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Using the relaxation time approximation and a three-band model

(i.e., nonparabolic light-hole band, parabolic heavy-hole and split-off

bands), a derivation involving the use of the Boltzmann transport theory

was applied to obtain-expressions for the valence band density-of-states

effective mass, m*, the valence band conductivity effective mass, m*,

and the valence band Hall effective mass, m*, of holes in p-type sili-

con. Values of effective mass calculated from this model reveal the

temperature and dopant density dependence of the effective mass due to

the nonparabolic shape of the bands. With these values of effective

mass and the three-band model, theoretical calculations of hole mobil-

ity, resistivity, Hall factor and Hall mobility were conducted for

p-type silicon doped with boron, gallium and indium for dopant densities

from 1014 to 1018 cm"3 and temperatures between 100 and 400 K. Scatter-

ing contributions from acoustical and optical phonons, and ionized and

neutral impurities were considered. In adjition, interband scattering
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for the case of acoustical phonons, the effect of hole-hole scattering

on the various scattering mechanisms, and the nonparabolicity of the

valence band were also taken into account in the calculations. The

valence band density-of-states effective mass, m*, was found to vary

from 0.6567 mo at 100 K to 0.8265 mo at 400 K, while the valence band

conductivity effective mass, m, increased from a value of 0.3604 mo

at 100 K to a value of 0.4910 mo at 400 K. The valence band Hall effec-

tive mass, m*, varies from 0.2850 m0 at 100 K to 0.5273 mo at 400 K.

The masses m and m showed little change with dopant density, but

mD v
mAH varied by as much as 63 percent at 100 K over the range of dopant

densities considered. The Hall factor was expressed in terms of a mass

anisotropy factor and a scattering factor. These two components of the

Hall factor were separately evaluated to emphasize their individual

contributions to the Hall factor. Theoretical values of the Hall factor

vary between 1.73 and 0.77 over the dopant density and temperature

ranges.

To verify our theoretical calculations, resistivity and Hall

coefficient measurements were pefformed on silicon samples doped with

boron, gallium and indium with dopant densities ranging from 4.25x10 15

to 9.07x10 17 cm"3 , for 100 : T 5 400 K, using planar square array test

structures. Agreement between the calculated and measured resistivity

values was within 10 percent over the range of temperatures and dopant

density studied. Agreement between our calculated and experimental

values of Hall mobility was within 15 percent for temperatures greater

than 150 K. At 300 K, agreement between theoretical values of Hall

factor and those deduced from experimental data of this work and that

of other studies was within 15 percent for dopant densities greater
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16 -3than xlO cm. From the results of this study, we conclude that the

theoretical model and expressions developed here can accurately describe

the mobility and resistivity in p-type silicon. The omission of band

anisotropy considerations, however, introduces considerable error in the

evaluation of the Hall factor for low dopant densities.
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than 5xO 16 cm"3. From the results of this study, we conclude that the

theoretical model and expressions developed here can accurately describe

the mobility and resistivity in p-type silicon. The omission of band

anisotropy considerations, however, introduces considerable error in the

evaluation of the Hall factor for low dopant densities.
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for the case of acoustical phonons, the effect of hole-hole scattering

on the various scattering mechanisms, and the nonparabolicity of the

valence band were also taken into account in the calculations. The

valence band density-of-states effective mass, m*, was found to vary

from 0.6567 m0 at 100 K to 0.8265 m0 at 400 K, while the valence band

conductivity effective mass, m*, increased from a value of 0.3604 mo

at 100 K to a value of 0.4910 m0 at 400 K. The valence band Hall effec-

tive mass, m*, varies from 0.2850 m0 at 100 K to 0.5273 mo at 400 K.

The masses m* and m* showed little change with dopant density, but
m* v

mH varied by as much as 63 percent at 100 K over the range of dopant

densities considered. The Hall factor was expressed in terms of a mass

anisotropy factor and a scattering factor. These two components of the

Hall factor were separately evaluated to emphasize their individual

contributions to the Hall factor, Theoretical values of the Hall factor

vary between 1.73 and 0.77 over the dopant density and temperature

ranges.

To verify our theoretical calculations, resistivity and Hall

coefficient measurements were performed on silicon samples doped with

boron, gallium and indium with dopant densities ranging from 4.25xi015

to 9.07xlO 17 cm-3 , for 100 - T - 400 K, using planar square array test

structures. Agreement between the calculated and measured resistivity

values was within 10 percent over the range of temperatures and dopant

density studied. Agreement between our calculated and'experimental

values of Hall mobility was within 15 percent for temperatures greater

than 150 K. At 300 K, agreement between theoretical values of Hall

factor and those deduced from experimental data of this work and that

of other studies was within 15 percent for dopant densities greater
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than 5xlO16 cm 3 . From the results of this study, we conclude that the

theoretical model and expressions developed here can accurately describe

the mobility and resistivity in p-type silicon. The omission of band

anisotropy considerations, however, introduces considerable error in the

evaluation of the Hall factor for low dopant densities.
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CHAPTER I

INTRODUCTION

The goal of this study has been to measure and compare with theory

the resistivity and Hall mobility of holes in silicon doped with gallium

and indium as functions of temperature and dopant density. Data taken

on boron-doped silicon was also included in order to further confirm the

adequacy of the theoretical model. In order to determine theoretically

the resistivity and Hall mobility, one must first calculate the conduc-

tivity mobility, the density of holes, and the Hall factor. This can

only be done with a thorough understanding of the energy band structure,

the scattering mechanisms involved, and the carrier statistics.

The application of an electric or a magnetic field to a crystal

results in a variety of carrier transport phenomena. These phenomena

are associated with the motion of c rrent carriers in the conduction or

valence bands. The free charge carriers in a semiconductor will acquire

a drift velocity under the influence of an applied electric field. This

velocity is the net result of the momentum gained from the externally

applied field, and the momentum lost in collisions which tend to randomize

the carrier momentum,[I]. If the field is expressed in volts per centi-

meter, and the velocit' in centimeters per second, a mobility is defined

as the incremental average speed per unit electric field, and is expressed

in squared centimeters per volt second. The velocity, and consequently

the mobility, is determined by the different types of collisions which

the carriers undergo. Collisions of carriers with lattice atoms which

1



are out of their equilibrium posiLions because of thermal vibration,

provide an upper limit to the mobility. Scattering of the carriers is

also caused by impurities, both ionized and neutral. At high tempera-

tures and low dopant densities, scattering by lattice phonons is more

effective while at low temperatures and high impurity densities, scat-

tering by ionized and neutral impurities predominates. In addition,

the effects of hole-hole scattering on the lattice and ionized impurity

scattering mechanisms need to be considered. Thus in calculating the

mobility over a wide range of temperatures and dopant densities, all the

different scattering mechanisms must be taken into account. Besides the

mobility, the density of holes enters the problem of determining the

electrical resistivity. The density of holes associated with dopant

atoms is a function of the ionization energy of the dopant atom, the

temperature, and the degeneracy factor. Calculation of the Hall mobility

requires knowledge of the Hall factor which is a function of the scat-

tering mechanisms and effective masses.

For purposes of device design it is necessary to know the correct

relationship between the resistivity and dopant density at different

temperatures. Evaluation of the characteristics of semiconductor devices

and the study of transport phenomena in semiconductors requires an

accurate knowledge of variations in the effective mass, mobility, and

carrier density with changes in temperature and dopant density. Because

of this, numerous studies of mobility, resistivity, and hole density in

p-type silicon have been conducted [1-16]. However, due to the complexity

of the valence band of silicon and the various scattering mechanisms

involved, these studies, for the most part, have either been conducted

in temperature and dopant density ranges designed to explore only a
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particular type of scattering mechanism, or have not advanced the theory

necessary to describe the experimental result. For example, Costato and

Reggiani [4] calculated the mobility of holes for pure p-type silicon in

which lattice scattering dominates; Braggins [1] considered nonparaboli-

city and all the relevant scattering mechanisms with the exception of

hole-hole scattering, but he limited his investigation to dopant densities

below 5xO 16 cm"3 and low temperatures; Morin and Maita [5] considered

wide ranges of temperature and dopant densities, but did not provide a

theoretical examination of the data. Recently, Li [17] developed a

theoretical model capable of describing the mobility and resistivity of

p-type silicon over a wide range of temperatures and dopant densities.

This improved model was applied to the case of boron-doped silicon with

great success [17]. The improvement in the theory consisted mainly of

the inclusion of hole-hole scattering effects, and consideration of the

nonparabolic nature of the bands. In this study, Li's model [17] has

been improved by including consideration of interband scattering effects

on the acoustic phonon scattering mechanism, and has been applied to the

study of silicon doped with impurities other than boron.

With some exceptions [14-16], most of the research in p-type silicon

has been conducted with boron as the doping impurity, since boron is the

shallowest acceptor in silicon and this material is widely available.

A very limited amount of data is available on silicon doped with deeper

impurities such as gallium and indium. These dopants, especially indium,

are of great interest to modern technology because of their application

to photo-detector devices. Curves of resistivity and mobility as func-

tions of dopant density [2,3] have been applied to characterizing

boron-doped starting material and diffused boron layers in silicon, and

0 , ,
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have been found highly useful. Similar curves developed in this research

may be expected to be equally useful for characterizing and integrating

infrared detectors based on the deeper levels of indium and gallium with

on-chip silicon electronics. Application of a more complete theory of

mobility and resistivity [17] to the case of silicon doped with gallium

and indium should provide an accurate description of the transport of

holes in this material. These results may be of significant use in the

study and design of infrared photo-detector devices.

In this research the mobility, resistivity, and hole density have

been studied over a temperature range from 100 to 400 K and dopant

15 17 -3
densities from 4.25xi0 to 9.05xi0 cm . Because of the complexity

brought about by heavy doping effects and uncertainties in accounting

for hole density and impurity density at high dopant densities, the

-s 3
theoretical analysis has been restricted to densities below 1018 cm in

which the use of Boltzmann statistics is justified. The nonparabolic

nature of the valence band structure, and derivation of expressions for

the temperature dependent effective masses are presented in Chapter II.

Since effective mass is directly related to the shape of the valence

bands, the result is an effective mass which varies with temperature and

dopant density. The mobility formulation includes consideration of the

relevant scattering mechanisms and how these are modified by hole-hole

scattering effects. These scattering mechanisms are considered in detail

in Chapter III. Since tbe ifferent scattering mechanisms which contri-

bute to the mobility have different temperature and energy dependences,

the use of numerical methods and curve fitting has been applied in

analyzing the data. The temperature and dopant density dependence of

resistivity and hole density is analyzed in Chapter IV. In Chapter V,
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the Hall factor is discussed, and theoretical calculations of Hall

mobility are presented. Fabrication techniques and experimental proce-

dures are described in Chapter VI. Comparisons of experimental results

with predictions based on the theory of Chapters III through V are made

in Chapter VII; in this chapter the theoretical results are also compared

with data published by other workers. Chapter VIII summarizes the

research and states the main conclusions derived from this work.



CHAPTER II

BAND STRUCTURE AND EFFECTIVE MASS

2.1 Introduction

The interpretation of transport properties in silicon and the model-

ing of silicon junction devices depend on an accurate knowledge of values

of effective mass. The complex valence band structure of silicon leads

to difficulties in the study of transport properties of holes in this

material. Thus the development of a model incorporating the nonparabolic

nature of the band into a single parameter, the combined hole effective

mass, would greatly simplify the study of mobility, resistivity, and the

Hall effect in silicon. Including the band nonparabolicity in calcula-

tions of relaxation time via the effective mass formulation is a reason-

able procedure and has been applied effectively by Radcliffe [18] to

study acoustic phonon scattering, and by Barrie [19] to study optical

phonon and impurity scattering in nonparabolic bands. In this chapter

we will derive such a theoretical model for hole effective mass calcula-

tions in silicon.

Lax and Mavroides [20] have derived expressions for density-of-states

effective masses m* and m2 for the heavy-hole band and the light-hole

band, respectively, which lead to the generally accepted and quoted

value, m* = 0.591 m. This value, however, can only be considered

applicable at 4.2 K, where m* = 0.537 mo and m = 0.153 mo . A number

of experimental data has been published which indicates both electron

and hole effective mass to be dependent both on temperature and dopant

6
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density [21,22]. Below 50 K, hole 2ffective mass remains constant as

indicated in high frequency magnetoconductivity experiments [23].

However, at higher temperatures and for higher acceptor impurity densi-

ties, two mechanisms are responsible for the temperature dependence of

the effective mass: the thermal expansion of the lattice, and the

explicit effect of temperature. The effect of the thermal expansion

can be estimated from the stress dependence of the effective mass [24],

and has been shown to be negligible [21,25]. The explicit temperature

effect however, is of great importance. It consists of three parts:

(a) the temperature variation of the Fermi distribution function in a

nonparabolic band, (b) the temperature dependent distribution function

of the split-off band, and (c) the temperature variation of the curva-

ture at the band extremum due to the interaction between holes and

lattice phonons.

Following the work of Lax and Mavroides [20], but using Fermi-Dirac

statistics and a simplified model of the valence band structure for

silicon, Barber [25] obtained an expression for the density-of-states

effective mass, m*, which is temperature and hole-density dependent.

Barber, however, did not apply the nonparabolic model of the valence

band to the study of conductivity or Hall effective mass in p-type

silicon. Costato and Reggiani [26] also developed expressions for m*

and m*, the band conductivity effective mass, which show a variation

with temperature, but they neglected the effects of the split-off band

and the temperature variation of the band curvature.

In this study, the expressions for density-of-states effective mass,

conductivity effective mass, and Hall effective mass of holes are derived

based on the following definitions. The density-of-states effective



mass, mE, enters in the normalization of the distribution function; the

conductivity effective mass, m*, is the mass of a mobile charge carrier

under the influence of an external electric field; and the Hall effec-

tive mass, m*, is the mass of a mobile charge carrier under the applica-

tion of external electric and magnetic fields. The reason for these

particular definitions of effective masses is that the primary applica-

tion of this work is to generate improved theoretical calculations of

Hall mobility, resistivity, and conductivity mobility [17]. The

derived expressions were used to calculate hole effective masses in

p-type silicon over a wide range of temperature and dopant density.

Since the crystal structure of silicon has cubic symmetry, the ohmic

mobility and the low-field Hall coefficient are isotropic. An angular

average of the effective masses may be performed taking into account

separately the warping of the individual bands so that expressions for

m*, m*, and m* of isotropic form can be derived. Values calculated from

these expressions differ from one another because of the warping and

nonparabolicity, and consequently effective mass in each band depends on

temperature and dopant density in its own way. The valence band struc-

ture of silicon is presented in Section 2.2, and in Section 2.3 expres-

sions for m*, m*, and m* are derived.

2.2 The Valence Band Structure of Silicon

Theoretical calculations by Kane [27] have established some basic

features of the valence band of silicon. It consists of heavy-hole and

light-hole bands, degenerate at k = 0, and a third band displaced down

in energy at k = 0 by spin orbit coupling.

The heavy-hole band is characterized by holes with an energy inde-

pendent, but direction-dependent effective mass. The light-hole band



9

is characterized by holes with an energy and direction-dependent effec-

tive mass. These two bands can be described by the E vs k relationship

[28]

__ C2  k2k2  +k 2 k2  +k 2 k2 )]
E(k) = 2 Ak2 + [B2k4 + kxy +xz z+ } (2.1)

where A, B, and C are the experimentally determined inverse mass band
2 2 2 11

parameters, k = (k + k y + kZ) , and the upper sign is associated with

the holes in the light-hole band, while the lower sign is associated

with the holes in the heavy-hole band. Values of A, B, and C are

obtained by cyclotron resonance measurements at 4 K [22,29].

Although warped, the bands are parabolic for small values of k.

