

REPORT DOCUMENTATION PAG	E READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GO	DVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtilio) Phase I Inspection Report Lake Welch Dam	5. TYPE OF REPORT & PERIOD COVE Phase I Inspection Repor National Dam Safety Prog
Hudson River Basin, Rockland County, Inventory No. 283	NY 6. PERFORMING ORG. REPORT NUMBE
7. AUTHOR(*)	8. CONTRACT OR GRANT NUMBER(*)
Eugene O'Brien	DACN-51-79-C-0001
9. PERFORMING ORGANIZATION NAME AND ADDRESS Tippetts-Abbett-McCarthy-Stratton 655 Third Avenue New York, NY 10017	10. PROGRAM ELEMENT, PROJECT, TA AREA & WORK UNIT NUMBERS
IL CONTROLLING OFFICE NAME AND ADDRESS New York State Department of Environme	12. REPORT DATE
Conservation 50 Wolf Road	
Albany, NY 12233	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(If different from Department of the Army	Controlling Office) 15. SECURITY CLASS. (of this report)
26 Federal Plaza New York District,	
New York, NY 10287	15. DECLASSIFICATION/DOWNGRADIN
	SCHEDULE
Approved for public release; Distribut	
Approved for public release; Distribut	
	ock 20, 11 dillerent from Report)
17. DISTRIBUTION STATEMENT (of the observed entered in Bio 18. SUPPLEMENTARY NOTES THIS DOCUMENT IS THE COPY FURNISH SIGNIFICANT NUMB	BEST QUALITY PRACTICADID. TO DOC CONTAINED A ER OF PAGES WHICH DO NOT
17. DISTRIBUTION STATEMENT (of the obstract entered in Bio 18. SUPPLEMENTARY NOTES THIS DOCUMENT IS THE COPY FURNISU SIGNIFICANT NUNR 19. KEY WORDS (Continue on reverse arthrough particular Dam Safety	BEST QUALITY PRACTICADIA. TO DOC CONTAINED A SER OF PAGES WHICH DO BOT May by block number)
17. DISTRIBUTION STATEMENT (of the observed entered in Bio 18. SUPPLEMENTARY NOTES THIS DOCUMENT IS THE COPY FURNISH SIGNIFICANT NUNE 19. KEY WORDS (Continue on reverse of WURWULL, SAULT Dam Safety National Dam Safety Program	BEST QUALITY PRACTICADIA. TO DDC CONTAINED A SR OF PAGES WHICH DO BOT May by block number) Lake Welch Dam
17. DISTRIBUTION STATEMENT (of the obstract entered in Bio 18. SUPPLEMENTARY NOTES THIS DOCUMENT IS THE COPY FURNISU SIGNIFICANT NUNR 19. KEY WORDS (Continue on reverse arthrough particular Dam Safety	BEST QUALITY PRACTICADID. TO DOC CONTAINED A SER OF PAGES WHICH DO BOT
 17. DISTRIBUTION STATEMENT (of the obstract entered in Biolity) 18. SUPPLEMENTARY NOTES THIS DOCUMENT IS THE COPY FUPNITU SIGNIFICANT NUMBER 19. KEY WORDS (Continue on reverse of EMPADIMENT NUMBER) 19. KEY WORDS (Continue on reverse of EMPADIMENT) 19. KEY WORDS (Continue on reverse of EMPADMENT) 19. KEY WORDS (Continue on reverse of EMPADMENT) 	BEST QUALITY PRACTICABLE. TO DDC CONTAINED A ER OF PAGES WHICH DO ROT May by block number) Lake Welch Dam Minisceongo Creek Hudson River
 17. DISTRIBUTION STATEMENT (of the obstract entered in Biolity) 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse of ENRADUCE), Exclusion SIGNIFICANT NUSP 19. KEY WORDS (Continue on reverse of ENRADUCE), Exclusion 19. KEY WORDS (Continue on reverse of ENRADUCE), Exclusion 19. KEY WORDS (Continue on reverse of ENRADUCE), Exclusion 19. KEY WORDS (Continue on reverse of ENRADUCE), Exclusion 19. KEY WORDS (Continue on reverse of ENRADUCE), Exclusion 10. KEY WORDS (Continue on reverse of ENRADUCE), Exclusion 10. KEY WORDS (Continue on reverse of ENRADUCE), Exclusion 10. KEY WORDS (Continue on reverse of ENRADUCE), Exclusion 10. KEY WORDS (Continue on reverse of ENRADUCE), Exclusion 10. KEY WORDS (Continue on reverse of ENRADUCE), Exclusion 10. KEY WORDS (Continue on reverse of ENRADUCE), Exclusion 10. KEY WORDS (Continue on reverse of ENRADUCE), Exclusion 11. KEY WORDS (Continue on reverse of ENRADUCE), Exclusion 12. KEY WORDS (Continue on reverse of ENRADUCE), Exclusion 13. KEY WORDS (Continue on reverse of ENRADUCE), Exclusion 14. KEY WORDS (Continue on reverse of ENRADUCE), Exclusion 15. KEY WORDS (Continue on reverse of ENRADUCE), Exclusion 15. KEY WORDS (Continue on reverse of ENRADUCE), Exclusion 16. ABSTRACT (Continue on reverse of Enradue), Exclusion 17. KEY WORDS (Continue on reverse of Enradue), Exclusion 18. KEY WORDS (Continue on reverse of Enradue), Exclusion 18. KEY WORDS (Continue on reverse of Enradue), Exclusion 18. KEY WORDS (Continue on reverse of Enradue), Exclusion 18. KEY WORDS (Continue on reverse of Enradue), Exclusion 18. KEY WORDS (Continue on reverse of Enradue), Exclusion 18. KEY WORDS (Continue on reverse of Enradue), Exclusion 18. KEY WORDS (Continue on reverse of Enradue), Exclus	BEST QUALITY PRACTICABLE. TO DDC CONTAINED A ER OF PAGES WHICH DO NOT May by block number) Lake Welch Dam Minisceongo Creek Hudson River My by block number) nalysis on the physical condition of the n and analysis are based on visual g organization.
 17. DISTRIBUTION STATEMENT (of the observed entered in Bioline) 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse eNEWRADULE), ENDERING Dam Safety 19. KEY WORDS (Continue on reverse eNEWRADULE), ENDERING Dam Safety 19. KEY WORDS (Continue on reverse eNEWRADULE), ENDERING Dam Safety 19. KEY WORDS (Continue on reverse eNEWRADULE), ENDERING DAM Safety 19. KEY WORDS (Continue on reverse eNEWRADULE), ENDERING DAM Safety 19. KEY WORDS (Continue on reverse eNEWRADULE), ENDERING DAM Safety 19. KEY WORDS (Continue on reverse eNEWRADULE), ENDERING DAM Safety 19. KEY WORDS (Continue on reverse eNEWRADULE), ENDERING DAM Safety 19. KEY WORDS (Continue on reverse eNEWRADULE), ENDERING DAM Safety 19. KEY WORDS (Continue on reverse eNEWRADULE), ENDERING DAM Safety 19. KEY WORDS (Continue on reverse eNEWRADULE), ENDERING DAM Safety 19. KEY WORDS (Continue on reverse eNEWRADULE), ENDERING DAM Safety 10. KEY WORDS (Continue on reverse eNEWRADULE), ENDERING DAM Safety 10. KEY WORDS (Continue on reverse eNEWRADULE), ENDERING DAM Safety 10. KEY WORDS (Continue on reverse eNEWRADULE), ENDERING DAM Safety 10. KEY WORDS (Continue on reverse eNEWRADULE), ENDERING DAM SAFETY 10. KEY WORDS (Continue on reverse eNEWRADULE), ENDERING DAM SAFETY 10. KEY WORDS (Continue on reverse entered), ENDERING DAM SAFETY 10. ABSTRACT (Continue on reverse entered), ENDERING DAM SAFETY 10. ABSTRACT (Continue on reverse entered), ENDERING AND AND AND AND AND AND AND AND AND AND	BEST QUALITY PRACTICADIA. TO DOC CONTAINED A THE DOC CONTAINED A ER OF PAGES WHICH DO NOT May by block number) Lake Welch Dam Minisceongo Creek Hudson River Mity by block number) nalysis on the physical condition of the n and analysis are based on visual g organization. ilable documents and visual in- did not reveal conditions
 17. DISTRIBUTION STATEMENT (of the observed entered in Biology) 18. SUPPLEMENTARY NOTES 19. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse of UNRAUSED) Exclusion 19. KEY WORDS (Continue on reverse of UNRAUSED) Exclusion 19. KEY WORDS (Continue on reverse of UNRAUSED) Exclusion 19. KEY WORDS (Continue on reverse of UNRAUSED) Exclusion 19. KEY WORDS (Continue on reverse of UNRAUSED) Exclusion 19. KEY WORDS (Continue on reverse of UNRAUSED) Exclusion 19. KEY WORDS (Continue on reverse of UNRAUSED) Exclusion 19. KEY WORDS (Continue on reverse of UNRAUSED) Exclusion 19. KEY WORDS (Continue on reverse of UNRAUSED) Exclusion 19. KEY WORDS (Continue on reverse of UNRAUSED) Exclusion 10. KEY WORDS (Continue on reverse of UNRAUSED) Exclusion 10. KEY WORDS (Continue on reverse of UNRAUSED) Examination of the avaination of the avaination of the Lake Welch Dam 	BEST QUALITY PRACTICADID. TO DOC CONTAINED A TO DOC CONTAINED A ER OF PAGES WHICH DO NOT May by block number) Lake Welch Dam Minisceongo Creek Hudson River Mity by block number) nalysis on the physical condition of the n and analysis are based on visual g organization. ilable documents and visual in- did not reveal conditions

- A CARACTER AND

۰.

1

•

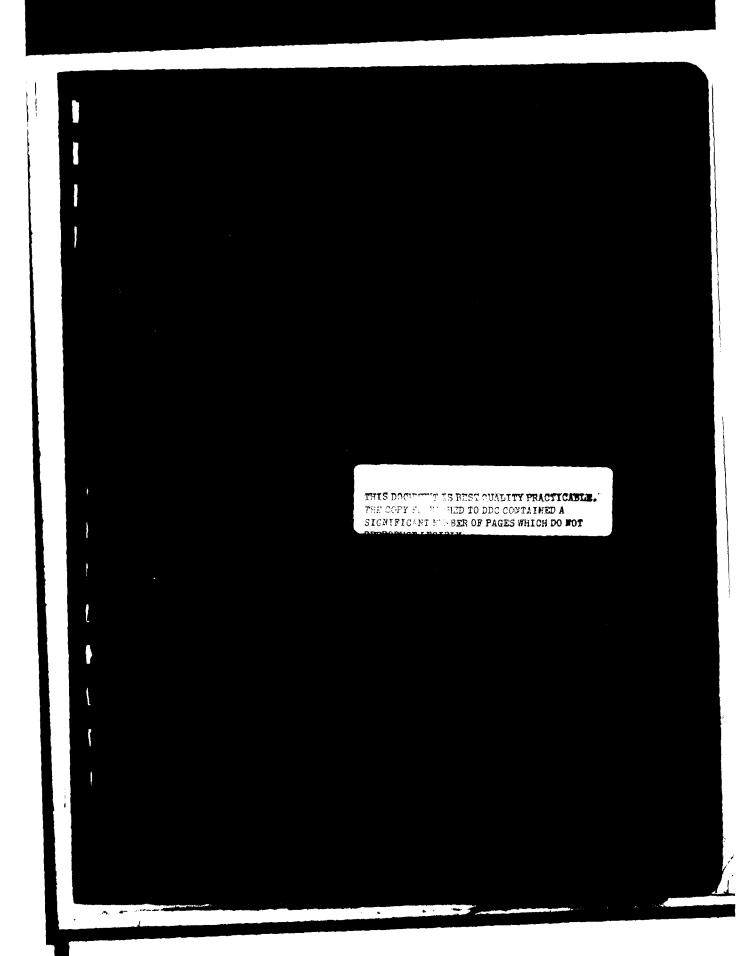
1-2

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Using the Corps of Engineers screening criteria for review of spillway adequacy, it has been determined that concrete gravity section of the dam would be overcopped for all storms enceeding approximately 12 percent of the Probable Maximum Flood (PMF). Although the spillway capacity is inadequate from a hydraulic and hydrologic point of view, the hydraulic inadequacy will not affect the safety of the dam because the concrete dam is supported on the sound rock and overtopping of the dam will cause neither significant erosion at the toe or abutment nor undermine the foundation of the dam. In addition, the stability of the concrete dam section is adequate during overtopping.

The following remedial and maintenance actions should be completed within one year.

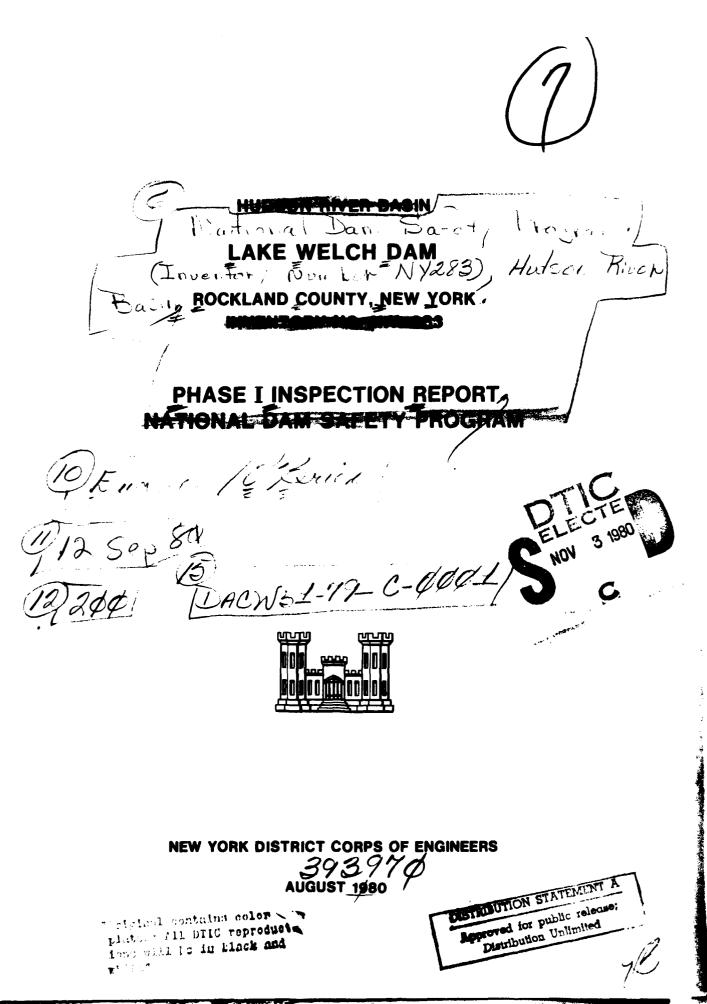
- a. Establish a systematic program to observe changes of seepage occuring at the monoliths and the construction joints.
- b. "Remove all trees and brush growth on the slopes of the embankment. Provide a program of periodic cutting and mowing of the embankment surfaces.
- c. Provide a program of periodic inspection and maintenance of the dam and appurtenances including yearly operation and lubrication of the reservoir
 drain. Document this information for future references. Also develop an emergency action plan.


In addition to above remedial and maintenance action the following should be considered:

a. Resurface the downstream face to the original geometry.

1 . . .

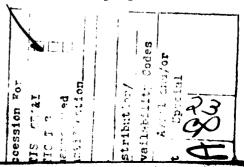
SECURITY CLASSIFICATION OF THIS PAGE(When Dute Entered)


b. High level outlet made operable.

#

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.


PREFACE

This report is prepared under guidance containted in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C., 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigations, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

NATIONAL DAM SAFETY PROGRAM LAKE WELCH DAM I.D. NO. N.Y. 283 D.E.C. #196-854 HUDSON RIVER BASIN ROCKLAND COUNTY. NEW YORK PHASE I INSPECTION REPORT

CONTENTS

		No.
-	ASSESSMENT	-
-	OVERVIEW PHOTOGRAPH	-
1	PROJECT INFORMATION	1
1.1	GENERAL	1
a. b.	Authority Purpose of Inspection	1 1
1.2	DESCRIPTION OF PROJECT	1
a. b. c. d. f. g. h.	Description of Dam and Appurtenant Structures Location Size Classification Hazard Classification Ownership Purpose of Dam Design and Construction History Normal Operating Procedure	1 2 2 3 3 3 3 3
1.3	PERTINENT DATA	4
a. k. c. d. e. f. h.	Drainage Area Dischargeat Damsite Elevation Reservoir Storage Dam Spillway Regulating Outlets	4 4 4 4 4 5
2	ENGINEERING DATA	6
2.1 2.2	GEOLOGY SUBSURFACE INVESTIGATION	6
2.3	DESIGN RECORDS	6

- i -

		Page <u>No.</u>
2.4	CONSTRUCTION RECORDS	7
2.5	OPERATION RECORDS	7
2.6	EVALUATION OF DATA	7
3.	VISUAL INSPECTION	8
3.1	FINDINGS	8
a.	General	8
b. c.	Dam Appurtenant Structure	8 8
d.	Downstream Channel	9
e.	Reservoir Area	9
3.2	EVALUATION OF OBSERVATIONS	9
4	OPERATIONAL AND MAINTENANCE PROCEDURES	10
4.1	PROCEDURES	10
4.2	MAINTENANCE OF THE DAM	10
4.3	WARNING SYSTEM IN EFFECT	10
4.4	EVALUATION	10
5	HYDROLOGIC/HYDRAULIC	11
5.1	DRAINAGE BASIN CHARACTERISTICS	11
5.2	ANALYSIS OF CRITERIA	11
5.3	SPILLWAY CAPACITY	11
5.4	RESERVOIR CAPACITY	11
5.5.	FLOODS OF RECORD	11
5.6	OVERTOPPING POTENTIAL	12
5.7	EVALUATION	12
6	STRUCTURAL STABILITY	13
6.1	EVALUATION OF STRUCTURAL STABILITY	13
a.	Visual Observations	13
b. c.	Design and Construction Data Operating Records	13 13
d.	Post Construction Changes	13
e.	Seismic Stability	13
6.2	STRUCTURAL STABILITY ANALYSIS	14
7	ASSESSMENT/REMEDIAL MEASURES	16
7.1	DAM ASSESSMENT	16

-ii-

Sec. St. A.

F

.....

		Page <u>No</u>
7	ASSESSMENT/REMEDIAL MEASURES	16
7.1	DAM ASSESSMENT	16
a. b. c. d.	Safety Adequacy of Information Necessity of Additional Investigations Urgency	16 16 16 16
7.2	RECOMMENDED MEASURES	16

APPENDICES

- A. DRAWINGS
 - a. Vicinity Map
 - b. Topographic Map
 - c. General Plan, February 1928
 - d. Beaver Pond Dam (Lake Welch) Plan & Profile, June 1929
 - e. Beaver Pond Dam (Lake Welch) Details, June 1929
 - f. Lake Welch Dam-Details of Repairs, July 1958
 - g. Lake Welch Dam-Repairs, April 1978
- B. PHOTOGRAPHS
- C. VISUAL INSPECTION CHECKLIST
- D. HYDROLOGIC DATA AND COMPUTATION
- E. STABILITY ANALYSIS
- F. OTHER DATA:
 - (1) Available Stability Analysis
 - (2) Correspondence between Owner and Engineer during 1978-1979 Repairs
- G. REFERENCES.

PHASE I REPORT

NATIONAL DAM SAFETY PROGRAM

Name of Dam:	Lake Welch Dam (I.D. No.N.Y. 283)
State Located:	New York
County Located:	Orange
Stream:	Minisceongo Creek
Basin:	Hudson River
Date of Inspection:	April 24, 1980

ASSESSMENT

Examination of the available documents and visual inspection of the Lake Welch Dam did not reveal conditions which constitute a hazard to human life or property.

Using the Corps of Engineers screening criteria for review of spillway adequacy, it has been determined that concrete gravity section of the dam would be overcopped for all storms enceeding approximately 12 percent of the Probable Maximum Flood (PMF). Although the spillway capacity is inadequate from a hydraulic and hydrologic point of view, the hydraulic inadequacy will not affect the safety of the dam because the concrete dam is supported on the sound rock and overtopping of the dam will cause neither significant erosion at the toe or abutment nor undermine the foundation of the dam. In addition, the stability of the concrete dam section is adequate during overtopping.

The following remedial and maintenance actions should be completed within one year.

- a. Establish a systematic program to observe changes of seepage occuring at the monoliths and the construction joints.
- b. Remove all trees and brush growth on the slopes of the embankment. Provide a program of periodic cutting and mowing of the embankment surfaces.

A PART OF

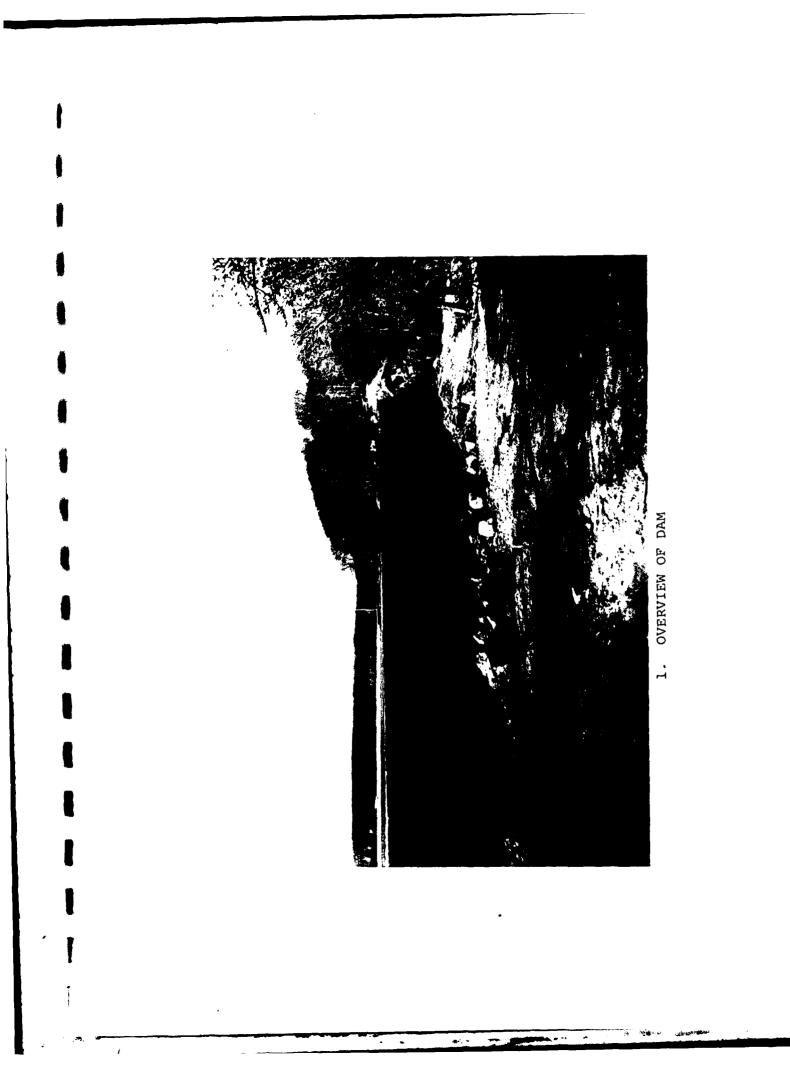
 c. Provide a program of periodic inspection and maintenance of the dam and appurtenances including yearly operation and lubrication of the reservoir drain. Document this information for future references. Also develop an emergency action plan.

In addition to above remedial and maintenance action the following should be considered:

- a. Resurface the downstream face to the original geometry.
- b. High level outlet made operable.

Eugene O'Brien, P.E. New York No. 29823

Col. W.M. Smith, Jr. New York District Engineer


12 Sep 80

A . . .

Approved by:

Date:

x - 7

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM LAKE WELCH DAM I.D. NO. N.Y. 283 DEC #196-854 HUDSON RIVER BASIN ROCKLAND COUNTY, NEW YORK

SECTION 1 - PROJECT INFORMATION

1.1 GENERAL

a. Authority

The Phase I inspection reported herein was authorized by the State of New York, Department of Environmental Conservation by a letter dated 7 January 1980, in fulfilment of the requirements of the National Dam Inspection, Public Law 92-367, 8 August 1972.

b. Purpose of Inspection

This inspection was conducted to evaluate the existing conditions of the dam, to identify deficiencies and hazardous conditions, to determine if these deficiencies constitute hazards to life and property, and to recommend remedial measures where required.

1.2 DESCRIPTION OF PROJECT

a. Description of Dam and Appurtenant Structures

Lake Welch Dam, formerly known as Beaver Pond Dam is located on the east side of Lake Welch. The maximum height of dam is 32 feet. The dam is 788 feet long and consists of a concrete gravity section (563 feet) and an earth embankment (right of gravity section) with a central concrete core wall (225 feet). The concrete dam, supported on a rock foundation consists of 18 monoliths which are anchored to the rock by 25-ton post-tensioned rock anchors. According to available drawings the rock anchors are spaced along the crest 10 feet center to center and are embedded 10 feet into rock. (See drawings given in the Appendix A). The gravity section has a maximum height of 32 feet and a crest width of 3.5 feet. The upstream slope is vertical and downstream slope is 1.6V to 1H. The concrete includes a 152 foot-long spillway portion, the crest of which is one foot below the top of the dam.

The earth embankment at the left side of the concrete dam is about 10 feet wide at the crest and has a maximum height of 19 feet. The upstream slope is about 1V on 2.5H and covered with riprap. The downstream slope is 1V on 3H. A central corewall extends 2 feet from dam crest to the rock.and is about 1.6 feet wide at the top. The slope of the upstream face of the wall is vertical; the downstream face is battered downstream at 4V on 1H from the top of wall to a depth of about 6 feet, and vertical to the remainder of the depth.

There are two regulating outlet pipes located through the concrete dam. The high level outlet is a 12 inch diameter cast iron pipe which discharges water from a square concrete intake structure located at the upstream face of the concrete section, about 210 feet from the left abutment. Water discharges from the reservoir into the intake structure over two 3.3-foot long by 4-inch wide slot openings, located on two walls of the structure. The sill of the openings is at El. 1010, about 6 feet below the top of the concrete dam. Discharge through the pipe may be controlled by a gate valve which is operated from the top of the structure. According to available documents, the outlet once served as a service spillway maintaining the pool at El. 1010 during low flows.

The low level outlet is a 3-foot square sluiceway located through the concrete dam, about 180 feet from the left abutment. Discharge through the sluiceway is controlled by a manually operated sluice gate located at the upstream face of the dam, the control of which is located at the crest of the dam.

The two outlets and the spillway discharge into the natural channel of Minisceongo Creek.

b. Location

The dam is located within the Palisades Interstate Park. Harriman Section, about 2 miles west of the Town of Willow Grove, in Rockland County, New York.

c. Size Classification

The dam is 32 feet high, and has a lake storage capacity of 4,750 acre-feet (1,000 and to 50,000 acre-feet). Therefore, the dam is classified as "Intermediate".

d. Hazard Classification

The dam is in the high hazard potential category because a campsite, several homes along the creek and in the Town of Willor Grove, state Route 210 and the Palisades Interstate Parkway are all located within 1.5 miles downstream from the dam.

e. Ownership

Lake Welch Dam is owned, operated and maintained by the Palisades Interstate Park Commission of the New York State Department of Parks and Recreation, Administration Building, Bear Mountain, New York 10911, Tel. No. (914)786-2701.

f. Purpose of Dam

The impoundment provided by the dam is used mainly for recreation. This lake also supplies water via pipelines to campsites at the lake.

g. Design and Construction History

Original design and construction records are not available. It is reported the construction of the dam was completed in 1937. The designer of the original dam was Mr. W.A.Welch, Chief Engineer, Palisades Park Commission. The name of the Contractor is unknown. The concrete dam was rehabilitated in 1959 and 1979. Because of leakage the entire concrete dam was resurfaced in 1959 by applying a 3-inch "gunite" layer. In 1979, the concrete dam was again repaired because of leakage problems; in addition, the stability of the dam was improved. According to available documents, the entire concrete dam was strengthened by installing post-tensioned rock anchors from the crest of dam into the foundation. The post-tensioned rock anchors were installed and grouted in drill holes spaced at 10 feet center to center along the Additional holes were drilled through the dam crest. from the crest and pressure grouted. The design and supervision of the repairs were carried out by the engineering firm of Charles T. Main, Boston. In addition, the existing gunite surface of the downstream face was partially removed and the original concrete exposed in preparation for resurfacing later this year.

h. Normal Operating Procedure

Sur - La

The USGS map and available drawings show that the normal pool level once was maintained at El 1010, the level of the sill at the high level regulating outlet. Since the high level outlet pipe is now inoperative and the gate in the closed position, the lake level is maintained at the crest of the ungated principal spillway, El. 1015, about 1.3 feet below the top of the concrete dam.

-3-

1.3 PERTINENT DATA

4

a.	Drainage Area (sq.miles)	2.87
b.	<u>Discharge at Damsite</u> (cfs) Principal spillway,	
	Top of dam (E1. 1016.3)	591
	Sluiceway, Top of dam (El. 1016.3)	250
_	12-inch CI outlet pipe	Inoperative
с.	<u>Elevation</u> (feet above MSL) Top of dam (concrete dam) Top of dam (earth dam) Principal spillway crest Sluiceway invert	1016.3 1019.0 1015.0 984
d.	Reservoir	
	Length of normal pool (miles) Surface area (acres)	0.6 218
e.	Storage (acre-feet)	
	Top of principal spillway crest Top of dam	4450 4750
f.	Dam	
	Type: concrete gravity embankment	and earth
	Length (ft): concrete-563; em Height (ft): concrete- 32; em Crest width (ft): concrete-3.6; emba Side Slopes: upstream - concrete-ver embankment- downstream - concrete-	oankment- 19 ankment-10 rtical; LV on 3H
	Impervious core: embankment - cond Concrete wall (top width - ft): emba Side slopes: upstream - vertical downstream-4V on lf from top	crete wall ankment-1.5 ft d (up to 6.0 ft o of wall and t to rock
q.	Spillway	
	Type: Broad-crested, Length (ft): 152 Crest Elevation (ft):1015.0	concrete

- 4 --

.....

-Number Traine

のないで、「「「「「」」」ので、「」できたのないで、「」

h.	Regulating Outlets		
	Туре:	High level - 12-inch diameter CI pipe	
		Low level - 3 foot square concrete sluiceway	
	Elevation (ft):	(High level)-intake - 1010 outlet - 984	
		(Low level) -intake - 991.5 outlet - 984-	

-5-

ţ,

I

I

I

SECTION 2 - ENGINEERING DATA

2.1 GEOLOGY

Lake Welch Dam is located in the New England Upland physiographic province of New York State. These uplands, with relief ranging from 500 to 1,300 feet above sea level, trend northeast-southwest; folds striking northeasterly and plunging slightly to the north are characteristic of the province. Fault lines throughout the New England uplands are generally parallel to the strike of the rocks. Bedrock in the vicinity of Lake Welch includes crystalline metasedimentary hornblende gneisses and leucogranitic gneisses of Precambrian Age.

2.2 SUBSURFACE INVESTIGATION

No subsurface investigation could be located for the project. However, the "General Soil Map of New York State" prepared by the Cornell University Experiment Station (1963) indicates that the surficial soils around Lake Welch Dam are of the Rockland-Chatfield Association. The Rockland, about 70% of the area, is steep slopes, gneiss rock outcrop with shallow, stony soil developed from glacial till. The remaining area is predominantly Chatfield soils that are moderately deep (less than 30 inches to bedrock), very stony and well drained, developed from glacial till derived from gneiss.

2.3 DESIGN RECORDS

The original dam was designed by Mr.W.A.Welch, Chief Engineer of the Palisades Interstate Park Commission. The dam is reported built in 1937. There are no design data or specific design memoranda available for the project features. Two contract drawings dated February 1928 were obtained from the New York State Department of Environmental Conservation and are given in Appendix A. The drawings show the plan, profile and details of the dam.

The concrete dam was resurfaced in 1959 by applying a 3 inch thick gunite surface. The details of modifications are shown on a drawing entitled "Details of Dam Repairs"dated July 17, 1958, prepared by the Palisades Interstate Park Commission and given in Appendix A.

Because of excessive seepage at the concrete dam, major modifications were made in 1979 in accordance with recommendations by Charles T. Main, Consulting Engineers, Boston, Massachusetts. The recommendations included chemical and cement grouting to control seepage through horizontal and construction joints and strengthening of the dam by installing rock anchors. The details of the modifications, shown on a construction drawing entitled "Lake Welch Dam Repairs", dated April 4, 1978 and prepared by Charles T. Main, Inc., Boston, Massachusetts, are given in the Appendix A.

2.4 CONSTRUCTION RECORDS

No detailed construction records of the original dam and the subsequent modifications are available; however, photographs and daily narratives of the 1979 repairs are available.

2.5 OPERATION RECORDS

There is no formal operation and maintenance manual for the project. There are no records of rainfall and operation of the gates and the sluiceways.

2.6 EVALUATION OF DATA

Existing information was made available by the New York State Department of Environmental Conservation, Albany, New York, and the owner.

The information obtained from the available data, the personal interviews and the visual inspection are considered adequate for the Phase I inspection and evaluation. Reviews of the original and subsequent drawings indicate some discrepancies, as follow:

- a. Crest elevation of the concrete dam is incorrectly shown on 1978 repair drawings.
- b. The length of spillway shown on the original drawing shows about 89.5 feet, whereas repair drawings of 1978 show about 152 feet. There are no construction records of the spillway modifications available; however, the spillway length of 152 feet was confirmed during the inspection.
- c. Geometry of the downstream face of the dam is in accordance with 1978 repair drawings and not as shown on the 1929 drawings.

.....

1000

12. N. W. W.

.

-7-

SECTION 3 - VISUAL INSPECTION

3.1 FINDINGS

a. General

The visual inspection of the Lake Welch Dam was made on 24 April 1980. The weather was sunny with the temperature at about 60°F. The reservoir level was El.1015.4 at the time of inspection, about 3 inches above spillway crest.

b. Dam

(i) The Gravity Section Including Spillway:

The concrete gravity section appears to be in generally good condition. The horizontal and vertical alignment are uniform and there is no indication of movement. The crest and the upstream face above the waterline appears to be in good condition. At the crest there are grouted holes which were drilled during the recent repairs.

The gunite surface at the downstream face of the dam has been removed and the original concrete exposed. The exposed concrete surface appears in good condition. There is minor seepage through several construction and monolith joints. Several construction joints are packed with oakum to prevent seepage.

(ii) <u>Embankment</u>: The earth embankment appears to be in generally good condition. The horizontal and vertical alignment of the crest are uniform.

The downstream slope does not exhibit any evidence of subsidence, erosion and sloughing. The slope is covered with ground cover, seedlings, shrubs and trees. There are no signs of seepage at the slope, toe and downstream from the toe. There is heavy vegetation, including large trees, downstream of the toe area.

The upstream slope does not show any sloughing or erosion. The slope is covered with ground cover and shrubs and trees.

c. Appurtenant Structure

The concrete surface of the low level sluiceway is in good condition. The physical condition of the downstream face of the sluice gate appears in good condition except for minor rusting. Although the gate is closed there is minor discharge emerging from the sluiceway. The operating control for the gates located at the crest appears to be in good condition. The gate was not operated during the inspection because

-8-

the owner's representative did not have the keys for a padlock; the owner reports that the gate is in operating condition.

