
7 AD-A091 298 CALIFOR1N1A INST OF TECH 
PASADENA DIV OF ENGINEERING--ETC 

FI 20/11
ON SINGULAR PROBLEMS IN LINEARIZED AND FINITE ELASTOSTATICS. (U)

ASUG A0 E STERNBERG N00014-75C-1 96

UNCLASSIFIED TR-45GN"I*ommohumuo
I flflfflflmf......



10

8010 14-2 1



Office of Naval Research

Co5-- 196

Q on singuar yrbesi ierzdand

Technical1/ept . o.45

by

7C~~E Steqrnberg

Division of Engine~ring and Applied Science
II. California Institute of Technology

Pasadena, California 91125

IIAuguu 
L~

;/7



On singular problems in linearized and

finite elastostatics*

by

Eli Sternberg

California Institute of Technology

Summary

The predictions of linear elasticity theory for various basic types of

singular equilibrium problems are illustrated and issues associated with such

solutions are discussed. Attention is then turned to recent studies concerning

the implications of finite elastostatics for certain singular problems, including

some that have no counterpart in the linearized theory.

Introduction

This expository paper is devoted to a subject with which its author has

,been preoccupied on occasions for a good many years. I should make plain from

the outset that the present article is not intended as a comprehensive survey

& of .the literature on singular problems in elastostatics: its purpose is illustra-

i i tive rather than compilatory. Further, the selection of material included here

I! is heavily biased in favor of issues that have been close to my own Interests.

Some of the investigations discussed in the section concerning the linearized

.4 theory originated long ago. In contrast, the second section, which deals with

*This paper is the written version of a General Lecture presented at the

Fifteenth International Congress of Theoretical and Applied Mechanics in
4 Toronto, August 1980.No-
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pertinent implications of the finite theory, is essentially confined to recent

studies carried out in collaboration with J.K.Knowles and to closely related

work. In order to make the paper accessible to readers who are not specialists

in elasticity theory, I have tried to keep the presentation primarily descriptive

and to avoid an excessive encumbrance with technical detail.

1. Singular problems in linear elastostatics

In attempting to categorize singular problems within the linearized

equilibrium theory of elastic bodies according to the principal source of the

singularities in the ensuing elastostatic field, one is led to distinguish among

the following circumstances:

i) load-induced singularities, such as those arising in the presence

of concentrated or discontinuous loadings;

(ii) shape-induced singularities, which are typically due to body geo-

metries involving sharp notches or cracks;

(iii) singularities induced by mixed boundary conditions, as exemplified

by those encountered in various indentation and contact problems;

i(iv) singularities attributable to material discontinuities, like those

emerging in bonded assemblies of distinct homogeneous elastic materials, which

are characteristic of inclusion and load-transfer problems.

The preceding classification is at once incomplete and somewhat misleading.

In particular, it leaves out of account dislocation problems, which owe their

*singular nature to discontinuities in the displacement field. At the same time,

* the appearance of singularities within either of the first two categories is

* 7ordinarily contingent upon some collusion between the load and body geometries.

Thus uniformly distributed normal tractions confined to two parallel faces of

lo

! ! __

1F - " ___.._



(3)

a rectangular elastic slab1 produce a uniform uni-axial field of stress despite

the prevailing traction discontinuities at the corners, and this regular stress

field remains undisturbed by a traction-free plane crack that is parallel to

the load direction.

Among problems in category (i), those involving concentrated loads merit

special attention because of their pivotal role in the relevant theory of Green's

functions and in view of the conceptual issues attending the admission of such

loads into linear elastostatics. Indeed, while the notion of a "concentrated

load" is a natural ingredient of the mechanics of particle systems and rigid

bodies, it is inherently alien to the mechanics of deformable continua, unless

properly clarified.

A conceptual guide for a physically natural and mathmatically sound ap-

proach to concentrated-load problems in linear elasticity theory is supplied

by Kelvin's [1] original treatment of the problem corresponding to a concentrated

load applied at a point of an elastic body occupying the entire space. Kelvin

* ,deals with this basic singular problem by starting with the regular problem ap-

4 propriate to a suitably smooth uni-directional distributed body-force loading

that vanishes outside a sphere centered at the intended point of application of

the concentrated load (load-point) and that is otherwise arbitrary. If the dis-

placements are required to vanish at infinity, the uniqueness of the solution to

the latter problem is assured. This solution, furthermore, admits an explicit

integral representation. Kelvin then proceeds to the limit as the region of load

application is contracted to its center, while the resultant body force is made

In the absence of explicit exemptions, it is to be taken for granted that the

elastic solids considered in this paper are both homogeneous and isotropic.

I.- : - ~--- - - --
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I
to tend to the given concentrated load. The limit process discribed above

serves a dual purpose: it attaches an unambiguous meaning to Kelvin's prob-

lem and at the same time leads to its familiar solution in closed elementary

form.

Kelvin's solution, which is the elastostatic analogue of the fundamental

singular solution of Laplace's equation supplied by the Newtonian potential

of a mass point, has the following properties:

*(a) It is a regular solution of the governing field equations, in the

absence of body forces, throughout the complement of the load-point with respect

to the entire space;

(b) its displacement field vanishes at infinity;

(c) the resultant force of the tractions on any spherical surface centered

at and facing the load-point equals the prescribed concentrated load;

(d) if r denotes the distance from the load-point, the displacements

and stresses are, respectively, O(r- ) and O(r 2 ) as r -0, both being un-

bounded at the load-point.