However, for larger values of k, the bands become nonparabolic, and along

the <100> and <111> directions the heavy- and light-hole bands are

parallel over most of the Brillouin zone. This situation, however, is

not strictly valid for general directions [30]. The assumption of

overall parallelism, while q~estionable in III-V compounds, is reasonable

in the case of Ge and Si [27,31]. The split-off band is separated at

T = 0 by an energy A = 0.044 eV. [32], and is characterized by an effec-

tive mass which is independent of energy and direction. If the

anisotropy is small, the square root in equation (2.1) may be expanded

[20] and the energy surfaces may be expressed by

E =E - k (A ± B')j(a, ) (2.2)
0

where

- ~ I
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B' = (B2 + C2/6)!' (2.3)

e and p are the spherical coordinates, EV is the top of the valence

band, and

j(e,O) = I + - y[sin 40(cOs4 + sin 4) + cos 4 - 2/3] (2.4)2

with

y = ; C2/2B'(A ± B') (2.5)

Follow.ing the work of Barber [25], we have used the simplified

model of the band structure illustrated in Figure 2.1. In this model

the heavy-hole band is considered parabolic and thus the mass m* is a

constant, equal to its value at 4.2 K. For energies within 0.02 eV

the light-hole band is considered parabolic with a constant slope

corresponding to the value of m* at 4.2 K. For higher energies the

light-hole band is assumed to take on approximately the same slope as

that of the heavy-hole band, but remains separated from the heavy-hole

band by A/3 eV [27]. The extrapolation of these two constant slopes

creates the kink in the light-hule band at 0.02 eV. Because of the

change in slope, the light-hole band has an energy-varying effective

mass and in general can only be described in terms of partial Fermi-

Dirac integrals [25]. Although the split-off band is parabolically

distributed, the apparent effective mass at the top of the valence band

is a function of temperature due to the energy displacement at k = 0.

Theoretical and exoerimental studies [33,34] have shown that at high

temperatures the heavy-hole band is not parabolic and thus m* is not

energy and temperature independent. However, within the range of
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Figure 2.1. Simplified valence band structure of silicon based on
Kane's [27] calculations and measured properties of the
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temperatures considered here, the assumption of parabolicity for the

heavy-hole band based on Kane's model [27] is reasonable. Other studies

[35,36] support the validity of this model for the valence band of

silicon.

2.3 Effective Mass Formulation

In the case of spherically symmetric energy surfaces all of the

carriers respond in the same way to a given set of applied forces. The

effective mass then acts as a scalar and thus has the same value for

the Hall effect, conductivity, and density of states. For nonspherical

energy surfaces, however, this is not the case. The mixed response of

carriers to a set of applied forces is reflected in differences between

the different kinds of effective masses. The density-of-states effective

mass, mi is defined from the relationship

Pi [ 4 h2 3/2 Fl/ 2((n) (2.6)

where

F= 00 (2.7)
o 1 + exp(c--n)
0

= (E V - E)/k 0T, n = (Ev - EF)/koT, k0 is the Boltzmann constant, Ev is

the top of the valence band, and i = 1, 2, 3 refers to the heavy-hole,

light-hole, and split-off bands, respectively.

The electric current density in the presence of electric and magnetic

fields can be expressed by [20]

j jk Ek ojkLEkHZ + jk mEk H m + (2.8)
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where Ek, HE, H are the electrical and magnetic field components and

the a's represent single-energy-surface conductivity coefficients. The

first coefficient in equation (2.8) is the zero-magnetic field electri-

cal conductivity, and the second coefficient is associated with the

nondirectional Hall effect. In the limit of weak fields the expansion

can be limited to the first two terms. We use the electrical conduc-

tivity coefficient, oC , to define the conductivity effective mass m,

by the relationship

0 ~e 2<T > (29
aCi = 11i = Pi mi (2.9)

and the Hall effect coefficient, aH' to define the Hall mobility effec-

tive mass by means of [37]

e 3<r2>
aHi '123i = Pi (m 2 (2.10)

To solve for mi, m~i, and mi equations (2.6), (2.9) and (2.10) are

equated to the following expressions for pi, ajk' and ajkZ:

Pi 1 3 f0 (k)d
3k (2.11)

4'3

e 2 afoaE DE d3k (2.12)
jk = 473, 2 f T aE (kj kk

e3 Rf o E qE E 3pq(21_ (T (2.13)



where f is the Fermi-Dirac distribution function and cE pq is the permu-

tation tensor. Since equations (2.11) through (2.13) do not assume an

effective mass, they are valid both for parabolic and nonparabolic band

structures. These equations are then evaluated for the model described

in Section 2.2.

This procedure yields single mi,, m~i, and mi for an equivalent

model which is isotropic and parabolic. These values, in general, will

be temperature and carrier-concentration dependent. Although equations

(2.6) and (2.11) through (2.13) are expressed in terms of Fermi-Dirac

statistics to stress their generality, conductivity and Hall effective

masses were derived using Boltzmann statistics to simplify the form of

the equation. To obtain values of mi and mi we also require a proce-

dure for evaluating <Ti> and <Ti> in equations (2.9) and (2.10). This

will be discussed in Chapter III. The following sections present the

expressions for the effective masses in the individual bands.

2.3.1 The Heavy-Hole Band

In this band, the effective masses are given by

m) [f(-y)]2/3  (2.14)

= m0  f(-Y) (2.15)C ( TA-B') f-y

and

* M0 f(- 2).
mHl =- -B) (2.16)

where y is defined in equation (2.5). In these equations

f(y) = (1 + O.05y + 0.01635y2 + 0.000908y3 +

-j



fl(y) = (I + 0.01667y + 0.041369y
2 + 0.00090679y 3

+ 0.00091959Y4 +

and

f 2(y) = (I - 0.01667y + 0.017956y 
2 - 0.0069857y 3

+ 0.0012610-y4 +

Since the heavy-hole band was assumed parabolic, the integrals containing

T in equations (2.9) and (2.10) are identical to those in equations (2.12)

and (2.13), and cancel out.

2.3.2 The Light-Hole Band

In the light-hole band, as modeled by Figure 2.1, the effective

masses of holes are obtained in terms of partial Fermi-Dirac integrals

[25]. Thus

2mo3/2 {/k __
k°T 

02 -_ 1(+')3/2 o exp(C +

i~

f ( -5, ) n I  00 C Id e 1
I ~ }(2.17)3A~ /2 f/o exp(- (.1T

(A-B')31  /k 0TI

A
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2mo  o T2t:3/2dE

m2f exp(c) x

f(+Y) IoT f (_Y)nl E' 2dl
f_(__)_0_Cd +_____ 1j 1(AB3/2 Sexp-) 3/ f exp(El,)

(A+B') 0 (A-B')3 /2 /k0T

fl (+ 3) f 2d + fl (-y)nl 1 2EI3/2dcI

(A+B')/2 0 (A-B')1/2  C/k T exp(E I)

(2.18)

l'2 ~~/k T 2/

(A+B')I/2f2 (+Y) f 0k T 2 6 3/2exp(-c)dc +2 2  (Ed
0

1/ 0 2 3/2 '2.

(A-B')I/2f2 (-Y)i1  f /k T 2 E I exp(-E l )dc1
C/k T 21

Sm*H2 mo 3/ /O T '
2 f Te 3 2dc f(+Y) kT C +

f o, h l 00 C1 2dF ( . 9
{2 S )L' 3/2 "  ex'p(x) +i To 0A B 0

(A-B')3/2  -/koT exp-]

where c =c - A/3koT, c = C - A/3, = exp(-A/3koT) and A and are

defined in Figure 2.1.

In this case because equations (2.11) through (2.13) were

expressed in terms of partial Fermi-Dirac integrals and equations (2.6),

(2.9) and (2.10) were express(id in terms of complete Fermi-Dirac

integrals, the dependence on T does not cancel out. Thus the nonpara-

bolicity of the light-hole band introduces a dependence on the scatter-

ing relaxation time. The scattering relaxation time is discussed in

Chapter III.
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2.3.3 The Split-Off Band

Although the split-off band is parabolic, the apparent effective

mass in this band will also exhibit a temperature dependence due to the

energy displacement at k 0. The energy of a hole in the third band

is given by

E : E A (2.20)
v 2mo

where A is the split-off energy (= 0.044eV), and A is one of the inverse

mass band parameters. Substituting equation (2.20) into equations

(2.11) through (2.13), and then equating to equations (2.6), (2.9) and

(2.10) for the split-off band, we obtain

D3 = - exp (- 3 T)  (2.21)
0

m f O T3 3/2 exp(-c)dc
_* T 0o (2.22)

C 3 f 3 62 2 e x p (- 2 )d E2
0

m o T 32 F_3/2 exp(-c)dc

m3 - 0 0 (2.23)

S T32 3/2exp(-c 2 )d 2

where e2 = E - A/koT.

The combined hole density-of-state effective mass can be determined

by assuming that the total number of holes in the valence band is equal

to the sum of the holes in the individual bands
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p = P1 + P2 + P3  (2.24)

thus

m* = [(m* )3/2 + (m* )3/2 + (m*33/2]2/3 (2.25)D Dl (D2) + m 3 )](.5

This combined effective mass is the mass corresponding to the density-

of-states of an effective single equivalent parabolic valence band.

This concept is useful in calculations where the effective density-of-

states at different temperatures can be calculated from one m*.

The explicit temperature variation of the band curvature is included

by assuming that the density-of-states near the band edges varies in a

similar manner as the temperature dependence of the energy gap [25].

Thus (m*)3/2 is porportional to EGo/EG where EGO is the energy gap at 0 K.

To evaluate the total band equivalent conductivity and Hall effec-

tive masses, we assume that in valence band conduction, the total number

of holes in motion is equal to the sum of the holes moving on the

separate energy surfaces, and that these holes can be modeled as moving

on a single spherical energy surface. Thus, the ohmic and the Hall

conductivities in the equivalent valence band are given by

IC = °Cl + 'C2 + 'C3 (2.26)

and

aH = aH1 + FH2 + aH 3  (2.27)

respecti vely.



19

Substituting equations (2.9) and (2.10) into equations (2.26) and

(2.27) it follows that

<T1> [M* 3/2 <- <> m* 3/2 1 <T 3  rm 3
3/2 l l

T ~mj ClC2 D~ D~C 3J

(2.28)

and

<T12> m* 3/2 1-L + 2> m* 2
3 12  1 <- 12 / 21 I <2> Dm2 I  + 3l

m m* <T2> m* m 2 2 -- 2

H1 H2 <T>H3

(2.29)

Equations (2.25), (2.28) and (2.29) were evaluated numerically as func-

tions of temperature and acceptor doping density for p-type silicon.

Values of the band parameters, JAI = 4.27, JBI = 0.63 and ICI = 4.93,

were determined at 4.2 K by Hensel and Feher [22] and Balslev and

Lewaetz [29]. In order to simplify the calculations and maintain

tractability, anisotropies in the relaxation time were ignored. A rig-

orous analysis of the conductivities for nonisotropic scattering would

be extremely difficult to carry out because no relaxation time is

expected to exist in the usual sense [38].

Figure 2.2 shows the dependence of m* with temperature in the range

from 100 to 400 K. The slight temperature dependence due to the expli-

cit temperature variation of the curvature at the edge of the band

results in an effective mass increase of about five percent in each

band at 400 K. This can be seen in the slope of m5l. The temperature

dependence of m*3 is more pronounced since here we also have the

effects of eihergy displacement at k = 0. The temperature dependence due

to nonparabolicity is very apparent in the shape of the m 2 curve.

D2 -
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The temperature dependence of the conductivity effective mass and

the Hall effective mass is shown in Figures 2.3 and 2.4, with the dopant

density equal to 1  cm - . One consequence of the nonparabolicity of

the light-hole band is an increase in the valence band conductivity

effective mass as temperature increases from 100 to 400 K. This happens

because with increasing thermal energy k T, more holes reside in the less
0

parabolic regions of the light-hole band. The results plotted in Figure

2.3 show an increase in m* of about 36 percent in this temperature range.

The temperature dependence of m* can be attributed mainly to the non-

parabolicity of the light-hole band. In the temperature range from 100

to 400 K, m increases from 0.2850 to 0.5273 m. The slight temperature

dependence of m* and m* is due to the explicit temperature effect and
(21 Hl

results in increases of 7.7 percent and 3.76 percent in the m*l and

respectively. A larger temperature variation occurs in the case of the

split-off band because of the additional effects of the energy displace-

ment at k = 0.

Figures 2.5 and 2.6 show the variation of m* and m* with dopant

density and temperature. For T a 100 K, m* varies less than 10 percent

in the dopant density range from 1014 to 1018 cm-3 . Since the influence

of nonparabolicity is reduced in degenerate material [25], it follows

as shown in Figures 2.5 and 2.6 that the variation of effective mass

with temperature is much stronger at low dopant densities. At lower

temperatures there is a much greater change in effective mass due to

variations in scattering relaxation time with percentage of ionized

impurities.
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2.4 Discussion

The idea of temperature-dependent effective mass is supported by

a number of experimental data. Cardona et al [21] found an increase of

about 12 percent in optical effective mass between 90 and 300 K in

heavily-doped p-type silicon. Cyclotron-resonance studies conducted by

Hensel and Feher [22] show that when carrier heating populates deeper

regions of the light-hole band, the nonparabolic nature of this band at

higher values of k results in an increase in the effective mass of holes.

The model used here in the calculation of hole density-of-states

effective mass is identical to that of Barber [25], and consequently

our results for I and m are in excellent agreement with those of

Barber [25]. We have extended Barber's work to the calculations of m*

and m* in p-type silicon. The increase of m* by 36 percent at 400 K

shown in Figure 2.3 is much larger than that reported by Costato and

Reggiani (9 percent) [26]. Their calculation was done over a similar

range of temperatures, and their value at 100 K, mc=0. 342 mo, is some-

what lower than our calculated value (.3604 mo). The discrepancies

between our results and those of Costato and Reggiani are due mainly to

the correction of m* for the explicit temperature dependence of the

energy gap, the inclusion of the split-off band, and the consideration

of unequal relaxation times in the three bands. Note that our calcula-

tions of effective masses were achieved through more rigorous mathe-

matical derivations, while those of Costato and Reggiani followed a

more empirical curve-fitting type of procedure.

The experimental values of density-of-states effective masses of

holes in p-type silicon have been published by numerous authors [21,22,

39,40], but very little data can be found for the conductivity and the
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Hall effective masses, making it difficult to properly assess the value

of our calculations. There seems to be no obvious way to measure these

quantities from d.c. transport measurements. Magneto-kerr effect

measurements conducted by Hauge [41], indicate that m* could increase

by as much as 31 percent in the range of temperatures from 100 (M* =
c

0.510 M ) to 300 K. This is in reasonable agreement with our calculated

percentage increase in m* in the same temperature range (33 percent),
C

but it is impossible to compare our calculations with Hauge's experi-

mental results, because our effective mass definition was chosen to be

mainly applicable to the study of the Hall and conductivity mobility in

the low field limit, and this may not apply to the measurements of

Hauge [41].

From the results of this chapter it can be seen that the approxima-

tion of a constant effective mass seems to be inadequate to describe

transport properties of holes in silicon above 100 K. There is a sub-

stantial increase in the effective mass of holes from 100 to 400 K due

to the nonparabolicity of the light-hole band, and a smaller, though not

negligible, contribution due to the explicit temperature dependence and

the effects of the split-off band. The validity of this model for the

calculation of density-of-states effective mass has been well established

[25]. Barber [25] has shown that when the temperature-dependent effec-

tive masses are substituted into the theoretical expression for intrinsic

carrier density in silicon, the agreement with reported measurements of

ni is within the limits of experimental error. Application of this

model to theoretical calculation of mobility and resistivity in p-type

silicon [17] has provided excellent agreement between theoretical and

and experimental values (resistivity with ±6 percent) over a temperature

~P2
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range from 100 to 400 K and dopant density range from 10 to

3xO 18 cm"3. This calculation is limited to applications in conduc-

tivity mobility and low field Hall effect.
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CHAPTER III

MOBILITY AND SCATTERING RELAXATION TIME

3.1 Introduction

The study of transport phenomena in semiconductors requires an

accurate knowledge of variations in the conductivity mobility and the

resistivity with changes in temperature and dopant density. The resis-

tivity is an easily-measured parameter, but the conductivity mobility

is a more difficult parameter to evaluate. In general, four different

kinds of mobility enter into common discussion [42]. The microscopic

mobility is the actual velocity per unit electric field of a free

carrier in a crystal. This cannot be measured directly. The conduc-

tivity mobility is the mobility associated with the conductivity

expression, a = epTIC. This mobility involves an average relaxation

time <T> dependent on the nature of the scattering process, and in the

case of nonspherical equal energy surfaces, this mobility also involves

a combined effective mass. The Hall mobility is the product of the

measured conductivity and the measured Hall coefficient. In general,

the Hall mobility differs from the conductivity mobility by a factor

called the Hall factor. The drift mobility is the velocity or drift

per unit field for a carrier moving in an electric field. If trapping

centers are present, so that the actual drift process is not simply

motion through the conduction band, but involves a series of trapping

and untrapping processes, the drift mobility can be much less than the

conductivity mobility. The four mobilities are all equal only when the

29
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following three conditions are met [42]: (a) spherical equal energy

surfaces with extremum at k = 0, (b) relaxation time independent of

carrier energy, and (c) negligible trapping effects. Since conditions

(a) and (b) are not met in p-type silicon, it is improper to judge the

behaviour of one kind of mobility based on knowledge of a different

kind of mobility. Thus drift or Hall mobility data cannot be tacitly

assumed to be accurate substitutes for conductivity mobility values.

