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TForeword
3W

This is the third and final volume of the HI4 Handbook. The first

volume covers the concepts and general philosophy of HDM. The second

volume discusses HD's languages and tools. This volume presents in

detail an example of the use of HDM.

-ARi  i "W

ii
-I
I
I

l1

I
1.:



I FOLLOWING THE EXAMPLE

In carrying out the example, we follow the seven stages of

development. Many pages are required for the specifications,

representations, and implementations, and for the supporting

explanations and diagrams. We anticipate the reader's questioning the

need for such a lengthy discussion of an example that is certainly not a

large system. However, even with a moderate size system (such as ours)

there are a multitude of decisions that need to be made during the steps

of design, specification, and implementation. Using conventional design

techniques, many of these decisions are made informally, often without

even realizing that a decision has been made. Instead, in HDM we make

each decision explicit. As a result, the discussion of these decisions

gets rather lengthy, though we contend that these decisions must be

confronted by the designer (explicitly or not) in any case. We

recognize that for an example of this size, many programmers would not

need the complete documentation offered by HDM in that they could retain

the decisions in their heads. Once a critical size is reached, however,

the number of decisions to be made becomes unwieldy unless a systematic

approach (such as the methodology of HDM) is adopted. We ask the

indulgence of those programmers and suggest that they extrapolate in

their minds to a larger system which might be more taxing.

The reader who carefully follows the details will gain an

understanding of how HDM encourages the developer to contemplate and

formulate decisions. In addition, he will be exposed to most of the

features of the languages of HDM. We recognize that many readers will

not be able to devote such careful effort to the example. To those we

recommend just a study of any two levels -- preferably the top two -- of

the example, and that they follow the development of these levels

through all stages. An adequate introduction to the application of HlM

will be attained by this process.

We confess to the reader that the example occasionally departs from

reality to illustrate important features of HEM. For example, our

implementation of a file system is not realistic; it has been chosen to

3
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illustrate the use of a module in more than one machine. In addition,

the design is somewhat more general than required. This is done to

include mechanims appropriate to a large class of searching problems.
A few extra modules have been included to enable verification of the

implementations, which is not carried out here. In addition, we have

included more modules than necessary, in order to yield near trivial

representations and implementations. Some designers might accept more

complicated implementations at the benefit of fewer modules and

representations.

In Chapter 2, we present the high-level details of our example

system. In Chapter 3, we describe the modules of the extreme machines,

and in Chapter 4 we describe the modules of the intermediate machines.

In Chapter 5 we present the SPECIAL specifications for these system's

modules, and in Chapter 6 we present the machine representations. We

conclude this volume with Chapter 7, which contains a presentation of

the module implementations.
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II CONCEPTUALIZATION: STAGE 1

In this stage, the overall intent of the system is described in a

sufficiently abstract manner to leave out detailed design decisions.

Since we have yet to develop a formal language for conceptualization,

our descriptions will be informal.

At the user level, the system is to provide the following

functional capabilities:

* Provide a simple file system. The file system is to manage a
collection of files (word sequences). No explicit constraint
is imposed on the length of word that can be stored in a file.

0 Provide a facility to enable the establishment of a frequency
count for t'.e words of a user-designated file. It is assumed
that thd user will wish to print the set of words (each word
once) in the designated file, together with the frequency
count for each word. The words are to be printed according to
their order in the file. The printer is outside the scope of
this example, but the words and their frequency counts are to
be stored in a form that is suitable for printout. In this
discussion, we will refer to the set of words and their
frequency counts as the histogram for the designated file.

* For purposes of computing the histogram, words in the
designated file are truncated to some length that is fixed at
system initialization. Thus, if the truncation length is
three, the words "patch" and "pat" are both treated as "pat".
The truncation feature can be used for a given file to count
all words that have a particular prefix.

Two considerations we impose on the design relate to modifiability

and performance:

• With relatively minor extensions to the system, the user will
be able to compute the histogram to facilitate a printout
order based on other criteria, e.g., the number of occurrences
of a word, the length of a word, or alphabetical order.

•Wherever possible, the system performance is to be optimized
in favor of "time", possibly at the expense of "space".

The first consideration will influence the operations provided by the

level immediately below the user-interface. It must provide

capabilities over and above those being utilized by the current

user-interface, so that the user-interface can be altered without

5



affecting the lower levels.

Finally, in this stage we need to decide upon the primitive machine

for our example. Sometimes, we choose the primitive machine to be i

given piece of hardware. More often, though, we choose a suitably

idealized primitive machine, yet one sufficiently simple to be easily

implemented on any hardware. For our example, we follow the latter

route, and assume:

* The primitive machine is to provide two kinds of arrays, one

kind for characters and the other for integers.

Let us illustrate some of the decisions that are indicated above.

Figure II-la depicts a file containing six words. The histogram

for this file, as it might appear on the printer, is shown in Figure

Il-lb. Note that the words are printed in the order of their first

appearance in the file and that for a word containing more than three

characters, only the first three characters are considered in producing

the histogram.

If the print order is desired according to word frequency, then the

printer output is as depicted in Figure 11-2. The conceptualization

does not prescribe the print order for a set of words all with the same

frequency counts. We have arbitrarily depicted the order among such

words to be according to first appearance in the file.

The reader should note that much is (intentionally) left

unspecified in the above conceptualization; for example, nothing has

been said about:

* What is a word.

* How words are stored in the individual files.

• What operations are provided to the user.

* How the words of the histogram are stored in order to
facilitate their printout according to the desired criteria.

0 How the computations are to utilize the given truncation
length.

We will observe how these, and other issues, are confronted by

,.1



Figure II-1: Histogram for a File -- Ordered by First Appearance

1 DOG

2 AT

3 A

4i PATCH

5 PAT

6 AT

HISTOGRAM FOR FILE X

ORDER WORD FREQUENCY

1 DOG 1

1 2 AT 2

3 A1'14 PAT 2

PRINTED HISTOGRAM, TRUNCATION LENGTH 3

(b)
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Figure 11-2: Histogram for a File -- Ordered by Word Frequency

HISTOGRAM FOR FILE X

ORDER WORD FREQUENCY

1 AT 2
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proceeding to the next stages.

We must keep in mind as we progress that design is an iterative

process. Oftentimes, the design process did not go as smoothly (nor as

linearly) as might be suggested by the following chapters. Sometimes we

had to backtrack and re-think certain decisions. This is inevitable for

a non-trivial system design implementation.

Another consideration that must be kept in mind is how the

specification language shapes the design itself, and how intuitive ideas

are expressed in the specification language. In particular, we want to

emphasize that conceptual "abstract data types" are manifested in

SPECIAL as designator types. That is, whenever we want an abstract

type, we typically specify it In SPECIAL as a designator type.

Conversely, whenever we see a designator type in a SPECIAL

specification, we typically have in mind a corresponding abstract type.

Thus, when we say that a given module supports designator type "x", we

mean that it supports the corresponding conceptual abstract type.

9I
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III DEFINITION OF EXTREME MACHINES: STAGE 2

In this stage we organize the extreme machines (the user-interface

and primitive machines) into modules and list the operations and data

structures for each of these machines. We focus initial attention on

these two machines because of their criticality in the overall system

design. The user-interface is the only part of the system the user

interacts with directly. The primitive machine provides the foundation

on which the system rests. Thus, decisions relating to these two

machines are particularly significant -- these machines involve more

than just the development team. On the other hand, there is more

freedom in the selection of the intermediate machines (see next

chapter), and decisions underlying their design involve only the design

team. In HDM we postpone their consideration until later.

A. Presenting the Module Functions

At each stage of development, HDK is used to record the decisions

made at that stage. For Stage 2, the decisions relate to the following:

* The decomposition of the user-interface and primitive machines
Into modules.

0 The functions, parameters, and designator and scalar types for
each extreme machine modu1c.

(Note that these are refinements of what we indicated in Volume II as

the product of this stage.) It is convenient at this stage to divide the

data structures into two classes: those that are not subject to

modification (parameters), and those whose value can potentially change

(V-functions). In this stage, we do not specify the behavior of
functions and parameters; rather, we just record their headers, which

include declarations for the formal arguments and results. Exported

types (i.e., designator and scalar types) are also distinguished in this

stage.

In principle, the documentation for some stages (in particular,

those that yield specifications, representations and implementations)

should be adequate for conveying the decisions made in that stage.

11
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However, it is clear that an accompanying informal description is a

significant help to a reader. For this stage (and Stage 3), the

informal description is particularly valuable in conveying decisions

that are in the designer's mind as he writes down the module

organization and functions, parameters and types, but are not completely

captured in the notation of the specification language. Hence, we

typically begin each module's specification with an English description

of the decisions that are made there and often allude to the many

decisions yet to be made.

It is emphasized that some of the decisions of this early stage are

subject to change as the system develops. We have attempted to

structure the discussion to reflect our thinking as we developed the

system, not as an after-the-fact description of the system. Thus,

missing from our initial description of the primitive machine are a few

auxiliary functions and modules, whose need were not apparent until

later stages.

B. Definition of The User Interface

Recall that the intent of our system is to provide:

* A simple file system for word storage and retrieval.

* The capability of computing frequency counts of words in a
designated word file (sequence). For purposes of computing
the frequency counts, the words of the file are viewed as
being truncated to some given length.

0 The capability of organizing the distinct words of a sequence
and their respective frequency counts to facilitate their
printout. The order of printout is to be by first appearance
in tl.e designated sequence, but other orders, selectable by
the users, should be achievable with minor modifications to
the system.

Notice how we were able to partition the intent of the system into

three distinct, separable concerns. This naturally determines the

modularization of the user interface: one module for each concern.

The "sequences" module embodies the concept of word files;

"histogram" provides the mechanism for creating and storing a histogram

12
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Figure III-1: Modular Decomposition of the User Interfaoe
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for a given sequence; "truncator" encapsulates the decision concerning

the truncation of words for computing the histogram. The facility for

truncation was placed in a module separate from that for computing the

histogram in order to emphasize that a change in the truncation length

has no bearing on the details of the "histogram" module.

The intermodule referencing is shown in Figure III-1.

Let us consider the three modules in turn.

I. Sequences

The "sequences" module is intended to resemble an extremely simple

file system. The major decisions are the following:

* Each word file is viewed as an abstract object called a
"sequence". Correspondingly, we provide a designator type for
sequences, called the "seq" designator type.

4 Sequences can be dynamically created.

Sequences are composed of "words", i.e., vectors of
characters.

0 A sequence is grown by appending words, one at a time, to its
end.

* For a given sequence, operations are provided to indicate its
length, to retrieve a word at a given position in the
sequence, and to interchange the word% in two given positions.

The following operations and data structures are provided for the

"seq" designator type:

string(seq n; INTEGER J) -> word w -- a primitive visible
V-function that returns the J-th word w in sequence n.
"Word" is a named type that was informally defined above to
have as values all non-null vectors of characters; it is
precisely defined later. As the only primitive V-function,
"string" captures the state of each sequence in the system.

seqlen(seq n) -> INTEGER v -- a derived visible V-function that
returns the current length of sequence n. As we will
observe, the value of seqlen(n) can be derived from the
primitive V-function "string".

createseq() -> seq n -- an O-function that creates a new
sequence, initializes it, and assigns a designator to it.

14



clear_seq(seq n) -- an 0-function that clears a designated
sequence.

append(seq n; word w) -- an 0-function that appends word w to
the end of sequence n.

swapseq(seq n; INTEGER i, J) -- an 0-function that causes the
words in positions i and j to be exchanged. The need for
this operation is not intended to be apparent at this point.
The module "sequences", besides providing the abstraction of
a file system for users of the system, also appears in an
intermediate machine to implement other modules. The
operation "swap-seq" is required to carry out this
implementation, but need not be made available at the
user-interface.

Thus we see that this module somewhat resembles a sequential file

system, where the primitive element (record) in an individual file is a

"word". In our module, random access retrieval and exchanging of

elements is permitted, though words may be added only to the end.

Clearly, we have only characterized the syntax of the file system

interface. Aspects of the stmallU we have not indicated are:

0 The state of an initialized sequence

0 The state of a "cleared" sequence

9 The maximum word size that can be accommodated

0 The maximum number of words that can be accommodated

• How any operation is implemented

What effect the 0- and OV-functions have on the primitive
V-functions

Decisions relating to these issues are probably in our minds at this

point, but are not fully formulated until later stages.

2. Truncator

The histogram for a sequence is computed with respect to the

truncated words in the sequence. Truncator is a useful deployment of

modularity to separate the decisions regarding the computation and

retrieval of the histogram from those underlying the truncation of words

prior to their processing.

15
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The major decision being made here is that the length to which

words are truncated is embodied in the initial state of the "truncator"

module. The "truncator" module provides the integer-valued parameter

"maxlength", which is the truncation length for words.

The V-function "truncation(word w) -> truncated_word tw" returns

for a given word w of length greater than maxlength a new word tw that

contains the first maxlength characters of w; if the length of w is less

than or equal to maxlength, then tw is equal to w. Note that tw is

declared to be of type "truncated_word" to emphasize that the range of

"truncation" is limited to those words whose length does not exceed

"maxlength".

As we will observe, the function "truncation" is needed both to

specify the user-interface and to implement an operation of "histogram".

However, a user of the system need not have access to "truncation".

3. Histogram

Briefly, two major decisions are made at this point. The first is

to provide an operation that will compute the frequency count for each

distinct word in a designated sequence. In carrying out the

computation, all characters in a given word beyond the truncation length

"maxlength" are ignored.

The second is that the histogram is to be represented by two

tables, one to hold the set of words in the sequence (in truncated form)

and the other to hold the frequency count of each word.

The following functions are selected in connection with the above

decisions:

getword(INTEGER J) -> truncated_word tw -- a primitive visible
V-function that, in effect, is the table storing the
histogram's truncated words.

howmany(INTEGER J) -> INTEGER I -- a primitive visible
V-function that, in effect, is the table storing the
frequency counts.

histlen() -> INTEGER v -- a derived, visible V-function that
returns the number of words stored in the "getword" table
(i.e., the number of distinct words after truncation in the

16



designated sequence).

hist(seq n) -- an O-function that is invoked to form the
histogram for sequence n.

clearhist() -- an O-function that clears the "getword" and
"howmany" tables.

Note that there are numerous decisions concerning the histogram

module that are not formulated here. For example, we have not

determined the order the words are stored in the "getword" table, the
resource limitations of the histogram module, nor the algorithm for

computing the frequency count of each word in the designated sequence.

4. HSL description of the user-interface

HSL (Hierarchy Specification Language) is a simple language for

expressing certain properties of abstract machines, and modules, and

their organization into a hierarchy. It is convenient to describe the

language by illustrating the HSL description of the user-interface.

INTERFACE
(user-interface

(sequences WITHOUT swapseq)
(histogram)
(truncator WITHOUT truncation))

In general, an HSL description provides the following information

about an abstract machine:

• The name given to the machine, in this case "user-interface"

0 The modules that comprise the machine

* Any functions, parameters, types or designators of a module
that are not to be available to the next higher level machine
N, i.e., those that cannot be referenced in a program that
implements a module of M. For each module, such unavailable
functions are listed following the reserved word WITHOUT.

This completes the discussion of the user-interface. Now let us

jump to the primitive machine.

C. Definition of The Primitive Machine

We emphasize here again that the primitive machine was somewhat

17
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arbitrarily chosen. We wanted a machine that was low-level enough that

it could easily be implemented on any hardware, yet was idealized enough

that we would not be tied to the details of any particular piece of

hardware. As a result, we chose one that provided character arrays,

integer arrays, and tneir respective designators as the primitive

machine. In addition, for simplicity we assume certain operations

discussed below are also provided by the primitive machine.

In the conceptualization stage it was decided that all of the

abstract data structures would ultimately be implemented in terms of

character arrays and integer arrays. Character arrays would be used to

hold the characters of which words are composed, and integer arrays to

hold the frequency counts of words in the histogram, in addition to

other integer values whose need is perhaps not yet apparent. Thus, the

primitive machine contains the modules: "intarrays" and "chararrays".

Since these modules are quite similar, the design decisions that

underlie the choice of functions, parameters and designator types for

both modules can be presented in a single discussion.

* A designator type is associated with each of the two modules.
Each array is associated with a unique designator.

• There is no mixture of types in an array, i.e., an array can
store either characters or integers. Note that this decision
was not based on a limitation of SPECIAL which does allow the
type of arguments and values to be a union of two or more
types.

* All integer arrays are of the same fixed length.

* All character arrays are of the same fixed length.

• Arrays can be dynamically created. The number of arrays that
can be created, however, is limited by the resources of a more
primitive machine that realizes "chararrays" and "intarrays".

• The elements of the arrays can be randomly accessed for
storage and retrieval.

Now let us consider each of the modules in turn.

18



1. Intarrays

This module provides the following:

intarray -- a designator type whose values denote integer
arrays.

leni -- an integer parameter that is the length of each integer
array.

getint(intarray m; INTEGER J) -> INTEGER v -- a primitive
visibl.,e V-function that returns the integer stored at index jI
of integer array m.

create_intarray() -> intarray m -- an OV-function that
associates designator m with a newly created and initialized
integer array.

changeLint(intarray m; INTEGER J, v) -- an 0-function that
causes integer v to be stored in position j of integer array
m, independent of the value previously stored there.

2. Chararrays

This module provides analogous operations for character arrays:

chararray -- a designator type whose values are names of
character arrays.

lenc -- an integer parameter that is the length of each
character array.

getchar(chararray n; INTEGER j) -> CHAR c -- a primitive visible
V-function that returns the character in the j-th position of
character array n.

createchararray() -> chararray n -- an OV-function that
associates designator n with a newly created and initialized
character array.

change_char(chararray n; INTEGER J; CHAR c) -- an 0-function
that causes character c to be stored in position j of
character array n.

In addition, "chararrays" provides an integer parameter,

"maxchararrays", that is the number of chararrays the module can

support.

19

... .... .. .. .. ,



3. Smmary

It should be clear that there are numerous design decisions not

divulged in this stage, for example, the state of a newly initialized

array. These are addressed in Stage 4.

The choice of arrays as the primary primitive storage mechanism is

quite natural. Most programming languages provide an array mechanism

similar to that of these two modules, although there are differences

with respect to dynamic vs. compile-time creation of arrays. Some

readers might object to our assuming the existence of designators as

primitive entities. Some computers provide descriptors or capabilities

which exhibit most of the properties of designators. However, in the

absence of such protected names, a new primitive machine, situated below

the current machine (composed of "intarrays" and "chararrays") could be

defined. This new machine could provide integer arrays and character

arrays but named by, say, integers. The representation to this new

machine would map the intarray and chararray types to integers. (As we

have seen, a designator type can be represented by any set of

distinguishable items, e.g., integers, reals, characters, another

designator type, or a constructed type.) Thus, the protection offered by

the use of designators would still be available to all machines except

the lowest level.

Now that we have defined the extreme machines of the system, we

will define the intermediate machines proceeding downward.

20



IV DEFINITION OF INTERMEDIATE MACHINES: STAGE 3

In general, the number of intermediate levels is inversely related

to the "distance" in abstraction between the user interface and the

primitive machine. If the user interface supports extremely abstract

entities (relative to the primitive machine), the number of intermediate

levels will typically be large.

In our example system, the distance in abstraction is not unduly

large; hence, the number of intermediate levels is also moderate (as it

turned out, there are six). We proceed in a top-down manner, starting

with the user interface and working toward the primitive machine. We

have tried to keep the size of each step small. Small steps mean that

the difference in complexity between adjoining levels is also small;

hence, each level can be easily understood in terms of the abstractions

provided by the next lower level. Putting the small steps together

gives us a large step -- from the user interface to the primitive

machine.