Kelvin's limit treatment of his problem is abandoned in most'of the sub-

sequent treatise literature in favor of a direct formulation of this singular

problem on the basis of properties (a), (b), (c), no limitation being placed

on the orders of the displacement or stress singularities admitted at the load-
point. These three requirements alone, however, fail to characterize the solu-

tion uniquely, as is seen by adding to Kelvin's solution an arbitrary multiple

of the solution corresponding to a center of dilatation, situated at the load-

point, which has a "self-equilibrated singularity" of higher order at that point.

Ilf the "replacement loading" fails to be uni-directional, the existence of this

limit requires a supplemental restriction of the distributed body forces. See
(21, where Kelvin's limit process is spelled out in detail.

4 __ _
alI.



(5)

Nor is this lack of uniqueness in conflict with the classical uniqueness theorem

of elastostatics, which does not encompass such a formulation of the problem.

On the other hand, one can show that properties (a), (b), (c), and (d)

are in fact sufficient to determine Kelvin's solution uniquely. 1 Accordingly,

(a), (b), (c), together with (d), constitute a complete direct formulation of

Kelvin's problem. Further, it is clear from the foregoing observations that there

exists an infinity of "pseudo-solutions" to Kelvin's problem, each of which con-

forms to (a), (b), (c), but violates (d) because it is more severely singular.

Although the analysis of Kelvin's problem outlined above suggest a parallel

program for coping with problems involving concentrated surface loads, the exe-

cution of such a program presents considerably greater technical difficulties. As

shown in (3] with the aid of the theory of elastostatic Green's functions, a limit

process strictly analogous to Kelvin's confirms that the singularities at the

point of application of a concentrated surface load are of the same order as

those prevailing at the load-point in Kelvin's problem. Further, [31 contains

a uniquess theorem that accommodates both concentrated surface - and internal

concentrated loads, in addition to distributed surface tractions and body forces.

Roughly speaking, the theorem asserts that the specification of conditions ana-

logous to (a), (c), (d), accompanied by the boundary conditions for the given

regular surface loads and - in the case of an unbounded region - supplemented

by appropriate prescriptions at infinity, uniquely characterizes the solution

2
of the singular problem at hand. This result supplies a complete direct for-

mulation of concentrated-load problems, thereby obviating a limit process that

Actually, it suffices to adjoin to (a),(b),(c) the prescription of the order
of either the displacement or the stress singularity at the load-point.

An earlier attempt in [21 to establish such a generalization of the conven-
tional uniqueness theorem fell short of its aim; see the Introduction to [3].

* 11 
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may be quite cumbersome to carry out explicitly and that is apt to lead to

inconvenient representations of the solution in specific applications.

The foregoing uniqueness issue is not just an idle concern as is brought

out in [4], which provided the initial impetus for the subsequent studies

[21, [3]. Here a solution in series form is deduced for the particular prob-

lem of an elastic sphere in equilibrium under two equal and diametrically

opposite concentrated surface load - a problem which is of some relevance

to the stress analysis of ball bearings. This problem admits also a pseudo-

solution in closed elementary form, exhibited in [41, which differs from the

unique physically acceptable solution by an elastostatic field that keeps

the boundary free of tractions - except at the load-points, where it has

self-equilibrated singularities of an inadmissible higher order. Further,

with the aid of a single pseudo-solution one can evidently construct infigitely

many such solutions that exhibit arbitrarily large departures - throughout the

entire body - from the correct solution. The latter, which is validated in

[4] on the basis of a limit process starting with distributed surface loads,

4 is found to be in satisfactory agreement with the results of a photoelastic

investigation by Frocht and Guernsey [5], who determined the normal stresses

on the equatorial plane of symmetry. This experimental verification reflects

the fact that the fiction of "concentrated loads" has immediate practical value,

apart from its mathematical significance in the linearized theory.

The direct formulation of a concentrated-load problem opens the possibility

of removing in advance the singular parts of the desired solution with a view

toward a reduction of the original problem to one that is governed by a least

finite and continuous surface tractions and body forces. The analysis carried

out in (4] reveals that such a reduction of the problem of the sphere considered
.a
/ there necessitates the introduction of additional singularities of a lower order,

-w f .,
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beyond the dominant singularities furnished by Boussinesq's solution for a

half-space under a concentrated load applied normal to its plane boundary.

The question as to the influence of the local curvature at the point of ap-

plication of a concentrated surface load upon the detailed structure of the

singularity arising at such a point is dealt with in [6) on the assumption

* that the boundary is locally a smooth surface of revolution, whose axis coin-

cides with the load-axis.1

An example revealing that the admission of concentrated couples into

linear elastostatics gives rise to difficulties more subtle than those ac-

companying the introduction of concentrated forces, is analyzed in (8]. The

plane problem treated here is that of a wedge loaded exclusively by a "con-

centrated couple" applied to its vertex. The well-known corresponding plane-

strain solution, apparently due to Carothers [91, rests on a direct formulation

of this singular problem on the basis of the two-dimensional field equations,

the boundary conditions for the traction-free faces of the wedge, together

with the requirements that the stress field vanish at infinity and possess a

singularity at the vertex having the prescribed couple as its stress resultant.