The 12-inch cast iron outlet pipe is closed and reported to be inoperable. However, there was discharge of about 1 cfs through the pipe.

d. Downstream Channel

The channel downstream of the concrete dam is Minisceongo Creek. In the vicinity of the dam, the channel floor and the side slopes are in rock. There is some vegetation including bushes and large trees, which will not impede flows over the spillway.

e. Reservoir Area

In the vicinity upstream of the dam there was no evidence of sloughing, potentially unstable slopes, or other unusual conditions which would adversely affect the dam.

3.2 EVALUATION OF OBSERVATIONS

×_ - _ _

Visual observation made during the course of the investigation revealed several deficiencies which at present do not adversely affect the adequacy of the dam. However, these deficiencies do require attention and should be corrected.

The following is a summary of the problem areas encountered, in order of importance, with the appropriate recommended action:

- Establish a systematic program to observe and monitor changes in seepage occuring at the monoliths and construction joints.
- 2. Remove all trees and brush growth on the slopes of the embankment. Provide a program of periodic cutting and mowing of the embankment surfaces.
- 3. Provide a program of periodic inspection and maintenance of the dam and appurtenances including yearly operation and lubrication of the reservoir drain. Document this information for future references. Also develop an emergency action plan.

In addition to above remedial and maintenance the following should be considered:

- a. Resurface the downstream face to the original geometry.
- b. High level outlet made operable.

SECTION 4 - OPERATIONAL AND MAINTENANCE PROCEDURES

4.1 PROCEDURES

There is no specified required release of water from the lake. The lake level is maintained at the principal spillway crest level the entire year. The low level outlet which is a 3-foot square sluiceway, is usually kept closed. The 12-inch diameter cast iron pipe is closed and reported inoperative.

4.2 MAINTENANCE OF THE DAM

The dam is maintained by the owner, Palisades Interstate Park Commission. Maintenance of the dam is considered inadequate as evidenced by the seepage through the monolith joints; at the concrete section there is extensive vegetative growth on the earth embankment and an inoperable regulation gate at the high level outlet.

4.3 WARNING SYSTEM IN EFFECT

There is no warning system in effect or in preparation.

4.4 EVALUATION

*_ -_ -_ -

The dam and appurtenances have not been maintained in satisfactory condition as noted in Section 3: Visual Inspection.

SECTION 5 - HYDROLOGIC/HYDRAULIC

5.1 DRAINAGE BASIN CHARACTERISTICS

Lake Wlech Dam is located about 2 miles west of Willow Grove in Rockland County, New York. The total drainage area contributing to the lake is 2.87 square miles of which the lake occupies 234 acres or 13% of the area. The basin is a part of the Palisades Interstate Park and is mainly undeveloped except for a few campsites. Relief in the drainage area is fairly steep, varying from E. 1015 (lake surface) to ridges above El 1200.

5.2 ANALYSIS OF CRITERIA

The analysis of Lake Welch Dam was performed using the U.S. Army Corps of Engineers HEC-1 computer program 1/. The Probable Maximum Precipitation (PMP) was obtained from Hydrometeorological Report No. 51 4/. The unit hydrograph was computed using the Snyder method 6/ and average regional coefficients were 2 and 400 for Ct and 640 Cp, respectively. It was assumed that there would be an initial rainfall loss of 2 inches and that the constant loss rate would be 0.5 inches per hour. It was also assumed that both outlets were closed during the flood event. In accordance with the recommended guidelines of the Corps of Engineers 7/, the adequacy of the spillway was analyzed using the Probable Maximum Flood (PMF) and one-half the PMF.

5.3 SPILLWAY CAPACITY

The principal spillway is located at the concrete dam. The length of spillway is about 152 feet with a 3.5-foot wide concrete sill at El 1015. The maximum discharge capacity of the principal spillway is 591 cfs.

5.4 RESERVOIR CAPACITY

Normal capacity of Lake Welch at El 1010 (equivalent to the intake elevation of high level outlet) is reported to be about 3440 acre-feet $\frac{7}{}$. The computed storage between El 1010 and El 1015 (principal spillway crest) is about 1010 acre-feet. Total reservoir capacity to the top of the concrete dam (El 1016.3) is about 4750 acre-feet. The available surcharge storage between the spillway crest and the top of the dam is about 291 acre-feet which is equivalent to about 1.9 inches of runoff over the entire basin.

三派漢ない

5.5 FLOODS OF RECORD

There are no available records of floods or maximum lake elevations.

-11-

5.6 OVERTOPPING POTENTIAL

The potential of the dam being overtopped was investigated on the basis of the spillway discharge capacity and the available surcharge storage to meet the selected design flood inflows.

The Probable Maximum Flood routed through the lake caused the lake surface to rise to El 1018.41, 2.11 feet above the concrete dam, but does not overtop the embankment (El 1019.0). The one-half Probable Maximum Flood routed through the lake caused the lake surface to rise to El 1017.41, 1.11 feet above the concrete dam. The peak outflow discharge was 4765 cfs.

Using the Corps of Engineers criteria, the maximum spillway capacity without overtopping the dam is 12% of PMF outflow.

5.7 EVALUATION

The dam does not have sufficient spillway capacity to pass either the PMF or one-half the PMF without overtopping the dam. On the basis of this investigation the project discharge capacity is considered to be inadequate from a hydrologic and hydraulic point of view; however, overtopping of the dam under the PMF would cause neither significant erosion at the toe or abutment nor undermine the foundation of the dam.

SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observations

Visual observations did not indicate condition which would adversely affect the structural stability of the dam. The observed seepage through the monolith and construction joints of the concrete dam are not detrimental to the dam's stability or safety at the present time.

b. Design and Construction Data

The original preconstruction design computations regarding the structural stability of the dam or spillway are not available. Stability analysis of the concrete dam with the rock anchors was carried out by Charles T. Main, Inc., Consulting Engineers, Boston, Massachusetts, for the 1979 rehabilitation program; these are given in the Appendix F.

c. Operating Records

There are no available records of reservoir elevation and gate operation. No major operational problems which would affect the stability of the dam were reported.

d. Post Construction Changes

The concrete dam was resurfaced in 1959 by applying a 3 inch thick gunite surface. The details of modifications are shown on a drawing entitled "Details of Dam Repairs" dated July 17, 1958, prepared by the Palisades Interstate Park Commission and given in Appendix A.

Because of excessive seepage the concrete dam, major modifications were made in 1979 in accordance with recommendations by Charles T. Main, Consulting Engineers, Boston, Massachusetts. The recommedations included chemical and cement grouting to control seepage through horizontal and construction joints and strengthening of the dam by installing rock anchors. The details of the modifications, shown on a construction drawing entitled "Lake Welch Dam Repairs", dated April 4, 1978 and prepared by Charles T. Main, Inc., Boston, Massachusetts, are given in the Appendix A.

e. Seismic Stability

According to the recommended Corps guidelines, the dam is located in Seismic Zone No.1. However, based on past earthquake history, the New York State Geological Survey

-13-

considers the site to be in Zone 2. Based on this assessment the dam is considered in the Seismic Zone 2. The results of Seismic Stability are described in Section 6.2.

6.2 STRUCTURAL STABILITY ANALYSIS

The available structural stability analysis of the nonoverflow section of the concrete dam was reviewed. The method of analysis and stability criteria, except the values of sliding coefficients, were computed in accordance with EM 1110-2-2200 published by the Corps of Engineers, U.S. Army. The sliding coefficient values used were higher than recommended. The spacing of rock anchors used in the structural stability analysis is not the same as that shown on 1978 construction drawings. The analysis shows that rock anchors at the gravity section are spaced 5 feet center to center, whereas the 1978 drawings show a 10-foot spacing. The owner was unable to verify the discrepancy. Since a 10-foot spacing of the rockbolts at the gravity section would be more critical, additional analyses of structural stability using this anchor spacing were performed. These are included in the Appendix E, and summarized as follows:

	Loading Condition	Location of Resultant	Sliding F.S. (see Appendix E)
a.	Normal loading condition, reservoir level at spill- way crest, no ice load	Within middle third	1.53
b.	Normal loading condition, reservoir level at spill- way crest, with ice load	-3.09 feet outside middle third	1.30
c.	Unusual loading: flood level equal to 1/2 PMF at gravity section	Within middle half	1.17
d.	Extreme loading: flood level equal to PMF at the gravity section	Within middle half	1.06
e.	Unusual loading: reservoir level at spillway crest, and earthquake forces	Within the mid- dle half	1.30

The results of the stability analysis indicate that stability of the gravity section of the dam against overturning is inadequate for all loading conditions except normal loading.

-14-

The analysis indicates that in order for the resultant of the force to be within the middle third under the other loading cases, the rock bolts would have to be stressed 30.5 tons, which is above the working load(25 tons) and less than the ultimate limit (37 tons). Because of the additional force (5.5 tons) that can be developed in the anchors, the stability of the gravity section of the dam against overturning is considered adequate. The sliding stability is considered adequate for all cases.

6

......

SECTION 7 - ASSESSMENT/REMEDIAL MEASURES

7.1 DAM ASSESSMENT

a. Safety

Examination of available documents and the visual inspection of the Lake Welch Dam and appurtenant structures did not reveal any conditions which constitute a hazard to human or property. The dam (earth and concrete gravity sections) are not considered to be unsafe.

Using the Corps of Engineers screening criteria for review of spillway adequacy, it has been determined that the concrete gravity dam would be overtopped for all storms exceeding approximately 12 percent of the PMF. Although the spillway capacity is inadequate from a hydraulic and hydrologic point of view, the hydraulic inadequacy will not affect the safety of the dam because the concrete dam is supported on sound rock and overtopping of the dam will cause neither significant erosion at the toe or abutment, nor undermine the foundation of the dam. In addition, the concrete dam is stable under all loading conditions.

b. Adequacy of Information

The information and data available were adequate for performance of this investigation.

c. Necessity of Additional Investigations

No additional investigations are required.

d. Urgency

The recommended measures 1 through 3 as described below must be corrected within 1 year from notification.

7.2 RECOMMENDED MEASURES

The following are the recommended measures:

- Establish a systematic program to observe and monitor changes in seepage occuring at the monoliths and construction joints.
- 2. Remove all trees and brush growth on the slopes of the embankment. Provide a program of periodic cutting and mowing of the embankment surfaces.

-16-

3. Provide a program of periodic inspection and maintenance of the dam and appurtenances including yearly operation and lubrication of the reservoir drain. Document this information for future references. Also develop an emergency action plan.

In addition to above remedial and maintenance, the following should be considered:

- a. Resurface the downstream face to the original geometry.
- b. High level outlet made operable.

