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THE MOBILITY, RESISTIVITY AND CARRIER DENSITY
IN p-TYPE SILICON DOPED WITH BORON, GALLIUM AND INDIUM

By

Luis Carlos Linares

August 1979

Chairman: Sheng-San Li
Major Department: Electrical Engineering

Using the relaxation time approximatior and a three-band model

(i.e., nonparabolic light-hole band, parabolic heavy-hole and split-off
bands), a derivation involving the use of the Boltzmann transport theory ;

was applied to obtain-expressions for the valence band density-of-states

effective mass, ms, the valence band conductivity effective mass, mé,
and the valence band Hall effective mass, mﬁ, of holes in p-type sili-
con. Values of effective mass calculated from this model reveal the
teﬁperature and dopant density dependence of the effective mass due to

the nonparabolic shape of the bands. With these values of effective

AT i 4

mass and the three-band model, theoretical calculations of hole mobil-
ity, resistivity, Hall factor and Hall mcbility were conducted for
p-type silicon doped with boron, gallium and indium for dopant densities

from 10'% to 10'8 em™3 and temperatures between 100 and 490 K. Scatter-
ing contributions from acoustical and optical phonons, and ionized and

neutral impurities were considered. In addition, interband scattering
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for the case of acoustical phonbns, the effect of hole-hole scattering
on the various scattering mechanisms, and the nonparabolicity of the
valence band were also taken into account in the calculations. The

valence band density-of-states effective mass, m5, was found to vary

from 0.6567 ms at 100 K to 0.8265 m, at 400 K, while the valence band

conductivity effective mass, mE, increased from a value of 0.3604 My

at 100 K to a value of 0.4910 m, at 400 K. The valence band Hall effec-
tive mass, my, varies from 0.2850 m, at 100 K to 0.5273 m, at 400 K.

The masses m5 and mE showed little change with dopant density, but

mﬁ varied by as much as 63 percent at 100 K over the range of dopant
densities considered. The Hall factor was expressed in terms of a mass
anisotropy factor and a scattering factor. These two components of the
Hall factor were separately evaluated to emphasize their individual
contributions to the Hall factor. Theoretical values of the Hall factor
vary between 1.73 and 0.77 over the dopant density and temperature
ranges. "

To verify our theeretical calculations, resistivity and Hall
coefficient measurements were performed on silicon samples doped with
boron, gallium and indium with dopant densities ranging from 4.25x10]5
to 9.07x10"7 cm'3, for 100 s T < 400 K, using planar square array test
structures. Agreemeht between the calculated and measured resistivity
values was within 10 percent over the range of temperatures and dopant
density studied. Agreement between our calculated and experimental
values of Hall mobilitQ w&s within 15 percent for temperatures greater
than 150 K. At 300 K, agreement between theoretical values of Hall

factor and those deduced from experimental data of this work and that

of other studies was within 15 percent for dopant densities greater

SRR




Xl

e S| Dt NS ks SARSY a Lt

K 157 i s B 0 A s Ot 055550

i i

o kiAo,

i g S ezt gpe e

than 5x10

16 cm—3

. From the results of this study, we conclude that the

the mobility and resistivity in p-type silicon.

anisotropy considerations, however, introduces considerable error in the

. theoretical model and expressions developed here can accurately describe

The omission of band

evaluation of the Hall factor for low dopant densities.
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Using the relaxation time approximation and a three-band model

(i.e., nonparabolic light-hole band, paraboiic heavy-hole and split-off

tands), a derivation involving the use of the Boltzmann transport theory
was applied to obtain expressions for the valence band density-of-states
effective mass, mB, the valence band conductivity effective mass, mE,

and the valence band Hall effective mass, mﬁ, of holes in p-type sili-
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temperature and dopant density dependence of the effective mass due to

the nonparabolic shape of the bands. With these values of effective

mass and the three-band model, theoretical calculaticns of hole mobil-

ity, resistivity, Hall factor and Hall mobility were conducted for

p-type silicon doped with boron, gallium and indium for dopant densities

14 18 c -3

from 10" " to 10 m - and temperatures between 100 and 400 K. Scatter-

ing contributions from acoustical and optical phorons, and ionized and

[ T ——————

} l con. Values of effective mass calculated from this model reveal the
] neutral impurities were considered. In addition, interband scattering .
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for the case of acoustical phonons, the effect of hole-hole scattering
on the various scattering mechanisms, and the nonparabolicity of the
| valence band were also taken into account in the calculations. The
valence band density-of-states effective mass, m5, was found to vary
from 0.6567 m at 100 K to 0.8265 m, at 400 K, while the valence band
conductivity effective mass, mE, increased from a value of 0.3604 m
at 100 K to a value of 0.4910 m, at 400 K. The valence band Hall effec-
tive mass, my, varies from 0.2850 m, at 100 K to 0.5273 m, at 400 K.

The masses ms and mE showed little change with dopant density, but

mﬁ varied by as much as 63 percent at 100 K over the range of dopant
densities considered. The Hall factor was expressed in terms of a mass
4 anisotropy factor and a scattering factor. These two components of the
Hall factor were separately evaluated to emphasize their individual
contributions to the Hall factor. Theoretical values of the Hall factor

vary between 1.73 and 0.77 over the dopant density and temperature

ranges.

To verify our theoretical calculations, resiétivify and Hall
coefficient measurements were performed on silicon samples doped with
boron, gallium and indium with dopant densities ranging from 4.25x1(').!5
to 9.07x10]7 cm'3, for 100 < T = 400 K, using planar square array test

structures. Agreement between the calculated and measured resistivity
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values was within 10 percent over the range of temperatures and dopant
density studied. Agreement between our calculated and experimental
values of Ha]l_mobilit} was within 15 percent for temperatures greater
than 150 K. At 300 K, agreement between theoretical values of Hall
factor and those deduced from experimental data of this work and tﬁat

. of other studies was within 15 percent for dopant densities greater
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than 5x10]6 cm°3. From the results of this study, we conclude that the

theoretical model and expressions developed here can accurately describe
the mobility and;resistivity in p-type silicon. The omission of band

anisotropy considerations, however, introduces considerable error in the

evaluation of the Hall factor for low dopant densities.




——

THE MOBILITY, RESISTIVITY AND CARRIER DENSITY
IN p-TYPE SILICON DOPED WITH BORON, GALLIUM AND INDIUM

By
LUIS CARLOS LINARES

A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF
THE UNIVERSITY OF FLORIDA
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

1979




TO MY FAMILY
FOR THEIR PATIENT SUPPORT




b il s

Y o
|

B e ey -

o

ACKNOWL EDGMENTS

I gratefully express my appreciation to the members of my super-
visory committee for their support and cooperation. In particular,
I thank Dr. S. S. Li for his guidance, enthusiasm and professional exam-
ple, and Dr. F. A. Lindholm for his continuing interest in the research.
A special expression of appreciation is due Dr. A. D. Sutherland for
his advice and support during the first year of my graduate work.

I am also indebted to D. Yuen for his help with measurements on
the gallium- and indium-doped samples, to M. Riley for the fabrication
and measurement of the boron samples, and to W. Axson and R. Wilfinger
for their invaluable help with various laboratory procedures.

This investigation was made possible by the Air Force Institute of
Technology. The research was jointly supported by the National Bureau

of Standards Contract No. 7-35741 and the National Science Foundation

Grant No. ENG 76-81828.

R N




ACKNOWLEDGMENTS
TABLE OF CONTENTS
LIST OF FIGURES . . . .
KEY TO SYMBOLS . . . . . . . . ..
ABSTRACT

CHAPTER
I
II

III

TABLE OF CONTENTS

ccccccccccccccccccccccc

2.1 Introduction

2.2 The Valence Band Structure of Silicon

--------

2.3 Effective Mass Formulation

2.4 Discussion . . . . . . . . 0 0. ...
MOBILITY AND SCATTERING RELAXATION TIME

3.1 Introduction

3.2 Mobility and Average Scattering Relaxation Time . . .

3.3 Acoustical Phonon Scattering

------------

3.4 Optical Phonon Scattering
3.5 Ionized Impurity Scattering . . . . . . . . .. ...
3.6 Neutral Impurity Scattering . . . . . . . . . . . ..

3.7 Effect of Hole-Hole Scattering . . . . . . . . .. .

3.8 Mobility in the Combined Valence Band . . . . . . . .




Iv

vl

VII

VIII
APPENDIX

A

]

c

HOLE DENSITY AND RESISTIVITY . . v & v v v v v v v v v u ™ 49
4.1 Introduction . . . . . .. .. it 49
4.2 lonization of Impurity Atoms . . .. .. .. ... . 49
4.3 Resistivity of p-Type Silicon . . . . . . . . . .. . 55
THE HALL FACTOR IN p-TYPE SILICON . . . . . .. . . . .. 62
5.1 Introduction . . . . . . v i i v v v v v v o v o 62
5.2 The Hall Factor . . . ... .. e 63
5.3 The Mass Anisotropy Factor . . . . .« v v v v v o . . 66
5.4 The Scattering Factor . . . . . ¢ v v v v v v v v o . 67
5.5 Hall Mobility and Hall Factor in the

Combined Valence Band . . . . ¢ ¢ v ¢ ¢« v « v v o v 72
EXPERIMENTAL PROCEDURES . . . v . v v v v v v o v v v o 78
6.1 Introduction . . . . ¢« v v v v v v v o o e b o oo . 78
6.2 Fabrication Procedure . . . . . . ¢ . v . 4 a0 ... 79
6.3 Experimental Measurements . . . v v « v o v o 4 0 . . 80
COMPARISON OF THEORETICAL AND o
EXPERIMENTAL RESULTS . . . . . . . . . . . . e e e e 84
7.1 Conductivity Mobility . . . . . .. ... ... ... 84
7.2 ReSTStIVILY v v v v v o v et e e e e e e e e e e 86
7.3 Hall Mobility « v v v v v v v v v e v v s o e e e v s 93
7.4 Hall Factor . . . . . . ... .. e e e 93
SUMMARY AND CONCLUSIONS . . . . . . v v v v v v v o v o 103
FABRICATION PROCEDURE AND TEST STRUCTURES . . . . . . « . 107
EXPERIMENTAL SETUP AND DATA . . . ¢« ¢ v v v v ¢ o o o & . 19

COMPUTER PROGRAM . . . & v & i i v i e et e e e e e e e 127




~ REFERENCES . . . . .

--------------

BIOGRAPHICAL SKETCH . & & & 4 v v v ettt e e e e e e e o s e 148




B e

i
il .

P

LIST OF FIGURES

2.1 Simplified valence band structure of silicon

2.2 Temperature dependence of the density-of-state
effective masses . . . « v v v« 4 v v v v v e e e e e e e 20

2.3 Temperature dependence of the conductivity 4
effective masses . . . . . .. .

2.4 Temperature dependence of the Hall effective masses . . . . 23

: 2.5 The acceptor density dependence of the combined
i conductivity effective mass of holes in silicon

$ as a function of temperature . . . . . . .+ ¢ ¢ ¢ ¢ e 0 . . 24
l 2.6 The acceptor density dependence of the combined Hall
! effective mass of holes in silicon as a function

of temperature . . . .« ¢ i v v b h e e e e e e e e e e 25

i 3.1 The calculated hole mobility vs dopant density for
I boron-doped silicon with temperature as a parameter . . . . 42 '
i

3.2 The calculated hole mobility vs dopant density for
gallium-doped silicon with temperature as a parameter . . . 43

3.3 The calculated nole mobility vs dopant density for
indium-dopeu silicon with temperature as a parameter . . . . 44

: 3.4 The calculated hole mobility vs temperature for
t boron-doped silicon with dopant density as a parameter .

3.5 The calculated hole mobility vs temperature for
gallium-doped silicon with dopant density as a
PATAMELEY « v v v v v e e e e e e e e e e e e e e e e e 46

3.6 The calculated hole mobility vs temperature for
indium-doped silicon with dopant density as a
parameter

vii

e o g, e O SRS TS




FIGURE ’ PAGE

4.1 Theoretical calculations of the ratio of ionized
and total boron density vs boron density with
temperature as a parameter . . . . . .. . 0. .

4.2 Theoretical calculations of the ratio of ionized
and total gallium density vs gallium density with
temperature as a parameter . . . . . . . . . . . e e e e 53

4.3 Theoretical calculations of the ratio of ionized
and total indium density vs indium density with
temperature as a parameter . . . . ., . e e e e e e e e e e 54

4.4 Theoretical calculations of resistivity vs temperature
for boron-doped silicon with dopant density as a
parameter . . . . . s e e e e i e e e e e e e e e e e e e s 56

i 4.5 Theoretical calculations of resistivity vs temperature
; for gallium-doped silicon with dopant density as a

| parameter . . . . . . e b e e e e e e e e e e -7

t

‘ 4.6 Theoretical calculations of resistivity vs temperature

| for indium-doped silicon with dopant density as a

i parameter . . . . . . . e e v e e e e s e e e e e e s 58

4.7 Theoretical calculations of resistivity vs dopant i
density for boron-doped silicon with temperature B

QS @ Parameter . . . . . i h e e e e e e e e e e e e e e e 59 i

I3

i

§

4.8 Theoretical calculations of resistivity vs dopant
density for gallium-doped silicon with temperature
AS A parameter . . . . . 4 4 4 e e e e e e e e s e e e e . 60

4.9 Theoretical calculations of resistivity vs dopant 8
density for indium-doped silicon with temperature }
35S A Parameter . . . . 4 4 e 4 e e e e e e e e e e . . 61 i

5.1 The mass anisotropy factor rj as a function of temperature
for various impurity dopant densities . . . . . . . . .. . 68

5.2 The mass anisotropy factor ra as a function of impurity
dopant density for various temperatures . . . . . . . . .. 69

5.3 The scattering factor rg as a function of temperature ‘
for boron-doped silicon with dopant density as a ¢
PAramMeter . . . . . 4 h e e e e e e e e e e e e e e e e 70

5.4 The scattering factor rg as a function of dopant
density for boron-doped silicon with temperature
as aparameter . . . . . . 4 e e e e e e e A

viii




e e

T

FIGURE
5.5

5.6

5.7

5.8

7.1
7.2
7.3
7.4
7.5
7.6

7.7

7.8

7.9

7.10

Theoretical Hall factor vs temperature for
boron-doped silicon with dopant density as
a parameter . . .. . .. e e e e e s e s e e e e e e

Theoretical Hall factor vs dopant density for
boron-doped silicon with temperature as a parameter . . ..

Theoretical Hall mobility as a function of temperature
for boron-doped silicon with dopant density as a
parameter . . . . . . et e e h e e s e e e e e e e e e e

Theoretical Hall mobility as a function of dopant
density for boron-doped silicon with temperature
as aparameter . . . . . ¢ 4 b i v e e 4 e e e .. e e e

Hole mobility vs hole density for boron-doped
siliconat 300 K . . . . . . . ¢ v v v v v v o e e e

Resistivity vs dopant density for boron-doped
silicon at 300 K . . & & v o v v i i e i e e e e e e e e e

Resistivity vs dopant density for gallium- and
indium-doped siliconat 300K . . . . . . ... ... ...

Resistivity vs temperature for the boron-doped
silicon samples . . . & v v 0 i it e i e e e e e e e e e

Resistivity vs temperature for the gallium-doped
silicon samples . . . . ¢« ¢ o 0 i i s e e e e e e e e e e e

Resistivity vs temperature for the indium-doped
silicon samples . . . . & ¢ v ¢ i i bt it e e e e e e

Hall mobility vs temperature for gallium-doped sample.

Ny = 4256101 en™ L e
Hall mobility vs temperature for gallium-doped sample.

Ny = 4.09x10"% em™3 L L. ..
Hall mobility vs temperature for gallium-doped sample.
Ny=T26x10V e L
Hall mobility vs temperature for gallium-doped sample.

Ny = 3466101 en™ L e
Hall mobility vs temperature for indium-doped sample.

Ny = 460108 en™ L e

ix

75

76

77

85

87

88

90

91

92

94

95

96

97

98




e M r e e e

e T

R Sisa Ao, e v e L

R T A I L ) A

FIGURE PAGE
7.12 Hall mobility vs temperature for indium-doped sample.
Ny = 6.48x1010 e L e C e 99
7.13 Hall factor vs dopant density for p-type silicon
at 300 K . . . . v e e e e e e . e« . . . 100
X
LISV TSR L, N t

T At e e




KEY TO SYMBOLS

é A Inverse mass band parameter |
g A Area of the base-collector diode
? a Defformation potential constant (acoustic phonon scattering)
B Inverse mass band parameter
b Defformation potential constant (optical phonon scattering)
c Inverse mass band paréﬁeter
Co Longitudinal sound velocity in silicon
Cy Transverse sound velocity in silicon §”
E Energy of holes |
e Magnitude of the electronic charge
{ EA Acceptor impurity energy level
EF Fermi energy level
Ev Valence band edge
i Ei Binding energy of neutral acceptors
g : f,  The Fermi-Dirac function
% i ‘ : FI1 Fermi-Dirac integral cf order 1/2
i g Ground state degeneracy ‘ i
% ] Plank's constant divided by 2n i
: I Current 1
J Current density
k Wave vector

Boltzmann's constant

k




P

Heavy-hole mass at 4.2 K

Light-hole mass at 4.2 K

Conductivity effective mass in the combined band'
Conductivity effective mass in band i
Density-of-state effective mass in the combined band
Density-of-state effective mass in band i
Geometric mean mass

Hall effective mass in the combined band

Hall effective mass in band i

Total acceptor impurity density

Ioniéed acceptor impurity density

Neutral impurity density

Phonon distribution function

Effective density of valence band states

Hole density in band i

Effective screening hole density

Mass anisotropy factor in band i

Hall coefficient in the combined band

The Hall factor in the combined band

Hall coefficient in band i

The Hall factor in band i

Scattering factor in band i

Probe spacing

Absolute temperature

Voltage
Hall voltage




W

Thickness of the chip
Ratio of defformation potential constants
Function of band mass parameters

Ratio of density-of-state effective masses

Hole-hole reduction factor for acoustic phonon scattering
Hole-hole reduction factor for ionized impurity scattering

Hole-hole reduction factor for optical phonon scattering

Energy of spin orbit splitting

Reduced energy (E/koT)

Variable of integration

Variable of integration

Relative dielectric constant

Limit of integration

Reduced Fermi-energy

Scaling factor

Spherical coordinate

Debye temperature

Conductivity mobility in the combined band
Conductivity mobility in band i

Hall mobility in the combined band

Limit of integration defined in Figure 2.1
Resistivity of holes

Density of silicon

Electrical conductivity

Hall conduétivity

Total scattering relaxation time

Acoustic phonon scattering relaxation time in band i

xifi

)




Ionized impurity scattering relaxation time in band i
Total interband scattering relaxation time

Total intraband scattering relaxation time

Neutral impurity scattering relaxation time in band i
Optical phonon scattering relaxation time in band i
Adjustable scattering constant

Spherical coordinate

Xiv




Abstract of Dissertation Presented to the Graduate Council
of the University of Florida in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

THE MOBILITY, RESISTIVITY AND CARRIER DENSITY
IN p-TYPE SILICON DOPED WITH BORON, GALLIUM AND INDIUM

By
Luis Carlos Linares
August 1979

Chairman: Sheng-San Li
Major Department: Electrical Engineering

Using the relaxation time approximatior and a three-band model
(i.e., nonparabelic light-hole band, parabolic heavy-hole and split-off
bands), a derivation involving the use of the Boltzmann transport theory
was applied to obtain expressions for the valence band density-of-states
effective mass, mB, the valence band conductivity effective mass, mE,
and the valence band Hall effective mass, mﬁ, of holes in p-type sili-

con. Values of effective mass calculated from this model reveal the

temperature and dopant density dependence of the effective mass due to
the nonparabolic shape of the bands. With these values of effective
mass and the three-band model, theoretical calculations of hole mobil-
ity, resistivity, Hall factor and Hall mobility were conducted for
p-type silicon doped with boron, gallium and indium for dopant densities

from 10]4 to 10]8 cm'3 and temperatures between 100 and 400 K. Scatter-
ing contributions from acoustical and optical phonons, and ionized and

- neutral impurities were considered. In addition, interband scattering

Xv




-y

for the case of acoustical phonons, the effect of hole-hole scattering

on the various scattering mechanisms, and the nonparabolicity of the
valence band were also taken into account in the calculations. The

valence band density-of-states effective mass, mB, was found to vary
from 0.6567 m, at 100 K to 0.8265 m, at 400 K, while the valence band
conductivity effective mass, mE, increased from a value of 0.3604 m
at 100 K to a value of 0.4910 m, at 400 K. The valence band Hall effec-

tive mass, mﬁ, varies from 0.2850 m_ at 100 K to 0.5273 m at 400 K.