The stress distribution associated with this elementary closed solution

meets the conditions listed above rigorously for all but a single opening

angle of the wedge. Moreover, this stress field is antisymnetric about the

wedge axis and becomes unbounded at the vertex like r ,if r is the distance

from this point. On the other hand, the stresses become unbounded at all

field points (rather than merely at the vertex) as the opening angle a ap-

proaches a, where a* is the unique real root of tana-a (O<ac 2w)-

* * I -
In this connection see also (73.

. .. ...
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or, approximately, 257 degrees.

The curious breakdown of the solution under discussion at a- a, leads

one to question the soundness of the underlying direct formulation of the prob-

lem. Indeed, this formulation is shown in [8] to remain incomplete even if it

is augmented by the stipulation that the stresses and displacements be O(r- )

and O(r-), respectively, as r -0. For there exist plane-strain elasto-

static fields with self-equilibrated singularities of a lower order at the

vertex that meet all conditions imposed in the traditional direct characteriza-

tion of the problem except for that concerning the stress resultant of the singu-
2

larity at the tip of the wedge. This lack of uniqueness, in turn, motivates

an approach to the problem by means of the limit process pursued in [81. Here

the original singular loading is initially replaced by regular distributed

tractions applied to two finite segments of the boundary, each issuing from the

vertex and of the same length, the entire loading being statically equivalent

to the given couple. If the replacement loading is assumed to be normal to the

faces of the wedge and antisymmetric about its axis, the classical solution is

recovered by proceeding to the limit in the solution to the modified problem

as the two load-segments are contracted to the vertex, provided O< a< a*. In

contrast, this limit fails to exist when a*, a< 27, so that the idealization

of a concentrated couple at the vetex of the wedge is deficient in meaning for

3
this range of the opening angle. The physical role of the critical angle a,

iFor < < a < 2w, the plane region at hand is actually the complement of a "wedge"
with respect to the entire plane.

2 At the same time the order of the stress singularity inherent in these fields
exceeds O(r-1), the latter order being characteristic of concentrated-force

problems in two dimensions.

3 f the replacement loading is no longer restricted to be antisymmetric, one is
similarly led to exclude 7 < a< 2w from the range of validity of the classical
solution.

iO .,,a~ .l, .. . .. .
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is, however, in need of further clarification.

We turn now to illustrative examples involving discontinuous distributed

surface loadings and recall first the nature of the singularities encountered

in the plane-strain solution for a half-plane subjected to normal or tangential

edge tractions that exhibit a finite jump discontinuity. In either case the

displacement field remains continuous at the point of load-discontinuity. Fur-

ther, a jump in the normal tractions induces merely a finite discontinuity in

the stresses, although the scalar rotation is logarithmically unbounded. On

the other hand, at finite jump in the tangential tractions the normal stress

on planes perpendicular to the edge becomes logarithmically infinite, whereas

the corresponding shear stress, the resultant stress on planes parallel to the

edge, as well as the scalar rotation, stay bounded.

The results referred to above are consistent with the appropriate limit

of the solution to the corresponding regularized problem, in which the given

discontinuous loading is replaced by one suitably smooth to justify an appeal

to the conventional uniqueness theorem of elastostatics. Moreover, the mathe-

4 matical idealization of a load-discontinuity evidently owes its physical rele-

vance to such a limit-definition. Yet no limit process is needed in order to

-4 motivate a direct formulation of singular plane problems of this kind, in which

the obvious field requirements and regular boundary conditions are accompanied

by the mere stipulation that the displacements remain bounded at points of sur-

face-traction discontinuity (without any restriction upon the admitted order of

the stress singularities). The completeness of this direct formulation emerges

from a generalization of the classical uniqueness theorem in two dimensions due

11
j 1See also Budiansky and Carrier (101, as well as Barenblatt (111, for additional

discussions of the wedge problem treated in [8].

6L



(10)

to Knowles and Pucik [12]. The theorem established in (12], which is not con-

fined to isotropic elastic solids, aims specifically at an economical direct

approach to plane crack problems. As pointed out in (121, however, the proof

devised there is readily modified to accommodate two-dimensional problems in-

volving discontinuous surface loads, as well as all singular plane problems

belonging to categories (ii) and (iii). In all such problems the boundedness

of the displacements by itself is a supplementary condition sufficient to insure

the completeness of the appropriate direct formulation. Although one would

expect an analogous uniqueness theorem to hold true for the corresponding three-

dimensional problems, which involve line-singularities, the argument employed

in [12] does not appear to tolerate such an extension.

In view of their significance in fracture mechanics, crack problems fur-

nish especially important examples of singular problems belonging to class (ii).

For illustrative purposes we mention here merely the three fundamental two-

dimensional solutions pertaining to a traction-free plane crack of constant

width and doubly-infinite extent in an all-around infinite elastic body under

2
various homogeneous loadings at infinity.

The first two of these solutions are associated with plane deformations

at right angels to the edges of the crack, appropriate to an in-plane loading

of either tension perpendicular to the crack-faces (Mode I) or pure shear on
ii

planes parallel and perpendicular to the faces of the crack (Mode II). Since

Ythe case of uni-axial tension parallel to the crack-faces is trivial, the pre-

ceding two loading modes suffice to accommodate - within the linearized theory

of plane strain (or generalized plane stress) - any uniform in-plane loading at

'The hypotheses underlying [121 presuppose a finite domain and require suit-
able augmentation in case the domain is unbounded.