DRAWINGS

APPENDIX A

1

1

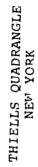
I

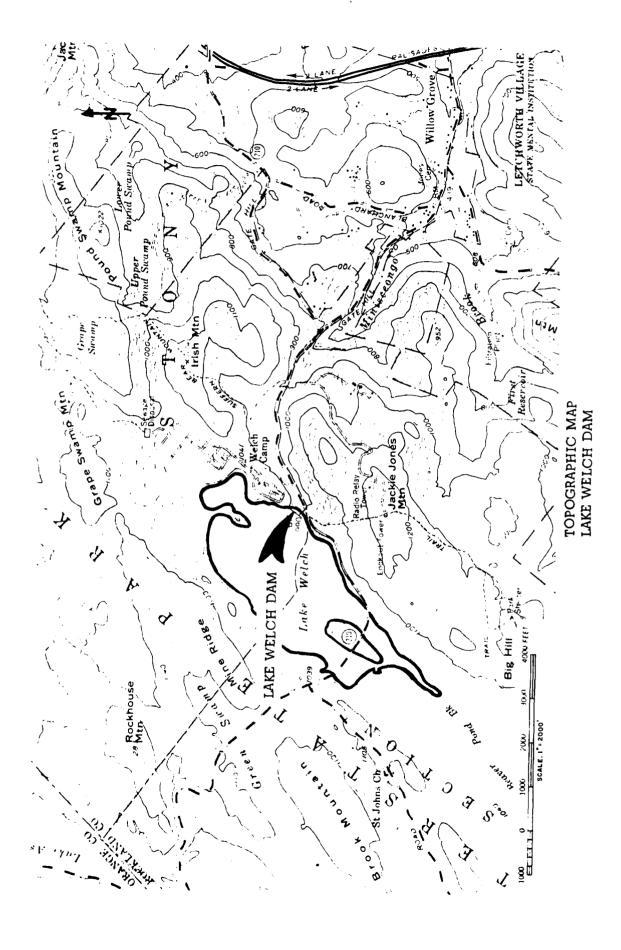
l

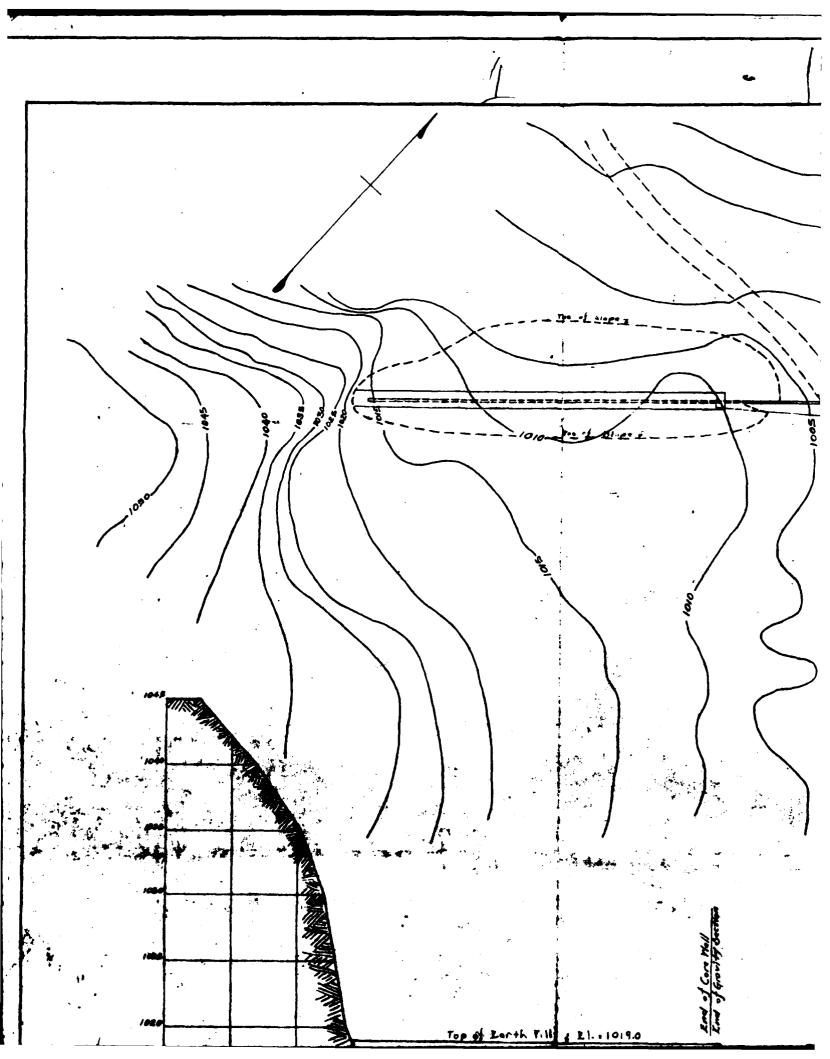
l

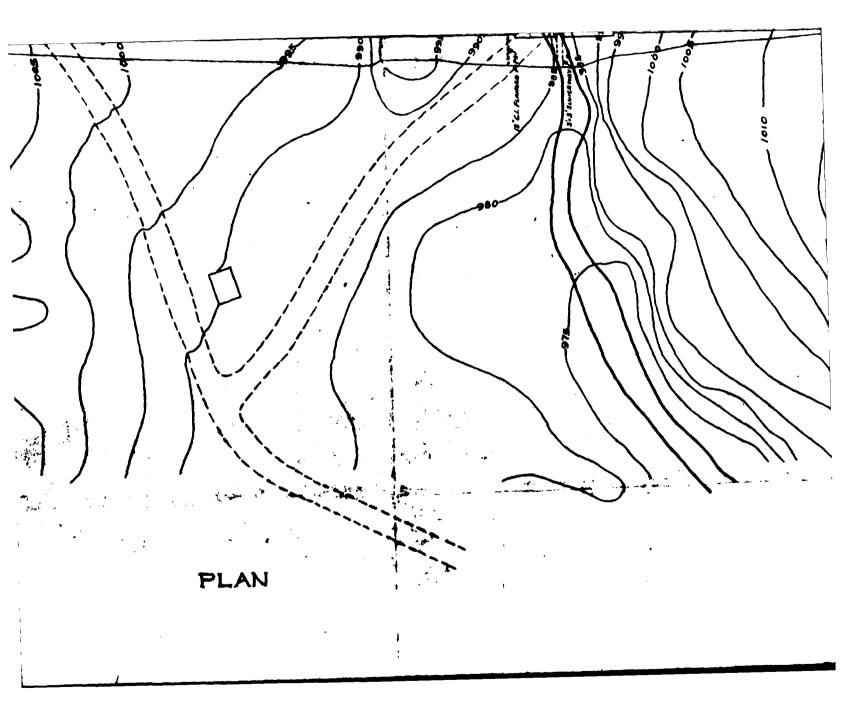
l

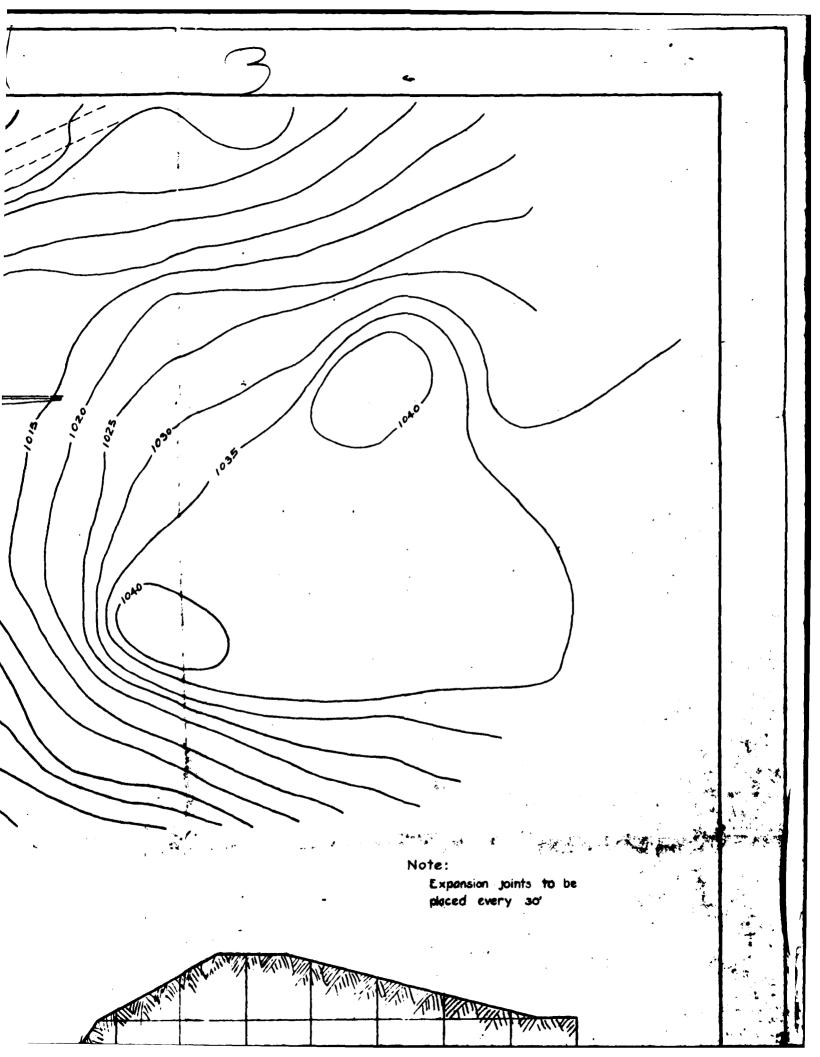
Į

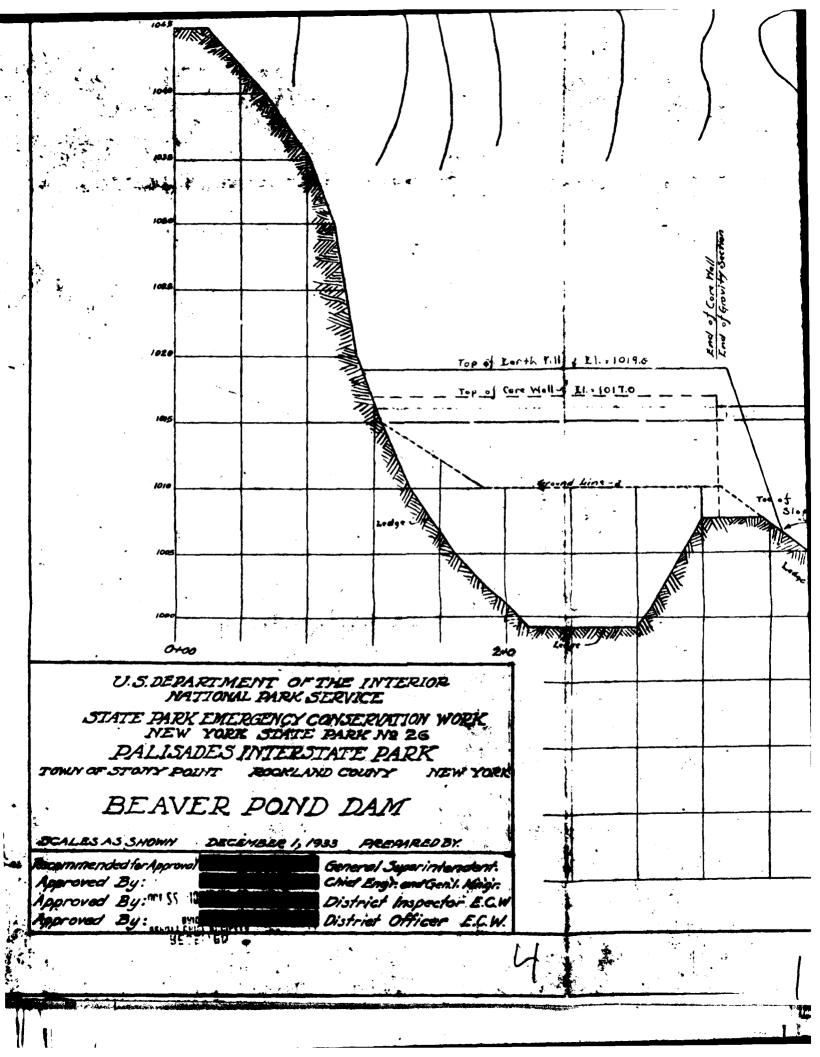

SCALE 1 Inch + 11 2 Miles

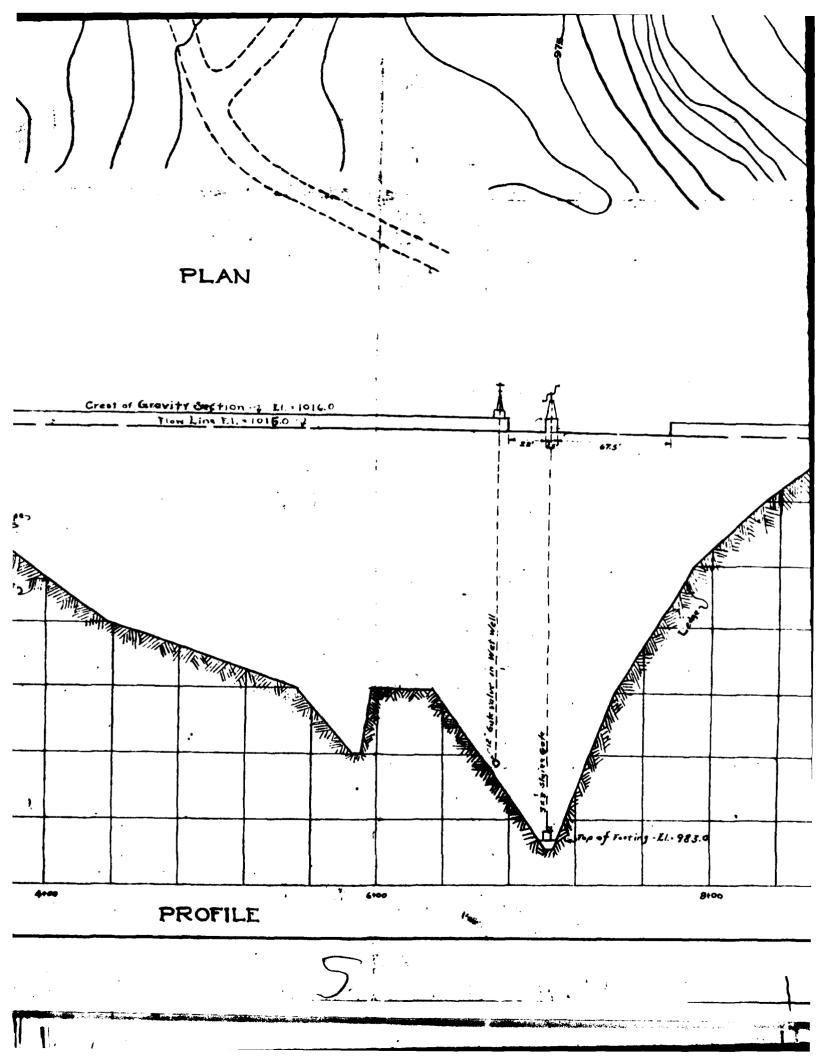

VICINITY MAP LAKE WELCH DAM

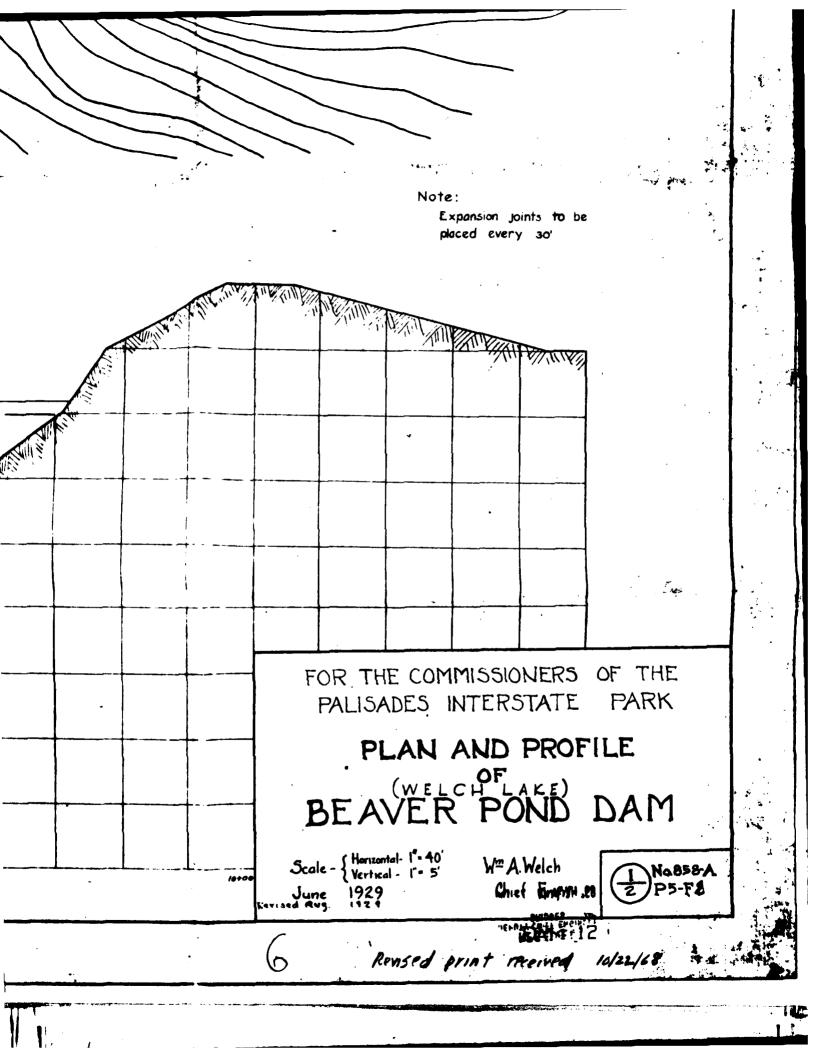

<u>ل ال</u>ا

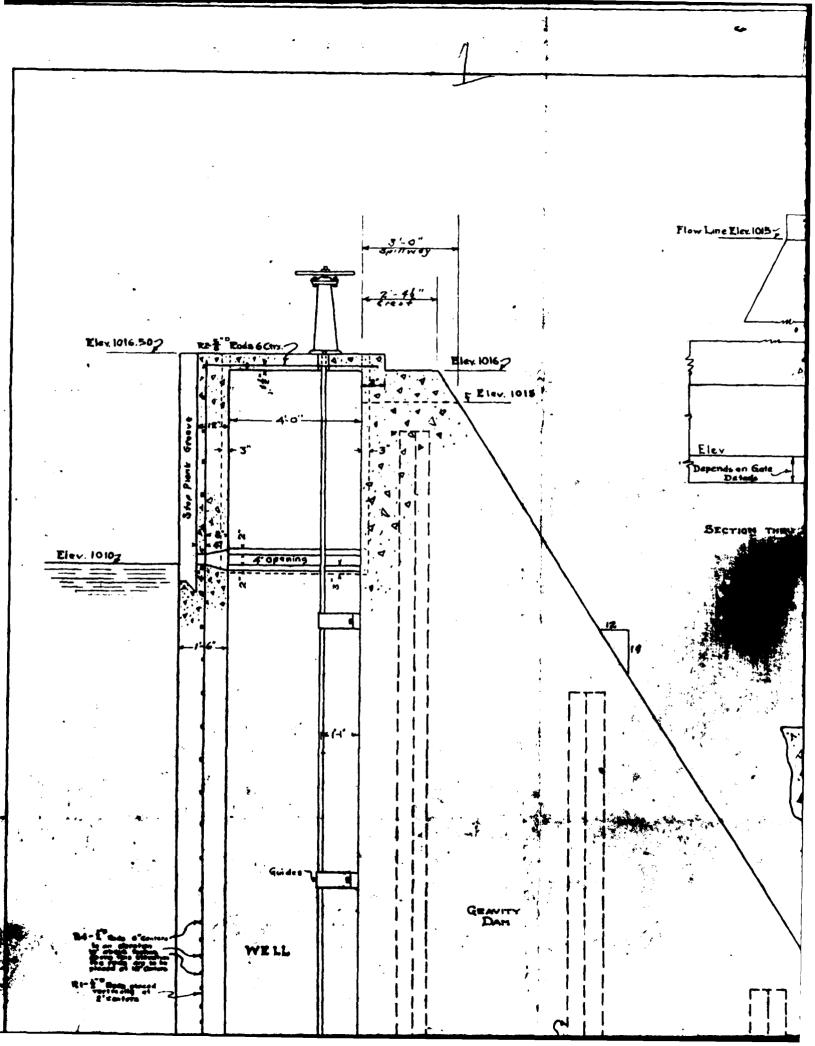

-

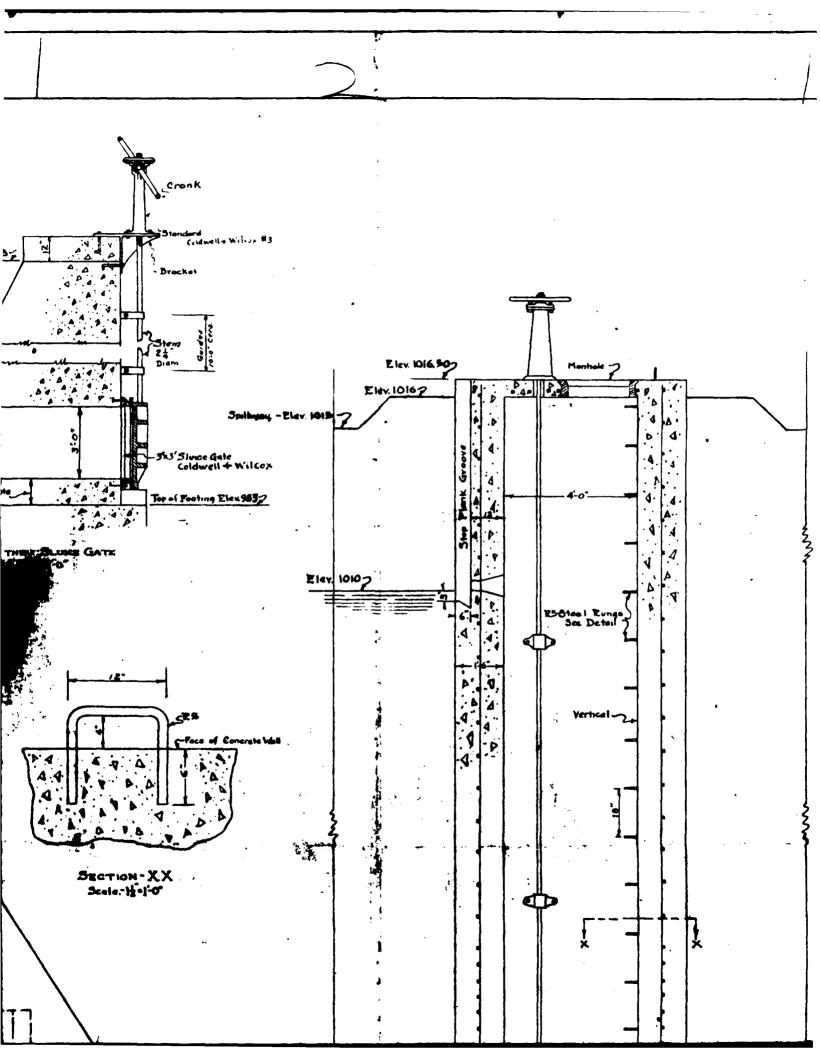


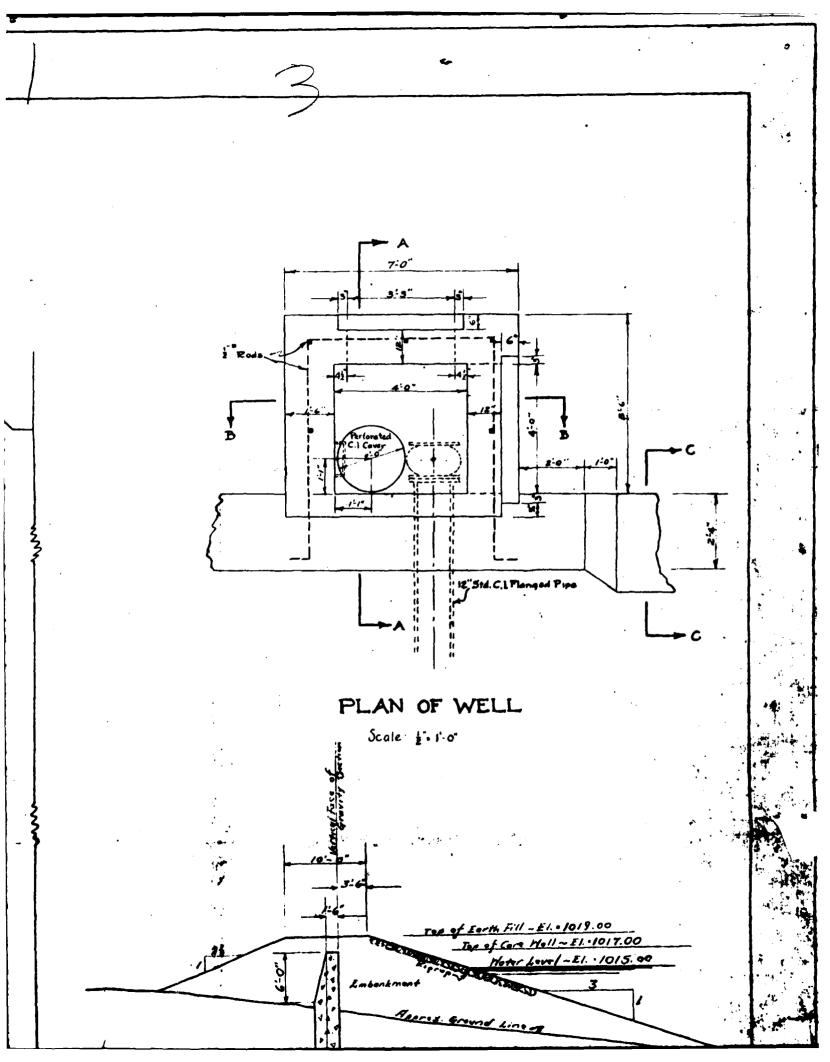


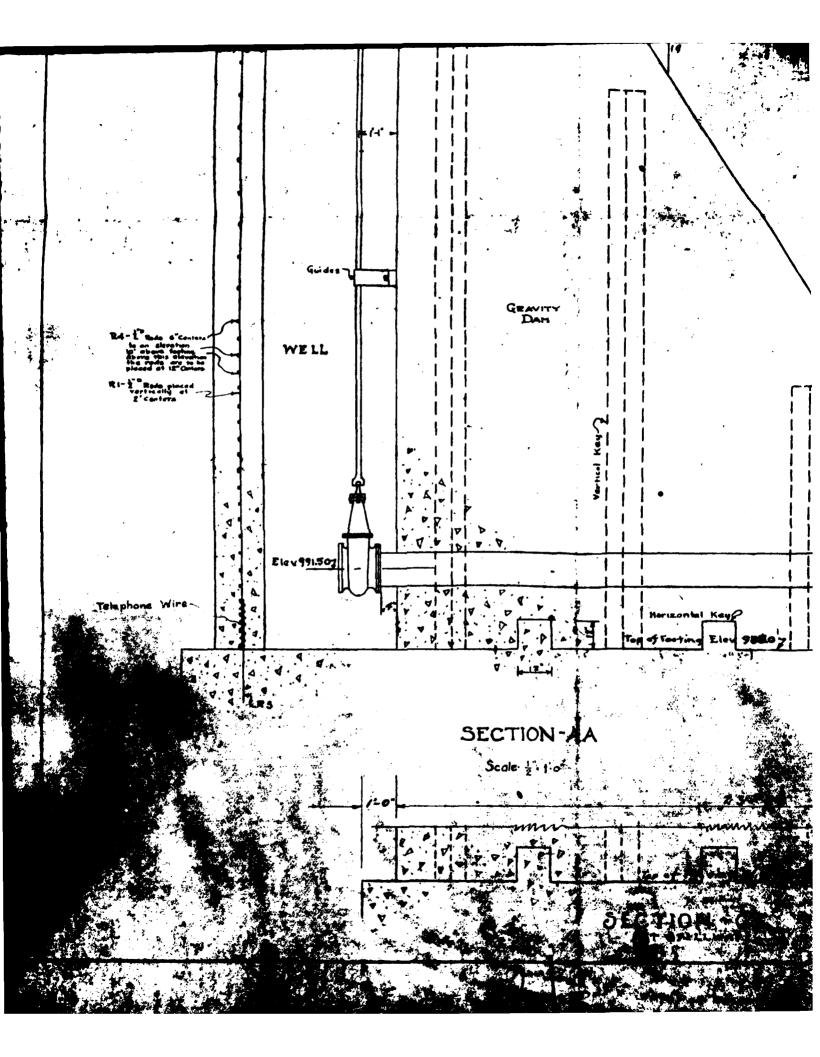

A CONTRACTOR OF A CONTRACTOR OF

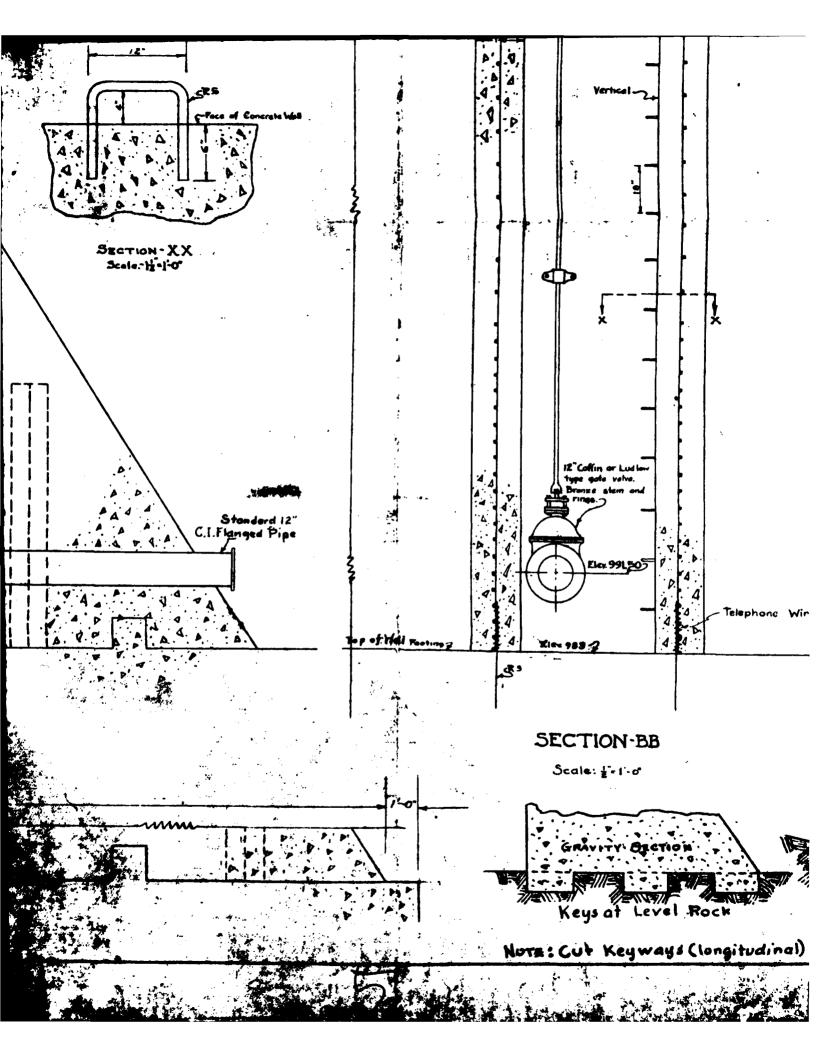


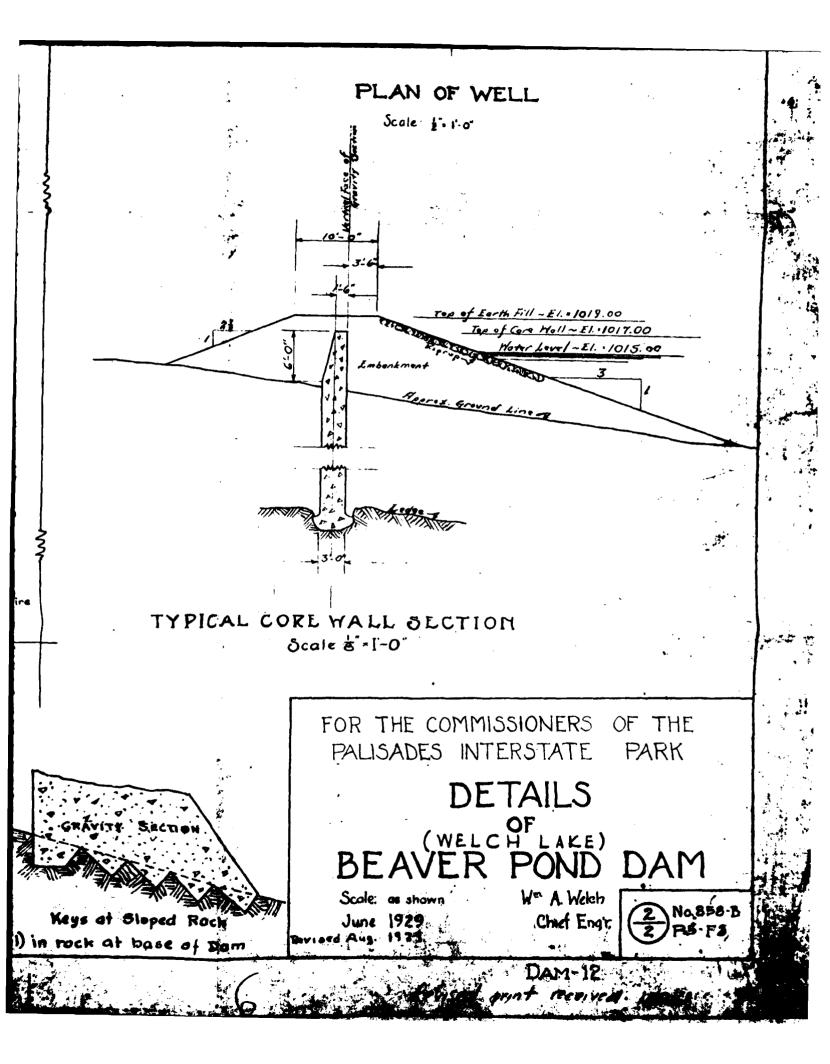


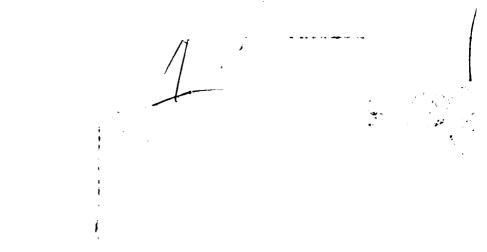


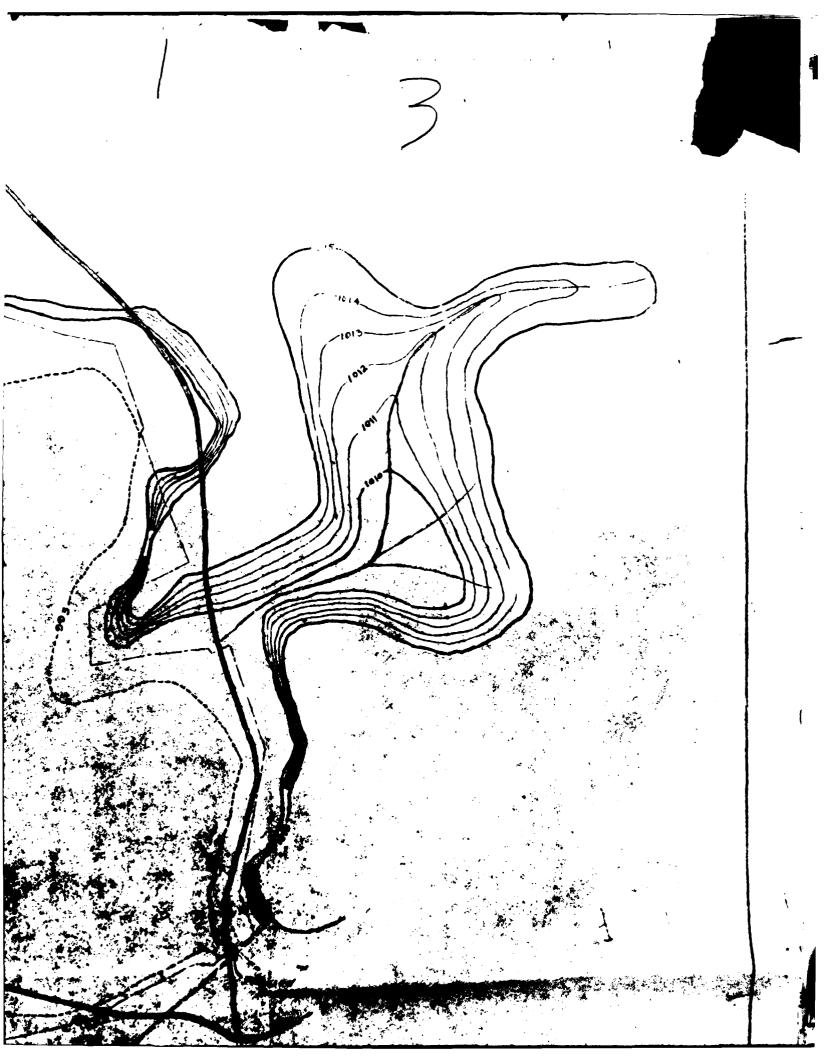












time Environs referred to U.S. Goo. ogicul Survey Datum.

C HP	APATIVE TO	BLE OF DAT	.4
	CONN. RIF.	ingeneration of the Control of the Control of the Control Sector of the Sector of the Sector of the Sector	DIFFERENCE
Crevetion of H.W.	1015	SSA	22 feet
Max HE sto of Dom		10 reet	22 fect
Copacity		164,50,000 gais	1,049,255,130 gat
Area Water Surface		91.5 G. res	124.5 acres
Average Depth	i	55 Frat	22 feet
Max. D-prin		13 14	22feet
Ares Land owned		108.3 Hacres	

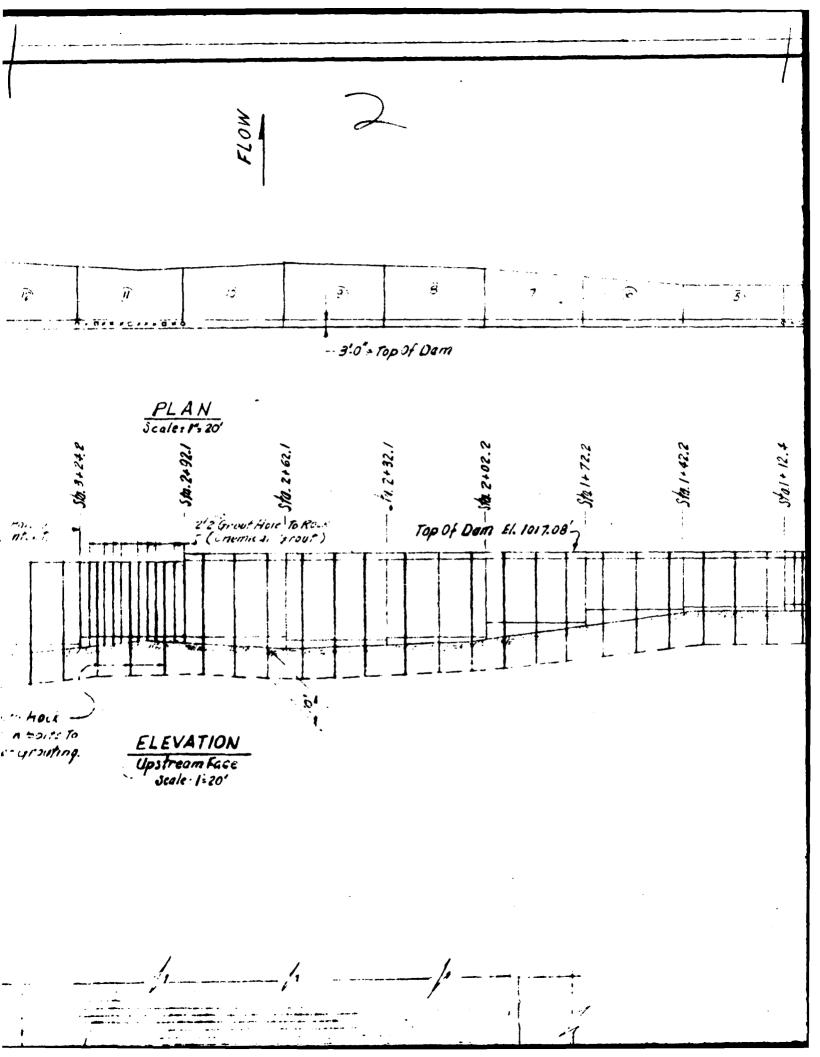
TOTUNEDO & SHEFERY

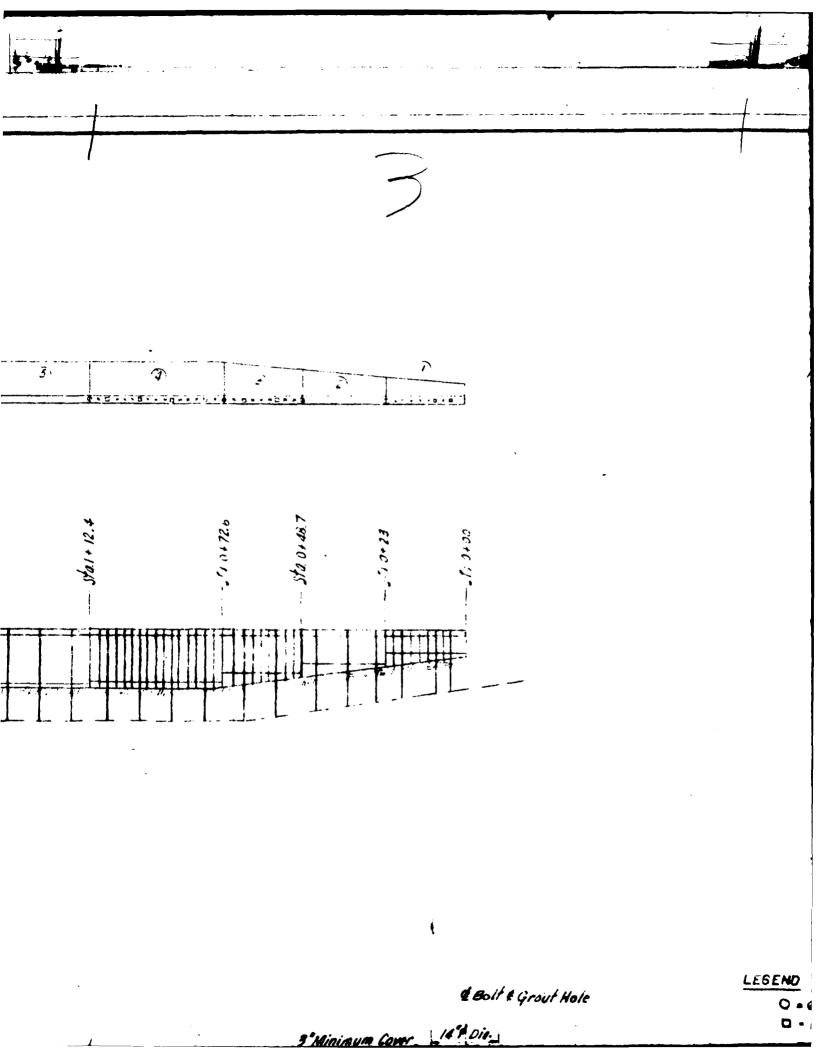
		1			
	2 million and a second				
	[[1.2	at C-
1	1 marsha				
M		· · · ·	J.		
FIRISTRA					
A LAND CONTRACTOR	A		.1013		
h i i i			· . -	÷.	
	ARK ARK	·			
ELNE LINE OF	INTERSTATE ARK			•	
THE				×	
CAPACI	TIFS RETNIEEN	NEN ELEVATIONS	1	• ·	
ELEV.	CAPACITIES (GALLONS)	COPA ITIES FROM ELEV. 10.5 0 GIVEN ELEV. GAI	-		
1015	68, 8 40, 310				•
1014		6E. 340, 310			•
1013	65,650,090				•
	62, 992, 820	134, 490, 400	1		
1012	60, 498, 240	19; 483 220	.4		
1011		257 981, 460		•	
1010	58, 196, 276				
	733,077, 400	3/6, '77, 730	· · ·		
993		99 255, 130	-		
Bettom	164,500,000	55 7 40	•	·	
			•		
				:	
	A second state of the second st		and the second second second	and a single of the second for the second for the second s	
					· *

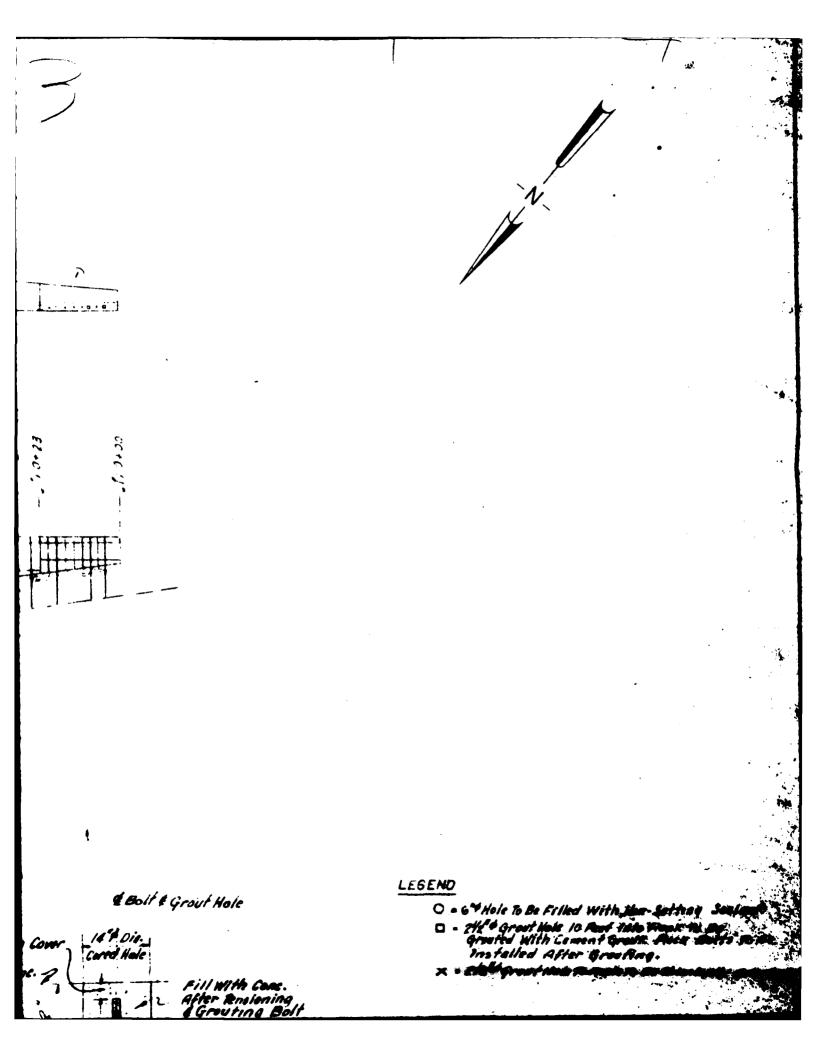
FOR THE COMMISSIONERS OF THE PALISADES INTERSTATE PARK

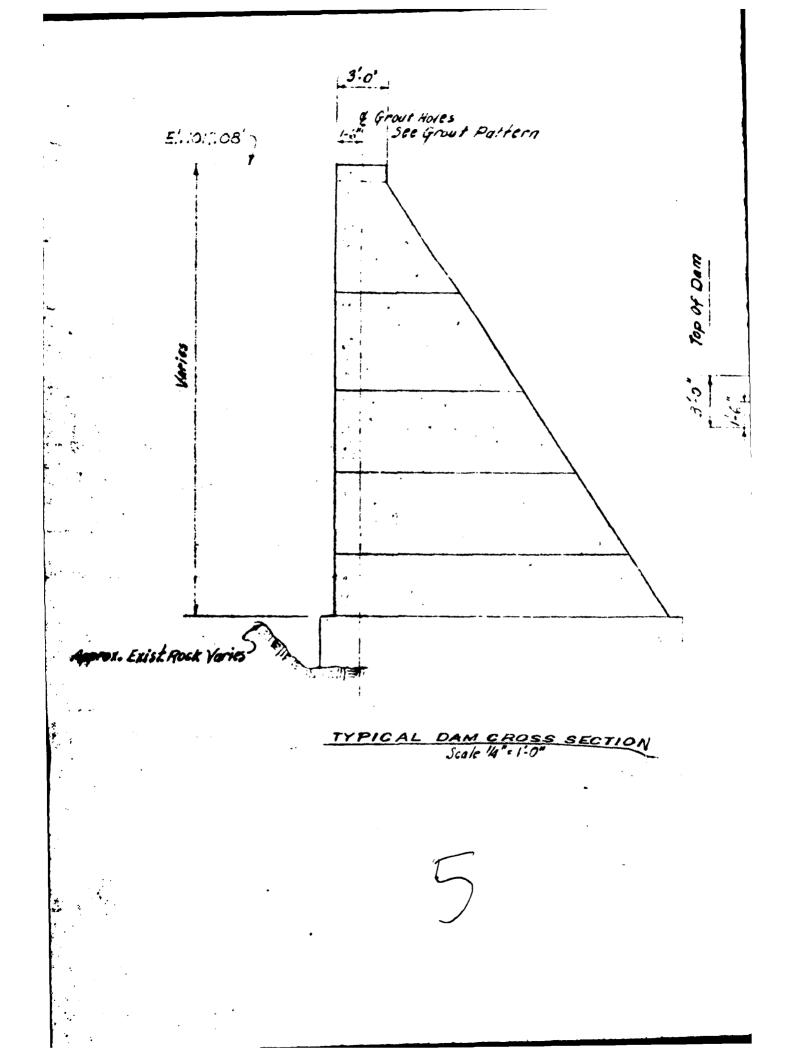
PROPOSED

LAKE AT BEAVER POND

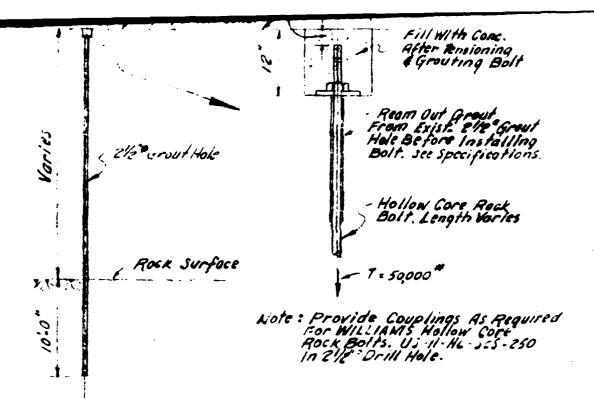

TOWNS OF HAVERSTRAW AND STONY FORT ROCKLAND COUNTY

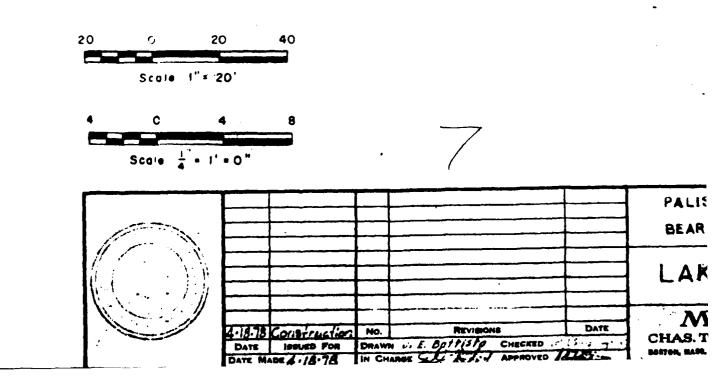

SCALE 1"= 200' Revised - FEB. 1928



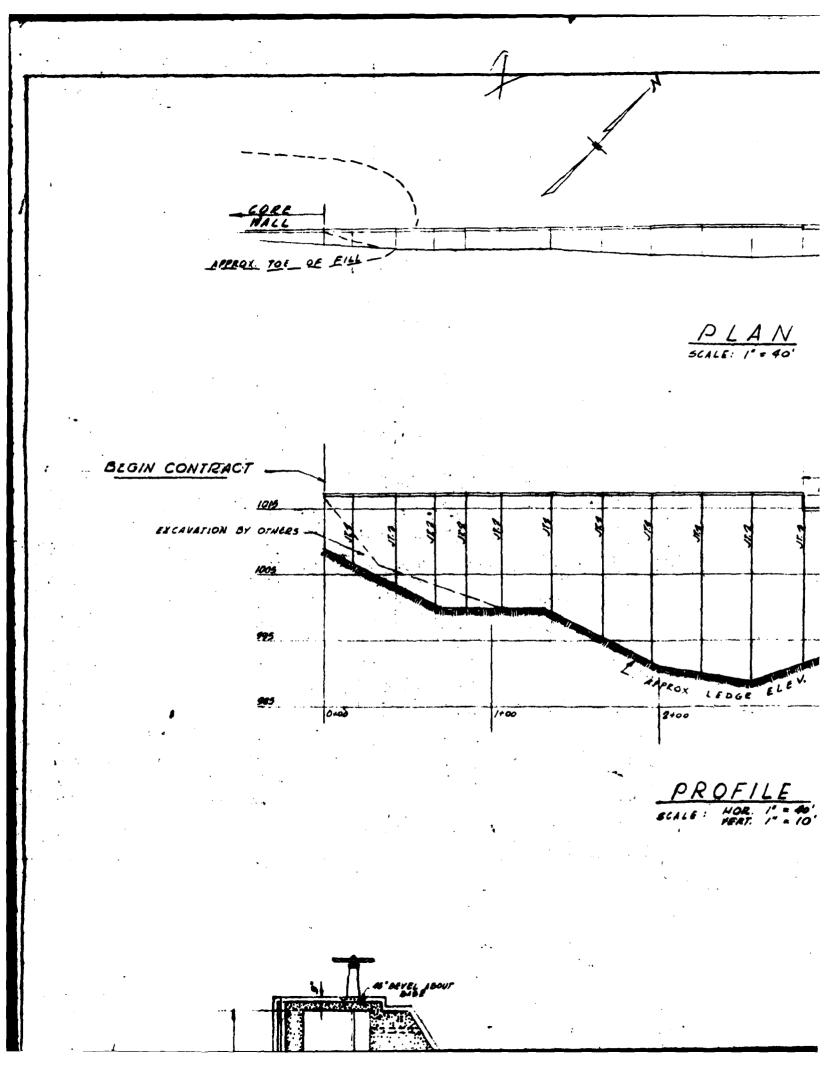

With A Weard A

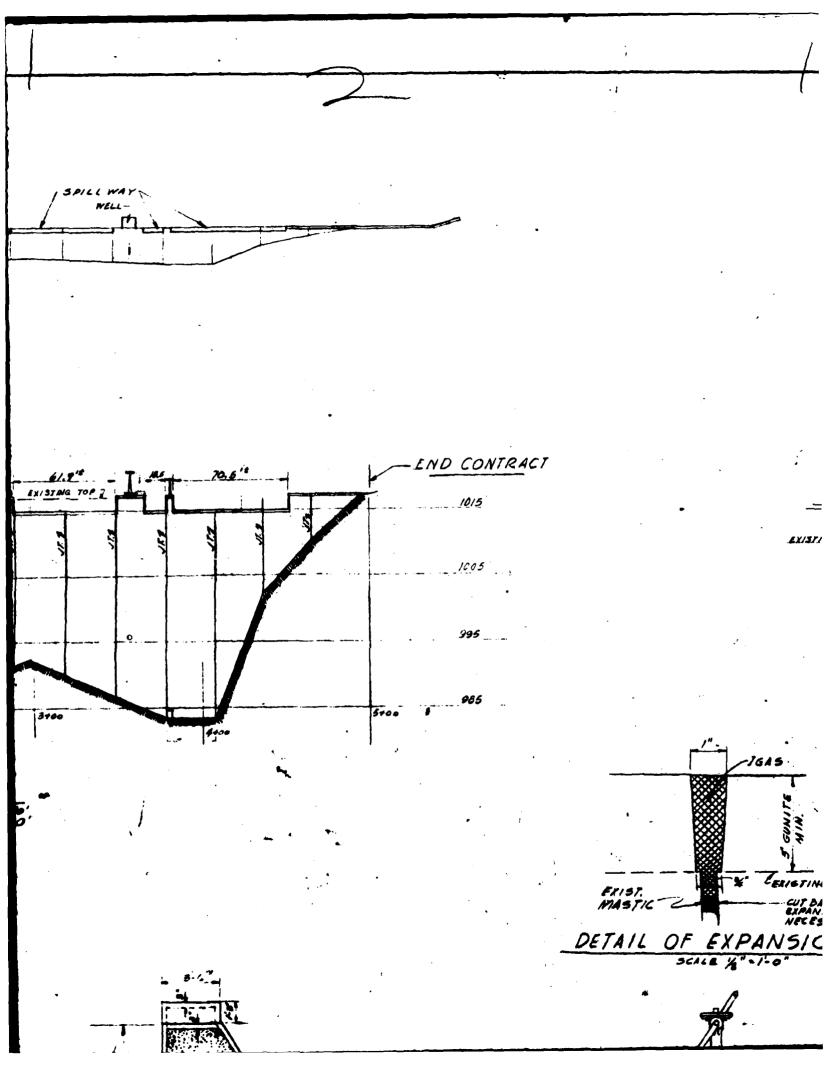
Ĩ1 IA ्र î; 2 113 Typer, a governo 4. . . ` • • . J'ta. 5 + 31.7 512.5+01.8 5.73 3 + 8.7.5 5.40. 41445 its 3 + 54 ... 54+7.7 124-14.7 5"Nok opillngy EL.10.500 SULFIT 1 1 1.1 3:0 & Grout Holes See Grout Pattern 51:017:08'T 11 Com