(]
The masses mj and m# showed little change with dopant density, but
mﬁ varied by as much as 63 percent at 100 K over the range of dopant
densities considered. The Hall factor was expressed in terms of a mass
anisotropy factor and a scattering factor. These two components of the
Hall factor were separately evaluated to emphasize their individual
contributions to the Hall factor, Theoretical values of the Hall factor
vary between 1.73 and 0.77 over the dopant density and temperature
ranges. |

To verify our theoretical calculations, resistivity and Hall
coefficient measurements were performed on silicon samples dope& with
bbron, gallium and indium with dopant densities ranging from 4.25x10]5
to 9.07x10]7 cm'3, for 100 < T < 400 K, using planar square array test
structures, Agreemeﬁt between the calculated and measured resistivity
values was within 10 percent over the range of temperatures and dopant
density studied. Agreement between our calculated and experimental
values of Hall mobi]it; was within 15 percent for temperatures greater
than 150 K. At 300 K, agreement between theoretical values of Hall

factor and those deduced from experimental data of this work and that

of other studies was within 15 percent for dopant densities greater
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than 5x10]6 cm'3. From the results of this study, we conclude that the

theoretical model and expressions developed here can accurately describe
the mobility and resistivity in p-type silicon. The omission of band

anisotropy considerations, however, introduces considerable error in the

.evaluation of the Hall factor for low dopant densities.
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CHAPTER I

INTRODUCTION

'The goal of this study has been to measure and compare with theory

, the resistivity and Hall mobility of holes in silicon doped with gallium
| and indium as functions of temperature and dopant density. Data taken

/ on boron-doped silicon was also included in order to further confirm the
adequacy of the theoretical model. In order to determine theoretically

the resistivity and Hall mobility, one must first calculate the conduc-

% tivity mobility, the density of holes, and the Hall factor. This can

only be done with a thorough understanding of the energy band structure,
the scattering mechanisms involved, and the carrier statistics.

The application of an electric or a magnetic field to a crystal
results in a variety of carrier transport phenomena. These phenomena
are associated with tne motion of ¢’ rrent carriers in the conduction or

valence bands. The free charge carriers in a semiconductor will acquire

§ a drift velocity under the influence of an applied electric field. This

; velocity is tne net result of the momentum gained from the externally
applied field, and the momentum lost in collisions which tend to randomize
the carrier momentum [1]. If the field is expressed in volts per centi-
meter, and the ve]oc{EQ in centimeters per second, a mobility is defined
as the incremental aveﬁage speed per unit electric field, and is expressed

in squared centimeters per volt second. The velocity, and consequently

the mobility, is determined by the different types of collisions which

the carriers undergo. Collisions of carriers with lattice atoms which

1




are out of their equilibrium positions because of thermal vibration,
provide an upper 1imit to the mobility. Scattering of the carriers is
also caused by impurities, both ionized and neutral. At high tempera-
tures and low dopant densities, scattering by lattice phonons is moré
effective while at low temperatures and high impurity densities, scat-
tering by ionized and neutral impurities predominates. In addition,

the effects of hole-hole scattering on the lattice and ionized impurity
scattering mechanisms need to be considered. Thus in calculating the
mobility over a wide range of temperatures and dopant densities, all the
different scattering mechanisms must be taken into account. Besides the
mobility, the density of holes enters the problem of determining the
electrical resistivity. The density of holes associated with dopant
atoms is a function of the ionization energy of the dopant atom, the
temperature, and the degeneracy factor. Calculation of the Hall mobility
requires knowledge of the Hall factor which is a function of the scat-
tering mechanisms and effective masses.

For purposes of device design it is necessary to know the correct
relationship between the resistivity and dopant density at different
temperatures. Evaluation of the characteristics of semiconductor devices
and the study of transport phenomena in semiconductors requires an
accurate knowledge of variations in the effective mass, mobility, and
carrier density with changes in temperature and dopant density. Because
of this, numerous studies of mobility, resistivity, and hole density in
p-type silicon have been conducted E1-16]. However, due to the complexity
of the valence band of silicon and the various scattering mechanisms

involved, these studies, for the most part, have either been conducted

in temperature and dopant density ranges designed to explore only a
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particular type of scattering mechanism, or have not advanced the theory
necessary to describe the experimental result. For example, Costato and
Reggiani [4] calculated the mobility of holes for pure p-type silicon in
which lattice scattering dominates; Braggins [1] considered nonparaboli-
city and all the relevant scattering mechanisms with the exception of
hole-hole scattering, but he Timited his investigation to dopant densities

16 cm'3 and low temperatures; Morin and Maita [5] considered

below 5x10
wide ranges of temperature and dopant densities, but did not provide a
theoretical examination of the data. Recently, Li [17] developed a
theoretical model capable of describing the mobility and resistivity of
p-type silicon over a wide range of temperatures and dopant densities.
This improved model was applied to the case of boron-doped silicon with
great success [17]. The improvement in the theory consisted mainly of
the inclusion of hole-hole scattering effects, and consideration of the
nonparabolic nature of the bands. In this study, Li's model [17] has
been improved by including consideration of interband scattering effects
on the acoustic phonon scattering mechanism, and has been applied to the
study of silicon doped with impurities other than boron.

With some exceptions [14-16], most of the research in p-type silicon
has been conducted with boron as the doping impurity, since boron is the
shallowest acceptor in silicon and this material is widely available.

A very limited amount of data is available on silicon doped with deeper
impurities such as gallium and indium. These dopants, especially indium,
are of great interest to modern technology because of their application
to photo-detector devices. Curves of resistivity and mobility as func-
tions of dopant density [2,3] have been applied to characterizing

boron-doped starting material and diffused boron layers in silicon, and

AR e




have been found highly useful. Similar curves developed in this research

may be expected to be equaily useful for characterizing and integrating
infrared detectors based on the deeper levels of indium and gallium with
on-chip silicon electronics. Application of a more complete theory of
mobility and resistivity [17] to the case of silicon doped with gallium
and indium should provide an accurate description of the transport of
holes in this material. These results may be of significant use in the
study and design of infrared photo-detector devices.

In this research the mobility, resistivity, and hole density have
been studied over a temperature range from 100 to 400 K and dopant
densities from 4.25x10]5 to 9.05x10]7 cm'3. Because of the complexity
brought about by heavy doping effects and uncertainties in accounting
for hole density and impurity density at high dopant densities, the
theoretical analysis has been restricted to densities below ]018 cm'3 in
which the use of Boltzmann statistics is justified. The nonparabolic
nature of the valence band structure, and derivation of expressions for
the temperature dependent effective masses are presented in Chapter II.
Since effective mass is directly related to the shape of the valence
bands, the result is an effective mass which varies with temperature and
dopant density. The mobility formulation includes consideration of the
relevant scattering mechanisms and how these are modified by hole-hole
scattering effects. These scattering mechanisms are considered in detail
in Chapter III. Since the ®ifferent scattering mechanisms which contri-
bute to the mobility have different temperature and energy dependences,

the use of numerical methods and curve fitting has been applied in

analyzing the data. The temperature and dopant density dependence of

resistivity and hole density is analyzed in Chapter IV. In Chapter V,




the Hall factor is discussed, and theoretical calculations of Hall
mobility are presented. Fabrication techniques and experimental proce-
dures are described in Chapter VI. Comparisons of experimental results
with predictions based on the theory of Chapters III through V are made
in Chapter VII; in this chapter the theoretical results are also compared
with data published by other workers. Chapter VIII summarizes the

research and states the main conclusions derived from this work.
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CHAPTER 11
BAND STRUCTURE AND EFFECTIVE MASS

2.1 Introduction

The interpretation of transport properties in silicon and the model-
ing of silicon junction devices depend on an accurate knowledge of values
of effective mass. The complex valence band structure of silicon leads
to difficulties in the study of transport properties of holes in this
material. Thus the development of a model incorporating the nonparabolic
nature of the band into a single parameter, the combined hole effective
mass, would greatly simplify the study of mobility, resistivity, and the
Hall effect in silicon. Including the band nonparabolicity in calcula-
tions of relaxation time via the effective mass formulation is a reason-
able procedure and has been applied effectively by Radcliffe [18] to
study acoustic phonon scattering, and by Barrie [19] to study optical
phonon and impurity scattering in nonparabolic bands. In fhis chapter
we will derive such a theoretical model for hole effective mass calcula-
tions in silicon.

Lax and Mavroides [20] have derived expressions for density-of-states
effective masses M3 and m52 for the heavy-hole band and the light-hole
band, respectively, which lead to the generally accepted and quoted
value, mﬁ = 0.591 my- This value, however, can only be considered
applicable at 4.2 K, where mf = 0,537 LN and my = 0.153 M. A number
of experimental data has been published which indicates both electron

and hole effective mass to be dependent both on temperature and dopant
6 s )
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density [21,22]. Below 50 K, hole affective mass remains constant as
indicated in high frequency magnetoconductivity experiments [23].
However, at higher temperatures and for higher acceptor impurity densi-
ties, two mechanisms are responsible for the temperature dependence of
the effective mass: the thermal expansion of the lattice, and the
explicit effect of temperature. The effect of the thermal expansion
can be estimated from the stress dependence of the effective mass [24],
and has been shown to be negligible [21,25]. The explicit temperature
effect however, is of great importance. It consists of three parts:
(a) the temperature variation of the Fermi distribution function in a
nonparabolic band, (b) the temperature dependent distribution function
of the split-off band, and (c) the temperature variation of the curva-
ture at the band extremum due to the interaction between holes and
lattice phonons.

Following the work of Lax and Mavroides [20], but using Fermi-Dirac
statistics and a simplified model of the valence band structure for
silicon, Barber [25] obtained an expression for the density-of-states
effective mass, mB, which is temperature and hole-density dependent.
Barber, however, did not apply the nonparabolic model of the valence
band to the study of conductivity or Hall effective mass in p-type
silicon. Costato and Reggiani [26] also developed expressions for mB
and m%*, the band conductivity effective mass, which show a variation
with tempefature, but they neglected the effects of the split-off band
and the temperature variation of the band curvature.

In this study, the expressions fo; density-of-states effective mass,
conductivity effective mass, and Hall effective mass of holes are derived

based on the following definitions. The density-of-states effective
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mass, mﬁ, enters in the normalization of the distribution function; the
conductivity effective mass, mE, is the mass of a mobile charge carrier
under the influence of an external electric field; and the Hall effec-
tive mass, mﬁ, is the mass of a mobile charge carrier under the applica-
tion of external electric and magnetic fields. The reason for these
particular definitions of effective masses is that the primary applica-
tion of this work is to generate improved theoretical calculations of
Hall mobility, resistivity, and conductivity mobility [17]. The

derived expressions were used to calculate hole effective masses in
p-type silicon over a wide range of temperature and dopant density.
Since the crystal structure of silicon has cubic symmetry, the ohmic
mobility and the low-field Hall coefficient are isotropic. An angular
average of the effective masses may be performed taking into account
separately the warping of the individual bands so that expressions for
mB, mE, and mﬁ of isotropic form can be derived. Values calculated from
these expressions differ from one another because of the warping and
nonparabolicity, and consequently effective mass in each band depends on
temperature and dopant density in its own way. The valence band struc-
ture of silicon is presented in Section 2.2, and in Section 2.3 expres-

sions for mB, m%, and mﬁ are derived.

2.2 The Valence Band Structure of Silicon

Theoretical calculations by Kane [27] have established some basic
features of the valence band of silicon. It consists of heavy-hole and
light-hole bands, degenerate at k = 0, and a third band displaced down
in energy at k = 0 by spin orbit coupling.

The heavy~hole band is characterized by holes with an energy inde-

pendent, but direction-dependent effective mass. The light-hole band
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is characterized by holes with an energy and direction-dependent effec-
tive mass. These two bands can be described by the E vs k relationship
(28]

)
2

2.2 2 2
+ 122 + )] } (2.1)

2
E(k) = 5::‘—{ a? + 1a%k4 + 2k :

2
0 Xy

where A, B, and C are the experimentally determined inverse mass band

2 2 2.
parameters, k = (kX + ky + kz)

» and the upper sign is associated with
the holes in the light-hole band, while the lower sign is associated
with the holes in the heavy-hole band. Values of A, B, and C are
obtained by cyclotron resonance measurements at 4 K [22,29].

Although warped, the bands are parabolic for small values of k.
However, for larger values of k, the bands become nonparabolic, and along
the <100> and <111> directions the heavy- and light-hole bands are
parallel over most of the Brillouin zone. This situation, however, is
not strictly valid for general directions [30]. The assumption of
overall parallelism, while gqyestionable in III-V compounds, is reasonable
in the case of Ge and Si [27,31]. The split-off band is separated at
k = 0 by an energy & = 0.044 eV. [32], and is characterized by an effec-
tive mass which is independent of energy and direction. If the
anisotropy is small, the squére root in equation (2.1) may be expanded
[20] and the energy surfaces may be expressed by

722

t = EV - 7@— (A £ B")j(8,0)

where
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B' = (82 + c%/5)" (2.3)

8 and ¢ are the spherical coordinates, Ev is the top of the valence

band, and

j(8,9) =1 + %—Y[sin4e(cos4¢ + sin4¢) + cos4e - 2/3] (2.4)
with

Y = 5 C¥/28' (A + B') (2.5)

Following the work of Barber [25], we have used the simplified
model of the band structure illustrated in Figure 2.1. In this model
the heavy-hole band is considered parabolic and thus the mass m? is a
constant, equal to its value at 4.2 K. For energies within 0.02 eV
the light-hole band is considered parabolic with a constant slope
corresponding to the value of.mE at 4.2 K. For higher energies the
light-hole band is assumed to take on approximately the same slope as
that of the heavy-hole band, bdt remains separated from the heavy-hole
band by A/3 eV {27]. The extrapolation of these two constant slopes
creates the kink in the light-hule band at 0.02 eV. Because of the
change in slope, the light-hole band has an energy-varying effective
mass and in general can only be described in terms of partial Fermi-
Dirac integrals [25]. Although the split-off band is parabolically
distributed, the apparent effective mass at the top of the valence band
is a function of temperature due to the energy displacement at k = 0.
Theoretical and exverimental studies [33,34] have shown that at high
temperatures the heavy-hole band is not parabolic and thus m? is not

energy and temperature independent. However, within the range of
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temperatures considered here, the assumption of parabolicity for the
heavy-hole band based on Kane's model [27] is reasonable. Other studies

[35,36] support the validity of this model for the valence band of

silicon.

2.3 Effective Mass Formulation

In the case of spherically symmetric energy surfaces all of the
carriers respond in the same way to a given set of applied forces. The
effective mass then acts as a scalar and thus has the same value for
the Hall effect, conductivity, and density of states. For nonspherical
energy surfaces, however, this is not the case. The mixed response of
carriers to a set of applied forces is reflected in differences between
the different kinds of effective masses. The density-of-states effective

mass, msi, is defined from the relationship

4 ZﬂkonSi 3/2
where
o S%ds
F]/Z(n) ) £ T + exp(e-n) (2.7)

€ = (EV - E)/koT, n = (EV - EF)/kOT, ko is the Boltzmann constant, E is l

the top of the valence band, and i = 1, 2, 3 refers to the heavy-hole,

light-hole, and split-off bands, respectively.
4

The electric current density in the presence of electric and magnetic

fields can be expressed by [20]

Jj = ojkEk + OJklEng. + oijmEk HQIHm + ...
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where Eps HQ, Hm are the electrical and magnetic field components and
the o¢'s represent single-energy-surface conductivity coefficients. “The
first coefficient in equation (2.8) is the zero-magnetic field electri-

cal conductivity, and the second coefficient is associated with the

~nondirectional Hall effect. In the limit of weak fields the expansion

can be limited to the first two terms. We use the electrical conduc-

tivity coefficient, ocs to define the conductivity effective mass mEi,

by the relationship

2
<T,>
e 'I'.l

Op: = Oqq; = Ps —— (2.9)
Ci 11i i méi

and the Hall effect coefficient, Iy to define the Hall mobility effec-

tive mass by means of [37]

Sl

Oys = Oyna: = Py ——> (2.10)
Hi 1231 i 2
(mts)

To solve for mﬁi’ mEi, and mﬁi,.equations (2.6), (2.9) and (2.10) are

equated to the following expressions for Py °jk’ and djkz:
py = —5 f £, (K)a%k @2.11)
4n 0
2 of :
e o 9E JE 3
g, = = [ d7k (2.12)
jk 4ﬂ3712 §E akj akk

3 af

odE 3E 3 ,_ 3E

e 3
Ospg = g [ 1 (x 28y ¢ ok (2.13)
jke PRk AL F]4 akj akp akq 3k, “2pq

daa




where fo is the Fermi-Uirac distribution function and ¢ is the permu-

2pq
tation tensor. Since equations (2.11) through (2.13) do not assume an
effective mass, they are valid both for parabolic and nonparabolic band
structures. These equations are then evaluated for the model described
in Section 2.2.