2See, for instance, the expository article by Rice [13].



infinity that is consistent with a traction-free crack. The third fundamental

solution refers to anti-plane shear deformations produced by longitudinal shear-

ing tractions at infinity that are confined to planes parallel to the crack-

faces (Mode III) and act parallel to the edges of the crack.

In all three of the preceding loading modes, the displacements remain

finite and continuous at the crack-tips, whereas the stresses are unbounded

and O(r 1 /2), if r is the distance from a tip. Further, the ensuing elasto-

static field is symmetric about the plane of the crack in Mode I, but anti-

symmetric in Modes II and III. Also, the last two loading cases are "gliding

modes", in which the two crack-faces slide upon each other and the crack fails

to open, according to the linear theory. Each of the three solutions under

consideration coincides with the limit of the appropriate regular two-dimen-

sional solution for an infinite body with an elliptic cylindrical hole, as

the latter degenerates into a plane crack. This observation is commonly invoked

to justify the physical relevance of the singular solutions to which we have

alluded. In view of the generalized uniqueness theorem [12], referred to

earlier, no such limit process is needed, however, in order to motivate a

physically plausible and complete direct formulation of plane crack-problems

i in linearized elastostatics.

S , We proceed now to singular problems of type (iii) and in this connection
'1 use the mixed plane problem of a half-plane that is indented by means of a

1 -rigid, flat-ended (axially loaded) punch as an example. The nature of the

boundary conditions arising at the edge of the half-plane depends on the tra-

ditional distinction between the case of a perfectly "smooth punch" and that

of an ideally "rough punch". In either instance the normal displacement is to

4be constant along the contact segment, while the traction vector must vanish

f ei
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on the remainder of the boundary; in the first case, however, the contact

condition demands vanishing shearing tractions, whereas the tangential contact

displacement must be zero in the second case.

As is clear from our previous remarks concerning uniqueness, the con-

ventional direct formulation of either of these punch problems is rendered

complete by the additional requirement that the displacements remain bounded

at the punch-corners. Nor is such a formulation in need of physical motivation

on the basis of a limit process that takes a suitably related regular problem

as its point of departure. In fact, it is not at all obvious how mixed singular

problems of this kind can be "regularized" in a natural and manageable manner.

The well-known plane-strain solutions of the above two punch problems
1

predict that all stresses become unbounded at the corners of the punch like

r- /2 , where r is the distance from such a corner. With the exception of

the special case of an incompressible (linear elastic) material, in which both

solutions happen to be identical, the elastostatic field pertaining to the rough

punch exhibits an additional pathological feature: it is oscillatory in the

immediate vicinity of the punch-corners; in particular, the normal contact trac-

Itions here alternate between compression and tension infinitely often near the
ends of the contact-segment. This anomaly cannot be safely dismissed as insig-

nificant on the grounds that the oscillations in the contact pressure are confined

to extremely narrow zones adjacent to the punch corners: the presence of any such

oscillations is incompatible with the unilateral contact-constraint implied by

* the absence of an enforced bond between the indenter and the semi-infinite body

* It which it is applied.

A related, even more disturbing pathology afflicts the plane problem

1See, for example, Muskhelishvili (141.
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corresponding to two semi-infinite bodies of distinct elastic properties that

are bonded along their plane interface, except for a crack of finite width, and

are subjected to a Mode I loading. The alleged solution to this problem exhibits

oscillatory displacements that would require the two deformed crack-faces to

overlap in the vicinity of the edges of the crack.

In connection with plane problems of type (ii) or (iii) we refer at this

place to an asymptotic scheme apparently first employed by Knein [151 and later

on systematically exploited by Williams [161, which aims at the local structure

of the two-dimensional elastostatic field singularities arising in these cir-

cumstances. For this purpose Airy's stress function is used in [161 to construct

global solutions of the homogeneous field equations of generalized plane stress

in a wedge-shaped domain of arbitrary opening angle, for vanishing body forces
1

and various homogeneous boundary conditions. As far as the latter are concerned,

three distinct cases are treated: (1) both legs of the boundary are free of

tractions; (2) both legs are fixed; (3) one leg is traction-free and the other

fixed. Further, the only solutions admitted are those in which each cartesian

component of displacement - and hence each of the components of stress - is the

Aproduct of power of the radial distance r from the vertex and a function of

the polar angel 0 around this point. Such fields are necessarily generated

by a biharmonic Airy function of the form 0(r,8)- r f(8), and this Ansatz

leads to a linear eigenvalue problem for the ordinary fourth-order differential

equation to be satisfied by f, with A as the (possibly complex) eigenvalue

parameter. In this manner one is led to an infinite sequence of (real-valued)
.#i solutions of the homogeneous boundary-value problem at hand. Moreover, each

The analogous solutions appropriate to plane strain are obtained by replacing
Poisson's ratio v with v/(l-v).

A
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member of this sequence is fully determinate but for an arbitrary amplitude

parameter; its displacements are O(r8 ) and its stresses O(r8- l) as r -0,

if 8 denotes the real part of the appropriate eigenvalue X.

An elastostatic field belonging to the foregoing sequence thus has bounded

displacements but unbounded stresses if and only if 0< 8- Re(] < 1. In Case 1

and Case 2 there is at least one such eigenvalue for each opening angle a
1

in the range r<a 72, the same being true in Case 3 for ii9aS2w. Suppose

now A denotes the unique eigenvalue with the smallest real part B in (0,1).