The significant abstractions of the user interface (level6) are the

sequence data type and the "hist" operation, which constructs two tables

(for words and frequency counts). The next level (level5) provides the

same data abstractions as the user interface; its use is to decompose

"hist" into more primitive operations. Thus, level5 is used mostly to

support procedure abstraction. The remaining levels of the system are

used to provide successively more primitive representations for the

abstract types (and their operations) of the respective next higher

level. Thus, they are used mostly to support data abstraction.

Figure IV-1 depicts each of the abstract machines of the system,

their decomposition into modules and the dependency order of the modules

in each machines.

Table 11 gives the decomposition in HSL notation, as expected by

the HDM tools that deals with interfaces and hierarchy structures.

1The tables are included in Appendix A of this volume.
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Table 2 lists the functions, module parameters, and designator types of

each module. Note for V-functions we employ the following

abbreviations: "V" for visible, "H" for hidden, "P" for primitive, and

"D" for derived. Also note these headers define only the syntax of each

module's functions. We leave the specification of semantics to Stage 4.

A. Level5

The purpose of this machine is to provide facilities for the

implementation of "histogram". This is primarily accomplished by the

module "tally". While to the user of "histogram" it appears that the

two tables (for words and frequency counts) are formed instantaneously,

tally builds corresponding tables incrementally with the 0-function

"insertorincrement". If the next word in the designated sequence is

already in the word-table (as defined by the V-function "t_retrieve"),

then "insert_or_increment" increments the count for that word in

"t_howmany" by one; otherwise, it adds the word to "tretrieve" and sets

its count in "t_howmany" to one. Finally, "insert_or_increment" also

advances the file pointer for the sequence. Our intention is for

t_howmany(j) to contain the word count for the word stored in

t_retrieve(j).

Note that there is essentially no jump in data abstraction between

level6 and level5; "getword" corresponds to "t_retrieve", and "howmany"

corresponds to "t_howmany". The main difference between the levels is

in procedure abstraction. A few other decisions embodied in the

selection of operations and data structures of "tally" are noted.

The hidden, primitive V-function

t-sequence() -> seq s

is used to denote the word sequence currently being processed. When the

processing of this sequence is complete, "tally" will generally be reset

before another sequence s' is selected for processing. However, without

resetting, another sequence s' can be selected by invoking the

0-function

t_initialize(s').
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Thus, the histograms for two (or more) composed sequences s,s' can be

formed. This generality in "tally" is not needed by "histogram" as

described, but does not deleteriously impact the efficiency, and might

be useful if the conceptualization underlying "histogram" is changed.

The hidden, primitive V-function

tpointer() -> INTEGER v

indicates the next word to be processed in the designated sequence.

Thus, t__pointer() serves as a file pointer for this sequence. A reader

might believe that it should be visible, i.e., available to the

implementation of "hist" for determining when the end-of-file is

reached. As will be noted in the next chapter, we decided to report the

"end-of-file" condition as an exception to "insert-or-increment".

Once the processing of a sequence is complete, it might be desired

to rearrange the word-table and frequency-table in order to facilitate

the printing of the words in a different order, e.g., by length or in

alphabetical order. The 0-function

swaptally(INTEGER i, J)

could be used by the implementation of "hist" for this purpose. Thus,

we have made the decision in forming the tables to first get all of the

words and their associated frequency counts into the tables, and later

to arrange the order of the tables.

Note that level5 also contains appearances of the modules

"sequences" and "truncator". The role of the former is to give "tally"

access to the designated sequence, as passed down in the implementation

of "hist". For the latter, the parameter "maxlength" of "truncator" is

used to convert a word of the designated sequence into a

"truncatedword".

Now let us proceed to level4, which implements tally.

B. Levels

The purpose of this machine -- containing the four modules

"sequences", "query", "hasher", and "truncator" -- is to implement

"tally" in an efficient manner. In processing the next word of the

24



designated sequence, "tally" updates "t_retrieve" and "thowany" as

dependent on whether the word already appears in "t_retrieve".

The major design decision underlying "query" is to provide

mechanisms that can determine very rapidly whether a word has a prior

appearance. A hash-address scheme is utilized to decrease the average

search time for a word, as compared to linear or logarithmic searching

techniques.

This machine also provides the facilities for storing the

designator for the current sequence and the pointer to the next word in

that sequence to be processed. Let us now consider the definition of

each of the modules.

The "hasher" module provides the integer parameter

hash(word w; INTEGER upper),

which for a given word w will return an integer between 0 and upper-1.

It is intended that the implementation of "insert_or_increment" invoke

"hash" to receive a value that is a probe into a table maintained by
"query" -- see below. We decided to isolate the hashing function in its

own module for essentially the same reasons that "truncator" is a

separate module. Any modifications to the algorithm that implements

hash(w, upper), say to more evenly scatter the probes, has no bearing on

the functional behavior of the other modules of this machine. The

reader will note that "hasher" appears in all machines below level4. In

order to simplify the exposition, we are assuming that the primitive

machine has a built-in hash function. Clearly, we could have written a

program to compute a hash address, but this would contribute little to

an explanation of HDM.

The "query" module provides the mechanisms for storing words and

the count associated with each word, and for carrying out a hash-based

search for the presence of a stored word.

The major decisions underlying the module, including its

relationship with "hasher", are illustrated in Figures IV-2 and IV-3.

"Query" maintains three tables corresponding to the following

V-functions:
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Figure IV-2: Hash A06ss1ng at Words in "Query" -
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Figure IV-3: Hash Aaoessing of Words in "Query"- 2
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get_string(INTEGER J) -> word w -- a primitive, visible
V-function that is in correspondence with "t_retrieve" of
"tally".

check_count(INTEGER J) -> INTEGER -- a primitive, visible
V-function that is in correspondence with "t_howmany" of
"tally". Remember, the count for the word get-string(i) is
checkcount(i).

dir(INTEGER p) -> INTEGER v -- a hash table whose entries are
indices into the get,_string table. The intended domain of p
is between 0 and plen-1, where plen is a parameter of the
module.

Each word in "getstring" is pointed to by the integer in some

position p of "dir", where p is determined by a hash strategy. If a

word w is somewhere in "get._string", then w can be found by probing

slots in "dir" and using the value contained in the probed dir "slot" to

index "getstring". The probe function for a given word w is defined as

probe(w, 1) = hash(w, plen)
probe(w, i) = probe(w, i-1)+1 mod plen

Thus, if w is in the table, then there is a j such that

w = get-string(dir(probe(w,j)))

A "direct hit" corresponds to J=1 and is illustrated in Figure IV-2a. A

"miss then hit" corresponds to J=2 and is illustrated in Figure IV-2b.

Finally, a "miss then empty slot" is illustrated in Figure IV-2c.

A new word w' is inserted into "get-string" only if it is not

already there. Thus, there can only be one j such that

w' = getstring(dir(probe(w',j))).

When w' is inserted into "getstring", its index into "getstring" is

stored in "dir" at the first empty slot starting at position

hash(w,plen).

Among the decisions we have not determined so far are:

* How to represent an empty slot

H How to handle a table that is "full"

The operations supplied by this module are the following:

size() -> INTEGER v -- a visible, derived V-function that
returns the number of words stored in "get.string".
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save(word w; INTEGER p) -- the 0-function used to store a new

word at the end of the "get.tring" table and put its
"get-string" index into position p of "dir".

add-count(INTEGER p) -- an 0-function used to Increment the
frequency count associated with the word in position p of
"dir". Presumably, it would be invoked when it has been
determined that the word of interest is already in

"get-string" and is pointed to by the position p.

swapquery(NTEGER i, J) -- an 0-function used to interchange
the words and frequency counts stored in positions i and j of
both "getstring" and "checkcount".

resetquery() -- returns "query" to its initial state.

The purpose of the extremely simple "seq_.pointer_cells" module is

to provide storage for a sequence designator and an integer. The former

corresponds to the designated sequence for which the his.togram is being

computed, and the latter to the pointer to the next word of that

sequence to be processed. It is convenient to incorporate these

facilities in a module that is separate from the other modules of the

machine. For convenience, we will view the module as providing two

abstract cells for storage. The access V-functions for the sequence

designator and the integer pointer are respectively gets() and get_po;

correspondingly, the respective store 0-functions are stores(seq s) and

store__pINTEGER i).

Note that the module "truncator" appears at this level, but only

because we decided that it, similar to "hasher," is to be a primitive

module of the system. That is, its behavior -- the value of "maxlength"

-- is beyond the control of a user of the system.

C. Level3

This machine consists of the five modules "sequences",

"seqpointercells", "truncator", "hasher", and "intarrays". The last

("intarrays") is hidden above this level. Again, "truncator" and

"hasher" are not significant to this discussion since they appear in

4level3 only because the are needed at a higher level and are also

primitive. The module "seq_.pointer_cells" also requires no discussion
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here since it is not used by level4, and is not implemented until

level2.

The only role served by level3 is to implement "query" using a very

straightforward representation. The primitive V-functions "dir" and

"checkcount" are each represented by an integer array of the module

"intarrays". The function "getstring" is represented by a sequence of

the module "sequences". This particular sequence will be in a partition

of "sequences" that is only accessible to "query"; it is not used to

represent a user file-system.

D. Level2

This machine contains four modules relevant to this discussion --

"vcarrays", "vcintarraypairs", "vc_etc_cells", and "intarrays" -- in

addition to the modules "truncator" and "hasher". The purpose of the

machine is to provide the mechanisms to implement "sequences" and

"seopointer_cells". First, let us consider the definition of

"vcarrays" and its role (together with "intarrays") in implementing

sequences.

The "vcarrays" module maintains a collection of variable-length

character-arrays, each of which is identified by a "vcarray" designator.

A vcarray can expand or shrink but only from the end.

Before we describe the functions provided by "vcarrays", we discuss

how sequences are implemented. Each sequence is represented by a

separate vcarray and intarray. The characters for a given sequence word

occupy contiguous positions in the vcarray. The start and end positions

in the vcarray for the J-th word in the sequence are given by the

integers in positions 2J-1 and 2j in the intarray. Essentially, the

intarray is used as a directory structure for accessing words in the

vcarray. Thus, the interchanging of two words in the sequence is

implemented as exchanging their respective boundary pointers in the

intarray.

An additional integer array is provided for the entire collection

of sequences. The i-th position in this array stores the number of
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words in the i-th sequence (see below). The maximum number of sequences

allowed is given by "vint_bounds", a parameter of the module.

The V-functions provided by the module are the following:

char(vcarray n; INTEGER i) -> CHAR c returns the i-th
character in voarray n.

mnt_for_vcarray(vcarray n) -> INTEGER v -- returns a unique
integer for each vcarray. This integer, as noted below,
serves as a pointer from n to a position in the integer array
for the collection of sequences. Thus, the length of
sequence s, represented (in part) by vearray n, is found in
position int_for_vcarray(n) of this "collective" intarray.

The state changing operations are:

create_vcarray() -> vcarray n -- an OV-function that creates and
initializes a new vcarray designator.

one_morechar(vcarray n; CHAR c) -- an 0-function that adds a
character to the end of the given vcarray.

removechars(vcarray n; INTEGER i) -- an 0-function that removes
i characters from the end of vearray n.

clearvoarray(vcarray n) -- an 0-function that resets the given

vcarray.

We next discuss the "vc_intarray_.pairs" module. Above we indicated

that a sequence is represented by a vcarray and an intarray. In terms

of SPECIAL each seq designator is represented as a STRUCT with two

components, a vcarray designator and an intarray designator. The type

"veintarraypair" has as values all such structures. Note that only a

subset of all such structures are admissible as representations for seq

designators; in particular, the vcarray and intarray components in any

two admissible structures must be respectively distinct. This property

reflects our decision to have a unique vearray and intarray for each

sequence. The module "vcintarray_.pairs" records all of the structures

that have been allocated as representations for sequences. Its use in

the system is primarily for proof. However, the 0-function

create_v_intarray-pair () -> vcintarray_pair vnp

provides a morsel of procedure abstraction, by being a syntactic

substitute for suocessive invocations of
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createvcarrayo; create_intarrayo.

The purpose of the "vcetc_cells w  module is to represent

"seqpointer-cells". Recall, "seq-pointer_cells" holds an integer and a

seq designator. Since a seq designator is represented by a

voarray-intarray designator pair, we see that "vc_etc_cells" provides

three cells: for an integer, a vcarray designator, and an intarray

designator. (The use of "etc." in the module name is merely to keep the

module name reasonably short.)

The representation of sequences in terms of these modules is

described graphically in Figure IV-4.

E. Levell Revisited

In Chapter 3 we discussed the definition of the levell machine,

formulating the decision that "chararrays" and "intarrays" are to be

primitive modules. At that point in the design process one could not

foresee the use of these modules in the design, nor the justification

for the other modules of levell: "chararrays_intarray.pairs",

"chararraysetccells", "hasher", and "truncator". We have previously

justified the appearance of the latter two modules. We will temporarily

defer discussion of the former two in favor of indicating the role of

"chararrays" and "intarrays" in implementing "vcarrays".

The representation of a vcarray is depicted in Figure IV-5. Each

vcarray designator vj is represented by a unique chararray designator

nj. Recall that vcarrays are of variable length while chararrays are of

fixed length; thus, the length of a vcarray is bounded by the fixed

length of a chararray. The length of a vcarray from level2 is

represented at levell through an integer array that is provided for the

collection of chararray designators. Suppose voarray vj is represented

by chararray nj. Then, the length of vj is given by the value contained

in position int_for_chararray(nj) of this "collective" integer array,

where

int_forchararray(chararray nj) -> INTEGER v

is an additional V-function to the "chararrays" module not mentioned in
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Figure IV-4: Representation of a Sequence
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Figure IV-5: Representation of a Vearray
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our previous discussion.

The "chararrays_intarraypairs" module stores a

chararraysintarray__pair corresponding to each vc_intarray_pair of the

level2 machine. Again, this module is not needed except that the proof

requires all of the pairs to be conceptually recorded.

1 The "chararraysetc_cells" module is used to implement the module

"vc_etccells". Recall, "vcetccells" holds an integer, a chararray

designator, and an intarray designator. Since a vcarray designator is

represented at levell by a chararray designator, we see that

"chararrays_etc_cells" provides cells for an integer, a chararray

designator, and an intarray designator.

In the next chapter we present the module specifications.

I

I
I
I

I
ii
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V SPECIFICATION OF MODULES: STAGE 4I

In this stage each of the modules in the system is specified in

SPECIAL. The intent of a specification is to completely characterize

the functional behavior of the module. One point we want to emphasize

is that SPECIAL is not a programming language. Certainly, one can

produce efficient programs for a module that satisfy its specifications;

that is the goal of the entire system development. However, we do not

currently envision a compiler carrying out the translation from

specifications to efficient implementation code. This is currently a

task that requires significant creativity, and is likely to remain so

for some time.

Below we present the specifications for each module, and in the

process justify the design decisions that underlie the specifications.

A specification for each machine can be derived by collecting the

specifications of all modules that comprise the machine.

A. Plan for Presentation of Specifications

In discussing the module specifications we will start with the user

interface and proceed downward through the hierarchy. Within a machine

the order will be to proceed generally upward through the external

references' partial ordering. A module specification is easier to

comprehend if all other specifications on which it depends have been

previously understood. For each specification, we first present in

English the major decisions revealed in the specification (and not in

the previous stages), and then explain the details of the specification,

justifying its particular form as compared with alternatives.

The actual specifications can be found in the Appendix.

B. Sequences

Recall that this module maintains a collection of word files

(sequences), each of which is identified by a unique "seq" designator.

The capabilities provided by this module are as follows:
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0 A user of the module can request the creation of a new

sequence.

* An existing sequence can be cleared to its initial state but
never be deleted, i.e., there is no recycling of "seq"
designators.

0 The words of a sequence are read-accessed by position.

• A sequence is grown by appending words to the end.

* Two words of a sequence can be interchanged.

In this stage the major new decisions are:

The length of a sequence is the number of non-undefined words
in the sequence.

• A newly created sequence is initialized to have length zero,
i.e., all words are undefined.

• Sequence words occupy consecutive positions starting at
position one. Thus, if the length of a sequence is i, then
the word in position i W is undefined; furthermore, a word is
appended by placing it in position i+1.

There is no specified upper limit on sequence word lengths.

• The maximum number of words allowed in a sequence is not
specified here, but rather is governed by the available
resources at lower levels.

Let us now consider how the specifications -- as given in Table 3

in the Appendix -- disclose these decisions (in addition to those

informally discussed when the module's functions were introduced in

Stage 1).

In the TYPES paragraph we declare "seq" as a designator type and

"word" as a type whose value set contains all character vectors with

positive length.

Now let us consider the function specifications in turn.

The primitive V-function

string(seq n; INTEGER J) -> word w

has single exception, which corresponds to no word being present at

position J. The expression in the INITIALLY section, "w = ?" is

shorthand for "initially, for all sequences the value of all positions
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is ?". The reader might question the absence of any exception condition

corresponding to the formal argument n. What if a user invokes

"string(n', J)" with some designator n' that is not an existing seq,

possibly being of a different type? Is it not necessary to intercept

such an exception? The following items indicate, respectively, why

there is no need to check via an exception for an argument of the wrong

type or for a seq that does not exist.

* Both SPECIAL and ILPL are strongly typed languages;
specifications or implementations with type-mismatches are not
well-formed and have no meaning. Such type-mismatches would
be mechanically detected by the HDM tools, and hence would not
require any handling at run-time by the exception-handlIng
mechanism.

• In this module, a seq designator is returned only via
invocation of "create seq", and moreover, an existing sequence
is never deleted. Since the protection rules for designators,
embodied in ILPL, prevent the modification of a designator,
any seq designator passed as an actual argument must be valid.

The visible, derived V-function

seqlen(seq n) -> INTEGER v

is expressed as the cardinality of the set that contains the indices of

all non-undefined words. Several interesting aspects of this

specification can be noted.

* It is emphasized that this is a specification for determining

the number of words in a sequence. It is not an
implementation, which can be (and is) simply carried out by
using a memory cell to hold the current sequence length.

0 "Seqlen" could have been defined as a primitive, visible

V-function, thus avoiding the need for this "derivation"
expression. However, a more complex mapping function for this

-, module would then be required, namely to exhibit a
representation for the additional primitive V-function.

Generally, the number of primitive V-functions in a module
should be minimized.

The purpose of the OV-function

createseq() -> seq n

is to create a new sequence and return the newly created designator n.

First, let us consider the single exception. Sometimes there is

I insufficient information in a module to express conditions for the
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occurrence of an exception. This typically occurs when the

implementation of an 0- or OV-function requests resources of the

module(s) it invokes. In lieu of precisely specifying the conditions

for an exception, we use the term "RESOURCEERROR" to indicate that the

invocation of the function could not be completed due to some exhaustion

of resources in a lower level. For an invocation of "createseq", the

RESOURCEERROR exception could be caused by the exhaustion of lower

level (below "sequences") resources, but we choose to keep hidden from

the caller of "createseq" the exact source of the exception.

It is of interest to note that the exception could be stated

entirely in terms of objects of "sequences" by providing (1) a

parameter, "maxsequences", intended to indicate the maximum number of

sequences that the module can support, and (2) a hidden V-function

"seqcexists(seq n) -> BOOLEAN b" that, in effect, records all of the

designators that correspond to known sequences. The initial value of

"seq-exists" is FALSE for all n. The EFFECTS section of "create_seq"

would be augmented with the effect "seqexists(n) = TRUE". Thus, the

exception RESOURCEERROR in "create_seq" would be replaced by the

expression

CARDINALITY({seq n 1 seq-exists(n) = TRUE)

>= maxsequences.