As mentioned above, the conductivity mobility involves an average

scattering relaxation time. In any semiconductor, the charge carriers

(i.e., holes and electrons), at temperatures above absolute zero, may

be scattered by a number of mechanisms. Different mechanisms are

dominant in certain temperature and dopant density regimes, but in some

cases two or more may be interacting simultaneously. Thus in calculat-

ing the conductivity mobility over a wide range of temperatures and

dopant densities, all the relevant scattering mechanisms must be taken

into account. In the case of silicon, acoustic and optical phonon

scattering, and ionized and neutral impurity scattering are of major

importance. Hole-hole scattering also plays an important role in deter-

mining the mobility. In the following sections the theoretical effects

of these scattering mechanisms on the mobility will be considered.

3.2 Mobility and Average Scattering Relaxation Time

The calculation of mobility of holes in the valence band of silicon

is accomplished by evaluating the mobility separately in the heavy-hole

band, the light-hole band, and the split-off band considering all

appropriate scattering mechanisms. The overall mobility is then

evaluated as a weighted average of the single-band mobilities over the

individual hole densities in each band.
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The conductivity mobility in each of the three valence bands is

calculated from

e<T i>
ii

where

aff E3/2 Ti [;-6dF

<Ti> = (3.2)

1 3/ 2  deJoi

for the case of Fermi-Dirac statistics, and Ti represents the total

scattering relaxation time in band i. Because each scattering mechanism

has its own dependence on scattering energy, a simple closed form

expression for total scattering relaxation time as a function of temper-

ature cannot be obtained. The use of numerical techniques is necessary

to solve for the relaxation time. In the case of p-type silicon, the

peculiarities of a degenerate, warped, and nonparabolic valence band

must be taken into account [l]. The possibility of interband as well as

intraband transitions must also be taken into account in the analysis.

With the inclusion of interband scattering as given by Bir et al. [43],

the total relaxation time in the heavy- (i = 1) and light-holes (i = 2)

bands is given by

M* I.
+ .i, (1 +L ±JT i j; i =1,2; j =1,2 (3.3)

h erij)Tii

where

ENSIM _-
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6=1 = T1 1 T2 2  (3.4)T 12T21

and

Tii T aci- I o-1  + T ii- + T Ni- 1 (3.5)

The total relaxation time in the split-off band is given by

[t - + -I + + ]-I(3.6)3 [-ac3 To3 13 + N3(.)

Only transitions between the light- and heavy-hole band are con-

sidered; the relaxation time Tji takes into account a transition from

band i to band j; and Taci' Toi, Tli, and TNi are the relaxation times

corresponding to scattering by acoustical phonons optical phonons,

ionized impurities, and neutral impurities respectively, with i as the

band index. The procedure for including the nonparabolicity of the

band structure into calculations of relaxation time, consists of

modifying the relaxation time for a given scattering process by replac-

ing the temperature independent effective mass of the parabolic band by

the temperature dependent effective mass of the nonparabolic band.

This procedure has been successfully applied to the study of acoustic

phonon scattering in nonparabolic bands by Radcliffe [18]. Optical

phonon and ionized impurity scattering in nonparabolic bands have been

considered by Barrie [19] in the same manner. Braggins [1] has used

the same method to include nonparabolicity in his study of p-type sili-

con. In this work, the relaxation times appropriate to degenerate,

parabolic valence bands have been used and modified according to the

prescription of Radcliffe [18], Barrie [19], and Braggins [1]. The

ERA,
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anisotropy of the energy spectrum is not considered in this model,

because from the transport theory for parabolic bands it is known that

this anisotropy has no influence on the temperature dependence of

mobility, but only on its absolute value [10]. Each of the four

scattering mechanisms will now be discussed.

3.3 Acoustical Phonon Scattering

The relaxation time for scattering by acoustical phonons includes

both the possibility of interband as well as intraband scattering. The

treatment of the acoustical phonons has been based on the theory of

Bir, Normantas, and Pikus [43] where the relaxation times can be

expressed in terms of a single constant, Tx, which controls the overall

magnitude of the scattering. Both transverse and longitudinal phonons

participate in the scattering so that

M*l- l 0 3/2
-1 { 01 1 (2) + 'Yij3 L (1 ) +acl T Tx  LI 1 1ijLI

C 2  2 [ I (2 ) + Yi 3  T (1 )J } T 3/2 1 2  (3.7)

Ct
2

and

-1 mD2
3 2  L (2) + y 3 (I)

ac2 T x  L2 2  ii L2 2x+

C2 a2[T2(2) +  3 T2(1)] T 3/2I/2
Y i22  ij 2 2 (3.8)

CtL
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for intraband scattering, while

- 5 -1 i3/2

TIj Y. = T - Di Li ( 2 ) +

CI2 (Tij(2) } T3 / 2 /2  (3.9)

for interband scattering. In the split-off band, the scattering relaxa-

tion time is given by

~11-I L k..123/2

Tac3 - (3.10)

In these equations

k 3/ 2a2m 3/2
0rl4ps2  (3.11])

St

Y m /m*j, B = b/a, a and b are valence band acoustic deformation

potential constants in the Picus and Bir [44] notation, ps is the

density, C i and Ct are the longitudinal and transverse sound velocities

in silicon and Lij and Tij are functions of 0 and Yij defined in [43].

3.4 Optical Phonon Scattering

Optical phonon scattering, while negligible at very low tempera-

tures, cannot be ignored at high temperatures. Ehrenreich and

Overihauser [45] have calculated the mobility of holes in silicon and its

dependence on temperature. The calculated mobility follows a T 2 .3

dependence for reasonable choices of the parameters which described the

I ]
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mixing of optical and acoustical phonon scattering. This agrees with

experimental results [5,8]. The relaxation time for scattering by

nonpolar optical phonons is given by [46]

m3/2
-l mD 1121 { OD 112

T WO T " +

oi Tx D 0 Tnl)

o E+ D)1/2  i = 1,2,3 (3.12)

where 0 is the Debye temperature, no = (exp(e /T)-l) is the phonon

weeD e D/)l istepon
distribution function, and W is a constant which determines the rela-

tive coupling strength of the holes to the optical phonon mode compared

to the acoustical phonon mode

D 2 2CI2
W = 0222 (3.13)

2k 0 ae 2

2
where D is the optical deformation potential constant. The first term

in the brackets of equation (3.12) corresponds to optical phonon emmis-

sion and is relevant only when this is energetically possible (E>e/T).

The second term in the brackets corresponds to optical phonon absorption.

3.5 Ionized Impurity Scattering

The Columbic interaction between ionized impurities and charge

carriers drifting through the cyrstal under the action of an applied

electric field causes scattering of the charge carriers. Scattering by

ionized impurities was first considered by Conwell and Weisskopf [47).

The basic assumption is that the Coulomb field is cut off at half the

i
*, i.. ...
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distance between charged impurities. This is equivalent to assuming

that a charge carrier sees only one charged impurity at a time, the

effect of the other charged impurities being sufficiently screened as

to be negligible. This approach was improved by Brooks [48] and

Herring [49) who associated the cut-off of the Coulomb potential with

a screening distance, the free carriers being assumed to provide

screening against the charge of the impurities. In the low dopant

density limit, the scattering relaxation time due to ionized impurities

is given by (48,49]

4--I e4 N G(bi )  -/

T l 1  1es() -3/ 2 = 1,2,3 (3.14)

where

G(bi) = +n(b1) - + ) (3.15)

and

24n mi5s(koT)2
b. = (3.16)
; 2e2h2 p'

where p' is the screening carrier density, p' = p + NA(l - NA/NA), for

N = 0.

3.6 Neutral Impurity Scattering

Scattering by neutral impurities in semiconductors has been con-

sidered by Erginsoy [50] as a variation of the problem of the scattering

of electrons by neutral hydogen atoms. The result is a temperature

independent relaxation time given by

4;
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Ti20tr 1N' 1=1,2,3 (3.17)

where NN is the density of neutral impurities and m* is the geometric

mean mass appropriate for evaluating the scaled Bohr radius term [48].

Sclar [51,52] has included the possibility of bound states in the

evaluation of electron-hydrogen impurity scattering by using a three-

dimensional square well to estimate the influence of a weakly-bound

state on the scattering. In this case the relaxation time is given by

- 23/2A 2N •  E
N 112 1 1

TN (kTI+m,/ k I/ T  1/2 }, i:1,2,3 (3.18)

where 2

E 1.136 x 1 j. -2.J (3.19)
0 l

is the binding energy of neutral acceptors.

For silicon doped with shallow impurities, this type of scattering

is important at low temperatures where neutral impurities may outnumber

ionized impurities. For the deeper levels, where neutral impurities can

exist at higher temperatures, the influence of neutral impurity scatter-

ing can extend over a wide range of temperatures.

3.7 Effect of Hole-Hole Scattering

The expressions thus far presented for scattering relaxation time

neglect the effect of hole-hole scattering. Although hole-hole scatter-

ing does not affect the current density directly since it cannot alter

the total momentum, it tends to randomnize the way in which this total

1>

i .... ..-. ._ _ d T ,
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momentum is distributed among holes of different energies. When the

scattering mechanism is such as to lead to a nonuniform distribution,

hole-hole scattering gives rise to a net transfer of momentum from

holes which dissipate momentum less efficiently to those which dissipate

momentum more efficiently, resulting in an overall greater rate of

momentum transfer, and lower mobility [53]. Thus the size of the effect

of hole-hole scattering on the scattering relaxation time is a function

of the energy dependence of the relaxation time. The hole-hole reduc-

tion factor, Yhh' can be derived by means of a classical formulation

introduced by Keyes [54]. When hole-hole collisions are much more

frequent than hole-acceptor collisions, the average relaxation time for

a parabolic band in the Keyes [54] approximation approaches the

limiting form

f 312 fo'
<T hh> = (3.20)

f e3 / 2T_l a d

where f0 is the Fermi-Dirac distribution function. On the other hand,

if hole-hole collisions are neglected, the average relaxation time is

given by equation (3.2).

Thus the hole-hole reduction factor (i.e., the ratio of <Thh> to

<T>) can be expressed as

3/2 f €3/2 -1 I f0. d "

Yhh &3/2f o 2  (3.21)

I I I
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Yhh F (3.21a)
<T><T >

for optical phonon scattering, and Yhh ° , the hole-hole reduction factor,

is evaluated from equation (3.21).

For acoustical phonon scattering it is assumed that Yhh decreases

linearly with increasing dopant density from a value of one to a value

Yhha = 91/32 = 0.88 [17) in a certain range of impurity concentration.

a= 1.0004 - 4.013378 x 10-19 N 1015 :The exact relationship (Yhha A' 0 NA
173 s 107) is determined empirically with a best fit of the experimental

data.

Luong and Shaw [55) using a one-particle-like approximation from

the Hartree-Fock theory, have shown that by inclusion of hole-hole

scattering, the Brooks-Herring [48,49] formula is reduced by a factor

which can be expressed in closed form as

Thh = (N1) U-exp(2] (3.22)
N A

where NA is the ionized acceptor density and p' is the screening hole

density. In the case of neutral impurity scattering, hole-hole scat-

tering has no significance because TN is independent of hole energy.

Thus the overal scattering relaxation time in each hole band is

calculated from equations (3.3), (3.5), and (3.6) with the terms of

these equations properlycorrected for the effects of hole-hole scatter-

ing. Because the individual energy surfaces are different from each

other, the relaxation times also differ from each other and cannot be

assumed equal except in restricted ranges of temperature and dopant

density [43].

•, -1
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3.8 Mobility in the Combined Valence Band

The conductivity mobility in each individual band is calculated

from equation (3.1), and the combined conductivity mobility in the

valance band is then evaluated as a weighted average of the single-band

mobilities over the population of holes in each band, thus

m5l 3/2 m 2 3/2 m*3 3/2PC D llB 2t D 3 (3.23)

Using equation (3.23) and the parameters listed in Table 3-1, we

have calculated the hole mobility for silicon doped with boron, gallium,

and indium as functions of dopant density and temperature, for

1014 : NA 10 1cm-3 and 100 T 5 400 K. The results are displayed in

Figures 3.1 through 3.6. In the calculations of mobility and resistivity

in silicon doped with gallium and indium, it was assumed that boron

impurities were also present. Since very pure silicon has a resistivity

on the order of 10000-cm, it was assumed that boron densities of 1013

and 5xl0 13cm-3 existed in the gallium- and indium-doped samples,

respectively. The values of these background densities were deduced

from a best fit of the experimental data. For this reason, especially

in the case of indium-doped silicon, the actual role of the impurities

at low temperatures and/or low dopant densities is masked by the action

of the always present boron impurities. As the dopant density and

temperature increase, the assumed background densities of boron

impurities become insignificant compared to the density of ionized dopant

atoms, and Figures 3.1 through 3.6 accurately depict the influence of

the particular type of impurity on the resistivity and mobility of holes

in p-type silicon. The figures also show that for the case of the
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Table 3-1. Values used in the calculations.

Parameter Value Unit

44.0 meV

a -.4* eV

b 2/ 2-.36* eV

C z t2.09*

735 K

2.329 x 10 ~ kg/rn

Tx 6.96 x 10O1 sec K 3/2

W 0.244

mc 9.1 x 1031 kg

h 6.25 x 10- 3 joule-sec

k01.38 x 10-2 joules/K

e 1.6 x 10-19 coul

*These values were obtained from references [1] and [22].
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Figure 3.4. The calculated hole mobility vs temperature for boron-doped
silicon with dopant density as a parameter.
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Figure 3.5. The calculated hole mobility vs temperature for gallium-
doped silicon with dopant density as a parameter.
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Figure 3.6. The calculated hole mobility vs temperature for indium-
doped silicon with dopant density as a parameter.
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shallower ionization energies, the mobility depends more strongly on

temperature for the lightly-doped case where lattice scattering is

dominant and become less temperature dependent as the dopant density

increases.

The constant, Tx, was found by fitting the mobility to experimental

data in the lattice-scattering-limited range. Our value of -x is

equivalent to an acoustic deformation potential constant of 8.099 eV.

The optical phonon coupling constant, W, was then found by fitting the

mobility to the high temperature experimental data. Our value of W is

equivalent to an optical deformation potential constant of 6.024xi0 8 eV/

cm.

e



CHAPTER IV

HOLE DENSITY AND RESISTIVITY

4.1 Introduction

The resistivity of semiconductor materials is one of their most

useful and easily measured properties. Theoretical calculations of

resistivity depend on the formulation of conductivity mobility, and the

determination of hole density. For extrinsic semiconductors, the hole

density is determined primarily by the percentage of ionization of

impurity atoms. The following sections discuss the dependence of hole

density and resistivity on temperature and dopant density.

4.2 Ionization of Impurity Atoms

For the case of Fermi-Dirac statistics, the hole density is given

by

27 kTm* 3/2

p = 4[ ho F (4.1)

where, m*, the density-of-states effective mass, contains information

pertaining to the nonparabolic nature of the valence band. In the limit

of low dopant densities, equation (4.1) reduces to

p = Nvexp(n) (4.2)

where N = 2(2 n m* k T/h2)3/2 is the effective density of valence band
V D 0

states. For the range of temperatures considered in this study, the

49
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hole density is calculated by assuming that the density of carriers is

determined by the impurities present in the silicon sample. The density

of ionized acceptor impurities in p-type silicon is computed from the

charge neutrality equation

- +
NA - ND = p -n (4.3)

This reduces to

p = NA (4.4)

for the case of uncompensated material.