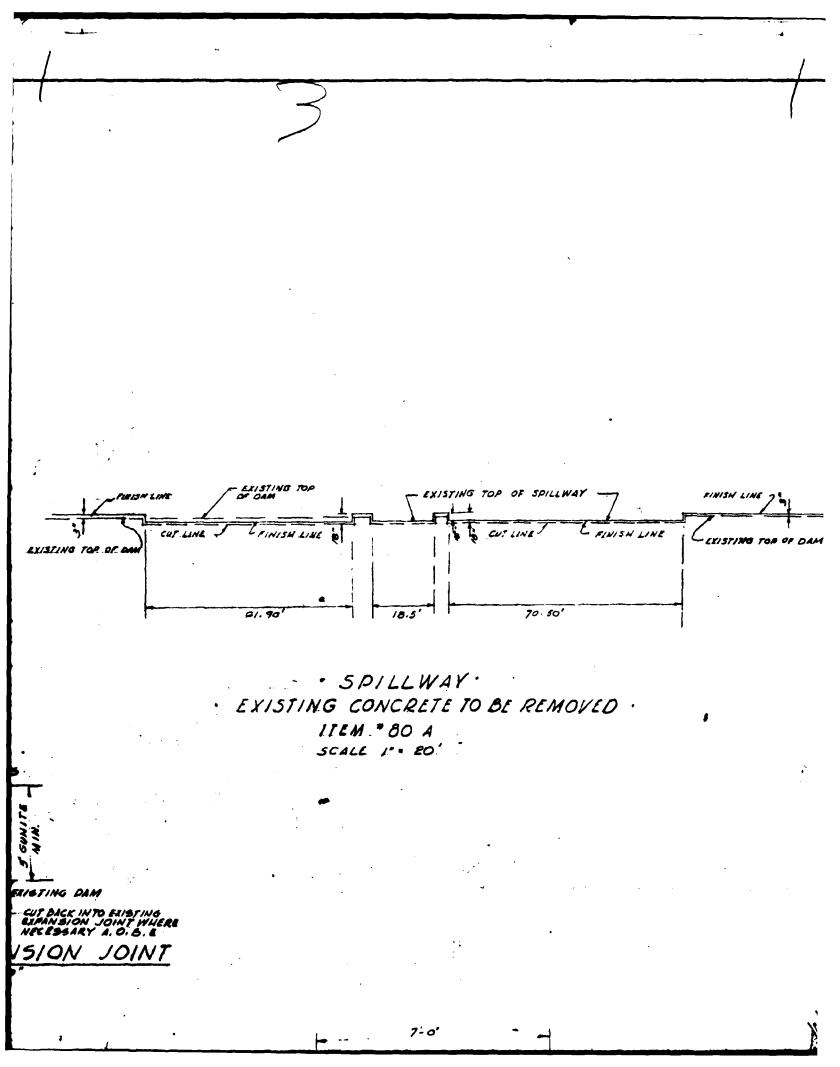


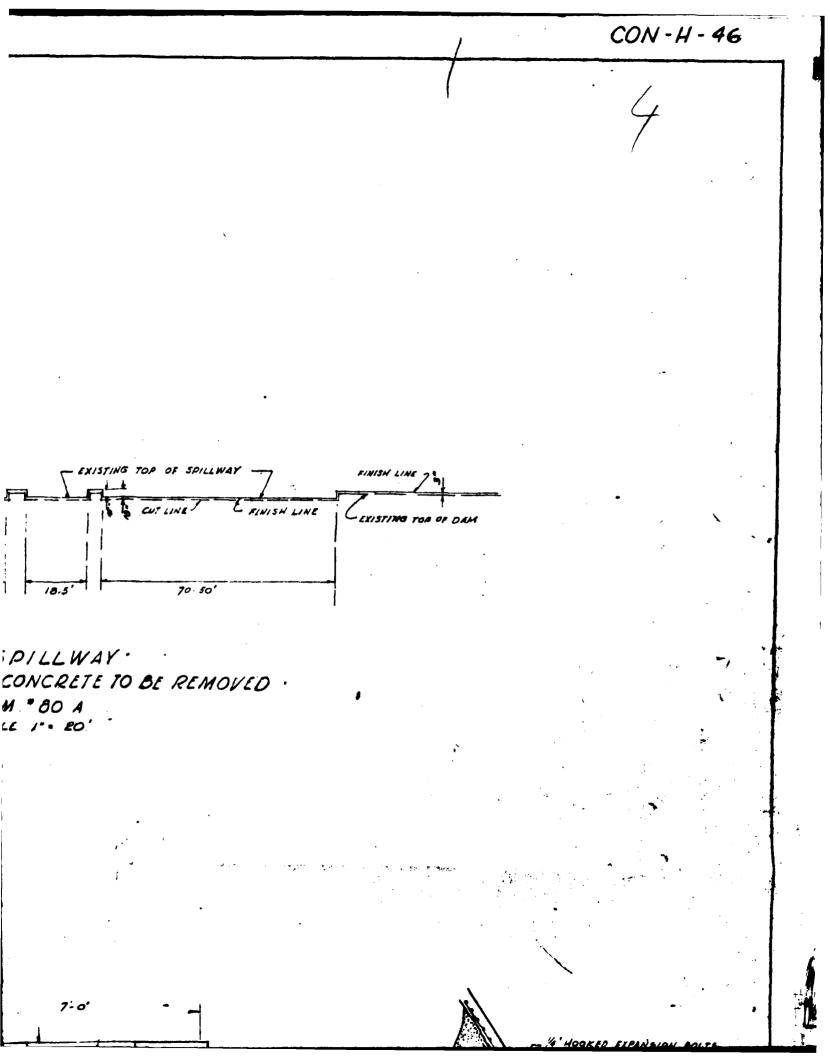


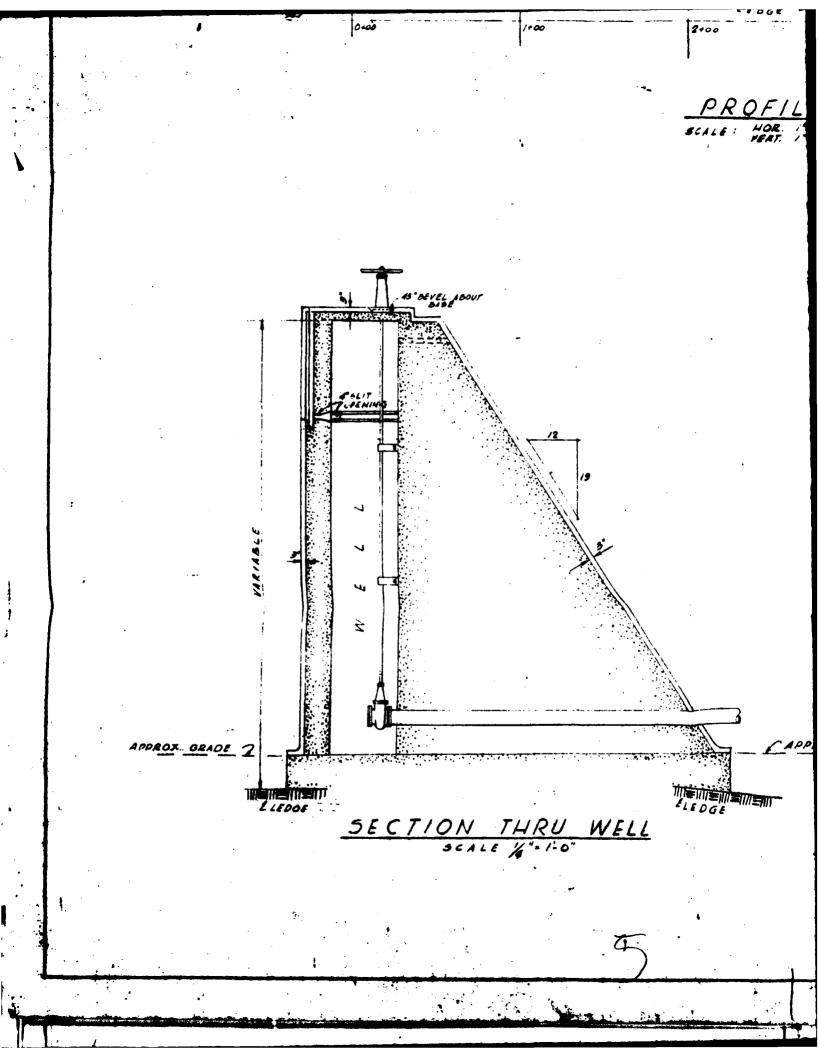
Upstream Face Scale: 1=20' · TYP 1.1 Contraction Jt. Contraction Jt. ------. Grout Holes -See Legend :6 TYP; 5:0 ** 5:0": 10-0* 10'.0 * 30:0'+ TYPICAL GROUT HOLE PATTERN BAYS D TO 19 Scola 4" = 11-0"

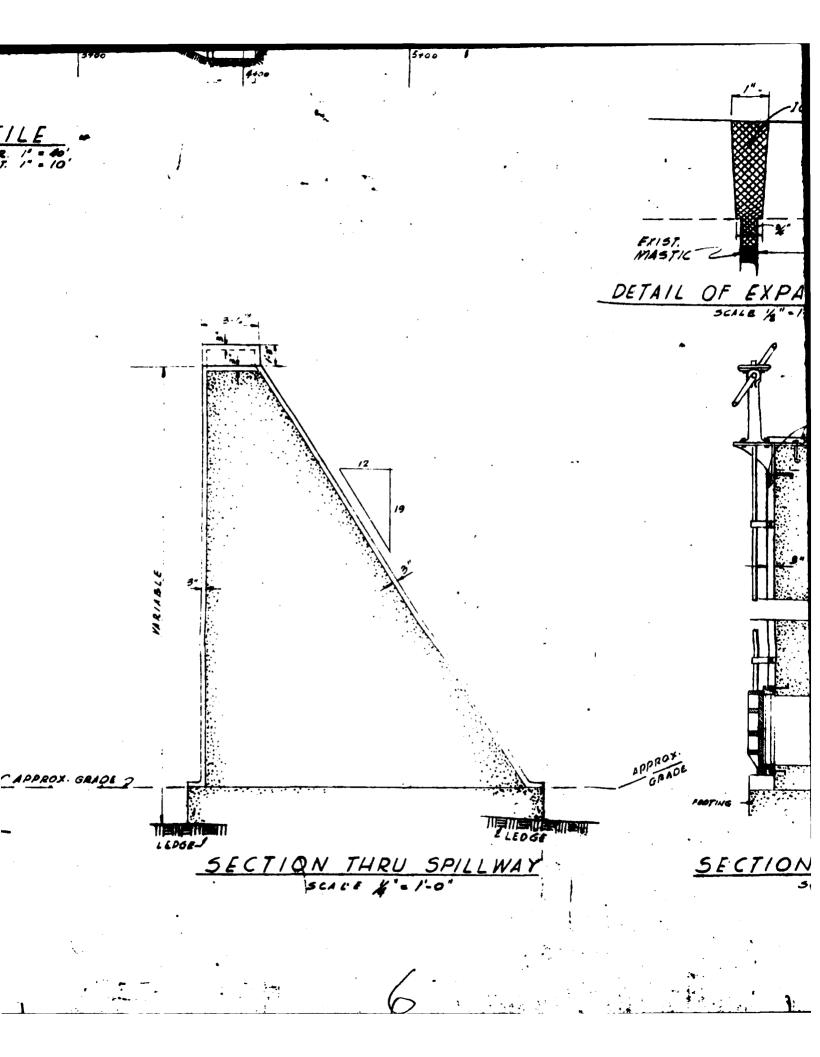


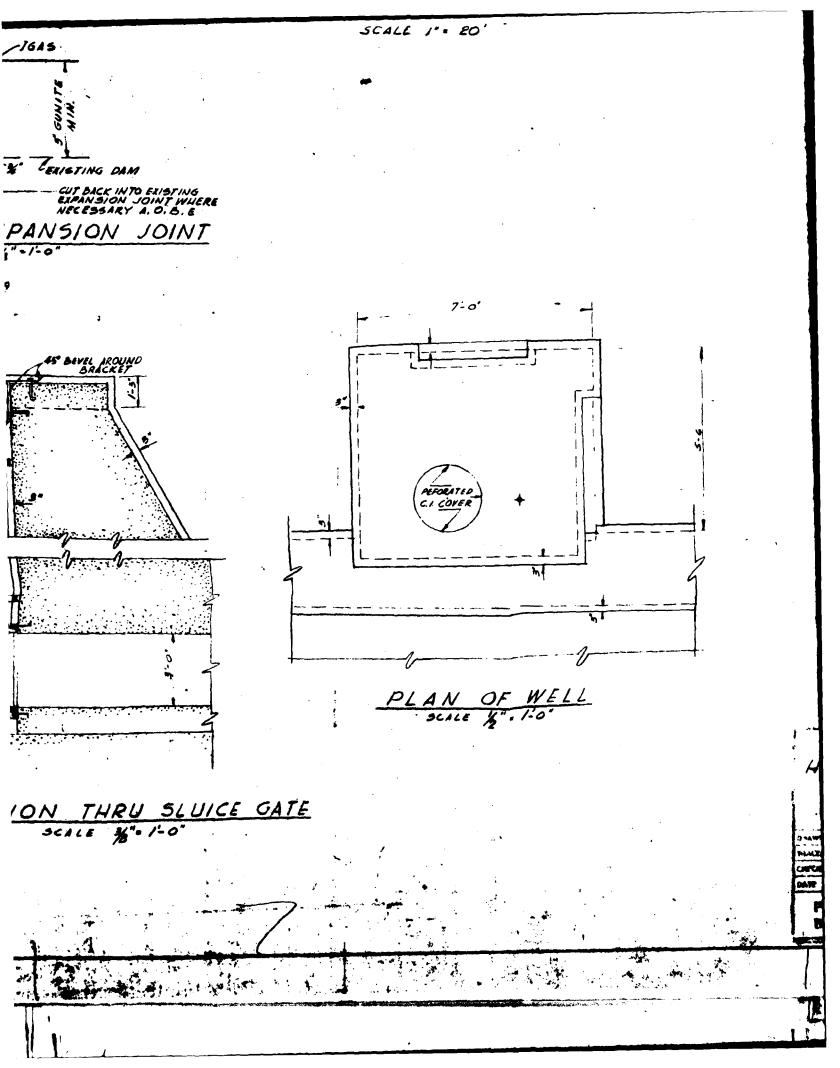

ROCK BOLT DETAIL

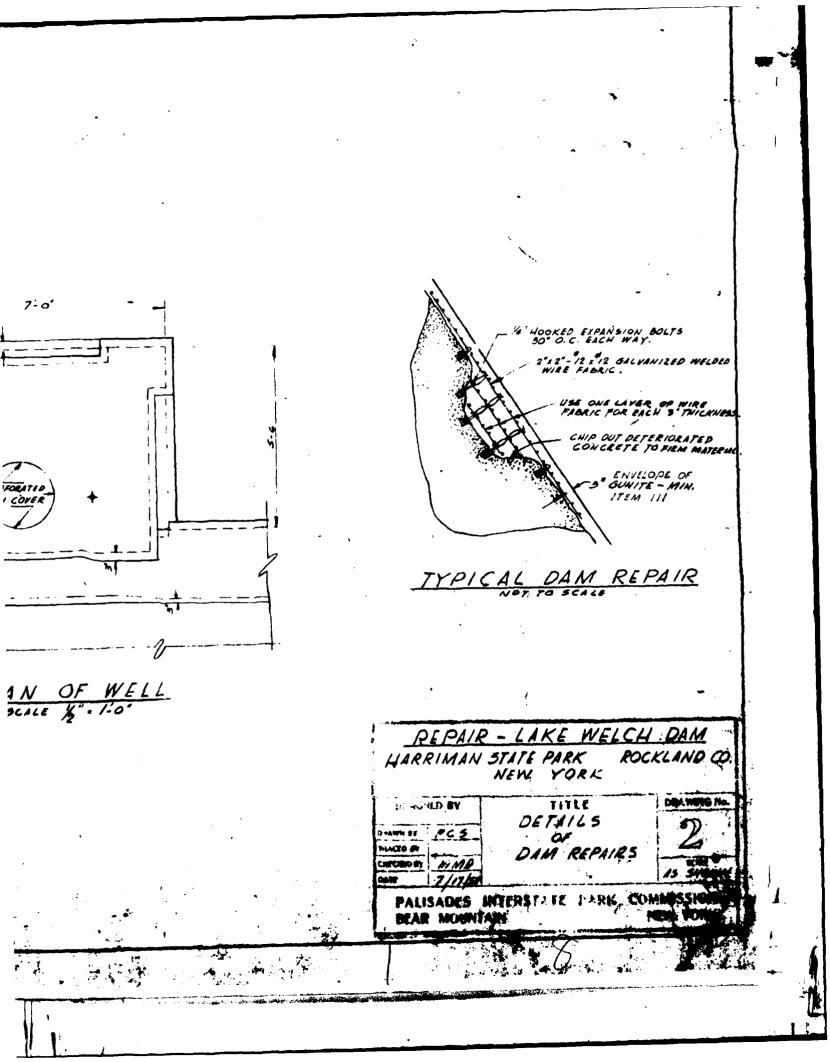


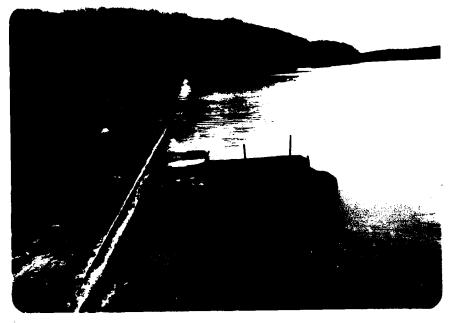

X . 2.


X + 212 Growt Hole To Prock to Be Chamically Growt Fill With Conc. After Ensioning Grouting Bolt Ream Out Grout From Exist. Ette Grout Hele Before Installing Bolt. see Specifications. - Hollow Care Rock Bolt. Length Worles 7 = 50,000 # Note: Provide Couplings As Required For WILLIAMS Hollow Core Rock Bolts. US-11-NL-SCS-250 In 212 Drill Hole. K BOLT DETAIL No Scale 40 RELID MAY 9, 1978 FILM DIANS









PHOTOGRAPHS

APPENDIX B

100

1

2. VIEW OF CREST OF SPILLWAY AND INTAKE STRUCTURE FOR HIGH LEVEL OUTLET.

3. VIEW OF DOWNSTREAM CHANNEL. NOTE VEGETATION.

VIEW OF DOWNSTREAM FACE OF SPILL-WAY AND HIGH LEVEL OUTLET. NOTE FLOW THROUGH OUTLET AND THE EXPOSED ROCK OF THE DOWNSTREAM CHANNEL.

1

VIEW OF DOWNSTREAM FACE OF DAM. NOTE SEEPAGE THROUGH CONSTRUCTION JOINT AND GUNITE SURFACE REMOVED.

1

6. VIEW AT DAM CREST. NOTE GUNITE SURFACE OVER THE CONCRETE.

/

7. VIEW OF OPERATING MECHANISM FOR SLUICE GATE. (RESERVOIR DRAIN)

8. VIEW OF CREST AND DOWNSTREAM FACE OF EARTH EMBANKMENT.(LOOKING RIGHT)

APPENDIX C

1

1

#___

VISUAL INSPECTION CHECKLIST

VISUAL INSPECTION CHECKLIST

• •	~			
1)	- Ba	sie	- Da	ta

\$____

1

General
Name of DamLAKE WELCH (FORNERLY KNOWN AS BEAVER PODD DAM
Fed. I.D. # <u>NY 283</u> DDC Dam No. <u>196-854</u>
River Basin HUDSON
Location: Town LETCHWORTH VILLAGE County ROCKLAND
Stream Name MINISCEONGO CREF.K
Tributary of HUDSON RIVER
Latitude (N) <u>41° 13' 44"</u> Longitude (W) <u>74° 4' 20"</u>
Type of Dam CONCRETE GRAVITY & EARTH WITH CENTRAL CONCRETE
Hazard Category HIGH
Date(s) of Inspection <u>APEIL 24, 1980</u>
Weather Conditions 75° SUNNY
Reservoir Level at Time of Inspection 1015.1 Ft. (MSL)
Inspection Personnel TONY DOLIGMASCOLO AND JYOTINDER PATEL
Persons Contacted (Including Address & Phone No.)
ROBERT SANTORD SENIOR PARK ENGINEER, PALISADES
INTERSTATE PARK COMMISSION, ADMINISTRATION BUILDING,
BEAR MOUNTAIN, NY IDAIL, PHONE ND. (914) 786-2701
History:
Nistory: Date Constructed <u>1929-1937</u> Date(s) Reconstructed <u>1959 and 1978</u>
Date Constructed 1929-1937 Date(s) Reconstructed 1959 and 1978
Date Constructed 1929-1937 Date(s) Reconstructed 1959 and 1978 Designer MR. 101 A 1911 CH

-

4.000

a.	Char	acteristics .
	(1)	Embankment Material
	(2)	Cutoff Type NONE
	(3)	Impervious Core <u>Concrete Corewall Located in The</u> <u>CENTER OF EMBANKMENT</u>
	(4)	Internal Drainage System <u>None</u>
	(5)	Miscellaneous
b.	Cres	t
	(1)	Vertical Alignment <u>400D</u>
	(2)	Horizontal Alignment STRAIGHT AND ALIGNMENT GOOD
•	(3)	Surface Cracks NONE OBSERVED
	(4)	Niscellancous
c.	Upst	cream Slope
	(1)	Slope (Estimate) (V:II)
	(2)	Undesirable Growth or Debris, Animal Burrows
	(3)	Sloughing, Subsidence or Depressions NODE OBSERVED

(5)	Surface Cracks or Novement at Toe NOVE OBSERVED
(0)	
Dowr	nstream Slope
(1)	Slope (Estimate - V:II)
(2)	Undesirable Growth or Debris, Animal Burrows <u>LARGE BUSHES AN</u>
	A FEW SAPLING SIZE TREES.
(3)	Sloughing, Subsidence or Depressions NOVE OBSERVED
(4)	Surface Cracks or Movement at Toe NONE OBSERVED
(5)	Seepage NOUE OPSERVED
(6)	External Drainage System (Ditches, Trenches; Blanket) <u>Nor</u> <u>APPLICAPLE</u>
(7)	Condition Around Outlet Structure <u>NOT APPLICABLE</u>
(8)	Secpage Beyond Tee NONE ORSERVED
Abut	ments - Embankment Contact (SOUTHERLY) NORTHERLY CONT IS WITH CONCRETE GRAVITY DAM

.

.

1

いなないので、

An office and a second se

	E ORGERVED
Drainage System - Nowź a. Description of System	
 a. Description of System	
<pre>b. Condition of System</pre>	
b. Condition of System	
b. Condition of System	
c. Discharge from Drainage System 	
Instrumentation (Momumentation/Surveys, Obse Piezometers, Etc.)	
	rvation Wells, Weirs,
**************************************	· · · · · · · · · · · · · · · · · · ·
· •	

*

5) <u>Reservoir</u>

えっ

	a.	SLOPES WITHIN VICINITY OF THE DAM RESERVOIR SLOPES
	ь.	ARE STABLE AND NO INCIDENCE OF ADVERSE CONDITION REPORTED TO THE OWNER Sedimentation NO EVIDENCE OF EXCESSIVE SEDIMENTATION
	c.	OBSERVED. LAKE WATER RELATIVELY OLEAR IND FLOATING DEERIS OBSERVED Unusual Conditions Which Affect Dam
6)	Are	a Downstream of Dam
•)		Downstream Hazard (No. of Homes, Highways, etc.) WEICH CAMP SITE;
		SEVERAL HOMES; STATE PT. 2.10 AND PALISADES INTERSTATE PARKWAY.
	b.	Seepage, Unusual Growth No SEEPAGE OBSERVED, NO UNUSUAL
		GROWTH
	c.	Evidence of Movement Beyond Toe of Dam <u>NONG OBSERUED</u>
	d.	Condition of Downstream Channel CHANNEL IS ALSO SPILLWAY CHANNEL WHICH IS OVERGROWN WITH TREES AND OTHER VEGETATION. (ALSO SEE
·7)	<u>Spi</u>	TEM & 7. Llway(s) (Including Discharge Conveyance Channel)
		SPILLWAY IS BROAD CRESTED WEIR AND IS PART
		OF CONCRETE DAM.
	a.	GeneralTHE ODIGIDAL SPILLWAY IDAS REHABILITATED
		BY APPLYING A GUDNE SUBFACE
	b.	Condition of Service Spillway GENERALLY IN GOOD
		CONDITION. FEW FLET OF GUNITE, IS NOT EXISTING
		ALONG THE CREET OF THE SPILLWAY (SEE PHOTOGRAPH)
•		
-		

	c.	Condition of Auxiliary Spillway <u>Not APPLICABLE</u>
	•	
	d.	Condition of Discharge Conveyance Channel IN VICINITY OF DAM THE CHANNEL
		BANKS AND FLOOR OF CHANNEL IS ROCK AND IS
		IN GOOD CONDITION . OVERTIBULON WITH TREES AND OTHER
		VEGETATION2.
8)	<u>Res</u>	ervoir Devel HIGH LEVEL - 3'X 3' SLUICE WAY U
		Type: Pipe 2 Conduit Other Sluceway
		Material: Concrete Metal Other
		Size: AS NOTED APOUE Length
		0 984.0 0 984 - Invert Elevations: Entrance 0 1010 Exit 2 991.5 ±
•		Physical Condition (Describe): Unobservable 040 ucpt no.
		Material:
		Joints: Alignment
		Structural Integrity: CONCRETE WALLS OF SLUICEWAY ARE
		IN GOOD CONDITION.
•		Hydraulic Capability:
		Means of Control: Gate 2 Valve 1 Uncontrolled
		Operation: Operable (1) Inoperable (2) Other
		Present Condition (Describe): CONTROL FOR HIGHLEVEL IS
		NOT EXISTING EXCEPT THE STEM; SLUICEGATE CONTROL
		IN GOOD CONDITION AND REPORTED OPERABLE

.

.

,

•

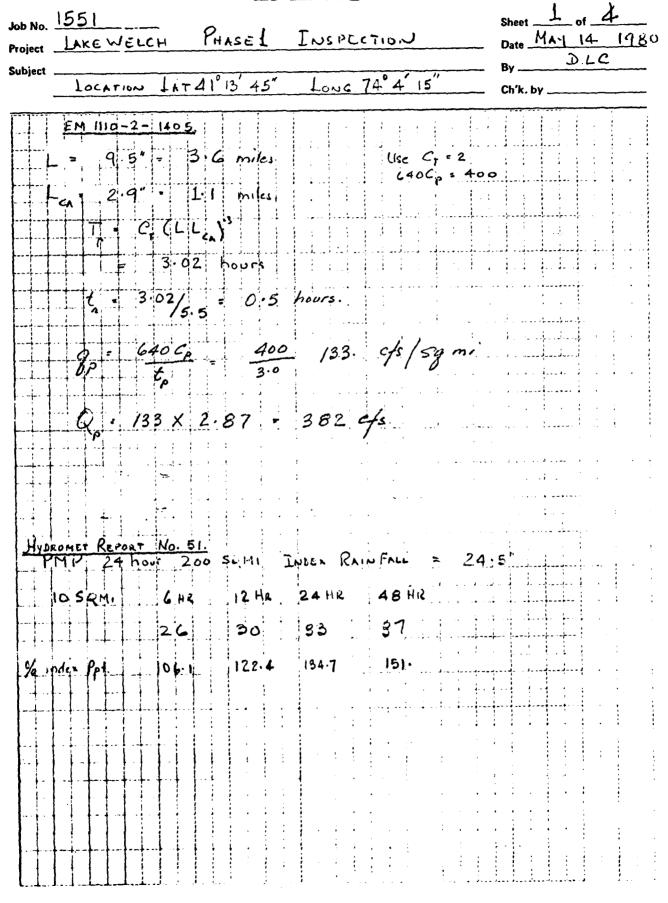
77 200

9) <u>Structural</u>

a.	Concrete Surfaces OPIGINAL CONCRETE DAM RESURFACED
	WITH GUDITE (BINCHES). MOST OF WHICH HAS BEEN
	REMOVED AT DOWNSTREAM FACE. THE CONDITION
	EXPOSE CONCRETE IS GOOD.
b.	Structural Cracking NONE OBSERVED
c.	Movement - Horizontal & Vertical Alignment (Settlement) Nove
d.	Junctions with Abutments or Embankments <u>NOEUEDEDLE</u>
	OF PROBLEMS
	·
e.	Drains - Foundation, Joint, Face NONE

f.	Water Passages, Conduits, Sluices <u>2 OUTLETS</u> — HIGH LEVEL
	OUTLET & LOW LEVEL OUTLET ARE 12 Inch CT PIPE
	ADD BET SQUARE SLUICEWAY, THE CONDITION OF
	HIGH LEVEL OUTLET UNDETERMINED; SWICEWAY IN
. g.	Secrage or Leakage
	MINOR SEP. PAGE OBSERVED AT THE
	MONOLITH & CONSTRUCTION JOINTS.
	<u></u>
•	******
	•
	•

OAKUM	TO PPENTENT	SCEPAG	<u>E. (</u>	
	is rough			
	TS & VISUAL			
DAM				<u></u>
Abutments	NO EVIDENC	F OF 4	SEEPAGE	
Control Gates	HIGHLEVEL	OUTLET .	- INOPERAL	BLE
	LOWLEVEL	OUTLET	IS REPORTE	D OPERABI
6 •				<u></u>
Anneuch 5 Outil			er	
Approach & our	et Charnels	Non	5	
		. Nou		
•				······································
· · · · · · · · · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
Energy Dissipat		etc.)	NONE	
Energy Dissipat	ors (Plunge Pool,	etc.)	NONE Dutlet ; s	STRUCTURE
Energy Dissipat	rors (Plunge Pool, res <u>FOR Hila</u>	etc.)	NONE Dutlet ; s	STRUCTURE
Energy Dissipat	rors (Plunge Pool, res <u>FOR Hila</u>	etc.)	NONE Dutlet ; s	STRUCTURE
Energy Dissipat	rors (Plunge Pool, res <u>FOR Hila</u>	etc.) HIEVEL C WATER	NONE Dutlet ; =	STRUCTURE
Energy Dissipat	es For Hild	etc.) HIEVEL C WATER VISUAL II	NONE DUTLET ; S	THAT SPILL
Energy Dissipat	tors (Plunge Pool, tes FOR HIL E.D FULL OF E.D FULL OF	etc.) H LEVEL C WATER VISUAL II OF STAN	NONE DUTLET ; E NDICATIONS BILITY PROF	THAT SPILL
Energy Dissipat	tors (Plunge Pool, tes FOR HIG ED FULL OF HERE ARE NO DY EVIDENCE	etc.) H LEVEL C WATER VISUAL II OF STAN	NONE DUTLET ; E NDICATIONS BILITY PROF	THAT SPILL


APPENINIX D

HYDROLOGIC DATA AND COMPUTATION

}

1

TAMS

TAMS

Job No. 155 Project LAK Subject	E)	WELCH	PHASE STORNGE	L INSPEC RELINION	:TION -	Sheet 2of 4 Date MAY 14 1980 By DLC Ch'k. by
E L 98 6	А Н	Area O	Mean Akea	L Storage	STORAGE.	(* Ref 5)
1010	5	186 218	202	1010 221 5	3444 * 4454	
1016	1 2	225 238	221.5 231.5	463	4675·5 5138·5	1016.5 4791.3
1020	2	251	244.5	489	5627.5	

Torne Surcharge Storage 5630 - 4450 + 1180 Acrefect ~ 7.7 inches of R/O

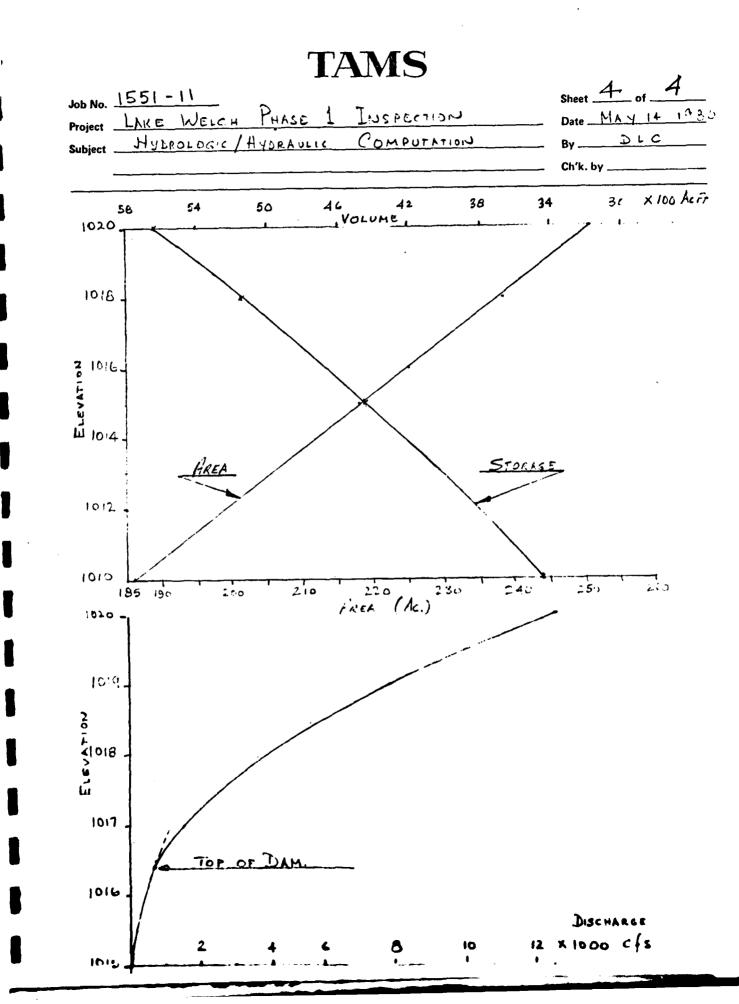
X

CROSS

SECTIONS BELOW DAM (Minisceongo, Creek)

400ft		26+00		52+00		76+00	
3 130 3 280 3 380 3 385 3 4 50 3 5 60 3 5 60 5 6 30	02.0 000 80 975 975 970 950 000 000 000	1120 1180 1250 1370 1440 2000 2000 2000 2000 2000 2000 200	960 940 917 917 950 950 940 960	720 700 680 640 640 640 700 720	8760 8820 8860 8930 9000 9120 9050 9330 9400	7500 7680 8060 8100 8100 8100 8210 8210 8270	540 540 500 500 500 505 505 500 505 500 500

TAMS


Job No. 1551 - 11	- 1		Sheet $3 - 4$
Project LAKE WELCH	PHASE 1	LNSPECTION	Date MAY 14 1980
Subject	•		ByDLC
		/	Ch'k. by

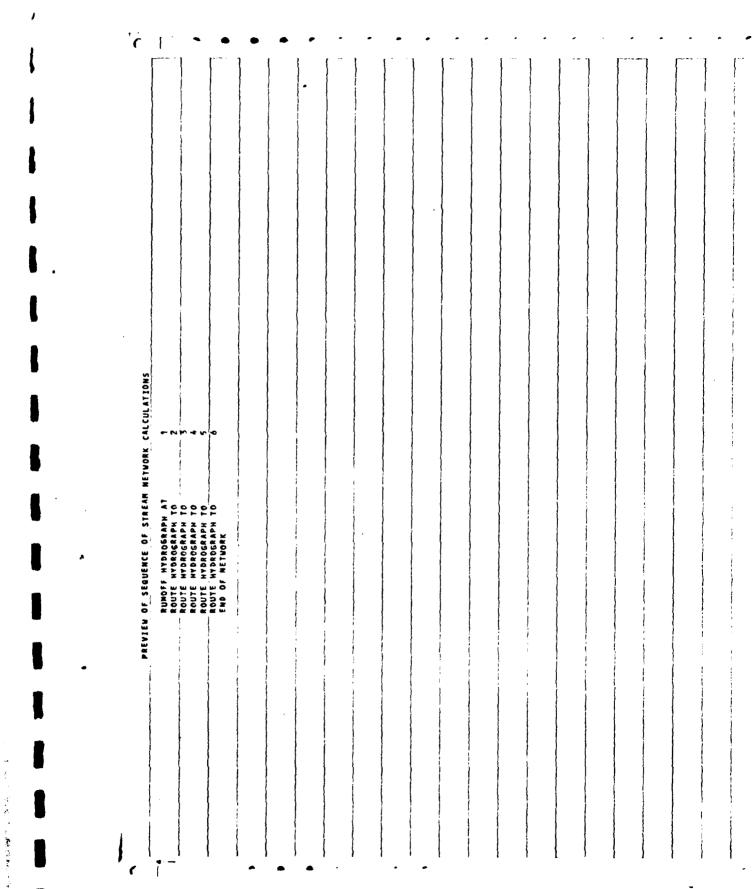
· ·

BROND CRO SPILLWA		тн 15	2.01	DAM 101 DAM 788 TOP 101	
EL H	A	H	Q L= 411	Qe	QT
1015	0		- 1u		0
1016 1016:5 1017	400 780 1130	0.5	381		200 730 1510
1019	3190	2.5	4263		7450
1020	4460	3.5	7062	590	12110