Clearly, this augmentation increases the length of the specification,

albeit not significantly. However, a more serious difficulty is

confronted in Stage 5 when it is necessary to map "maxsequences", say,

in terms of the parameters of lower level modules: "vcarrays",

"intarrays". (Let us assume that these modulesa-provided, respectively,

the parameters "maxvcarrays" and "maxintarrays"). One problem that

occurs is that the representation of both "sequences" and "query" use

integer arrays. In order to derive a representation for "maxsequences"

it is necessary to pre-allocate the supply of integer arrays between

"sequences" and "query". For this example, the allocation is easy: two

integer arrays for "query", the rest for "sequences". However, in many

systems that allow for dynamic creation of objects, the division will

not be simple, and any pre-allocation is likely to result in inefficient

use of the resources. Thus, we generally advocate not pre-allocating
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the objects of a module among modules dynamically competing for them;

rather, we use RESOURCEJRROR to trap exception conditions of such

dynamic behavior. Another justification for RESOURCE3RROR is that it

defers the resolution of exception conditions to the lower levels of the

system.

To express as an "effect" the generation of a

never-previously-generated seq designator, we use the notation

NEW(seq).

NEW is a predefined function in SPECIAL that requires an argument of

type DESIGNATOR. As part of the underlying semantics of NEW, it never

returns "?".

Now consider the single expression in the EFFECTS section. It

might not be immediately clear that an invocation of "createseq" causes

a state change in "sequences", and consequently, that "createseq"

should be an OV-function rather than a V-function. However, there is an

underlying state involving the designators, since the designator value

returned by an invocation of "create_seq" is dependent on previous

invocations. One might view the module as containing a primitive hidden

V-function:

availablesequences() -> SETOF seq seqset,

which is initialized with some set of non-? designators. In lieu of

the effect we have specified for "oreateseqo", we could then specify:

n INSET available_sequences();
NOT(n INSET 'availablesequenceso);

indicating that n was in the set of available sequences designators

before the invocation, but is not longer available after the invocation.

Note that these effects are non-deterministic since they do not specify

exactly which designator is returned. In the current version of SPECIAL

Hwe decided to use the NEW construct as syntactic sugar, since the

selection of a previously unused designator is so common in

specifications.U i One final note about the specification of "create_seq" concerns the

(apparent) absence of any effect to express the initialization of a

3 newly created sequence. Such an expression is not needed here since the
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initial value of "string(n, J)" is "2", which is precisely what is

desired of a sequence after it is "created". Thus, the act of creating

a sequence is to make a seq designator n available so that words can be

appended to n, swapped and subsequently read out.

The purpose of the 0-function

clear seq(seq n)

is to remove all words from a sequence. We express this effect by

indicating that the post-invocation value in all positions of the

sequence is to be "?". An equivalent, but possibly less desirable

specification is

FORALL INTEGER J INSET {1..seqlen(n)}:
'string(n, J) = ?

indicating that all positions in the sequence that previously stored

"defined" words, will have value "?" after the invocation. The reader

should note that in a specification conciseness is desirable, as

contrasted with an implementation where efficiency is generally vital.

The purpose of the 0-function

append(seq n; word w)

is to place word w at the end of sequence n. As the effect indicates,

word w will be placed at position "seqlen(n) + 1", which is the

post-invocation end-position of the sequence. This specification

illustrates the purposeful omission in the EFFECTS section of V-function

positions whose values are left unchanged. The following expressions

are implicit:

FORALL INTEGER J "= seqlen(n) + 1:
'string(n, J) string(n, J);

FORALL INTEGER J; seq n1 -= n:
'string(nl, J) = string(n, J)

The first expression indicates that all positions of n except

seqlen(n) + 1 are left unchanged, and the second that all positions of

all other sequences are left unchanged.

Let us now consider the possible sources of a RESOURCEERROR

exception. Recall the decision of Stage 3 to represent a sequence in

terms of (1) a vearray to hold the characters of all words in the
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sequence, and (2) an integer array to hold the boundary positions of the

words. Thus, the implementation of an attempt to append a new word to a

sequence will require the appending of characters to some vcarray and

the appending of new integers into some integer array. Either of these

attempts could fail because of lack of room. It is possible to reflect

both of these resource limitations in terms of (proposed) parameters of

"sequences"; for the "vearrays" limitation the "sequences" parameter

would be "maxcharacters", the total number of characters allowed; for

the "intarrays" limitation, the "sequences" parameter would be

"maxwords". With these parameters, the specification of "append" would

not require the exception RESOURCE__SRROR. However, we believe

* These augmentations needlessly clutter the specifications.

* The user of "append" probably does not need to know the cause

of exception (e.g., too many words, too many total characters,
etc.).

* As for "createseq", the exception is best handled at the

lowest level possible.

The specification of the 0-function

swapseq(seq n; INTEGER i, j)

should be self-explanatory. Note that no order of operation is implied

in the EFFECTS section. After an invocation of "swap-seq" both

expressions will be TRUE. There is no relevant "intermediate" state.

A few concluding comments on the specification for the "sequences"

module can be noted. We previously mentioned that "?" is only to be

viewed as a specification constant indicating "no value"; it is never to

be returned as the result of a visible V-function or OV-function

invocation. The semantics of NEW preclude "createseq" from returning

"?". What about for "string" and "seqlen"? It is possible to prove,

based on the module specifications, that the "defined" words of aI
sequence n are stored contiguously in the positions 1,...,seqlen(n).

This property is expressed as

FORALL seq n; INTEGER J:
IF J INSET (1..seqlen(n)}

THEN string(n,j)':?
j ELSE string(n,j)=?;
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These expressions are illustrations of global assertions that are

properties of a module specification. Based on these global assertions,

the reader should convince himself that an invocation of "string(n, j)"

either raises an exception when the word in position j is "?" or returns

a bona fide word. By the semantics of CARDINALITY, "seqlen" never

returns "?,.

We previously indicated that a designator is protected, i.e.,

designators may be manipulated only by functions in the module that

provides such designators. No other operation can be invoked to modify

a designator, and a designator cannot be typed in at a terminal. Thus,

designators serve as internal system names for objects. For external

access to the sequences, we envisage another module of the user

interface, not discussed in this report, denoted as

"namespace manager". Via this module a user could give names to his

files, and the module would maintain hidden tables that store the

correspondence between usernames and sequence designators.

C. Truncator

This module specification, as given in Table 4, has four

paragraphs. The TYPES paragraph declares the subtypes "word" and

"truncated_word", which are used only in the FUNCTIONS paragraph.

The PARAMETERS paragraph declares the single parameter "maxlength",

which (as previously indicated) is the length beyond which words are

truncated for processing by "histogram".

The ASSERTIONS paragraph, in general, contains boolean-valued

expressions that are constraints on the values of parameters. Such

constraints must be satisfied by the initialization program that binds

values to the parameters. The assertion here specifies "maxlength" to

be positive, thus precluding an inconsistent specification for a

truncated word -- see the "histogram" specification.

The perceptive reader might note that the desired constraint on

maxlength could be incorporated in an appropriate type declaration. In

lieu of the assertion, we could declare maxlength to be of type
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positive_integer, defined as follows in the TYPES paragraph:

positive_integer: {INTEGER J : j > 0).

The FUNCTIONS paragraph contains the specification for the derived

V-function "truncation(word w) -> truncated_word tw". "Truncation"

simply returns the first "maxlength" characters of an argument word;

i.e., it converts a word into a truncatedword.

D. Histogram

Table 5 depicts the specifications for "histogram". Recall that

the primary purpose of the module is to allow a user to select a

sequence (of the "sequences" module) from which two tables are formed:

"getword", which stores each distinct word of the sequence; and

"howmany", which stores the number of occurrences of each word in the

sequence. For processing by "histogram", only truncated words are

considered. The specification at first glance appears to be complicated

-- indeed, it is the most complex of the modules of the system -- but,

most of complexity is due to the definitions that aid in structuring the

specification and in enhancing the possibility for modification of

design decisions, and to the comments that provide informal

ex pl ana t ion s.
First let us list the major decisions that are captured in the

specifications. We omit those previously formulated in Stage 2.

0 Words are to be stored in contiguous positions of the
"getword" table.

* Words in "getword" are ordered by their first appearance in
the selected sequence s. More precisely, suppose that twl and
tw2 are two distinct truncated words. If the first occurrence
in s of a word wl such that truncation(wl) = twl appears
before the first occurrence in s of a word w2 such that
truncation(w2) = tw2, then twl precedes tw2 in "getword".

* A histogram is to be formed for a selected sequence only if
the "getword" and "howmany" tables are in their initial state.
This decision is explained below.

* It should be relatively easy to change the ordering criterion
for the storage of words in "getword".
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Figire V-1: H~istogram Tables -- Ordering by First Apearano.
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The second decision above is illustrated in Figure V-i, which is a

refinement of the decisions reflected in Figure II-1.

A scan of the specification of Table 5 reveals the section

EXTERNALREFS. Here all objects -- designator types, scalar types,

V-functions, and parameters -- of other modules that are referenced in

this specification are listed along with the modules in which they are

originally defined, in the same format as their declaration in these

modules. Recall that a module specification might not be

self-contained; that is, the module might share design decisions with

other modules (those referenced in the EXTERNALREFS section). The

module "histogram" externally references: the module "truncator" via

the parameter "maxlength"; and the module "sequences" via the designator

type seq and the V-functions "string" and "seqlen". Note that the

inclusion of the complete declarations for these externally referenced

objects permits the syntactic and type conformance checking of the

module without requiring the specifications of the other modules.

Now let us consider the two types declared in the TYPES section.

The type "word" is the subtype as declared in "sequences";

"truncated_word" is a subtype of "word", constituting all words whose

length does not exceed "maxlength". Note that the assertion in

"truncator" on "maxlength" assures that the set of words in

"truncatedword" is not vacuous. These two types are declared here to

enhance the comprehensibility of the specification; they are not

intrinsic to the specification as are designator types.

Let us proceed now to the specification of the functions. The

reader should have little difficulty with the three V-functions and

"clear_hist". For "getword" and "howmany", the exception precludes the

return of "?" as the result of an invocation. The effect of

"clear_hist" is to return the primitive V-functions "getword" and

"howmany" to their initial state.

The specification for "hist(seq s)" is the most complicated of the

system, and requires some explanation. First, consider the two

exception conditions, which preclude the formation of a histogram for

sequence s if (1) the module is not in its initial state, or (2) the
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implementation finds insufficient resources at the next lower level. It

is not difficult to understand the reasons for including the second

exception condition -- at this level it is impossible to predict if

there will be sufficient resources at lower levels to hold the histogram

tables.

Why do we require that the histogram be reset before proceeding?

Recall that if an 0- or OV-function invocation causes an exception to be

raised, then the module state must be as it was before the invocation.

One possible implementation for "hist" could, in sequentially processing

the words of the sequence s, destroy the prior contents of the

(representation of the) histogram tables. If a resource limitation is

discovered in this processing, it would be required to restore the prior

state as the RESOURCE3YRROR is raised thus, apparently, necessitating

extra storage to save the contents of the tables. Of course, if the

prior state is guaranteed to be the reset state, the restoration is

trivial, just requiring an invocation of some resetting operation at the

next lower level. Several comments are perhaps in order here:

0 The need for the "hist_not_reset" exception was not discovered
until the implementation for "hist" was considered.

* A planned change to HDM will allow the occurrences of state
changes with exception returns. The notion of exception
returns will be abandoned in favor of the more general concept

of "return". With this modification to HDM there would be no
need to reset the histogram tables before computing the

histogram of a sequence.

* With the implementation we have selected the exception
RESOURCE3ERROR is never generated. If there is sufficient
space to store the sequence s, there is also sufficient space
to compute and store its histogram. It is impossible to
deduce this property from the information available in the
module. Instead, the implementation optimizer is relied upon
to discover unnecessary exceptions.

Now let us consider the EFFECTS section, which is meant to indicate

that "howmany" and "getword" are modified to assure values as is

illustrated in Figure V-1. First we explain the defined functions used

in the EFFECTS section.

Occurrences(seq s; trixicated_word tw) is a defined function that
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returns the frequency count of tw in sequence s. It may be understood

in terms of the sequence 3' that is derived from 3 by truncating each

word w of 3 to a truncated_word tw. Then "occurrences(s, tw)" is

understood to specify the number of times tw appears in 3'. Our

expression of this property in SPECIAL can be explained as follows:

The result is the cardinality of the set (s1 INTER s2),
wnere sl is the set of integers between 1 and the length of
sequence s, and s2 is the set of all integers i such that the
truncation of the i-th word in sequence s (i.e.,
truncation(string(s,i)) or string(s',i)) is equal to tw.

The purpose of including set sl is to only consider "defined" words.

That is we do not wish to count the number of occurrences of the word

"?" in s, which is clearly unbounded.

Ith_word(seq s; INTEGER i) is a defined function that returns the

i-th truncated word in sequence s' (derived from s as above) when we

consider only first appearances. The definition uses the defined

function "occurset(s,j)", which returns the set of all truncated words

up through position J in s'. Note that occurset is defined recursively.

Thus, the position in s of ithword(s,i) is the smallest j such that the

cardinality of occurset(s,j)=i. For this j, ith._word(s,i) is

truncation(string(s,j)). Note that ithword(s,k) is "?" if k is less

than or equal to zero or k is greater than the number of distinct

truncated words in s. The reader should convince himself he understands

this.

Once an understanding of the definitions is attained, the

expression in the EFFECTS section for "hlst" should be clear. Note that

the specified effects for "howmany" is in terms of "getword". Note also

that the expression defines new values for "getword" and "howmany" for

all values of J, including those for which the resultant "getword" and

"howmany" values are "?". The specification is simpler than if only

values of j are considered such that "getword" and "howmany" are not

"?". Obviously, the implementation will restrict its consideration to

the smaller subset of J.

We indicated in the "conceptualization" for this problem that, as a

requirement, it should be relatively easy to modify the criterion by
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Figure v-2: Histogram Tables -- Ordering by Occurrences
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which the words are ordered in "getword". For example, suppose that the

desired ordering was by the frequency count of the words in a (as

depicted in Figure V-2) rather than by their first appearance. This new

ordering criterion is specified merely by changing the definition of

ithword to be in terms of "occurrences".

Our specification for "histogram" could have been specified in a

somewhat more elegant, although less transparent, manner using a single

primitive, nidden V-function, as follows:

VFUN h_howmany(truncated_word tw) -> INTEGER v;
$(returns the number of occurrences of

the word tw in the histogram)
HIDDEN;
INITIALLY

v = 0;

This single V-function is intended to hold the frequency counts for all

truncated_words in the universe, only a small fraction of which are

actually stored in the histogram, i.e., those that have non-zero

occurrence values. The EFFECTS section of "hist" becomes extremely

simple, namely:

FORALL truncated_word tw:

'h_howmany(tw) = occurrences(s, tw).

The functions "getword" and "howmany" would become visible, derived

V-functions, for which the DERIVATION sections would bear the burden of

expressing the ordering of the words. The reader might wish to develop

those derivations himself, using essentially the same definitions as in

Table 5.

Now that we have completed our description of the modules at

level6, we will proceed to level5, in particular to consider the module

"tally".

E. Tally

Recall that the purpose of "tally" is to provide the mechanism for

the implementation of the operations of "histogram". "Tally" implements

"hist" by processing a designated sequence in a word-by-word manner.

There are two primitive V-functions in "tally": "t_retrieve" and
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"t_howmany"; they correspond respectively to the V-functions "getword"

and "howmany" in "histogram". Two other primitive V-functions in

"tally", "t, sequence" and "tpointer", respectively store the designator

for the sequence s currently being processed and the position of the

most recently processed word of that sequence.

The major 0-function of "tally" is "insertor_increment", which is

invoked to process the next word of the sequence "t_sequence". The

primary new decisions relating to the specification of

"insert_or _increment" are the following:

* The truncation of the next word w, if not previously stored in
"t..retrieve", is placed at the end of "t_retrieve" and its
associated frequency count in "t_howmany" is set to 1.
Otherwise, the count associated with the (the truncation of) w
in "t _howmany" is incremented by 1.

An exception is generated if the most recently processed word
was the last word of the sequence "t_sequenceo)", i.e., if
there are no more words to process.

The major decisions underlying "tally" are illustrated in Figure

V-3. The next word "PATCH" is first viewed by "insertor_increment" as

the truncated word "PAT", reflecting maxlength = 3. If "PAT" has not

been previously processed, then it is specified to be placed at the end

of the "t_retrieve" table and the corresponding position in "t_howmany"

is set to 1. Otherwise, "PAT" has already been processed and is

contained in "tretrieve" -- let "PAT" be in t_retrieve(i); then

t_howmany(i) is incremented by 1.

Let us now consider the specifications for "tally" as given in

Table 6. Again, the types "word" and "truncated_word" are declared as

in "histogram". The DEFINITIONS paragraph contains the definition for

"no_string", which is used in a straightforward manner as an exception.

The EXTERNALREFS paragraph lists the objects of "sequences" and

"truncator" on which "tally" is dependent.

The V-functions' function specifications are quite straightforward.

Note that the exception condition for "t_retrieve" and "t_howmany"

indicates an argument that corresponds to a position that stores an

"undefined" word.
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Figure V-3: Dscisions Underlying Tally,
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The 0-function "t_inltialize(s)" causes s to be stored in the cell

"t-sequence" and 0 to be stored in the cell "t.pointer" (which

represents the position of the most recently processed word).

The specifications for the 0-functions "swaptally" and

"resettally" should be readily comprehended. As previously indicated,

the formation of a histogram for a sequence s is envisioned to be a

two-pass process. In the first pass, all of the distinct (truncated)

words of s and their frequency counts are stored in the appropriate

tables, according to the appearance of the words in s. The second pass

is used to impose a different ordering, if desired. This is

accomplished through repeated calls on "swaptally".

The effects for "resettally" indicate that its invocation results

in a transition essentially back to initial state.

Now let us consider the most interesting specification, namely that

for "insert.orincrement". The specification contains an ASSERTIONS

section, where assumptions on the state of the module and, perhaps, the

arguments to the function are listed. The assertions listed here are

unlike exception conditions, which are checked at run-time. We do not

specify the behavior of the function if it is invoked with the

assertions not satisfied. The one assertion to this function indicates

that the sequence call "tsequence" has been previously initialized.

The exception conditions are straightforward, corresponding
respectively to no additional words in the designated sequence, and to a
resource exhausting at some lower level in handling the next word of the

sequence.

The first effect should pose no difficulties; it specifies that the

contents of the pointer cell becomes incremented by one as a result of

the invocation.

The second effect says:

Consider some i such that position i of the "t_retrieve"
table contains the truncation of the next word in the designated
sequence. If such an I is found -- the word is in the table --
then the count "thowmany(i)" associated with that word is to be
incremented. On the other hand, if it has not been previously
stored, as reflected by i being "?", then the next free position
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of the "tretrieve" table is tQ store the truncated word, and
the associated frequency count is to be set to one.

It is in general possible that in a LET expression more than one

value of the bound variable can satJ.sfy the characterization. That,

however, is not the case here, since as indicated by the following

global assertion for "tally", a (defined) word never appears more than

once in "t_retrieve":

FORALL truncated_word tw "= ?:
CARDINALITY{INTEGER i 1 t_retrieve(i) = tw))
INSET (0, 1).

Note that the assertion is in terms of the type "truncatedword" to

emphasize that only such shortened words appear in the table.

The reader should continually convince himself that the EFFECTS are

specifications, not implementations. For "insert_or_increment" the

specifications indicate the changes that are to be effected to some

hypothetical data structures. The specification avoids any mention of

the concrete data structures, and how they are to be referenced and

modified. Clearly, the specification for "insert_or_increment" hides

the hash-searching strategy in terms of the structures of "hasher",

"query", and "seq_.ointer_cells". The latter provides the functions

represent "t_.pointer" and "t_sequence", and to modify them. We now

discuss these three modules.