The density of ionized acceptors is [56]

SN A
NA 1+ g exp -F (4.5)

where EA is the acceptor ionization energy, and g is the ground state

degeneracy. Excited states have a very minor influence on the carrier

concentration due to the large separation between the ground state and

the excited states [1,56]. Letting

g = 4 + 2 exp{- k-3 (4.6)

enables us to include the contribution of the split-off band [17]. The

density of ionized acceptors is computed by iterating EF in equations

(4.2) and (4.5) until equation (4.4) is fulfilled within a given level

of accuracy.
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Experimental evidence shows that the acceptor ionization energy EA

is not a constant, but decreases with increasing dopant density [9].

Penin et al. [57] have determined in a study of heavily doped silicon

from 4 to 300 K that for shallow impurities such as boron and phosphorus

the ionization energy decreases and finally disappears altogether for

impurity densities greater than 3xO 18 cm 3 . For impurities with deeper

activation energies, it is also expected that at some impurity concen-

tration, the impurity activation energy should become a function of the

impurity concentration. However, in the case of gallium and indium,

this should happen at higher impurity concentrations than for the

shallower level impurities. This is due to the smaller-geometrical

dimensions of the wave functions applicable to the deeper levels, so

that overlapping effects which promote the reduction in activation energy

require higher impurity concentrations [14]. For shallow impurities

such as boron and phosphorus, empirical expressions [9,57] relating the

dependence of ionization energy to dopant density have been established.

In the case of Ga, there is data [15] on activation energy vs concentra-

tion, but not enough on which to'base an accurate relationship. For

this reason the value of EA = 0.056eV was used. For In, EA = 0.156eV

[58] was used. Figures 4.1 through 4.3 show the ratio of ionized and

total impurity density as a function of impurity density with tempera-

ture as a parameter for 100 s T : 400 K for silicon doped with boron,

gallium, and indium. It is clearly shown in these figures that the

ionization of impurities for the deeper levels is significantly lower

even at low dopant densities so that it is necessary to go to higher

- 7> < --I
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temperatures to achieve total ionization of impurities. The deioniza-

tion of impurities is moit significant for low temperatures and high

impurity densities.

4.3 Resistivity of p-Type Silicon

The resistivity of p-type silicon is given by

p 1 (4.7)
eWzCp

where P is the hole conductivity mobility calculated from equation

(3.23) and p is the hole density discussed in Section 4.2. Equation

(4.7) was used to calculate the hole resistivity for silicon doped with

boron, gallium, and indium as a function of dopant density and tempera-

ture, for 1014 < NA s 1018 cm"3 and 100 ! T s 400 K. The result are

displayed in Figures 4.4 through 4.9. In the calculations of resistiv-

ity in silicon doped with gallium and indium, as was done for conductiv-

ity mobility, it was assumed that boron impurities were also present.

Boron densities of 1013 and 5xO 13 cm-3 were assumed to exist in the

gallium- and indium-doped samples, respectively. The values of these

background densities were deduced from a best fit of the experimental

data. As the dopant density and temperature increase, the assumed

background densities of shallow impurities becomes insignificant

compared to the density of ionized dopant atoms, and Figures 4.4 through

4.9 accurately depict the influence of the particular type of impurity

on the resistivity of holes in p-type silicon. The figures also show

that for the case of the shallower ionization energies, resistivity

depends more strongly on temperature for the lightly doped case where

lattice scattering is dominant and become less temperature dependent

as the dopant density increases.
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Figure 4.4. Theoretical calculations of resistivity vs temperature for
boron-doped silicon with dopant density as a parameter.
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Figure 4.5. Theoretical calculations of resistivity vs temperature for
gallium-doped silicon With dopant density as a parameter.
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Figure 4.7. Theoretical calculations of resistivity vs dopant density
for boron-doped silicon with temperature as a parameter.
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Figure 4.8. Theoretical calculations of resistivity vs dopant density
for gallium-doped silicon with temperature as a parameter.
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CHAPTER V

THE HALL FACTOR IN p-TYPE SILICON

5.1 Introduction

The most direct determination of the mobility is by the Haynes-

Schokley drift method, wherein the drift of charge carriers in a known

electric field is measured. However, the assumption, made when these

experiments were initiated, that the drift mobility of holes as minority

carriers in an n-type sample is the same as when they constitute the

majority carriers, is invalid in view of carrier-carrier scattering

[59]. Also the experiment can succeed only if the lifetime of the

minority carriers is larger than the transit time. For this reason,

usually Hall mobilities are measured instead. The Hall mobility is the

product of the measured conductivity and the measured Hall coefficient.

In general the Hall mobility differs from the conductivity mobility by

a factor called the Hall factor. Determination of the Hall factor may

be avoided by making use of the high field limit. For sufficiently

high magnetic fields several simplifications occur in the magnetic field

dependence of the Hall coefficient. In the high-field limit (when the

product of mobility and magnetic induction becomes greater than 108 cm
2

gauss/volt-sec [60]) the Hall coefficient is simply related to the

carrier concentration by [61]

R (5.1)H -e
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and thus the conductivity mobility and the Hall mobility are equal.

Although the high field limit simplifies use of the Hall mobility con-

siderably, excessively high magnetic fields can cause problems due to

the quantization of the hole orbits in a magnetic field [1]. The

quantization of the particle motion in a magnetic field will create

Landau levels within the band. The Landau levels will modify the den-

sity of states in the valence band which could affect the interpreta-

tion of experimental data [56]. Another high magnetic field effect of

importance is the "magnetic freeze out" which occurs with the stronger

localization of bound state wave-functions in a strong magnetic field

[62]. Due to the more localized charge distribution, the Coulomb

binding energy of the impurity state is increased so that at a fixed

temperature the concentration of thermally excited charge carriers will

be smaller and the Hall coefficient will be effectively increased.

Thus, in order to avoid these high field region complications and

obtain an experimental determination of the value of conductivity

mobility in the low field limit, it is necessary to have an accurate

knowledge of the Hall factor with which to modify measured Hall

mobilities. Hall measurements are routinely used to experimentally

determine the density of ionized impurities in a semiconductor sample.

This determination is possible only if an accurate value of the Hall

factor for the particular temperature and dopant density considered is

available.

5.2 The Hall Factor

The Hall and conductivity mobilities are related by the Hall factor

as follows:

I1
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rH (5.2)

For nondegenerate, spherically symmetric bands, it can be shown that

[59] rH ; 1, and that

rH = 2 (5.3)<T> 2

In general most previous work [5,59] has assumed that equation

(5.3) is valid in the case of p-type silicon and thus rH will vary

between 1.18 (T(E) E- 2 for lattice scattering) and 1.93 (T(E)

E3/2 for ionized impurity scattering), if hole-hole scattering is

neglected, and will approach unity for the degenerate case. This theory

does not allow for values of rH less than one. Experimental evidence

indicating values of rH less than one has been attributed to poor

quality of the measured samples [5]. Debye and Kohane [63] found that

the measured drift mobility for holes is considerably larger than the

measured Hall mobility. Values of rH less than unity were also reported

by Wolfstirn [15] for the case of gallium-doped silicon. More recent

experiments [64] show that a value of rH less than unity is necessary

to reconcile differences between the hole concentration measured via

Hall coefficient methods and that inferred from dopant densities

determined from C-V and junction breakdown measurements. The usual

assumption made is to let rH be equal to one and thus consider the Hall

mobility equal to the conductivity mobility. Neglecting the Hall

scattering factor alters both the magnitude and temperature dependence

of the carrier concentration from that given by the charge balance

equation. In fitting data to the charge balance equation, both thermal

. . .. . f - ' 4,
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carrier concentration and dopant impurity activation energy are over-

estimated by the assumption of unity Hall factor. A more complete

theoretical treatment of the Hall factor can be undertaken by consider-

ing the nonparabolic and anisotropic nature of the valence band of

silicon.

Chapter II described the constant energy surfaces as warped spheres.

Warping of the energy surfaces has a significant effect on the ratio of

Hall to conductivity mobility. When the bands are warped, the Hall

factor depends on the degree of warping as well as the scattering

mechanism [30].

The Hall mobility is the product of the ohmic conductivity and the

Hall coefficient

= OcRH (5.4)

In the low field limit the Hall coefficient for a nonparabolic,

anisotropic band i is given by [37]

¥ °~Hi(55

RHi = 2 (5.5)
GCi

Thus by substituting equations (2.9) and (2.10) into equation (5.5) the

Hall coefficient can be expressed as

R rH (5.6)
Hi Pie

where
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rHi [ m- J 2

is the Hall factor. We see that allowing for a difference between the

values of conductivity and Hall effective masses due to the anisotropic,

nonparabolic nature of the band, enables us to separate the Hall factor

into two components: the mass anisotropy factor given by

rAi (5.8)

and the scattering factor given by

<T 2>
r 2 (5.9)rSi <,[.>2

i

These components of the Hall factor will be considered in detail in the

next two sections.

5.3 The Mass Anisotropy Factor

Lax and Mavroides [20] have derived expressions for rA based on the

Dresselhaus et al [28] model of the valence band of germanium and sili-

con. Their formulation for rA acknowledges the anisotropy-, but neglects

the nonparabolicity of the bands. In general it is found that rA is less

than unity unless the scattering anisotropy becomes extreme [30]. In

order to determine the variation of the mass anisotropy factor with

changes in temperature and dopant density for the combined valence band

of silicon, equation (5.8) was evaluated using the values of combined

valence band effective mass obtained from equations (2.28) and (2.29).

- - - I



67

The results of this calculation are presented in Figures 5.1 and 5.2.

These figures show the significant contribution of the mass anisotropy

factor to the Hall factor. Since the influence of nonparabolicity is

reduced in degenerate material [25], it follows as shown in Figures 5.1

and 5.2, that the variation of rA with temperature is much stronger at

low dopant densities, since it is in this dopant density range that the

variation of effective mass with temperature is the strongest. We note

that the mass anisotropy factor is less than unity for all temperatures

considered in this work once the dopant density increases past

6xlO 15 cm- . At 300 K, rA is less than unity even for dopant densities

as low as 1014 cm 3.

5.4 The Scattering Factor

The scattering factor, rS , depicted in Figures 5.3 and 5.4 as a

function of temperature and dopant density, does not follow the tradi-

tionally expected variation between 37T/8 = 1.18 and 3157r/512 = 1.93 as

the dominant scattering mechanism changes from lattice to ionized

impurity scattering. Putley [65] has noted that hole-hole scattering

can modify r S. He estimates that for ionized impurity scattering, rS

can be reduced from 3151r/512 to a value close to unity. At low dopant

densities where the dominant scattering mechanism is acoustic phonon

scattering, rS varies between 1.08 for T = 100, to 1.24 for T = 400 K.

The deviation from the traditionally expected value of rS = 1.18 is due

to the contributions of optical phonon modes at the higher temperatures.

Hole-hole collisions also affect the impurity and optical phonon scat-

tering contributions so they become significant even at low temperatures

and dopant densities. At higher values of dopant density, the effects

of hole-hole scattering on the ionized impurity scattering mechanism

-" .- : -
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become very noticeable. At NA = 1l8 cm 3, the highest value of rS is

1.29 for T = 100 K, where the dopant impurities are only about 30 per-

cent ionized [171. At higher temperatures where the percentage of

ionized impurity atoms is over 80 percent, the effects of hole-hole

scattering bring rS from its traditionally expected value of 1.93 to

1.05 for T = 400 K.

5.5 Hall Mobility and Hall Factor in the Combined Valence Band

Expressions for Hall coefficient, applicable in the case where

holes in more than one band take place in conduction, are given by

Putley [66]. For the case of p-type silicon, assuming no compensation

and operation in the low field region, the Hall coefficient is given

by [66]

32 RHi"Ci2

RH = i=l (5.10)

i = Ci

By substituting equations (2.9) and (5.6) through (5.10) into equation

(5.4), the Hall mobility in the combined valence band of silicon can

be expressed by

3 m i 3/2 <Ti2>

"H : e H5 11
V1H 3m*i3/2<'Ti>

I i
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The conductivity mobility for the combined valence band can be expressed

by

3 m* 3/2
e Di <Ii >  (5.12)

= i=l C

Then using equations (5.11) and (5.12) we can express the Hall factor in

terms of the scattering relocation times and effective masses of the

individual bands by

*3/2f 3 i <T3 2>
D i=l m*2 i

rH =-3/2 (5.13)rH i~l m~i32 > 2

< 2

Ci

Figures 5.5 and 5.6 summarize the results of equation (5.13) as a

function of temperature and dopant density. These figures show that the

Hall factor ranges theoretically between 1.73 and 0.77 for temperatures

between 100 and 400 K and dopant densities between 1014 and 1018 cm- 3 .

For temperatures above 200 K, rH becomes less than unity for dopant

densities greater than 5.5x05 cm" . Figures 5.7 and 5.8 show the

theoretically predicted Hall mobility as functions of temperature and

dopant density. These two figures show the results of evaluating equa-

tion (5.11) with the aid of numerical integration, and adjusting the

lattice scattering mobility to give the best fit to values of conduc-

tivity mobility deduced from resistivity measurements.
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CHAPTER VI

EXPERIMENTAL PROCEDURES

6.1 Introduction

Experimental measurements of resistivity, Hall coefficient and

dopant density were made on six silicon wafers, four doped with gallium,

and two doped with indium, in dopant densities ranging from 4.25xi0 15 to

3.46xi0 17 cm"3 . These wafers were cut from crystals grown along the

<111> and <100> direction. Additional data were obtained from boron-

doped silicon wafers to further verify the adequacy of the theory. The

data were obtained from test patterns NBS-4 [67] fabricated on the

silicon wafers. This test pattern was designed at the National Bureau

of Standards primarily for use in the evaluation of the resistivity

versus dopant density relation in silicon. Resistivity measurements

were made on four-probe square array resistors and collector Hall effect

resistors, while the net dopant density in the specimens was determined

by the junction C-V method on a gated base-collector diode. Mean values

of resistivity, dopant density and Hall coefficient were determined by

measuring five to eight selected test cells with a standard deviation

in resistivity at 300 K under five percent. The following sections

describe the test sample preparation and fabrication procedure, and the

measurement procedures.

78
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6.2 Fabrication Procedure

The overall pattern-is fabricated on a square silicon chip 200 mils

on a side where six mask levels are used [68]. The masks were used in

the following sequence: base, emitter, base contact, gate oxide, contact

and metal. Appropriate cleaning procedures (see Appendix A) precede the

diffusion of impurities, and a negative photoresist process was used in

the masking steps. The base mask delineates regions whose conductivity

type is opposite from that of the collector substrate, and the emitter

mask delineates regions whose conductivity type is the same as that of

the collector substrate. A base region approximately two vm deep is

diffused into the background material; then the emitter region is dif-

fused into the base to a depth of approximately one pm. The base con-

tact mask is used to open windows onto the base region, 
where an n+

diffusion is made to improve ohmic contact to the base. The gate oxide

mask delineates regions where an oxide layer of closely controlled

thickness is grown to serve as a gate for MOS devices. After front-side

" metallization, a portion of the wafer was separated. This section was

scribed to provide the Hall effect devices. The remainder of the wafer

was then metallized on the backside and alloyed. After scribing, the

devices were mounted on TO-5 headers, metal contact bonding was made,

and the devices were encapsulated. A layer of ceramic insulating mate-

rial was used to isolate the devices from contact with the header.

Resistivity measurements were then made to select devices for use in

this study.