TOP OF GRAVITY DAM 1016.3

FL	A	5	D -
981	0	Ø	Ø
1015	218	4454	D
1016.5	228	4191.3	730
1017	232	4907	1510
1019	245	5383	7450
1020	251	5627.5	12110

100 0 100 0 50 0 0 1 1 5 1 5 1 1 0 1 24.5 106.1 122.4 13 1 24.5 106.1 122.4 13 24.5 106.1 122.4 13 1 881 1015 1017 14 1 881 1015 1017 14 1 881 1015 1017 15 1 881 1015 1017 15 1 881 1015 1017 15 1 881 1015 1017 15 1 881 1015 1017 15 1 881 1015 1017 15 1 1015 1016 15 1017 1 1015 1016 15 1017 1 1015 1016 15 1017 1 1015 1016 15 1017 1 1015 1016 15 1017 1 1015 1016 1000 1000 1 1 1016 106 1 <th></th> <th></th> <th></th> <th>TAMS ENGIN</th> <th></th> <th>ACHITECTS</th> <th></th> <th></th> <th></th> <th></th> <th></th>				TAMS ENGIN		ACHITECTS					
1 1 2 10 1 2 10 1 2 10 1 2 10 1 2 10 1 2 10 1 12 14	n			30		0	•		0	0	0
1 URT WYDGGAAPA AND TAFLOU WYDGGAAPA COMPUTATION 15 15 1 24.5 106.1 122.4 134.7 151 2 1 4 3.02 0.653 3 3 151 2 1 4 3.02 0.653 3 3 151 2 15 1 4 1 105 1017 1017 1017 1017 1017 1 1 1 105 1510 730 1210 1017 1017 1 1 1 105 1510 730 1210 1017 1017 1 1 1015 1017 1017 1017 1019 1020 2 5 9 1017 1017 1019 1020 2 11015 1015 1017 1019 1020 2 1015 1017 1017 1019 1020 2 10116 1016 1017 1019 1020 2 1010 1017 1019 1020 1010 2 1010 1017 1019 1020 1020 2 101 1017 1019 1020	~~~~			-						·	· · · ·
24.5 165.7 122.4 134.7 151 2 .05 .15 1 -05 3 3 -05 3 3 .05 .15 1 -05 3 1015 1015 1017	P •	-	UNIT	ROGRAPH	U INFLOU	HY DROGRA	PH COMPU	TATION -		•	
1 1.02 0.453 3 1 03 3 1015 1014.5 1017 1019 1220 1 1 1015 1014.5 1017 1019 1020 1310 1017 1019 1020 1 1 143 1017 1019 1017 1019 1020 1310 1021 1017 1019 1020 1017 1019 1020 1017 1019 1020 1017 1019 1020 1017 1019 1020 1017 1019 1020 1017 1019 1020 1017 1019 1020 1020 1017 1019 1020 <t< td=""><td>11</td><td></td><td></td><td>106.</td><td>122.4</td><td>134.7</td><td>151</td><td>•</td><td>Y</td><td>-</td><td></td></t<>	11			106.	122.4	134.7	151	•	Y	-	
k1 fEERV018 ROUTING 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td>22</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>, in the second s</td>	22		0								, in the second s
1 1 <td>5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td> <td>- </td> <td>S</td> <td>R ROUTIN</td> <td>-</td> <td>÷</td> <td></td> <td></td> <td></td> <td></td> <td></td>	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- 	S	R ROUTIN	-	÷					
27 55 90 1454 2791.7 4007 5333 5477.5 28 51015.0 015 1015 1017 1019 1020 28 51015.0 0 1:5 788 5007 5103 500 28 510175.0 0 1:5 788 1017 1019 1020 28 51016.0 0 0 0 0 0 0 29 11 1 1 1 1 0 29 11 100 1020 000 1020 000 21 1 100 100 100 350 1000 21 1 1 1 1 1 22 17 3500 980 350 1000 21 1 1 1 1 1 21 1 1 1 1 1 23 1 1 1 1 1 23 1 1 1 1 1 23 1 1 1 1 1 24 1 1 1 1 1 25 1 1	16 19 20	141 144 981	+		1017		1020	1454	-		
25 x 1:5 788 25 x1 cuanket_ROUTING-TOE OF DAM TO STN 4:00 27 x1 cuanket_ROUTING-TOE OF DAM TO STN 4:00 28 x1 cuanket_ROUTING-TOE OF DAM TO STN 4:00 28 x1 cuanket_ROUTING-TOE OF DAM TO STN 4:00 29 x7 3500 970 3550 31 y1 3130 970 3550 1000 35 y1 3130 970 3590 1020 31 x1 cuanket_ROUTING STN 4:00 3650 1020 32 x1 cuanket_ROUTING STN 4:00 3550 1000 35 x1 cuanket_ROUTING STN 4:00 3550 1000 35 x1 cuanket_ROUTING STN 4:00 3550 1000 35 x1 1 1 1 35 x1 1 1 1 35 x1 1120 960 1370 917 36 1120 960 1370 917 1440 35 x1 1120 940 1370 940 36 x1 1120 940 1370 940 37 x1 1 1 1	22	551015.0	;	1	1017		1020				
26 K1 CHANNEL ROUTING-TOE OF DAM TO STN 4:00 27 71 1 04 022 28 71 3150 1020 3590 1020 29 77 3150 1020 3590 1020 31 77 3150 1020 3590 1020 32 77 3150 1020 3590 1020 33 7 1020 3590 1020 3590 1020 33 7 1020 3590 1020 3590 1020 33 7 1 1 1 1 35 7 100 3650 1020 3690 1020 35 7 100 3630 1020 3690 1020 35 7 100 960 2200 0.037 917 35 7 1120 940 1270 940 1740 35 7 1120 940 1270 940 1740 35 7 1120 940 1250 940 1740 36 96 940 1250 940 1740 917 37 1120 940 <td>25</td> <td>501016.3 K</td> <td>;</td> <td></td> <td>788</td> <td>:</td> <td></td> <td>-</td> <td>i</td> <td>1</td> <td></td>	25	501016.3 K	;		788	:		-	i	1	
25 71 1<	26	- K 1 - Y	ANNEL	ROUTING-		2	00+7				
32 x 1 4 33 x1 channel Routine Sin 4:00 76 26:00 1 34 y1 1 1 35 y1 11 900 960 2200 37 y7 1120 960 1180 940 2200 37 y7 1120 960 1180 940 2200 36 y7 2000 970 2090 920 1370 37 y7 2000 970 2090 940 2200 37 y7 11 1 1 1 42 y1 1 1 1 1 43 y7 8760 720 8800 680 9400 45 y7 9120 680 9320 680 680 9400 45 y7 9120 660 9250 680 640 7200 9400	26 25 31	1	••••	1	970 1000 980	1020 3380 3630	400 980 1000	0.028 3385 3690	978 1020	3450	
55 11 1<	33	-	ANNFL	ROUTING S	- 0-	26+00	+				
79 K 1 5 </td <td>(226ª</td> <td>r</td> <td>1</td> <td></td> <td></td> <td>1250</td> <td></td> <td>0.032 1370</td> <td>917</td> <td>1440</td> <td>917</td>	(226ª	r	1			1250		0.032 1370	917	1440	917
71 1 76 .04 .04 640 720 2600 .062 77 8750 720 8820 700 8860 680 9000 77 9120 660 9250 680 9330 700 9400 720			ANNEL	DUTING S	26+00	STR					
	42 43 44	i			640 700	720	2 600 680	.062			640
	4 C C C C C C C C C C C C C C C C C C C		3446	1110		ст г	200	076			
	49 49					•		-	:		and a sub-second second se
50 Y6 .04 .04 480 540 .067	50	1	•		480	240	5400	.067			


.

,

y i

-

l B	-			, • •	- • •
Stu					
stor afour si					
520 R270 S					
821C					
5 Si60 506					
100 010 210 210 2100 2100 2100 2100 210					
5					
			•	•••	

÷

•

	SPECTION AND SAFI N <u>y a</u> dequac <u>y test</u> Ns <u>engineers</u> & Ar	NMIN IDAY TUG SPECIFICATION 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NULTI-PLAN AMALYSES TO RE PERFORMED NPLAN= 1 NRTIO= 2 LRTIO= 1 .50	******	SUB-AREA RUNOFF COMPUTATION APH AND INFLOW HYDROGRAPH COMPUTATION	AG ICOMP IECON ITAPE JPLT JPRT INAME ISTAGE IAUTO 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TAREA SNAP TASPA DATA TAREA SNAP TASPA TASPA RATIO ISNOU ISAME LOCAL 2.87 0.00 2.87 0.00 0.000 0 1	PHS R6 PRECIP DATA PHS R6 R12 R24 R48 R72 R96 5.50 T05.T0 T22.40 T34.70 T51.00 0.00 0.00	RTIOL ERAIN LOSS DATA RTIOL ERAIN STRKS RTIOK STRTL CNSTL ALSMY RTIMP 1.00 0.00 0.00 1.00 2.00 .05 0.00 .15	UNIT HYDROGRAPH DATA TP# 3.02 CP# .63 NTA= 0	-1.00 RECESSION DATA -1.00 GRCSN=05 RT :Nyder_cp_and tp_are_tc= 6:90 An	SF-PERIOD ORDINATES, LAG= 3.00 Hours, CP 270. 346. 387. 386. 113. 94. 78. 65. 18. 15. 12. 10.
LAST PCDIFICATION 26 FEB 79 	PHASE 1 IN SPILLU	NA NHR N 190 0	RTI05= 1.00		UNIT HYDROGRA		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SPFE 0.00 -24 The Program 15 .800	LROPT STRKR DLTKR 0 0.00 0.00		STRIGE Approximate - Clark - Coefficients - From - Given S	UNIT HYOROGRAPH 33 176 163. 136 26. 21

,

										•																																
75.	7 2.			143.	156.	175.	183.	193.	252.	305.	371.	240 740	584	638.	684.	121	798.	. 888	1048	1614-	2008.	2450. 3016	3744.	4533.	5866.	6169	5749.	5181.	3942.	3360.	2435	2085.	1553.	1350.	1174. 1018.	876.	94075.					
-02	20-	8 [.]	20		20.	20.	.02	20	20.0	- 05	20.	20	.02	-02	-02	36	- 20-	-02	20.	20.	20.	99	.02	20.	20.	- 20-	20.	-02	20.	-05	20.	2:	20.		0.0		2.97					
			!		ļ					;							•	4				e - 6	-			i				ł		1		1	0.0		0 26.63					
					ļ			•		:										•					•	ł						l		ļ	98 0.00 99 0.00		UM_ 29.60	UME	3635	22.2	642.30 3869.	4773.
												:																									SI	TOTAL V			-	
			:					1					-	•	-			- 1		-	-					-		1	9 19	1	4 14		~					72-HOUR	936	25.29	642.39 3869.	4773.
• ••	ŕ	• •			•	- •-	-	•••		· •	••••	 - -		-	- •		-	•		- •-		• •		•											•- •-			4-HOUR	ິຄ	`	612.06 3687.	-
mi	.2	~~	•••	'n	4	 -	°	~				- «	10.	11.		15.	- 15.	15.		21.	25.		46.	64.	155.	220.	342.	374.	351.	315.	231.	193	136.	114.	96. 83.	- 24		Ň			594.19 6 2374.	
	10.	5		5		55	-0-	5	50	.03	5	92		.03	5.5	38	.03	-03		: -:	.13	91.	20	200	20.	 2:2	10.	-10.	55	5.0	55	10.	55	-0-	- 01	-02		v			394	29
00	00.	8.8		88	8		00.	88		- 00	8	88	8	00.	8.	38	8	8		10	-02	55				121		00.	38	8.	38	8.		8	00.0	- 90		۰.	6169	-		
5	- 01	5										Ì					;																	l	- 80 - 80				4. 2	INCHES	AC-	s cu
	~	m -	•	9	~	.	1		n th	- 71	5:	••	80	19	07 7	52	52	21	\$ 2 2	22	28	25	i Fi	22	1 M	52	25	8	5.4	5: 	¥ 4		¢ 4	17	6 7 7	20						THOU
ŝ	1.00	1. 30	D0.2		2.30	00 • •	5.00	200	6.30 6	- 00 - 4	2.30	3	6.00	9.30	00.01		1	- '			-							[]	20.00	20.30	21.30	22.00	23.00		0.0							
5	1	5. -		10.1	5.5	5.	1.01	1.1	10.1	10.1			10.1	1.01		50	10.1	5.5		1.0	1.01		10.1		5		10.1	10.1	5.1	10.1	10.1	10.1		1.1	1.02	1.02						

Ţ

.

										•	Name and a sub-state of the state of the sta			· · · · · · · · · · · · · · · · · · ·												:	······
38. 351. 76.	183. 684. 3016.	3942. 876.					10. 10.	175.	-28. 91. 74.2	1508- 1971. 438-								• •									
374.	175. 638. 2450.	4564.						187		1225. 2282. 509.					****			TAGE IAUT D	1	· .						:	
374.	166. 584. 2008.	5181.	L VOLUME 93635. 2651	25.29	5809. 4773.	ŗ		187.	83. 292.	1004. 2590. 587.	24	1326.	2386.					INAME ISI D		STORA ISP	•				A EXPL		•
21. 342. 114.	156. 519. 1614.	5749.	008 TOTAL 56. 27.	29		RTI02		171.	78. 260.	807.2875.	a c			 				JPRT	I PMP		020.00	12110.00	28.	-07	0.0 CARE	DAMWID 798.	
18. 287. 136.	143. 445. 1290.	6130.	JR 72-HOUR 936.			A PLA		144.	72.	645. 3065. 777.	72-H	- <u>-</u> <u>-</u>	\$ \$ \$		*	UTING		1	۲ ۲	0.000	119.	7450.00	3. 5628	9. 1020.	5 N 1	NATA Expd 1.5	
220. 262.	128. 371. 1048.	6169. 1795.	~	35		1 50	- m ec	110.		524. 3085. 897.	~	12.05 12.05				HYDROGRAPH ROUTIN		1TAPE 0	OUTING DA S ISAME	6 AMSKK	00 1		. 5383	1019	6×PW EL	0.0	
155.			6-HOUR 4788.	394.19	2929.	VPH AT STA	- 201 eC	77.	55.	444. 2933. 1043.	6-HOUR 2394.	68 7.76 197.09	1187.		•.	HYDR		TECO	8 8 I	0 0 0 0	1017	1510.01	4907.	1017.	0.0	TOPEL 1016.3	
	252. 258.		PEAK 6169.		-	HYDROGRA				399. 2641. 2 1217. 1	85.	87.			****	1	NG.	ISTAQ ICO	0.000 0.00 0.000 0.00	-	1016.50		4791.	1017.	SPWID 0.0		
	215. 753.		CFS CMS	INCHES MM AC-FT	THOUS CU M		i			376. 2267. 20 1427. 12		CAS INCHES	AC-FT THOUS CU M		•		ESERVOIR	IS	š	NS	1015.00	0.00	4454.	1015.	CREL 1015.0		!
13. 46. 315. 2					H					361. 3 1872. 22 1680. 14			T		****		Ĩ				981.00	0.00		981.			;
ň	- 2 2	ŝŝ						S1	P. 0	20 187 1681					•						STAGE 98	FLOW	CAPACITY=	ELE VATION=			
															•									•		•	

,

.

•	٠	•	٠	-	٠	_
220 433						
48 551 65	577	ہ <u>ہ</u> ج				
153- 384- 3855-	420.	10.0				
33						•
59. 177.	85 9	4.4	1			

LLE VATIONS

951.

1017.

1017.

1019. ELEVL

10/0. 0.0 0.0

CREL 1015.0 1015.

SPWID C.O

0.0

EXPU

CAREĂ

EXPL

i	
END-OF-PERIOD	STATION
ΗY	۲,
HYDROGRAPH	PLAN
APH	7
ORDINATES	RATIO
TES	

Ì

24570 2908

OUTFLOW 1. 3. 3. 9. 47. 186. 186. 186. 186. 185. 5139. 5139.

110. 110. 138. 255. 738. 738.

1527. 1318. 1327. 1327.

ł

DAM DATA COQD EXPD D-0 1.5 DAMWID 788.

TOPEL 1016.3

5

CFS INCHES MM AC-FT THOUS CU M PEAX 5711. 162. 6-ноия 4591. 130. 14.88 377.93 2276. 2808. 24-HOUR 1678. 21.75 21.75 52.45 3327. 4104. 72-HOUR 833. 22.51 571.74 3444. 4248. VOLUME 83336. 2360. 22.54 571.74 371.74 4248.

TOTAL

END-OF-PERIOD HYDROGRAPH ORDINATES

STATION

2, PLAN 1, RATIO

TIME 43.50 HOURS

OUTFLOW

2

PEAK

5711. AT

1015.0

1015.0 1015.0 1015.1 1015.4 1015.3 1015.3 1015.3 1015.3 1015.3

• *0

1015.0 1015.0 1015.0 1015.0 1015.1 1015.4 1015.3 1015.3 1015.3 1015.3

1015.0 1015.0 1015.1 1015.1 1015.4 1015.4 1015.4 1015.3

1015.0 1015.0 1015.2 1015.2 1015.3 1015.3 1015.3 1015.3 1015.3 1015.3

1015.20

1015.0 1015.0 1015.3 1015.3 1015.3 1015.3 1015.3 1015.3 1015.3

1015 3 1005 1000

1015.3 1005.3 10

STORAGE 4454. 4455. 4458. 4458. 44540. 4516. 4516. 4516. 4516. 4516. 4518. 4518. 45198. 4684. 5198.

4455 4455 4505 4518 4518 4572 4572 4572 4572 4572 4572 4572

4455. 4456. 4515. 4515. 4518. 4519. 4519. 4519. 4519. 4519. 4519. 4519.

| | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | | |
|------------|-------------|--|------|------|-------|----------------|-------|-------|-------|----------------|-------|-------|----------------|-----|---------------------------------------|--------|------------|--------|---------|--------|--------------|-------------|----------------------|-------|---|--------------|-------------|--------------|-------------|-----------------|--------------------------|-----------|
| • • | 76. | 79. | 159. | 510. | 781- | 7727 | 4455. | 4457. | 4489 | 4490.
4487 | 4527. | 4690. | 4979.
4799. | | ~ ~ | 1015.0 | S S | ν M | 5 | o ~ | ••• | | | | | | | | | 70
0 | | |
| • • • | 66. | 82. | 143. | 430. | 880. | 7577 | 4455. | 4457. | 4485 | 4492. | 4520. | 4653. | 4814. | | i. | 1015.0 | ń. | \$ | ÷., | | | | | | | | ***** | | | TAGE IAU
0 | L S T R
D | SPRAT |
| | 55. | 86.
40 | 128. | 366. | 988 | 7577 | 4455. | 4457. | 4479. | 4474.
4486. | 4513. | 4623. | 5004.
4830. | | | 1015.0 | ŝr | 3 | <i></i> | | | | AL VOLUME | 1090. | 10.39
263.97 | 1590. | *** | | | INAME IS
D | | STORA IS |
| . . | 43. | . 68
A | 114. | 316. | 1104 | 4544 | 4455. | 4456. | 4474- | 4495. | 4507. | 4600. | 5004.
4847. | | | 1015.0 | 1015-1 | 1015.1 | 1015.2 | 1017.4 | 1016.7 | | TOT | 11. | 1.39 | 590.
961. | ***** | | - | JPRT | Ξ | |
| | 33. | .16 | 102. | 278 | 1226 | ر
وو | 4455 | 4456. | 4469. | 4490. | 501 | 4582. | 4990. | u l | ć. | 1015.0 | å v | 5 | ÷., | | | | -22 | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | *** | ROUTING | 00+7 | APE JPLT
0 0 | DATA
Me IOPT
1) | |
| | -1 | 93. | 5 | 672 | 1352. | STORA
4454- | * ••• | | ŝ | 4497. | ~ | 0 | 4960.
4884. | | <u>~</u> ~ | 1015.0 | ለፍ | 5 | 5 | ~ ~ | - o - | | -72 | : | ۲ | | **** | HY DROGR APH | TO STN | 11 | ROUTING
IRES ISA
1 | LAG AMSKK |
| - 4 | 17. | - 54
- 54
- 54
- 54
- 54
- 54
- 54
- 54 | 85. | 227. | 1475 | 1211 | 4455. | 4456. | 4462. | 4447.
4485. | 4493. | 4559. | 4914. | | | 1015.0 | 1. | 5 | ก่ะ | in | ~ | HOURS | PEAK 6~H
2724. 21 | | •- | 32 | * | T | -TOE OF DAM | I COMP I | AV6
0.00 | NSTOL |
| | :
:
: | 202 | 30. | 209. | 1674. | 454. | 1155 | 4456. | 4460. | 4471. | 4491. | 4550. | 4826. | | | 1015.0 | | | ก่า | | 2 | ME 44.00 | | ; | ۰. - | 1.2 | * * * * * | • | L ROUTING | ISTAQ
3 | CL 055
0.000 | NSTPS |
| - m | -
-
- | | 2 | 192. | 1 | .454 | | 4456. | 4459. | 487. | 4489. | 4543. | 4040. | | i vi | 1015.0 | | 5 | 222 | | ~ | 724. 47 11 | | • | INC | THOUS CI | * * * | 1 | CHANNE | | 0.0
9.0 | |
| - m | | 36. | . 74 | | 2170. | .454. | 4455. | 4455. | 4458. | 4443. | 4438. | 1535. | 4757. | | i r | 1015.0 | <u>.</u> | 5 | ς÷ | i į | 2 | 4 1S 2 | | | | | * * * * * * | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | PEAK OUTFLO | | | | | | | | | | |

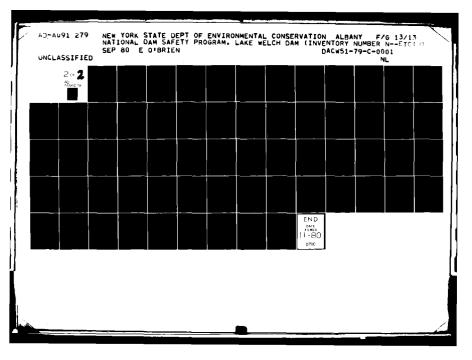
,

| | | 0400 | 970.0 102 | 020.0 | RLNTH 400.02 | 02A00 | | | | | |
|------|----------------------|--|----------------------|--------------------------------------|---------------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|---|
| 3130 | SECTION
00 1020 | SECTION COORDINATES
.00 1020.00 3280.00
.00 970.00 3590.00 | STA,F | LEV.STA.ELE
3380.00
3630.00 10 | :VETC
280.00
300.00 | 3385.00 978 | .00 3450.00 | 977.00 | | | |
| | 0.00 | 56.73 | 9 | 2.05 | 4.83 | 9.68
83.68 | 15.06 | 20.90 | 27.17 | 33.89 | |
| 22, | 0.00 | 416.21 | 336658. | 77 | 6988.12
06106.93 | 19153.91 | 38446.46
566213.01 | 63477.32
657190_44 | 94185.31
755677.16 | 130 | |
| | 970.00 | 972.63 | 1001 | • 26
• 58 | 977.89 | 986.53
1006.84 | 983.16
1009.47 | 985.79 | 988.42 | | |
| 220 | 0.00
2865.28 | 416.21 | 2642
336658 | 77 22 4 | 6988.12
06106.93 | 19153.91 | 38446.46
566213.01 | 63477.32
657190.44 | 94185.31
755677.16 | 130597.13
861847.10 | 1 |
| | | | | STATI | ION 3 | · PLAN 1. | RTIO 1 | | | | |
| | <u>م</u> . | -0~
~ | | | | FL 04 1. | | • • | | 2°.
5. | 1 |
| | 6.
17.
167. | 20.
20.
178. | 25. | 34. | | | 10.
86.
178. | 11.
109.
172. | | 14.
151.
158. | |
| | 151.
148.
350. | 144.
153.
383. | 140.
159.
416. | 136. | 13 | 135.
203.
554 | 136.
227.
630. | 138.
254.
736. | | 144.
317.
148. | 4 |
| | 2246. | 3030.
3867. | 3782. | 2919. | 512
251 | 5555. | 5705.
1876. | 5620. | | 4888. | |
| | | | 6. | | 51
0. | 0R
D. | | | | | 1 |
| | 500 | |
 | | | 000 | | | | | |
| | | | | | | | 56 | 50 | | | |
| | | | | 60, | | | | | | | |
| | -
 | | -mm | - ~ ~ | | | 2. | - 4 - | | | 1 |
| | 0.079 | 970.0
970.0 | 970.0
970.0 | 970.0
970.0 | 511
970.0
970.0 | 16E 970
970
970 | 0.079 | 970.0
970.0 | 970.0
9
9 | 970.0
970.0 | |
| Ī | 0.026 | 0.079 | 0 | 970.1 | | 026 | 970.1 | 970.1 | | 70.1 | |
| | 1.179 | 970.1
971.1 | <u> </u> | 970.2 | | 979
179 | 970.5 | 970.7
971.1 | | 71.0 | |
| Ī | 970.9 | 971.0 | <u> </u> | 970.9 | ł | 970.9 | 971.4 | 971.6 | ! | 72.0 | 1 |
| | 972.2 | 972.4 | ~ ~ ~ | 972.7 | | 672 | 972.9 | 973.0 | | 73.9 | I |
| | 8.4/8
74.7 | 2.0.A | ċ | 4.0.4 | | 226 | L"//6 | 1.7.6 | | 10.0 | |