F. Hasher

The purpose of "hasher", whose specification is given in Table 7,

is to provide the parameter "hash(w, upper)", which returns an integer

corresponding to a word w. As indicated previously, the implementation

of "insert_or_increment" will call on "hash" in searching for the

location (if any) of w in the tables of "query".

The assertion indicates that for a positive value of J, hash(w, J)

J will be between 0 and J-1. As we will observe, the value of argument J

will be "plen", the upper limit on the domain of the "query" function

"dir". Note that the assertion need not exclude the word "?" as an

argument since "hash" will never be invoked with "?".
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It is appropriate to review the reasons for "hasher" being both a

separate module and a primitive module. As we will note, the

specifications of "query" and "hasher" are completely independent. By

specifying "hasher" as a primitive machine we are assuming that "hash"

is a primitive operation. Of course, we could have placed "hasher" at a

non-primitive level and provided an implementation for "hash". In any

event, the properties of "hash" specified in "hasher" that "tally"

relies on are independent of the implementation. Nevertheless, the

performance of the system is certainly dependent on the scattering

properties of the implementation of "hash". Currently, such performance

issues are beyond the scope of HDM.

G. Seqpointercells

This extremely simple module, displayed in Table 8, provides

storage for a seq designator and an integer, which respectively

correspond to the sequence being processed and the pointer to the most

recently processed word of the sequence.

The specifications should be clear, except perhaps for the

motivation underlying assertion "gets() ?" for the function "get_s".
1 The value of "gets" is initially "?", which is subsequently changed

to some seq s as a result of an invocation of store-s(s), never to be

"?" again. As should be clear by now, a visible function invocation is

never to return "?". The assertion for "get-s" indicates that the

functior will never be invoked (in the implementation of "tally") when

it is in its initial state. Alternatively, we could have precluded the

return of "?" by providing the exception "get_s()= ?" but at the

expense of providing code in the implementation of "gets" to detect the

exception in terms of lower level concepts. The "assertion" approach is

generally preferred if it does not unduly constrain the use of a module.

It is perhaps appropriate to justify the need for the module

1Remember, the assertions section within a function specification
states assumptions on the state of the module and on the values of the
actual arguments when the function is invoked in an implementation.
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"seqpointercells". Recall that "tally" (which is at levelS5) provides

cells for the designated sequence and its pointer. These are referenced

in the specification of "insert_orincrement", which is invoked to

process the next word of the designated sequence. On the other hand,

"query" processes a word that is passed as an argument. The origin of

the word is not important, and hence at level4 it is appropriate to

separate the processing of words (and their frequency counts) from the

storage of the designator of the sequence being processed and Its file

pointer.

H. Query

The specifications for "query" are given in Table 9. Recall that

query provides two tables: "gettring" and "check_count", which

correspond respectively to the "tally" tables "tretrieve" and

"t_howmany". An additional table in "query" is "dir" (for directory),

which contains pointers to positions in the other two tables. The

domain of "dir" is between 0 and plen-1, where plen is a parameter of

"query". As illustrated in Figure V-2, if a word is stored in position

J of "getstring", then j is stored in some position p of "dir", where p

is determined by a hash strategy. What we have just indicated is in

reality the representation of "tally", which is formulated more

precisely in the next chapter. The major new design decisions for

"query" introduced In the specifications are the following:

• An empty slot in the "dir" table is identified by a value of
0.

I A new word w is inserted into the "getstring" table only by
invoking the function "save(w, p)". An exception is raised by
"save" if (1) dir(p) already points to w in "get-string", or
(2) dir(p) is non-empty and points to a word not equal to w.
If no exceptions are raised, w is stored as the new last word
of "getstring", the corresponding position is "checkcount"
is set to 1, and position p of the "dir" is set to point to
the word position.

The above decisions are illustrated in Figure V-4.

Now let us consider the specifications of "query". First, note

that the type truncated-word no longer appears. Although, in use

57

- I - .



Figure V-14: Design Decisions of Query
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"query" will only store words whose length does not exceed *axlength, it

is not relevant to the specifications of "query" that the words be so

constrained. Hence, these words will be considered to be Just of type

word.

The single assertion of the module guarantees that there is at

least one slot in the "dir" table.

The reader should have no difficulty with the functions'

specifications. The initial value of dir(p) is 0 only for p in the

working domain of "dir" (O..plen-1); otherwise, the value is "?". For

"save", two exceptions have been added to the list given above, one to

make sure p is in the range 0. .plen-1, and the other to trap resource

errors.

The 0-function addcount(p) would be invoked when it has been

determined via an invocation of save(w,p) that w is already in

"get,.tring" at location dir(p). Thus, it remains to just increment the

appropriate value of "checkcount", which is accomplished by invoking

add_count(p). For this use of the module, the two exceptions would

never be raised, and they could be replaced by the corresponding

assertions:

p INSET {0..plen-1};
*dir(p) = 0.

However, we have included the exceptions to allow a more general use of

the module. Note that no RESOURCE_ERROR exception is included for

"add-count", since it is expected at this point that no such exception

will arise in the implementation. Actually, no exception is indicated

since arbitrarily large integers are accommodated.

We have now completed all of the specifications for modules of

level4. Let us now proceed to level3, which introduces the module

"intarrays".

I. Intarrays

Recall that the purpose of level3 is to provide the mechanisms to

implement "query". The V-function "getstring" is to be represented by
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a sequence, while the V-functions "dir" and "check_count" are each to be

represented by an integer array. The specifications for the "intarrays"

module are contained in Table 10.

A newly created integer array is initialized with a defined integer

in each position. In this example all uses Of integer arrays require
that all positions have initial value 0. However, we have decided not

to so constrain the initial value in order to illustrate a

non-deterministic INITIALLY section, and to show (see Chapter VII) the

format of INITIALIZATIONS programs that, in this case, zero-out the

integer arrays.

Let us now proceed to level2, which introduces the modules

"vcarrays", "vc_intarray-.pairs", and "vcetc__cells".

J. Vcarrays

As indicated in Figure IV-4, each sequence is represented by a

vearray and an intarray, the former storing all of the characters of the

words, and the latter storing the endpoints of the words in the vcarray.

A single "collective" integer array also stores the number of words in

the various sequences.

A voarray is a structure whose length can grow and shrink. The

specifications for "vcarrays" -- given in Table 11 -- should be

reasonably straightforward, except for a few subtleties. The V-function

int-for.vcarray(n) returns a unique integer corresponding to each

vcarray designator, as it is created. As indicated in Figure IV-4, this

function associates a position in the sequence-length integer array with

the vcarray designator that represents (in part) each seq designator.

Thus, the length of the sequence represented by vcarray vc is found in

position int_for_vaarray(vc) of the sequence-length intarray.

The uniqueness of mnt_for_vcarray(n) is embodied in the

specification of

create-vcarray() -> vcarray n.

The value intforvcarray(n) associated with the newly created vcarray

designator is specified to be in the range 1..vint-bounds, and to be
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different from the value associated with any other vearray designator.

(Note that vint_bounds is a parameter of the module.) As in the

specification of "sequences", the initial values in a newly initialized

voarray remain "?".

Though the implementation of a sequence has no need for a function

in "vcarrays" that returns the number of characters stored in a voarray,

the concept of the length of a voarray is useful in the specifications

of "one__porechar" and "removechar", and hence is manifested by the

definition "vclen(n)".

K. Vo ntaray-pairs

This extremely simple module -- given in Table 12 -- serves to

allocate and record vcarray-intarray designator pairs, which are used to

represent seq designators. As indicated in the TYPES paragraph, a

"vcintarray-pair" is a structure of the two relevant components.

The OV-function

create_vc_intarray--pair -> ye_intarray-.pair vnp

is invoked to establish a new pair corresponding to a new sequence. The

newly created pair is composed of a newly created vcarray designator and

a newly created intarray designator. The "EFFECTS_OF" construct is used

to indicate the state changes of the externally referenced modules

"vearrays" and "intarrays". Since OV-functions are invoked, the

"EFFECTSOF" statements each return a value, in addition to indicating a

state change in the referenced modules.

We previously considered specifications where a specification of a

module A referenced a V-function of module B. Once that V-function is

declared in the EXTERNALREFS paragraph of A's specifications it can be

freely referenced. If an O-or OV-function of A causes a state change in

B, then there are two approaches toward specifying this state change in

the EFFECTS section of that function:

* By reference to primitive V-functions of A, but quoted to
reflect new values.

* By reference to 0- or OV-functions of A, with appropriate
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arguments. Such a reference is written as "EFFECTS_OF o(x,
y)" to indicate that the new state of A is as if o(x, y) was
invoked. It is not necessary that the implementation use o(x,
y). Note that if multiple external references 01, 02, ... , to
0- or OV-functions of A, then the new state of A is determined
by considering each of the 01, 02, ... , as being applied
simultaneously. The new state of A is the composition of the
effects of 01, 02, .... Clearly, the composition of the
effects might be inconsistent if the designer is not careful.

Often the second approach to specifying a new state for an externally

referenced module leads to a simpler specification.

L. Ye_eta_cells

The purpose of "vc_etc_cells" -- displayed in Table 13 -- is to

implement "seq_.pointercells", which provides storage cells for a seq

designator and an integer. Since each seq designator is to be

represented by a vcarray-intarray designator pair, "vc_etc_cells"

correspondingly provides single cells for a vcarray and an intarray

designator. "Vc_etc_cells" also provides a corresponding integer

storage cell, here called "v_.get.io".

In the case of each of the two V-functions that return designators

-- "vgeto" and "v.get_no" -- 4t is asserted that an invocation will

only be attempted if the value of the V-function is "defined". Since

there is no O-function to restore the initial state, the assertions are

guaranteed to be satisfied if the corresponding "store" function is

called before the V-function.

Now let us proceed to levell for which our concern is with the

newly introduced modules: "chararrays", "chararray-intarray..pairs" and

"chararraysetc_cells".

M. Chararrays

The module "chararrays" provides a fixed number of fixed-length

character arrays, each of which is associated with a chararray

designator. In the system, each character array holds the characters of

a voarray (variable-length character array). The cells of a single

integer array, as indicated in Figure IV-5, are used to hold the current
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lengths of each of the vearrays.

The major decisions embodied in the specifications of "chararrays"

are:

0 The length of each character array is at least one. As we
will note this property permits a simple characterization in
the specifications of the number of character arrays that
exist at any time.

* A newly created character array will contain arbitrary
characters.

0 A function is included that returns a unique index into the

single integer array for each chararray designator.

Let us now discuss the specifications, which are depicted in Table

14. Two integer parameters -- "maxchararrays" and "lenc" -- are

provided to indicate the maximum number of character arrays that can be

created and the length of a character array.

Let us skip to the specifications of the functions.

The specification of the V-function

getchar(chararray n; INTEGER J) -> CHAR c

indicates that the initial value is ?, and that an exception is to be

raised if "getchar" is invoked with an argument j that is not between 1

and lenc.

The V-function

int_forchararray(chararray n) -> INTEGER

returns a unique integer for each chararray.

An invocation of the OV-function

create-chararray() -> chararray n

is intended to return a new chararray designator n and to appropriately

define a value for "intfor_chararray(n)", provided the number of

previously created character arrays is less than "maxchararrays". The

first effect is similar to those previously used to indicate the

creation of new designator. The second effect indicates that

"int_forchararray(n)" is to return an integer between 1 and lenc,

different from the integer associated with any other previously created

character. The third effect specifies that all positions of the newly
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created character array are to be initialized with some arbitrary

"defined" character. Note that the expression characterizing the

exception

CARDINALITY({chararray n 1 getchar(n, 1) M
>= maxchararr-ays

identifies an "existing" character array as having a "defined" character

in the first position. That such a character will exist is guaranteed

by the third effect, and by the assertion that the length of a character

array is at least 1.

An invocation of the 0-function
change_ohar(chararray n; INTEGER J; CHAR a)

simply causes the J-th character of character array n to be changed to

c, provided j is between 1 and lenc.

N. Chararrays_intarraypairs

The module "vc__intarray_pairs" provides the mechanism for recording

the vcarray-intarray designator pairs that correspond to existing seq

designators. The vcarray is not a primitive concept, but is represented

by the designator type chararray. Correspondingly, a vc_intarray.pair

is represented by a chararray-intarray..pair, which consists of a

chararray designator and an intarray designator. The module

"chararraysintarray pairs" provides the mechanism needed to record all

such pairs that correspond to existing vcintarray_.pairs.

The specifications -_ Table 15 -- externally reference the

designator types chararray and intarray. In the TYPES paragraph, the

structured type chararray_intarray_.pair is declared. The function

specifications are as indicated below.

The V-function

chararraypair_exists(chararraytntarray_jeir cnp) -> BOOLEAN b

returns TRUE if the pair cnp has been previously stored. The initial

value of the function is FALSE for all pairs.

The 0-function

store_chararraytntarray.pair ohararrayintarray_.pair onp)
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Is invoked to store a particular pair, cnp. A RESOURCE_3RROR exception

is provided to account for a limitation on the storage available for

holding pairs.

0. Chararrays_etc_cells

This module is used to represent the module "vc_etc_cells", which

holds a single vcarray designator, a single intarray designator, and a

single integer value. Since a vcarray designator is to be represented

by a chararray designator, "chararrays_etccells" provides single cells

for a chararray designator, an intarray designator, and an integer.

The reader who has managed to work his way through the other

thirteen modules should require no additional explanation in support of

the specifications of Table 16.

This completes our discussion of the module specifications of the

system. The next chapter considers the inter-machine representations.
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VI MACHINE REPRESENTATIONS: STAGE 5

In this stage, we record decisions concerning the representation of

the abstract data structures of each machine (except the primitive

machine) in terms of those of the next lower level. In essence, one is

deciding here how the data structures of each represented machine are to

be assembled using the data structures of the representing machine.

It is convenient to emphasize here that, in essence, all modules of

a machine are represented together. This is in contrast with the

specification and implementation stages in which each module is

considered separately. As we will illustrate below, there is often a

sharing of decisions among the representations of the modules of

machine. This sharing typically relates to the establishment of

partitions of the representing machine for the modules of the
represented machine.

SPECIAL is used here as the language in which representation

decisions are formulated. A representation specification should be

readable, concise, precise, and implementation independent. The use of

non-determinism facilitates the formulation of

implementation-independent representations.

In the sections below we review the format of a representation

specification, and then present the overall structure of the

representations for the example, the scheme for discussing the

representations of each machine of the example, and a detailed

discussion of each of the representations.

A. Format of Representations

This section is a condensation of the chapter on mapping functions

in Volume II. Some of the paragraphs of a representation specification

contain information that is redundant with that in the module

specifications, but is included in the representation to permit its

checking for syntactic and type consistency. Other paragraphs contain

subsidiary information that aids in the structuring of the
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representation specification. In this section we focus on the two

primary paragraphs: MAPPINGS and INVARIANTS.

1. MAPPINGS paragraph

In the MAPPINGS paragraph, the representation decisions of the

upper machine are expressed in terms of the concepts of the lower

machine. The information in this paragraph serves two related purposes:

1. To characterize the representation decisions for the data
structures of the lower machine.

2. To permit the derivation of a mapped specification for the
upper machine, i.e., a specification for each of the modules
of the upper machine but in terms of concepts of the lower
machine. From the mapped specification for the upper machine
it is possible to derive entry and exit assertions for the
purpose of verifying programs the programs that implement the
operations of the upper machine. Aside from verification, a
mapped specification for a module describes the functional
behavior expected of the module's implementation.

Since this report is primarily concerned with the application of

HDM to software development, our discussion of representations is

oriented to (1) the characterization of decisions. However, it is

convenient to justify the specific notation with regard to verification.

Consequently, let us consider what must be contained in the MAPPINGS

paragraph to permit the derivation of mapped specifications.

A machine specification is composed of expressions that reference

primitive V-functions and parameters. (Sometimes the expressions are in

terms of other functions, e.g., 0-functions as in an "EFFECTS_OF"

expression, or in terms of user-supplied definitions, but by appropriate

substitution such expressions can always be written just in terms of

primitive V-functions and parameters.) The MAPPINGS paragraph is to

contain sufficient information to replace all references to the upper

machine primitive V-functions and parameters by appropriate references

to those of the lower machine. To accomplish this, we use the following

format to define the mapping for each primitive V-function, V, and each

parameter (which could be a parametric function) P, of the upper

machine:

V(typespeo1 a,; ... ) : exprl

P(typespeoo bl; ... ) : expr2 68
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To the left of the colon, the upper machine function and its formal

arguments are declared as in the module that defines the function. The

expression on the right is in terms of lower level concepts -- primitive

V-functions and parameters -- but containing references to the arguments

declared on the left side. (The expression expr2 that characterizes the

representation of the parameter does not reference primitive V-functions

of the lower level.) What exprl serves to characterize can be understood

as follows:

* The type of exprl is the same as that of "V", except in the
case of a designator type as explained below.

0 Exprl serves as a definition for "V", with the intention that
each reference to "V" in the specification for the upper
machine will be replaced by exprl in order to form the upper
machine's mapped specification. From another viewpoint, exprl
indicates how each value stored in the "V" table of the upper
machine is to be composed from values stored in the tables of
the lower machine.

A similar interpretation applies to expr2.

As a simple example consider the primitive (hidden) V-function:

stack_val(INTEGER J) -> INTEGER v,

which returns the integer stored in the J-th location of a stack.

Assume this module "stack" is to be represented in terms of a module

"array" that contains the primitive V-function

elt(INTEGER J) -> INTEGER v.

The mapping for "stack_val" is to capture the following representation

decision: the value of the stack pointer is to be stored in the 0-th

location of the array, and the values of the stack that are "defined"

are to be stored starting with location 1 of the array. Based on this

decision the mapping for "stackval" is as follows:

stack_val(INTEGER J)
IF j INSET (I .. elt(O))

THEN elt(j)
ELSE ?

Let us now consider the mapping of designator types. For the

simple stack example, the arguments and return values of the relevant

V-functions of both the upper machine and the lower machine are all of

type INTEGER. Such predefined types and all constructed types
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ultimately composed of predefined types can be freely used in a mapping.

What if the type of an argument or return value of a function of the

upper machine is a designator type, or a constructed type composed of

one or more designator types? Such a type has no meaning in the lower

level unless the designator type is associated with a module that

appears in both the upper machine and the lower machine. If the

designator type does not also appear in the lower machine, we must

specify a type mapping for the designator type as follows:

designator-type : typeL

where typeL is any type that can be associated with the lower machine.

In essence, this mapping gives a template for the representation of each

of the designators of the upper machine.

For example, assume that the stack module supported a collection of

stacks, each of which is associated with a designator of type "stack",

and that each such designator is to be represented by an element of the

designator type "array". Then, the type mapping would simply be:

stack: array.

It is understood that each "stack" designator is to be represented by a

unique "array" designator.

If the primitive V-functions for these extended modules each have

an argument corresponding to the specific stack or array, then the

mapping for "stackval" would become:

stack__val(stack s; INTEGER J)
IF j INSET (I .. elt(s, 0))

THEN elt(s, j)
ELSE ?

Each reference to s on the right side is assumed to be for a variable of

type "arrayname". Note that we could have elected to represent "stack"

designators via integers, as indicated by the mapping:

stack : INTEGER.

In this case, each array is identified by a unique integer, at the

expense of sacrificing the protection (e.g., strong type checking)

afforded by the use of designators.

Let us now consider the INVARIANTS paragraph.
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2. INVARIANTS paragraph

Sometimes the use of a lower machine by the abstract programs that

implement the operations of the upper machine does not involve all of

the generality that the lower machine offers. This more restrictive

use, not reflected by the specifications of the lower machine or the

mappings, is conveniently characterized by the invariants in the

INVARIANTS paragraph. Each invariant, which is a boolean-valued

expression just in terms of lower-machine concepts, expresses a

constraint on the values that can be acquired by V-function positions

and parametric functions. (The reader might note that invariants

characterize implementation decisions, and hence their formulation might

be better deferred to Stage 6. At present, they are considered in Stage

5 because they can be conveniently check for consistency relative to the

other paragraphs in a representation.)

