Equations A I a and A lb denote m-dimensional vectors given by:

n

Qm(n) wn- p x(p) Xm-l(P-) ,
p=0

and

n

Vm(n)= wn - p x(p-m) Xrn..l(p) (AM)

p=0

A third property of the Rm(n) matrix is the following time shift relation:

66(n)= w m(n-l) + Xm(n) XT (n). (A3)

9



As in the case of the fast Kalman algorithm, 10 the least squares lattice equalizer is
intimately related to the one-step, backward and forward least squares predictor. Therefore,
the following sums of squared errors are introduced:

n p_ w n- p era2 (P,n),

and

n n-> wn ri,(p,n) ,*
p=0

where

em(p,n) =x(p) + AT (n) Xm.I(P-l) , (A4a)

and

rm(p,n) = x(p-m) + BT(n) Xm 1i (p). (A4b)

The quantities em(p,n) and rm(p,n) are called the mth order forward and backward pre-
diction error residuals, respectively, and the m-dimensional vectors Am(n) and Bm(n) in
Equation A4 are chosen to minimize the above exponentially weighted sums of squared
errors. Differentiating these sums with respect to the coefficients of the Am(n) and Bm(n)
vectors and setting the results equal to zero leads to the following augmented matrix
equations:

RIm(n) m(n) = (A5a)

and

m )(n) n) = (A5b)

In(n)j

In Equation A5 0m denotes the m-dimensional zero vector. Also, Xm(n) and Im(n) are
the folowing extended (me+l) - dimensional vectors:

10
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and

-8m~n)(A6b)

Finally, in Equation A5, e e (n) and e r(n) are the minimum of the above exponentially
weighted sums of squared errors:

e, (n) mi mm- e (p~n)

wnpx2 (p) +A T(n) Qm(n) (A7a)

p=o
and

rjn mn 2
em(n) minm- rmgp'n)

n

=z wn-p x2 (p-m) + B (n) Vm(n) (A7b)

As will be seen, the vectors Am(n) and Rm(n) Play a central role in the development
of the least squares, lattice algorithm.

Another auxiliary vector which is crucial to the development of this algorithm is the
(m+1) - dimensional vector, Cm(n), which is given by the solution to:

6 ?M(n) Cm(n) = Xm(n) (A8)

At this point we will concentrate on obtaining order updates for the three vectors, Am(n),
9mnand Cm(n). In particular,

(n)n 0
Am+ I(n) [m )] e7(A9)

0 em(n-l) (n1

where

*km(n)VT +I (n) AM(n). (AlO)



Equation A9 may be verified by premultiplying its right hand side by dm+l (n) and noting
with the aid of Equations Al and A5 that the last m+l elements of the resulting column
vector vanish. This implies that the last m+lI elements of the column vector defined by the
right hand side of Equation A9 satisfy the same equation that is satisfied by the m+l
elements of Am+, (n) (obtained from Equation A5a with m replaced by m+l). Therefore,
assuming that the matrices, Rm(n), are nonsingular* the last m+l elements of the column
vector defined by the right hand side of Equation A9 must equal the m+1 elements of
Am+I (n). Also, the first element of the column vector defined by the right hand side of
Equation A9 equals unity. Thus, Equation 9 is verified.

An order recursion for e1m(n) also can be derived by premultiplying the right hand
side of Equation A9 by 6?m+ 1 (n) and noting that the first element of the resulting columne Rmln o~en)gvny
vector must equal em+ 1 (n). The resulting recursion for em(n) is given by

e e km(n) km(n)
em+l(n) = em(n) (n) ) (Al 1)

er(n-1)

where

Tkm(n) = Qm+I (n) Bm(n-l) . (A12)

In the order recursion for ee+1 (n), two scalars, km(n) an'd'km(n), appear. These can be
shown to be equal by considering the product

= (0, BT(n-l)) I Rm+l(n) (AT(n), 0 )T.  (A13)

From Equations AIb, A5a and A10

0 = (0, BT(n-1) (ee(n), OT, km(n) )T = ki(n). (AI4a)

On the other hand, using Equations AI a, A5b and A1 2, we have:

=(tm(n) 0m , Emn(n-1 )  ) ( (n), 0) =km(n). (Al4b)

Comparing Equations Al4a and Al4b shows that km(n) i^m(n). Therefore, Equation Al 1
may be rewritten as

2e e+ i n)= n )
ee+(n) =e(n) rmn (A15)

e r (n-I)

In a manner analogous to the development of Equations A9 and At 5, we also can
derive the following order update recursions for Irm(n) and er(n):

*in practice, the positive definiteness (and hence nonsingularity) of dtm(n) can be guaranteed by
initializing 61m(n) to a positive scalar times the identity matrix.