.
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6.3 Experimental Measurements

The structures used to evaluate the resistivity of the bulk mate-

rial are the Hall effect resistor and the collector four-probe resistor

(68]. The four-probe resistor has four point contacts arranged in a

square array. The structure (see Appendix A) is fabricated by diffusing

a base over a large area except at the four point contacts which are

protected from the base diffusion by oxide islands. Emitters are dif-

fused at these points in order to make low resistance contacts to the

collector material. The purpose of the base diffusion is to eliminate

surface currents. The bulk resistivity is determined by forcing a

current, I, between two adjacent probes and measuring the voltage, V,

between the other two probes. The resistivity of the material is deter-

mined from [69]

p = 2SV (6.1)

(2-/Z) IC'

where S is the probe spacing and C' is a correction factor dependent on

the ratio of probe spacing to the thickness of'the chip [70]. This

correction factor is given by

=e 1 (- +, n i + 4n2 w1 12

247' n=l _2

2V2- )n ~2n2 w 2 -1/2(62
2-2 nil [ 2 (6.2)

where w is the thickness of the chip.

The collector Hall effect resistor is a four-terminal resistor

formed in a square chip 100 mils on a side. Contacts are formed on the



four corners by an emitter diffusion (see Appendix A). The resistivity

is calculated from [71]

1Tw V (6.3)
P £znT T

where w is the thickness of the chip, and V is the voltage difference

between nearest neighbor contacts for a current, I, passed between the

remaining two contacts. The TO-5 header was mounted in the sample

holder of an Air Products and Chemicals AC-3L CRYO-TIP liquid nitrogen

system. This enabled variation of the sample temperature between 100

and 350 K. The temperature was measured by a chromel vs gold with 0.07

atomic percent iron thermocouple. For temperatures above 350 K, the

sample was placed in a Stratham Temperature Test Chamber.

The structure used for the Hall coefficient measurements is the

collector Hall effect resistor. The Hall coefficient is calculated

from

RH -Hw (6.4)

where VH is the voltage difference measured between opposite contacts

for a current, I, passed between the remaining two contacts, and B is

the magnetic field density perpendicular to the plane of the chip; thus

the samples are oriented so that the magnetic field is in the crystal

growth direction, <111> for the gallium-doped samples, and <100> for

the indium-doped samples. The Hall mobility is determined from

S- I.- 7 *-~~.~\
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RH (6.5)

where p is determined from resistivity measurements on the Hall and

four-point structures. The magnetic field for the Hall measurements

was provided by a Varian Associates (V3703) six-inch electromagnet with

a current regulated power supply (V-FR2503). The magnetic field

strength was monitored by a Bell 620 gaussmeter with an STB4-0402 probe

with a stated accuracy of 0.1 percent. Data was taken over a tempera-

ture range from 100 to 350 K. The current used in the resistivity and

Hall coefficient measurements was provided by a Keithley 225 current

source capable of accuracy within ±0.5 percent of the three-digit

readout. The current was monitored by voltage readings across precision

resistors connected in series with the current source. These resistors

were part of a Dana-651 current shunt set, accurate to within 0.01 per-

cent. Voltages were measured with a Hewlett Packard 3465A digital

multimeter with a stated accuracy within 0.03 percent of the readout.

Resistivity and Hall coefficient measurements were made in accordance

with ASTM standard procedures [72].

The impurity dopant density was obtained by use of two different

structures: an MOS capacitor, and a base-collector diode. The MOS

capacitor over collector consists of a main gate which is surrounded

by a field plate that overlaps a channel stop which also serves as top

side collector contact [68]. This structure (see Appendix A) is used to

measure the collector dopant density (NA + N0 ) from the high frequency

C-V deep depletion method [73]. The collector dopant density is deter-

mined by obtaining a dopant profile from C-V measurements by means of
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eA(x) 2 AV (6.6)

where AV is an incremental change in the gate voltage, and the measured

capacitance is due to both the oxide and the semiconductor. A self-

consistent check was made on the measurements of collector dopant density

by using the base-collector diode. This structure (see Appendix A)

consists of a base diffused into a collector and a metal field plate to

control the periphery. The field plate overlaps both the base and a

diffused emitter channel stop which also serves as topside collector

[68]. To obtain a correct density profile the field plate is biased at

the flat-band potential [74]. Capacitance-voltage measurements were

taken with a Princeton Applied Research 410 C-V Plotter and a Hewlett

Packard 7010A X-Y Recorder.

From each silicon wafer, eight four-probe resistors, eight Hall

resistors, and eight capacitor-diode chips were selected for encapsu-

lation. These were chosen on the basis of low leakage currents and good

contacts at the metal bonding pads. Measurements were made on each of

the devices and data from the five to eight devices closest to the mean

value of the measurements were then averaged. In this manner we arrived

at representative values of resistivity, Hall coefficient, and dopant

density for each sample. The results of these measurements and compari-

sons with the theory of Chapters III through V are presented in the

next chapter.



CHAPTER VII

COMPARISON OFTHEORETICAL AND EXPERIMENTAL RESULTS

7.1 Conductivity Mobility

Conductivity mobility was evaluated by substituting the measured

resistivities into equation (4.7). Figure 7.1 shows the hole mobility

plotted as a function of hole density at 300 K for boron-doped silicon.

Curve 1 represents the theoretical results of equation (3.23), and

curve 2 was reproduced from the work of Wagner [8]. Our calculated

values are within six percent of the values reported by Wagner for

NA 3xO 17 cm 3 . For higher values of hole density our calculated

values are substantially higher than those of Wagner. As previously

explained by Li [17], this discrepancy is due to Wagner's assumption

of complete ionization of boron impurities. This assumption is valid

only at low dopant densities or at high temperatures where full ioniza-

tion of boron atoms prevails. The theoretical calculation is in

excellent agreement (within three percent) with experimental data

reported by Thurber et al [12]. This gives support to the validity of

ionization calculations based on equations (4.2) through (4.6).

Mobility values reported by Horn [13] are also in reasonable agreement

with our theoretical results. The data points shown in Figure 7.1 were

corrected for deionization effects via equations (4.2) through (4.6).

84
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7.2 Resistivity

The resistivity vs dopant density relationship for boron-doped

silicon at 300 K is shown in Figure 7.2. The solid line represents

theoretical calculations using equation (4.7). Wagner's [8] resistivity

curve and the theoretical line coincide over most of the boron density

range. Our theoretical calculations agree with Wagner's resistivity

data within six percent over the entire range of boron densities con-

sidered at T = 300 K. Excellent agreement exists between our experi-

mental data and the theoretical calculations at 300 K. Figure 7.2 also

shows excellent agreement between our theoretical calculations and the

data of Thurber et al [12]. Good agreement was obtained with the data

of Thurber and Carpenter [75] where total boron density was obtained by

the nuclear track technique.

Figure 7.3 shows the resistivity of gallium- and indium-doped sili-

con as a function of total dopant density for T = 300 K. As expected,

because of the deeper ionization energy of indium as compared to gallium,

values of resistivity for gallium doped silicon are lower than values

of resistivity for indium-doped silicon at the same total dopant density.

Figure 7.3 does not show this at low dopant densities because of the

assumed values of background boron impurity densities. Excellent agree-

ment was obtained between our experimental data and that obtained from

Wolfstirn [15] for gallium-doped silicon, and our theoretical calcula-

tions at T = 300 K. Data obtained from the two indium-doped samples

showed good agreement with the theoretical calculations, but the same

was not true for the data of Schroder et al [64], and Backenstoss [16].

As seen in Figure 7.3, for each value of measured resistivity, Schroder

et al [64] report two different values of measured indium density. The
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lower value of indium density was obtained by C-V and junction breakdown

methods, while the higher value was obtained by Hall measurements and

curve fitting. Because of uncertainties in the value of the Hall scat-

tering factor, Schroder et al consider the lower value of density more

reliable. Note that our theoretical calculation falls between the two

values of dopant density reported by Schroder et al [64]. Values of

resistivity of indium-doped silicon reported by Backenstoss [163 are

about 25 percent higher than our calculated values. The work of

Backenstoss [16], however, was done in the high doping region where

dopant densities approach the limit of solid solubility. Backenstoss

found that for dopant densities greater than 4x10 17 cm"3 there was a

considerable amount of indium precipitation. Thus it is possible that

part of the discrepancy between our theoretical calculations and the data

of Backenstoss is due to the low solid solubility limit of indium in

silicon. Recent theoretical results of Sclar [14] for In-doped silicon

also agree very closely with our theoretical calculations at 300 K.

To find out the adequacy of our theoretical model for temperatures

other than 300 K, we compared the calculated and measured values of

resistivity for silicon samples doped with boron, gallium and indium

for temperatures ranging from 100 to 400 K. Figure 7.4 shows the com-

parison between the theoretical and measured resistivities for boron-

doped silicon. Except for a couple of data points, agreement between

the theoretical and measured values was within 8 percent over the entire

range of temperatures. Figures 7.5 and 7.6 show the comparison between

theoretical and measured resistivities for gallium- and indium-doped

silicon respectively. Agreement here was not as good as in the boron-

doped case, but except for a couple of data points, agreement between
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Figure 7.6. Resistivity vs temperature for the indium-doped silicon
samples.
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theory and experiment was within 10 percent. For the indium-doped

samples, the largest discrepancies occurred at low temperatures. This

is suggestive of some degree of compensation in the samples. An experi-

mental estimate of percentage of compensation was not made for any of

the silicon samples studied in this work.

7.3 Hall Mobility

Figures 7.7 through 7.12 show the experimentally determined Hall

mobility for silicon slices doped with gallium and indium. Agreement

between theory and experiment is good for temperatures above 150 K for

the gallium-doped samples. However, for temperatures of 150 K and below

some points differ from the theoretical prediction by as much as 38

percent. The measured Hall mobility of the indium-doped samples is well

within 15 percent of the calculated value except for one data point at

T = 100 K. Our control over the temperature of the samples was better

for the T 2 200 K range, but the main source of the discrepancy between

theoretical and experimental values of Hall mobility is the Hall factor.

This will be discussed in the next section. The magnetic field was

rated accurate to within 1 percent. Data points representing a Hall

mobility-dopant density pair are estimated to have a total error of

around 8 percent.

7.4 Hall Factor

The Hall factor in the case of p-type silicon, is plotted as a

function of dopant density for T = 300 K in Figure 7.13. With the ex-

ception of the points deduced from Morin and Maita's [5] data for

boron-doped silicon, agreement between the Hall factor-dopant density

data and the theoretical calculation is within 15 percent for

' . __.



94t

49

10

Galli urn-Doped Sil1icon

'A 4.25xl10 15 cm

10 3

0 0

100 150 200 250 300 350 400

Temperature (K)

Figure 7.7. Hall mobility vs temperature for gallium-doped sample.

NA 4.25xl01 cnf3
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Figure 7.8. Hall mobility vs temperature for gallium-doped sample.
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Figure 7.9. Hall mobility vs temperature for gallium-doped sample.
NA 1 .264101 cm3.
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Figure 7.10. Hall mobility vs temperature for gallium-doped sample.

N A =3.46xl01 cm.
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Figure 7.11. Hall mobility vs temperature for indium-doped sample.
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Indium-Doped Silicon

N A =6.44xl0 1 cm -

E

3
>~10

00

100 150 200 250 300 350 400

Temperature (K)

Figure 7.12. Hall mobility vs temperature for indium-doped sample.

NA =6.44x101 cm3.
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NA > 5xi01 5 cm"3. While in general, agreement between theory and

experiment in this region of dopant density is only within 15 percent,

the bulk of the experimental data is within 10 percent of the theoreti-

cal prediction. The samples used by Morin and Maita [5] showed a con-

siderable degree of compensation; in their lower-doped samples, the

compensation was as high as 20 percent. This fact may have contributed

to the low values of measured Hall mobility, and the large discrepancy

between these data points and the calculation. This model neglects the

effects of compensation, and the combined presence of acceptor impurities

of varying ionization energies. The overall effect of adding impurities

of both signs is one of increased ionization of the excess NA or ND (15].

It would be necessary to know the percentages of compensation of the

experimentally measured crystals to accurately determine the adequacy

of the theory at low dopant densities. An experimental estimate of

percentage of compensation was not made for any of the silicon samples

studied in this work. Long [38] has noted that the low measurements of

Hall mobility for p-type silicon may not be due entirely to compensation

and the quality of the crystals. For reasonably pure silicon samples

(p = 35 ohm-cm, NA = 4.4xi 015 cm"3) Long [33) obtained Hall mobilities

between 360 and 390 cm2/volt-sec. Hall mobilities as great as 450

cm2/volt-sec have also been reported (76]. While higher than the Hall

mobilities of Morin and Maita, these measurements [38,76] still indicate

a value of Hall factor for low-doped p-type silicon at 300 K less than

unity. It is still doubtful that a Hall mobility smaller than a con-

ductivity mobility at 300 K is really an intrinsic property of p-type

silicon [38]. It is possible that the Hall factor may be greater than

unity in a crystal of exceptional ly high perfection. However, calcu-
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lations involving an exact model of the valence band of silicon [77]

indicate that the anisotropy of the bands, while not important in the

interpretation of mobility and resistivity data, plays an important

role in the evaluation of the Hall factor. Our model averages out the

anisotropy of the bands and thus our values of the mass anisotropy

factor, rA, are larger than an exact model would predict. A calculation

based on the exact model, applicable over the entire range of interest

of temperatures and dopant densities, is beyond the scope of this work.

At the higher dopant densities there is fair agreement between the

theoretical prediction and values of Hall factor deduced from our

experimental work and the data of Wolfstirn [15]. Data points from

Wolfstirn's work showing ionization energies greater than 0.065 eV were

not included in Figure 7.13 because of the high degree of compensation

of these samples.

Ala



CHAPTER VIII

SUMMARY AND CONCLUSIONS

Theoretical expressions have been derived to compute the hole

mobility, resistivity and Hall factor as functions of dopant density

and temperature for silicon doped with boron, gallium and indium. The

valence band of silicon was represented by a three-band model which

takes into account the nonparabolic nature of the bands. This attri-

bute of the valence band is included in the effective mass calculations.

Contributions from scattering by acoustical and optical phonons,

ionized impurities and neutral impurities were considered in the calcu-

lation of average relaxation time. In addition, our model also takes

into account the effect of hole-hole scattering on both lattice and

ionized impurity scattering relaxation times, and the effect of inter-

band transitions on the acoustic phonon relaxation time. Thus the model

developed in this study represents a more complete theoretical descrip-

tion of the conductivity mobility, Hall mobility, Hall factor and

resistivity than previous theoretical models have acknowledged.

As stated in Chapter II, the model used for the valence band of

silicon provides values of density-of-states effective mass which lead

to values of intrinsic carrier density which are well within the limits

of experimental error. The greatest deficiency this model has over an

exact calculation is that the anisotropy of the bands has been averaged

out. Thus while the temperature dependence of effective mass derived

from the exact and approximate models of the valence band is similar,

103
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the magnitudes of the masses may be substantially different. This dif-

ference is not relevant in the study of mobility and resistivity in

p-type silicon, but becomes important in the determination of the Hall

factor. Since direct experimental verification of values of conductivity

and Hall effective masses is not possible, the only way to assess the

value of effective mass calculations is by using the theory in the

development of directly measurable properties such as resistivity and

Hall mobility.

The resistivity analysis for the boron-, gallium-, and indium-doped

silicon samples showed agreement between experimental and theoretical

results within 10 percent over the entire range of temperature,

100 . T . 400 K. Note that best agreement between theory and experiment

was obtained for boron-doped samples, followed by gallium- and indium-

doped samples. This may be due to the fact that we neglect the compen-

sation effect and the possible dependence of ionization energy on dopant

density in the theoretical calculations for gallium- and indium-doped

samples. An experimental estimate of degree of compensation was not

made for any of the silicon samples studied here. Data points repre-

senting a resistivity-dopant density pair are estimated to have a total

error of around 6 percent.

A comparison between our calculated mobility values with those of

Wagner's [8] data on boron-doped silicon at 300 K shows that agreement

is within ±6 percent for NA 3xlO 17 cm 3 . Discrepancies at higher

dopant densities can be eliminated if the effect of deionization of

boron impurities were included in Wagner's calculations [8]. Excellent

agreement was found between our theoretical calculations of mobility in

boron-doped silicon and the data of Thurber et al [12] at 300 K. We

I~ 
Ma~ *
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have obtained excellent agreement between theoretical values of resis-

tivity and our experimental data for boron-, gallium-, and indium-doped

silicon at 300 K; our theoretical calculations also agreed with the

resistivity data by Thurber et al [12] for boron-doped silicon, and

Wolfstirn [15] for gallium-doped silicon.