| UN STORAGE = 4.
UN 3. PLAN 1. RTIO 2
OUTFLOW
1. 1.
2. 2.
2. | AXIMUN STORAGE = 4.
TATION 3. PLAN 1. RTIO 2
1. 1. 1. 1. 1.
0. 017LOU
1. 2. 2.
1. 2. 2.
1. 2. 2.
1. 1. 1.
1. 1. 1.
1. 2. 2.
1. 2. 2.
1. 2. 2.
1. 1.
1. 1.
2. 2.
2. | AXIMUM STORAGE - 4.
TATION 3. PLAN 1. RTIO 2
1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. | AXIMUN STORAGE = 4.
TATION 3. PLAN 1. RTIO 2
1. 1. 1. 1. 1.
1. 2. 2. 2.
1. 2. 2. 2.
1. 1. 1. 1.
1. 1. 1.
1. 2. 2.
1. 1. 1.
1. 1. 1.
1. 1. | AXIMUN STORAGE 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. | IM STORAGE 4. IM STORAGE 4. Im STORAGE 4. Im STORAGE 4. Im Storage 5. | MAXIMUM STORAGE 4. Statiow 3. PLAN 1. RIJO 2 Statiow 3. PLAN 1. RIJO 2 11. 2. 12. 2. 13. 9. 14. 2. 15. 11. 14. 2. 15. 10. 16. 11. 17. 2. 17. 2. 17. 2. 17. 2. 17. 2. 17. 2. 17. 2. 17. 2. 17. 2. 17. 2. 28. 2. 28. 2. 28. 2. 28. 2. 28. 2. 28. 2. 28. 2. 28. 2. 28. 2. 28. 2. 28. 2. 28. 2. 28. 2. 28. 2. 28 |
|---|--|--|--|--|---|---|
| TATION 3. PLAN 1. RTIO 2 0.01740w 1.1 1.1 1.1 1.2 2.2 1.2 2.2 1.2 2.2 1.2 2.3 1.2 2.2 1.1 1.1 1.2 2.2 1.2 2.2 2.3 3.2 67 67 67 68 67 68 67 68 67 68 67 68 67 68 67 68 67 68 67 68 67 68 67 68 67 68 67 68 67 68 68 69 69 69 69 69 69 69 60 1101 732 1101 732 1101 732 1101 732 1101 732 1101 732 100 0 0 0 0 0 0 10 0 < | TATION 3. PLAN 1. RTIO 2 0 01740 1 1 0 1 1 2 2 2 2 2 1 2 2 2 1 2 2 2 3 2 4 5 5 5 67 67 67 68 67 68 67 68 67 68 67 68 67 68 67 68 67 68 67 68 67 68 67 68 68 69 67 68 67 68 67 68 68 78 78 78 78 78 78 78 78 78 78 78 78 78 | TATION 3, PLAN 1, RTIO 2 0 0 1 2 2 2 2 2 2 2 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 <td>TATION 3. PLAN 1. RTIO 2 0 01110 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 4 4 5 5 67 67 67 67 67 68 67 67 67 67 67 67 67 67 67 67 67 68 67 67 67 67 67 67 67 67 67 68 67 67 67 67 67 68 67 68 67 68 67 68 67 68 67 68 67 68 68 78 78 78 <td>04771.04 1 1 1 1 1 04771.04 1 1 1 1 1 04771.04 1 1 1 1 1 04771.04 1 1 1 1 1 04771.04 1 1 1 1 1 0470.04 0470.05 05 05 05 05 0470.14 0470.14 046 06 04 0470.14 1 1 1 1 0470.14 1 1 1 1 050.14 1 1 1 1 060.14 0 0 0 0 0 070.10 070.10 070.10 070.10 070.10 070.14 070.10 070.10 070.10 070.10 070.15 070.16 070.10 070.10 070.10 070.16 070.16 070.16 070.16 070.16 070.16 070.16 070.16 070.16 070.16 070.16 070.10 070.10 070.16 070.16 070.16 070.16 070.16 070.16 070.16 070.16 070.16</td><td>51ATION 3. PLAN 1. RIIO 2 51ATION 3. PLAN 1. RIIO 2 0UTFLOW 1.1 1.1 2. 9.7 8.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 <!--</td--><td>Station J. PLAN 1. RIIO 2 0.01710u 1.1. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 2.1. 2.</td></td></td> | TATION 3. PLAN 1. RTIO 2 0 01110 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 4 4 5 5 67 67 67 67 67 68 67 67 67 67 67 67 67 67 67 67 67 68 67 67 67 67 67 67 67 67 67 68 67 67 67 67 67 68 67 68 67 68 67 68 67 68 67 68 67 68 68 78 78 78 <td>04771.04 1 1 1 1 1 04771.04 1 1 1 1 1 04771.04 1 1 1 1 1 04771.04 1 1 1 1 1 04771.04 1 1 1 1 1 0470.04 0470.05 05 05 05 05 0470.14 0470.14 046 06 04 0470.14 1 1 1 1 0470.14 1 1 1 1 050.14 1 1 1 1 060.14 0 0 0 0 0 070.10 070.10 070.10 070.10 070.10 070.14 070.10 070.10 070.10 070.10 070.15 070.16 070.10 070.10 070.10 070.16 070.16 070.16 070.16 070.16 070.16 070.16 070.16 070.16 070.16 070.16 070.10 070.10 070.16 070.16 070.16 070.16 070.16 070.16 070.16 070.16 070.16</td> <td>51ATION 3. PLAN 1. RIIO 2 51ATION 3. PLAN 1. RIIO 2 0UTFLOW 1.1 1.1 2. 9.7 8.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 <!--</td--><td>Station J. PLAN 1. RIIO 2 0.01710u 1.1. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 2.1. 2.</td></td> | 04771.04 1 1 1 1 1 04771.04 1 1 1 1 1 04771.04 1 1 1 1 1 04771.04 1 1 1 1 1 04771.04 1 1 1 1 1 0470.04 0470.05 05 05 05 05 0470.14 0470.14 046 06 04 0470.14 1 1 1 1 0470.14 1 1 1 1 050.14 1 1 1 1 060.14 0 0 0 0 0 070.10 070.10 070.10 070.10 070.10 070.14 070.10 070.10 070.10 070.10 070.15 070.16 070.10 070.10 070.10 070.16 070.16 070.16 070.16 070.16 070.16 070.16 070.16 070.16 070.16 070.16 070.10 070.10 070.16 070.16 070.16 070.16 070.16 070.16 070.16 070.16 070.16 | 51ATION 3. PLAN 1. RIIO 2 51ATION 3. PLAN 1. RIIO 2 0UTFLOW 1.1 1.1 2. 9.7 8.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 </td <td>Station J. PLAN 1. RIIO 2 0.01710u 1.1. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 2.1. 2.</td> | Station J. PLAN 1. RIIO 2 0.01710u 1.1. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 1.1. 2. 2.1. 2. |
| 0UTFLOW 1 1 1 1 1 2 2 2 2 2 2 33 35 5 5 5 6 33 32 43 5 6 93 92 101 113 127 142 92 101 113 127 142 17 249 277 315 365 429 54 1349 1232 1101 2732 2603 241 1349 0 0 0 0 0 | 0UTFLOW 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 5 5 5 6 7 93 92 101 113 127 142 17 24 101 113 127 429 54 1349 277 315 365 429 54 1349 1232 1101 994 879 78 5108 0 0 0 0 0 0 0 0 0 0 0 | 001710w 1 1 1 1 1 1 2 | 0UTFLOW 1 </td <td>00171.00 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 5 5 5 5 5 5 5 3 3 5 5 5 5 5 5 5 3 5 5 5 5 5 5 5 92 101 113 173 172 142 142 243 350 355 2711 2735 2603 73 246 2547 2711 2735 2603 24 250 350 355 2603 254 27 240 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td>0 0 1</td><td>0 0 1</td></td<></td> | 00171.00 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 5 5 5 5 5 5 5 3 3 5 5 5 5 5 5 5 3 5 5 5 5 5 5 5 92 101 113 173 172 142 142 243 350 355 2711 2735 2603 73 246 2547 2711 2735 2603 24 250 350 355 2603 254 27 240 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td>0 0 1</td><td>0 0 1</td></td<> | 0 0 1 | 0 0 1 |
| 1. 2. 2. 2. 2. 5. <td< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>0. 1. <td< td=""><td>0. 1. <td< td=""></td<></td></td<></td></td<> | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0. 1. <td< td=""><td>0. 1. <td< td=""></td<></td></td<> | 0. 1. <td< td=""></td<> |
| 23. 32. 43. 54. 66. 7 93. 92. 89. 86. 82. 7 93. 92. 89. 86. 82. 7 92. 101 113. 127. 142. 142. 92. 51 51. 51. 51. 51. 248. 277. 315. 365. 429. 54. 2160. 2547. 2711. 2732. 2603. 241. 1349. 1232. 1101. 994. 879. 78 510R 0. 0. 0. 0. 0. | 23. 32. 43. 54. 66. 7 93. 92. 89. 86. 82. 7 93. 92. 89. 86. 82. 7 92. 101 113. 127. 142. 142. 92. 515. 515. 157. 51 51 248. 277. 315. 355. 429. 54 1349. 1232. 1101. 994. 879. 78 5108 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 23. 32. 43. 54. 66. 7 67. 67. 68. 88. 70 67. 67. 68. 88. 70 73. 92. 89. 86. 70 70. 101. 113. 127. 142. 248. 277. 315. 365. 142. 2140. 2547. 2711. 2732. 2603. 2140. 2547. 2711. 2732. 2603. 2150. 2547. 2711. 2732. 2603. 2150. 2547. 2711. 2732. 2603. 2150. 2547. 2711. 2732. 2603. 2150. 1101. 994. 879. 78 5108 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 23. 53. 53. 53. 54. 56. 70. 57. 57. 58. 56. 70. 71. 57. 57. 58. 56. 70. 748. 2547. 2711. 2735. 2603. 243. 2148. 2547. 2711. 2735. 2603. 243. 2149. 2757. 2711. 2735. 2603. 243. 2149. 2737. 2711. 2735. 2603. 243. 2149. 2735. 2611. 2735. 2603. 243. 2149. 2735. 2735. 2603. 2403. 2140. 274. 2711. 2735. 2603. 2140. 270.0 0. 0. 0. 0. 010. 0. 0. 0. 0. 0. 010. 0. 0. 0. 0. 0. 010. 0. 0. 0. 0. 0. 010. 0. 0. 0. 0. 0. 010. 0. 0. 0. 0. 0. 010. 0. 0. 0. 0. 011. 1. 1. | 17. 23. 43. 43. 44. 45. 45. 45. 45. 45. 45. 45. 45. 45. 45. 45. 45. 45. 45. 45. 57. 57. 55. 45. 55. 45. 57. 55. 45. 57. 55. 56. 57. 55. 56. 57. 55. 56. 57. 56. 57. 56. 57. 56. 57. 56. 57. 56. 57. 56. 57. 56. 70. 57. 56. 77. 57. 56. 77. 57. 56. 78. 57. 56. 78. 57. 56. 78. 7 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| 92. 101. 113. 127. 142. 15
248. 277. 315. 365. 429. 51
2160. 2547. 2111. 2732. 2603. 24
1349. 1232. 1101. 994. 879. 78
5108 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 92. 101. 113. 127. 142. 15 248. 277. 315. 365. 429. 51 2160. 2547. 2111. 2732. 2603. 24 1349. 1232. 1101. 994. 879. 78 5108. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 92. 101. 113. 127. 142. 13 248. 277. 315. 365. 429. 51 2100. 2547. 2711. 2732. 2603. 241 1349. 1232. 1101. 2732. 2603. 241 1349. 1232. 1101. 274. 2879. 741 1349. 1232. 1101. 294. 879. 741 0.0 0. 0. 0. 0. 0. 0. 0.0 0. | 92. 101. 113. 127. 142. 142. 2160. 2547. 2315. 365. 2603. 24 2160. 1232. 1101. 994. 879. 24 1349. 1232. 1101. 994. 879. 24 1349. 1232. 1101. 994. 879. 24 1349. 1232. 1101. 994. 879. 24 1349. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 92 101 113 173 173 142 143 143 144 14 | 85 92 101 113 175 142 51 1266 2547 277 315 2563 249 515 2429 51 1482 2100 277 215 1101 2735 2429 51 1482 1349 271 1101 2735 2429 243 5108 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 85 92 101 113 175 142 142 51 1422 7340 277 315 355 429 51 1422 1340 1237 1101 2735 2603 243 1422 1340 1237 1101 2735 2603 243 5108 0 0 0 0 0 0 0 0 0 |
| - 1349 2347 2711 2732 2603 244
1349 1232 1101 994 879 78
5108 - 0 0 0 0 0 0 0 | - 1349 2347 2711 2732 2603 241
1349 1232 1101 994 879 78
5108 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 1349. 1232. 1101. 732. 203. 73 5108 0. 0. 0. 0. 78 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | - 1349. - 2347. - 2737. - 2737. - 2693. - 78 5108 0. 0. 0. 0. 0. 78 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 5100. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 0. 2. 2. 2. 2. 2. 2. 2. | 1,2,2, 2,3,4, 2,3,4, 2,3,4, 2,3,4, 2,3,4, 2,3,4, 2,3,4, 2,4,1,1 2,4,1,1 2,4,1,1 2,4,1,1 2,4,1,1 2,4,1,1 | 1,222. 1,232. 1,101. 994. 2093. 789 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. |
| | | | | 970.0 970.0 970.0 970.0 970.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td>0. <td< td=""><td>0. <td< td=""></td<></td></td<></td></td<> | 0. 0. <td< td=""><td>0. <td< td=""></td<></td></td<> | 0. 0. <td< td=""></td<> |
| | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 370.0 970.0 970.0 970.0 970.4 970.4 970.4 970.5 970.4 970.4 | 0. 0. <td< td=""><td>0 0</td></td<> | 0 |
| | 0. 0. 0. | 00.
00.
00. | | 0. 0. <th0.< th=""> 0. 0. 0.<!--</td--><td>0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.1 1. 1. 1. 1. 1. 2.0.0 970.0 970.0 970.0 970.0 970.1 970.0 970.0 970.0 970.0 970.1 970.1 970.0 970.0 970.0 970.1 970.0 970.0 970.0 970.0 970.4 970.0 970.0 970.0 970.0 970.4 970.0 970.0 970.0 970.0 970.4 970.0 <t< td=""><td>0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td></t<></td></th0.<> | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.1 1. 1. 1. 1. 1. 2.0.0 970.0 970.0 970.0 970.0 970.1 970.0 970.0 970.0 970.0 970.1 970.1 970.0 970.0 970.0 970.1 970.0 970.0 970.0 970.0 970.4 970.0 970.0 970.0 970.0 970.4 970.0 970.0 970.0 970.0 970.4 970.0 <t< td=""><td>0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td></t<> | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| | | | | 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 970. 971. 970. 970. 970. 970. 971. 970. 970. 970. 971. 971. 975. 975. 975. 975. 975. 975. 975. 975. 975. 975. 975. 975. 975. 975. | 970.0 970.0 970.0 970.0 970.0 970.0 970.
970.1 970.1 970.2 970.3 970.5 970.4 970.
970.6 970.6 970.6 970.5 970.4 970.4
970.5 970.6 970.6 970.4 970.4 970.9
971.6 971.6 971.7 972.0 972.3 972.6 977.
974.0 974.7 975.2 975.3 975.2 975.2
975.9 973.4 973.5 975.3 975.2 975.2
975.9 975.7 973.5 975.3 975.3 975.2 975.2
975.9 975.7 973.5 975.3 975.3 975.2 975.2
975.9 975.7 975.5 975.4 975.5 975.3 | 970.0 970.0 970.0 970.0 970.0 970.0 970.0 970.0 970.4 970.5 975.2 <t< td=""></t<> |
| 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | 2: 2: <td< td=""><td></td><td>970.4 970.4 970.4 970.4 970.4 970.4 970.
970.6 970.6 970.4 970.8 970.9 971.
971.6 971.7 972.0 972.3 975.2 975.
974.7 975.2 975.3 975.3 975.2 975.</td><td>970.4 970.4 970.4 970.4 970.4 970.4 970.5 970.6 970.4 970.4 970.4 970.4 970.5 970.6 970.4 970.4 970.4 970.4 971.4 971.6 971.7 972.0 972.6 972.5 971.4 971.6 971.7 972.0 972.5 972.5 973.9 973.7 973.5 973.4 973.2 973.2 973.9 973.7 973.5 973.4 973.2 973.2 973.9 973.7 973.5 973.4 973.2 973.2 973.0 973.7 973.4 973.3 973.2 973.2 973.0 973.7 973.4 973.3 973.2 973.2 973.0 973.4 973.3 973.2 973.2 974.7 973.4 973.5 973.2 973.2 974.7 973.4 973.5 973.2 973.2 974.7 973.4 973.5 973.5 973.2 975.6 973.4 973.5 973.2 973.2 975.6 973.4 973.5 973.2 973.2 976.7 772. 385.5 384.57 <td>772.4 970.4 970.4 970.4 970.4 970.4 970.4 970.5 970.6 970.4 970.4 970.4 970.4 971.4 970.6 970.7 970.4 970.4 970.4 971.4 971.6 970.7 970.8 970.9 971.9 971.4 971.7 972.0 972.0 972.6 972.6 974.7 973.5 973.5 975.3 975.2 975.2 975.9 973.5 973.5 973.5 973.2 973.2 975.9 973.6 973.5 973.5 973.2 973.2 975.9 973.5 973.4 973.5 973.2 973.2 975.9 973.5 973.5 973.5 973.2 975.9 973.4 973.5 973.2 973.2 975.9 973.4 973.5 973.2 973.2 975.9 10.6 772.1 385.1 10.85 66.82 10.01 10.39 10.39 10.39</td></td></td<> | | 970.4 970.4 970.4 970.4 970.4 970.4 970.
970.6 970.6 970.4 970.8 970.9 971.
971.6 971.7 972.0 972.3 975.2 975.
974.7 975.2 975.3 975.3 975.2 975. | 970.4 970.4 970.4 970.4 970.4 970.4 970.5 970.6 970.4 970.4 970.4 970.4 970.5 970.6 970.4 970.4 970.4 970.4 971.4 971.6 971.7 972.0 972.6 972.5 971.4 971.6 971.7 972.0 972.5 972.5 973.9 973.7 973.5 973.4 973.2 973.2 973.9 973.7 973.5 973.4 973.2 973.2 973.9 973.7 973.5 973.4 973.2 973.2 973.0 973.7 973.4 973.3 973.2 973.2 973.0 973.7 973.4 973.3 973.2 973.2 973.0 973.4 973.3 973.2 973.2 974.7 973.4 973.5 973.2 973.2 974.7 973.4 973.5 973.2 973.2 974.7 973.4 973.5 973.5 973.2 975.6 973.4 973.5 973.2 973.2 975.6 973.4 973.5 973.2 973.2 976.7 772. 385.5 384.57 <td>772.4 970.4 970.4 970.4 970.4 970.4 970.4 970.5 970.6 970.4 970.4 970.4 970.4 971.4 970.6 970.7 970.4 970.4 970.4 971.4 971.6 970.7 970.8 970.9 971.9 971.4 971.7 972.0 972.0 972.6 972.6 974.7 973.5 973.5 975.3 975.2 975.2 975.9 973.5 973.5 973.5 973.2 973.2 975.9 973.6 973.5 973.5 973.2 973.2 975.9 973.5 973.4 973.5 973.2 973.2 975.9 973.5 973.5 973.5 973.2 975.9 973.4 973.5 973.2 973.2 975.9 973.4 973.5 973.2 973.2 975.9 10.6 772.1 385.1 10.85 66.82 10.01 10.39 10.39 10.39</td> | 772.4 970.4 970.4 970.4 970.4 970.4 970.4 970.5 970.6 970.4 970.4 970.4 970.4 971.4 970.6 970.7 970.4 970.4 970.4 971.4 971.6 970.7 970.8 970.9 971.9 971.4 971.7 972.0 972.0 972.6 972.6 974.7 973.5 973.5 975.3 975.2 975.2 975.9 973.5 973.5 973.5 973.2 973.2 975.9 973.6 973.5 973.5 973.2 973.2 975.9 973.5 973.4 973.5 973.2 973.2 975.9 973.5 973.5 973.5 973.2 975.9 973.4 973.5 973.2 973.2 975.9 973.4 973.5 973.2 973.2 975.9 10.6 772.1 385.1 10.85 66.82 10.01 10.39 10.39 10.39 |
| 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 3.10.0 970.0 970.0 970.0 970.0 970.1 970.0 970.0 970.0 970.0 970.1 970.0 970.0 970.0 970.0 | 0. 0. 0. 0. 0. 2. 2. 2. 2. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 2.1 1. 1. 1. 2. 2.1 1. 1. 1. 2. 2.1 2.0.0 970.0 970.0 270.1 970.0 970.0 970.0 | 2: 2: 2: 2: 2: 2: 1: 1: 1: 1: 1: 2: 970.0 970.0 970.0 970.0 970.0 970.0 970.0 970.0 970.0 970.0 970.1 970.0 970.0 970.0 970.0 970.1 970.0 970.0 970.0 970.0 970.1 970.2 970.3 970.0 970.0 | 5746E 970.0 970.0 970.0 970.0 970.0 970.0 970.0 970.0 970.0 970.0 970.0 970.0 970.0 970.0 970.1 970.0 970.0 970.0 970.0 970.1 970.2 970.3 970.4 970.4 970.1 970.5 970.3 970.4 970.4 | 971.6 971.7 972.0 972.3 972.6 972.
974.7 975.2 975.3 975.2 975.
973.7 975.6 973.4 973.3 975.2 975. | 971.4 971.6 971.7 972.0 972.5 972.6 972.
974.0 974.7 975.2 975.3 975.3 975.2 975.
973.9 973.7 973.6 973.4 973.3 975.2 975.
6-ноик 24-ноик 72-ноик ТотаL VOLUME
2106. 772. 385. 384.57. | 971.4 971.6 971.7 972.0 972.5 972.6
974.0 974.7 975.2 975.3 975.2 975.
973.9 973.7 973.6 973.4 973.3 975.2 975.
6-HOUR 24-HOUR 72-HJUR ТОТАL VOLUME
2106. 772. 385. 10.89
60. 22. 11. 10.39
6.82 10.01 10.39 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. <th1.< th=""> 1. 1. 1.<!--</td--><td>2: 2: 2: 2: 2: 2: 1: 1: 1: 1: 1: 1: 5TAGE 970.0 970.0 970.0 970.0 970.0 970.0 970.0 970.0 970.0 970.0 970.0 970.1 970.0 970.0 970.0 970.0 970.0 970.1 970.0 970.0 970.0 970.0 970.0 970.4 970.4 970.4 970.5 970.5 970.5 970.4 970.4 970.4 970.5 970.5 970.5 970.4 970.4 970.4 970.4 970.5</td><td>\$1AGE \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.1 \$70.0 \$70.0 \$70.0 \$70.0 \$70.1 \$70.0 \$70.0 \$70.0 \$70.4 \$70.1 \$70.0 \$70.0 \$70.4 \$70.4 \$70.4 \$70.6 \$70.6 \$70.4 \$70.4 \$70.4 \$70.4 \$70.4 \$70.4 \$70.4 \$70.4 \$70.4 \$70.4 \$70.4 \$70.4</td><td></td><td>-HOUR 24-HOUR 72-HOUR TOTAL VOLUM
2106. 772. 385. 3854</td><td>-HOUR 24-HOUR 72-HJUR TOTAL VOLUM
2106. 772. 385. 1014
60. 22. 11. 1089
6.82 10.01 10.39 10.3</td></th1.<> | 2: 2: 2: 2: 2: 2: 1: 1: 1: 1: 1: 1: 5TAGE 970.0 970.0 970.0 970.0 970.0 970.0 970.0 970.0 970.0 970.0 970.0 970.1 970.0 970.0 970.0 970.0 970.0 970.1 970.0 970.0 970.0 970.0 970.0 970.4 970.4 970.4 970.5 970.5 970.5 970.4 970.4 970.4 970.5 970.5 970.5 970.4 970.4 970.4 970.4 970.5 | \$1AGE \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.0 \$70.1 \$70.0 \$70.0 \$70.0 \$70.0 \$70.1 \$70.0 \$70.0 \$70.0 \$70.4 \$70.1 \$70.0 \$70.0 \$70.4 \$70.4 \$70.4 \$70.6 \$70.6 \$70.4 \$70.4 \$70.4 \$70.4 \$70.4 \$70.4 \$70.4 \$70.4 \$70.4 \$70.4 \$70.4 \$70.4 | | -HOUR 24-HOUR 72-HOUR TOTAL VOLUM
2106. 772. 385. 3854 | -HOUR 24-HOUR 72-HJUR TOTAL VOLUM
2106. 772. 385. 1014
60. 22. 11. 1089
6.82 10.01 10.39 10.3 |

.

,


٠

۴

• . ,

× 22

664032.53 3917359.43 759.30 928.42 960.00 477106.25 664032.53 3486516.94 3917359.43 477106.25 3486516.94 925.26 618.24 2151.13 2. 149. 149. 1449. 1449. 1449. 1449. 1340. 000---316989.76 3077507.77 316989.76 3077507.77 480.45 922.11 1 A U T O 0 280-129-141-141-2341-5341-5341-5341-000--151A6E 0 L S T R ISPRAT 0 192777.64 2690629.97 346.99 918.95 192777.64 2690629.97 250. 720. 5632. 5632. 000++ 917.00 INAME 0 STORA 0. ******** 123035.62 915.79 235.72 10687.04 31508.97 67858.48 123035.62 1377225.42 1666521.17 1984701.22 2326227.66 1440.00 TR9L 0 UMDI 15K 0.000 10.124 179.179.179.179.179.179.1799.101.1011 0000-4. PLAN 1. RTIO 917.00 10P1 0 0.00 X 1PLT 0 67858.48 1984701.22 912.63 944.21 1512.26 2000. 2331. 2198. 2198. 0000-HYDROGRAPH ROUTING IECON ITAPE 0 0 0 Ires Isame CROSS SECTICA COORDIANTES--STA,ELEV.STA,ELEV--ETC 1126.C7 960.00 1180.00 940.00 1250.00 920.00 1370.00 2000.00 900.00 2090.00 920.00 2150.00 940.00 AMSKK 0.000 ******* OUTFLOW 5EL 31508.97 900.47 1356.20 T0 26+00 961 RLNTH 2200. **STATION** 8. 33. 137. 137. 137. 158. 468. 448. 0000-CHANNEL ROUTING STN 4+00 ļ -AV6 0.00 NST DL 0 ICOMP ELMAX 960.0 1377225.42 906.32 1202-14 ******** ISTAQ 4 0.000 NSTPS 1 7. 24. 184. 158. 158. 158. 3712. 3403. 500.0 0000-1114693.07 1051.25 903.16 1683.10 1114693.07 0.0 0.0 GN(3) CRVAL DEPTH THANKEL ROUTING ******** QN (2) 0.00 £76793.21 0.0C 876793.21 903.64 91.58 15. 165. 151. 151. 157. 2157. 0000-971) .0400 **STAGE** FLOW STORAGE 01110

| ~ ~ • | 20.
8. | 0.009 | 0.000 | 5-000 | - 403 - 2
 | 900.6 | <u>+02.7</u> | 904.3 | | | | | | | | | - m r | 74. | 72. | 156. | 498.
2434. | 796. | | | | 50 | - n | 12. | | 0.006 | 900.1 |
|-------|------------|-------------------------|-------|----------------|---------------|--------|--------------|----------------|------------------|-------|---------------------|--------------|-----------|---------|--------------|---------|--------------|------|------------|------|---------------|-----------|-------------|-----|-------|----|----------|----------|-------|--------------------------|------------------|
| | 21. | 0.006 | 0.006 | 500-2 | 506 | 900.5 | 901.9 | 904.4
902.8 | | | | | | | | | - ~ ~ | | 83.
70. | 140. | 419.
2615. | 896. | | | | | -~ | | | 0.00
900.00
900.00 | - 900.1
990.2 |
| 4 | 22. | 0.004 | 0.006 | 2.009 | 900-3 | 5.006 | 901.4 | 904.5 | VOLUME
83127. | 2354. | 22.45
570.30 | 4237. | | | | | - ~ ~ | 23. | 80.
69. | 125. | 2738. | 1006. | 2 | 500 |
 | 56 | -~ | 13. | | 000.0
000.0
000.0 | 900.1 |
| m | 22.
10. | 0.006 | 0.006 | 900-2 | | 4.006 | 901.2 | 904.5
903.2 | UR TOTAL | 4. | | | | | 0 2 | | - ~ ~ | | 89.
68. | 112. | 2699. | 1119. | | | ;
 | | -~: | 13. | | 0.006 | 900.1 |
| - n | 11. | 0.009 | 0.004 | 900.1 | 900.5 | 9006 | 901.0 | 904.5 | 72-H
8 | | 570 | 45
7
7 | 22. | | PLAN 1. RTIO | | - ~ ~ | 31: | N N | 25 | 2534. | ~ | | ; | | | - ~ | 12. | | 0.006 | 900.1 |
| - n | 20. | STAGE
900.0
900.0 | 0.000 | 900.1 | 900 S | 5.006 | 900.9 | 904.5 | 54 | | 8 21.70
6 551.18 | 1 | STORAGE = | | ld '7 | OUTFLOW | | -22. | 67. | 91. | 2108. | 1362. | STOR | | | | •• | 11. | STAGE | 0.006 | 900.0 |
| m | 18. | 0.009 | 0.006 | 900.1 | 4.004 | 900.3 | 900-8 | 903.6 | | | 377.96 | 5808 | MAXIMUM | | STATION | | :
 | 16. | 68.
68. | .78 | 1543. | 1 509. | 9 | | | : | | 8 | | 0.006 | 900.2 |
| | 16. | 0.009 | 0.006 | 900°0 | 000 × 000 | 900.3 | 900-8 | 903.8 | FS 5702. | S | S E I | | | | | E. | • • • | 12. | 70. | | 1079. | 695 | | idd | | | | و.
م. | | 0.006 | 900-0
900-2 |
| - ~ | | 0.009 | 900.0 | 900.0 | | 500.3 | 900.7 | 903.9 | 3 | 5 | INCHES | THOUS CU | | 904.6 | | | M | | 73. | - | 725. | <u>هم</u> | -
-
- | | | | . | | | 0.006 | 900.0 |
| -~ | 16. | 900.0
960.0 | 0.000 | 900.0
200.4 | | 5-02-6 | 900.6 | 904.1 | | | | | | E 15 90 | | | 5 - M | | 76. | 14. | 595. | 2191. | - | 6 | | 50 | . | | | 0.006 | 900.0
900.2 |

,

| Γ | | • | | | | | | , | | | | > > | |)

 | 7 | • | |
|----------------------------|--|-----------------------------------|-----------------|--|---------|------------------------|---------------------|-------------------------------|----------------------|----------------------|----------------------------|---|-------------------|--------------------------|------------------|-------------------------|-------------|
| | | | | | | | | | | | | | 411-91
1649-43 | 475458.99
3563372.40 | 677.89
720.00 | 47545£.99
3563372.40 | |
| 903.4 | | | | | | | | | | | | - | 324.48 | 1 | • | | 1 |
| 901.7
901.7 | | | | | ******* | | IAUTO | 1 | | | | | 247.63 | 1 | 669.47
711.58 |) |) : |
| 903.5 | VOLUME
38349.
1086.
10.36 | 263.10
1585.
1955. | | | • | | INAME ISTAGE
D D | { | TORA IS | | | 640.00 | 181.36
1225.95 | i | | | |
| 902.1 | 2-HOUR TOTAL
383.
11.
10.36 | | | | ****** | | JPRT II | | TSK S
0.000 | | | 00.0009 | 125.68
1093.81 | 94100.32
938398.42 | 661.05
703.16 | 94100.32
938398.42 | 10 1 |
| 902.5 | 20. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72 | . 54
27.
84. | 13. | | *** | H ROUTING
+DD | TAPE JPLT
0 D | ING DATA
ISAME IOPT
1 0 | AMSKK
0.000 0.000 | | 8FL
80 | 8930.00 660.00 | 80.42
964.94 | 50933.91
1610934.17 1 | 656.84
698.95 | • | PLAN 1, RTI |
| 903.3 | -HOUR 24
2102.
60. | 73.09 753
1043. 15
1286. 18 | MAXIMUN STORAGE | And a second | *** | HYDROGRAP
TO STN 52 | i | ROUTING
IRES ISA | LAG AMS
0 0.0 | | RLNTH SEL
260006200 | | 45.24
841.53 | · • { | 652.63
694.74 | - | 5, |
| 902.0 902.9
903.2 902.8 | PEAK 6
2738.
78. | | MAXEN | | ******* | ING STN 26+QD | ISTAG ICOMP
5 1 | CL055 AV6
0.000 0.00 | NSTPS NSTDL
1 0 | | ELMAX
720.0 | | 20.11 | 1 | 648.42
690.53 | 8021.59 | STATION |
| 903.2 90
903.2 90 | CFS
CMS
INCHES | AM
AC-FT
Thous cu m | | 903.5 | ** | CHANNEL ROUTING | | 0.0 0.0
PL 0.0 | NS | 9211 | QN(3) ELNVT
.0400 640.0 | 00801NATES | 5.03
613.76 | 1263.32
840766.42 11 | 644.21
686.32 | 1263.32
840766.42 1(| |
| 1.10 | | | | STAGE 15 903 | ****** | | | | | DEPTH_CHANKE_ROUTING | 11 9452)
06 .0400 | CROSS SECTION COORDINATES
8766.00 726.00 8820.00
9120.00 660.00 9250.00 | 0.00
509.40 | 0,00
639353,83 | 682.11
682.11 | 0.00
639358.83 | |
| | | | | WAXI PUP" STAG | | | | | | <u>41930]44808</u> | 9/(1)
.0406 | CAC
87
91 | STOR AGE | OUTFLOW | STAGE | 1 ION | |
| | -
 | • | | ł | • | | • | • | |) T | • | | • | • | • | • | ł |

-

| 2.
5.
14. | 147.
159. | 143.
309. | 1421.
4940.
1348. | | | | 13.
5. | 640.0
640.0 | 640.5 | 640.5 | 641.0
644.3 | 646.5 | | | | | | | m r | * - / | 155.
489. | | |
|-----------------|--------------|--------------|-------------------------|------------|------|-------|-----------|-------------------------|----------------|-------|----------------|-------|-------------------------------|-----------------------|----------|-----------|------------|--------------------|-------------|-------------------|---------------------|-------|------|
| | 126. | 277. | - 984
- 5367
1485 | | | | 14. | 0-079
640-0 | 640.0 | 640.6 | 640.9
643.3 | 646.8 | | | | | | | | | 0 M 4 | 10 | |
| | mm | 138.
248. | | | | | | 640.0
640.0 | 640.0 | 640.6 | 640.8
642.4 | 646.9 | VOLUME
83001.
2350. | 22.42 | 4231 | | | | - ~ v
- | 52. | 124.
352. | 1012. | |
| | 81.
179. | 136.
221. | | | 500- | N | 15.
6. | 640.0
640.0 | 640-0 | 640.5 | 640.7
642.0 | 644.6 | UR TOTAL
0
4. | N 4 0 | | | | 0 2 |
 | 40.
90. |
305.
2407 | 1138. | |
| | 60.
184. | 135. | 539.
5504.
2214. | 60 | | ~ - ~ | | 0,0 | 640.2 | 99 | ÷. | 44 | IR — 72-ноия
830. | Ň | | 15. | | PLAN T, RTIG
OM | | 30. | 269. | 1253. | |
| | 44. | 135 | 486.
5058.
2569. | stor
0. | | ~ | 5.
8. | STAGE
640.0
640.0 | 640.1 | 640.5 | 640.6
641.6 | 645.0 | к 24-ноик
. 1671.
. 47. | | | STORAGE = | | DUTELOU | 0~~~ | 22.
93. | 90.
243.
243. | 1372. | STCR |
| | 32.
187. | 157. | 444.
4432.
2968. | | 00- | 0 | | 640.0
640.0 | 640-1 | 640.5 | 640.6
641.5 | 645.3 | K 6-HOUR
. 4591. | 377.9 | 2808 | MUMIXAM | | NOTTATON | .+ 4
• | 16.
93. | 83.
222. | 1515. | |
| | 24. | 141. | 408.
 | | | | | 640.0
640.0 | 640.0 | 640.5 | 640.5
641.4 | 645.6 | 5 5708 | SEL | | | | | 0-4 | 92.
70. | 204- | 1710. | ł |
| | 19.
176. | 151. | 375.
 | | 000 | | 1. | 640.0
640.0 | 640.0
640.1 | 640.5 | 640.5
641.3 | 645.9 | 50 | INCHES
MM
Ac-FT | THOUS CU | | 647.0 | | 6 -m | 10.
88.
73. | 76.
188.
711. | 1953 | ı |
| -~ | 16.
164. | 152. | 2454. | 60 | | | 12. | 640.0
640.0 | 640-1 | 5-079 | 640.5
641.1 | 646.2 | | | | | STAGE IS 6 | | | 8.
82.
76. | 171. | 2208. | 1 |

| 500 | | | - 0 | 3. | | | | | | | 6 779 | | | | | | | **** | | | IAUTO | 0 | | | | | |
|----------|---|----|----------|-------|---|-------|-------|-------|-------|-------|-----------------------------|------------------|----------------------|--------|------------|------------------|---------------|----------|-------------------|-----------------|----------------|------|--------------------------|--------------|------------------------------|----------------------------|---|
| | | 00 | | | | ļ | | | | | 645.1 645.1
4.27 2 445.0 | VOLURE
38272. | 1084. | 262.57 | -1961 | | | **** | | | INAME ISTAGE I | | LSTR
D | STORA ISPRAT | | | |
| . | | | ,
• | 8. 8. | | | | ĺ | | ļ | -545-1
-245-1 | 1014 | 11.
10.34 | | | 8. | | ****** | e | | JPLT JPRT | | IOPT IPMP
0 0 | x 15K | | | |
| | - | | , | ~~·· | u | | | | | | 644.7 645.0
XXX 7 645.0 | Z4-HUUR
768. | 0. 22.
82 9.96 | r | | 510RA6E = | | ******** | HYDROGRAPH ROUTIN | 76+00 | CON ITAPE | JNG. | RES ISAME | LAG AMSKK | | TH SEL
1006700 | } |
| | | | 1 | *0 *0 | | | | | | | 4 644.4 | 2738. 210 | 78. 60.
6.82 | 173 | 104 | HAX THUN STORAGE | | ***** | 6H | IG STN 52+00 TO | I COMP IE | | AVG I
0.00 | z | | ELMAX RLNTH
540.0 2400. | |
| | | | | | | | | | | , | 642.4 643.4
645.4 643.4 | CFS | C W S
I X C H E S | E. | THOUS CU M | | 645.1 | **** | | CHANNEL ROUTING | ISTAG | | 8L055 CL055
0.0 0.000 | NSTPS
1 | UTING | QN(3) ELNV7
.0400 480.0 | { |
| Ī | | | - | 2. | | 0.049 | 0-040 | 0.018 | 640.3 | 640.6 | 641.9 | | | | | | 13 | ****** | | | | | | | NORRAL DEPTH CHANNEL ROUTING | QN(1) QN(2)
.0400 .0400 | |
| | | | | | | | | | | | | | | | | | MAXINUM STAGE | | | | • | | | | NORMAL D | | |

,

| RAGF | 0.00
538.93 | 5.77
636.05 | 23.08 | 51 | - 69 - 92
- 69 - 95 | 92.31 | 144.23
1062.28 | 207.69 | 280.85 | 357.87 | 445.97 |
|------|-------------------|---|-----------------------|-----------------------------------|----------------------------------|------------------|--------------------------|---------------------------|------------------------------|-------------------------|-------------------------|
| 30 | 0.00 692422.34 | 1363.34
885908.32 | 8656.65
1102435.60 | 25522 | -70 54966.1 | 55 | 99660.56
1898412.13 | 162059.06
2210857.70 | 255947.23
2546317.84 | 375903.16
2904749.37 | 522135.99
3286151.99 |
| 394 | 480.00
511.58 | 483.16
514.74 | 486.32
517.89 | 489
521 | 25 | 2.63 | 495.79
527.37 | 498.95 | 502.11
533.68 | 505.26
536.84 | 508.42
540-00 |
| FLOW | 0.00
692422.34 | 1363.34
885908.32 | 8656.65 | 25522 | .70 54966.31
.22 1609082.31 | | | 162059.06
2210857.70 | 255947.23
2546317.84 | 375
2904 | 522135.99
3286151.99 |
| | | | | ATION | 6. PLAN | 1. RTIO | ۴ | | | | |
| 1 | ~~~ | : | m | | FLOW | | | ~~~ | | | |
| 1 | 6.
16.
162. | | 23.
23. | 31. | 42
42 | 9.
58. | 10.
78. | 101-174 | 12.
124.
167 | 14.
145.
145. | |
| | 153. | | 141.
157.
405 | | | 135. | 1 | 137.245. | | 143.
306. | |
| 1 | 2078. | 6. | 3649. | | | 474. | | 5641. | | 966.
357. | |
| [| 60 | | | | 8 | 66 | | 6 | 66 | | |
| l I |
- | | | | 00- | | | | 0++ | | |
| 1 |
 | | | | + + ~ | | | | | 4 | |
| 1 | 13. | 12. | | 13. | | -9
- 8
- 8 | 16. | 16.
7. | -15.
6. | 14.
6. | |
| 1 | 0.034 | | | | 19 | 80.0 | 480.0 | | | 0.08 | |
| l I | 480.0 | | | | | 80.0 | 480.0 | ļ | ļ | 80.3
80.3 | |
| I | 483.4 | 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 480.4 | 4 80 ° 4 | 480.4
480.5
480.4
480.4 | 200.0 | 480.5 | 480.5
480.3
480.5 | 480.4
480.5
480.6
4 | 480.4
480.3
480.7 | |
| 1 | 484.5 | | | | 444 | 84.9 | 487.4
485.0
483.4 | | | 83.2
84.7
83.1 | |
| | | C FS
C #S | 5710. | 1 | 24-HOUR
1669.
47. | H-22 - | 008 TOTAL
29.
23. | VOLUME
82862.
2366. | | | |
| 1 1 | | INCHES
MM
AC-FT
TUDIS CI M | | 377.91
377.91
2275.
2808 | 21.64
549.56
3310. | 568 | 22.38
568.49
3424. | 22.38
568.49
3424 | | | |
| | | | | * 000 * | -1004 | 0
8 | | 4004 | | | |

というな

i i

| 0. | n | NOTION | Or PL | 0. PLAN 1. KIIO
Tei du | 2 0 | | | 1 |
|------------------------------|------------------------------|--------------------------|-----------------------|-------------------------------|--------------------------------|--------------------------------|-------------------------------|-------------------------------|
| - m | | | 2.4 | | - ~ ~ | | -~~ | -m. |
| 9.
87.
73. | | | 21.
03.
68. | 29.
92.
67. | 30.
80.
81. | 51.
87.
69. | 84.
20-
70- | 73.
80.
72. |
| 75.
186.
696.
1963. | 78.
202.
986.
1728. | 83.
220.
473. | 89.
240.
2051. | 98.
266.
2492.
1266. | 109.
301.
2699.
1149. | 122.
347.
2730.
1026. | 137.
406.
2645.
918. | 153.
481.
2447.
816. |
| | | | STOR
0. | | 66 | | | 6 |
| |
0 | | | | | | | : e e |
| | | | | | | | | 500 |
| | | 0 | 0 | □ ~ « | 5-0 | | | - ~ ~ • |
| | | | .0 | ;
;
; | | | | 3. |
| ł | | | STAGE | 480.0 | 480.0 | 480.0 | 480.0 | 480.0 |
| | | | 480.0 | 480.0 | 480.0 | 480.0 | 480.0 | 480.0 |
| 480.0 480.0 | 480.0 484 | 480.0 | 480.0 | 480.7 | 180-1 | 480.1 | 1.087 | 2.084 |
| | | • | 480.2 | 480.2 | 480.2 | 480.2 | 480.2 | 480.2 |
| | | | 480.6 | 480.6 | 480.7 | 480.8 | 480.3 | 481.1 |
| | | | 483.2 | 485.0 | 482.7 | 483.7 | 483.7 | 483.6 |
| | | 6-HOUR | - 54- | 2 | UR TOTAL | | | |
| | N | .09
.09 | | | | 1081.
1081. | | |
| AC-FT
AC-FT
THOUS CU M | | 173.27
1044.
1287. | 7 252.53 | 3 262.00 | | 262.00
1578.
1946. | | |
| | · | <u>AXIMUM STORAGE</u> | rórage = | •6 | | | | |
| 483.7 | | | | | | | | |
| **** | ***** | | | | ****** | *** | ****** | |
| | ** | | *
*
*
*
* | | | 1 | | * |

| OFFAULTO AREA PLAN BATTO ANTOS APPLED TO FLOOS WVRGGAARH XY (7,430 (7,430 8,450 306,551 WVRGGAARH XY (7,430 (7,450 8,005 306,551 WVRGGAARH XY (7,430 (14,700 8,005 7,551 UCUTED 10 (7,430 (161,751 7,7551 7,7551 UCUTED 10 (7,430 (161,751 7,7551 7,7551 NOUTED 10 (7,430 (161,751 7,7551 7,7551 ADUTED 10 (7,430 7,15351 7,7351 7,75351 7,75351 ADUTED 10 (7,430 7,16356 7,73351 7,73351 7,73351 ADUTED 10 (5,430 7,161,630 7,73351 7,73351 7,73351 ADUTED 10 (5,430 (161,630 7,73351 7,73351 ADUTED 10 | PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
Flows 1% cubit feet per second (cubic meters per second)
Area in square miles (square kilometers) |
|--|---|
| WVB406AAPM AT 1 2.87 1 5711. RCUTED T9 2 2.55 1 5711. RCUTED T9 2 2.587 1 5705. RCUTED T0 5 7.433 1 5705. RCUTED T0 5 7.433 1 5705. RCUTED T0 5 7.433 1 5705. ADUTED T0 6 7.433 1 5705. ADUTED T0 6 7.433 1 5705. ADUTED T0 6 7.433 1 5705. | |
| RCUTED T9 2 2.87 1 5711,
1 RCUTED T0 - 7.43) 1 5705,
1 5705,
1 RCUTED T0 - 7.43) 1 5705,
1 1 5705,
1 1 RCUTED T0 - - 2.87 1 5702,
1 1 5702,
1 1 5702,
1 1 5702,
1 1 5702,
1 1 1 5706,
1 1 1 5706,
1 1 1 5710,
1 1 1 1 | |
| TGUTED TO 5 7.43) 1 5705,
1 RCUTED TO 1 7.43) 1 5702,
1 RCUTED TO 1 7.43) 1 5705,
1 ADUTED TO 5 2.87 1 5716,
1 ADUTED TO 6 2.87 1 5716,
1 ADUTED TO 6 7.43) 1 5716,
1 | |
| RCUTED T0 4 2.67 1 5702 AbUTED T0 5 7.433 1 161.623 AbUTED T0 6 7.433 1 5710. AbUTED T0 6 7.433 1 161.663 | - |
| Adureb 10 5 2.87 1 5708.
(161.62)(
Abureb 10 6 7.43) (161.69)(
(7.43) (161.69)(
(161.69)(| |
| aburte 10 6 2.87 1 5710.
(161.69)(| |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