12



ml(n) -- - n eme ( n )  (AI6)

Wm-n)

and

k 2 (n)
er -(n)=er(n-l) -em (Al7)era(n)

To complete the development of the order updates, Cm(n) obeys the order recursion:

Cm- I (n)| +rm(n,n) _ .Cmn + r -bm(nfl. (AI18)

0 
C ran)

Equation A 18 may be verified by premultiplying its right hand side by Rm(n) and noting

that from Equations A 1 b and A8:
T T =(XT naT

dm(n) (Cm 1 (n), 0)T (n), a)T (A 19)

where the constant a is given by (from Equations A lb and A8)

T T -a = vm(n)Cml(n)= vm(n)d ?6 l (n) Xml(n) (A20)

However, from Equations Alb, A4b and ASb

a = x(n-m) - rm(n,n) . (A21)

Using Equation A5b as well as A19 and A2 1, it is seen that the product of Rm(n) with the
right hand side of Equation A18 is simply the vector, Xm(n). Thus, the right hand side of
Al 8 satisfies the equation for Cm(n), A8. This verifies Equation A 18.

Aside from the order update recursions derived above, we also will need certain time
update recursions. In particular,

mm(n) = Am(n-1) - -m(nn) 0 (A22)

Cm_l(n-l)

where the scalar yr(n) is given by:

'Vm(n) = xT(n) Cm(n) = XT(n) 6I (n) Xm(n). (A23)
As can be seen from Equation 23 (see References 5 and 11), 'Ym(n) is bounded between 0 and

1. Equation A22 may be derived by noting from Equati- .Ala and ASa that

Am(n-I) = - 6 1(n-2) Qm(n-1). (A24a)

13



Also, from Equation A3

Qm(n) W Qm~n 1 ) + x(n) Xm...l(n-i) (A24b)

Finally, using a well known matrix inversion lemma, we may relate tRm-..(n-2) to R-1 I(n-l)

as follows;

m(n2) =wI~~~ 1 -6-i3n- P

(A25)

Substituting Equations A25 and A24b into A24a and combining terms yields Equation A22.
Similarly, we may also derive

Using Equations A22 and A26, we can relate the error residuals em(n,n) and rm(n,n)
to the residuals

em(n) =em(n,n-l) ,(A27a)

and

rm(n) =rm(n,n-l) (A27b)

Specifically, premultipying both sides of Equations A22 and A26 byX n)

em(n,n)=(I -7m-.l (n-1) )em(n) ,(A28a)

and

rm(n,n) = (I -ym I n ) rm(n). (A28b)

An additional time update relation which may be derived for km(n) is

km(n) = w km(nl ) + em(n,n) rm (n- l,n-l)
I -ifffrl)

=w km(n-l) + (I - 7m-l(n-l) ) em(n) rm(n-l) (A29)

Equation A29 may be derived using A 10 as well as A22 and the time update relation (which
follows from Equation 3):

Vm+i(n) =w Vm+(nl) +x(n-m-l) Xm(n) (A30)
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Lattice recursions can now be derived for em(n) and rm(n-I by postmultiplying
both sides of Equations A9 and A16 (with n replaced by n-i) by Xm+l(n). The resulting
recursions are given by:

km(n-lI)

em+(n)=em(n) - rm(n-l) , (A31 a)
er(n-2)

and

km(n-l)
rm+ l (n) = rm(n-l) - em(n)  (A3 Ib)

C:me(n-1I

Likewise, an order recursion for 7re(n) may be obtained by premultiplying both sides of
Equation A18 by XT(n) and using A28b. The result is

rm(n) (l- -tm-l(n) ) 12
m m-l (n) + (A32)em(n)

Equations A 15, A 17, A29, A31 and A32 represent the least squares adaptive lattice
algorithm which generates the residuals em(n) and rm(n). To complete the development of
the least squares lattice equalizer algorithm, we return to the problem of obtaining the
least squares coefficient vector Fm(n) defined by Equation 2, with N replaced by m. First,
note that Equation 2 may be rewritten in the following form:

6m(n) Fm(n) + Qm(n) = 0m+l (A33)

where

Qm(n)= wn - P a(p) Xm(P), (A34)

p=0

and 0 < m < N. It should be pointed out that in replacing N in Equation 2 by m in Equation
A33, we are actually considering the larger problem of generating all the least squares coef-
ficient vectors, Fm(n), m=0,1,. . . N. As will be seen, in the lattice formulation of the least
squares problem, all of these vectors are generated automatically.