In the first two cases X is real and 1/2 : r - 8 < 1. While X is independent

of the elastic constants in Case 1, it varies with Poisson's ratio in Case 2

and Case 3. Further, X is no longer real in Case 3 so that the stresses in

this instance are oscillatory in their dependence upon r, which is of the form

r8
1 (cos(K logr) or sin(K logr) I

2
where K is a function of Poisson's ratio.

The elastostatic fields associated with the particular eigenvalue singled

out above is evidently a candidate for the description of the dominant asymptotic

field behavior near a singular point in pertinent plane boundary-value problems

be belonging to categories (ii) or (iii). Indeed, the predictions thus arrived at

are found to be consistent with available global solutions to such singular prob-

lems: for example the plane crack problems and the rough-punch problem dis-

cussed earlier. The appropriate value of the amplitude parameter, which re-

mains indeterminate in the direct asymptotic analysis just outlined, in each

'Note the a- w corresponds to a half-plane, w< < 27 to a re-entrant corner,
and a-21 to a crack.

2 The discussion in [16] is confined to v- 0.3. I am indebted to R.Muki for
an analysis supporting the more general conclusions stated above.

- --
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instance is bound to depend on the global body geometry, the complete boundary

conditions, and - in the event of an unbounded domain - also upon the conditions

imposed at infinity. An a priori determination of this parameter would greatly

facilitate an efficient treatment of such singular problems, and in crack prob-

lems, where a complete knowledge of the crack-tip singularities is the informa-

tion of primary physical concern, would actually eliminate altogether the need

for dealing with the global problem.

Rice [171, supplies a special example of a crack problem in which the fore-

going objective is attainable with the aid of a conservation law originally due

to Eshelby (18], which is also valid in the finite equilibrium theory. More

recently Freund (191, successfully applied an additonal conservation law deduced

in [201 to the direct determination of the stress-intensity factors in several

physically interesting problems pertaining to special crack and load configura-

tions. There seems to be no generally applicable scheme, however, for accomplish-

ing this purpose and the available conservation laws appear to be inadequate to

cope with this issue even for the basic Mode I and Mode II problems.

4 "We conclude this discussion of singular problems in linear elastostatics

?with some cursory remarks on problems in category (iv). The singularity arising

* at a regular interface between an elastic body and a fully bonded inclusion of

different elastic properties involves merely finite jump discontinuities in the

displacement gradient and the stresses; the displacements themselves are contin-

uous by virtue of the prevailing bond, while the continuity of the tractions

across the interface is an equilibrium requirement.

Among the most important problems in class (iv) are "load-transfer problems",

which aim at the mechanical interaction between two bodies of different elastic

F
' See [20] and [21] for references to related work on conservation laws in elasto-
I' statics.
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properties, bonded along a conmon portion of their boundaries, under circum-

stances in which one of the two contiguous bodies may be regarded as an es-

sentially one-dimensional elastic continuum. Plane load-transfer problems con-

cerning plate-stringer assemblies are of primary interest in connection with

aircraft structures. On the other band, problems pertaining to the diffusion

of load from - or the absorption of load by - an elastic rod that is bonded to

a three-dimensional elastic body are relevant to certain civil engineering struc-

tures and play a significant role in the mechanics of fiber-reinforced materials.

A selective survey of analytical work (up to 1970) on plane and spatial load-

transfer problems may be found in (22]. We mention here merely that the charac-

ter of the singularity arising at the endpoints of the attachement depends on

the particular manner in which the stringer or rod is modelled.

2. Some recent applications of nonlinear elastostatics to singular problems

In almost all of the singular problems discussed in the preceding section

the linearized equilibrium theory - oblivious to the approximative assumption

upon which it rests - gives rise to locally unbounded displacement gradients

and stresses, regardless of the magnitude of the loads. The predictions of

linear elastostatics for such problems may therefore be presumed at best to

; b be realistic at finite distances from the singular points in the presence of

sufficiently small loads, but cannot possibly be valid uniformly in the vicinity

of these points, no matter how small the loads.

Misgivings about this state of affairs, in particular with regard to the

appearance of infinite crack-tip stresses, have prompted ad hoc modifications

of the implications of linear elasticity theory in fracture mechanics, such

as that proposed by Barenblatt (23], and have motivated various studies of

. .
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1crack problems within plasticity theory , in most of which the hypothesis of

infinitesimal deformations is retained. The same motivation underlies a series

of investigations summarized in [251, aiming at the effect of couple-stresses

upon singular stress concentrations in elastic solids and carried out within

a linearized version of couple-stress theory due to Mindlin and Tiersten [261.

Returning to classical elastostatics we note that the field behavior near

a point that is a source of infinite stress concentration according to the linear

theory, is bound to involve the material's response to severe deformations. It

is therefore natural to inquire into the corresponding implications of the finite

theory, which allows for arbitrarily large deformations and takes account of

constitutive nonlinearities as well. On the other hand, the comnon notion that

local infinities in the stress field reflect merely the rebellion of a singular

problem against its linearization and will automatically give way to finite

stress concentrations in the absence of such a linearization, is quite unfounded.

Geometrically induced infinities in the displacement gradients must be expected

to be accompanied by locally unbounded stresses whenever the nonlinear mechanical

response of the elastic material to the relevant homogeneous deformation leads

to stresses that become infinite as the deformation grows beyond bounds. Further-

more, the statically induced infinity in the stresses at a point of application

of a "concentrated load" cannot disappear in the nonlinear theory, although such

loads may be precluded altogether by the particular constitution of the material.