۳.,

| | 1 | | • | | | | | |
|--------------------|----------------------------------|--|-----------------------------|--|-------------------------------|--|-----------------------------|--|
| PLAV 1 | ELEVATION
Storage
Outflow | INTTAL VALUE
1015.00
4454.
0. | | SPILLWAY CREST
1015,00
4454,
0, | | TOP OF DAM
1016.30
4746.
633. | | |
| AATIO
0f
Phe | MAXIMUM
Reservoir
W.S.ELEV | MAXIMUM
DEPTH
Over Dam | MAXIMUM
Storage
Ac-ft | MAXIMUM
Outflow
CfS | DURATION
OVER TOP
HOURS | TIME OF
Max Outflow
Hours | TIME OF
Failure
Hours | |
| 35.
1.00 | 1018.41
1017.41 | | 5244.
5004. | 5711.
2724. | 11.50
9.50 | 43.50 | | |
| | • | - 1 | PLAN 1 | STATION | m | | | |
| | | RATIO | HAXIMUM
FLOWACFS | MAXIMUM
STAGE , FT | TIME | | | |
| | | 1.00 | 5705.
2732. | 977.1 | 44.00 | | | |
| | | ้า | PLAN 1 | STATION | 2 | | | |
| | | RATIO | FLOWACFS | MAXIMUM
Stage,ft | . TIME
HOURS | | | |
| | | 1.00 | 5702.
2738. | 904.6 | 1 | | | |
| | | PL | PLAN 1 | STATION | 5 | | | |
| | | RATIO | MAXIMUM
FLOW, CFS | MAXIMUM
Stage,Ft | TIME
HOURS | | | |
| | | 1.00 | 5708.
2738. | 647.0
645.1 | 44.00 | | | |
| | | PLAN | • | STATION | 6 | | | |
| | | RATIO | MAXIMUM
FLOW, CFS | MAXIMUM
Stage.ft | TIME
HOURS | | | |
| | | 1.00 | 5710.
2730. | 483.7 | 44.00 | | | |
| | | | - | | | | | |
| | | | | | | | | |
| | | *
*
* | | | | | | |
| | | - | | | | | | |

·

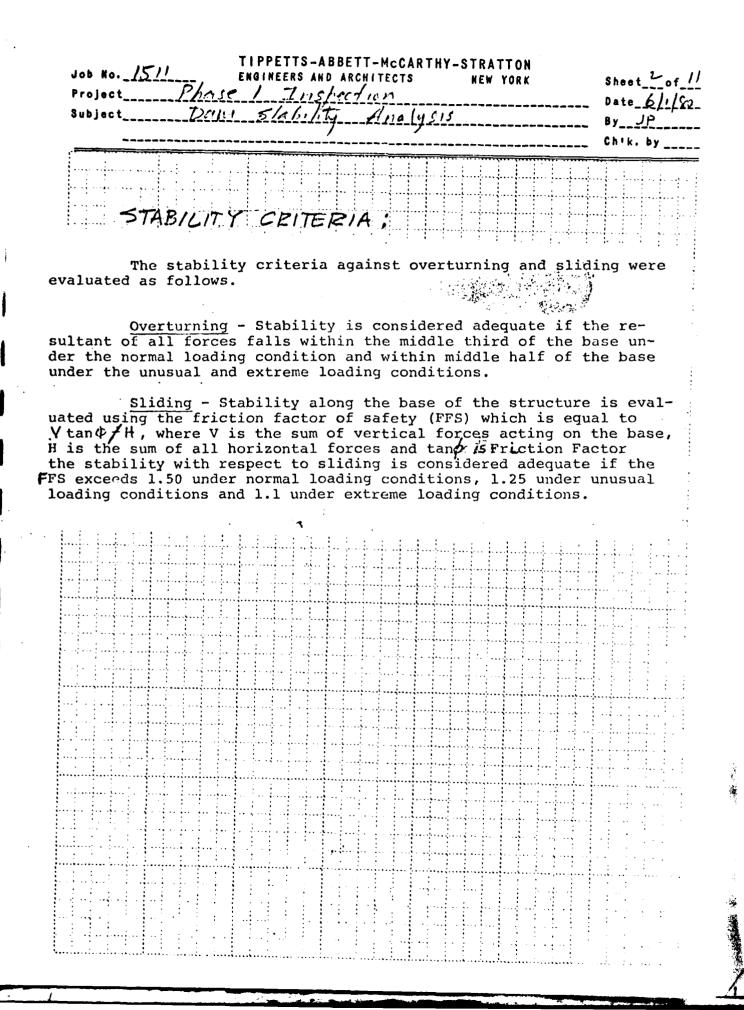
.

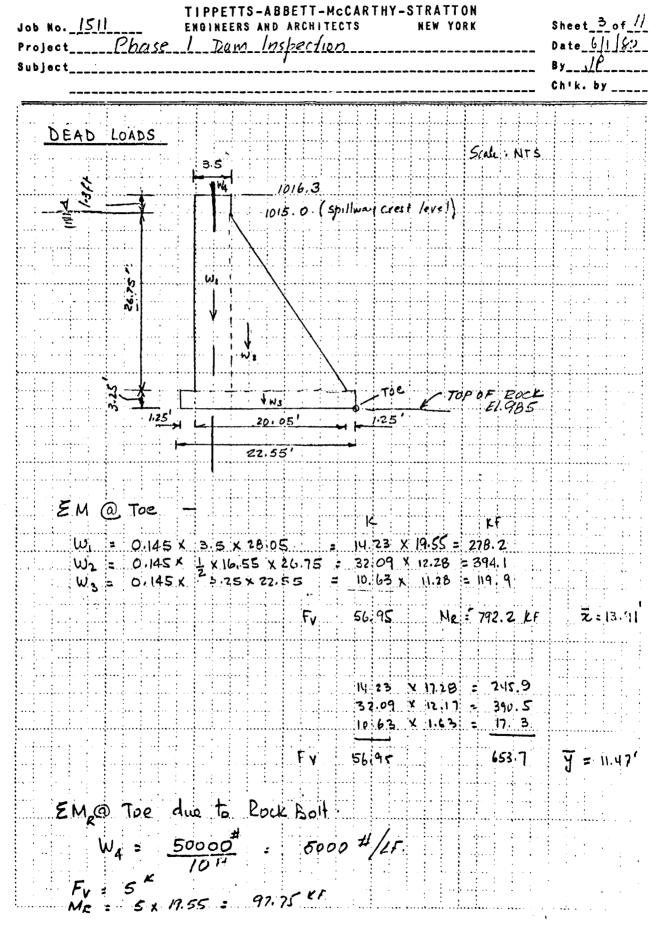
.

Ī

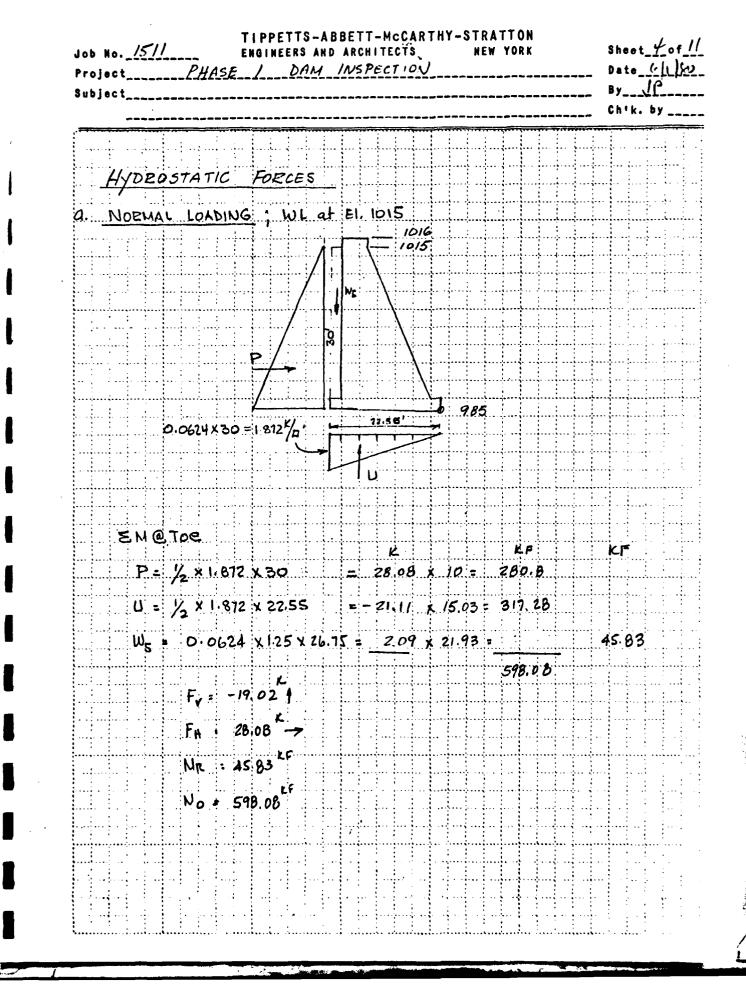
ľ

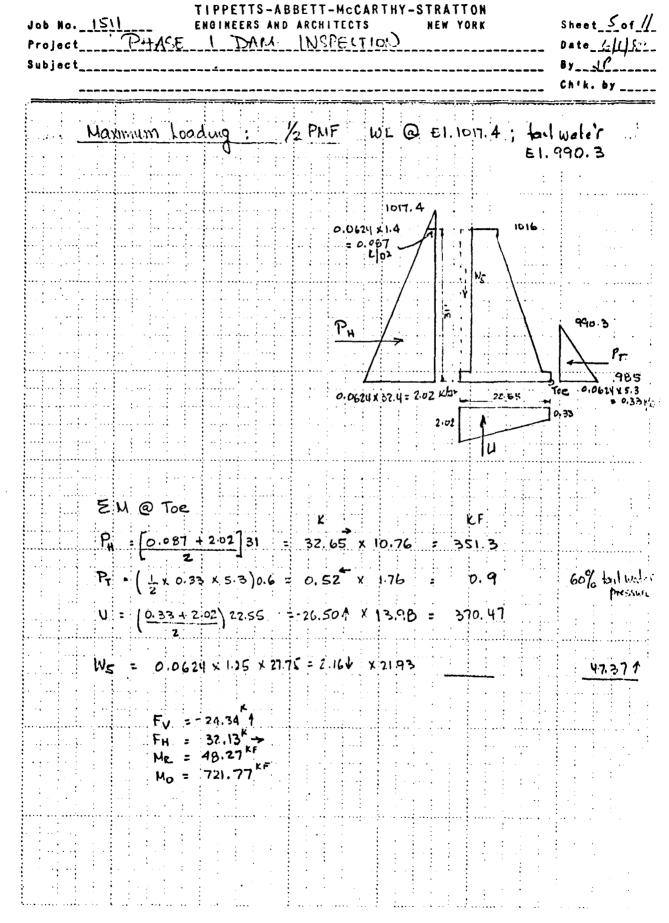
į

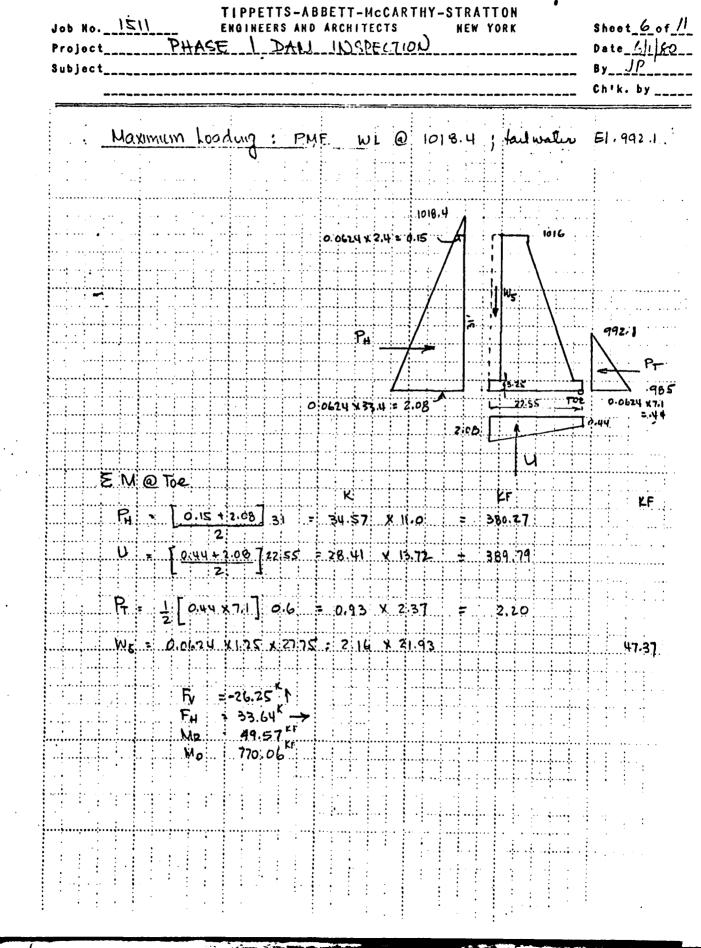

-

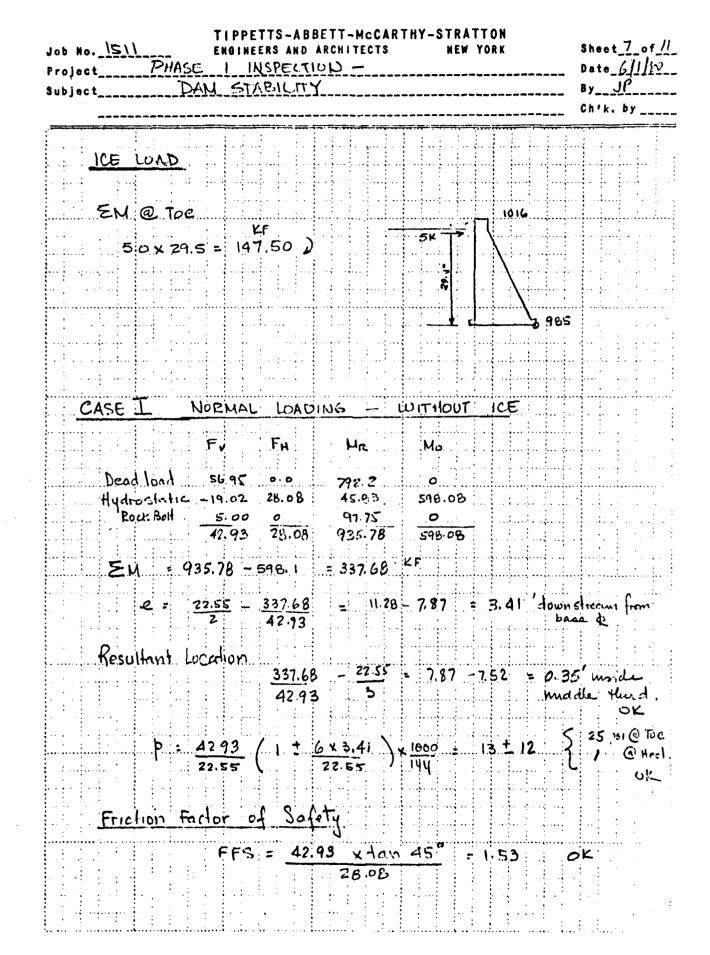

•

F. -?


STABILITY ANALYSIS


-ABBETT-MCCARTHY-STRATTON Job No. 1511 Sheet / of // NEW YORK PHASE I DAM INSPECTION Date 611/80 ect DAM STABILITY ANALYSIS. By JP LAKE WELCH Ch'k. by Assumptions : 1.) The limit weight of concrete is assumed to be 145 lbs / cu ft 2) Ice load of 5000 lbs/sgft acting about 1 foot from top of dawn, laccording to Corps of Engineers 3) Angle of Internal resistance of rock is assumed to be 45° based on Vunal examinations of the exposed rock at downstream the and its bedding planes. 4) Dans site is Seismic Zone 2 LOADING CONDITIONS Case I. Normal loading : Lake level at splany crest El 1615.0 no ce lead Normal londing: Lake ler (al Spilling Crest El 1045.0, wirth Loc lohd. Case T Case III Unusual loading; Lake level at 1/2 MAIF Case IV Extreme loading : Lake level at Prist Case J. Unuonal loading ; Lake level at Sullivary Court and earliginke forces of 0.05 g.





- 354 - 354 - 31-7

| | | e
1 stap | | | | | _ Date
_ By
_ Ch'k. | <u>1C</u> |
|---|--------------------|---------------------------------------|---------------------------------------|-----------|---------------------------------------|----------|---------------------------|----------------|
| CASE | \mathcal{I} | NOEMAL | LOADING | ь штн | ICE L | PAD | | |
| | | ··· · · · · · · · · · · · · · · · · · | T | | | | | |
| | | | · · · · · · · · · · · · · | Mr | <u>Mo</u> | | | |
| • | | 56.95 | | 792.2 | | | | |
| | Hospatic
R Bolt | - 19:02 | | 97.25 | | | | · · ,- · |
| | = load | | 5.0 > | | 147.50 | | •••• | |
| · · · · · · · | | 42.93 | 33.08 | 935.78 | 745.58 | | | |
| ······································ | | | · · · · · · · · · · · · · · · · · · · | | | | | • |
| Ş | EM = | 935.78 - | 745.58 = | 190.2 | | | | ••••• |
| •••••••••••••••••••••••••••••••••••••• | • | Z7 65 - | 190.2 | | 28 + 447 | - 6 05' | downatu | an C. |
| · · · · · · · · · · · · · · · · · · · | | <u>2255</u> -
2 | 47.93 | | | | base- | t
T |
| | | | | | | | | - |
| F | esultant | location : | 190.2 | - 22.5 | 5 = 413 | - 7.52 - | -2.09 3 | u t |
| | | | 42.93 | 3 | | | side m | iddle |
| | | | | | <u>.</u> | | ther | d . |
| · · · · · · · · · · · · · · · · · · · | Þ | : <u>42.93</u>
22.55 | / 1 ± 6 | × 6.85 \x | 1000 - 1 | 3 + 24 | 37 þs | |
| | | 22.55 | | 22.Sx / | 194 | | -11 psi | e Hee |
| Fri | ction | ractor of | Safely | ····· | | | · · · · · · · · · · · · | |
| • | | | | V | 450- | 1.20 | •••• | |
| | | | | 33.08 | <u>.45</u> = | 1.50 | | |
| · · · · · · · · · · · · · · · · · · · | | | | | | | | |
| | or res | ultant t | o lie | Within | middle | Turd | the | · · · · · |
| add | itional | force | the ro | ck bolt | Would | be bu | linct : | . V |
| | | 7.52 = 19 | | | | | U | |
| | | | 42.93+ | | | | | |
| | | | | | · · · · · · · · · · · · · · · · · · · | | | , |
| | 322, B | 3 +7.52 | V : 190.1 | - + 19.55 | V | | | |
| | | V = //, | 0 Ľ.b. | | | | | • |
| | | 0.0 + 11 | | | | 1. Max | Ulfima | te |
| | 1 5 | 0.0 + 11 | ,0 | = 61.0 | K.ps < | 100 | INTE | Erles |

| | | 15E / D.
1M STRUB | | | | | | Date <u>GIS</u>
By <u>JP</u>
Chik. by |
|-----|---------------------|-------------------------|--|-----------------|------------------|------------|---------------------------------------|---|
| Ca. | se <u>M</u> | 1/2 PN | 11 | | | | | |
| | | | ·F _H | Me | Mo | | •••• | |
| | | IC - 24.34 | 32,13 | 792.2
48.27 | 721.77 | | · · · · · · · · · · · · · · · · · · · | |
| | - OCE 0011 | 37.61 | 0
37.13 | 97.75
438.22 | 0
721-77 | | | · · · · · · · · · · · · · · · · · · · |
| • | EM = | 938.22 - | 721.77 | = 216. | 45 | | | |
| | e = | <u>22.55</u> -
Z | 216.45 | . | II.2B - | • 5.76 = ! | 5.52° c | dewnotrass f |
| Re | sulfont l | _ecation | Commission of the local division of the loca | 5 - 21 | | 5.76 - 7.5 | | 1.76° out
Side middle
Hund |
| | Þ | = <u>37.61</u>
22.55 | <u>+</u> 6×5
22.5 | 55) <u>10</u> | <u>00</u> - | 12 ± 17 | 2 | 9 psi @ Toe
5 psi @ heel.
UK |
| Fr | | Factor or
FFS = | . <u>.</u> | try
-tour a | | | | |
| | | | (included) | 2.13 | | 1,17 | | |
| CA | SE IV | PMF | | | | | | |
| | Dead los | | • | Me
192.2 | Mo
D | | ••• | · · · · · · · · · · · · · · · · · · · |
| | Hydrosta
Rock bo | | 33.64
0
33.64 | 97.15 | 770.06
770.06 | | · · · · · · · · · · · · · · · · · · · | |
| | EM | = 939.52 | - 170.04 | , = 169. | *F | | | |
| | e | : 27.55 | | 7.46 - | | 5-475 : | 6.53' | downstrem fr |

Ŧ

-MCCARTHY-STRATTON Sheet 10 of 11 No. 1511 NEW YORK CE PHASE | DAM INSPECTION Date 61110 DAM STABILITY ANALYSIS PMF - Continued . Resultant Location 169.46 _ 22.55 = 4.75 - 7.52= -2.77 out side 35.70 3 middle turd $p = \frac{35.70}{22.55} \left[1 + \frac{6\times6.53}{22.55} \right] \times \frac{1000}{144} = 11 + 19 = 30 \text{ pri} @ Toe}{-8 \text{ psr} @ hull.}$ FRICTION FACTOR OF SAFETY FFS = 35 70 tan 45° = 1.06 33.64 CASE V ; Normal loading with Earthquake. Reservois feuel at El. 1015 Zone 2 : 0.05 Zangers Method; C = 0.726 Whin O = 0° (1) Hydrodynamic Forces P = 0.726 × 0.05 × 0.0624 × 30 = 2.03 Kips Mp = 2.03 { 0.4 × 30 } = 24.36 KF (2) Dynamic Forces $W_{\rm D} = 0.05(56.95) = 2.85 \text{ K}$ MWD = 2.85 X 7 = 2.85 × 11.47 = 32.69 KF

| Project | <u>1511</u>
1 | | S AND ARCHITECTS NEW YORK
DANA INSPECTION | Sheet <u>11</u> of
 |
|--|---|---------------------------------------|--|-------------------------------|
| Subject_ | | MM STAP | FILITY AWALYSIS | Byl |
| - | | | | _ Chik. by |
| | | ···· | | ····· |
| | | · · · · · · · · · · · · · · · · · · · | | |
| | | | Fi Me Mo | • • • • • • • • • • • • • |
| | Dend Load | 56.95 | 0.0 792.2 | |
| | Hydrostatic | - 19.02 | 28.08 45 63 598.08 | ····· |
| | Rock Bolt | | 0 97.15 0 | |
| tentiques. | Hydrodynami | 6 | 2.03 24.36 | |
| l | Dynamic | | 2.85 | · • • • • • • • • • • • • • • |
| | | 42.93 | 31.96 935.7B 655.13 | ••••• |
| ···· ··· ·· · | | | | |
| | 5U = | 935.72 | - 655.13 = 280.65 | |
| ····· | | | 0 • • • • • • • • • • • • • • • • • • • | ····· |
| | Resultant | Location | 1 | |
| | | ····· | 280.65 _ 27.55 _ 6.54 - 7.52 | |
| | | | 42.93 3 | hundle fernd |
| | | | | |
| | 'e = | 22.55 - | 6.54 = 11.28 - 6.54 = 4.74 dou | incluean from |
| | | | | ne te |
| | κ. | 47.92 / 1 | + 6x4.74 1 1000 = 13 1 17 | 30 pr @ Tue |
| | | 22.55 | | - 4 psr @ Heel |
| | | | | |
| | | | | |
| | + + 0 + + + + + + + + + + + + + + + + + | | OF SAFETY | |
| | TRICTION | | | |
| | TRICTION | | 42.93 tau 45° - 1.30 | |
| | TRICTION | | 42.93 fau 45° = 1.30
32.96 | |
| ······································ | TRICTION | | | |
| | TRICTICI | | | |
| | TRICTION | | | |

Î

. l

ł

OTHER DATA:

ł

- (1) AVAILABLE STABILITY ANALYSIS
- (2) CORRESPONDENCE BETWEEN OWNER AND ENGINEER DURING 1978-79 REPAIRS

APPENDIX F

April 3, 1978

3308-001-1

Stability Analysis of the Lake Welch Gravity Dam

The Lake Welch Dam was analyzed for both sliding and overturning stability. Three conditions of loading were considered:

- Case I Normal condition of dead hydrostatic forces, including uplift.
- Case II Extreme condition of normal loading plus ice forces of 3,000 pounds per lineal foot.
- Case III Extreme condition of normal loading plus earthquake forces of 0.05g.

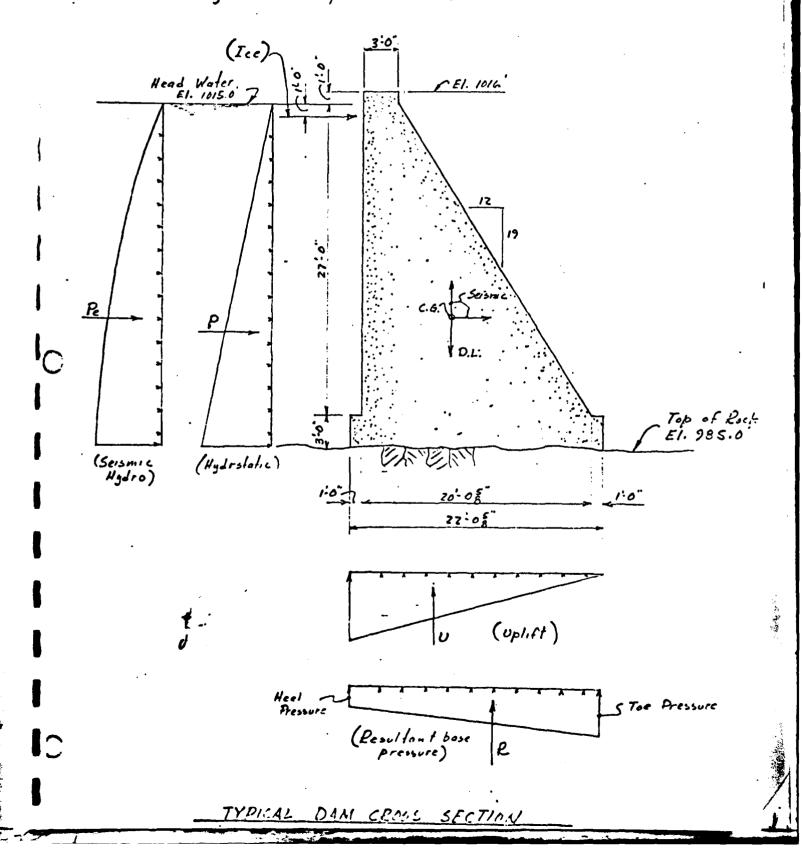
The analysis showed that the ratio of the horizontal forces tending to cause sliding to the vertical forces are, for the three conditions respectively, 0.78, 0.86 and 0.97. While there are no codes, or universally accepted standards, mandating the design of gravity dams, these values are somewhat higher than modern practice would dictate. The analysis showed further that the corresponding ratios of moments resisting overturning to the moments tending to cause overturning are 1.36, 1.18 and 1.18. These values are lower than considered prudent

in modern practice.

These figures indicate that, while not in accordance with today's thinking, the dam is not approaching the point of incipient failure from either sliding or overturning. The factors found for Case I are conservative as the uplift forces applied in the analysis were determined in an accepted and conservative manner. Effects of ice in Case II can be mitigated to any degree desired by drawing down the lake in winter, either fully or partially. Regarding Case III, there has been little seismic activity in this area.

MAIN)

subject 1 at a Walsh Dam Pepairs By And Come Date 2/31/12 Dane Stability Analysis Chd. Rev.

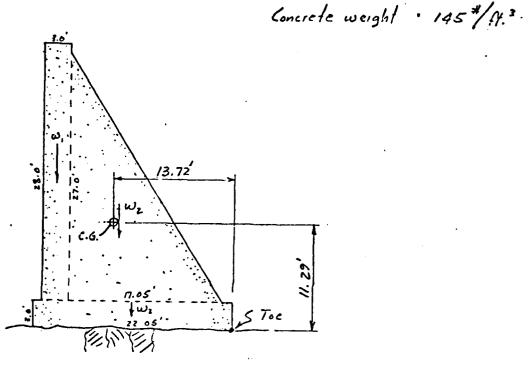

Looding Combinations - Dam in Present Condition

- Cose I (Normal) Dead Lood & Hydrostic Cose II (Extreme) " " Scismic Cose III (Extreme) " " & Lee
- Loading Combination Reinforcement Added Case II (Normal) Case I & Reinforcement Case I (Extreme) Case II & " Case II (Extreme) Case III & "

O Criteria for Analysis Results

Normal Extreme Operation Operation ← 750 P.S.I. € 500 P.S.I Heel or Toe Stress (Compression) Heel or Toe Stress E ZO P.S.I. None (Tension) Sliding Coefficient (f) ▲ .70 4 .75 Overturning (MR) ≥ 1.50 ≥ 1.25 APR 7 1.78 ERCINE: D.R.G. P. J. P. C.

cuent Palisades Interstate Park Commission tob tio. 3308-1 Sheet 2 of 16 soties Lake Wielch Dam Pennic: S. P. R. Laner 3/13/78 liate Dam Stability Analysis Rev. Forces acting on dom & Concrete Outline



(IVE CLEAN)

CHent Paliandes Interstate Park Commission 100 Ho 3308-1 sheel 3 of 16 subject Lake Welch Dan Repairs ex RPPolace Date 3/13/78 Dom Stability Analysis Ckd.