This procedure yields single msi, méi, and mﬁi for an equivalent
model which is isotropic and parabolic. These values, in general, will
be temperature and carrier-concentration dependent. Although equations
(2.6) and (2.11) through (2.]3) are expressed in terms of Fermi-Dirac
statistics to stress their generality, conductivity and Hall effective
masses were derived using Boltzmann statistics to simplify the form of
the equation. To obtain values of mEi and mﬁi we aiso require a proce-
dure for evaluating <t.> and <r§> in equations (2.9) and (2.10). This

will be discussed in Chapter III. The following sections present the

expressions for the effective masses in the individual bands.

2.3.1 The Heavy-Hole Band

In this band, the effective masses are given by

. Mo [f(-y)1%/3
D1 A-B!

3
n

m* = mo f('Y)
¢ (A-BY) f,(-v)

and

1.
m*. = " f(-y) :
H1 — (A-B") | fo(-y)
where y is defined in equation (2.5). In these equations

£(y) = (1 + 0.05y + 0.01635v> + 0.000908y° + ...)
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£10y) = (1 +0.01667y + 0.041369y% + 0.00090679y°
+ 0.00091959v* + ...)
and
f,(¥) = (1 - 0.01667y + 0.017956y% - G.0069857y°

+0.0012610v% + ...)
Since the heavy-hole band was assumed parabolic, the integrals containing

T in equations (2.9) and (2.10) are identical to those in equations (2.12)

and (2.13), and cancel out.

2.3.2 The Lignt-Hole Band

In the 1ight-hole band, as modeled by Figure 2.1, the effective

masses of holes are obtained in terms of partial Fermi-Dirac integrals

[25]. Thus
3/2 gk T
(mx )32 - am, l ) % e,
D2 Jr l (A+Bl)3/2 o _eTp—(_eT
f('Y)n] @ E}fdﬁ]

(2.17)
(A-g')3/2 {/kOT exp(eq)




2m0 @ T2£3/2d€

x = 9
mC2 i £ exp(e) X

f(+Y) fg/koT e Hde + Fvi, fm e?ds]
(A+B')3/2 A exp(e) (A-B')3/2 L/k,T exp(e]S
: 3/2, N 3/2
f] (+Y) ft’/kOT TZL df- . f] ("Y )ﬂ-l f Tze] df:-l
(a+8*) /% % exple) (a2 gt (e |
(2.18)
g/k T .
(re8) 2y 01) [0 1% Pexp(e)de +
0
(172 ” 3/2 :
(A-B') / f2(-Y)n] é/k ; TZZE] / exp(-e])dc]
0
mE, = m
H2 0 - .
2 jw 3/ 24¢ £(+Y) jg/koT £2de N
o exp(c) [(A+B')3/2 o exp(e)
f(-Y)n] ® e]%ds] 4
(A-8")%/% £/k T e"P(El)J} (2.19)
"o

where €, = € - A/3k0T, L =& -8/3; 0y = exp(-A/3koT) and A and ¢ are
defined in Figure 2.1.

In this case because equations (2.11) through (2.13) were
expressed in terms of partial Fermi-Dirac integrals and equations (2.6),
(2.9) and (2.10) were expressqd in terms of complete Fermi-Dirac
integrals, the dependence on t does not cancel out. Thus the nonpara-
bolicity of the light-hole band introduces a dependence on the scatter-
ing relaxation time. The scattering relaxation time is discussed in

Chapter III.
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2.3.3 The Split-0Off Band

Although the split-off band is parabolic, the apparent effective
mass in this band will also exhibit a temperature dependence due to the
energy displacement at k = 0. The energy of a hole in the third band
is given by

2,2
E=E -2K a_4 (2.20)

where A is the split-off energy (= 0.044eV), and A is one of the inverse
mass band parameters. Substituting equation (2.20) into equations
(2.11) through (2.13), and then equating to equations (2.6), (2.9) and
(2.10) for the split-off band, we obtain

m

24
m3 = R exp (- _3koT) (2.21)
o f 13”3/2exp(-e)dc
mk, = 2 2 (2.22)
£ 38, exp(-ez)de2
© Y
0 i 13253/2exp(-c)de
o o
ms = 2 % (2.23)

where €)= € - A/koT.
The combined hole density-of-state effective mass can be determined

by assuming that the total number of holes 1in the valence band is equal

to the sum of the holes in the individual bands
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P=P; * Py *Pg (2.24)
thus

mt = [(m51)3/2 + (m52)3/2 + (m53)3/2]2/3 (2.25)

This combined effective mass is the mass corresponding to the density-
of-states of an effective single equivalent parabolic valence band.
This concept is useful in calculations where the effective density-of-
states at different temperatures can be calculated from one mB.

The explicit temperature variation of the band curvature is included
by assuming that the density-of-states near the band edges varies in a
similar manner as the temperature dependence of the energy gap [25].

Thus (mﬁ)3/2

is porportional to EGo/EG where EGo is the energy gap at 0 K.
To evaluate the total band equivalent conductivity and Hall effec-
tive masses, we assume that in valence band conduction, the total number
of holes in motion is equal to the sum of the holes moving on the
separate energy surfaces, and that these holes can be modeled as moving

on a single spherical energy surface. Thus, the ohmic and the Hall

conductivities in the equivalent valence band are given by

O¢ = 0¢y * 9 t 93 (2.26)
and

Oq = %41 * p * 3 (2.27)
respectively.
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Substituting equations (2.9) and (2.10) into equations (2.26) and
(2.27) it follows that

o { Nt {m6113/2 1 . <Ty> m62]3/2 1 . <13> [m53)3/2 1 -1
¢l mg) gy o Amy) mE, T mg 3
(2.28)
and
2

e { <1y ™ m61)3/2 1 . <TH > (m62]3/2 1 . <tz m53]3/2 ] -4

H <12> mﬁ J m¥* 2 <15 (mB J m¥ 2 > mﬁ J m* 2

H1 T H2  <T H3

(2.29)

Equations (2.25), (2.28) and (2.29) were evaluated numerically as func-
tions of temperature and acceptor doping density for p-type silicon.
Values of the band parameters, |A| = 4.27, |B] = 0.63 and |C| = 4.93,

were determined at 4.2 K by Hensel and Feher [22] and Balslev and

Lewaetz [29]. In order to simplify the calculations and maintain
tractability, anisotropies in the relaxation time were ignored. A rig-
orous analysis of the conductivities for nonisotropic scattering would
be extremely difficult to carry out because no relaxation time is
expected to exist in the usual sense [38].

Figure 2.2 shows the dependence of m* with temperature in the range

D
from 100 to 400 K. The slight temperature dependence due to the expli-

cit temperature variation of the curvature at the edge of the band

g results in an effective mass increase of about five percent in each

band at 400 K. This can be seen in the slope of mﬁ]. The temperature
dependence of m63 is more pronounced since here we also have the

effects of energy displacement at k = 0. The temperature dependence due

to nonparabolicity is very apparent in the shape of the m52 curve.




20

s e s M

0.90 g
0.80 }
0.70
AO
= 0.60 j
i G il |
1 w
| wn
[1°]
i =
! o 0.50F
>
| -
O
i : %
) m F
| " 0.40
¥ 8
ﬁ 2
1 .
S  0.30F
>
@
[y
[}
S o0.20}f
0.10b 53
1
0.00 1 1 | 1 L 1
100 150 200 250 300 350 400

Temperature (K)

Figure 2.2. Temperature dependence of the density-of-state effective
masses ms], maz and m63, in the individual bands, and the

combined density-of-states mass mﬁ of holes in silicon.

_1n14 . -3
NA =10 cm 7.




21

The temperature dependence of the conductivity effective mass and
the Hall effective mass is shown in Figures 2.3 and 2.4, with the dopant
density equal to ]014 cm'3. One consequence of the nonparabolicity of
the light-hole band is an increase in the valence band conductivity
effective mass as temperature increases from 100 to 400 K. This happens
because with increasing thermal energy kOT, more holes reside in the less
parabolic regions of tihe light-hole band. The results plotted in Figure
2.3 show an increase in mé of about 36 percent in this temperature range.
The temperature dependence of mﬁ can be attributed mainly to the non-
parabolicity of the light-hole band. In the temperature range from 100
to 400 K, mﬁ increases from 0.2850 to 0.5273 L The slight temperature
dependence of mE] and mﬁ] is due to the explicit temperature effect and
results in increases of 7.7 percent and 3.76 percent in the mE] and mﬁ]
respectively. A larger temperature variation occurs in the case of the
split-off band because of the additional effects of the energy displace-
ment at k = 0.

Figures 2.5 and 2.6 show the variation of mE and mﬁ with dopant
density and temperature. For T 2 100 K, mE varies less than 10 percent

14 to 1018 cm'3. Since the influence

in the dopant density range from 10
of nonparabolicity is reduced in degenerate material [25], it follows
as shown in Figures 2.5 and 2.6 that the variation of effective mass
with temperature is much stronger at low dopant densities. At lower
temperatures there is a much greater change in effective mass due to

variations in scattering relaxation time with percentage of ionized

impurities.
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2.4 Discussion

The idea of temperature-dependent effective mass i1s supported by
a number of experimental data. Cardona et al [21] found an increase of
about 12 percent in optical effective mass between 90 and 300 K in
heavily-doped p-type silicon. Cyclotron-resonance studies conducted by
Hensel and Feher [22] show that when carrier heating populates deeper
regions of the light-hole band, the nonparabolic nature of this band at
higher values of k results in an increase in the effective mass of holes.

The model used here in the calculation of hole density-of-states
effective mass is identical to that of Barber [25], and consequently
our results for mﬁi and m5 are in excellent agreement with those of
Barber [25]. We have extended Barber's work to the calculations of m¥
and mﬁ in p-type silicon. The increase of mé by 36 percent at 400 K
shown in Figure 2.3 is much larger than that reported by Costato and
Reggiani (9 percent) [26]. Their calculation was done over a similar
range of temperatures, and their value at 100 K, mC=O.342 Mys is some-
what lower than our calculated Qalue (.3604 mo). The discrepancies
between our results and those of Costato and Reggiani are due mainly to
the correction of mB for the explicit temperature dependence of the
energy gap, the inclusion of the split-off band, and the consideration
of unequal relaxation times in the three bands. Note that our calcula-
tions of effective masses were achieved through more rigorous mathe-
matical derivations, while those of Costato and Reggiani followed a
more empirical curve-fitting type of procedure.

The experimental values of density-of-states effective masses of
holes in p-type silicon have been published by numerous authors [21,22,

39,40], but very little data can be found for the conductivity and the
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Hall effective masses, making it difficult to properly assess the value
of our calculations. There seems to be no obvious way to measure these
quantities from d.c. transport measurements. Magneto-kerr effect
measurements conducted by Hauge [41], indicate that mE could increase
by as much as 31 percent in the range of temperatures from 100 (Mg =
0.510 Mo) to 300 K. This is in reasonable agreement with our calculated
percentage increase in mE in the same temperature range (33 percent),
but it is impossible to compare our calculations with Hauge's experi-
mental results, because our effective mass definition was chosen to be
mainly applicable to the study of the Hall and conductivity mobility in
the low field limit, and this may not apply to the measurements of
Hauge [41].

From the results of this chapter it can be seen that the approxima-
tion of a constant effective mass seems to be inadequate to describe
transport properties of holes in silicon above 100 K. There is a sub-
stantial increase in the effective mass of holes from 100 to 400 K due
to the nonparabolicity of the light-hole band, and a smaller, though not
negligible, contribution due to the explicit temperature dependence and
the effects of the split-off band. The validity of this model for the
calculation of density-of-states effective mass has been well established
[25]. Barber [25] has shown that when the temperature-dependent effec-
tive masses are substituted into the theoretical expression for intrinsic
carrier density in silicon, the agreement with reported measurements of
n; is within the limits of experimental error. Application of this
model to theoretical calculation of mobility and resistivity in p-type
silicon [17] has provided excellent agreement between theoretical and

and experimental values (resistivity with =6 percent) over a temperature
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range from 100 to 400 K and dopant density range from 10]4 to

3x10]8 cm'3. This calculation is limited to applications in conduc-

tivity mobility and low field Hall effect.
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CHAPTER 111
MOBILITY AND SCATTERING RELAXATION TIME

3.1 Introduction

The study of transport phenomena in semiconductors requires an
accurate knowledge of variations in the conductivity mobility and the
resistivity with changes in temperature and dopant density. The resis-
tivity is an easily-measured parameter, but the conductivity mobility
is a more difficult parameter to evaluate. In general, four different
kinds of mobility enter into common discussion [42]. The microscopic
mobility is the actual velocity per unit electric field of a free
carrier in a crystal. This cannot be measured directly. The conduc-
tivity mobility is the mobility associated with the conductivity
expression, ¢ = €phc. This mobility involves an average relaxation
time <t> dependent on the nature of the scattering process, and in the
case of nonspherical equal energy surfaces, this mobility also involves
a combined effective mass. The Hall mobility is the product of the
measured conductivity and the measured Hall coefficient. In general,
the Hall mobility differs from the conductivity mobility by a factor
called the Hall factor. The drift mobility is the velocity or drift
per unit field for a carrier moving in an electric field. If trapping
centers are present, so that the actual drift process is not simply
motion through the conduction band, but involves a series of trapping
and untrapping processes, the drift mobility can be much less than the

conductivity mobility. The four mobilities are all equal only when the
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following three conditions are met [42]: (a) spherical equal energy
surfaces with extremum at k = 0, (b) relaxation time independent of
carrier energy, and (c) negligible trapping effects. Since conditions
(a) and (b) are not met in p-type silicon, it is improper to judge the
behaviour of one kind of mobility based on knowledge of a different
kind of mobility. Thus drift or Hall mobility data cannot be tacitly
assumed to be accurate substitutes for conductivity mobility values.

As mentioned above, the conductivity mobility involves an average
scattering relaxation time. In any semiconductor, the charge carriers
(i.e., holes and electrons), at temperatures above absolute zero, may
be scattered by a number of mechanisms. Different mechanisms are
dominant in certain temperature and dopant density regimes, but in some
cases two or more may be interacting simultaneousiy. Thus in calculat-
ing the conductivity mobility over a wide range of temperatures and
dopant densities, all the relevant scattering mechanisms must be taken
into account. In the case of silicon, acoustic and optical phonon
scattering, and ionized and neutral impurity scattering are of major
importance. Hole-hole scattering also plays an important role in deter-
mining the mobility. In the following sections the theoretical effects

of these scattering mechanisms on the mobility will be considered.

3.2 Mobility and Average Scattering Relaxation Time

The calculation of mobility of holes in the valence band of silicon
is accomplished by evaluating the mobility separately in the heavy-hole
band, the light-hole band, and the split-off band considering all
appropriate scattering mechanisms. The overall mobility is then
evaluated as a weighted average of the single-band mobilities over the

individual hole densities in each band.
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The conductivity mobility in each of the three valence bands is

calculated from

Hei T Tmx (3.1)

where -

af
/ 53/211 [3—&—0—] de
<Ty> = (3.2)

of
/ e3/2 [—-—0-] de

ot

for the case of Fermi-Dirac statistics, and T represents the total
scattering relaxation time in band i. Recause each scattering mechanism
has its own dependence on scattering energy, a simple closed form
expression for total scattering relaxation time as a function of temper-
ature cannot be obtained. The use of numerical techniques is necessary
to solve for the relaxation time. In the case of p-type silicon, the
peculiarities of a degénerate, warped, and nonparabolic valence band
must be taken into account [1]. .The possibility of interband as well as
intraband transitions must also be taken into account in the analysis.
With the inclusion of interband scattering as given by Bir et al. [43],

the total relaxation time in the heavy- (i = 1) and light-holes (i = 2)

bands is given by
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and
_ -1 -1 -1 -5 -1
Wi T [Taci Yo YTt (3.5)
The total relaxation time in the spiit-off band is given by
- -1 -1 -1 =11 -1
37 [Tacs *Toz Tz T (3.6)

Only transitions between the light- and heavy-hole band are con-
sidered; the relaxation time Tji takes into account a transition from

band i to band j; and 1. ., T ., Tiqe and Ty; are the relaxation times

aci’ ‘oi i

corresponding to scattering by acoustical phonons_  optical phonons,
jonized impurities, and neutral impurities respectively, with i as the
band index. The procedure for including the nonparabolicity of the
band structure into calculations of relaxation time, consists of
modifying the relaxation time for a given scattering process by replac-
ing the temperature independent effective mass of the parabolic band by
the temperature dependent effective mass of the nonparabolic band.

This procedure has been successfully applied to the study of acoustic
phonon scattering in nonparabolic bands by Radcliffe [18]. Optical
phonon and ionized impurity scattering in nonparabolic bands have been
considered by Barrie [19] in the same manner. Braggins [1] has used
the same method to include nonparabolicity in his study of p-type sili-
con. In this work, the relaxation times appropriate to degenerate,
parabolic valence bands have been used and modified according to the

prescription of Radcliffe [18], Barrie [19], and Braggins [1]. The
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anisotropy of the energy spectrum is not considered in this model,
because from the transport theory for parabolic bands it is known that
this anisotropy has no influence on the temperature dependence of
mobility, but only on its absolute value [10]. Each of the four

scattering mechanisms will now be discussed.

3.3 Acoustical Phonon Scattering

The relaxation time for scattering by acoustical phonons includes
both the possibility of interband as well as intraband scattering. The
treatment of the acoustical phonons has been based on the theory of
Bir, Normantas, and Pikus [43] where the relaxation times can be
expressed in terms of a single constant, Tys which controls the overall
magnitude of the scattering. Both transverse and longitudinal phonons

participate in the scattering so that

S T L),y 3 (),
X 1 i 1

O o

and

L .2 (2) 3 (1) 3/2.1/2
C_ZBITZZ +Y1.J. T22 ]}T 3 (3.8)




for intraband scattering, while

] 5 1 '“5‘3/2 (2)
- - - - = ‘
Yi  Yii o T Vi T x“{ Lij +
¢ ¢ 2 (2)
2 3/2 1/2
—zct 8 [Tij J } 1%/¢%¢ (3.9)

for interband scattering. In the split-off band, the scattering relaxa-

tion time is given by

X /2-nﬁ4pSC2£

3 1/2
-1 .1 [ A) 3/2
T =—le-= T (3.10)
‘ac3 T, koT
| In these equations
L} : k03/2a2m03/2
! - (3.11)

Yij = mﬁi/msj, B = b/a, a and b are valence band acoustic deformation
potential constants in the Picus and Bir [44] notation, Py is the
density, Cz and Ct are the longitudinal and transverse sound velocities

in silicon and Li and Tij are functions of 8 and Yij defined in [43].