We proceed now to some recent work on singular problems within the frame-

work of finite elastostatics, which comprises two interrelated sequences of

studies: one of these deals with locally unbounded deformation gradients and

aims primarily at the asymptotic character of the elastostatic field near the

tip of a crack; the other is concerned with discontinuous deformation gradients,

1See Rice [13] and Knowles [24] for pertinent references.
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which have no counterpart in the linear theory of homogeneous elastic solids.

Earlier stages of this work were summarized in (211 and in previous surveys by

Knowles (241, (271, (281. Although the present survey is overlapping with those

cited, it describes also some results not previously available.

The analysis of crack problems on the basis of the nonlinear equilibrium

theory of elastic solids appears to have its origins in a paper by Wong and

Shield (291, who deduced an approximate global solution to the problem of a

finite crack in an all-around infinite incompressible elastic sheet of a Neo-

Hookean material, subjected to bi-axial tension at infinity. The approximative

scheme employed in [29] requires the deformations to be large throughout the

sheet.

An investigation of the elastostatic field near the tip of a crack for

the nonlinear analogue of the Mode I problem and a class of compressible elas-

tic materials, is contained in (301, (31]. Later on Knowles (321, confining

his attention to certain incompressible elastic solids, carried out a related

local analysis pertaining to the Mode III problem in the finite theory. Further,

Stephenson [33] - in a doctoral dissertation just completed - deals asymptoti-

i cally with the finite plane-strain crack problem for a class of incompressible

materials in the absence of any symmetry restrictions upon the loading at in-

' finity; his results thus encompass in particular Mode II as well as Mode I
1

loading conditions.

An asymptotic approach common to these local studies is best illustrated

by means of the Mode III problem treated in (321, which is free of extraneous

mathematical complications encountered in the other investigations mentioned

'The special case of the Mode I loading for a Mooney-Rivlin material had been
treated earlier in an unpublished study, the results of which are described
briefly in (241.
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above.

The class of incompressible materials considered in f32] is defined in

terms of an elastic potential that is completely determined by the response to

a homogeneous deformation of simple shear. Haterials of this kind are capable

of sustaining nonhomogeneous anti-plane shear deformations and permit one to

reduce the nonlinear Mode III problem to a boundary-value problem governed by

a single quasi-linear partial differential equation of the second order for the

scalar displacement u parallel to the edges of the crack; the two in-plane

components of displacement vanish identically. The constitutive law adopted

in [32] is then specialized to a sub-class of materials whose simple-shear

response obeys a power-law that involves a "hardening-parameter" n. For

na 1/2 the induced shear stress r(k) increases steadily with the amount of

shear k; r(k) -co as k -co when n >1/2, but approaches a finite ultimate

value when n- 1/2. If O<n< 1/2, the stress r(k) grows monotonically to a

maximum with increasing k and thereafter declines steadily toward zero. More-

over, the slope of the response curve is steadily increasing for n>1 (hard-

ening material) and steadily diminishing for 1/2< n< 1 (softening material);

An- 1 corresponds to the special case of a Neo-Hookean material.

If one restricts the range of n to (1/2, o), the nonlinear crack prob-

I lem at hand yields to a local treatment that is a counterpart of the scheme ap-

plied by Williams (161 to singular plane-strain problems in the linear theory.

The starting point in this local analysis is the assumption that u in the
vicinity of - say - the right-hand crack-tip is asymptotic to rmv(9), where

(r,O) are polar coordinates based at this point, a is an as yet unknown ex-

ponent and v(8) an initially unknown function of the polar angle. Upon

invoking the displacement equation of equilibrium and the boundary conditions

__
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for a traction-free crack to leading order, one arrives at an eigenvalue prob-

lem for an ordinary nonlinear second-order differential equation governing

I
v(e) and involving n, with m as the eigenvalue parameter. The solution to

this subsidiary eigenvalue problem is deducible in closed elementary form and -

but for an arbitrary amplitude parameter - is unique, provided O<m< 1. The

ensuing asymptotic respresentation for u, together with the corresponding re-

presentation for the stresses derivable from it, thus furnishes the dominant

*near-field behavior consistent with a finite crack-tip displacement. Further-

more, for small load intensities one can obtain a precise estimate for the am-

plitude parameter with the aid of the available global solution to the analogous
2

linearized crack problem, on the basis of the conservation 
law supplied in [181.

The asymptotic results appropriate to n >1/2 thus emerging reveal that

the order and specific structure of the stress singularities depends crucially

on the value of the hardening parameter. The two nonvanishing shear stresses

become unbounded at the crack-tip, as is to be anticipated in the present in-

stance. 3 Hardening (n l) aggravates, while softening (1/2<n< 1) mitigates

the shear-stress singularities predicted by the linear theory.4 In contrast

the axial normal stress, which vanishes identically according to linearized

elastostatics, becomes infinite like 1/r as r-0 (regardless of the

IFor reasons as yet obscure precisely the same eigenvalue problem arises also
in the asymptotic studies (301 and (331 under quite different circumstances.

V
2 n this connection it is taken for granted that the solution of the linear-

* 'ized problem, for small enough loads, uniformly approximates its counterpart
in the nonlinear theory at all material points a finite distance away from the
crack-tips.