Dead Loads

Ċ

EM@ Toe

$$\begin{split} & \omega_{1} = .145 \times 3.6 \times 28.0 + 12.18^{h} \times 19.55 = 238.1^{ih} \\ & \omega_{2} = \frac{1}{2} = .145 \times 17.05 \times 27.0 = 33.38 \times 12.37 + 412.9 \\ & \omega_{3} = .145 \times 22.05 \times 3.0 = 9.57 \times 11.025 \times 105.7 \\ & F_{y} = .55.15^{h} \qquad M_{p} = .756.7 \end{split}$$

12.18 * 17.0

33.38 × R.O

7.57 x

55.15

1.5

· 207.1

400.6

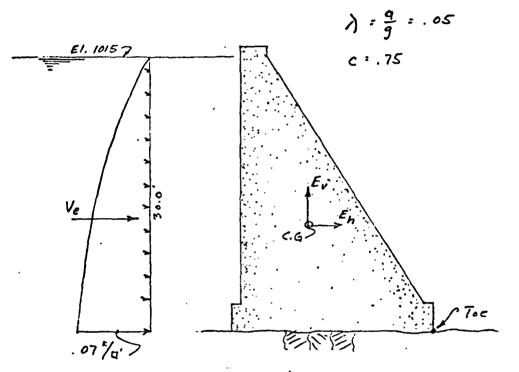
14.3

622.4

:

 $e_h = \frac{7567}{55.15} = 13.72'$

ey = 622.4 = 11.29


Summory

Fy : 55.15 "

Me : 756.7 "

[AMALIN] client Palisades Interstate Port Commission Job Ha 3308-1 sheet 4 of 16 Subject Lake Welch Dans Repairs By P. P. Pulsons 3/13/73 Dane Stability Analysis Ckd. 1; Hydrostalic Forces Weight of Water "GZ.4 #/ft" E1. 1015 7 ωĄ Ρ STOC .0624 . 30 . 1.8 72 / 0. 1212121 27.05 EM e Toc P = 1/2 × 1.872 × 30.0 = 28.08 × 10.00 = 280.8" U: 1/2 × 1.872 + 22.05 = -20.64 7 + 14.70 = 303.4 W4 = .0624 = 1.0 = 27.0 = 1.68 \$ x 21.55 = 36.3^{''} -18.96 584.Z Summary $F_{y} = -18.96^{n}$ FN = 28.08 h MR: 36.3 1K Mo= 584.21*

Chient Blisadres Interstate Park Commission Job 110. 3308. 1 Sheet 5 of 16 Subject Lake Well, Dave Perzing By Mr Palmer Date 3/13/78 Dame Stability Analysis Seismic Forces

 $P_{e} = .15 \times .05 \times .0624 \times 30.0 = .07 \frac{F}{B}'$ EM@ Toe $V_{e} = .726 \times .07 \times 30.0 = 1.53^{K} \qquad M_{e} = .299 \times .07 \times \overline{30.0}^{2} = .18.8^{1/K}$ $E_{h} = .05 \times 55.15 \qquad = 2.76 \times 11.29 \qquad = 31.2$ $F_{H} = .4.29$

$$E_V: .05 * 55.15 = F_V = 2.76^{h} \times 13.72$$

 $M_0 = \frac{37.9}{87.9}^{h}$

Summary $F_{V}^{J} = -2.7C^{R}$ $F_{W} = 4.29^{R}$ M. = 87.9 1h

(MAIN)

CHEAR Policado: Interstate Park Commission Job Ho. 3308-1 Sheer 6 of 16 Subject Lake Welch Davis Repairs By FC Ho finice Date 3/12/78 . Dom Stability Analysis Ckd. Rev. Ice Forces

Uory in 1000" incrementi-From 1000"/1.1. to 10000"/: " " " " " " " " " " "

Ice Pressures

£M© Toe Summary

C

| | F _# | | | M. |
|-------------|----------------|---|--------------|---------------------|
| (9) | /* | × | 29.0 | · 29' |
| (ь) | Ζ | × | 29.0 | • 58' |
| (c) | 3 | × | 29.0 | : 87'^ |
| (d) | 4 | × | 29.0 | = 116' ^F |
| (e) | 5 | 4 | 29 .0 | = 145'R |
| (f)4 | 6 | • | 29.0 | - 174'^ |
| (9) | 7 | × | 29.0 | = zo3' |
| (h) | 8 | × | 29.0 | · 232 * |
| (i) | 9 | • | 29.0 | : 261 |
| (i) | 10 | ĸ | 29.0 | : 290' |
| | | | | |

Client Palisados Interstate Park Commission 100 No. 3308-1 sheet 7 of 16 subject Late Work Dam Persies By 10 Pa Concerose 3/10/13 Dam Stability Analysis Cose I D.L. & Hydrostatic Forces Combined Normal MR F_H : Mo DL. 55.15 0.0 756.7 0.0 Hydrostatic -18.96 28.08 36.3 584.2 584.2 EM = 793.0 - 584.2 = 208.8 " C Toe e: 22.05 - 208.8 = 5.26' downstream from base & Resultant Location = $\frac{208.8}{36.19} - \frac{22.05}{3} = -1.58$ outside kern OK $p = \frac{36.19}{22.05} \left(1 \pm \frac{6 \times 5.26}{22.03} \right) \frac{1005}{144} = 11 \pm 16 = \begin{cases} 27 \ P_{51} @ Toe \\ -5 \ P_{51} @ Heel \end{cases}$ N.G. $Sliding = \frac{28.08}{36.19} = .78 > .70$ N.G. $\frac{M_{R}}{M} = \frac{793.0}{584.2} = 1.36 < 1.50 \quad N.G$

(MAIN)

Case II D.L., Hydrostalic & Seismic Forces Combined Extreme

| | Fr | Fn | MR | Mo |
|------------------------|---------|---------|---------|---------|
| D. L. | 55.15 * | 0.0 * | 756.7 " | 0.01 |
| Hydrostatic | - 18.96 | Z8.08 | 36.3 | 584.2 |
| Hydrosfatic
Seismie | - 2.76 | 4.29 | 0.0 | 87.9 |
| - | 3.3.43 | 32.37 K | 793.01* | 672.11* |

 $\mathcal{E}M = 793.0 - 672.1 = 120.9^{1/k} \quad @ Toe$ $\mathcal{L} = \frac{22.05}{2} - \frac{120.9}{33.43} = 7.41' \quad downstream \quad from \quad base \quad \notin^{1.1}$ $Resultant \quad Location = \frac{120.9}{33.43} - \frac{22.05}{3} = -3.73' \quad outside \quad kern$ $p_{12} \quad \frac{33.43}{22.05} \left(1 \pm \frac{6 \times 7.41}{22.05}\right) \frac{1000}{144} = 11 \pm 21 = \begin{cases} 32 \text{ PSI } @ Toe \\ -10 \text{ PSI } @ Heel \quad CTein \end{cases}$

Sliding : $\frac{32.37}{33.43}$: .97 > .75 N.G.

 $\frac{M_R}{M_0} = \frac{793.0}{672.1} = 1.18 < 1.25 \text{ N.G.}$

MAIN

()

ľ

x

| • | | | | | |
|---|--|-----------------------------|-----------------------|---------------------|------|
| Ellent Palisadas 1 | Julerslate Park | Commissi | 04. Job No. <u>33</u> | 08.1 Sheet 9 of | 16 |
| | Ich Dam Papan | | - | | |
| | bility Analusis | | . 664 | | |
| | | | UND, | | |
| Case IIKa) | D.L., Hydrostatic | E & Ice (| 1000*/1.f.) | Combined | |
| Extreme | ~ | • | | | |
| | F, | F _H | Me | Mo | |
| DL. | F _v
55.15 ^{1k} | 0.0 | 756.7 | 0.0 | |
| Hydrostali | : - 18.96 | 28.08 | 36.3 | 584.2 | |
| Ice (1000 | - 18.96
//.f.) 0.0
36.19 | 1.0 | 0.0 | 29.0 | |
| | 36.19 | 29.08 | 793.0 | 613.2 | |
| | | | | | |
| 5 M = 793. | 0 - 613.2 = 1 | 79.8 0 | | | |
| | | | <i>°C</i> | | |
| 22.0 | 179.8 | a dama | the Ca | in base & | |
| L Z | $\frac{179.8}{36.19} = 6.0$ | | siream tre | om base e | |
| | | 8 22.0 | 5 | a ^{1.} 1 a | , |
| Kesultant | $location = \frac{179}{36.0}$ | 9 | = : - 2,3 | 8 outside | kern |
| | | | | ok | |
| 36 19 | | 1000 | (2 | A RUL A T. | • |
| $p = \frac{32.17}{72.45}$ | $(1\pm \frac{676.06}{2200})^{-1}$ | $\frac{1}{144} = 11 \pm 11$ | 19 = {] | 0 PSI E 10 | e |
| = | $(1\pm \frac{6\times 6.06}{27.05})^{-1}$ | |) - 8 | B PSI @ He | e1 |
| | | • | ι ζ | OK | |
| | | | • | - • | |
| Sliding = - | <u>29.08</u> = .80 ; | > .75 | 1)6 | | |
| . | 36.19 | | | · | |
| | | | | | |
| M _R 79 | 3.0 1.29 > | 175 | • | | |
| Mo GI | 3, 2 | 1,23 | OK | - | |
| | | | • | | |
| | | | | | |
| | | • | | | |
| | | | | | |
| t | | | | | |
| ď | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |

I.

IV AL AMI V Ellent Palingdes Interstate Park Comunission Job Ho. 3308-1 sheet 10 of 16 Subject Lake Welch Dan Repairs By PM Pa Curey Dato 3/14/28 Dans Stability Analysis Cose III(b) D.L., Hydrostotic & Ice (2000*/1.F.) Combined Extreme F_H 0.0^K Mr 756.7 "* Fy 55.15 ^K M. 0.0 1* DL. -18.96 28.08 36.3 *58*4.2 Hydrostalic Ice (2000 #/1.f.) $\frac{2.0}{30.08^{\kappa}} \qquad \frac{0.0}{793.0^{1\kappa}} \qquad \frac{58.0}{642.2^{1\kappa}}$ EM = 793.0 - 642.2 = 150.8 1 e Tre e = 27.05 - 150.8 = 6.86' downstream from base &. Resultant location = 150.8 - 22.05 = - 3.18' outside kern $p = \frac{36.19}{22.05} \left(1 \pm \frac{6 \times 6.86}{22.05} \right) \frac{1000}{144} = 11 \pm 21 = \begin{cases} 32 \text{ PS.1.} @ \text{Toe} \\ -10 \text{ PS.1.} @ \text{Heel} \end{cases}$ $\frac{M_R}{M_2}:\frac{793.0}{(42.2)}:1.23 < 1.25 \quad N.G.$

٢

Cose III(C) D.L., Hydrostatic & Ice (3000"/1.f.) Combined

EM = 793.0 - 671.2 = 121.8 " @ Toe e = $\frac{22.05}{2} - \frac{121.8}{36.19} = 7.66$ downstream from base &

Pesultant location =
$$\frac{121.8}{3619} - \frac{22.05}{3} = -3.98'$$
 outside Kern.

OK

$$\psi = \frac{3c.19}{22.05} \left(1 \pm \frac{6 \times 7.66}{22.05} \right) \frac{1000}{144} = 11 \pm 24 = \begin{cases} 35 \ P51 \ @ \ Toe \\ -13 \ P51 \ @ \ Heel \\ 0 \ K \end{cases}$$

$$Sliding = \frac{31.08}{36.19} = .86 > .75 N.G.$$

$$\frac{M_{P}}{M_{0}} = \frac{793.0}{671.2} = 1.18 < 1.25 \quad N.G.$$

(MAIN)

Client Palisades Interstate Park Commission Job Ho 3308-1 sheet 12 of 16 Subject Lake Welch Dans Pepairs By PP Palmer Date 3/31/70 ()Dam Stability Analysis US -11 - HC - SCS - 200 Reinforcement -Williams Rock Bolt Max. Working Load : 74.000 # Design Load = 2/3 × 74000 = 49333# ± Ucc 50000# Bolt spacing @ 5 o.c Load por ft = 5000 = 10000 #/1.f. 10 K 19.55' Me = 10.0 x 19.55 = 195.5 " 0 Reinf. Wt. of Granite Rock = 165 #/Ft.3 10 * Tension SToe -Rock Weight W = 1/2 x, 165 x 10.0 x 20.0 = 16.5 * > 10 * O.K. Semmary Fy = 10* Ma = 195.5

(NSALE 1SU)

client Palie. rdas Interstata Bick Communication Job No. 3308-1 sheet 13 of 16 Subject Lake Well, Dru Convirs By P. O. Palmer Date 3/31/78 Dave Stability Analysis Case IP D.L., Hydrostotic & Cemforcement Combined Vormal (Case I & Reinf.) Fr Fn Mr 36.19 * 28.08 * 793.0'" M, Cose I 584.2'^r <u>10.00</u> <u>0.0</u> <u>195.5</u> 4619* 28.08* 988.5 Reinf. 0.0 EM + 988.5 - 584.2 = 404.3 @ Toe e = 22.05 - 404.3 = 2.27' downstream from base & Resultant location = 404.3 - 22.05 = 1.40 inside Kern 0 K $p = \frac{46.19}{22.05} \left(1 \pm \frac{6 \times 2.27}{22.05} \right) \frac{1000}{144} = 15 \pm 9 = \begin{cases} 24 \text{ PSI @ Toe of } \\ 6 \text{ PSI @ Heel of } \end{cases}$ Sliding (f) = 28.08 = . 61 < .70 OK Overlurning $\binom{M_R}{P_1} = \frac{938.5}{584.2} : 1.69 > 1.5 \text{ or}$

(MAIN)

Chent Palisades Inderstale Park Compression Job Ho. 3308-1 sheet 14 of 16 subject Lake Welsh Dain Permis Byf Oralines Date 3/31/78 Dave Stability Analysis Che. Rev. Case I D.L., Hydro, Seismie & Leinforcement Combined Extreme (Case II + Revnf)

2M = 988.5 - 672.1 = 316.4 " @ Toe

 $e = \frac{22.05}{2} - \frac{316.4}{43.43} : 3.74' \text{ downstream from base } \notin \mathbb{R}$ Resultant location : $\frac{316.4}{43.43} - \frac{22.05}{3} = -.06' \text{ outside kern}$

$$p : \frac{43.43}{22.05} \left(1 \pm \frac{6 \times 3.74}{22.05} \right)_{144}^{1000} : 14 \pm 14 = \begin{cases} 28 \text{ PSI} @ \text{Toe} \\ -0 \text{ PSI} @ \text{Heel} \end{cases} c$$

$$Sliding(f) = \frac{32.37}{43.43} = .75 OK$$

Overfurning $\left(\frac{M_e}{M_b}\right) = \frac{988.5}{672.1} = 1.47 > 1.25 \text{ o.k.}$

(MAIN)

Elient Palisades Interstate Park Commission Job No. 3308-1 sheet 15 of 16 subject Lake Welsh Dam Repairs By ROPa Amer Date 3/31/28 Dam Stability Anolysis Chd. Rev. Case VI (c) D.L., Hydro, Ice (3000*/1.F) & Reinf. Combined Extreme (Cose We) & Reinf.)

| | Fv | F _H | MR | Mo |
|--------------|-------|----------------|-------|-------|
| Case III (c) | 36.19 | 31.08 | 793.0 | 671.2 |
| Rein f | 10.00 | 0.0 | 195.5 | 0.0 |
| | 46.17 | 31.08 | 988.5 | 671.2 |

 $\mathcal{E}M : 988.5 - 671.2 : 317.3'^{K} @ Toe$ $\mathcal{L} : \frac{22.05}{2} - \frac{317.3}{46.19} : 4.16'$ Resultant location : $\frac{317.3}{46.19} - \frac{22.05}{3} : -.48'$ outside kern

 $p = \frac{46.19}{22.05} \left(1 \pm \frac{6 \times 4.16}{22.05} \right) \frac{1000}{144} = 15 \pm 16 = \begin{cases} 31 & PSI @ Toe ox \\ -1 & PSI @ Heel ox \end{cases}$

Sliding (f) =
$$\frac{31.08}{46.19}$$
 = .67 < .75 or

Over furning $\left(\frac{M_R}{M_6}\right)$, $\frac{988.5}{671.2}$ = 1.47 > 1.25 or

MAIN

CHEAT Palisades Interstala Park Commission 100 No. 3308-1 sheet 16 of 16 Subject Lake Welch Dave Penairs By POLa Conce Bate 3/15/78 Dam Stability Analysis Chd. Rev.

 \bigcirc

Overturning Resultant Me/Mo Locotion to D.S. Kern 3.73' 0 1.40' - 1.58' 3.18' 3.98' 2.38' - .48′ -.06 1 ۱ 0 3 . 0 ଡ 1.47 1.36 1.29 1.23 1.47 691 1.18 1.18 0 0 .86 @ 0 0 Slding Fu/Fu 80 .78 .97 .83 .75 , 67 6 Heel Pressure (PS[) 0 0 δ - 10 - 10 - /3 ও 0 8 -I 1 Minus (-) Sign indicates resultant outside kern. ī (*/1.1.) Pressure 32 35 42 28 27 30 32 5 700 . Minus (-) Sign indicates tension. Ice 0001 2000 3000 3000 Hydro - Earth -static quake É tension at heel. Dues not meet criteria 4 3 1 1 3 ۵ 3 ١ Dead 1 1 7 1 7 7 se III (2) treme)(b) (c) se Ulc) treme) steme) se El ermol ٩ Θ se II treme) ise I senal) ð r 1

1411140

11 - 11 - 11 - 1

Palisades Interstate Park Commission Administration Building Bear Mountain, NY 10911 914 786-2701

Nash Castro General Manager

April 25, 1980

Mr. J. Patel Tippetts-Abbett-McCarthy-Stratton Engineers and Architects The Tams Building 655 Third Avenue New York, New York 10017

Dear Mr. Patel:

As requested, enclosed are the following documents:

- 1. Sheet 1 of consultant design agreement showing scope of services.
 - 2. Correspondence from Chas. T. Main, Inc. dated October 5, 1977, March 31, 1978 and April 7, 1978.
 - 3. Copies of diary sheets from October 9, 1978 to November 12, 1278.

Please call if you need any additional information.

Very-truly yours, Cet_ Robert, Santoro Senior Park Engineer

تسمك تعالمها ا

RS:mgs Encs:

RECEIVED NPR 200 1000 SOILS SECTION

An Equal Opportunity Employer

REGION - Palisades PROJECT NAME - Repairs to the Lake Welch Dam

P. F. NO. -

THIS AGREEMENT made this ______ day of ______ 19, _____, by and between the State of New York, arting by and through the Office of Parks and Reviention, herrinafter referred to as "PARKS", whose office is at <u>Administration Building</u>

Bear Mountain, New York 10911

and ____Chas.T. Main of N.Y. Inc. with offices at 125 E. 38th Street. New York.

Bereinatier referred to as the " CONSULTANT."

WITNESSETH:

WHEREAS, PARKS is charged by the law with the construction, maintenance and operation of state parks, parkways, historic sites, marine facilities and other recreational facilities and desires to obtain behavial and protessional services therein as hereinafter specified, and is authorized to engage such services in accordance with the provisions of the Parks and Recreation Law of the State of New York.

NOW, THEREFORE, in consideration of the premises and the mutual covenants and conditions contained herein the parties hereto agree as follows:

1. SCOPE OF SERVICES - PARKS agrees to employ and hereby does employ the CONSULTANT for the services hereinafter described, and the CONSULTANT agrees to furnish and perform such services upon the fullowing described project:

Repairs to the Lake Welch Dam

The consultant will furnish services related to the repair of the Lake Welch Dam by means of chemical and cement grouting of horizontal construction joints and sealing of vertical expansion joints.

The method to be recommended by the consultant will enable the repair work to be carried out without the necessity of emptying the lake.

More specifically, the scope of the consultants' services shall consist of four parts, itemized as follows:

- Item 1 Inspection of the dam, attendance at meetings, and other work required to propose a solution to the leakage problems, all performed prior to January 1, 1978.
- Itcm.2 Performance and documentation of a stability analysis of the dam so as to determine the basic soundness and integrity of the dam.
- Item 3 Under the assumption that the results of the analysis described in Item 2 show the dam to be essentially sound and capable of repair, the consultant will prepare drawings and specifications for the drilling, grouting and sealing of the dam. If the results of the work performed under Item 2 indicate that the dam is not sound or that some other means of repair are indicative, this agreement may be terminated or amended as appropriate to the conditions at this point.
- Item 4 Field surveillance of the drilling, grouting and sealing workafter the award of the construction contract by Farks.

The Consultant will furnish contract drawings in reproducible form after approval of preliminary drawings by Parks.

The Consultant will also furnish five (5) copies each of detailed contract

MAIN Engineers CHAS. T. MAIN OF NEW YORK, INC. UNL, HALL & AICH DIVISION 125 EAST 38TH STREET, NEW YORK, NEW YORK 10016

DCT

ENCINEERING

P. I. P. C.

9010205-150

di/

5 October 1977

Mr. Robert Santoro Palisades Interstate Park Commission Administration Building Bear Mountain, NY 10911

Dear Sir:

۰.

In compliance with your request we have undertaken a study of the leakage problem at Lake Welch Dam. The site was visited and we inspected the concrete cores obtained from the dam. We understand the need to reduce leakage through the dam and its foundation to a minimum and we appreciate the desirability of avoiding draining the lake. Considering both of these requirements, we offer the following solution:

- Sealing of the horizontal construction joints of the dam, and the foundation of the dam and its abutments, by a combination of cement and chemical grouting.
- Sealing of the vertical contraction joints by drilling a large (6") hole vertically through each joint and backfilling with a non-setting sealant.
- 3. The above procedures are to be performed in the early Spring of 1978 without the lake being drained.
- 4. Observation of the dam, foundation and sluice gate leakage through September 1978 when decisions can be made relative to:
 - Draining the lake to effect additional grouting or repairs, if indicated, to the upstream face of ' the dam.
 - b. The need for a new sluice gate, or the repair of the existing gate.
 - c. Refacing or repairing the downstream face of the dam for aesthetic reasons.
 - d. Performing other remedial work, also for aesthetic reasons.

It is our opinion that steps 1 and 2 above will successfully reduce leakage to a practicable minimum at the least cost. This solution has the further advantage of not requiring the draining of the lake during the recreation season. Should additional work

NEW YORK . LOWVILLE . MALONE . ORISKANY . POTSDAM . PRATTSVILLE

R. Santoro 5 October 1977 Page 2

> requiring the draining of the lake be necessary, such can be performed early next Fall and the lake refilled before the 1979 season. We estimate the cost of steps 1 and 2 to be not in excess of \$225,000.

> It is proposed that MAIN write the specification for the grouting program and provide a resident engineer for the surveillance of the field work. We estimate that the total cost of our services will not exceed \$30,000 up to and including steps 1 and 2. This figure is based on an estimate of 55 working days to perform steps 1 and 2.

> We will be happy to discuss this subject with you and are available to meet with you at your convenience.

Yours very truly, CHAS. T. MAIN OF NEW YORK, INC. Gustav A. Diezemann

GAD:dc

cc: Mr. Thomas F. Connors New York State Park & Recreation

FRIDAY, OCTOBER 14, 1977

Name

Representing

Ivan Vamos Dn. Peter J. R. Buttwee W. Reland Sever JOHN J TROY Bob Santura Gus Diezemann CHARLES P. BENZICEL "ARTIN W. MORLER John J. S. hnorr James E. Cassidy THERNS F. Connies INGARS STOPPARD

NAJH CASTRO Mark Hawton

OPR Central Office / Dept. Commin Dr Env. Mgt. CGS - PAC 1 Engl. PIPC P. I.P.G. Chas. T. Main 063-240. eca D+C OGS-DEC CAR Deve Lerrient OPIC - REDERENTED PALIADES INTERSTATE PART LEMAL

CIR

OT & RS CHAS. T. MAIN OF NEW YORK, INC.

March 31, 1978

MAIN Engineers

> Mr. Robert Santoro Palisades Interstate Park Commission Administration Building Bear Mountain, New York 10911

Dear Mr. Santoro:

ENGINEERING

APR.

7 1978

3308-001-1

Further to the draft of the report on our stability analysis of the Lake Welch Dam, we wish to advise you that post-tensioned fock bolts, five feet on centers and ten feet into rock, placed in reamed grout holes through the top of the dam would produce the following ratios of forces:

| • | Sliding | Overturning |
|----------|---------|-------------|
| Case I | 1.64 | 1.69 |
| Case II | 1.33 | 1.47 |
| Case III | 1.49 | 1.47 |

The addition of the rock bolts improve the resistance to sliding and overturning significantly, as the above figures indicate. While there is nothing to assure that the dam would fail without the rock bolts, there is similarly no guarantee that the dam will never fail with the rock bolts installed. Considering the age and condition of the Lake Welch Dam, it is obviously prudent to install the bolts during the rehabilitation procedure. We estimate the cost of installation to be \$93,000.

Very truly yours,

T. MAIN OF NEW YORK, INC. HAS. Gustav A. Diczemann

CAD:vc

NEW YORK . LOWVILLE . MALONE . ORISKANY . POTSDAM . PRATTSVILLE

CHAS. T. MAIN OF NEW YORK, INC. 125 EAST 38TH STREET, NEW YORK, NEW YORK 10016

April 7, 1978

Engineers

Mr. Robert Santoro Palisades Interstate Park Commission Administration Building Bear Mountain, New York 10911

HER 101378

1

3308-001-1

Dear Mr. Santoro:

ENGINEERING P. I. P. C.

Reference is made to our letter of October 5, 1977 in which we stated that, if the recommended sealing of the horizontal and vertical joints and the foundation of the Lake Welch Dam did not satisfactorily stop the leakage, the lake could be drained to effect additional grouting or repairs.

We also stated in that letter that we believed that the recommended sealing would reduce the leakage to a practicable minimum. We are still of that opinion. We cannot, however, for obvious reasons, guarantee that it will.

Should additional repairs be necessary, and we repeat that we believe the recommended will be successful, it is not possible to estimate the cost of such repairs until the problem, if any, is known.

Very truly yours,

CHAS. T. MAIN OF NEW YORK, INC. $\pi \sim$ Gustav A. Diczema ńπ Vice President

GAD:vc

alment 9.10 G ì 2, 3, 2 Hor Eser 5 Stated grauting acrus 1. 1201 Browner Hoser -Granted Serrow & 2.5-reep 13. - SNOVEL Alcent NEWR JEGNES UP & 65 KS · Creedite > · PRESUME 23 ノシンプ Down To) بر زر Š aft theles we y 20 TOOK PARAJURE E / Hording CANE. OUT dor with 64 6 4 ションシュ Thew 7 - 8 gals -per-mix 5 5 5 5 Willow No Cer Jawa - Gund 2 -6. 14 Heres M

20 022 50 285 12-3 c Dest Jerses est Ž. そころや Le le le -K-. 02.2 8 ļ 377 and Directo dicent. 1 traat 8 9....? ちょうしょう ンちん 22 **OCJOBER 11** ۲ でい 500 d d 12 2 2 X ry 2 უ 5 Q a/oni ダンシャ hren . ver-ec Chestere ひんんい して OLEER じに ん-lio 1/adre Rich Mar. ľ Š 515 ちん Ore 292 Ł のた 1.2.2 (5 60 Acut 5 (00 101 K シンちの PRIKER 2 DACKEING 5 がんど 5 1ma! & men 13/ 20 % 15 ROW 2.0. 2 [lea 0 STARES OCTOBER 10 down. シニシ כנוציג 35/2 ROUTAC (1000 ž lorrid. Lolis are ふとうどう 4: Y: rung ジージー ١ 2 ŝ Ker したので 3 " acker ŝ Ś K CLOUTING Þ 10100 gaer irrand " Lelles らこ 102/201 2. ve 42.4 Surrey ん、ノン 4 えょうん ろしい 4 Coular 1000 122 200 202 Lest. ういや 617 ē Ý ļ

N. J. BEARING IN TAANSHISSION BROK į Groups By Sinne Pune Hore Ste Supr 2 LAR TOOK POUP BACK TO lessues the thore 2 yours and WENT BACK AND To . Duy " 3 nen i OCTOBER 13 -1/2, 2, 2, 4, 5/1d'precevar GROUTING C. win Wanny 12400 CHIPPING Gone Air . Second V o • 31/1/ told here 4.20 low Track kylerete - & men 000 -107-10¹ 2 (21 Gaulting at 10 1 2 * Color my Brught - Inou Pune on Jos n whee down からか Les close Drelled 5/ 1 ~ ~ 1:" Pulo eres C. C. LUNER OCTOBER 12 verming___ 20,020% A . : Luas 020 alled Live where ķ ê d going . shear leck mulo いきょう raubal - & hepper • • • • • viriner. بر ان Deing 5 725 N. 0.50 286 25 9

-50. REAMING OUT GROUTED HOLES ł OCTOBER 17 STARTED CHIPING Cient Cord. a they are completed Juder Here reduction טיש הבי קיקי 1. 1. 1. 1. 1. 26 CU. Fr. J 36 CVIVESPAUL M しょうさい シャッショ Fin in ficces 2 1.2 3 7 2016 ر ک Ken いいいこ Levent 5-11-012 3 4 (ú Fr OCTOBER 16 U.S. MAIL CARDANIANE 1780 23 Curre Pactured ď • للشكيك 5 0 Ś ζj くざらつ 1121 5.4.5 といういう la le 2 どう 154 1×car 2 Cerie Cous in 12 25. DOUGLE CO Encr Kieer F. C. E. 1. Zeels tiller Ti surt Kin aril (will with a g 500 Store Sic 1 1,4 1.c 1 1,4 1.c N N ひやざい J Eree' Correct Ŋ 293 5253 0 j j acsu7 aster ر ار 2 Ś

のおうなないの人間の言う

L L 203 Ч У ž to an a so of w ې ۲ 5 24:4 2 CZ X Q Kent 2010 10 500 2 Y Y 513 OCTOBER 19 · · s her 2 シンク 3 יץ יי 53 ہ) م ň 2 ちず 3 <u>کا</u> 20-0-0 えん Charl Š ranny ~ ~ > ilian in States arould です Receive LLA Prov. Ś 3 3 Ľ ام Ŷ 2 c ھ 7 Z X 10 6 ş A OCTOBER 18 37.77 - -----シン・シュ <u>5</u> 5 292 Ø Į, 1

295 < 340 110/2 50 : 50 4 12 OCTOBER 20 3 202 13720 そくじ đ 5 2 Q Ø Е 1.6-20 6 2 17017 20 Re Cea とのた OCTOBER 20 てょわ Klen Gree I 0.11.0 ٩ ン西 7 12 Ł 7 J S 4 à 3 the second Ą d/w.t.c 1.1 willed 1. 6.1 20 7 294 Ņ ١ 3 ۲, rej 3 m 2 c(2 તિ d

どう でんち istere 297 all a spin a star of Ĩ S V いじょく N N ł OCTOBER 23 3 arrio~ いしゃ 2.2 m2 avid touble ž 500 Weer ch Merna 1777 5 OCTOBER 24 224 11-12 2 7200 シャック 2.025E B. more 226 となって I,

elulleng holes any a シメタ 299 シャット・アン Seo gali Kac K j OCTOBER 25 24 رمحمدنائه 1 Ko ... (Khaner el 22010 Ļ Zu che grees 002 - Jard m ee a/e / 00200 Leof is シン Ś Ś 0 · Crie · Coarl. d d יניג רך איזיל 04 40 A Lo 020 Kerk Sin dry r to Qash O ş シン october 223.3 da Ś η 22025 <12 0 2 1 C 4 Larra 4 いとい アロデット 0 : C ra c. くらび Ő いというと ן ק Ž U.L D.D ľ ľ and re J こううえい くいろい Contracto 3 6 622 1-13 201242 فيركرمونياء ζ, dame ... ちょうず arvia FUE 22220 じょういん 503 い、 たび ~ 5

N 100

S. A. L. 14. 301 1 6 ... 20 () (; 2012 0 5 1011000 6 - 1-1 1- 22 いてる deriver at Dellin ŝ į 1-22 612 11 11 CCTOBER 27 242522 いんちん 5.6 ł 5 そいろろ いたい ٤ : 1000 321 3 1 + 1 6 3 いったり 2 Kuto いく list 3 Peck ľ Š 3 X Ĩ der that 6xnarder-81 2 5 4 cruis 608.6 20100 Crew. N. 6. MILL Zain Weck 3 ניצר צנו שין OCTOBER 25 Olame h 2 2 Oc7-26# うくろう ר, ק ציעצו ί 2 is 3 in Ber J といれ 2% · Citechate Kein - all an o Y I 2 Slarted CAK シシッシ Provide-RUNU 5.12 22 22 • ļ ļ I.

20.22 ->،، حزب -22 ----26 .. -26-1 9/ 24.4 ゴ イキ Jerre י אי ג ふ ر. بر 3 ن رر 3 dasta.ed 1 1-0-1-0 (mar 2) ¢ ્ いいで 01 - 1 - 21 CCTORER 31 : 6 6 10 CNME_ 1. 1 + 5 + 10 I 2 S[†] Piner 6"Here È SOLT 121/20/20 144.22 17/2 HAPLER Le una m 12 è 202 م د ٣ 16 5 Aon S6, mak Cotors 2.000 5 10 200 (r. '2, 864 5olt Sett granter Surray. 27 0244 C \$3 R ين لا 4 (news 2020 いいべ Grawfiel Les 1 z Nor green ý 020) いて some K-270 500 X 3 Alin Come 30 30 30 32 3 インド・フ dres not old down OCTOBER 30 30. moht A Sullwoy drilled 30 20/ ~, 0, 5 -- 01+ 3E 20 210 27+10 25-10 2122 ž, in such this and meld billing Bill <u>650/6</u>2 () () 3 wether S. **م** ALL AL llaik Kult espander, Kikking 19/10-0 . Rut . 2 5 ہ 3 ŕ 1 I. Y, ١, ١, ì, •

GHANTED River Ends A Crews_ 307 3 イ 2 Electric Michune Broke chein 3 20 N ત હ S) I c DRIVEN Ĉu Ū ŝų 2 6 0 3 NOVENBER 2 (Ein " 3 CHEN GROUT HOLES 33 3 7 7 340 33% 1, 0 00 2 ۷۲ 7 3 3 9 N 3 ŝ <u>_'</u> 2 3 -6-5 161 5 à ~ ٢ 5 3 뇌 (--147-ANCHOR BOLTS ٦ 13 NOVEMBER 1 AN Sauts Day 3 "In a Tron pure North North -167-Shirted a lilear - CSILON 6 eques 306 Ec.T 5

60 00 00 00 الفنالية S. s., the les NOVENBER 4 Bellimes -(larm 6/200 d Z 2 dd • 28 Lan 28 Jour 3. N 0 600/2 2B 3 lours なる 2 A22:481 2010 514 5 NOVEMBER 3 どろ ن ا ا 2 1 120 33. 200 3 New Electric 341 3 ว 300 36 -three 2 3 ٥y 2 308 J 8 5 3 Ø 2

12 Holes au 8 pring & Creess Ś 0 ž NOVERIBER 6 2 びぶれ R 10 N M r S Rostie Great 3214 24 lound -3 Grouted ź 5 alençaiq San ૡૢૢૢૢૢ aux = 2 Brel Aires نې لا -) 9 14. 1 Car • • • • -NOVEMBER 5 ! 1. ; . ċ . , 1 310

313 525 2-12 N S الم د 2 505 28 10.1002_6516 5 5 50 Lulue 14liener 5.5 5-Chem grows ş Breheng 13° - Hiles 1.UVENBER 8 Theques tew - The 4205 う -concrete. 35 2 で 7 マン Dullun-ろんべてん 3 グ ิป 3 Ļ Relledup **m** 1 ox (Bater or 2 Cleurs Mr. Cl 2 020 NOVEMBER 7 2 60,01/2 N 121 110405 メジン Pulled_Clem Ś 70 રે des/ Dyna Grautel (etheory 3 26 10 સે e r 15 GENTRI 33 312 i 7 D ことになったいとうない ٠.• T

JEL) Rollo clos pu 3 2 eelsen wh Three was 2940 12/8-25 12 3 24 12.15-24 NON DIEN 16 p- nd-1 rem רי שינייד : duller? 22 13/2-25-الازا عد 72-21/51 6.34 - rees 53 $\overline{\sim}$ 13 359 ---28 でん वेंह Sout ч С 9 6 7 20.2 TOYPH1 28100 Were NOVENBER 3 5 5 up sele 3 N ò đ オソート Torquer & Kure 42 オン ; ンイ 2 か よろ - Cleanny がい P マズ ZZ 2 いろ 5.7 K. C. R. C. Bree -2 3 3 C ଚ • • -----------•

• **、'** 317 į NOVEMBER 12 AG LUCKIN . ٠ Ľ. . Duellia 0-1-0-W row 8 ÷ Xia aller. NOVEMBER 11 • ۰. い . : • 2 • 15 R. 12 ちん 316 •

REFERENCES

APPENDIX G

and the second second second second

and the second second

References

- "HEC-1 Flood Hydrograph Package for Dam Safety Investigations", U.S. Army Corps of Engineers, September 1978
- "Lower Hudson River Basin Hydrolic Flood Routing Model" for New York District Corps of Engineers, Water Resources Engineers, Inc., January 1977
- 3. "Standard Project Flood Determination", EM-1110-2-1411, Army Corps of Engineers, Washington, D.C., Rev. 1965
- 4. "Probable Maximum Precipitation Estimates, United States East of the 105th Meridian", Hydrometeorological Report No. 51, National Weather Service, June 1978
- 5. "National Program of Inspection of Dams", Vol. 3, Department of the Army, Office of the Chief of Engineers, 1975
- "Flood Hydrograph Analyses and Computations", EM-1110-2-1405, U.S. Army Corps of Engineers, August, 1959
- 7. "Recommended Guidelines for Safety Inspection of Dams", Department of the Army, Office of the Chief of Engineers, Appendix D
- The Geology of New York State", by Broughton, J.E., et al., N.Y. State Museum and Science Service, Geological Survey, Albany, New York, Map and Chart Series: No. 5, 1962
- 9. "Soil Association Map of New York State", by M.G. Cline, New York State College of Agriculture, Cornell University, Ithaca, New York, February, 1963
- 10. "Orange County Soils. Soil Association Leaflet 2", by E.G. Knox, et al., New York State College of Agriculture, Cornell University, Ithaca, New York, October, 1954