J

3.4 Optical Phonon Scattering

Optical phonon scattering, while negligible at very low tempera-
tures, cannot be ignored at high temperatures. Ehrenreich and
Overiiauser [45] have calculated the mobility of holes in silicon and its
dependence on temperature, The calculated mobility follows a T'z'3

dependence for reasonavie choices of the parameters which described the

e
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mixing of optical and acousticai phonon scattering. This agrees with
experimental results [5,8]. The relaxation time for scattering by

nonpolar optical phonons is given by [46]

o w0172 [ (nanyfe - V2,
Toi ° T D o °T
6py1/2 o
no[e + T—] } 1= 92’3 (3.]2)

where 8, is the Debye temperature, n, = (exp(eD/T)-l)'] is the phonon
distribution function, and W is a constant which determines the rela-
tive coupling strength of the holes to the optical phonon mode compared
to the acoustical phonon mode
p %%, 2
N=._°___2‘_.
2

2. 2
2ko a SD

(3.13)

where Do2 is the optical deformation potential constant. The first term
in the brackets of equation (3.]?) corresponds to optical phonon emmis-
sion and is relevant only when this is energetically possible (e>eo/T).

The second term in the brackets corresponds to optical phonon absorption.

3.5 Ionized Impurity Scattering

The Columbic interaction between ioniéed impurities and charge
carriers driftfng through the cyrstal under the action of an applied
electric field causes scattering of the charge carriers. Scattering by
ionized impurities was first considered by Conwell and Weisskopf [47].

The basic assumption is that the Coulomb field is cut off at half the

e % s Vi oyt R PRyt P N
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distance between charged impurities. This is equivalent to assuming "
that a charge carrier see§ only one charged impurity at a time, the
effect of the other charged impurities being sufficiently screened as
to be negligible. This approach was improved by Brooks [48] and
Herring [49] who associated the cut-off of the Coulomb potential with
a screening distance, the free carriers being assumed to provide

screening against the charge of the impurities. In the low dopant

density limit, the scattering relaxation time due to ionized impurities

is given by [48,49]

4"
ne N,G{(b;)
ST " T eV, ie1.2,3 (3.14)
(szi) € (koT)
where
_ 1
G(bi) = ln(biﬂ) - m (3.15)
and
24n mﬁies(koT)2
bi = 77 (3.16)
e h®p

where p' is the screening carrier density, p' = p + Ny(1 - N./N,), for
A A" A

= 0.

3.6 Neutral Impurity Scattering

Scattering by neutral impurities in semiconductors has been con-
sidered by Erginsoy [50] as a variation of the problem of the scattering

of electrons by neutral hydogen atoms. The result is a temperature

independent relaxation time given by




Eﬂz ff
- S 20 .
Tus = —7 === N, i=1,2,3 (3.]7)
Ni m&e ™ N
where Ny is the density of neutral impurities and mg is the geometric
mean mass appropriate for evaluating the scaled Bohr radius term [48].
Sclar [51,52] has included the possibility of bound states in the
evaluation of electron-hydrogen impurity scattering by using a three-

dimensional square well to estimate the influence of a weakly-bound

state on the scattering. In this case the relaxation time is given by

. } (3.18)
] i = 1,2,3 3.18
koT e]/z

_ 23/21t’ﬁZNN
‘t -
Ni 1/2 , 3/2
(koT) mai

e1/2 +

2

mX ce
=1.136x 107192 [EP'] (3.19)
o S

B
is the binding energy of neutral acceptors.

For silicon doped with shallow impurities, this type of scattering
is important at low temperatures where neutral impurities may odtnumber
ibnized impurities. For the deeper levels, where neutral impurities can
exist at higher temperatures, the influence of neutral impurity scatter-

ing can extend over a wide range of temperatures.

3.7 Effect of Hole-Hole Scattering

The expressions thus far presented for scattering relaxation time
neglect the effect of hole-hole scattering. Although hole-hole scatter-
ing does not affect the current density directly since it cannot alter

the total momentum, it tends to randomnize the way in which this total
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"momentum is distributed among holes of different energies. When the

scattering mechanism is 'such as to lead to a nqnuniform distribution, -
hole-hole scattering gives rise to a net transfer of momentum from

holes which dissipate momentum less efficiently to those which dissipate
momentum more efficiently, resulting in an overall greater rate of
momentum transfer, and lower mobility [53]. Thus the size of the effect
of hole-hole scattering on the scattering relaxation time is a function
of the energy dependence of the relaxation time. The hole-hole reduc-
tion factor, Yhh’ can be derived by means of a classical formulation
introduced by Keyes [54]. When hole-hole collisions are much more
frequent than hole-acceptor collisions, the average relaxation time for
a parabolic band in the Keyes [54] approximation approaches the

limiting form

af
[ e
<Tpp> = (3.20)

of
/ 32,71 [352] de

where fo is the Fermi-Dirac distribution function. On the other hand,
if hole-hole collisions are neglected, the average relaxation time is
given by equation (3.2).

Thus the hole-hole reduction factor (i.e., the ratio of <Thn> to

<1>) can be expressed as

: of of -1
/ s3lzrl322Jde x [ 63/2T-][§Eg]d€
. : (3.21)
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<<t > -

Yha =

for optical phonon scattering, and Yhho’ the hole-hole reduction factor,
is evaluated from equation (3.21).

For acoustical phonon scattering it is assumed that Yhha decreases
lineariy with increasing dopant density from a value of one to a value

Yhha = 9n/32 = 0.88 [17] in a certain range of impurity concentration.

-19 15
NA, 10' < NA <

3 s ]0]7) is determined empirically with a best fit of the experimental

The exact relationship (yhha = 1.0004 - 4.013378 x 10

data.

Lubng and Shaw [55] using a one-particle-like approximation from
the Hartree-Fock theory, have shown that by inclusion of hole-hole
scattering, the Brooks-Herring [48,49] formula is reduced by a factor

which can be expressed in closed form as

([ - el

>

where NA is the ionized acceptor density and p' is the screening hole
density. In the case of neutral impurity scattering, hole-hole scat-
tering has no significance because Ty is independent of hole energy.
Thus the overal scattering relaxation time in each hole band is
calculated from equations (3.3), (3.5), and (3.6) with the terms of
these equations properly.correcﬁed for the effects of hole-hole scatter-
ing. Because the individual energy surfaces are different from each
other, the relaxation times also differ from each other and cannot be

assumed equal except in restricted ranges of temperature and dopant

density [43].
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3.8 Mobility in the Combined Valence Band

The conductivity mobility in each individual band is calculated
from equation (3.1), and the combined conductivity mobility in the
valance band is then evaluated as a weighted average of the single-band
mobilities over the population of holes in each band, thus
m&1y3/2 . ms s 3/2 M5y 3/2

Il mal

e © “1[mT mE mE

i e mﬁ (3.23)

Using equation (3.23) and the parameters listed in Table 3-1, we
have calculated the hole mobility for silicon doped with boron, gallium,
and indium as functions of dopant density and temperature, for

14 ]8cm-3

1077 < NA < 10 and 100 < T < 400 K. The results are displayed in
Figures 3.1 through 3.6. In the calculations of mobility and resistivity
in silicon doped with gallium and indium, it was assumed that boron
impurities were also present. Since very pure silicon has a resistivity
on the order of 1000Q-cm, it was assumed that boron densities of 1013
and 5x10]3cm-3 existed in the gallium- and indium-doped samples,
respectively. The values of these background densities were deduced
from a best fit of the experimental data. For this reasoh, especially
in the case of indium-doped silicon, the actual role of the impurities
at low temperatures and/or low dopant densities is masked by the action y
of the always present boron impurities. As the dopant density and é
temperature increase, the assumed background densities of boron

impurities become insignificant compared to the density of ionized dopant

atoms, and Figures 3.1 through 3.6 accurately depict the influence of

the particular type of impurity on the resistivity and mobility of holes

in p-type silicon. The figures also show that for the case of the
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Table 3-1. Values used in the calculations.

Parameter Value Unit

A 44.0 meV

a -6.4% eV

b -1.36% eV

¢,2/c 2.00*

8p 735 K

o 2.329 x 10° kg/m°

€ 11.7 €

Ty 6.96 x 10']0 sec K3/2

W 0.244

m, 9.1 x 1073 kg

-34 .

h 6.25 x 10 Jjoule-sec

K, 1.38 x 10723 joules/K

e 1.6 x 10717 coul

* These values were obtained from references [1] and [22].
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Figure 3.4. The calculated hole mobility vs temperature for boron-doped
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shallower ionization energies, the mobility depends more strongly on
temperature for the lightly~-doped case where lattice scattering is
dominant and become less temperature dependent as the dopant density
increases.

The constant, Ty» Was found by fitting the mobility to experimental
data in the lattice-scattering-Timited range. OQur value of Ty is
equivalent to an acoustic deformation potential constant of 8.099 eV.
The optical phonon coupling constant, W, was then found by fitting the
mobility to the high temperature experimental data. Our value of W is

8

equivalent to an optical deformation potential constant of 6.024x10° eV/

cm.
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CHAPTER 1V
HOLE DENSITY AND RESISTIVITY

4.1 Introduction
The resistivity of semiconductor materials is one of their most ?

useful and easily measured properties. Theoretical calculations of

Lo

resistivity depend on the formulation of conductivity mobility, and the
determination of hole density. For extrinsic semiconductors, the hole
density is determined primarily by the percentage of ionization of

impurity atoms. The following sections discuss the dependence of hole

density and resistivity on temperature and dopant density. %

4.2 JIonization of Impurity Atoms

For the case of Fermi-Dirac statistics, the hole density is given i

by

—9 01 F () (a.1)

where, mﬁ, the density-of-states effective mass, contains information
pertaining to the nonparabolic nature of the valence band. In the limit

of low dopant densities, equation (4.1) reduces to

A~}
[l

= Nvexp(n) (4.2)

2)3/2

where Nv 2(2 ms koT/h is the effective density of valence band

states. For the range of temperatures considered in this study, the

49
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hole density is calculated by assuming that the density of carriers is
determined by the impurities present in the silicon sample. The density

of ionized acceptor impurities in p-type silicon is computed from the

charge neutrality equation

h - Ny=p-n ” (4.3)

p =Ny (4.4)

for the case of uncompensated material.
The density of ijonized acceptors is [56]
- A
A™"F
1+g exp[ T )

where E, is the acceptor jonization energy, and g is the ground state
degeneracy. Excited states have a very minor influence on the carrier

concentration due to the large separation between the ground state and q

the excited states [1,56]. Letting

g=4+2 exp[- EATJ (4.6)
0
enables us to include the contribution of the split-off band [17]. The
density of ionized acceptors is computed by iterating EF in equations
(4.2) and (4.5) until equation (4.4) is fulfilled within a given level

of accuracy.




the ionization energy decreases and finally disappears altogether for
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Experimental evidence shows that the acceptor ionization energy EA éf
is not a constant, but decreases with increasing dopant density [5].
Penin et al. [57] have determined in a study of heavily doped silicon é‘
from 4_to 300 K that for shallow impurities such as boron and phosphorus
impurity densities greater than 3x]0]8 cm'3. For impurities with deeper
activation energies, it is also expected that at some impurity concen-
tration, the impurity activation energy should become a function cf the
impurity concentration. However, in the case of gallium and indium,
this should happen at higher impurity concentrations than for the
shallower level impurities. This is due to the smaller geometrical
dimensions of the wave functions applicable to the deeper levels, so
that overlapping effects which promote the reduction in activation energy
require higher impurity concentrations [14]}. For shallow impurities
such as boron and phosphorus, empirical expressions [9,57] relating the

dependence of ionization energy to dopant density have been established.

In the case of Ga, there is data [15] on activation energy vs concentra-

tion, but not enough on which to base an accurate relationship. For

- this reason the value of EA = 0.056eV was used. For In, EA = 0.156eV

[58] was used. Figures 4.1 through 4.3 show the ratio of ionized and
total impurity density as a function of impurity density with tempera- f
ture as a parameter for 100 < T < 400 K for silicon doped with boron,
gallium, and indium. It is clearly shown in these figures that the

ifonization of impurities for the deeper levels is significantly lower

even at low dopant densities so that it is necessary to go to higher
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temperatures to achieve total ionization of impurities. The deioniza-
tion of impurities is most significant for low temperatures and high

impurity densities.

4.3 Resistivity of p-Type Silicon

The'resistivity of p-type silicon is given by

p = ._]___ (4'7)

where e is the hole conductivity mobility calculated from equation
(3.23) and p is the hole density discussed in Section 4.2. Equation
(4.7) was used to calculate the hole resistivity for silicon doped with
boron, gallium, and indium as a function of dopant density and tempera-
ture, for ]0]4 < NA < 1018 cm'3 and 100 < T < 400 K. The results are
displayed in Figures 4.4 through 4.9. In the calculations of resistiv-
ity in silicon doped with gallium and indium, as was done for conductiv-
ity mobility, it was assumed that boron impurities were also present.'

13 and 5x10]3 cm'3 were assumed to exist in the

Boron densities of 10
gallium- and indium-doped samples, respectively. The values of these
background densities were deduced from a best fit of the experimental
data. As the dopant density and temperatura increase, the assumed
background densities of shallow impurities becomes insignificant
compared to the density of ionized dopant atoms, and Figures 4.4 through
4.9 accurately depict the influence of the particular type of impurity
on the resistivity of holes in p-type silicon. The figures also show

that for the case of the shallower ionization energies, resistivity

depends more strongly on temperature for the lightly doped case where

“lattice scattering is dominant and becoine less temperature dependent

as the dopant density increases.

i
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Figure 4.4. Theoretical calculations of resistivity vs temperature for
boron-doped silicon with dopant density as a parameter.
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Figure 4.5. Theoretical calculations of resistivity vs temperature for

gallium-doped silicon with dopant density as a parameter.
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Figure 4.7. Theoretical calculations of resistivity vs dopant density
for boron-doped silicon with temperature as a parameter.
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Figure 4.8. Theoretical calculations of resistivity vs dopant density
for gallium-doped silicon with temperature as a parameter.
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Theoretical calculations of resistivity vs dopant density

for indium-doped silicon with temperature as a parameter.
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CHAPTER V
THE HALL FACTOR IN p-TYPE SILICON

5.1 Introduction

The most direct determination of the mobility is by the Haynes-

Schokley drift method, wherein the drift of charge carriers in a known
electric field is measured. However, the assumption, made when these
experiments were initiated, that the drift mobility of holes as minority
carriers in an n-type sample is the same as when they constitute the
majority carriers, is invalid in view of carrier-carrier scattering ?
! [59]. Also the experiment can succeed only if the lifetime of the

‘f minority carriers is larger than the transit time. For this reason,
usually Hall mobilities are measured instead. The Hall mobility is the
product of the measured conductivity and the measured Hall coefficient.
; In general the Hall mobility differs from the conductivity mobility by

a factor called the Hall factor. Determination of the Hall factor may

be avoided by making use of the high field 1imit. For sufficiently

high magnetic fields several simplifications occur in the magnetic field

dependence of the Hall coefficient. In the high-field 1imit (when the

e

product of mobility and magnetic induction becomes greater than 108 cm'2

gauss/volt-sec [60]) the Hall coefficient is simply related to the

carrier concentration by [61]

Ry = o5 (5.1)
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and thus the conductivity mobility and the Hall mobility are equal.
Although the high field limit simplifies use of the Hall mobility con-

ekl e -

siderably, excessively high magnetic fields can cause problems due to
the quantization of the hole orbits in a magnetic field [1]. The
quantization of the particle motion in a magnetic field will create
Landau levels within the band. The Landau levels will modify the den-
sity of states in the valence band which could affect the interpreta-
tion of experimental data [56]. Another high magnetic field effect of
importance is the "magnetic freeze out" which occurs with the stronger
localization of bound state wave-functions in a strong magnetic field
[62]. Due to the more localized charge distribution, the Coulomb
binding energy of the impurity state is increased so that at a fixed

temperature the concentration of thermally excited charge carriers will ]

be smaller and the Hall coefficient will be effectively increased.

Thus, in order to avoid these high field region complications and

obtain an experimental determination of the value of conductivity
mobility in the low field Timit, it is necessary to have an accurate
knowledge of the Hall factor with which to modify measured Hall
mobilities. Hall measurements are routinely used to experimentally
determine the density of ionized impurities in a semiconductor sample.
This determination is possible only if an accurate value of the Hall
factor for the particular temperature and dopant density considered is

available.

5.2 The Hall Factor

The Hall and conductivity mobilities are related by the Hall factor

as follows:




ry = (5.2)

For nondegenerate, spherically symmetric bands, it can be shown that

[59] ry 2 1, and that

5 !
<T >

r, = (5.3) :

i ?

In general most previous work [5,59] has assumed that equation 4

(5.3) is valid in the case of p-type silicon and thus ry will vary

between 1.18 (t(E) « gm1/2

3/2

for lattice scattering) and 1.93 (t(E) «
E for ionized impurity scattering), if hole-hole scattering is

neglected, and will approach unity for the degenerate case. This theory
does not allow for values of ™y less than one. Experimental evidence 5

indicating values of ry less than one has been attributed to poor

quality of the measured samples [5]. Debye and Kohane [63] found that b

the measured drift mobility for holes is considerably larger than the
measured Hall mobility. Values of g" less than unity were also reported
by Wolfstirn [15] for the case of gallium-doped silicon. More recent
experiments [64] show that a value of ry less than unity is necessary
to reconcile differences between the hole concentration measured via
Hall coefficient methods and that inferred from dopant densities
determined from C-V and junction breakdown measurements. The usual
assumption made is to let W be equal to one and thus consider the Hall
mobility equal to the conductivity mobility. Neglecting the Hall
scattering factor alters both the magnitude and temperature dependence
of the carrier concentration from that given by the charge balance

equation. In fitting data to the charge balance equation, both thermal

T P g e mwRON S T - .ﬂ
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carrier concentration and dopant impurity activation energy are over-
estimated by the assumption of unity Hall factor. A more complete
theoretical treatment of the Hall factor can be undertaken by consider-
ing the nonparabolic and anisotropic nature of the valence band of
silicon.