As with most of the other statements of HDM, invariants serve an

important role for both proof and the formulation of decisions.

* With regard to proof, each invariant can be assumed TRUE as an
entry assertion to each operation of the lower level, and must
be proven TRUE as a result of the operation. The use of
invariants often significantly simplifies proofs of
implementation.

* With regard to the characterization of decisions, invariants
serve to indicate assumptions on how the lower level is to be
used. Similar to the decisions of other stages, the
invariants enable a dialogue between those responsible for
formulating representation decisions, and those for writing
the abstract programs; (both tasks could be performed by the
same individual in which case the writing-down of decisions is
just good bookkeeping practice). The assumptions embedded in
the invariants often lead to simplifications in the programs,
although it is incumbent on the programmer to ensure that the
invariants are satisfied as a result of each invocation of the
lower machine.

Typically there are many invariants that could be disclosed in this

paragraph. However, it is recommended that only essential invariants be

written-down. The essential ones are those that are the basis for

simplifications in the abstract programs, or are necessary for proof.

Not surprisingly, the revelation of all such essential invariants is not
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completed until subsequent stages are considered.

Our example system illustrates several interesting invariants.

Representations contain other paragraphs, but their detailed

discussion is best discussed in the context of the example. The next

section considers the overall structure of the representations for the

example system.

B. Representation Structure of the Histogram Example

Figure VI-1 displays the coarse structure of the inter-module

representations for the example system. We previously indicated that

the representation for the upper machine MU in terms of the lower

machine ML essentially considers all modules of the upper machine and

the lower machine simultaneously. It is appropriate now to refine that

statement. In particular, we will decompose both the represented

(upper-level) and the representing (lower-level) machine into

submachines for the purpose of structuring the representation.

1. Structure of represented machines

First, consider the upper-level machine. In Figure VI-1, each

distinct upper-level submachine is shown with an arrow emanating from

it. For purposes of data representation, a given represented machine

(the upper machine) can be decomposed into submachines, MUl, MU2,

each composed of disjoint sets of modules, such that the union of the

MUi is MU. Two collections of modules, Mi, MUJ, are considered as

separate upper-level submachines for representation if for all pair of

modules, one in Mi and one in MUj, there are not representation

decisions in common. As we will note, there are several degrees to

which two (upper) modules A and B can share representation decisions.

* A V-function position of some module of ML can be used to
represent V-function positions of both A and B. This is the
most extreme form of sharing of representation, and is usually
avoided since it precludes the separate verification of the
implementation of A and B. Our example does not exhibit this
form of sharing.

* The V-function positions associated with a V-function of some
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module C in ML can be divided into two disjoint sets
(partitions) -- one as part of the representation of A, and
the other of B. In this case, the representations for A and B
are disjoint as they bear on the implementation proofs for A
and B. (In effect, C can be viewed as two distinct modules --
C' used by A and C11 used by B.) However, it is convenient to
group A and B in the same submachine for purposes of
representation. This form of sharing of representation
decisions occurs often in applying HtD, primarily where a
given module is used in the representation of two or more
machines, but for simplicity is only given a single
specification and implementation. For this example the
designator values of "sequences" (level3) are partitioned Into
two subsets -- a single designator to represent "query" and
the remainder to be available to a user of "sequences" above
level4. To express this partitioning it is convenient to
combine "sequences" and "query" into a single machine for
purposes of representation.

0 The same decision impacts the representation of entities in
both A and B although the representations for A and B involve
disjoint V-functions (possibly in different modules) of ML.
For example, consider the decision to represent the type "seq"
of "sequences" (level3) as a vcarray-intarray pair. This
decision impacts the representation of both "sequences" and
"seqpointer_cells". For the latter module, the decision on
the representation of seq designators impacts the
representation for the seq-returning function "gets". Such
situations typically follow the schema: upper module A
supports designator type d; upper module B contains a function
that returns an object of type d; and type d does not appear
at the lower level. As a result, module B must know the
representation of type d, as supported by module A.

Sometimes two modules A and B are grouped together for convenience

in a submachine in the absence of a shared representation decision if

the declaration of the primitive V-functions of A requires a reference

to module B. As we will note, this is the basis for "histogram" and -.

"truncator" and for "tally" and "truncator" being organized as - -

submachines, even though no representation is required for "truncator".

The inclusion of "truncator" permits the syntactic checking of the

representation specification without reference to other modules outside

of the machine.

Figure VI-1 identifies representations between two appearances of

the same module as the identity transformation. In this case, the J
primitive V-functions, parameters, and designator types of the
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upper-level appearance are mapped down identically to those in the

lower-level, and no such entity is needed by any other module of the

upper-level in-the declaration of primitive V-functions.

2. Structure of representing machines

Now let us briefly consider the issues involved in organizing the

lower-level machine into submachines for representation. Again, this

decomposition enhances the understandability of the representation

specifications. One can always elect not to decompose the lower-level

machine.

In Figure VI-1, a representing submachine is shown as a collection

of modules with an entering arrow. The basis for selecting a subset of

the modules as a submachine is that at least one entity of each module

is used in the representation of a submachine of the upper-level. By

"use" we mean a reference in a mapping or in an invariant. It is

recommended -- but not essential -- that the submaohines of the

lower-level be disjoint to avoid the need to demonstrate the mutual

consistency of the representations that are in terms of the overlapping

submachines. Note that for a machine which is both a represented

machine and a representing machine (i.e., all machines except the

user-interface and the primitive machine), the two decompositions need

not be the same.

Before discussing the individual representations in detail, we will

indicate the scheme for presenting the representations.

C. Scheme for Representation Specifications

Our plan for presenting each of the representation specifications
is similar to that followed for the module specifications. First, a

brief review is given of the purpose of the two submachines followed by

an overview of the representation. Second, the major decisions of the

representation are listed. Third, the representation specification is

discussed relative to the decisions.
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D. Histogram Representation

This representation is for the submachine embodying "histogram" and

"truncator" in terms of the submachine containing "tally" and

"truncator". Typically, the name selected for the representation is

that of the most significant module of the upper-level machine.

Briefly, the data structures of "histogram" are the two primitive

V-functions: "getword", which returns the "truncate_word" associated

with an integer argument, and "howmany", which returns the integer

(frequency count) associated with an integer argument. (Remember that

"howmany(i)" is the count for "get-word(i)".) Similarly, "tally" has two

corresponding primitive V-functions, "t_retrieve" and "t_howmany", in

addition to two other primitive V-functions that are not involved in the

representation of "histogram".

As indicated previously, a user of "histogram" has the power to

create a histogram for a designated sequence by invoking a single

operation. However, "tally" provides the mechanism for constructing the

histogram by processing the words of the designated sequence in turn.

There is no jump in data abstraction between the two modules. Instead,

the difference is in procedure abstraction. Thus, there are no

interesting representation decisions to discuss.

Table 17 depicts the representation as cast in SPECIAL. Since

there is no data abstraction, the representation is straightforward, but

does illustrate the basic paragraph structure of a representation. The

first line,

MAP histogram TO tally

identifies the modules that comprise the upper-level machine, (those to

the left of "TO") and the lower-level machine (those to the right of

"TO").

The TYPES paragraph declares named types that are referred to in

subsequent paragraphs. These types typically enhance the readability of

the representation, and are often as declared in some module

specification. No new designator types can be declared here. For this

example, the type "truncated_word" is in terms of "maxlength" and thus
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necessitates the inclusion of "truncator" in both machines.

The EXTERNALREFS paragraph lists primitive V-functions, parameters,

designator types, and scalar types of the modules that are "involved" in

the representation. All such entities of the modules in the upper-level

machine must be included since, obviously, they must be given

representations. Only those entities of the lower-level machine that

are referred to in the representation need be included. The information

given for each primitive V-function is taken from the header of the

module specification that includes this function. Similar information

is provided for the par&-neters and designator types.

The basic format of the MAPPINGS paragraph was discussed in a

previous section. A mapping must be provided for each entity of the

upper-level modules. In this case the mappings are trivial, reflecting

the absence of data abstraction. Our requirement that each upper-level

entity in the EXTERNALREFS paragraph be mapped is the reason for

included the trivial mapping for "maxlength".

Now let us proceed to the representation for level5.

E. Tally Representation

This representation is for the represented cluster consisting of

"tally" (level5) in terms of the level4 representing cluster consisting

of "query", "sec.pointercells", and "hasher". The primary purpose here

is to represent the four primitive V-Tunctions of "tally":

"t_retrieve", "thowmany", "tsequence", and "t__pointer". Recall that

"t_retrieve" returns a truncatedword corresponding to some integer;

"tjiowany" returns an integer value (frequency count) corresponding to

an integer; "t_sequence" returns a seq designator corresponding to the

sequence for which the histogram is being constructed; and "t.pointer"

returns an integer that identifies the location in the designated

sequence of the next word to be processed.

The module "seqpointercells" provides two primitive V-functions

that are used to trivially represent "t._sequence" and "t,_pointer". The

module "query", similar to "tally", provides the mechanism to store
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words and their associated frequency counts. In addition, it enables

the efficient determination of the existence of a word in a "query"

table. A hash searching scheme is utilized here, where the module

"hasher" provides a function that for a given word returns an integer in

a particular range.

The major representation decisions embodied here are listed below.

The first relates to the data structure representation for "tally"; the

latter two to the use of level4 by the "tally" implementation. These

are in reality implementation decisions, but are conveniently formulated

here as invariants.

* The data structure mapping for "tally" is trivial. Each of

the four primitive V-functions of "tally" are associated with
a primitive V-function of either "query" or
"seqpointer_cells".

0 A given word appears no more than once in the "get-string"
table of "query".

• If a word w is in the j-th location of "get-string" table and
if the initial hash probe corresponding to w is p, then some
location in the "dir" table of "query" between p and the first
empty slot contains the value J. This decision reflects the
usage of the "query" data structures to accomplish hash
searching.

Now let us consider the representation specification as displayed

in Table 18. The EXTERNALREFS paragraph lists the relevant entities of

six modules. Four of these modules are directly involved in the

representation, while "sequences" and "truncator" provide entities that

are just referenced. (Since "sequences" also appears in the lower level

machine, its representation does not need to be known here. This

situation is contrasted with our shared representation schema in the

previous section.) Included are the primitive V-functions and parameters

of the represented cluster ("tally") and the representing cluster

("query", "seq_.pointercells", "hasher"), while only those entities of

"sequences" and "truncator" that are actually referenced are included.

For "sequences", the referenced entity is the designator type seq, used

to identify the type returned by "t,_sequence" and "sets"; for

"truncator", it is the parameter maxlength, used to define the type
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truncatedword. Again, it is emphasized that seq and maxlength are not

represented nor are the targets of any representation; they are included

here so that the tally representation will be self-contained for

checking purposes.

The MAPPINGS paragraph indicates the trivial representation

decisions for the four primitive V-functions of "tally".

The interesting aspects of the representation specification are in
the INVARIANTS paragraph. Each of the invariants expresses a constraint
on the state of "query" that is to be satisfied for the initial state,

and after each O-function invocation. These constraints are stronger

than those implied by the specifications, and reflect the non-arbitrary

manner in which the 0-functions of "query" are invoked. As previously

indicated, the invariants express implementation decisions, but are

conveniently considered at this stage since they are cast as boolean
expressions in terms of the primitive V-functions, parameters, and types

of the representing machine.

The first invariant:

FORALL word w -= ?:
CARDINALITY((INTEGER j getstring (j) = w})

<= 1,

indicates that no defined word is to appear more than once in the
"getstring" table. By referring to the specifications for "query" --
Table 9 -- it is clear that successive invocations of "save"

save(wl, 0);
save(wl, 1);

in a newly initialized "query" module will cause the word wl to appear
in locations 0 and 1 of "getstring". By writing the above invariant we
are indicating that a program implementing "tally" will never generate
such a sequence of invocations of "save". Before invoking save(wl, pl)
for some empty slot pl, it will be assured that wi does not already

appear in the "get-string" table.

The second invariant characterizes the hashing scheme that is
employed here, and is a statement of what is depicted in Figures IV-2
and IV-3. Here, use is made of the DEFINITIONS facility to structure

the invariant. First consider the defined function "probesucceeds",
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which expresses the hashing condition for a word w.

probe_succeeds(word w) IS
EXISTS INTEGER p INSET (0 .. plen-1I:

get-string( dir(p)) = w
AND (FORALL INTEGER i INSET

(hash(w, plen)
IF p < hash(w, plen)

THEN p + plen
ELSE p1:

dir(i MOD plen) -= 0).

This function returns TRUE if: the word w is in location dir(p) of the

"getstring" table for some p such that for all locations d of the "dir"

table between hash(w, plen) and p (allowing for "wrap-around" if p <

hash(w, plen)), it is the case that dir(d) 0= 0. That is, there are no

empty slots between hash(w, plen) and p.

The second invariant

FORALL word w 1
w = ? AND (EXISTS INTEGER j 1 getstring(j) = w:

probesucceeds(w)),

expresses the restriction that all words w that appear in the

"get-string" table satisfy the hashing condition.

This completes our description of the representation of "tally".

The primitive V-functions of "tally" map down identically to lower level

entities, so the most interesting aspect of the representation

specification is in the invariants that capture the use of "query" to

represent a hash searching scheme. Let us now proceed to the

representation of "query".

F. Query Representation

This representation is for the represented cluster of "sequences"

and "query" in terms of the representing cluster of "sequences" and

"intarrays". The primary purpose here is to represent the three

primitive V-functions of "query" ("dir", "get,_string", and

"check-count") and its parameter ("plen") in terms of the entities of

*sequences" and "intarrays". As we will observe, the selected

representation is quite simple; "get string" is represented as a

sequence, while the other two primitive V-functions of "query" are
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represented as integer arrays.

The reader might question the need to include "sequences" in the

represented cluster. There is a sharing of representation decisions

between "query" and the instance of "sequences" at the upper level. As

we will note, the shared decision is that the particular sequence used

to represent the "getstring" table is not available to the instance of

"sequences" at the upper level. That is, the representation induces a

partitioning of the lower level "sequences" module.

Now let us discuss the representation as displayed in Table 19.

First note the PARAMETERS paragraph, which has not been confronted in

the previous representations. In general, this paragraph declares

constants or functions that are needed in the INVARIANTS or MAPPINGS

paragraph. It is emphasized that:

I A representation parameter is only depeadent on the
representing modules. That is, the type of the parameter is
derived as some combination of predefined types and designator
types of the representing machine.

* A representation parameter remains constant. In the next
chapter, we will show that representation parameters are bound
to values when the upper level modules are initialized.

For this representation, three parameters are declared:

unique.string: a seq designator for the sequence that
represents the "getstring" table.

director_array: an intarray designator for the integer array
that represents the "dir" table.

countarray: an intarray designator for the integer array that

represents the "check_count" table.

The TYPES paragraph introduces the type "seq1",

seqi: fseq n 1 n -a uniquestring},

which is seen to be a subtype of seq of the lower level "sequences"

module. That is, the type "seqi" has as values all designators of the

lower level "sequences" module except the particular designator

"uniquestring".

Now consider the first mapping in the MAPPINGS paragraph:
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"seq: seql". The values of the (upper-level) designator type seq are

represented by values of the (lower-level) designator type seql. These

values are all the seq designators of lower level sequences module

except "uniquestring".

The remaining mappings should be easily understood. For example,

the second mapping:

string(seq n; INTEGER j): string(n, J)

indicates that for each seq designator n of the upper level "sequences"

module and for each integer J, the values of string(n, J) map down to

string(n, j), where the latter n is a reference to a seq designator of

the lower level "sequences" module. Thus, "string" is identically

mapped.

The third mapping: "plen: leni" indicates that the "query"

parameter "plen" is to be represented as the "intarrays" parameter

"leni" -- the length of the fixed-length integer arrays.

The fourth mapping:

getstring(INTEGER j): string(unique-string, J)

indicates that the J-tn word in the "getstring" table is to be

represented as the j-th word in the sequence "uniquestring".

The fifth mapping:

dir(INTEGER p): getint(director_array, p + 1)

indicates that the p-th integer in the "dir" table is to be represented

as the (p + 1)-th integer in the integer array "director_array". Recall

that the domain of interest for "dir" is O..plen-1, while the domain of

interest for "get-int" is 1..leni.

A single invariant is included,

FORALL INTEGER j INSET (1..leni}:
getint(directorarray, J) INSET

(0..seqlen(uniquestring)1,

which indicates that the "director_array" will only contain values

between 0 and seqlen(unique-string), the number of words in the

particular sequence "uniquestring". This invariant reflects the use of

the integer array "director_array" as a repository for either 0's or

pointers to words in the sequence "uniquestring".
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Now let us proceed to the representation of "sequences" and other

modules of level3.

G. Sequences Representation

Here we consider the representation for the level3 cluster of

"sequences", "intarrays", and "seq._ponter_cells" in terms of the level2

cluster of "vcarrays", "intarrays", "vc_intarraypairs", and

"vc_etc_cells" (see Table 20). The main decision expressed here is to

represent each sequence in terms of a variable length character array,

i.e., in terms of a vcarray and an integer array. More explicitly, the

decisions are as follows:

1. The vcarray corresponding to a sequence n will hold the
characters of all words of the sequence, with no separators
between words. The corresponding integer array will hold the
position of characters in the vcarray that are the first and
last character of each word. Figure IV-4 shows the basic
representation scheme.

2. Each seq designator is to be represented as a pair consisting
of a vcarray designator and an intarray designator.

3. A particular integer array, "nstrings", is set aside to hold
the number of words in each sequence.

4. Assume that a sequence n is represented by a vcarray vc and
integer array m. Then the position in "nstrings" that holds
the number of words in sequence n is given by

int_for-vcarray(vc),

where "int_for_vcarray" is a primitive V-function of the
"vcarrays" module that maps a vcarray designator vc to an
integer. This V-function is provided by "vcarrays" in lieu of
a built-in pointer facility in the HDM languages.

5. Recall that "seqpointercells" provides two primitive
V-functions: "get.s" and "getp"; the former is conveniently
viewed as a cell holding a seq designator. In view of
decision (2), "get-s" is naturally represented in terms of two
cells of "vc_etc_cells", which respectively hold a vcarray
designator and an intarray designator.

6. Each of the pairs that represent seq designators are held via
the V-function "vc_pair_exists" of the module
"vc_intarray__pairs".
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Now let us consider the representation as depicted in Table 20.

First consider the second and third named types declared in the

TYPES paragraph. (The fourth declares "word" as in previously discussed

module and representation specifications, while the discussion of the

first named type must await elaboration of entities that comprise its

definition.)

"Vcintarraypair" is a structure type defined as:

STRUCT_OF(vcarray vcarray_.part; intarray intarraypart).

For any particular value of the type, the first component is a vcarray

designator with selector "vcarraypart", while the second component is a

intarray designator with selector "inLtarray__part". This type has as

values all pairs such that the first component is a vcarray and the

second is an intarray. Only a subset of these pairs are used a

representations for seq designators. For example, assume the

representations of seq designators n1, n2 are the respective structures

(vel, ml) and (vc2, m2), where vci is a vcarray designator, and mi is an

intarray designator. Then, the structure (vcl, m2) is certainly in the

type "vc_ntarray_pair", but is not a representation of a seq. It is

useful in the representation specification to identify, as a type, all

elements of "vc_intarray.pairs" that also represent a seq.

The V-function

vc-pairexists(vc_intarray_pair vcnp) -> BOOLEAN b

of the module "vcintarraypairs" is intended to keep track of all such

pairs.