As shown in Chapter V, however, this theoretical model does not

have the same kind of success in describing the Hall mobility and Hall

factor for p-type silicon for low dopant densities, and low temperatures.

For dopant densities lower than 5xlO 16 cm 3 , this model predicts a value

of Hall factor much greater than has been experimentally determined

[5,15,38]. A discrepancy like this for the case of p-type germanium

was eliminated as the quality of germanium crystals improved. Thus it

has been assumed that low values of Hall mobility for low-doped p-type

germanium at T = 300 K were caused by compensation. However, compensa-

tion alone may not account for low values of Hall mobility in the case

of p-type silicon [38]. Recent studies by Nakagawa and Zukotynski [77]

indicate that the use of the exact model in the development of the Hall

factor formulation yields results which agree in general with experimen-

tal data for the case of p-type silicon. Experimental data for the

case of p-type germanium does not agree with the theoretical results

of Nakagawa and Zukotynski [77].

From this study, we have found that the theoretical expressions

derived in this work are adequate for mobility and resistivity calcula-

tions for p-type silicon in the temperature range 100 : T 5 400 K, and

the dopant density range 1014 _ NA < 1018 cm 3 . The theoretical formu-

lation is also adequate for description of the Hall factor and Hall

mobility for dopant densities above 5xO 16 cm-3 and temperatures above
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200 K. The failure of this model in predicting Hall factor and Hall

mobility at low temperatures and dopant densities is due to the omission

of the proper anisotropy formulation in the model of the valence band

of silicon. This weakness in the model would be remedied by use of the

exact model in a manner similar to that of Nakagawa and Zukotynski

[11,77].

Further improvements to this model would include the exact formu-

lation of the valence band of silicon on Kane's [27] model, as prescribed

by Nakagawa and Zukotynski [11,77]. Thus the proper nonparabolicity

and anisotropy would be included. For better comparison with experi-

mental results, the variation of ionization energy with dopant density

should be included in the calculation of hole density for the deeper

impurities. Also the effects of compensation and the presence of other

p-type impurities in silicon samples must be considered. It would also

be of great benefit to extend this study into the heavy doped region.

I..0
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APPENDIX A

FABRICATION PROCEDURES AND TEST STRUCTURES

This appendix contains a list.of the fabrication procedures

followed to generate the test structures measured in this study. These

test structures were part of NBS-4 [67) test pattern, and include a

planar four-probe collector resistor, a 100 mil square Hall effect

device, a gated base-collector diode, and a gated MOS capacitor over

collector structure.

A.1 Initial SiO 2 Masking:

A.la Initial Clean Up:

(1) Ultrasonic clean in hot DI water with small amount of

100 Tritonex solution for 10 minutes.

(2) Rinse in running DI water for 5 minutes.

(3) Place in solution of lNH4OH:1H202 :2H 20 for 20 minutes

at 50 degrees C.

(4) Rinse in DI water for 5 minutes.

(5) Dip in 10 percent HF for 10 seconds.

(6) Rinse in DI water for 5 minutes.

(7) Place in solution of 1HCI:IH 202:2H 20 for 20 minutes at

50 degrees C.

(8) Rinse in DI water for 10 minutes and spin dry in N2.

A.lb Initial Oxidation - 350 nm at 1100 degrees C

(1) Push-in 5 minutes N2 at 1000 cc/minute

107
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(2) Dry 02 5 inautes 02 at 800 cc/minute

(3) Wet 02 35 minutes 02 at 800 cc/minute

(4) Dry 02 5 minutes 02 at 800 cc/minute

(5) N2 15 minutes N2 at 1000 cc/minute

(6) Pull-out 5 minutes N2 at 1000 cc/minute

A.2 Phosphorus Base Diffusion:

A.2a Photoresist (PR) Application with Base Mask (NBS-4-lAB):

(1) Bake at 200 degrees C for 30 minutes to completely dry

the wafer.

(2) Apply Waycoat 200 negative PR (do this on both sides of

the wafer, apply and spin PR on back side first).

(3) Spin at 5000 RPM for 20 seconds.

(4) Prebake in 65-degree C oven for 20 minutes.

(5) Align wafer and mask and expose for 4 seconds under UV

light. (Both sides of the wafer must be exposed.)

(6) Develop for 20 seconds in spray of Waycoat developer

(undiluted), then clean off developer with 15-second

spray of Butyl Acetate.

(7) Dry with N2 and inspect under the microscope.

(8) Post bake at 130 degrees C for 25 minutes in N2 or air

circulating oven.

A.2b Base Window Etch:

(1) Etch in buffered HF for 2 minutes, rinse in DI water,

dry and inspect. Etch for 15 seconds more to see if

the pattern changes color.
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(2) When certain that all the oxide has been removed, place

wafer in-hot (90 degrees C) J-100 PR remover for 5

minutes.

(3) Quench/rinse in methanol for 5 minutes, then rinse with

methanol from squirt bottle.

(4) Rinse in DI water for 5 minutes.

(5) Clean up - same as above A.la except for ultrasonic

clean.

A.2c Phosphorus Base Diffusion at 875 degrees C:

(1) Push-in 5 minutes N2 at 1250 cc/minute

(2) Phosphorus 16 minutes N2 at 1250 cc/minute

02 at 100 cc/minute

d2 through source

bubbler at 10 cc/

minute

T(source) = 4 to 7

degrees C

(3) Flush-out 2 minutes 02 at 800 cc/minute

N2 at 1250 cc/minute

(4) Pull-out 5 minutes N2 at 1250 cc/minute

A.2d Removal of Phosphosilicate Glass:

(1) Dip in 10 percent HF for 5 seconds.

(2) Rinse in DI water for 5 minutes and spin dry in N2.

A.2e Drive-in Uiffusion and Base Oxide - 350 nm at 1100 degrees C,

base depth approximately 2pm:

(1) Push-in 5 minutes N2 at 1000 cc/minute

(2) Dry 02 10 minutes 02 at 800 cc/minute

'I
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(3) Wet 02 46 minutes 02 at 800 cc/minute

(4) Dry 02 10 minutes 02 at 800 cc/minute

(5) Drive-in 70 minutes N2 at 1000 cc/minute

A.3 Boron Emitter Diffusion:

A.3a PR with Emitter Mask NBS-4-2AB - Same as A.2a (front side PR

only), with the following change: Before applying Waycoat

PR, coat surface of the wafer with silazane (5 parts

Hexamethyldisilizane: 95 parts Xylene), and spin at 4000

RPM for 20 seconds.

A.3b Emitter Window Etch:

(1) Etch in buffered HF for 2.5 minutes, rinse in DI water,

dry and inspect. Etch for 15 seconds more to see if

the pattern changes color.

(2) When certain that all oxide has been removed (oxide

islands must be gone), strip PR and clean up same as

A.2b (5).

A.3c Boron Nitride Diffusion at 1050 degrees C:

(1) Load wafers facing source.

(2) Push-in 5 minutes N2 at 500 cc/minute

(3) Pre-dep 30 minutes N2 at 500 cc/minute

02 at 25 cc/minute

(4) Oxide 10 minutes 02 at 1000 cc/minute

(5) Pull-out 5 minutes N2 at 500 cc/minute

A.3d Removal of Borosilicate Glass:

(1) Dip in 10 percent HF for 10 seconds.

(2) Rinse in DI water for 5 minutes, spin dry in N2.

2' ~'.
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A.3e Boron Drive-in and Emitter Oxide, T = 925 degrees C:

(1) Push-in 5 minutes N at 1000 cc/minute
2

(2) Dry 02 5 minutes 02 at 1000 cc/minute

(3) Wet 02 65 minutes 02 at 1000 cc/minute

(4) Dry 02 5 minutes 02 at 1000 cc/minute

(5) Passivation 5 minutes N2 at 1000 cc/minute

(6) Pull-out 5 minutes

A.4 Base Contact Diffusion:

A.4a PR with Contact Diffusion Mask NBS-4-5AB - Same as A.2a (PR

on both sides - back side first). Back side must be exposed.

A.4b Base Contact Window Etcn:

(1) Etch in buffered HF for 2 minutes, 45 seconds. Rinse

dry, check for oxide removal.

(2) When all oxide has been removed strip PR and clean up

same as A.2b (5).

A.4c Phosphorus Base Contact Diffusion at 875 degrees C:

(1) Push-in 5 minutes N2 at 1250 cc/minute

(2) Pre-dep 10 minutes N2 at 1250 cc/minute

02 at 100 cc/minute

N2 through source

bubbler at 10 cc/

minute

T(source) = 4 to 7

degrees C

(3) Flush-out 2 minutes 02 at 800 cc/minute

N2 at 1250 cc/minute

(4) Pull-out 5 minutes N2 at 1250 cc/minute
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A.4d Removal of Phosphosilicate Glass:

(1) Dip in 10 percent HF for 5 seconds.

(2) Rinse in DI water for 5 minutes and spin dry in N2.

A.4e Reoxidation at 95 degrees C:

(1) Push-in 5 minutes N2 at 1000 cc/minute

(2) Dry 02 10 minutes 02 at 1000 cc/minute

(3) Wet 02 25 minutes 02 at 1000 cc/minute

(4) Dry 02 5 minutes 02 at 1000 cc/minute

(5) Passivation 5 minutes N2 at 1000 cc/minute

(6) Pull-out 5 minutes

A.5 MOS Gate Oxide:

A.5a PR with Gate Oxide Mask NBS-4-6AB - Same as A.2a (PR on front

side only, use silizane).

A.5b Etch in Buffered HF for 3 minutes, rinse, dry and check for

oxide removal.

A.5c When all oxide has been removed strip PR and clean up same as

A.2b (5).
0

A.5d Gate Oxide Growth - 12000A at 950 degrees C:

(1) Push-in 5 minutes N2 at 1000 cc/minute

(2) Dry 02 10 minutes 02 at 800 cc/minute

(3) Wet 02 40 minutes 02 at 800 cc/minute

(4) Dry 02 10 minutes 02 at 800 cc/minute

(5) Passivation 10 minutes N2 at 1000 cc/minute

(6) Pull-out 5 minutes

A.6 Contact Windows:

A.6a PR with Contact Mask NBS-4-3AB. Same as A.2a (front side

j only, use silizane).

~~aim



113

A.6b Contact Window Etch:

(1) Etch in buffered HF for 3 minutes, check for complete

removal of oxide.

(2) Strip PR and clean up same as A.2b.

A.7 Front Side Metallization:

A.7a In the alloy furnace set at 450 degrees C, 5 minutes in N 2 ;

15 minutes in forming gas, 5 minutes in N2. Gas flow = 800

cc/minute in all cases.

A.7b Evaporate 800 nm aluminum over the front surface of the wafer.

A.7c PR with Metal Mask NBS-4-4AB. Same as A.2a (front side only,

use silizane).

A.7d Etch in Al etchant of 20 H3PO4 ;5H 20:IHN heated to 50 degrees

C until the etching is complete (about 2 minutes).

A.7e Rinse in DI water for 10 minutes.

A.7f Strip PR in J-l00 and methyl as prescribed in A.2b (3 minutes

in 80 degrees C J-l00).

A.8 Back Side Contact:

A.8a Dry for 30 minutes in 200-degree C oven.

A.8b Spin PR on front side as prescribed in A.2a (no mask).

Expose to U.V. light for 4 seconds.

A.8c Hard bake at 130 degrees C for 30 minutes.

A.8d Dip in 10 percent HF until oxide has been removed from the

backside of the wafer.

A.8e Remove PR in J-l00 and methyl as prescribed in A.2b (do not

use cleaning procedure).

A.8f Scribe the wafer to separate the Hall devices.

IL .
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A.8g Evaporate 400 nm aluminum over the back side of chips.

A.9 Post Evaporation Micro Alloy. Load chips in alloy furnace at

500 degrees C for 15 minutes. N2 set for a flow rate of

approximately 100 cc/minute.



115

1i 12

t~1[~t

Figure A.]. Square array collector resistor. Pipe size 0 .4040.40 miil,
S = 2.25 mil (57.15 umn), t =4.75 mil (121 tim), NBS - 4.7
(671.
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Figure A.2. Hall effect device. NBS - 4.31 [67].
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FigreA.3 Gte bae-ollctr iod. iaete =17 il (31. Am)
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Figure A.4. Gated MOS capacitor over collector. Diameter =15 mils
(381 iam), NBS - 4.8 [671.



APPENDIX B

EXPERIMENTAL SETUP AND DATA

This appendix consists of a block diagram which shows the experi-

mental setup and equipment used, and six tables which show the data

taken on the test structures. In addition to measured values of resis-

tivity, dopant density and Hall coefficient,. Tables B-l through B-6

also contain values of calculated Hall mobility.

119
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Keithley-225 Dana-651
Current Source Current Switch
#603384 Shunt Set Box I Sample

Stratham Temperature
Test Chamber

#529950

or

HP-3465A Hel i-Tran
Digital Multimeter LT-3-11
#603184 LN2 System

#589876

Figure B.1. Experimental Set-up. For Hall effect measurements the mag-
netic field was generated by a Varian Associates 6 in.
Electromagnet System #544772. Capacitance measurements
were taken with a Princeton Applied Research-410 C-V Plot-
ter #601922 and a HP-7010A X-Y Recorder #602659.
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Table B-1. Sample SGA 16-2 (Ga-Doped Si, NA 4.25x101  cm3)

Temperature Resistivity Hall Coefficient Hall Mobility

3 2T(K) (Q-cm) R H(cm /coulomb) 11H(cm /v-sec)

100 1.700 9381 5518

120 1.185

140 1.066

150 1.063 2239 2106

160 1.097

200 1.434 1443 1006

250 2.230 1433 643

300 3.300 1263 383

350 4.410 1244 282

400 5.580
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Table B-2. Sample SGA 16-3 (Ga-Doped Si, NA 4.09x1016 cm 3)

Temperature Resistivity Hall Coefficient Hall Mobility

T(K) (P2-cm) R H(cm 3/coulomb) PH(cm 2 /v-sec)

100 0.660 2325 3523

150 0.308 413 1341

160 0.295

180 0.286

190 0.288

200 0.294 206 701

250 0.361 163 452

300 0.469 149 318

350 0.593 147 248

400 0.735
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Table B-3. Sample SGA 17-2 (Ga-Doped Si, N A = l.26x101 17 cm-3)

Temperature Resistivity Hall Coefficient Hall Mobility

T(K) (Q-cm) R H(cm 3/coulomb) JH (cm 2/v-sec)

100 0.464 1019 2196

150 0.204 199 975

180 0.176

200 0.172 88 512

220 0.175

250 0.188 65.7 349

300 0.216 57.8 268

350 0.253 52.1 206

400 0.294
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Table B-4. Sample SGA 18-2 (Ga-Doped Si, NA = 3.46xl0 17 cm-3)

AI

Temperature Resistivity Hall Coefficient Hall Mobility

T(K) (a-cm) RH (cm 3/coulomb) H (cm 2/v-sec)

100 0.550 605 1100

150 0.163 101 620

200 0.116 46.2 398

230 0.111

240 0.111

250 0.112 30.7 274

300 0.121 25.2 208

350 0.135 21.8' 161

400 0.152
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Table B-5. Sample SIN 16-2 (In-Doped Si, NA = 4.64xi0 16 cm- 3)

Temperature Resistivity Hall Coefficient Hall Mobility

T(K) (Q-cm) RH (cm
3/coulomb) 'PH (cm 2/v-sec)

100 21.150 71571 3384

150 4.73 9899 2093

200 1.840 1855 1008

250 1.131 602 532

300 0.916 307 335

350 0.877 207 236

400 0.913
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16 -3Table B-6. Sample SIN 17-I (In-Doped Si, NA = 6.44x10 cm)

Temperature Resistivity Hall Coefficient Hall Mobility

T(K) (--cm) RH(cm 3/coulomb) 1H(cm 2/v-sec)