Chapter II described the constant energy surfaces as warped spheres.
Warping of the energy surfaces has a significant effect on the ratio of
Hall to conductivity mobility. When the bands are warped, the Hall
factor depends on the degree of warping as well as the scattering

mechanism [30].

The Hall mobility is the product of the ohmic conductivity and the

Hall coefficient

(5.4)

In the low field limit the Hall coefficient for a nonparabolic,

anisotropic band i is given by [37]

(5.5)

Thus by substituting equations (2.9) and (2.10) into equation (5.5) the

Hall coefficient can be expressed as

!

iy g (TR S PO, THL + L e BT T PN AT, T R WS e 3




s MO i hara

——y

66
9
1
m*., 2 <r.2>
i T [—El] [-—21 } (5.7)
i) r,>

is the Hall factor. We see that allowing for a difference between the

values of conductivity and Hall effective masses due to the anisotropic,
nonparabolic nature of the band, enables us to separate the Hall factor

into two components: the mass anisotropy factor given by

"ai T [“C‘I‘] (5.8)

oo
re; = 5 (5.9)

These components of the Hall factor will be considered in detail in the

next two sections.

5.3 The Mass Anisotropy Factor

Lax and Mavroides [20] have derived expressions for ra based on the
Dresselhaus et al [28] model of the valence band of germanium and sili-
con. Their formulation for ra acknowledges the anisotropy, but neglects
the nonparabolicity of the bands. In general it is found that A is less
than unity unless the scattering anisotropy becomes extreme [30]. In
order to determine the variation of the mass anisotropy factor with
changes in temperature and dopant density for the combined valence band
of silicon, equation (5.8) was evaluated using the values of combined

valence band effective mass obtained from equations (2.28) and (2.29).
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The results of this calculation are presented in Figures 5.1 and 5.2.
These figures show the significant contribution of the mass anisotropy
factor to the Hall factor. Since the influence of nonparabolicity is
reduced in degenerate material [25], it follows as shown in Figures 5.1
and 5.2, that the variation of . with temperature is much stronger at
low dopant densities, since it is in this dopant density range that the
variation of effective mass with temperature is the strongest. We note
that the mass anisotropy factor is less than unity for all temperatures
considered in this work once the dopant density increases past

15 -3

6x10°" cm At 300 K, ra is less than unity even for dopant densities

as low as 10]4 cm'3.

5.4 The Scattering Factor

The scattering factor, res depicted in Figures 5.3 and 5.4 as a
function of temperature and dopant density, does not follow the tradi-
tionally expected variation between 3n/8 = 1.18 and 315n/512 = 1.93 as
the dominant scattering mechanism changes from lattice to ionized
impurity scattering. Putley [65] has noted that hole-hole scattering
can modify re- He estimates that for ionized impurity scattering, rs
can be reduced from 3157/512 to a value close to unity. At low dopant
densities where the dominant scattering mechanism is acoustic phonon
scattering, re varies between 1.08 for T = 100, to 1.24 for T = 400 K.

The deviation from the traditionally expected value of r. = 1.18 is due

S
to the contributions of optical phonon modes at the higher temperatures.
Hole-hole collisions also affect the impurity and optical phonon scat-
tering contributions so they become significant even at low temperatures
and dopant densities. At higher values of dopant density, the effects

of hole-hole scattering on the ionized impurity scattering mechanism
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Figure 5.1. The mass anisotropy factor rp as a function of temperature
for various impurity dopant densities.
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Figure 5.3. The scattering factor re as a function of temperature for
boron-doped silicon with dopant density as a parameter.
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become very noticeable. At NA = 10]8 cm'3, the highest value of ry is
1.29 for T = 100 K, where the dopant impurities are only about 30 per-
cent ionized [17]. At higher temperatures where the percentage of
jonized impurity atoms is over 80 percent, the effects of hole-hole
scattering bring re from its traditionally expected value of 1.93 to

1.05 for T = 400 K.

5.5 Hall Mobility and Hall Factor in the Combined Valence Band

Expressions for Hall coefficient, applicable in the case where
holes in more than one band take place in conduction, are given by
Putley [66]. For the case of p-type silicon, assuming no compensation
and operation in the Tow field region, the Hall coefficient is given

by [66]

(5.10)

By substituting equations (2.9) and (5.6) through (5.10) into equation
(5.4), the Hall mobility in the combined valence band of silicon can

be expressed by

3/2<T.2>
1

= mgiz

By = ¢© 372

m5

*
M54

[[Ranar KOS ]

(5.11)

<T.>
1

%

1 ™

ne-1w
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The conductivity mobility for the combined valence band can be expressed

by - -
b = Di s } 5.12
o e i

Then using equations (5.11) and (5.12) we can express the Hall factor in
terms of the scattering relocation times and effective masses of the

individual bands by

3/2
3 mk,
3/2 D1 2

5 L e )

) Hi
L — m5'3/2 ” 4 (5.13)

Z 1 <r>}
,{ 51 Mm@

Figures 5.5 and 5.6 summarize the results of equation (5.13) as a
function of temperature and dopant density. These figures show that the
Hall factor ranges theoretically between 1.73 and 0.77 for temperatures

14 18 -3

between 100 and 400 K and dopant densities between 10 " and 10~ cm ~.

For temperatures above 200 K, rH.becomes less than unity for dopant
densities greater than 5.5x1015 cm-3. Figures 5.7 and 5.8 show the
theoretically predicted Hall mobility as functions of temperature and
dopant density. These two figures show the results of evaluating equa-
tion (5.11) with the aid of numerical integration, and adjusting the

lattice scattering mobility to give the best fit to values of conduc-

tivity mobility deduced from resistivity measurements.

[
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Theoretical Hall factor vs temperature for boron-doped

silicon with dopant density as a parameter.
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Figure 5.7. Theoretical Hall mobility as a function of temperature for

boron-doped silicon with dopant density as a parameter.
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CHAPTER VI
EXPERIMENTAL PROCEDURES

6.1 Introduction

Experimental measurements of resistivity, Hall coefficient and
dopant density were made on six silicon wafers, four doped with gallium,
and two doped with indium, in dopant densities ranging from 4.25x10]5 to
3.46x10]7 cm'3. These wafers were cut from crystals grown along the
<111> and <100> direction. Additional data were obtained from boron-
doped silicon wafers to further verify the adequacy of the theory. The
data were obtained from test patterns NBS-4 [67] fabricated on the
silicon wafers. This test pattern was desigﬁed at the National Bureau
of Standards primarily for use in the evaluation of the resistivity
versus dopant density relation in silicon. Resistivity measurements
were made on four-probe square array resistors and collector Hall effect
resistors, while the net dopant density in the specimens was determined
by the junction C-V method on a gated base-collector diode. Mean values
of resistivity, dopant density and Hall coefficient were determined by
measuring five to eight selected test cells with a standard deviation

in resistivity at 300 K under five percent. The following sections

describe the test sample preparation and fabrication procedure, and the

measurement procedures.
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6.2 Fabrication Procedure

The overall pattern-is fabricated on a square silicon chip 200 mils
on a side where six mask levels are used [68]. The masks were used in
the following sequence: base, emitter, base contact, gate oxide, contact
and metal. Appropriate cleaning procedures (see Appendix A) precede the
diffusion of impurities, and a negative photoresist process was used in
the masking steps. The base maék delineates regions whose conductivity
type is opposite from that of the collector substrate, and the emitter
mask delineates regions whose conductivity type is the same as that of
the collector substrate. A base region approximately two um deep is
diffused into the background material; then the emitter region is dif-
fused into the base to a depth of approximately one um. The base con-
tact mask is used to open windows ohto the base region, where an nt
diffusion is made to jmprove ohmic contact to the base. The gate oxide
mésk delineates regions where an oxide layer of closeiy controlled
thickness is grown to serve as a gate for MOS devices. After front-side
metallization, a portion of the wafer was.separated. This section was
scribed to provide the Hall effect devices. fhe remainder of the wafer
was then metallized on the backside and alloyed. After scribing, the
devices were mounted on TO-5 headers, metal contact bonding was made,
and the devices were encapsulated. A layer of ceramic insulating mate-
rial was used to isolate tne devices from contact with the header.

Resistivity measurements were then made to select devices for use in

this study.




6.3 Experimental Measurements

The structures used to evaluate the resistivity of the bulk mate-
rial are the Hall effect resistor and the collector four-probe resistor
(68].  The four-probe resistor has four point contacts arranged in a
. square array. The structure (see Appendix A) is fabricated by diffusing
a base over a large area except at the four point contacts which are
protected from the base diffusion by oxide islands. Emitters are dif-
fused at these points in order to make low resistance contacts to the
collector material. The purpose of the base diffusion is to eliminate
surface currents. The bulk resistivity is determined by forcing a
current, I, between two adjacent probes and measuring the voltage, V,
between the other two probes. The resistivity of the material is deter-

mined from [69]

= ._._21§!__ ‘ (6.])
(2-v2)1C"

where S is the probe spacing and C' is a correction factor dependent on
the ratio of probe spacing to the thickness of the chip [70]. This

correction factor is given by

- 2 2.-1/2
4 n 4n"w
C'=1+— (-1)" {1+ -
2-v2 nzl [ 52 ]
27 ° n 'anwz -1/2
22 5 o fhs ---—] (6.2)
2-/7 nzl [ s2

where w is the thickness of the chip.

The collector Hall effect resistor is a four-terminal resistor

formed in a square chip 10C mils on a side. Contacts are formed on the
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four corners by an emitter diffusion (see Appendix A). The resistivity

is calculated from [71]
V
P=InT T (6.3)

where w is the thickness of the chip, and V is the voltage difference
between nearest neighbor contacts for a current, I, passed between the
remaining two contacts. The T0-5 header was mounted in the sample

holder of an Air Products and Chemicals AC-3L CRYO-TIP liquid nitrogen

system., This enabled variation of the sample temperature between 100
and 350 K. The temperature was measured by a chromel vs gold with 0.07

atomic percent iron thermocouple. For temperatures above 350 K, the

sample was placed in a Stratham Temperature Test Chamber.

The structure used for the Hall coefficient measurements is the

e 1 e 4

collector Hall effect resistor. The Hall coefficient is calculated

from

~

-7

W
Ry = —*I*— (6.4)

where VH is the voltage difference measured between opposite contacts

for a current, I, passed between the remaining two contacts, and B is j
the magnetic field density perpendicular to the plane of the chip; thus
the samples are oriented so that the magnetic field is in the crystal
growth direction, <111> for the gallium-doped samples, and <100> for

the indium-doped samples. The Hall mobility is determined from




82

(6.5)

where p is determined from resistivity measurements on the Hall and
four-point structures. The magnetic field for the Hall measurements
was provided by a Varian Associates (V3703) six-inch electromagnet with
a current regulated power supply (V-FR2503). The magnetic field
strength was monitored by a Bell 620 gaussmeter with an STB4-0402 probe

with a stated accuracy of 0.1 percent. Data was taken over a tempera-

; ture range from 100 to 350 K. The current used in the resistivity and
Hall coefficient measurements was provided by a Keithley 225 current

! source capable of accuracy within £0.5 percent of the three-digit
readout. The current was monitored by voltage readings across precision
! resistors connected in series with the current source. These resistors
were part of a Dana-651 current shunt set, accurate to within 0.01 per-

i cent. Voltages were measured with a Hewlett Packard 3465A digital

multimeter with a stated accuracy within 0.03 percent of the readout.
Resistivity and Hall coefficient measurements were made in accordance
with ASTM standard procedures [72].

The impurity dopant density was obtained by use of two different
structures: an MOS capacitor, and a base-collector diode. The MQOS
capacitor over collector consists of a main gate which is surrounded
by a field plate that overlaps a channel stop which also serves as top
side collector contact [68]. This structure (see Appendix A) is used to
measure the collector dopant density (NA + ND) from the high frequency

! C-V deep depietion method [73]. The collector dopant density is deter-

mined by obtaining a dopant profile from C-V measurements by means of




|

(6.6)

where AV is an incremental change in the gate voltage, and the measured
capacitance is due to both the oxide énd the semiconductor. A self-
consistent check was made on the measurements of collector dopant density
by using the base-collector diode. This structure (see Appendix A)
consists of a base diffused into a collector and a metal field plate to
control the periphery. The field plate overlaps both the base and a
diffused emitter channel stop which also serves as topside collector
[68]. To obtain a correct density profile the field plate is biased at
the flat-band potential [74]. Capacitance-voltage measurements were
taken with a Princeton Applied Research 410 C-V Plotter and a Hewlett
Packard 7010A X-Y Recorder.

From each silicon wafer, eight four-probe resistors, eight Hall
resistors, and eight capacitor-diode chips were selected for encapsu-
lation. These were chosen on the basis of low leakage currents and good
contacts at the metal bonding pads. Measurements were made on each of
the devices and data from the five to eight devices closest to the mean
value of the measurements were then averaged. In this manner we arrived
at representative values of resistivity, Hall coefficient, and dopant
density for each sample. The results of these measurements and compari-
sons with the theory of Chapters IIl through V are presented in the

next chapter.




CHAPTER VII

COMPARISON OF ‘-THEORETICAL AND EXPERIMENTAL RESULTS

7.1 Conductivity Mobiiity

Conductivity mobility was evaluated by substituting the measured
resistivities into equation (4.7). Figure 7.1 shows the hole mobility
plotted as a function of hole density at 300 K for boron-doped silicon.
Curve 1 represents the theoretical results of equation (3.23), and
curve 2 was reproduced from the work of Wagner [8]. Our calculated
values are within six percent of the values reported by Wagner for
Ny < 3x10'7 en 3. For higher values of hole density our calculated
values are substantially higher than those of Wagner. As previously
explained by Li [17], this discrepancy is due to Wagner's assumption
of complete ionization of boron impurities. This assumption is valid
only at low dopant densities or at high temperatures where full ioniza-
tion of boron atoms prevails. The theoretical calculation is in
excellent agreement (within three percent) with experimental data
reported by Thurber et al [12]. This gives support to the validity of
jonization calculations based on equations (4.2) through (4.6). [
Mobility values reported by Horn [13] are also in reasonable agreement

with our theoretical results. The data points shown in Figure 7.1 were

corrected for deionization effects via equations (4.2) through (4.6).
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7.2 Resistivity

The resistivity vs dopant density relationship for boron-doped
silicon at 300 K is shown in Figure 7.2. The solid line represents
theoretical calculations using equation (4.7). Wagner's [8] resistivity
curve and the theoretical line coincide over most of the boron density
range. Our theoretical calculations agree with Wagner's resistivity
data within six percent over the entire range of boron densities con-

sidered at T = 300 K. Excellent agreement exists between our experi- 1

A mental data and the theoretical calculations at 300 K. Figure 7.2 also
shows excellent agreement between our theoretical calculations and the
data of Thurber et al [12]. Good agreement was obtained with the data

! of Thurber and Carpenter [75] where total boron density was obtained by

T et b G SR Bt R4

§ the nuclear track technique.

Figure 7.3 shows the resistivity of gallium- and indium-doped sili-

con as a function of total dopant density for T = 300 K. As expected,
because of the deeper ionization energy of indium as compared to gallium,
values of resistivity for gallium doped silicon are lower than values {
of resistivity for indium-doped silicon at the same total dopant density.
Figure 7.3 does not show this at low dopant densities because of the
assumed values of background boron impurity densities. Excellent agree-

ment was obtained between our experimental data and that obtained from

Wolfstirn [15] for gallium-doped silicon, and our theoretical calcula-

tions at T = 300 K. Data obtained from the two indium-doped samples
showed good agreement with the theoretical calculations, but the same
was not true for the data of Schroder et al [64], and Backenstoss [16].

As seen in Figure 7.3, for each value of measured resistivity, Schroder '

et al [64] report two different values of measured indium density. The
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"lower value of indium density was obtained by C-V and junction breakdown
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methods, while the higher value was obtained by Hall measurements and

curve fitting. Because of uncertainties in the value of the Hall scat-

tering factor, Schroder et al consider the lerr value of density more
reliable. Note that our theoretical calculation falls between the two
values of dopant density reported by Schroder et al [64]. Values of
resistivity of indium-doped silicon reported by Backenstoss [16] are
about 25 percent higher than our calculated values. The work of
Backenstoss [16], however, was done in the high doping region where
dopant densities approach the 1imit of solid solubility. Backenstoss

17 cm'3 there was a

found that for dopant densities greater than 4x10
considerable amount of indium precipitation. Thus it is possible that
part of the discrepancy between our theoretical calculations and the data
of Backenstoss is due to the low solid solubility limit of indium in
silicon. Recent theoretical results of Sclar [14] for In-doped silicon
also agree very closely with our theoretical calculations at 300 K.

To find out the adequacy of our theoretical model for temperatures
other than 300 K, we compared the calculated and measured values of
resistivity for silicon samples doped with boron, gallium and indium
for temperatures ranging from 100 to 400 K. Figure 7.4 shows the com-
parison between the theoretical and measured resistivities for boron-
doped silicon. Except for a couple of data points, agreement between
the theoretical and measured values was within 8 percent over the entire
range of temperatures. Figures 7.5 and 7.6 show the comparison betweer
theoretical and measured resistivities for gallium- and indium-doped

silicon respectively. Agreement here was not as good as in the bdron-

~ doped case, but except for a couple of data points, agreement between
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theory and experiment was within 10 percent. For the indium-doped
samples, the largest discrepancies occurred at low temperatures. This
is suggestive of some degree of compensation in the samples. An experi-
mental estimate of percentage of compensation was not made for any of

the silicon samples studied in this work.

7.3 Hall Mobility

Figures 7.7 through 7.12 show the experimentally determined Hall
mobility for silicon slices doped with gallium and indium. Agreement
between theory and experiment is good for temperatures above 150 K for
the gallium-doped samples. However, for temperatures of 150 K and below
some points differ from the theoretical prediction by as much as 38
percent. The measured Hall mobility of the indium-doped samples is well
within 15 percent of the calculated value except for one data point at
T =100 K. Our control over the temperature of the samples was better
for the T > 200 K range, but the main source of the discrepancy between
theoretical and experimental values of Hall mobility is the Hall factor.
This will be discussed in the next section. The magnetic field was
rated accurate to within 1 percent. Data points representing a Hall
mobility-dopant density pair are estimated to have a total error of

around 8 percent.