3Recall that T(k)- co as k-oo when n>1/2.
4Nor n- 1 (Neo-Hookean material) the global solutions to the exact and the

linearized crack problem coincide, as far as u and the shear stresses are
.' concerned.
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particular value of n), the same being true of the strain-energy density.

In the limiting case n - 1/2 of a monotone increasing response function

T(k), the asymptotic Ansatz u.-rmv(8) as r- 0 leads to an eigenvalue prob-

lem that has no solution and is therefore inadmissible. This transition case

is treated in (321 by a different asymptotic approach - limited a priori to

small amounts of shear at infinity - in which the crack of finite width is

replaced by a semi-infinite one, while the far field is required to match the

elastostatic field near the crack-tip predicted by the linearized theory. This

1"small-scale nonlinear crack problem", which is an analogue of what is known

as the small-scale yielding problem in the related plasticity literature, is

then solved by means of the hodograph method. The results thus obtained furnish

finite shear stresses at the crack-tip, as is to be expected since n- 1/2 gives

rise to a finite ultimate stress in simple shear, but the induced axial normal

stress and the strain-energy density remain unbounded as r- 0. Although the

solution to the small-scale nonlinear Mode III crack problem has unlimited smooth-

ness, it exhibits rapid changes in the angular distribution of the elastostatic

.• field around the crack-tip that signal an impending breakdown of smoothness once

the response curve for simple shear undergoes a reversal of slope. Examples of

this kind will be mentioned later on.

IWe now refer briefly to some conclusions reached in (331 concerning the

plane-strain crack problem in the finite theory for a class of incompressible

materials. Here again the asymptotic method employed in (32] for n l/2 leads

, , to a consistent near-field approximation if the relevant hardening parameter is

suitably restricted. The asymptotic results arrived at in this manner are com-

patible with the existence of a global solution to the appropriate Mode I prob-
leam that is symmetric about the plane of the crack; on the other hand, they
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suggest the nonexistence of an antisymmetric global solution to the correspond-

ing Mode II problem. Indeed, as is proved in [33] by recourse to the Mooney-

Rivlin material, the latter problem in the finite theory - unlike its counter-

part in infinitesimal elastostatics - in general does not admit a solution anti-

symmetric about the crack-plane. This, at first sight surprising inference is

rendered plausible by the observation that the governing nonlinear field equa-

tions, in contrast to those of the linearized theory, are not invariant under

the corresponding parity transformation.

The asymptotic results in (331 lead to another somewhat startling departure

from the predictions of the linear theory for the Mode II problem: at least for

a certain range of the pertinent hardening parameter, the crack is found to open

in the vicinity of its tips, while the global solution based on the linear theory

implies that the crack-faces fail to separate in this instance.

The preceding result gives rise to the intriguing question as to the transi-

tion from the finite to the infinitesimal theory in the Mode II crack problem.

Still more perplexing is the related question concerning the precise approxi-

mative status within the nonlinear theory of the solution to the rough-punch

problem discussed in the previous section. For according to an asymptotic study

(34], which is confined to compressible materials of "harmonic type" introduced

by John (35], nonoscillatory contact tractions are found to be consistent with

the finite theory.

Difficulties encountered in an unsuccessful attempt to adapt the asymptotic

treatment [30], [311 of the nonlinear Mode I crack problem to a particular con-

stitutive law proposed by Blatz and Ko [361 suggested that the global Mode I

problem may not admit a solution of unlimited smoothness in this instance. Such

an eventuality, in turn, pointed to a breakdown in the ellipticity of the elasto-

static field equations for the Blatz-Ko material in the presence of sufficiently
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severe deformations - a conjecture confirmed in [37]. This special investigation

gave impetus to several studies concerning a potential loss of ellipticity in

finite elastostatics and the concomitant possibility of equilibrium solution

fields that possess continuous displacements but exhibit finite jump disconti-

nuities in the first displacement gradients. Singular solutions of this kind

are associated with localized shear failures and had been considered earlier

by Rudnicki and Rice [381 in a different constitutive setting. Mathematically,

such singular solutions bear a more than casual resemblance to gas-dynamical

shocks in steady transonic flows; it is therefore natural to speak of "elasto-

static shocks" or "equilibrium shocks" in the present context.

Explicit necessary and sufficient conditions for ordinary and strong el-

lipticity of the displacement equations of equilibrium governing plane defor-

mations of compressible isotropic elastic solids are deduced in [39]. The re-

sulting inequalities involve the local principal stretches directly as well as

through the first and second gradients of the plane-strain elastic potential

with respect to the principal stretches. Unfortunately these inequalities do

not appear to admit a convenient physical interpretation. Abeyaratne [401 deals

with the analogous issue for plane deformations of incompressible isotropic

elastic materials and arrives at ellipticity conditions that have a rather simple

S physical meaning. Even more transparent is the ellipticity condition for anti-

plane shear deformations of incompressible elastic solids of the kind considered

in [32]. Here the governing displacement equation of equilibrium is found to be

locally elliptic at a solution if and only if the response curve for simple shear

has a positive slope at an amount of shear equal to the magnitude of the correspond-

ing local displacement gradient. The analysis in [321 of the small-scale non-

linear crack problem for a hardening parameter n - 1/2 thus pertains to the

I- .---~- - -, li ____--r-.
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limiting elliptic case within the class of power-law materials introduced there.