Thus the third named type, "vc_intarray_pairl",

{vcintarray_pair vcnp lvo ._pair_exists(vcnp) = TRUE)

has as values all pairs that, at any instant, are allocated to the

representation of seq designators. Note that the values of

"vc_intarray-pairl" vary dynamically. Each new creation of a sequence,

which precipitates the establishment of a new representing pair, adds a

new value to the type "vcntarraypairl".

In the PARAMETERS paragraph the intarray designator "nstrings" is

declared. The integer array corresponding to "nstrings" is used to hold
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the number of words in each sequence. It is reasonable to declare

"nstrings" as a representation parameter since it will be established

when the "sequences" module is initialized. We know that there will be

additional integer arrays set aside for the representation of sequences,

namely one integer array for each sequence to hold the boundary

positions of the representation of words. Let us denote the set of such

integer array designators as "inclength", which is defined in the

DEFINITIONS paragraph as follows:

{intarray m 1 EXISTS vc_intarray_pairl vnp
vnp.intarray_.part = m).

Thus "inclength" is the set of all intarray designators used to

represent sequences.

Now we are prepared to indicate the partitioning of intarray

designators cf the lower level appearance of "intarrays" between

"sequences" and the upper level appearance of "intarrays". The named

type "intarrayl", given by

(intarray m 1 NOT m INSET(inclength UNION {nstrings})},

contains as values all intarray designators except those in the set

"inclength" UNION {nstrings). Thus, the first mapping,

"intarray: intarrayl", indicates that the intarray designators

available to the upper level appearance of "intarrays" are that subset

of the lower level intarray designators contained in the type intarrayl.

The remainder of the lower level designators are allocated to

"sequences".

The second and third mappings merely indicate that the parameter

"leni", and the V-function "getint" are mapped identically.

The fourth mapping, "seq: vcintarraypairl", expresses the

decision that each seq designator is to be represented as a

voarray-intarray pair, where the intarray designator is restricted to be

in the set inclength.

The fifth mapping indicates how the words of a sequence are to be

formed from a vcarray and an intarray. Two defined functions are useful

in formulating the mapping. First, consider

j len_seq(vcintarray-pairl vnp),
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given by

getint(nstrings, int.3or_vcarray(vnp.varray..art)).

It returns the integer that corresponds to the nuber of words in the

sequence represented by the varray-intarray designator pair vnp.

(Recall that

nt,_forvcarray( vc)

returns a unique integer corresponding to the vcarray designator vo.

Uniqueness is gu~aranteed by the "vcarrays" module specification in Table

The second defined function is

ival(vc_intarraypairl vnp; INTEGER i),

given by

getint(vnp.intarraypart, i).

It returns the i-th integer in the Intarray that is part of a
j vcarray-intarray representation of a sequence.

Now consider the mapping for the "sequences" primitive V-function

"string(seq n; INTEGER j)":

IF j INSET ii. .len~..seq(n)1
THEN VECTORCFOR i FROM 0 TO ival(n, 2*i) - ival(n, 2*J-1):

char~n.vcarraypart, I +e ival(n, 2*j-l)))
ELSE ?

The J-th word of sequence n is represented by the vector formed from

cons~cutive characters in the representing vcarray. The boundary

positions of this string of characters are found in the 2j-th and

2j4.1-th positions of the representing integer array. If .1 is not a

valid locatio'n foi a worA , then the word (and, of course, its

representation) Is "?".4The last two mappings for the primitive V-functions of
"seqpoInte9r~celsf are trivial. For "getp", which retiirns An integer,

the representation is simply "vget.i". The mapping for "get-a.." is:

The representation of a seq designator Creturzed by "get..s") has tWO

components: the "vcarray_..part" Is hel.d by "v..get" and the

"intarray..part" by "v....et_n".
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This completes our description of the representation of "sequences"

and related modules. Now let us proceed to the final mapping, for

"vearrays" and related modules.

H. Voarrays Representation

In this section, we present the representation of the level2

cluster of "vcarrays", "intarrays", "vcintarray_pairs", and

"vc_etc_cells" in terms of the levell cluster of "chararrays",

"intarrays", "chararrays intarray_.pairs", and "chararrays_etc_cells".

The "heart" of the representation is concerned with how each vcarray is

composed from a (fixed-length) character array and a value in a

particular location of an integer array. Three other modules that share

representation decisions with "vcarrays" are included in the

representing cluster: "intarrays" and "vcarrays" divide up the integer

arrays of the lower level appearance of "intarrays", and "vc_etccells"

and "vc._intarray_pairs" depend on the representation of the "vearray"

designator type.

The major representation decisions expressed here are:

0 Each vcarray designator is to be represented by a unique

chararray designator.

* The characters in each variable-length character array are

held In corresponding locations of a (fixed length) character

array. A particular integer array, named "lengthtarray",
holds the locations in the character arrays of the last

character of each represented vcarray. A unique position in
"length_array" is associated with each character array, namely
the position defined by the "chararrays" V-function

"Int_forchararray(chararray n)". Figure IV-5 depicts this

representation decision.

0 The vcarray-returning function "vgeto" of "vcetc cells" is
represented by the chararray-returning function "cgeto" of

"chararrays".

0 A voarray-intarray designator pair (i.e., a vc_intarray-.pair)

is represented by a pair consisting, respectively, of the
corresponding chararray designator and the same intarray
designator.

Now we are ready to discuss the details of the representation
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specification appearing in Table 21. It is convenient to discuss the

represented modules in the following order: "intarrays", "voarrays",

"vc_etccells", and "vcintarray_pairs".

A single integer array with designator elength_.array" is allocated

to the representation of "voarrays"; the remaining integer arrays are

available to the upper level appearance of "intarrays". We first

declare a subtype

intarrayl: lintarray m 1 m -= lengthtkarray)

and then define the mapping of (the upper level appearance of) intarray

to be "intarray: intarrayl". The remaining entities of "intarrays", the

parameter "leni" and the V-function "getint", are mapped identically.

Now consider the representation of "vcarrays". The designator type

"voarray" is simply represented by the designator type "chararray". The J

most interesting representation expressed here is for the "vcarrays"

V-function "char", as follows:

IF j INSET { 1..getint(lengtharray, int_for_chararray(n)))
THEN getchar(n, J)
ELSE ?

The J-th character of voarray n is represented as getchar(n, J)

provided j is in bounds (namely between I and the current length of the

vcarray). This "length-value" is represented as the value in position

mnt_forchararray(n) -- n being the chararray designator that is the

representation of voarray n -- of the integer array "lengtharray". If

j is not in bounds, then the value returned by char(n,j) is ?.

The module "vearrays" contains the parameter "v_int_bounds", the

value of which is the upper limit of the range of "int_for_.vcarray(n)".

Since the range of "int_for_chararray(n)" is constrained by the length

of the integer arrays, it is natural to represent "v_int_bounds" as

"leni".

In order to understand the need for the single invariant

"leni >= maxchararrays" it is necessary to look ahead to the

implementation of the "voarrays" OV-function "create_vcarrayo". As

indicated in Table 11, the invocation can return a RESOURCE_ERROR. What

resources of levell modules could become exhausted?
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1. Clearly, all of the available character array -- initially
size "maxchararrays" -- could be used up.

2. In addition, "lengtharray", which holds the current lengths

of each vcarray, could be exhausted.

In general, both of these conditions would have to be considered by the

implementation of "create_vcarrayo". However, if it is guaranteed that

the availability of an additional character array implies the existence

of an available slot in "length_array", the condition (2) need not be

handled in the implementation.

Now let us consider the representation of "vc_etccells". The

primitive V-function "vget_n" returns an intarray designator; it is

trivially represented by the "chararrays_etc_cells" function "c_get_n".

Similarly, "v_get_i" (which returns an integer) is trivially represented

by "c..get_i" (which also returns an integer). Since vcarray designator3

are being represented by chararray designators, it follows that "v.get"

(which returns a vcarray designator) is represented by "cIget" (which

returns the corresponding chararray designator).

Finally, we consider the representation of the "vc-intarray-pairs"

V-function

vcpair_exists(vc_intarray_.pair vnp) -> BOOLEAN b.

Since the type "vcarray" is represented by the type "chararray", the

structure type "vc_intarray_pair" is represented by a structure type

whose first component is of type "chararray". This correspondence is

implicit in the mapping of the designator types. We have called this

lower-level structure type "chararrays_intarraypairs". Then

"vc_pair_exsts" is trivially represented by the function

"chararray_.pair_exists".

I. S mary of Representations

Five representation specifications have been described for this

example, excluding the identity mapping that is the case for several of

the module representations. Most of the representations are quite

simple, reflecting a small jump in data abstraction between adjacent

machines. The three most interesting mappings were for:
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* "Tally", illustrating the use of invariants to characterize a
hash storage scheme,

* "Sequences", illustrating the representation of a word
sequence in terms of a variable length character array, an
integer array that indicates boundary positions for words, and
a position in an integer array that holds the number of words
in the sequence.

* "Vcarrays", illustrating the representation of a variable

length entity in terms of those whose length is fixed.

The remaining mappings are almost trivial, either involving no real

data abstraction, or involving the use of an array to represent a

function.

Now we can proceed to the next stage -- implementation.
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VII MODULE DIPLDIBWTATION: STAGE 6

A. Introduction

In this chapter we discuss Stage 6, which is concerned with the
formulation of implementation decisions. In HDM, each module in a
system is to be implemented separately. For a module that appears at
multiple adjacent levels, only the lowest level appearance is actually
implemented. However, for convenience at this stage, each module in the

system is viewed as having an Implementation, although for a module m in

machine Mi that also appears in I. 1 , the implementation will be the
identity. These identity implementations are not present in the
ultimately generated code -- stage 7.

In order to understand what must be expressed in a module

implementation, consider what it means to invoke a visible operation of
a module m of the top level machine, with actual values for arguments.
Such an invocation precipitates a sequence of invocations to visible
operations (or parameters) of modules that are at the next lower level
or at the same level. Each such invoked operation itself precipitates a

sequence of invoked operations, and so on until the operations of the
primitive machine are invoked and evaluated. The processing of a
top-level invocation is thus similar to the processing of a nesting of
non-recursive subroutine invocations.

Thus, an implementation of a module consists of an abstract program
for each operation and parameter. Each such abstract program is a
shorthand description of a sequence of invocations of other operations
for each invocation of the program itself. An additional program
denoted as the "initializations" program serves to drive a module into
its initial state. This program, understood to be executed before any
operations of the module are invoked, invokes the other operations of
any other module -- already initialized -- just as any other program.
After the execution of the "initializations" program for a given module,

the value of its primitive V-functions and parameters (as derived by
applying the representation functions to the values of the primitive

V-functions and arameters of the next lower level modules) will have
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their initial values. It is assumed that the modules of the primitive

machine are in their initial state when "powered-up". Thereafter,

modules are initialized in an obvious order starting with the modules at

level2.

In the remainder of this section we discuss: (1) the structure of

the implementations for the histogram example, (2) the scheme for

presenting the implementations, and (3) a detailed discussion of each of

the module implementations.

Before proceeding, the reader should review Chapter 7 (ILPL) of

Volume II.

B. Structure of Implementations for Example

In order to assist the reader in following the subsequent sections,

we display the coarse structure of the system implementation in Figure

VII-1. Itj this view the abstract machines are organized as modules as

in previous depictions of the system -- Figures IV-1 and VI-1 -- the

latter two for the purposes of describing specifications and

representations. In this view, a module sometimes appears in several

machines with the "identity" implementation serving to implement an

appearance in terms of the next lower level appearance. The other

modules have non-trivial implementations, possibly in terms of modules

at the same level -- as for "tally" and "vcintarraypairs" -- and

several lower level modules. An arrow from module A to B indicates that

in the implementation of A there is a reference to an operation or

parameter of B. As we will note, the abstract programs for a module can

reference designator types of a module, but not necessarily operations

of that module. Such references are not explicitly depicted in the

illustration.

Figure VII-1 also illustrates the partitioning of the level3

appearance of "sequences" and the level2 and levell appearances of

"intarrays". In the case of "sequences" its designator set -- and the

V-function position associated with designators -- is divided into two

partitions. One partition contains the seq designator "uniquestring"
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for the private use of "query2 in its implementation of the histogram;

the other partition contains the remaining seq designators, all of which

are ultimately available at the user interface, and correspond to word

sequences that a user will directly manipulate.

Figure VII-2 depicts the implementation structure, but in a form

where a module appears only once. The implementation dependencies are

also clearer here, since all modules that serve to implement a module m

are shown below m.

C. Scheme for Presenting Implementations

In the following sections we present the implementations for each

module of the example. The discussion for each module consists of three

parts as follows:

1. A brief review of the module being implemented and of the

implementing modules.

2. A listing of the decisions underlying the implementation.

3. A detailed discussion of the abstract programs.

D. Histogram Implementation

Recall that the "histogram" module provides the operation

"hist(n)", which generates the histogram corresponding to a word

sequence n. The J-th word and its corresponding frequency count can be

retrieved by invoking the operation "getword(j)" and "howmany(j)",

respectively.

The module "tally" provides the operations to implement the

operations of "histogram". In particular, the implementing operations

are:

t_initialize -- identifies a particular word sequence n, for
which a histogram is to be formed.

insert_or_increment -- processes the next word of the identified
sequence n. If the word has not been previously seen then it
is placed in the tables of "tally"; otherwise its associated
frequency count is incremented.
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t-retrieve -- returns a word at position J.

t_howaany -- returns the frequency count of the word stored at
position J.

resettally -- clears the "tally" module.

The major decisions that are revealed in the implementation of

"histogram" are as follows:

* The retrieval of a word and its frequency count for the
histogram are trivially implemented by the corresponding
"tally" operations.

* The resetting of "histogram" is trivially implemented by the
"resettally" operation.

• The generation of the histogram for sequence n is
(approximately) accomplished by a simple program that
repeatedly invokes "insert_or_increment" for each successive
word of sequence n.

Thus there is no jump in data abstraction between the two modules. The

only substantive difference is in procedure abstraction; "hist"

processes the words of sequence n in one "fell-swoop", while

"insertor_increment" processes the words one at a time.

Let us now discuss the ILPL implementations as given in Table 22.

The header

I14PLEMENTATION histogram INTERMSOF tally

identifies the implemented module and the lower-level ones that

implement it. (Note that there may be upper-level implementing modules,

too. Only the lower ones, however, appear after the "IN_TERMS_OF".) In

general, the implementing set can contain more than one module.

In the TYPES paragraph one can declare named types that will be

used in the implementation. As in the case of the representation

specifications, the names are merely a shorthand for the type

definitions, and thus serve mainly to enhance the readability of the

implementation; no new designator types can be declared here.

The EXTERNALREFS paragraph identifies module entities that are

referred to in the implementations. In the case of the implemented

module ("histogram") all visible operations must be declared, in
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addition to designator types corresponding to arguments or returned

values. Similarly, for the implementing modules (upper and lower), all

entities (visible operations, parameters, designator types and scalar

types) that are needed in the implementation must be declared.

The IMPLEMENTATIONS paragraph contains the ILPL programs for each

of the operations of "histogram". No program is required to initialize

the module since its initial state is Just the initial state of "tally",

transformed by the representation for "histogram" to "tally". Four of

the five implementations are almost trivial. We will discuss in detail

the program for "getword" to illustrate the notation, and that for

"hist", which is the only non-trivial program here.

The program for "getword" is as follows:

VPROG getword(INTEGER J) -> truncated_word tw;
BEGIN

EXECUTE tw <- t_retrieve(j) THEN
ON no_string : RAISE(no_word);
ON NORMAL : RETURN;

END;
END;

The header line identifies the kind of program (here, VPROG, which means

it implements a visible V-function), the program name, and its argument

and returned value. The body of the program consists of an invocation

of the "tally" operation "t_retrieve". Here a V-function is invoked

with the expectation that either an exception will be raised (and

handled), or a "normal" return will occur. If the value of j is such as

to cause the return of the exception "no-string" -- which, as portrayed

in the specification for "tally" (Table 6), corresponds to j being out
of bounds -- then the exception "no_word" is raised, and the program

terminates. Otherwise, the value of J is acceptable and the result of

"tretrieve(j)" is returned from "getword(j)".

Now consider the program for "hist(n)". This program consists of

three parts as follows:

1. Determine if the "tally" tables for the storage of words and
frequency counts are cleared; if not raise an exception.

2. Initialize the "tally" module to handle a new sequence n.
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3. Process the words of sequence n in turn; if the resources of
"tally" are exhausted before all words of the sequence can be
successfully processed then raise an exception; otherwise
return successfully.

For the first part we have

IF t.len() -= 0
THEN RAISE(hist_not_reset);
END_IF;

Here, the V-function "t_len" is invoked for which no exception return is

specified -- see the specifications of "t_len" in Table 6 -- and, hence,

only the "normal" return need be handled in the implementation. Thus,

exception "hist_not_reset" is raised if it has been determined that the

value of "t-len" is not 0, which indicates that the "tally" word and

frequency tables contain entries, and thus that the histogram, as

reflected in terms of its representation, is not in its reset state.

For the second part of the program for "hist(n)" we have

t_initialize(n);

No exception is specified for this O-function. As indicated in the

specifications, the effect here is to initialize the "tally" tables that

keep track of the current sequence and the next word in that sequence to

be processed.

For the third part we have

UNTIL no_.oreroom DO
EXECUTE insertor_increment() THEN

ON no-jorewords : RETURN;
ON RESOURCEERROR SIGNAL(no-moreroom);
ON NORMAL
END;

THEN
ON nomore_room

resettallyo;
RAISE(RESOURCEERROR);

END;

The event "no..oreroom" is declared by its position following

"UNTIL". Mnemonically, this event is intended to portray the absence of

room in the "tally" module to handle additional words. It is intended

that the loop body be repeatedly executed until the statement

"SIGNAL(no-imore-room)" is executed, at which time control passes to the
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"handler" for the event "nooreroom". Here, the loop body is an

EXECUTE statement that involves an invocation of the O-function

"insert_or_increment", with three possible results:

1. The exception "nomore_words" is raised, corresponding to all
words of the sequence n having been processed. In the event
of this exception, we have finished generating the histogram
and control can return from the program "hist".

2. The exception "RESOURCERROR" is raised, corresponding to
some unspecified exhaustion of resources at a lower level. In
the event of this exception, the handler transfers control to
the handler for the event "no_more_room". "Resettally" is
then invoked and causes the "tally" module to be returned to
(a state that maps up to) the initial state of the "histogram"
module. Following this, the exception "RESOURCE _.RROR" is
raised.

3. A "normal" return is made, corresponding to successful
processing of the current word.

Note that this program could have been written without the event

"nomore room". The two statements in the handler for this event could

have been substituted for the "SIGNAL" statement in the handler for

"RESOURCEERROR". Our intention was to illustrate the use of declared

events, and also to improve the structure and readability of the

program.

We will not discuss the remaining programs of the implementation:

"howmany", "histlen", and "clearhist". A reader should have no

difficulty understanding them.

Now let us proceed to a discussion of the implementation for

"tally".

E. Tally Implementation

The concern here is with the implementation of "tally" in terms of

the modules "query", "seqpointer_cells", "hasher", "truncator", and

"sequences". For the latter two modules, it is the level5 appearance

(the level of "tally") that is referenced in the implementation, as

depicted in Figure VII-1. However, for this particular example, the

references could be to the module appearances at level.4, since there Is

99



no partitioning of the level14 appearances of either "sequences" or

"truncator" for the use of distinct level5 modules.

As indicated above, "tally" provides the operation

"insert_or_incremento)", which gives the appearance of processing the
next word w in some previously identified sequence n. By "processing",

we mean first w is truncated to form a word tw; if tw is not already in

the table, it is placed at the next free location of the "t_retrieve"

table and the frequency count for that position in the "thowmany" table

is set to 1; otherwise, (tw is already in the table), its count in the

"t_howmany" table is incremented by I. Operations are also provided to

access the two tables, and to swap a pair of entries. Recall that the

swapping operation permits the rearrangement of the tables once all
words of a sequence have been processed.