7.4 Hall Factor

The Hall factor in the case of p-type silicon, is plotted as a
function of dopant density for T = 300 K in Figure 7.13. With the ex-
ception of the points deduced from Morin and Maita's [5] data for
boron-doped silicon, agreement between the Hall factor-dopant density

data and the theoretical calculation is within 15 percent for
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NA > 5)(10]5 cm'3. While in general, agreement between theory and

experiment in this region of dopant density is only within 15 percent,
the bulk of the experimental data is within 10 percent of the theoreti-

cal prediction. The samples used by Morin and Maita [5] showed a con-

~siderable degree of compensation; in their lower-doped samples, the

compensation was as high as 20 percent. This fact may have contributed
to the low values of measured Hall mobility, and the large discrepancy
between these data points and the calculation. This model negiects the
effects of compensation, and the combined presence of acceptor impurities
of varying ionization energies. The overall effect of adding impurities
of both signs is one of increased ionization of the excess Ny or iy (15].
It would be necessary to know the percentages of compensation of the
experimentally measured crystals to accurately determine the adequacy

of the theory at low dopant densities. An experimental estimate of
percentage of compensation was not made for any of the silicon samples
studied in this work. " Long [38] has noted that the low measurements of
Hall mobility for p-type silicon may not be due entirely to ccmpensation
and the quality of the crystals. For reasonably pure silicon samples

15 .n73) Long [33] obtained Hall mobilities

(p = 35 ohm-cm, Ny = 4.4x10
betﬁeen 360 and 390 cmz/volt-sec. Hall mobilities as great as 450
cm2/volt-sec have alsao been reported [76]. While higher than the Hall
mobilities of Morin and Maita, these measurements [38,76] still indicate
a value of Hall factor for low-doped p-type silicon at 300 K less than
unity. It is still doubtful that a Hall mobility smaller than a con-
ductivity mobility at 300 K is really an intrinsic property of p-type

silicon [38]. It is possible that the Hall factor may be greater than

unity in a crystal of exceptionally high perfection. However, calcu-




lations involving an exact model of the valence band of silicon [77]

indicate that the anisotropy of the bands, while not important in the
interpretation of mobility and resistivity data, plays an important
role in the evaluation of the Hall factor. Our model averages out the
anisotropy of the bands and thus our values of the mass anisotropy
factor, rps are larger than an exact model would predict. A calculation
based on the exact model, applicable over the entire range of interest
of temperatures and dopant densities, is beyond the scope of this work.
At the higher dopant densities there is fair agreement between the
theoretical prediction and values of Hall factor deduced from our
experimental work and the data of Wolfstirn [15]. Data points from
Wolfstirn's work showing ionization energies greater than 0.065 eV were

not included in Figure 7.13 because of the high degree of compensation

of these samples.
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CHAPTER VIII

SUMMARY AND CONCLUSIONS

Theoretical expressions have been derived to compute the hole
mobility, resistivity and Hall factor as functions of dopant density
and temperature for silicon doped with boron, gallium and indium. The
valence band of silicon was represented by a three-band model which
takes into account the nonparabolic nature of the bands. This attri-
bute of the valence band is included in the effective mass calculations.
Contributions from scattering by acoustical and optical phonons,
jonized impurities and neutral impurities were considered in the calcu-
lation of average relaxation time. In addition, our model also takes
into account the effect of hole-hole scattering on both lattice and
ionized impurity scattering relaxation times, and the effect of inter-
band transitions on the acoustic phonon relaxation time. Thus the model
developed in this study represents a more complete theoretical descrip-
tion of the conductivity mobility, Hall mobility, Hall factor and

resistivity than previous theoretical models have acknowledged.

As stated in Chapter II, the model used for the valence band of j
silicon provides values of density-of-states effective mass which lead
to values of intrinsic carrier density which are well within the limits
of experimental error. The greatest deficiency this model has over an
exact calculation is that the anisotropy of the bands has been averaged

out. Thus while the temperature dependence of effective mass derived

from the exact and approximate models of the valence band is similar,

103
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the magnitudes of the masses may be substantially different. This dif-
ference is not relevant in the study of mobility and resistivity in
p-type silicon, but becomes important in the determination of the Hall

factor. Since direct experimental verification of values of conductivity

abitwtan vk

and Hall effective masses is not possible, the only way to assess the
value of effective mass calculations is by using the theory in the
development of directly measurable properties such as resistivity and
Hall mobility.

The resistivity analysis for the boron-, gallium-, and indium-doped

silicon samples showed agreement between experimental and theoretical

results within 10 percent over the entire range of temperature,

desinisiolai

7 100 < T < 400 K. Note that best agreement between theory and experiment
was obtained for boron-doped samples, followed by gallium- and indium-

li doped samples. This may be due to the fact that we neglect the compen-
| sation effect and the possible dependence of ionization energy on dopant |
! density in the theoretical calculations for gallium- and indium-doped
samples. An experimental estimate of degree of compensation was not
made for any of the silicon samples studied here. Data points repre-

_5 senting a resistivity-dopant density pair are estimated to have a total

error of around 6 percent.

A comparison between our calculated mobility values with those of

Wagner's [8] data on boron-doped silicon at 300 K shows that agreement

is within 6 percent for NA < 3x]0]7 cm'3. Discrepancies at higher
dopant densities can be eliminated if the effect of deionization of
boron impurities were included in Wagner's calculations [8]. Excellent

agreement was found between our theoretical calculations of mobility in

"!
'3,
;‘
!
!
|

boron-doped silicon and the data of Thurber et al [12] at 300 K. We
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have obtained excellent agreement between theoretical values of resis-
tivity and our experimental data for boron-, gallium-, and indium~doped
silicon at 300 K; our theoretical calculations also agreed with the
resistivity data by Thurber et al [12] for boron-doped silicon, and
Wolfstirn [15] for gallium-doped silicon.

As shown in Chapter V, however, this theoretical model does not
have the same kind of success in describing the Hall mobility and Hall
factor for p-type silicon for low dopant densities, and low temperatures.

16 cm'3, this model predicts a value

For dopant densities lower than 5x10
of Hall factor much greater than has been experimentally determined
[5,15,38]. A discrepancy like this for the case of p-type germanium
was eliminated as the quality of germanium crystals improved. Thus it
has been assumed that low values of Hall mobility for low-doped p-type

germanium at T = 300 K were caused by compensation. However, compensa-

tion alone may not account for low values of Hall mobility in the case #
of p-type silicon [38]. Recent studies by Nakagawa and Zukotynski [77]
indicate that the use of the exact model in the development of the Hall
factor formulation yields results which agree in general with experimen-

tal data for the case of p-type silicon. Experimental data for the

case of p-type germanium does not agree with the theoretical results
of Nakagawa and Zukotynski [77].

From this study, we have found that the theoretical expressions
derived in this work are adequate for mobility and resistivity calcula-
tions for p-type silicon in the temperature range 100 < T < 400 K, and

14 18 -3

the dopant density range 107" < Ny <10~ cm The theoretical formu-

lation is also adequate for description of the Hall factor and Hall
16 cm'3

mobility for dopant densities above 5x10

and temperatures above
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200 K. The failure of this model in predicting Hall facteor and Hall
mobility at low temperathres and dopant densities is due to the omission
of the proper anisotropy formulation in the model of the valence band

of silicon. This weakness in the model would be remedied by use of the

. exact model in a manner similar to that of Nakagawa and Zukotynski

(1n,771.

Further improvements to ;his model would include the exact formu-
lation of the valence band of silicon on Kane's [27] model, as prescribed
by Nakagawa and Zukotynski [11,77]. Thus the proper nonparabolicity
and anisotropy would be includéd. For better comparison with experi-
mental results, the variation of ionization energy with dopant density
should be included in the calculation of hole density for the deeper
impurities. Also the effects of compensation and the presence of other
p-type impurities in silicon samples must be considered. It would alsc

be of great benefit to extend this study into the heavy doped region.




APPENDIX A

FABRICATION PROCEDURES AND TEST STRUCTURES

This appendix contains a list of the fabrication procedures

followed to generate the test structures measured in this study. These

test structures were part of NBS-4 [67] test pattern, and include a

planar four-probe collector resistor, a 100 mil square Hall effect

device, a gated base-collector diode, and a gated MOS capacitor over

collector structure.

A.1 Initial S1'02 Masking:

A.la Initial Clean Up:

(1)

(2)
(3)

(4)
(5)
(6)
(7)

(8)

Ultrasonic clean in hot DI water with small amount of
100 Tritonex solution for 10 minutes.

Rinse in running DI water for 5 minutes.

Place in solution of 1NH40H:]Hé02:2H20 for 20 minutes
at 50 degrees C.

Rinse in DI water for 5 minutes.

Dip in 10 percent HF for 10 seconds.

Rinse in DI water for 5 minutes.

Place in solution of IHCI:IHZOZ:ZHZO for 20 minutes at
50 degreeS C.

Rinse in DI water for 10 minutes and spin dry in NZ‘

A.1b Initial Oxidation - 350 nm at 1100 degrees C

()

Push~-in 5 minutes N, at 1000 cc/minute

107
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(2) Dry 02 5 miautes 02 at 800 cc/minute
(3) Wet 0, 35 minutes 0, at 800 cc/minute
(4) Dry 02 5 minutes 02 at 800 cc/minute
(5) N, 15 minutes N, at 1000 cc/minute
(6) Pull-out 5 minutes N2 at 1000 cc/minute

A.2 Phosphorus Base Diffusion:
A.2a Photoresist (PR) Application with Base Mask (NBS-4-1AB):

(1) Bake at 200 degrees C for 30 minutes to completely dry
the wafer.

(2) Apply Waycoat 200 negative PR (do this on both sides of
the wafer, apply and spin PR on back side first).

(3) Spin at 5000 RPM for 20 seconds.

(4) Prebake in 65-degree C oven for 20 minutes.

(5) Align wafer and mask and expose for 4 seconds under UV
Tight. (Both sides of the wafer must be exposed.)

(6) Develop for 20 seconds in spray of Waycoat developer
(undiluted), then clean off developer with 15-second
spray of Butyl Acetate.

(7) Dry with N, and inspect under the microscope.

(8) Post bake at 130 degrees C for 25 minutes in N, or air
circulating oven.

A.2b Base Window Etch:
(1) Etch in buffered HF for 2 minutes, rinse in DI water,

dry and inspect. Etch for 15 seconds more to see if

the pattern changes color.

N
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(2) When certain that all the oxide has been removed, place
wafer in hot (90 degrees C) J-100 PR remover for 5
minutes.

(3) Quench/rinse in methanol for 5 minutes, then rinse with
methanol from squirt bottle.

(4) Rinse in DI water for 5 minutes.

(5) Clean up - same as above A.la except for ultrasonic

clean.
Phosphorus Base Diffusion at 875 degrees C:
at 1250 cc/minute

(1) Push-in 5 minutes N2

16 minutes N2 at 1250 cc/minute

02 at 100 cc/minute

”2 through source
bubbler at 10 cc/
minute

T(source) = 4 to 7

degrees C
(3) Flush-out 2 minutes 02 at 800 cc)minute
N2 at 1250 cc/minute
(4) Pull-out 5 minutes N, at 1250 cc/minute

Removal of Phosphosilicate Glass:

(1) Dip in 10 percent HF for 5 seconds.

(2) Rinse in DI water for 5 minutes and spin dry in NZ'
Drive-in Diffusion and Base Oxide - 350 nm at 1100 degrees C,
base depth approximately 2um:

5 minutes

(1) Push-in
(2) Dry 02

N2 at 1000 cc/minute

10 minutes 0, at 800 cc/minute
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(3) Wet 02 45 minutes 02 at 800 cc/minute
(4) Dry 02 10 minutes 02 at 800 cc/minute
(5) Drive-in 70 minutes N2 at 1000 cc/minute

A.3 Boron Emitter Diffusion:

A.3a

A.3b

A.3c

A.3d

PR with Emitter Mask NBS-4-2AB - Same as A.2a (front side PR
only), with the following change: Before applying Waycoat
PR, coat surface of the wafer with silazane (5 parts
Hexamethyldisilizane: 95 parts Xylene), and spin at 4000
RPM for 20 seconds.

Emitter Window Etch:

(1) Etch in buffered HF for 2.5 minutes, rinse in DI water,
dry and inspect. Etch for 15 seconds more to see if
the pattern changes color.

(2) When certain that all oxide has been removed (oxide
islands must be gone), strip PR and clean up same as
A.2b (5).

Boron Nitride Diffusion at 1050 degrees C:

(1) Load wafers facing source.

(2) Push-in 5 minutes N2 at 500 cc/minute
(3) Pre-dep 30 minutes N, at 500 cc/minute

02 at 25 cc/minute
(4) Oxide 10 minutes 02 at 1000 cc/minute
(5) Pull-out 5 minutes

N2 at 500 cc/minute

Removal of Borosilicate Glass:

(1) Dip in 10 percent HF for 10 seconds.

(2) Rinse in DI water for 5 minutes, spin dry in NZ’
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A.3e Boron Drive-in and Emitter Oxide, T = 925 degrees C:

(1) Push-in 5 minutes N2 at 1000 cc/minute
(2) Dry 0, 5 minutes 0, at 1000 cc/minute
(3) Wet 0, 65 minutes 02 at 1000 cc/minute
: (4) Dry 0, 5 minutes 02 at 1000 cc/minute
F (5) Passivation 5 minutes N2 at 1000 cc/minute
(6) Pull-out 5 minutes

A.4 Base Contact Diffusion:

A.4a PR with Contact Diffusion Mask NBS-4-5AB - Same as A.2a (PR
on hoth sides - back side first). Back side must be exposed.
A.4b Base Contact Window Etcn:
(1) Etch in buffered HF for 2 minutes, 45 seconds. Rinse
' dry, check for oxide removal.

(2) When all oxide has been removed strip PR and clean up

same as A.2b (5).
A.4c Phosphorus Base Contact Diffusion at 875 degrees C:
(1) Push-in 5 minutes N, at 1250 cc/minute

(2) Pre-dep 10 minutes N, at 1250 cc/minute

2
02 at 100 cc/minute

N2 through source

bubbler at 10 cc/
minute
T(source) = 4 to 7
M degrees C
[ (3) Flush-out 2 minutes 02 at 800 cc/minute
r N2 at 1250 cc/minute
E (4) Pull-out 5 minutes N, at 1250 cc/minute
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A.4d Removal of Phosphosilicate Glass:
(1) Dip in 10 percent HF for 5 seconds.
(2) Rinse in DI water for 5 minutes and spin dry in No.

A.4e Reoxidation at 95 degrees C:

(1) Push-in 5 minutes N2 at 1000 cc/minute
(2) Dry 0, 10 minutes 0, at 1000 cc/minute
(3) Wet 02 25 minutes 0, at 1000 cc/minute
(4) Dry 02 5 minutes 02 at 1000 cc/minute
(5) Passivation 5 minutes N2 at 1000 cc/minute
(6) Pull-out . 5 minutes

A.5 MOS Gate Oxide:

A.52 PR with Gate Oxide Mask NBS-4-6AB - Same as A.2a (PR on front
side only, use silizane).

A.5b Etch in Buffered HF for 3 minutes, rinse, dry and check for
oxide removal,

A.5¢ When all oxide has'been removed strip PR and clean up same as
A.2b (5). ,

A.5d Gate Oxide Growth - 120003 at 950 degrees C:

(1) Push-in 5 minutes N, at 1000 cc/minute

(2) oryo, 10 minutes 0, at 800 cc/minute {
(3) Wet 02 40 minutes 02 at 800 cc/minute

(4) Ory 0, 10 minutes 0, at 800 cc/minute

(5) Passivation 10 minutes N, at 1000 cc/minute

2
(6) Pull-out 5 minutes

A.6 Contact Windows:
A.6a PR with Contact Mask NBS-4-3AB. Same as A.2a (front side

only, use silizane).
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s A.7b
A.7c

A.7d

A.7e

A.7f

A.8 Back
A.8a
A.8b
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A.8¢
A.8d

g e e g

A.8e

A.6b Contact Window Etch:

(1) Etch in buffered HF for 3 minutes, check for complete
removal of oxide. '

(2) Strip PR and clean up same as A.2b.

A.7 Front Side Metallization:

In the alloy furnace set at 450 degrees C, 5 minutes in Nz;
15 minutes in forming gas, 5 minutes in NZ' Gas flow = 800

cc/minute in all cases.

Evaporate 800 nm aluminum over the front surface of the wafer.

PR with Metal Mask NBS-4-4AB. Same as A.2a (front side only,
use silizane).

Etch in Al etchant of 20 H3P04;5H20:1HN heated to 50 degrees
C until the etching is complete (about 2 minutes).

Rinse in DI water for. 10 minutes.

Strip PR in J-100 and methyl as prescribed in A.2b (3 minutes
in 80 degrees C J-100).
Side Contact:

Dry for 30 minutes in 200-degree C oven.

Spin PR on front side as prescribed in A.2a (no mask).

Expose to U.V. light for 4 seconds.

Hard bake at 130 degrees C for 30 minutes.

Dip in 10 percent HF until oxide has been removed from the
backside of the wafer,

Remove PR in J-100 and methyl as prescribed in A.2b (do not
use cleaning procedure).

Scribe the wafer to separate the Hall devices.
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A.8g Evaporate 400 nm aluminum over the back side of chips.

A.9 Post Evaporation Micro Alloy. Load chips in alloy furnace at i

500 degrees C for 15 minutes. N2 set for a flow rate of

approximately 100 cc/minute.




Figure A.1. Square array collector resistor. Pipe size = 0.40x0.40 mil,
f =]2.25 mil (57.15 um), t = 4.75 mil (121 um), NBS - 4.7
67].




Figure A.2.
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Hall effect device. NBS - 4.31 [67].
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Figure A.3. Gated base-collector diode. Diameter = 17 mils (431.8 um).
NBS - 4.8 [67].
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Figure A.4.
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Gated MOS capacitor over collector.
(381 um), NBS - 4.8 [67].