As shown in (41], the emergence of an elastostatic shock in a plane de-

formation of a homogeneous but possibly anisotropic, compressible elastic me-

dium necessitates a breakdown of strong ellipticity in the displacement equa-

tions of equilibrium at some homogeneous deformation. The local structure of

such singular solution fields near a surface of discontinuity in the displacement

gradient is explored extensively in [411, particular attention being given to

"weak" equilibrium shocks. For this purpose it is sufficient to consider a

plane shock-surface that separates two distinct homogeneous deformations. Further,

an example of such a "piecewise homogeneous shock" of finite strength, based on

the Blatz-Ko material, is analyzed in detail. Finally, in the same paper, a

dissipation inequality - akin to the entropy inequality of gas dynamics - is

proposed on energetic grounds. Results parallel to those in [41], for elasto-

static shocks associated with plane deformations of incompressible materials

are deduced in (40]. Knowles [42] deals with the energetics of elastostatic

shocks in greater generality and detail. Here nonhomogeneous shocks with curved

shock surfaces are admitted and compressible as well as incompressible materials

are considered. It is found that the dissipation inequality arrived at in [41]

remains applicable in these broader circumstances.

Abeyaratne [431 presents a comprehensive analysis of a one-dimensional'F

boundary-value problem in which elastostatic shocks arise. The example studied

here concerns the finite twisting of a hollow cylinder for a class of incompres-

sible elastic solids whose constitutive behavior admits a loss of ellipticity

in the presence of sufficiently severe simple shearing deformations.

A pilot study illustrating the emergence of equilibrium shocks in a two-

dimensional boundary-value problem is analyzed in [441, which aims at the small-

scale nonlinear Mode III crack problem for a particular incompressible elastic

I!4
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solid within the constitutive category underlying [32]. In [44] the shear

stress T(k), induced by a simple shear of amount k, is taken to rise lin-

early to a finite peak-value at a critical amount of shear k and is assumed0

to decline steadily to zero in a definite manner as k is further increased.

Accordingly the governing scalar displacement equation of equilibrium suffers

a loss of ellipticity at any solution whose local gradient exceeds k 0o

A formal application of the hodograph transformation to this nonlinear

second-order partial differential equation enables one to generate, in closed

elementary form, exact elliptic and hyperbolic solutions on certain subdomains

of the exterior of the semi-infinite crack. These solutions, in turn, may be

pieced together so as to produce a global solution of restricted smoothness

to the particular small-scale Mode III problem at hand. The explicit solution

thus arrived at displays finite jump discontinuities in the displacement gra-

dient across two curved shock lines that are syimetrically situated with re-

spect to the crack, issue from its tip, and terminate in the interior of the

body - ahead of the crack. This solution is hvperbolic in a bulb-shaped domain

4 whose boundary consists of the two shock lines ar4 a circular arc joining their

endpoints; it is elliptic outside the closure of this region. While the dis-

placements and tractions remain continuous as the shock lines are traversed,

the stresses suffere jump discontinuities. All stresses remain finite at the

tip of the crack except for the axial normal stress, which becomes unbounded

if the crack-tip is approached from within the hyperbolic domain.

If the nonlinear portion of the response curve for simple shear is gen-
~eralized to allow for different rates of decay past critical shear, the results

described above undergo certain modifications that are discussed at the end of

[441. Of particular interest is the limiting non-elliptic case in which r(k)
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is constant for k <k<oo. In this instance one is led to a solution free
0

of shocks, whose asymptotic character near the crack-tip is the same as that

established in (321 for the limiting elliptic case of a power-law material

(n -1/2). As is to be expected, the solution based on a flat shear-response

past critical shear is also closely related to results obtained by Hult and

*McClintock [45] in dealing with the Mode III crack problem for an elastic-

perfectly plastic body.

A considerbaly broader generalization of the specific example treated in

(441 is carried out in (461. Here the analysis of the small-scale nonlinear

Mode III problem in the presence of a potential loss of ellipticity is ex-

tended to a class of incompressible elastic solids that includes power-law

materials with a hardening parameter n< 1/2. In addition, the constitutive

assumptions underlying (46] also admit a response to simple shear in which

r(k) increases (nonlinearly) to a peak value and thereafter declines steadily

to a positive ultimate shear stress as k-oo.

The analysis in (46] relies once again on the hodogravh method and is

guided by the pilot study (44]. The generalized problem is, however, no longer

amenable to an explicit solution. Instead, the existence of a solution involving

elastostatic shocks and its relevant features are established in [461 on the

basis of qualitative arguments. The conclusions thus reached are in some re-

spect quite similar to those arrived at in (441.

The studies (44],[46] of equilibrium shocks near the tip of a crack in

the small-scale nonlinear Mode III problem leave two significant questions

unanswered. First, the nonexistence of a smooth (shock-free) solution, though

. plausible, remains to be demonstrated. Next, the stability of the solution found

has yet to be examined. In this connection it should be remarked that a homo-

geneous deformation of simple shear is readily seen to be dynamically unstable

.1
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at amounts of shear beyond the critical amount. This, however, does not pre-

clude the stability of the solutions under consideration: nor would their pos-

sible instability render them devoid of physical interest.

Finally, the work reported in (441,[461, which depends crucially on the

hodograph method, supplies no clue as to the treatment of the more important

small-scale nonlinear plane-strain crack problem under constitutive asstmptions

that entail a potential loss of ellipticity, since the latter problem is governed

by a system of partial differential equations of the fourth order.
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