100 25.95 58958 2272

150 4.65 7268 1563

200 1.564 1345 860

250 0.952 458 481

300 0.766 237 309

350 0.721 158 219

400 0.740



APPENDIX C

COMPUTER PROGRAM

This appendix contains the FORTRAN computer program used to

generate values of conductivity and Hall effective mass, conductivity

and Hall mobility, and Hall factor as functions of temperature and

acceptor impurity density in silicon. Besides the main program, two

subroutines are also listed. The first of these, DENSTY, calculates

the hole density by iterating the Fermi energy level in the charge

balance equation as explained in Chapter IV; the second, INTBND,

computes the coefficients (functions Lij and Tij of equations (3.7)

through (3.9)) used in the calculations of acoustic phonon scattering

based on the work of Bir et al [43].
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31 MAY 1979

'DC
20C CONDUCTIVITY EFFECTIVE MASS. HALL EFFECTIVE MASS,
30C C3NOUCTIVITY AIO31ITY9 HALL M03ILITyAND
40C HALL FACTOR AS FUNCTIONS OF TEM4PERATURE A4D
45C ACCEPTOR IMPURITY DENSITY IN SILICON
50C DOPED WITH BORON
60C
70 REAL MDlM02,M03oMONN*NAI#NA*LP41
80 REAL MI. M2.eM3.MlT.M2T.MJT.K, KO.'40.KT
90 REAL MH9MH1.MH2vMH3*MC.'4C19MC29MC3
100 REAL MOBl.MO829M083.MOB.MOBH
It0 REAL 1408Z

130 DIMENSION 'P(I0)9PCTG(5O)sT(LO)
140 DIMENSION NN(5O)eNAI(5O)9PP(S50.J4A(SO)
150 DIMENSION MDI(10)oM02(1O),MD3(LO),MD(L0)

170 F5(X)=IX-C3)**lo5*EXP(C3-X)
180 F6(X)=X**195*EXP(-X)
190 F7(X)=(X-C2)**1*5*EX5(-X)
200OC
210 DATA K9A9B9C/So62E-5s4w27#O*63.4993/
220 DATA DFLTA.M0.K0.44.-9.1O956 -31.1.38062E-23/
230 DATA H5AR.HPT/l.O5S9E-3496.6252E-3493.14159/
240 DATA EO*ES/89854185E-12.11o7/
250 DATA TAU0.WW/6*960E-109O.244/
260 DATA 0/1960219E-19/
270 D"T A THfETA M19M29 M3/735 09 0*537* 09 153,0.s234/
280C
290C READ IN TFMPEQATUZS A N:
300C DENSITY OF STATES EFFECrIVE 'ASSEs
310C READ IN THE H-H SCATTERING CORRECTION
315C FACTOR TO OPTICAL PHONON SCATTER1~4G
320 C
330 READ(5910)(T(J)e J1.10)I
340#10 FORMAT(L0F6*01
350 READ(5*111(MOICL)@L 1910)
360 READ(5.1.1)(MD2(LI.L=1910)
370 RlEAO(S.11)(MD3(L1.L=1.10)
380 READ(591I)(MD(L)'.L=.10)
390911 FORMAT( 1Q(F 7.5. 1XI
400 READ5s.12)(CROP(L)#LxI,10)
410012 FORMAT(10(F6e491X5R
420 C

430C READ IN DOPANT CONCENTRATIONS
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440C
450 READ (5*13)(NA(L)*L1,t4OJ
460813 FORMAT(5(E8*29lX))
470C
480C COMPUTt F(GAMMA)@S AND ASS('C!ATFD CONSTANTS
490C FOR TH! DETERMINATION OF FF-CTIV=E MASSES
500 C
510 8P=SORT(B**29+(C**2o/6*O)1
520 APB=A+BP
525 AMB=A-BP
S30 Gt4=C**2./(2.*BPOAMS)
540 GP=(C**2./(2.**6*AO8I1*(-Il

I'550 FOM=t.O,.05*GM4.01635*GM**.,.00908*GM**3*
560 F2MI.,.01I667*G,'M4.041369*GMO[12. ,.00090679*GM**3.,
570 1.00091959*GM***.4.0000206*iM**5.

Sao ZP;o~;gf67GP~OOO3 9  O& 7*4 OO90GPG**3 +-

600 F3M=1.-O01667*GM+0.OI7956*G"4**2.-
602 £0. 006985'7*GM**3et.001261*GM**4

V610 F3P~i..O0.1667*GP40.017956*GP**2
612 £-0.0069857*GP**3+.0O12510*GP**4
620C
630C COMPUTE SCATTERING LIFET1IME CONST44TS
640C
650 TOP11=WW*THETA/TAUO
660 TOP22=T0PI1
670 70P33=T0P11
680 TIA=O**2o/SORT(MO)I:,.690 TIB=Q**29/(49O*PI*ES*EO 3**2o
700 TIC=TIA*T18/C KOS*1 .*4.5015RI -?)
710 GA=7*539822E-5*MO/0**2.
720 GB=((ES*EO*4.O*PI)/H)*(KO**2./H)

740 TNE=1&136E-19/ES**2*
750 TNF=8.88576E6*HBAR**2.O/(MO**1.*SOSRT(KOI)
760C
770C THIS LOOP CHANGES THE TEMPERATURE
78 0C
790 00 200 JI,*8

Soo KT=K*T(J)
810 C2=DELTA/(3.*KTI
820 C3-DELTA/KT
830 C4=THETA/T(J)
840 C5=C3*C4
850 C6=C3-C4
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860 R8=(MOI(JJ/MD(J))**Z.5
670 R9=(M02(J)/140(J))**lo5

890 EG=1o205-2o8E4*T(J)

920 - bRITE (6.30)
930030 FORMA1(IHl////8X99CONOUCTIVITY A41 HALL EFFECTIVE
931 &MASSo CONDUCTIVITY AND HALL MOBIL ITY9*/SX9 *AND
940 &HALL FACTOR AS FUNCTIONS 0= DOPANT CONCENTRATION.
950 & BORON DOPED SILICON'f//)
960 WRITEt6940)T(J)
970040 FORMAT(/40X. 6T=8994eO////)
980 C
990C COMPUTE INTERBAND SCATTERING PARAMETERS
1000C
1010 Y1-MOl(J)
1020 Y2-MD2(J)
1030 CALL INTB.D(Y1Y2CI1,C22,C12,C21,CI121
1040C
10501C INTRODUCE TEMPERATURE AND MASS PARAMETERS
1060C TO THE CALCULATION OF SCATTER1'4G RELAXATION TIMES
1070C
1080 ACIIT=(C1ITAUO)*MD 1(J )**I .5*T( J)** 1.5
10g0 AC22T=(C22/TAUO)*MD21J)**I.5*r(jj**1.5
1100 AC12T=(CI2/TAUO)*MOI (J)**1.5*T(J)**1.5*1
1301 C.MD2(J)/MDl(J))**2o5
1110 AC21T2CC21/TAUO)*M02(J)**t.*r*(J)**1.s
1120 TAC33=l.0/TAUO
1130 AC33T=TAC33*T(J)**1.5
1140 POIST=19/(EXP(C4)-Io)
1150 PDISTI=PDIST*1.
1160 DPI IT=TOPI I*SQRT (T(J) ) MOL (1) **1 .5
1170 OP22T =TOP22*SORT(T(j*MD2(jJ**195
1180 0P33T=T0P33*SORT(T(J))*M3T**1o5
1190 111 T=TI C/(T(J) *PI 5*MOI (J)**O .S)
1200 T122T =TIC/(T(J)**1-5*MD2(J)**.oS
1210 T133T=TI C/(T (J)**1o5*%3T**0*5)
1220 B1T=GC*T(J)**29*MDl (J)
1230 82T= GC*T (J )**2 o*MD02(J)
1240 83T=GC*T(J)**2**M3T
1250 TNG=TNE *MO ( J) /( K0* T( J) I
12 60 TNHI=Tr.F/(sOPr(T(J))*No(J )**zos)
1270 TNH2=TNF/(SORT(T(J))*MD2(J)**1.5)J
1280 TNH3=TNF/(SORT(T(Jl)*4D3(J)**1.5)
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1290C
1300C COMPUTE SCATTERING LIFETIMES
1310C THIS LOOP ALSO CHANGES THE c')N'-E4TRATIO4
1320C1330 00 100 L=194092
1340C

1350C CALL SUBROUTINE TO CALCULATE IONIZED DOPANT DENSITIES
1360C
1370 QI=T(Ji)
1380 02=-NA(L)
1390 03=MO(J)
1400 CALL DENSTY(01020390405069079OS)
1410 NAI(L)=04
1420 PP(L)=05
1430 NN(L)=06
1440 PCTG(L)=07
1450 ETA=08
1460C
1470C COMPUTE CORRECTION FACTO:S F3R H3LE-HOLE SCATTERING
1480C
1490 IF(NA(L) *LTo 1.OE15)GO TO 44
1500 IF(NA(L) *LT. 3eO1l7)GO TO 46
1510 CRAC-Oe88
1520 GO TO 48
1530044 CRAC=I*0
1540 GO TO 48
1550046 CRAC=1O0004-(4013378E-19*%IA('..)
1560048 CRI-(NAI(L)/PP(L))*(1.-XP(-PP(L)/NAI(L)))
1570C
1580C INTRODUCE CONCENTRATIONS AND H-H SCATTERING
1581C CORRECTIONS INTO RELAXATION TIME CALCULATIONS
1600C
1610 ACI S=AC1IT/CRAC
1620 AC22S=AC22T/CQAC
1630 ACI2S-AC12T/CRAC
1640 AC2I S=AC21T/CRAC
1650 AC33S=AC33T/CRAC
1660 OPIIS=OPIIT/CROP(J)
1670 0P22S =OP22T /CROP(J)
1630 OP33S=OP33T/CRDP ( JI
1690 GI-SIT/PP(L)
1700 G2=02T/PP(L)
1710 G3=83T/PP(L)
1720 GBI=ALOG(GI1,)-G/(GIt!o)
1730 GB2=ALOG(G2 1 *)-G2/(G2+ 1.)
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1740 G83=ALOGCG341.)-G3/(G341*)
1750 TII1S=TIIIT*NAI(L)*GBI/CRI
1760 T122S -T122T *NAI(L)*G82R1
1770 T133S=T133T*NAI (L)*GB3/CRI
1780 TNITNHI*NN(L)
1790 TN12=TNH2*t4N(L)
1800 TNI 3-TNH3*NN(L)
18 bC
1820C COMPUTE AVERAGE RELAXATION TIMES BY SiMPSONOS RULE
1830C INTSGRATION. FOR BAND 2. 100 ITERATIONS TO GET TO
1832C THE @KNEEv OF THE BAND* AND 200 TO CONTINUE BEYOND
la40C THE 'KNEE4
IBsoc
1860 L IM t=0.02/ (K*T(J) I
1870 EN0=50
1880 b411100

1890 N2=200

1900 N3=300-
1910 W=LIMI/(2 *Nl)
1920 Z=(ENO-LIMt)1(2 *N2)
1930 SUMI=00
1940 SUM2O0
1950 SUM3=0.0
1960 SUM4O0.0
1970 SUM5O0
1980 SUM6O0
1990 SUMB=0.0

V2000 SUM9=00O
H2010 SUM1O=0.0

2020 SUMIIO0.0
p2030 SUM12=OoO

2040 SUMl3O0.0
2050 5UM19-0.0
2060 SUM2O=0*0
2070 SUM23=0.0
2080 TLA33 =0.0
2090 X3=090
2100 X4=000
2110 X50.0e
2120 X6=0.0
2130 T1330O
2140 V=000
2150C
2160C SET UP SIMPSON*S PULE INCREMENTS

* 2170C
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2180 DO 70 KK=loN3
2190 IF(KK *GT. NI)GO TO 101
2200 GO TO 102
22100101 XL-V2.*(KK-NI-1)*Z
2220 XPV 2.*(KK-NI)*Z
2230 XMz(XLXR)/2.
2240 WUZ
2250 GO TO 103
22605102 XL=2.(KK-1)*V2270 XRz2e*KK*W

2280 XM-(XL+XR)/2.
2290 tF(KK eEO9 NI)V=XR

23005103 IF(XL eEOe OO)XL-XM/1000,0
2310 00 65 JJ1| 3
2320 IF £JJ eEC). 1) XSXL
2330 IF (JJ *EO. 2) X=XR
2340 IF (JJ sE0. 3) X=XM
2350C
2360C ACOUSTIC PHONON SCATTERING RELAXATION TINES
2370C
2380 Xl zSORT(X )
2390 TLAII =AC IS*Xl
2400 TLAI2 =AC12S*Xi
2410 TLA22 =AC22S*XI
2420 TLA21 =AC21S*Xl
2430 TA33 =AC33S*Xl
2440 IF(XL eLT. C3)GO TO 54
2450 TLA33 =AC33S*SORT(X -C33
2460554 CONTINUE
2470C
2480C OPTICAL PHONON SCATTERING RELAXATION TIMF.S
2490C
2500 IF(XL oLT. C4)GO TO 57
2510 X3 =SGRT(X -C4)
2520057 X4 -SORT(X C4)
2530 TLO11 =OPIIS*(PDISTl*X3 .PDISr*X4 )
2540 TL33 zOP33S*(PDISTI*X3 P)IST*X4 )
2550 IF (XL sLTo C5)GO TO 58
2560 X5 =SORT(X -C5)
2570058 IF(XL *LTe C6)GO TO 59
2580 X6 =SORT(X -C6)
2590059 TL033 =OP33S*(POISTIX5 f-POISTOX6 I
2600 TL022-OP22S*(PDISTl*X3POIST*X4)
2610C
2620C IONIZED IMPURITY SCATTERING RELAXATION TIMES

6

'++ •
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2630C
2640 X8 =1.O/X 0*105
2650 TIll =TtIIS*x6
2660 T133P =T133S*XS
2670 - IFIXL *LT* C3)GO TO 63
2680 T133 =T133S/(X -C3)**1.5
2690063 T122 -T122S *XS

2710C NEUTRAL IMPURITY SCATTERING RE'AXATION TIME '
272CI
2730 X9=XZ+TNG/Xl
2740 TNI=TNII/X9
2750 TN2=TN12/X9
2760 TN3=TN13/Xg
27?70C
2780C TOTkL RELAXATION TIMES IN EACH BAND
2790C INTRABANO, SCATTERING TIMES
280C
2810 TI =Ie0/(TLAI1 4TLOI1 1IIl *TNI)
2820 T2 =1*O/(TLA22 +TL022 +T122 eTN2)
2830 T3 =1*0/(TA33 'TL33 +T133P 4TN3)
2840 TAU3 =1.O/(TLA33 +TL3.3 fT133 4TN3)
285C
2860 D z1.0-TI *T2 /(TLA12 *TL&21 I
2870 CA1 =1.0+(T2 *MDl(J))/(TLA12 *D()
le80 CR2 =L.04(TI *MD2(J)I/CTLA2t *MDt(J))

2890 TAUl =CRI *TI /0
2900 TAU2 =CR2 *T2 /D
2910 TZ1.0/R8/TAUI4R9/TAU2+R10/TAU3)
2920 GO TO (to2o3)*JJ
293091 TAUlL=TAUI
2940 TAU2L=TAU2
2950 T3L-T3
2960 TAU3L=TAU3
2970 TZL=TZ
2980 GO TO 4
299002 TAU1R=TAUI
3000 TAU2P=TAU2
3010 T3R=T3
3020 TAU3R=TAU3
3030 TZR=TZ
3040 GO TO 4
305003 TAUIM4TAUI
3060 TAU2M=TAU2
3070 T3M=T3

V7a~
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3080 TAU3M=TAU3
3090 TZM=TZ
310004 CONTINUE
3110#6S CONTINUE
3120C
3130C TOTAL LIFETIMES IN EACH BAND SQUARED
3140C
3150 TISOL=TAUIL**2oD
3160 TISOM-TAUIM**2* 0
3170 TISOR=TAUIR**2*0
3180 T2SOL-TAU2L**29O
3190 T2SOM=TAU2M**2.O
3200 T2SOR=TAU2R**2*0
3210 T33S0L-T3L**2. 0
3220 T33SQM=T3?4**290
3230 T33SOR=T3P**2*0
3240 T3SQL=TAU3L**2.0
3250 T3SQM=TAU3P4**2*0
3260 T3SOP=TAU3R**2*O
3270 TSOZL=TZL**2*O
3280 TSOIZM=TZM**2*0
3290 TSQZR-TZR**290
3300 C
3310C SUMMATIONS FOR THE INTEGRALS
3320OC
3330 SUMI=SUMj+(W/3.J*(T3L*F6(XL)4*T3M*c6(X4)4
3335 &T3R*F6( XR))
3340 SUM3=SUM3+IW/3*1*(TAU2L*F6(XL)'
3345 &4e*TAU2M*F6(XM)41AU2R*F5(XRI)
3350 SUM6=SUM64(W/3o )*( TAU L*F6(XLI +
3355 &4**TAUJM*F6(Xhl)+rAUIR*F6(XR))
3360 SUMS8SUMS+(W/3.1*(T33SOLOF6CXLJ+