* (Boron)

Diameter = 15 mils




APPENDIX B
EXPERIMENTAL SETUP AND DATA

iAo e i

This appendix consists of a block diagram which shows the experi-
mental setup and equipment used, and six tables which show the data
taken on the test structures. In addition to measured values of resis-
tivity, dopant density and Hall coefficient, Tables B-1 through B-6

also contain values of calculated Hall mobility.
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Keithley-225 Dana-651
Current Source Current ;
#603384 Shunt Set  porte
W\ p—
Switch
1
g I
! HP-3465A
Digital Multimeter
#603184

'
'
—o
]

[
. 4
Stratham Temperature

Test Chamber
#529950

or

Heli-Tran
L7-3-110
LN2 System
#589876

Figure B.1. Experimental Set-up. For Hall effect measurements the mag-
netic field was generated by a Varian Associates 6 in.
Electromagnet System #544772. Capacitance measurements
were taken with a Princeton Applied Research-410 C-V Plot-
ter #601922 and a HP-7Q010A X-Y Recorder #602659.
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Table B-1. Sample SGA 16-2 (Ga-Doped Si, N, = 4.25x10'> cm™)

{
Temperature Resistivity Hall Coefficient Hall Mobility ‘
T(K) (Q2-cm) RH(cmB/Coulomb) uH(cmZ/v-sec)
100 1.700 9381 5518
120 1.185
140 1.066
150 1.063 2239 2106 !
! 160 1.097 !
200 1.434 1443 1006 |
| 250 2.230 1433 643
:; 300 3.300 1263 383
! 350 4.410 1244 282

400 5.580
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Table B-2. Sample SGA 16-3 (Ga-Doped Si, Ny = 4.09x1016 cm'3)
Temperature Resistivity Hall Coefficient Hall Mobility

T(K) (R-cm) RH(cm3/cou10mb) uH(cmz/v-sec)

100 0.660 2325 3523

150 0.308 413 1341

160 0.295

180 0.286

190 0.288

200 0.294 206 701

250 0.361 163 452

300 0.469 149 318

350 0.593 147 248

400 0.735




Table B-3.
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Sample SGA 17-2 (Ga-Doped Si, N

= 1.26x10'7 cm™3)

A
Temperature Resistivity Hall Coefficient Hall Mobility
T(K) (R-cm) RH(cm3/cou1omb) uH(cmz/v-sec)
100 0.464 1019 2196
150 0.204 199 975
180 0.176
200 0.172 88 512
220 0.175
250 0.188 65.7 349
300 0.216 57.8 268
350 0.253 52.1 206
400 0.294
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Table B-4. Sample SGA 18-2 (Ga-Doped Si, N, = 3.46x10'7 cn™3)
Temperature Resistivity Hall Coefficient Hall Mobility
T(K) (Q;cm) RH(cmB/coulomb) uH(cmz/v-sec)
100 0.550 605 1100
150 0.163 101 620
200 0.116 46.2 398 1
230 0.111
240 0.111
250 0.112 30.7 274
300 0.121 25.2 208
350 0.135 21.8 161
0

400

.152




Table B-5. Sample SIN 16-2 (In-Doped Si, NA = 4.64x10]6 cm-3)
]
? Temperature Resistivity Hall Coefficient Hall Mobility
T(K) (Q-cm) RH(cm3/cou10mb) uH(cmZ/v-sec)
] 100 21.150 71571 3384
|
150 4.73 9399 2093
" 200 1.840 1855 1008
250 1.131 602 532
300 0.916 307 335
350 0.877 207 236

400 0.913
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, Table B-6. Sample SIN 17-1 (In-Doped Si, N, = 6.44x10'° cn™3)
'! Temperature Resistivity Hall Coefficient Hall Mobility
i T(K) (S-cm) RH(cm3/cou1omb) uH(cmz/v-sec)
100 25.95 58958 2272
150 4.65 7268 1563
200 1.564 1345 860
250 0.952 458 481
300 0.766 237 308
350 0.721 158 219
400 0.740

i el bl 2L sheta LY
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APPENDIX C
COMPUTER PROGRAM

This appendix contains the FORTRAN computer program used to
generate values of cbnductivity and Hall effective mass, conductivity
and Hall mobility, and Hall factor as functions of temperature and
acceptor impurity density in silicon. Besides the main program, two
subroutines are also listed.i The first of these, DENSTY, calculates
the hole density by iterating the Fermi energy level in the charge
balance equation as explained in Chapter IV; the second, INTBND,
computes the coefficients (functions Lij and Tij of equations (3.7)

through (3.9)) used in the calculations of acoustic phonon scattering

based on the work of Bir et al [43].
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10C
20C CONDUCTIVITY EFFECTIVE MASS. HALL EFFECTY IVE MASS,

30C CINDUCTIVITY MO3ILITY. HALL MO3ILITY,AND
40C HALL FACTOR AS FUNCT IONS OF TEVPERATURE AND
45C ACZCEPTOR IMPURITY DENSITY IN SILICON

SO0C DOPED wWITH BORON

60C

70 REAL MD1MD2,MD3¢ MDeNNNAT JNALLIM

80 REAL ML M2 M3 MIToM2T MITeKeKOeMOWKT

90 REAL MH MH]l ¢ MH2 s MH3 s MC s MCLl s MC2,MC3

100 REAL MOB1 .MDB2,MOB3 +MOB s MOBH

110 REAL M0Bz

120C

130 DIMENSION TR0OP(10) +PCTG(S0) +T(1ID)

140 DIMENSION NN{SO)sNAI(SO)PP(S0)1eNA(SD)

}ggc DIMENSION MDI(10)+MD2(10)sMD3I(LO0)MD(10)

170 FSIX)={({X~-C3) k] ,S*EXP(CI~-X)

180 FOE(X)=XE%1,5¢EXP(~X)

190 F7IX)=(X-C2)¥%] S*EX>(~-X)

200C

210 DATA KoAogBo¢C /80625 -50402740e653:4093/

220 DATA DELTAMOsKO0/0+088,94,109562-31,41+38062E-23/
230 DATA HBARHsPI/1605459E~3446e6252F~-34,3.14159/
2%0 DATA EO+ES/8.854185E-12,11.7/

250 DATA TAUOD s WW/6¢960E~10,00244/

260 DATA Q/1.60219E-19/

g;gc DATA THETAM1eM24M3/735609006537400 153,04234/

290C READ IN TEMPERATURIES AN2

300C DENSITY OF STATES EFFECTIVE MASSES
310C READ IN THE H-H SCATTERING CORRECTION
31SC FACTOR TO OPTICAL PHONON SCATTERING

320C

330 READ(S+10)(T(J)e J=1,10)
340#10 FORMAT(10F640)

350 READ(Se+11)(MDL(L)eL=1,+10)
360 READ(Se11)(MD2(L)L=1,10)
370 READ(S«11)3(MD3(L)elL=1,10)
380 READ(Se11)(MD(L) eL=1410)
390#11% FORIMAT(10(F 75,6 1X))

400 READ(S+12)(CROP(L)sL=1,410)
4;3212 FORMATE10(FG6.48+1X))

4

430C READ IN DOPANT CONCENTRAT IONS
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440C
450 READ (S5+13) (NA(L),L=1+,40)
Agozns FORMAT(S(EB8.2,1X))
470
480C COMPUTS F(GAMMA)®*S AND ASSOCTATFD CONSTANTS
ggg% FOR THE OETERMINATION OF EFFICTIVE MASSES
; 510 - BP=SORT(B%€2,+(Ck¢2./64+0))
; 520 AP B=A+BP
: s25 AMB=A-BP
i 530 GM=C&% 2, /{2,¢BPEAMB)
¥ 540 GP=(C%%2,/(2.4BP¢APB) )*(~14)
% 550 FOM=1e0¢e05¢*GM+e01635%GMEE2,4¢0009084/GMa%3,
: $60 F2MZle+e OL667¢5Mt o 081 359¢GMERD, ¢+,00090679%GME®3 , +
H $70 16000919594GM%%4.0+00002106%GMkeS,
' $80 E2P=1eto01567%GP+.0413598GP&#2+,00090679%GP %3+ -
Py 590 1.00091959%GP#%4+,000021 06&GPe¢S
: 600 F3Mz1e—0e01667%GM$0o0179568GN %22 o=
i 602 €0, 0069857%GME® 3. +.001261 «GME*a
Ly 610 F3P=1e-0s01667%GP +0017956%GPR&2
' § 6;zc £-0.0069857%GP%3+,0012510¢GP*%4
. 620
b 630C COMPUTE SCATTERING LIFET IME CONSTANTS
% 64 0C
2 650 TOP11=WWSTHETA/TAUO
£ 660 TOP22=TOP11
§ 670 TOP33=TOP11
5 680 TIA=0%%2,/SORT{MO)
£ 690 TIB=0®%2./(8 O*PXES*ED ) %2,
# 700 TIC=TIA®TIB/(KOS81,5%4,.50158%-7)
& 710 GA=7+539822E-54%M0/0 ¥*2,
B 720 GB=((ES®EO*3 0¢PI)/H) #(KO®RE2,/H)
i 730 GC=GA %GB
& 740 TNE=1+136E-19/ES*%2,
. ;goc TNF =8¢ 88576E6HBARK 2,0/ (MO X%]1 .5 &SQRT(KO))
0
'7708 THIS LOOP CHANGES THE TEMPERATURE
780
790 DO 200 J=1,8
800 KT=K®T (J)
810 C2=DELTA/(3.%KT)
820 C3=DELTA/KT
830 CA=THETA/T(J)
840 CS=C3¢Ca

850 C6=C3-C4

PEXTL R s i DIEE RV O,
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860
870
880

130

R8=(MOL1 (J)/MD( 2
R9=(MD2(J)/MD(J
R10=(MD3I(J)/MD(
EG=1,205-2,8E~-48
CROGAP=(1.,205/Z6
M3T=M3¢CRDGAP
WRITE(6+30)
FORMAT(1IH1//7/7/78Xes *CONDUCTIVIYY AND HALL EFFECTIVE
EMASS, CONDUCTIVITY AND HALL MOBILITY,*/8X, *AND
GHALL FACTOR AS FUNITIDNS 0O DOPANT CONCENTRATION.
&€ BORON DOPED SILICON'///)

WRITE(6+401T(J)

FORMAT(/740Xe *T=®4F4.0//7/)

5
«S
L«S*EXP(~-C3)
e 66667

})ssy
})ek}
SRRL L.
«T(J)
) %&0

990C COMPUTE INTERBAND SCATTERING PARAMETERS

1000C
1010
1020
1030
1040C
10S0C
1060C

[~
=L -]

Pub 5 gut gt D s Dt Vet pup DO B b P B P
PO N ) s 9 gus oo pus gue 20 gt ot B0 g
N=OQRNOANDUN=O
000000000000~ 00

1230
1240
1250
1260

1270
1280

. e

Y1=MD1 (J)
y2=MD2(J)
CALL INTBND{Y1,Y2,C114C22,C12,C214C112)

INTRODUCE TEMPERATURE AND MASS PARAMETERS
TO THE CALCULATION OF SCATTERING RELAXATION TIMES

ACL1T=(Cl1/TAUOI*MD1(J)%¥],S&T(J)¥%],5
AC227=(C22/TAUD I*®MD2(J )&%]1+S%T(J)%%1,5
ACL2T=(CL2/TAUQ)I®*MDLI(J)REL.5«T(J) %8 ],5¢&
E(MD2{J)I/MDL(J) ) *%2,5
AC21T=(C21/TAUD)IEMD2(J)®E] +SkT (J)2%],.5
TAC33=1.0/TAUQ

AC33T=TAC33%T(J)**1eS

PDIST=1e Z/{EXP(CA)-14)

PDIST1=PDIST+1,
QP11 T=TOP11 %SQRT(T
IP22T =TOP22%SART
0P33T=TOP3I3I*SART
TIL1IT=TIC/(T{(D)
T122T =TIC

L)
PP

B3T7=GC*»T(
TNG=TNE ®MD

TNH2=TNF /7{SOR
TNH3=TNF/(SOR

Te e Gl i N w2 e R AR
'
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1580C INTROOUCE CONCENTRATIONS AND H-H SCATTERING
1581C CORRECTIONS INTO RELAXATION TIME CALCULATIONS

1290C
i 1300C -OMPUTE SCATTERING LIFETIMZS
; lgégg THIS LOOP ALSO CHANGES THE ZINZENTRATION
1
§ 1330 DO 100 L=1,40s2
1340C
13282 CALL SUBRNUTINE TO CALCULATZ IONIZED DOPANT DENSITIES
1
1370 Qt=T(J
1380 0 2=NA(L) i
1390 Q3=MD(J) 3
1400 CALL DENSTY(Ql +02+03¢04+05+Q06,Q7,0Q8)
1410 NAI{(L)=Q4
1420 PP(L)=0S
1430 NN(L) =06
1440 PCTG(L )=Q7
1450 ETA=08
1460C
; 14735 COMPUTE CORRECTIJN FACTDORS F3R HILZ-HOLE SCATTERING
: 148
| 1490 IF(NACL) +LTe 1.0E15)G0D T A4
| 1500 IF(NA(L) oLTe 3<0E17)GO TO a6
X 1510 CRAC=0. 88
i 1520 GO TO a8
i 1530804 CRAC=140
{ 1540 GO TO a8
' 1550046 CRAC=10004-(8,013378E~19%NA{_))
;I 1560848 CRI=(NAI(L)/PP(L))®(1e~SEXP{~PP(L)/NALI(L)))
i 1570C
‘ 1600C
1610 ACL1S=ACl1T/CRAC
1620 AC22S=AC22T/CRAC
, 1630 AC12S=AC12T/CRAC
4 1640 AC21S=AC21 T/CRAC
f 1650 AC33S=AC33T/CRAC
j 1660 OP11S=0P11T/CROP(J)
1670 0P22S =0P22T /CROP(J)
1630 OP33S=0P33T/CRIP(J)
1€ 90 G1=81T/PP(L)
1700 G2=82T/PP(L)
1710 G3=83T/PP(L)
1720 GB1=ALOG(G1 1) ~G1/(G1+1.)
1730 GB23AL0G(G2+1e)~G2/(G2¢ 1e)

i ket . AR
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1740 GB3=ALOG(G3+1)-G37(G3¢1,)
1750 TIL11S=TI11TENAL(L)*GBI /CRI
1760 T122S =T122T7 &NAI{L)*GB2/CRI
1770 TI33S=TI3I3THNAI(L)%®GB3/CRI
1780 TNTLI=TNH1&NN(L)

1790 TNI2=TNH2®NN(L)

1800 TNI3=TNH3SNN(L)

1810C

1820C COMPUTE AVERAGE RELAXATION TIWES BY SIMPSON®S RULE
1830C INTEGRATIONe FOR BAND 2, 100 ITERATIONS TO GET TO
1832C THE °KNEE®* OF THE BANOs AND 200 TO CONTINUE BEYOND
1840C THE °*KNEE*

1850C

1860 LIMI=0e02/7(K*T{J))
1870 END=50

ia80 N1=100

1890 N2=200

1900 N3=300 .
1910 . wWw=sLIMI/Z(2 ®N1)
1920 Z={END-LIML )}/ (2 %N2)
1930 SUML =040

1940 SuM2=0.0

1950 SUM3=0.0

1960 SUMA=0.0

1970 SUMS=0.0

1980 SUM6=0.0

1990 SuMB=0.0

2000 SUM9=0.0

2010 SUML 0=0,0

2020 SUM11=0,0

2030 SUML2=0.0

2040 SUM13=0.0

2050 SUM19=0.0

2060 SUM20=0.0

2070 SUM23=0,0

2080 TLA33 =040
2090 X3=0.0

2100 X4=0.0

2110 X5=040

2120 X6=000

2130 T133=0.0

glao v=0.0

150C
2160C SET U SIMPSON®S RULE INCREMENTS
2170C
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N LY
000

18
19
20
22100101
22290
2230
2240
22590
2260#102
2270
2280
2290
2300#103

2350

290 70 KK=]1,N3

IFI{KK «GTe N1)GOD YO 101

GO TO 102
X.2Ve2s8(KK-N1=-1)%Z

XR2VE2.8(XKK=NL )&Z

XM= XL+XR) /72

w=2

GO TO 103
XL22e8 (KK-]1)6W

XR=2,¢KKSW

XM=(XL¢XR)/ 2«

IF(XKK +EQes NI)V=XR
IF(XL <«EQ¢ 0eO0IXL=2XM/1000.0

00 65 JJ=1,3

IF (JJ +EQe 1) X=XL

IF (JJ «EQe 2) X=XR

IF (JJ «EQe 3) X=XM

C
23J60C ACODUSTIC PHONON SCATTERING RELAXATION TIMES

2370C
2380
2390
2400
2410
2420
2430
2440
2450
2460854
2870C

X1 =SORT(X )

TLALL =ACl1Sex]

TLAL2 =AC12S5+Xl

TLA22 =AC22S#X |

TLA21 =AC21S*Xxl

TA33 =AC33S*Xx]

TFIXL «LTe C3)1GO TO Sa
TLA33 =AC33S*SORT(X -C3)
CONTINUE

2480C OPTICAL PHONON SCATTERING RELAXATION TI1IMES

2490C
2500
2510
2520837
2530
2540
2550
2560

IF{XL «LTe C4)GO YO 57
X3 =SGRT(X -Cs)

X8 =SQRT(X +C4)
TLOt1 =0P11S*(PDIST1¢X3 +PDIST®X4 )
TL33 =0P33S*(PDIST1I&X3 +PIIST¢X4 )
IF (XL «LTe C5)GO TO S8
XS =SQRT(X -CS)

IF{XL +LTe C6)GO TO S9

X6 =SART(X -C6)

TLO33 =0P33S«(POISTI®XS +POISTEXG )
TLO22=0P22S*(PDIST 1 #X3+PDIST*X4)

261 0C
2620C IONIZED IMPURITY SCATTERING RELAXATION TIMES




31 MAY 1979 i

2630C : i
2640 X8 =1e0/X &%1,.5 b
2650 TI11 =TI115%X8 |
2660 T133P =T1335S%*X8 1
2670 . IFI{XL oLTe C3)GO TO 63
2680 TI33 =T1I335/7(X -C3)*%],5
2690063 Y122 =T122S ¢X8
2700C :
z;;og NEUT RAL IMPURITY SCATTERING RE_LAXATION TIME :
2720
2730 X9=X1+TNG/X1 4
2740 TNL=TNI1 /X9
2750 TN2=TNI2/X9
2760 TN3=TNI3/X9
2770C
! 2780C TOTAL RELAXATION TIMES IN EACH BAND
‘ 2790C INTRABAND SCATTERING TIMES
2800C i
t 2810 T1 =10/7(TLAL1 +TLOL1 #TI1l #TN1) '
* 2820 T2 =1e0/7(TLA22 +TLD22 +T122 #TN2)
2830 T3 =1.0/(TA33 +TL33 +T133P #TN3)
gg;gc TAU3 =1e07(TLA33 #TLO33 ¢TI33 #TN3)
2860 D =1,0-T1 #T2 /(TLAL2 *TLAZL )
2870 CR1 =1,04{T2 *MD1(J))/7 (TLAL2 «uD2(J))
2880 CR2 =1,0+(T1 &MD2(J))/(TLA2L &MD1(J))
2890 TAUt =CR1l *T1 /D
2900 TAU2 =CR2 *T2 /0O
2910 TZ=10/(RB/TAUL+RI/TAU2¢+RI0/TAU3)
) 2920 GO TO (1¢2¢3)s3J
X 2930#1 TAUIL=TAUL
E 2940 TAU2L=TAU2
) 2950 T3IL=T3
2960 TAUIL=TAU3
; 2970 TZL=T2
- 2980 GO TO &
S 299082 TAULIR=TAUl
: 3000 TAU2R=TAU2
3010 T3R=T3
3020 TAU3R=TAU3
L 3030 TYZR=Y2
v 3040 GO TO &
3050#3 TAUIM=TAUL
: 3060 TAU2M=TAU2
t 3070 TIM=T3