Now let us briefly review the relevant capabilities of the

implementing modules.

The "sequences" module provides the operation "string(n,j)", which

permits the retrieval of the J-th word in sequence n.

The "truncator" module provides the parameter "maxlength", the
length beyond which characters are ignored in forming a "truncatedword"

from a "word".

The "seopointer_cells" module provides two cells, one for the
storage of a seq designator, and the other for the storage of an
integer.

The "hasher" module provides the parametric function

hash(word w; INTEGER upper)

which returns an integer in the range O..upper-1 corresponding to w.

The "query" module bears most of the burden in implementing

"tally". In particular, "query" provides the following:

get-string and checkount, which provide direct access to words
and integers, respectively.

sizeO, which returns the number of words stored in the
"getstring" table.

save(w, p), which causes the word w to be saved at the next free
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position j in the "gettring" table and causes the position
p in a "dir" table to hold that value J, provided p is an
empty slot in the "dir" table. Also, the value in location j
of the "check.count" table is set to 1 if the operation is
successfully completed. In essence, "dir" is treated as a
hash table, and the argument p is a probe into the table
derived from a hashing function on the word w.

addcount(p), which adds 1 to the value in position j of the
"checkcount" table, where j is the value of "dir(p)".

swapquery(i,j), which simultaneously exchanges the entries in

both the "get-string" and "check_count" tables.

resetqueryo, which clears the tables to their initial state.

The major decisions reflected by the implementation of "tally" are

as follows:

* The initialization of a sequence n involves the storing of n
in one of the cells in "seq-.pointercells" and 0 (pointing to
the beginning of the sequence) in the other cell.

* A word is truncated prior to its processing by the "query"
operations.

* Reflecting the hash searching scheme, if a word w appears at
location j of the "get3string" table, then dir(p) = j for p
between hash(w,plen) and some pl, where dir(pl) = 0. A word
appears only once in the "get-string" table. These decisions
were captured by the invariants in the representation for
"tally" (Table 18). Plen, a parameter of "query", is the

number of entries in the "dir" table.

Now, let us discuss the interesting implementations as given in

Table 23. It is not necessary to discuss the implementations for

"t_len", "t._retrieve", "t_howmany", "reset_tally", "t,initialize" and

"swaptally"; they are quite simple.

Let us consider the one interesting implementation, that for

"insert_or_increment". First, note the ASSERT statement

gets() -= ?;

It is assumed that before "insertorincrement" is invoked, a "defined"

value, i.e., a seq designator, is in the "get_s" cell of

"seqpointer_cells". Otherwise, it would be necessary to provide an

exception corresponding to an "undefined" value being there.
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The body of the program can be viewed as consisting of five parts:

1. Initialize local variables n, k to the current seq designator
and the index of the last word that was processed.

2. Fetch the next word w from the current sequence. If there is
no "next word", then raise the exception "no_morewords".

3. Assign the local variable tw to be the truncation of w.

4. Assign local variable p to be the result of applying "hash" to
tw; p is the initial hash probe.

5. Attempt to "save" the word tw. That is, determine if tw is

already in the "get.string" table, in which case its

corresponding frequency count in the "check_count" table is

incremented by one; or if tw is not there, then store it at a
"conveniently accessible" location and set its count to 1.
The search commences at position hash(tw,plen) of "dir" and
continues until one of the following happens: the word is
found, an empty slot in the "dir" table at location pi (i.e.,

dir(pi) = 0) is encountered, or all "dir" slots are examined
without success. The attempt to "save" could also fail due to
a "resource error".

Let us examine the code for part 5, which corresponds to the

following loop statement:

FOR pl FROM p to p + plen - 1 UNTIL done DO

p2 <- pl MOD plen;
EXECUTE save(tw, p2) THEN

ON hit : add_count(p2);

SIGNAL(done);
ON wrong_word : ;
ON RESOURCE_ERROR : RAISE(RESOURCEERROR);
ON NORMAL : SIGNAL(done);

END;
THEN

ON done : storep(k + .14;
RETURN;

ON NORMAL : RAISE(RESOURCE.RROR);
END;

The iteration covers the plen integers starting with the initial hash

probe p. The event "done" is declared to correspond to successfully

finding tw. Each iteration simply involves an invocation of

"save(tw,p2)". There is no need to check explicitly for the exception

"nodir" (see Table 9) since it is clear that p2 will always be between

0 and plen-1. The remaining exceptions and "normal" return associated
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with "save" are used in an essential way to effect control in the

program.

* The exception "hit" corresponds to the word being there. It
is thus necessary to increment the count associated with word
tw, as is effected by invoking "addcount(p)", and then
traasferring to the code associated with the handler for event
"done". This handler code just causes the index that points
to the just processed word of the sequence to be incremented
by one. Note that there is no need to check explicitly for
the two exceptions of "add_count(p)": "no_dir" and
"emptyslot". In this context we know that these exceptions
cannot occur.

* The exception "wrongword" corresponds to a word twl -= tw
being stored at location dir(p2) of the "get-string" table.
No action is to be taken here, i.e., the next iteration of the
loop is to be executed.

The exception "RESOURCE ERROR" corresponds, as usual, to an
exhaustion of resources at some lower level. In this case the
exception "RESOURCEERROR" for "insert_or_increment" is
raised.

# The "NORMAL" return corresponds to the slot p2 being empty;
thus the effects of "save" indicate that tw is now in the
"getstring" table at the first empty location, and the
corresponding count in the "check_count" table becomes 1.
Control is transferred to the "done" handler to update the
pointer.

If the loop completes the quota of plen iterations, then control passes
to the "NORMAL" handler at the scope of the "FOR" statement. (This

handler is optional, and was not needed in the implementation of "hist"

-- see previous section.) In this event, all slots of the "dir" table

have been investigated without finding the word tw, an empty slot, or

without raising an "RESOURCE_3RROR" exception. At this time, it is only

possible to raise the exception "RESOURCEERROR" for the invocation of

"insert_or_increment".

This completes our description of the implementations for "tally".

Now, let us proceed downward to the implementation of "query".

F. Query Implementation

The concern here is with the implementation of "query" in terms of
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*sequences" and "intarrays". As indicated in Figure VII-1, it is the

lower level appearance -- level3 -- of "sequences" that is participating

in the implementation. Recall that "query" provides two accessible

tables: "get.string" and "check-count", which respectively hold words

and integers. The primary O-functions are "save(w,p)" and

"addcount(p)"; the former enables the storing of word w at the next

free position J in the "getstring" table, where the p-th location in

the hidden table "dir" is then assigned the value J. Exceptions are

returned corresponding to a word w' (possibly being the same as w)

already being in the "getstring" table at location dir(p). On the

other hand, an invocation of "add_count(p)" causes the J-th location of

the "check_count" table, j = dir(p), to be incremented by one provided

dir(p)--O. The other operations of "query" that are to be implemented

are "size", "swap-seq", and "reset-query".

Now, let us briefly consider the operations of the two modules used

in the implementation. Recall, "sequences" maintains a collection of

variable-length word files (sequences). The sequence operations of

interest here are:

0 create_seq, which creates a new sequence

# string, which enables random retrieval of a word in a sequence

6 seqlen, which returns the number of words in a sequence

* append, which attaches a word to the end of a sequence

* clearseq, which resets a sequence

Ss3wap-seq, which exchanges two words in a sequence.

The module "intarrays" maintains a collection of integer arrays,

each of fixed length "leni". The intarray operations of interest here

are:

* create_intarray, which creates a new integer array

0 getint, which retrieves an integer from a location in the
array

0 change _nt, which causes an identified position in an array to
attain a new value.
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In the previous chapter we presented the decisions for the

representation of "query". Briefly, the "get ,string" table is

represented by a particular sequence given the name "unique_string".

Each of the other tables is represented by an integer array:

"check_count" by "count_array", and "dir" by "director_array". In the

case of "dir(p)", "defined" values are returned for p in the range

O..plen-1, while in the representation, defined values will appear for

positions 1..leni.

The major implementation decisions divulged here are:

* The initialization of "query" creates the sequence and the
integer arrays that represent the "query" functions. It is
necessary to initialize all positions of the array
"director_array" with 0, while "count_array" can have
arbitrary values.

* The initialization binds a value to the "query" parameter
"plen".

0 The successful "saving" of a word appends it to the sequence
"uniquestring".

* Numerous exception conditions associated with the "sequences"
and "intarrays" operations can be shown never to occur, and
hence can be omitted from the implementations.

Now let us consider the implementations, as displayed in Table 24.

First note the PARAMETERS paragraph, in which designators are declared

for two integer arrays and for a sequence. An INITIALIZATION program is

required for "query" to create the two integer arrays and the sequence,

and to bind the returned designators to the names declared as parameters

of the implementation. Also, the module parameter "plen" is bound to

the "intarrays" parameter "leni". The binding is accomplished as an

assignment statement; for example, the statement

unique_string <- create seq()

binds "uniquestring" to the designator returned by the invocation of

"createseqo". It is assumed here that these parameters retain their

values between invocations of functions in the module. Note that the

statement

FOR I FROM 1 TO leni DO
change_int(director_array, 1, 0)
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causes all positions in the "director_array" to be initialized with 0;

otherwise, the values would be random integers, as seen from the

specifications -- Table 10.

Most of the programs are trivial and do not not require any

significant discussion. However, those for "checkcount(j) -> v" and

"save(w,p)" illustrate a few interesting details. The program body for

the former is

IF j < 1 OR j > seqlen(uniquestring)
THEN RAISE(noword);
END_IF;

v <- getint(count_array, J);
RETURN;

In order to determine if j is in bounds it is determined if it is in the

range 1..seqlen(uniquestring), i.e., if there exists a "defined" word

at position j of "uniquestring". If j is out-of-bounds the exception

"no_word" is returned for "checkcount". Otherwise, the value in the

J-th position of the "count_array" is returned. Note that no exception

is anticipated for the call on "getint". Informally, if it has been

determined that there exists a word at position J, then there exists a

count for that word in the "count_array". The invariant presented in

Table 19:

FORALL j I string(unique.string, J) -= ?
j INSET {1 .. leni)

captures this property of the usage of "intarrays" and "sequences" by

the implementing programs for "query".

Now consider the body for the program for "save(w,p)". It consists

of three parts as follows:

1. If p is out of bounds, then the exception "nodir" is raised.

2. If the p-th slot is empty, then try to append the word w to
the "uniquestring". If carried out without a resource error,
then the "directorarray" and the "countarray" are updated.

3. If the p-th slot is not empty, then determine if the word
corresponding to it is w (the exception "hit" is raised) or
not w (the exception "wrong_word" is raised).

The body of the program is as follows; a blank line separates the

three parts.
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EXECUTE j <- getint(directorarray, p-1) THEN
ON nont : RAISE(no.dir);
ON NORMAL :

END;

IF j = 0 THEN
EXECUTE append(unique-string, w) THEN

ON RESOURCEERROR : RAISE(RESOURCE_3RROR);
ON NORMAL :

J1 <- seqlen(uniqueastring);
changent(director-array, p, ji);
changeint(count_array, J1, 1);
RETURN;

END;
END_.IF;

IF w = string(uniquestring, J);
THEN RAISE(hit);
ELSE RAISE(wrong-_word);

ENDIF;

Note that no exception is expected for the two invocations of

"changeint" in part two. It has already been determined in part 1 that

p is in bounds. Moreover, by the above invariant it is also assured

that J1 is between 1 and leni. Again, no exception is expected for the

invocation of "string" in part three. An invariant of the "query"

representation

FORALL INTEGER p INSET [I .. leni)
getint(directorarray, p) INSET {0..seqlen(unique_string)j

ensures that that value j of part 3 corresponds to an existing word.

This completes our discussion of the implementation for "query".

Now let us proceed downward to the implementation for "sequences".

G. Sequences Implementation

The concern here is with the implementation of "sequences" in terms

of "voarrays", "intarrays", and "v_intarray_.pairs". As indicated in
Figure VII-1, all of the implementing modules are at the lower level --

level2. Recall that the module "sequences" maintains a collection of

variable length word files, here denoted as sequences, where each word

is a vector of characters. With each sequence is associated a unique

seq designator. The operations provided by the "sequences" module allow

107



direct read access to words in a sequence, append a word to the end of a

sequence, and interchange two words of a sequence; a few additional

operations, as previously discussed, are also provided.

The "vcarrays" module maintains a collection of variable length

character arrays, denoted as vcarrays. With each voarray we associate a

unique "voarray" designator. The operations of the module needed in the

implementation of "sequences" are the following:

char(vca, J) -- returns the J-th character of vcarray vca.

mnt_for_vcarray(vca) -- returns a unique integer corresponding
to vearray vca.

one._morechar(vca, c) -- appends character c to vcarray vca.

remove_chars(vea, i) -- removes the i last characters from
voarray vea.

clearvcarray(vca) -- clears vcarray vea to its initial state.

Recall that the module "intarrays" maintains a collection of

integer arrays, each of which is of the same fixed length "leni". Each

integer array is identified by a unique intarray designator. Operations

are provided to enable direct read and write access to a selected

integer array.

Let us review the decisions underlying the representation of
"sequences" in terms of "vcarrays" and "intarrays". Each sequence is

represented by a unique vcarray and a unique integer array. As such,

each seq designator is represented as a pair consisting of a vcarray

designator and an intarray designator. Each vcarray and intarray

designator can appear in the representation of no more than one seq

designator. In the representation of a sequence, the vcarray holds the

characters of each word in the sequence, but without regard for the

separation between words. The characters of a word appear in successive

positions, but the groups of characters perceived as words do not

necessarily appear in the same order as in the sequence. The

information about the separation of characters in the vcarray as words

is held in the integer array. In particular, the positions of the first

and last characters of the i-th word, as represented in the vcarray, are
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held in positions 24i and 2*i - 1 of the integer array. A distinct

integer array (with designator "nstrings") holds the current length of

each sequence. In particular, the length of sequence n is held in

position mnt_for_vcarray(vca) of nstrings, where vea is the voarray

component of the representation of seq n.

We have not yet indicated the facilities provided by the module

"vc_intarray_.pairs". For our purposes here, this module provides the

operation "create_vcintarray_.pair", which returns a vcarray-intarray

pair.

The major decisions expressed in the implementation are the

following:

0 The creation of a new sequence is done by invoking

"create_vc_intarray_pair".

0 The initialization of a newly created sequence requires
storing 0 in the corresponding location in the "nstrings"
array -- a new sequence has zero length.

0 The appending of a word to sequence n is implemented by
appending the characters, one at a time and in order, to the
end of the corresponding vcarray. In addition, the
corresponding position in the "nstrings" array is updated to
reflect the new length of the sequence, and the corresponding
positions in the integer array representing sequence n are
updated to indicate the boundary positions of the word.

* The interchanging of two words in sequence n is implemented by
interchanging the corresponding boundary positions of the
words as represented in the integer array associated with n.

0 Numerous exception conditions associated with invocations of
"vcarrays" and "intarrays" functions can be shown not to
occur, and hence are deleted from the programs.

Now consider the implementations as given in Table 25. This

implementation contains the TYP-_APPINGS paragraph, which, in general,

displays the mapping of the designator types of the implemented module

m, essentially as previously given in the representation specification

for the machine cluster containing the lowest level appearance of m.

For this implementation the designator type seq is mapped to the type

vc_intarray-pair, which is defined to be a structure in the TYPES

paragraph.
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Again, most of abstract programs are readily understood without a

detailed discussion. However, we will discuss two of the programs in

order to illustrate some of the new syntax introduced here, and to

illustrate some of the aspects of abstract programs, in general. First,

consider the body of the program for "createseq() -> n"

EXECUTE n <- create_vcintarraypair() THEN

ON RESOURCEERROR : RAISE(RESOURCEERROR);
ON NORMAL

change-int( nstrings, nt_forvcarray(n.vcarray_.part), 0 );
RETURN;

END;

Note that in the body, n is a vcarray-intarray pair. The program

returns "RESOURCE_ERROR" if no more pairs can be created. Otherwise, it
is necessary to insert 0 in the position of the "nstrings" array that

corresponds to the newly created sequence. That position is given by

int__for_vcarray(n.vcarray_.part)

Note that no exception is expected for the invocation of "change_int"

since the invariant of the representation specification for "sequences"

leni >= v_int_bounds

guarantees that if a new pair is successfully generated (which implies

that a new "vcarray" designator vea is generated) then the value of

"mnt_for_vcarray(vca)" is constrained to not exceed "leni" -- the length

of an integer array.

The final statement in the program

RETURN;

indicates that the returned value is to be the newly generated pair

(i.e., n). However, by virtue of the type mapping, the type of the

value as perceived by the invoker of "createseq" is seq. This

illustrates the implicit type conversion between the arguments and

return value of the operation and the references to them in the body of

the program that implements the operation.

Let us now briefly consider the program for "append(n, w)". It

consists of four parts as follows:

1. Initialize the local variables vc, i, J, r.

2. Determine if there is sufficient room for one additional word
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in the integer array that holds the boundary positions of the
words for sequence n. There is room If there are at least two
unused positions at the end of the array. A "RESOURCE3RROR"
is raised if two such positions do not exist.

3. For each character of w, in turn, attempt to place it at the
end of the voarray vc that represents n. The appending
process stops if there is insufficient room for an additional
character, and a "RESOURCE_ERROR" is raised for "append".

4. If parts (2) and (3) are both successfully completed, then
update the two next free positions in the "boundary" integer
array to correspond to the newly appended word. Also,
increment by 1 the position in the "nstrings" array
corresponding to sequence n.

With regard to part (3) it is not necessary to remove the

characters of w already stored in the voarray if a resource error is

encountered. Although the state of the "vcarrays" module has been

changed by the partial appending of a word, the state presented by

"sequences" (the state of "vcarrays" and "intarrays" transformed by the

representation specifications for "sequences") is not changed, as is

proper when an invocation of an operation causes a exception return. Of

course, the vcarray vc is now full and cannot accommodate any more

characters. As an embellishment, one might replace part (3) by the

following program segment

FOR k FROM 1 TO LENGTH(w) DO
EXECUTE one_morechar(ve, w[k]) THEN

ON RESOURCEERROR :
remove_chars(vc, k-1);
RAISE(RESOURCEERROR);

ON NORMAL
END;

END;

The k-1 characters of w stored prior to the overflow of the vcarray vc

are removed by the invocation of "remove-chars(ve, k-i)", thus returning

"voarrays" to its state prior to the execution of any statements in

"append". It is not necessary to check for the "underflow" exception

for "remove_chars", since it is clear that there are at least k-1

characters In the vcarray.

This completes our discussion of the implementations. The

remainder of the implementations are very straightforward and should be
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easily comprehended. The reader who has reached this point (without

skipping) should indeed be congratulated.

We remind the reader that we have accomplished much more than the

design of a single program. Rather, we have specified a family of

systems, capable of a large number of implementations, scale choices,

and extensions. The example itself is rather simple, but the mechanisms

employed are of the same type and nature as those that would be used for

the specifications of very large and complex systems. In other words,
your effort, we believe, has a great potential application.
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A. SPECIFICATIONS FOR THE EXAMPLE

The following tables contain all specifications for the example

discussed in this Volume.