3370 SUMIO=SUMI0+(WI3.)*(T2SOL*F6(XL)4
3375 &4o*T2SOM*F6(XMJ+T2SOR*F6(XR))
3380 SUM13=SUM13,(W/3.1l*(T1SQL*F6(XL),-
3385 C4o*TISOM*F6CXM)+TISOR*F6(XR))
3390 S1P19=SUM19+(W/3. )*(TZL* 6(XL)#
3395 fp4o*TZM*F6(XM)4TZR*F6(XR))
3400 SUM2O=SUM2O+(W/3. )*(TSOZL*F6(XL)+
3405 &4o*TSOZM*F6(Xm)+TSOZR*F6(XR))
3410 IF(XL *LT* C3)GO TO 66
3420 SUM2=SUM2O(W/3. )*(TAU3L*F5(XL)+
3425 C4o*TAU3M*F5(XM )OTAU3R*F5(XRI)
3430 SUM9=SUM9i(W/3e)*(T3SQL*F5CXL)+
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3435 &4.*T3SOM*F 5( XM) +T3SaR*FS(XR)
3440 SUM23=SUM23I(W/3o)*(F5( X)+4.*FS( XM)W5S(XR)
3450066 CONTINUE
3460 IF(KK *GT. NIGO TO 67
3470 - SUM4=SUM4I(W/3. )*(TAU2L*F6(XL 1+
347S 64&*TAU2M*F6(XM)4TAu2R*F6(XR)
3480 SUMII=SLIM11+(W/3.)*(T2SOL*F6(XL)+
3485 (4o*T2SOM*FS(XM)4TZSOR*F6(XR))
3490 GO TO 68
3500067 CONTINUE
3510 SUM5=SUM54(W/3*)*(TAU2L*F7(XL)+
3515 &49*TAU2M*F7(Xm)+TAU2R*F7(XR))
3520 SUM12=SUMI24(W/3.3*(T2SOi-*F7(XL)+
:3525 &4**T2SQM*F7(XM)+T2SO)R*F7(XR))
3530068 CONTINUE
3540070 CONTINUE
3550C
3560C AVERAGE LIFETIMES
35 70C
3580 SUM21=t.32934
3590 TAVI=SUM6/SUM21
3600 TAV2 =SUM3/SUM21
3610 TAV3=SUM2/SUM23
3620 TAVZ=SUM19/SUM21
3630 TSOVI=SUM13/SUM21
3640 TSOV2 =SUMIO/SUM21
3650 TSOV3=SUM9/SUM23
3660 TSOVZ=SUM2O/SUMZI
3670 TRATI=TSOVI/TAVI**2.O
3680 TPAT2=TSOV2/TAV2*0*0
3690 TRAT3=TSOV3/T4V3**2*O
3700 TRATZ=TSOVZ/TAVZ**2 o0
3710C
3720C THE INTEGRALS HAVE BEEN CALCULATCS3
3730C NOW COMPUTE THE MASS
3740C
3750 R2=SUMI/SU542
3760 R3=SUM3/((F2P*SUM4/SORT(APBJ 14
3765 £( F2M*SUMS/SQRT( AMBI I)
3770 RS=MDI (J)**1*5/(SoRT(AM8)*F3M)
3780 R6=MO3(j)**1.5*SUMBeEXP(C3)/(SORT(A)*SUM9)
3790 R7zSUMIO/(F3P*SOPT(APB)*SUMII+
3795 SF3M*SQRT(AMBI*SUM12)
3800 MCI=MD1(J)**1*5*SGPT(AMB)/FZM
3810 MC2=MD2(j)**1.5*R3
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3820 MC3=MD3( J)e*1.5*sORT(A)*EXP(C3)*p2
3630 0MHI=SORT(RSI
3840 MH2=SORT(MD2(j)S**1.*R7)
3850 MH3-SORTER6)
3860C
3870C CALCULATE MCoMH*HALL FACTOR. AND MOBILITY

3890 R1I=TAvI/IrAVZ*MCI)
V3900 1=A2(A*M)

3910 R 13=TAV3/(TAVZ*MC3)
3920 R14-TS0Vl/(TS0VZ*MH*2sO)
3930 :t15mTS0V2/(TSOVZ*MHZ*A2&O)
3940 R16=TSOV3/(TSOVZ*M-3**2oO)
3950 MC =1./((Rll*R8)*(R12*R9)4(R3*R0IO))
3960 MH =1./SQRT((RB*Pl4)4.(R9*R15)4(RIO*Rl61)
3970 MOBIUlaOE4*TAVI*O/(MC1 *MO)
3960 M0621.o0F4*TAV2 *Q/(1MC2*MO)
3990 M083=1.0E4*TAV3*O/(MC3*MO)
4000 MOBZ=1.0E4*TAVZ*O/(MC*40)
4010 4O8=R8*MOBlPg*MO92+RI O*MO83
4020 RES=1*0/(O*MOB*NAI(L))
4030 RHZ=TRATZ*(MPC/MH)**2oC
4040 MOBH=MOB*RHZ- I 4240C
4250C WPITC OUT COMPUJTED VALUES OF MOBILITY# MASS
4255C RESISTIVITY* ETC*
4260C
4270 WRITE(6.85)N4A(L).NA!(L).PP(L),NNCL).PCTG(L)
4280085 FORMAT(5X.*NA='.E1O.4.3X.*P',!1tO.4.
4285 &,3X.OPP=.oE0.i,3X.INN=',E1Oo4.3X.NAI/NA',*F6.4/)
4300 WRITEI6,92)MDI(J).MD2(J).MD3(J),MD(J)
4310092 FORMAT(5X,UMDj6,oF745XOM4)2s*o,7.4e5X,
4315 &#M03=9F745X90MO=9.F7o4/)
4330 WRITE(6o94)14C1.MC2*MC39MC
4340094 FORMAT(SX.'MCl='.FT.4.5X.*NC2='.F7.4.5X.
4350 &9MC3-=.F7e4s5X99MC-89F7.iI/)
4360 WRITE(6996)MH19MH2@MH3.MH
4370#96 ' ORMAT(5X.OMHl16.F7.4.5X.*MH2='.F7.4.5X.

4390 WRITF-(6.88)TAVI*TAV2*TAV3,TAVZ
4400088 OORMAT(5X,*TAVI=W.EIO.4.5X,@TAV2=0.EI0.4.SX.
4410 C'TAV3='.ELO.4.5X. TAV=I.E10.4/)
4420 WRITE(6.89)TSOV1.TSOV2.TSOV3.TSOVZ
4430089 FOQMAT(5X.'TS0V1='.El0.4.5X.'TSOV2='.E1Oo4.5X9
4440 I@TSOV3=',El0.4,5XOTSQV:',E10.4f)



1 38

31 MAY 1979

4450 WRITF(6o93)TRATI.TPAT?OTPAT3.TRATZ
4460893 FORAT(5K.OTRATl1.F63.5X*OTQT2=063,SX,
4470 c.TRAT3=SF6.3.5X.TRAZ=%oF6o3l)
4510 WRITE(6s86)Cll.C22wCl29C21
4520886 FORMAT(5X.CII.4F6oe5.C22goF6e3.SXOCl

2 =09

4530 lF6o3%5X#$C21='sF6o3/)
4540 WRtTE( 6998) MOB I*MOB 29Mf'P,Mf)eZ
4550898 FORf4AT(5X.'MOD1='.F5.2.5-'X. 4O82=0.F8.2.5Xo
4560 60MO83=9 F992*5Xm'MO83Z' FS*2/)
4590 dRT(,9MB~B9HE
4600099 FORMAT (5X goCOND MOB= 4 FS.Z.3X 8HALL 1408= go 8.2.3X*
4610 IGHALL FACTOR' ,F7 0 4.3X. RSSISTIVITY=9.F8.3///f#
4620C

46509200 CNIU
4660 WRK TE(693001
46700300 FORMAT(I 11)
4660 STOP
4690 END
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4790 SUBROUTINE DENSTY (O1*029039OI.05906*07908)
4700C
4710C SUBROUTINE TO CALCULATE IONIZED A4D NEUTRAL
4715C IMPURITY DENSITY
4720C,
4730C NV=EFFECTIVE DENSITY OF BAND STATES
4740C EA=DOPANT IONIZATION SNERGY
4750C NA=DOPANT IMPURITY C3NCEN4TRAT13N
4760C EG=FERGY GAP
4770C EF=FERMI ENERGY
4780C
4800 REAL NVeNA*KKToMD
4810 REAL NAINN
4820 DATA K/8*6173F-5/
4830 DATA DELTA/0s044/
4840 T=01
4850 NAZO2
4860 MD-03
4870C
4880C CALCULATE EG*NVAND EA DIVIDED BY KT
4890C
4900 EG( ((-3 .80977E-13*T +9o95402F-10)*T
4910 -- 8.701100E-7)*T **000032374110T *1.155556
4920 KT=K*T
4930 EAP=(0.0438-3.037E-8*NA**0.3333)/KT
4940 V4.82907E15*MD**3.5*T*01.5
4950 ADDO0
4960C
4970C ITERATION TO FIND A VALUE FOR wF SO THAT P=NA-
4980C IT FINDS EF FOR (P-NA-) < 0.0001
4990C
5000 EF=0*43
5010 :)O 12 LII.,1000
5020 ETA=(EF--EG)/KT
S030 P=NV*EXP(ETA)
5040 IF(ETA *GE. 1.)P=NV*.75225*((ETA**2*7)**.75)
5050 NAI=NA/(1.IC(4.42e*EXP(-OELTA/KT)))*EXP(ETA
5055 F,4EAPI)4ADO
5060 TEST=ABS(P-NAI)
5070 DIF=P/2e
5080 IF(TEST eLE. DIF) GO TO 14
5090 EF=EF+.001
5100012 CONTINUE
5110 VRITE(6913)
5120913 FORMAT(//5X*OWE FELL THROUGH LOOP 0'/)
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5130#14 EF=EP-.001 4.00005
5140 00 15 L!=19400
5150 ETA=(EF-EG)/Kt
5160 P=NV*EXP(ETA)
5170 IF(ETA .GE* 1)P=Nv*. 75225*( (ETA**2+1.7)**o75)
5180 NAI=NA/(1.4(4.42.*EXP(-DELTA/O(T))I4EXP(ETA*
5185 &SAP))4ADD
5190 TEST=ABS(P-NAII
5200 DZF=P/l0.
5210 IFITEST aLEo OtF) GO TO 30
5220 EF=EF+o0001
5230915 CONTINUE
5240 WRITE(6*20)
5250820 FORMAT(/15X*IwE FELL THROUGH LOOP 19/)
5260030 EF=EF-. 0001 +. 00001
5270 00 40 LI-19400
5280 ETA=(EF-EG)/KT
5290 *'NV*EXP(FTA)
5300 IF(FTA *GE* 1.IP=NV*.752.25*((!'T**2+1.T)**.75)I5310 NAI=NA/(1.4(4.42.*EXP(-DELTA/KTI)*EXP(ETA,
5315 CEAP) )+AkOO
5320 TEST=ABS (P-NAT)
5330 DIF=P/100*0
5340 IF(TEST oLE. DIF)GO TO 60
5350 EF=EF+0.00001
5360040 CONTINUE
5370 VRITF(6*501
5380#50 FORMAT(//5XK.'VE FELL THROUJGH LOOP 20/)
5390#60 EF-EF-*O0001+o.0000
5400 00 TO Lt11.500
5410 ETA-(EF-EG)/KT
5420 PZNV*EXP(ETA)
5430 IF(ETA *GEo l.)PsNV*.75225*((E1A**241.7)**.75)
5440 hAINA/(1.4(4o,2.*EXP(-D!LTA/KT)))*EXP(ETA+
5445 VEAP)34AVD
5450 TEST=ABS(P-NAI I
5460 DlF=P/1000.
5470 IF(TEST eLE. DIF )GO TO 90
5480 EF=EF*0. 000001
5490070 CONTINUE
5500 WRITE(6.80O)
5510180 FORMAT(//5X.'WE FELL THPOUGH LOOP 3"/)
5520990 ETA=fEF-EG)/KT
5S40C PP=NAINAt*(1.-NAI/NA)
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5550 NN=ASS(NA-NA! 4ADO)
5560 PION=(NAI-ADD) /NA
5S70 Q4:NAI
5580 05=PP
5590 06=NN
5600 07-P ION
5610 08-ETA
5620OC
5630 RETURN
5640 END
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5650OC
5710 SUBROUT INE KNTBNO (Y 19Y2 C I IC 22s C12 C 21 9Cl t21
5660C
5670C SU13QOUTINE TO CALCULATE INTSIRBAND RELAXATION TIME
5680C PARAMETFRS FOR ACOUSTICAL PHONON SCATTERING*
5690C BOTH LONGITUDINAL AND TRANSVERSE VIBRATIONS
5695C. ARE CONSIDERED
5700C
5720 qEAL L211*L1IlL2229L122*L212
S730C
5740 ETAO.92125
5750 ETAM=-ETA
5760 ETAS=ETA**2
5770 v TAM SIF TA4* * 2
5780 al-SORT(Y2/Yl)
5790 G2=Gl**29
5600 G3=Gl**3.
5810 G4=Gl**4*
5620 A=ALOG((1.+G1)/(I.-Gl))
5830 SP-( 1.+G2)
5840 BPS=(I o.G2)**2 a
5850 BMSU(I.-G2)**2o
5860C
5670 PI=(3./(e.*G2))*(I.+G2-(BMS*A)1(2,*GlI
5680 ~2= (3o/( So*G 4))(3. *G4 -2. *G 2+3. J/3.
5884 &-(BP*BMS*A)/(2o*Gt))
5690 P3=(3./(4.*G2) J*(eP*(a*G4-22.*G2+15. )/(48.*G4)-
5900 1(1.+(8PS*(5.*G4-14.*G2#5.)/(16.*G4))PA*0(2.*G1)))
5910 P4-8SMS*(1.-8P*Aj(2o*G)J/(4.*02)
5920 P5=-BMS*(3.*BP-(3.+2.*G243e*Ge)*A/(2.*GI))/(4o*G.)
5930C
5940 L211=19-ETAS-2.**TA*(1.-ETA)*P1
5945 £eETA*G2*(2.*(1.4ETA)*P1-3.*ETA*tP2)
5950 L111t(1.g*ETA)**2 o.3o*!TAS/4*
5960 L222=(t.4FTAM)**2.43o*ETAMS/49
5970 L122z1.-ETAMS-2.*ETAM*(1.-ETAM4)IIP1
5980 IETAM*G2*(2.*(lE4TA4)*P1-3.*ETA4*P2)
5990 L212=-TA(.-ETA)*P2.G2*ETA*((1 .4ETA)*P2
5995 9-39*ETA*P3)
6000C
6010 Tllt=0.75
6020 T222=0*75
6030 T 122l9o * (I o-P4) /4
6040 T211=T122
6050 T212--9@*P5/16*
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6060OC
6070 Cll=L2224G3*L122+2.09*ETAS*(T222+G3*T122J
6080 C22=L2114G3*Lllt+2.0g*FTAS*(T211
6085 &+G3*Tl11)*(Yl**1*5/Y2*S*S)
6090 Ct2sL2t2,2.09*ETAS*T212*(Y1**1.5/Y2**1eo)
6100 lC21=L212+2.O9*ETAS*T212
6110OC
6120 P7=3**GZ*P5/(I.-G2)**2e
6130 Ctl2=P?
6140C
6150 RETURN
6160 END
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