O s A SR SN N
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3080 TAU3M=TAU3
3090 TZIM=TZ
310008 CONTINUE
3110#65 CONTINUE
- 3120C
g:fg% TOTAL LIFETIMES IN EACH BAND SQUARED
3150 T1SOL=TAULL*#*2,0
3160 T1SOM=TAUIM*%2,0
3170 TISQR=TAUIR*#2,0
3180 T2S0L=TAU2L*%2.0
3190 T2SOM=TAU2M%*2,0
3200 T250R=TAU2R*%2,0
3210 T3350L=T3L¢%2,0
3220 T33SQM=T3M*%2,0
3230 T33SOR=T3R*#2,0
3240 TISQL=TAU3L$%2.0
3250 T3ISQM=TAU3M*%2,0
3260 T3SOR=TAU3R¥*2,0
3270 TSQZL=TZL*%*2.0
3280 TSQZM=T ZM*& 2,0
3290 TSQZR=TZR¢ 2,0
3300¢C
gg;gg SUMMATIONS FOR THE INTEGRALS
3330 SUML=SUML#(W/3e ) #(TIL*FO(XL)+4, RTIMET6( XM ) +
333S ET3REF 6( XR) )
3340 SUM3=SUM3+ (W /3¢ ) 2( TAUZL#F6( XL ) ¢
3345 Eac&TAU2MEFG (XM) +TAU2R*FS (XR1 )
3350 SUMG=SUMG+ (W /3. % TAULL¥F6(XL) +
33s5s E4 «*TAUIMAFG (XM ) +TAUIRF6( XR) )
3360 SUMB=SUMB+ (W/3.)*(T335SQLEF6 (XL )+
3365 €4 .XT33ISAM*F6( XM} + TIISQREF 6( XR) )
3370 SUMI0=SUMLO+(W/34)%(T2SOL*F6(XL)+
3375 E8. ¢ T2SQM®F6( XM) + T2 SQREF6E ( XR) )
3380 SUMI3=SUMI3¢(W/3. J#(T1SQLEF6(XL)*
3385 Cao%T1SQM*F6(XM) +T1SQREF6 (XR) )
3390 SUM19=SUMI9+(W/34 )& (TZLE6IXL) +
3395 £4 AT ZMAF6(XM ) ¢TZR¥F6( XR ) )
3400 SUM20=SUM20+(W/3+ ) # (TSQZLEF6 (XL )+
340S €4 «*TSOZMSF6( XM) + TSQZREF 6( XR) )
3410 IF(XL «LT. C3)GD TO 66
3420 SUM2=SUM2+(W/34 ) & (TAU3L®FS5 (XL) +
3425 €4 «XTAUSMRFS (XM ) ¢ TAU3R®FS( XR ) )

3430 SUMI=SUMI+(W/3¢ )X (TISAL*FS(XL)+
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343S
3440
3450866
3460
3470
347S
3480

352S
3530468
3540470
3550C

C8 JETISQMRF S XM) ¢+ TISAREFS{ XR))

SUM23=SUM23+(W/ 3+ ) R(FS(X_)+ 8, ¢FS{XM)*FSIXR])

CONTINUE
IF(KK «GTe N1)GO TO 67
SUMA=SUMA+ (W/3. )2 (TAULSFHIXL ) ¢
CA,RTAUSMEFSE(XM) ¢+ TAU2REF6 (XR) )
SUML I=SUML 1 +(W /3 ) %(T2SOL*F6( XL )+
Co*T2SAMRFS (XM) +T2SQREFHE(XR))
GO TO &8
CONT INUE
SUMS=SUMS+(W/3. )% (TAU2L*F7(
G4 d2TAUZSMRF 7( XM ) + TAU2RE&F 7( XR
SUML2=SUMLI 2+ (W /3 1 *(T2SQL *F
EA.ET2SQMEF T XM) + T2SQREF 7 ( XR
CONT INUE
CONTINUE

)+
XL+

- o = X

3560C AVERAGE LIFETIMES

3570C
3580
3590

SUM21=1.32934
TAVI=SUM6/5UM21

TAV2 =SUM3/S5UM21
TAV3I=SUM2/5UM23
TAVZ=SUM19/SUM21
TSQV1I=SUM] 3/S5UM21
TSQV2 =SUM1l0/SUM21]
TSQV3=SUMI/SUM23
TSOVZ=SUM20/5UM21
TRATI=TSQVI/TAV1*%2,0
TRAT2=TSQV2/TAV24&2,0
TRAT3=TSQV3I/TAV3&¥ 2.0
TRATZ=TSQVZ/TAVZE&%2.0

3720C THE INTEGRALS HAVE BEEN CALTULATI)
3730C NOw COMPUTE THE MASS

R2=SUML/SUM2
R3=SUM3/({(F2P*SUMA/SQRT (APB) )+

E( F2M*SUMS/SQRT(AMB) ) )

RS=MD1{J)*%1,5/ (SQRT{AMB) *F3M)

R6xXMC3(J) &% 1 ,S5kSUMBREXP(C3I)/(SORT (A )®SUMI)
R7=SUML0/(F3P*SORT{APB ) *SUML 1+
SF3IMESQRT (AMB)I®SUML 2)
MC1=MD1(J)%%]1.5%SQRT(AMB) /F2M
MC22MD2(J)*%1.5%R]
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3820
3830
3840
3850
3860C

MCI=MO3(J) e %1, SESQRT (A)REXP(CI ) &R2
MHI=SQRT(RS)

MH2=SQRT (MD2(J)#*] (5*R7)
MH3=SQRT(R6)

' 38702 CALCULATE MC-MH.HALL FACTORe AND MOBILITY

4240C
4250C

R11=TAV1/{(TAVZ®*MCl)
R12=TAV2/(TAVZEMC2)
R13=2TAV3/(TAVZ*MC3)
RIA=TSQVI/Z(TSQVZEMHL %22 ,0)
IS=TSAOV2/{TSQVISMH2%A2 ,0)
R16=TSQV3I/(TSOVZI*MH3*%2,0)

MC =16/({(R11%R8)+(R12%R3) +(R13¢R ))
MH =14/SORT((RB&R14)+{ RI.kR1S)+(R *RL6))
MOBL=1.0E4%TAV1I®Q/ (MC1 *M0D)
MOB2=140E4&TAV2 %Q/ (MC2%MD)
MOB3=1.0E4%TAV3I*Q/(MC3&M0)
MOB2Z=1.0E4%TAV Z%Q/ (MC%kMO)
M0B=R8«MOB 1 +R9E&EMO82 +R]1 0%M0OB3
RES=1.07(Q*MOB®NALI(L))
RHZ=TRATZ¢®(MC/MH) *%2 ,C

MOBH=M0OB *RHZ

WRITEC OUT COMPUTEDO VALUES bF MOBIL ITY, MASS

4255C RESISTIVITY, ETC.

4260C
4270
4280#8S
4285
4300
4310092
4315
4330
4340894
4350
4360
4370896
4380
4390
4400#88
4410
4420
4430#89
4440

WRITE(6:85) NACL) o NAT (L) PP (L) NN(L)PCTG(L )
FORMAT(SXe 'NA=*,E106443Xe 'P=?,2 10,4,

E3Xe'PP=? gE1 028 s3Xe*'NN=?3E1De8:3Xs "NAI/NA=?*,F6L4/)
WRITE(6+92)MD1I(J) «MD2C J) e MD3I(J) «MDL )
FORMAT(SX, "MDI=®eF704s5Xe"MD224,F 7¢ 8¢5X,

EOMDI=*oF 7e84 sSXe?"MD=t 4FT7e4/)
WRITE(6¢94)IMC 1o MC2,MC 34 MC
FORMAT{SX " MCLl =? 4F7 e4+5Xe*MC2=*9FT7a8:¢5X»

E'MCI-=9eF T7e845Xes" ML =2 FT7,47/)
URITE(G.96)NHIOMH20MH3.MH

TORMATI(SX e MHI =9 ¢FT7 08 e5Xe* MH2=? 4 F7434,45X,
E'MHI=? F7¢445Xe "MH=*,E7,4/) -
WRITE(6+88)TAV1.TAV2,TAV3,TAVZ

CORMATIS X" TAVI="oFEL10ea8¢5X+s*TAV2=?F10e8¢5X,
E*°TAV3=?3E10¢ 4¢ 5Xo *TAV=*4E10e4/)
WRITE(6,89)TSQV] +TSQV2eTSQV3,TSQV2

FOIMATISXe® TSAVLI=?gEL1 098 ¢5Xe*°TSQV2=°?,E10e4+,5X,
EITSQVI="4E10e4¢5Xe *TSQV=",E10a4/)
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4450
4460893
4470
4510
4520486
4530
4540
4550498
4560
4890
4600499
4610
4620C
463 0C
4640#100
4650#200
4660
46704300
4680
4690

PRy - - > x5

oo
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WRITE(6e93) TRAT]I +TRAT2.TRAT3I,TRATZ
FORMAT(SXe *TRATEI=* ,FEeIeS5Xe* TRAT2=¢ 4560 395X
CY'TRATI=® F6.3¢5Xs*TRATZ="¢F6e37)
WRITE(6+86)C11+C22,C12 4C21
FORMAT (S5Xe *Cl1=°,F6e3¢5Xe*L 229 3F663¢eSKs *CL2=2,
1F6e3:5X+°C21=* sF6e3/)
WRITE(6:98)MD3 L 4MOB2,MNB3 4MNEZ
FORMAT(S5X e *MODL=" FBale SXo "MDB2=9¢F Be 20 SXo
EYMOB3I=? oFGe2eSXe*"MOBZ=*4FB8,2/)
WRITE( 6, 99)MOB,MOBHRHZ 4IES
FORMAT (SX o * COND MOB=°4FB8e2¢3Xe "HALL MOB=',F8¢2¢3Xs
1°HALL FACTORZ® F708s3X*RESISTIVITY=® oFBe3///77 )

CONTIMNUE
CONT INUE
WRITE(6+300)
FORMAT( IH1)
sTOP
END

L

o A ST o R e 1o Tl
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A790
4700C
4710C
4715C
4720C
- 4730C
4740C
4750C
4760C
4770C
4780C
4800
4810
4820
4830
4840
4850
4860
4870C
4880C
4890C
4900
4910
4920
4930
4940
4950
4960C
4970C
4980C
4990C
S000
5010
$020
$030
5040
S050
5055
S060
$070
5080
5050
51002
S110
5120#13

SUBROUTINE DENSTY (01:02+03¢084Q5+0Q060Q7.08)

SUBROUTINE TO CALCULATE IONIZED AND NEUTRAL
ITMPURITY DENSITY

NV=EFFECTIVE DENSITY OF BAND STATES
EA=DOPANT IONIZATION ENERGY
NA=DOPANY IMPURITY CIONCENTRATION
EG=Z NERGY GAP

EF=FERMI ENERGY

REAL NV ¢NA K KTeMD
REAL NAI NN

DATA K/8e6173F~-5/
DATA DELTA/0.044/
T=Q1

NA=Q2

MD=03

CALZWATE EGeNVsAND EA DIVIDED BY KT

EG=({((-3,80977E=-13%Y +9495402E-10 )*T
-—?.TOIIOOE-T)CT +.0000323741)¢T +1,155556
KT=K %7

EAP=(0.0438-3,037E-B8%NA¥*#*0,3333)/KT
NV=84,82907SE 1S¥MDe% J, S5¢ Tk, 5

ADD=0,0

ITERATION TO FIND A VALUE F2 SF SO THAT P=NA-~
IT FINDS EF FOR (P-NA-) < 040001

EF=0.43
20 12 LI=1,1000
ETA=(EF-EG) /KT
P=NVREXP(ETA)
TF(ETA oGEw 10 )IP=NVELT7S5225€ ((ETAXR2 #] .7 )R,75)
NAT=ZNAZ (1o +{ 4 +2.*EXP( ~-DELTA/KT) ) VX*EXP(ETA
E+EAP) ) +ADD
TEST=ABS(P-NAL)
DIF=P/ 2
IF(TEST «LEe DIF) GO TO 14
EF=EF+.001
CONTINUE
WRITE(6413)
FORMAT (/75Xe *WE FELL THROUSH LOOP 0°/)
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5130214
5140
S150
S160
5170
5180
5185
5190
5200
S210
5220
S$230815
5240
5250220
5260430
5270
$280
5290
$300
s310
s318
5$320
$330
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EF=EF-4001 +,00005
00 15 LI=1,400
ETA=(EF-EG)/KT
P=NV*#EXP(ETA)
IF(ETA <GEe Lo )P=NVE,TS22S¢((ETACS2+41,7)&%,75)
NATISNA/Z (Lo 4 (4. #2.¢EXP(-DELTA/CKT) ) ISEXP(ETAS
EZAP) )+ADD
TEST=ABS(P-NAL)}
DIF=P/10.
IF(TEST +..E. DIF) GO TO 30
EF=EF+.,0001
CONTINUE
WRITE( 64 20)
FORMAT {//SX+*WE FELL THROUGH LOOP 1°/)
EF=EF - 0001 ¢+ 00001
00 40 L1=1,400
ETA=(EF-EG) /KT
D=NVSEXP(ETA)
ITF(ETA oGEe Lo )PaNVELTS22SK((ITA%%K241, T)*&,75)

" NAI=SNAZ(1e#{8.#2,¢EXP(-DELTA/KT ) ) JREXP(ET A+

EEAP ) )+ADO

TEST=ABS (P-NAT)

DIF=P/100.,0

IF(TEST . Ee« DIF)GO TO 60

EF=EF+0.,00001

CONTINUE

WRITE(6,50)

FORMAT(//5X«*WE FELL THROUGH LOQGP 2°¢/)

EF=EF-.000014,000001

0Q 70 L1=1.5Q0Q

E TA=({EF-EG) /KT

P=NVIEXP(ETA)

IF(ETA oGEe 1o )P=NVERGT7S225%((ETA%XR24+]17)%%,75)
NAT=ZNA/Z( 1ot 442, EXPI-DELTA/KT) ) IEKEXP(ET A+
E€EAP) ) +ADD ’
TEST=ABS(P-NAI)

DIF=P/1000.

IF(TEST JLE. DIF )GO TO 90
EF=EF+ 0. 000001

CONT INUE

WRITE(6480)

FORMAT(/7/SX+*WE FELL THROUGH LOOP 3¢/}

ETA=(EF-EG)I/KT

PP=NAT#NALI %( 1. ~-NAI/NA)
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$550
5560

141

NN=ABS (NA=-NATI+ADD)
PION=(NAI-ADD) /NA
Q4=NAI

Qas=PpP

Q 6=NN

Q7=P ION

Q8=ETA

RETURN
END
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$650C
S710
$660C
5670C
. 5680C
5690C
S$695¢C
$700C
$720
S$730¢C
5740
5750
$760
5770
5780
S$790
5800
S$810
$820
$830
5840
sS850
$860C
Sero
5880
5884
5890
$900
5910
$920
$930C
5940
$945
$950
5960
$970
$980
$990
5995
6000C
6010
6020
6030
6040
6050

SUBROUT INE INTBND (Y1leY2+sC11¢C22.C126C21,C112)

SUBRDUTINE TO CALCULATE INTERBAND RELAXATION TIME
PARAMETERS FOR ACOUST ICAL PHONON SCATTERING.

BOTH LONGITUDINAL AND TRANSVERSE VIBRATIONS

ARE CONS!DERED

FEAL L211.L111,0L222,1122,L212

ETA=0,2125
ETAM==-ETA
ETAS=ETA*%2
ETAMS=FE TAME® 2
G1=SQART(Y2/Y1)
G2=Gl%%2,
GI=Gle*3,

GA=Gl &g,
A=ALOG((1.¢G1)/7(1.-G1))
BP=( 1.,+¢G2)
BPS=(1.+G2)%%2,
BMS=(1.~G2)%%2,

P1=(3e/7(8e%G2)}) G2-{(BM52A)/7(2,%G1)) :
22=(3e/(84%G4)) ®G4-2+,%G2+43.) /3, :

6~ (BPRBMS A )/ (2, ;
P3=(3e/(8.%G2)) (15¢68G4-22.,%G2#154)/(48+%G4A )~
L(1+(BPS¥(Se%GA=-14e%G24S5.)/7(16.%GA)IECA/(2.8G1)))
PA4=-BMS% (1o ~BPRA/(2:,%G1l))/(4.%G2)

PS==BMSE (I RBP=(Jo+2 ¢ G243, %G )sA/(2:.%G1) )/ (4 ,*GA)

L2110 =1 e =ETAS=2*ETA% (] ,-ETA) *P1
CHETARG2% (2.2 (14 +ETA) P13, *ETAKP2)
LILLI=S(14+ETAIE®R2 ¢3,%5TAS/4,
L222=(1+ETAMI &%, +3 ., ETAMS/4,
L122=1.-ETAMS-2,¢ETAME (1. -ETAM) &P | ¢
L1ZTAMAG2X (2% (1 +tETAM)I¥P1 -3, *ETAVMXP2
L212=<ETAS(1.—ETA)RP2+G2*ETA*( (1 +¢E
€~3+¢ETA*PJ) ' ’

T111=075S
T222=0e75
T122=9.%(1.~PA) /8,
T211=T122
T212==9.%P5/ 16,

*(1e+
*( (3.
*G1))
*(BP*

)
TA)Y%P2
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6060C
6070
6080
6085
6090
6100
6110C
6120
6130
6140C
6150
6160

143

C11=2L222+4G3%L 122¢2,094E TAS*(T222¢GI8T122)
C22=L211¢G3*_L11142,09%FETAS®(T211
CrG3¢T111)*(YI*E],5/Y2¢%1,5)
Cl2sL212¢2.09%ETASET212¢%( Y 15%1,5/Y2%&1, 3)
C21=L21242.09¢ETAS®T212

P7=3e2Gl¥PS/ (1e¢-G2)%%2,
c112=P7

RETURN
ENO
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