In analogy with Equation A5a for the forward prediction vector ,m(n), we also have

the following augmented matrix equation for Fm(n)

Rm(n) Fm(n) = , (A35)

L~m+!J

where Rm(n) is an (m+2) x(m+2) dimensional matrix given by:

15



6qm(n) w InP InP X~p (A36)
p=O

and Xm(p) is an (m+2) - dimensional column vector given by:

Xm(p) = (a(p), x(p), x(p-l1), . ,x(p-m) 1  (A37)

Also, in Equation A35, the (m+2) - dimensional extended vector, Fm(n) is given by:

Fm(n) = F~)'(A38)

and pm(n) is the mninimum of the sum of exponentially weighted least squares error
residuals, i.e.,

Pm(n) =min I n-p (e-m(p,n) )2

n

- wn"P a2(p) + FT(n) Qm(n), (A39)
p=O

where

Tm(p,n) = a(p) + F ,(n) Xm(p). (A40)

In analogy with Equations Al1, A2 and A3, it easily can be seen from A3 6 that
Rm(n) possesses the following properties:

-4m(n) T m(n)
Am(n) -------------------------------------- (A41 a)

Qnm.(n) Iq~n
tqm (n) Vm(fl)

I (A4 1 b)

T (n) IVm~n

and

ftm(n) =w67m(n-l) + X(n) X (n) (A41c0
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In Equations A4 Ia and A4lIb,

Vm(n) = wn"P x(p) X.I p (A42b)

p=o

and

Vm(n) = wni' x2 (p-m) = vm(n). (A42c)

P=o
The last equality in Equation A42c follows directly from the definition of v~)
Equation A2b.

Using Equations A4 1, we may now derive order update recursions for Fm(n). The
key relation which links Fm(n) with the least squares backward prediction residuals is the
following recursion:

F+ (n )Jl ffl~*) 1'(A43)
L0 j mn) Bm+ I(n)J

where the scalar, k,+ 1(n), is given by:

krn+ 1(n) =V+, (n) Fm(n). (A44)

The derivation of Equations A43 and A44 is analogous to the derivation of A9 and follows
by premultiplying the right hand side of A43 by d{m+lI(n) and then using Equations A~b,
A35 and A41. Also, we can obtain a time update relation for Pmrn). in particular, we have:

Fm(n) = Fm(n-l) - ( ](A45)
The derivation of Equation A45 is analogous to the derivation of Equation A22 (with

Q-1l~n2) eplce byG-ln-1 ad Qm(n-l) replaced by Qm(n-i) in Equation A24a and
proeedngalong a similar development to Equations A24b and A25).

Wecan now relate the error residual Zm(n,n) to the residual:

* rn(n)=-di(n,n-l) (A46)

-TSpecifically, premultiplying both sides of Equation A45 by X;(n) yields:

'em(n,n) = (I - 7mn)m(n) (A47)
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In analogy with Equation A29, the following time update relation for km(n) may
also be derived:

"emm I(n,n) rm(n,n)'km(n) =w ir(n-l) +
1 - m- l(n)

=WkmnI)+( - 7m-l(n) )Um-l(n) rm(n). (A48)

The last equality in Equation A48 follows from A28b and A47. Equation A48 may be
derived using A44 as well as A45 and the time update relation, which follows from
Equation A41 c:

Vm+(n)=wVm+l(n-l)+x(n-m-l)XI (n) (A49)

Finally, lattice recursion relations forldm(n) may be derived by premultiplying both
sides of Equation A43 (with n replaced by n-I and m+l replaced by m) by XT(n). The
resulting recursion is given by:

'kmI(n- I)
em(n) ='a1m (n) - rm(n) . (AS0)

er(n-l)

Equations A50, A48, A 15, A 17, A29, A31 and A32 make up the complete lattice
equalizer algorithm which is summarized in Equations 6, 7 and 8. Note that Equations 7g
and 7h are equivalent to ASO. It should be pointed out that this algorithm is a modified
version of the least squares algorithm originally presented in References 4, 5, 6 and 7. The
modification results basically from our use of the residuals em(n), rm(n) and "dm(n) as
opposed to the residuals em(n,n), rm(n,n) and "dm(n,n) which were used in References 4, 5,
6 and 7. We have found that this modified version of the algorithm is more suitable for
decision-directed equalization. It should be pointed out that many other modified versions
may be readily derived using Equations A28 and A47. As noted in Reference 6, such modi-
fications of the least squares lattice algorithms have proven useful in different applications
as they provide trade-offs between computational complexity and storage.
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