113



Table 1: STRUCTURE OF THE EXAMPLE

(INTERFACE level6
(sequences)
(histogram)
(trunoator))

(INTERFACE level5
(sequences)
(tally)
(truncator))

(INTERFACE level4
(sequences)
(seq~pointer_cpells)

(query)i
(hasher)
(truncator))

(ITR sC eq..pitecl s
(IERFCEeqences

(sequeone) els
(intarrays)
(hasher)
(truncator))

(INTERFACE leve12
(vearrays)
(intarrays)
(vc.-intarray..pairs)

(truncator))

(chararrays)
(intarrays)
(chararraysintarray..pairs)
(chararraysetc.cel is)
(hasher)
(truncator))

(HIERARCHY example
(levell IMPLEMENTS level2 USING vearrays)
(level2 IMPLEMENTS level3 USING sequences)
(level3 IMPLEMENTS levelil USING query)
(level14 IMPLEMENTS level5 USING tally)
(leve15 IMPLEMENTS level6 USING histogram))
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Table 2: OBJECTS OF MODULES AND MAPPINGS

HISTOGRAM MODULE

VP VFUN getword(INTEGER J) ->truncated_word w
VP VFUI hoimmany(INTEGER J) ->INTEGER i
VD VFUN histlen() -> INTEGER v

O'UN hist(seq 3)
OFUN clear_hist()

SEQUENCES MODULE

seq: DESIGNATOR
VP VFUN string(seq n; INTEGER J) -> word w
VD VFUN seqlen(seq n) ->INTEGER v

OVFUN create_5eq()- seq n
OFUN clear..seq( seq n)
OFUN append( seq n; word w)
OFUN swapseq(seq n; INTEGER i, J1)

TRUNCATOR MODULE

INTEGER maxlength
VD trunoation(word w) -> trunaated.word tw

TALLY MODULE

VP VFUN t-retrieveCINTEGER J) ->truncated_word tw
VP VFU4 t..howmany(INTEGER J) ->INTEGER v
VD VFUN t...len() -> INTEGER v
HP VFUN t,...pointer()- INTEGER v
HP VFUN t .-.sequence()- seq s

*OPUN t-initialize(seq a)
OFUN insert,_or_inorenent()

*OFUN swap..tally(INTEGER i, J)
OFUN reset-tally()

SEQPO INTER_CELLS MODULE

VP VFUN get..s() ->seq 9
VP VFUN get..p()o INTEGER v

(FUN atores( seq a)
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OFUN storep (INTEGER 1)

QUERY MODULE

INTEGER p1 en
VP VFUN get..string(INTEGER J) - word w
VP VFUN check~.count(INTEGER J) ->INTEGER v
VD VFUN sizeo) -> INTEGER v
HP VFUN dir(INTEGER p) -> INTEGER v

OFUN save(word w; INTEGER p)
OFUN addLcount (INTEGER p)
OFUN swap-query(INTEGER i, J)
OFUN reset..query()

HASHER MODULE

INTEGER hash(word w; INTEGER upper)

INTARRAYS MODULE

intarray: DESIGNATOR
INTEGER leni

VP VFUN getint(intarray m; INTEGER J) -> INTEGER v
OVFUN create_intarray() -> intarray m
OFUN change..int(intarray m; INTEGER J, v)

VCARRAYS MODULE

vaarray: DES IGNATOR
INTEGER v _it_bounds

VP VFUN char(vcarray n; INTEGER i) ->CHAR c
VP VFUN int_tor_vcarray(vearray n) ->INTEGER v

OVFUN create_vcarray() -> voarray n
OFUN one_more_char(vcarray n; CHAR a)
OFUN remove-chars(vcarray n; INTEGER i)
OFUN clear-vcarray(voarray n)

VCJINTARRAYJPAIRS MODULE

HP vc..Jairexist(vc_intarray..pair vnp) -> BOOLEAN b
OVFUN areate_ye_intarray..pair()- vo_intarray.pair vnp
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VC-ETC_CELLS, MODULE

VP VFUN v...get() -> vearray vo
VP VFUN v...getn()o intarray n
VP VFUN v...geti()o INTEGER v

OFUN v....tore(vcarray v)
OFUN v_store_n(intarray n)
OFUN v_store_i(INTEGER 1)

CHARARRAYS MODULE

chararray: DESIGNATOR
INTEGER maxchararrays
INTEGER lena

VP VFUN getchar(chararray n; INTEGER J) ->CHAR c
VP VFUN intjforchararray(chararray n) ->INTEGER v

OVFUN create_chararray() -> chararray n
OFUN change....har(chararray n; INTEGER J; CHAR a)

CHARARRAYS3TC..CELLS MODULE

VP VFUN c...get() -> chararray no
VP VFIJN c..get,_.n() -> intarray n
VP VFUN a...get...i( -> INTEGER v

OFUN q-.store(chararray nc)
OFUN a_store_n(intarray n)
OFUN a...store i(INTEGER 1)

CHARARRAYS__INTARRAY_PAIRS MODULE

HP VFUN chararray..pair..exists( ahararray..intarray-_pair cnp)
-> BOOLEAN b

OFUN store chararray.intarray-_pair( chararray..intarray__.pair
anp)

HISTOGRAM MAPPING
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TALLY MAPPING

QUERY MAPPING

seq unique-string
intarray direorArray
intarray count._.Array

SEQUENCES MAPPING

intarray nstriflgs

VCARRAYS MAPPING

intarray length..array
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Table 3: Sequences Module

MOPULE sequences
$( maintains an unspecified number of variable length
sequences of character strings (words) , each string of
variable length. For reading, words can be randomly
accessed. New words can be inserted at the end of a
sequence. Words can be exchanged)

TYPES

seq: DESIGNATOR; $( sequences )
word: { VECTOROF CHAR vc 1 LENGTH(vc) > 0 1;

DEFINITIONS

BOOLEAN no_word(seq n; INTEGER j)
IS NOT j INSET { 1 .. seqlen(n) 1;

FUNCTIONS

VFUN string(seq n; INTEGER J) -> word w; $C returns the j-th
string in sequence n)

EXCEPTIONS
no_word : no_word(n, J);

INITIALLY
w= ?;

VFUN seqlen(seq n) -> INTEGER v;
$( returns the number of strings in sequence n)
DERIVATION

CARDINALITY({ INTEGER j I string(n, J) -= ? 1);

OVFUN create_seq() -> seq n;
$( creates a new sequence all words of which are
undefined. A newly generated designator is returned)

EXCEPT IONS
RESOURCE ERROR;

EFFECTS
n = NEW(seq);

OFUN clear_seq(seq n); $( clears sequence n)
EFFECTS

FORALL INTEGER J: 'string(n, J) = ?;

OFUN append(seq n; word w);
$( appends word w to the end of the sequence n)
EXCEPTIONS

RESOURCEERROR;
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EFFECTS
-string~n, seqlen(n) + w;

OFUN SWap-3..eq(seq n; INTEGER i, J);
$( exchanges words in Positions i and jof sequence n)
EXCEPT IONS

no_wyordi no_word(n, i);
no_:word2 :no...word(n, J);

EFFECTS
'string(n, i) = string(n, J);
Istring(n, J) = string(n, i);

END_-MODULE
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Table 4: frunoator Module

MODULE truncator $( provides a function that truncates the length

of a word to a fixed maximu length)

TYPES

word: I VECTOR._OF CHAR vo 1 LENGTH(vc) > 0 )

truncated_word: I word w LENGTH(w) <= maxlength 1;

PARAMETERS

INTEGER inaxlength;

ASSERT IONS

maxlength > 0;

FUNCTIONS

VFUN truncation(word w) ->truncate_word tw;
$( truncates the word w to maxlength)
DERIVATION

VECTOR(FOR i FRCt4 1 TO M4IN(( maxleagth, LENGTH(w)1)

.1iD
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Table 5: Histogram Module

MODULE histogram
$( forms and maintains a histogram of the truncated words
of an identified sequence s; the histogram words are
stored according to the order of their appearance in the
sequence 3)

TYPES

word: I VECTOROF CHAR ye 1LENGTH(vc) > 0 1

truncated._word: [ word w 1 LENGTH(w) <= maxlength 1;

DEFINITIONS

BOOLEAN badarg(INrEGER i) IS NOTVI INSET [ 1 .. histlen() 1);

INTEGER occurrences(seq 3; truncated-word tw)
IS CARDINALITY( ( 1 seqien(s) )

INTER {INTEGER i truncation(3tring(s, I))

$number of occurrences of words whose truncation is tw
in sequence s)

SETJOF truncatedLword occurset(seq s; INTEGER 1.)
IS IF i= 0 THEN 1)

ELSE occurset(s,i - 1) UNION (truncation(tring(,i)));
$( the set of all truncated words whose truncaton occurs
up to and Including the i-th position of sequence s)

truncated_word ith_word(seq s; INTEGER I)
IS truncation(

string(s, MIN(( INTEGER j
CARDINALITY(occurset(s, J)) z I))));

$(the i-th distinct truncated word in sequence s)
EXTERNALREFS

FROM sequences:
seq: DESIGNATOR;
VFUN string(seq s; INTEGER I) -> word w;
VFUN seqlen( seq s) -> INTEGER v;

FROM truncator:
INTEGER maxlength;
VFUN truncation(word w) ->truncated-..word tw;

FUNCTIONS
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VFUN getword(INTEGER J) -> truncated-word w;
$( returns the J-th word in the histogram)
EXCEPTIONS

noword : badarg(j);
INITIALLY

wa?;

VFVN howmany(INTEGER J) -> INTEGER v;
$( returns the number of occurrences of the word at

position in the histogram)
EXCEPTIONS

no_word : badarg(j);
INITIALLYv -- ?;

VFUN histlen() -> INTEGER v;
$(returns the number of words currently stored in the

histogram)
DERIVATION

CARDINALITY({INTEGER i 1 getword(i)

OFUN hist(seq s); $( forms a histogram of the sequence s)
EXCEPTIONS

hist_not_reset : h1stlen() = 0;
$( the histogram is not cleared)

RESOURCEERROR;
EFFECTS

FORALL INTEGER J:'howmany(J) = occurrences(s, 'getword(j))
AND 'getword(J) = ith-word(s, J);

OFUN clear_histo; $( clears the histogram)
EFFECTS

FORALL INTEGER J: 'getword(j) ? AND 'howmany(j) =?;

ENDMODULE
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Table 6: Tally Module

MODULE tally
$( maintains a collection Of strings (words) , each of
whose numbers of occurrences and values can be stored
and referenced by a unique index. The words are stored
contiguously. A "swap" function allows the exchanging of
any two words stored in the histogram)

TYPES

word: I VECTOR_OF CHAR ye LENGTH(vc) > 0 1
truncated_word: I word w ILENGTH(w) <= .axlength )

DEFINITIONS

BOOLEAN no_string(INTEGER J) IS j < 1 OR j > t-leno;

truncated_wyord truncation(word w)

IS VECTOR(FOR i FROM 1 TO KM(( maxlength, LENGTH(w) 1

.1l)

EXTERNALREFS

FROM sequences:
seq: DESIGNATOR; - odwVFUN string(seq n; INTEGER i) - odw
VFUN seqlen(seq n) -> INTEGER v;

FROM truncator:
INTEGER maxlength;

FUNCTIONS

VFUN t_retrieveCINTEGER J) -> truncated-word tw;
$( returns J-th string in tally which has one or more

occurrences)
EXCEPT IONS

nostring : no_string(j);
INITIALLY

tw z ?

VFUN t_howuanyC INTEGER J) -> INTEGER v;
V( returns no. of occurrences of the J-th non-undefined

string in tally)
EXCEPTIONS

no...string :no..string(j);
INITIALLY
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v-?;

VFUN tlen() -> INTEGER v; $( returns current no. of strings in
tally)

DERIVATION
CARDINALITY({ INTEGER 1I t-howmany(i) - ? );

VFUN t._pointer() -> INTEGER v;
$( returns the value of the pointer into the sequence
whose histogram is being computed)

HDDEN;
INITIALLY

v -?;

VFUN tsequence() -> seq s; $( returns the current sequence
whose histogram is being computed)HIDDEN;

INITIALLY

s= ?;

OFUN t_initialize(seq 3); $( sets current sequence to be s, and
the pointer to 0)

EFFECTS
't,sequence() 3;
't_pointer() = 0;

OFUN insert_or_incremento);
$( inserts the next string of the current sequence at the
end of the tally sequence, provided that string has not
been previously stored; sets the count value for that
string to 1; if the word has been previously stored then
its count-value is incremented by 1)

ASSERTIONS
t-sequence() ?;

EXCEPTIONS
no_.more_words t_pointer() >= seqlen(t_sequenceo);
RESOURCEERROR;

EFFECTS
't.pointero) = tpointer() + 1;
LET INTEGER i I

t_retrieve(i)
= truncation( string( t,.sequenceo, 't__pointero))

IN IF I "= ?
THEN 't_howmany(i) = t_howmaany(i) + 1
ELSE 't_retrieve(tlen() + 1)

= truncation( string( t.equenceo, 't_pointero))
AND 't_howmany(t_len() + 1) = 1;

OFUN swaptally(INTEGER i, J); $( exchanges the truncated words
and the tallies of indices I and J)

EXCEPTIONS
nostringl 

nostring(i);
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no_string2 : nostring(j);
EFFECTS

't-retrievo~i) a t_retrieve(j);
't-retrieve(J) = t-retrieve(i);
't-hommany(i) =t_howmany(j);
tt_hommany(j) = t_howmany(i);

OFUN reset_tallyo; $(resets the Set Of strings to initial state)
EFFECTS

't-.pointer() 0;
FORALL INTEGER i:

't-hoiuaany(i) =? AND 't_retrieve(i) ?;

ENDMODULE

126



Table 7: Hasher Module

MODULE hasher
$( provides a mechanism for returning an integer
(hash probe) corresponding to a word. The range of the
returned integer is between 0 and Rupper" -1)

TYPES

word: ( VECTORL_OF CHAR vo LENGTH(vo) > 0 )

PARAMETERS

INTEGER hash(word w; INTEGER upper);

ASSERTIONS

FORALL word w; INTEGER J:

IF j <1
THEN hash(w, J)=?
ELSE hash(w, J) INSET 0... J- 1 1

ENDMODULE

127



Table 8: Nq_PointerCells Module

MODULE seq_.pointercells $( maintains two cells, one for a
sequence and one for a pointer)

EXTERNALREFS

FRG4 sequences:
seq: DESIGNATOR;

FUNCTIONS

VFUN gets() -> seq 3; r( returns the stored seq designator)
ASSERTIONS

get-.s():;
INITIALLY

s =?;

VFUN getp() -> INTEGER v; $( returns the value of the integer
pointer)

INITIALLY
v= 0;

OFUN store-s(seq s); $( stores a sequence designator)
EFFECTS

'get s() = ;

OFUN storep(INTEGER i); $( stores the INTEGER i)
EFFECTS

'getp() = 1;

END_MODULE
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Table 9: Query Module

MODUJLE query
*maintains a sequence Of strings (words) that are
referenced by an index and by auxiliary pointers
(directors -- i.e. hash table indices)-and retains a
count of the niuber of occurrences of the string
associated with each index. A new word can be
arbitrarily inserted at the end of the query sequence
and associated with a specified pointer. Two entries in

the query sequence can also be swapped.)

word: I VECTOR...F CHAR vo 1 LENGTH(vc) > 0 1

PARAMETERS

INTEGER plen; $( total nuber of directors)

DEF INITIONS

BOOLEAN badarg(INTEGER J) IS NOT j INSET ( 1 .. size()1

BOOLEAN baddir(INTEGER p) IS NOT p INSET ( 0 .. (plen -1) )

ASSERTIONS

plen >= 0;

FUNCTIONS

VFUN get-..stringINTEGER J) -> word w; $(returns the .1-th string)
EXCEPT IONS

no-word : badarg(j);
INITIALLY

w = ?

VFUN check..count(INTEGER J) -> INTEGER v;
$( returns current no. of occurrences of J-th string)
EXCEPTIONS

no-word : badarg~j);
INITIALLY

v = ?

VFUN size() -> INTEGER v; *(returns current no. Of strings)
DERIVATION
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CARDINALITY({ INTEGER J 1 get3string(J) -a ? P';

VFUN dir(INTEGER p) -> INTEGER v;
$( returns the p-th director to the string sequence and
frequency lists; p is a hash table index)

HIDDEN;
INITIALLY

v =(IF p INSET { 0 .. plen - 1 ) THEN 0 ELSE ?);

OFUN save(word w; INTEGER p);
$( stores a word at the end of the query sequence,
provided the pth director does not point to w or any
other word. The pth director Is set to point to the
newly stored string.)

EXCEPTIONS
nodir : baddir(p);
hit : getstring(dir(p)) = w;
wrongword : dir(p) ~- 0;
RESOURCE_.ERROR;

EFFECTS

'getstring(size() o 1) W;
'dir(p) = size() + 1;
'check_cout(size() + 1) 1;

OFUN add_count(INTEGER p); $( increments the count of the string
associated with the pth director by one)EXCEPTIONS

no_dir : baddir(p);
emptyslot : dir(p) = 0;

EFFECTS
'check_count(dir(p)) z check_count(dir(p)) + 1;

OFUN swapquery(INTEGER i, J); $( exchanges the words at positions
i and J of the query sequence)

EXCEPTIONS
no_wordl : badarg(i);
noword2 : badarg(j);

EFFECTS
'get-string(i) = get3string(J);
'get,.string(j) = getstring(i);
'check_count(i) = checkcount(j);
'check_count(j) = check_count(i);

OFUN resetqueryo; $( resets the module)
EFFECTS

FORALL INTEGER J: 'check_count(j) ?;
FORALL INTEGER J: 'getstring(j) ?;
FORALL INTEGER p INSET { 0 .. plen - 1 1: 'dir(p) 0;

END_MODULE
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Table 10: Intarrays Module

MODULE intarrays $ maintains a fixed, but unspecified, number of
fixed-length integer arrays) I

TYPES

intarray: DESIGNATOR;

PARAHETERS

INTEGER leni; $( no. of integers in an array)

DEFINITIONS

BOOLEN no-int(ITEGER J) IS NOT j INSET I . leni )

FUNCTIONS

VFUN getint(intarray m; INTEGER J1) -> INTEGER v;
$( returns J-tbr integer in array a)
EXCEPT IONS

no_mnt : no_int(j);
INITIALLY

OYFUN create_intarray() -> intarray a;
$( creates a new intarray whose elements are initialized
to some defined integer; a resource error is returned if
no more intarrays can be created)

EXCEPT IONS
RESOURCEERROR;

EFFECTS
m* NEW(intarray);
FORALL INTEGER j INSET ( 1 .. leni )

'gstint(m, J) z(3014E INTEGER i 1i

OFLJN change..int(intarray m; INTEGER J, v); $(replaces J-tb integer
in array m by v)

* EXCEPTIONS
no_int : no_int(i);

U EFFECTS
'getint(m, J) v;
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Table 11: Voarrays Module

MODULE voarrays
$( maintains a unspecified number of variable-length
character strings i.e., voarrays. Each vcarray has a
current length within which any character can be
randomly accessed. The vcarray is modified by appending
a character to the end of the vearray, removing a string
of characters from the end of the vcarray, or by
clearing the vcarray.)

TYP9S

vcarray: DESIGNATOR; $( names for variable-length character arrays)

PARAMETERS

INTEGER vint_bounds; $( max value of integer corresponding to a
vcarray designator)

DEFINITIONS

INTEGER vclen(vcarray n) IS
CARDINALITY({ INTEGER j ' char(n, J) ? );

$( returns no. of characters in character vcarray n)

FUNCTIONS

VFUN char(vcarray n; INTEGER I) -> CHAR c;
$( returns J-th character in vcarray n)
EXCEPTIONS

nochar : NOT i INSET ( I .. vclen(n) 1;
INITIALLY

c =?;

VFUN int_for_vcarray(vcarray n) -> INTEGER v;
$( returns a unique integer for each voarray)
INITIALLY

OVFUN create_vcarray() -> vcarray n;
$( creates a new vcarray the contents of which are
undefined. A newly generated designator is returned.
A unique integer is associated with this designator.)

EXCEPTIONS
RESOURCE_ERROR;

EFFECTS
n - NEW(varray);

132



'intfor__voarray(n)
-(SOME INTEGER 1 1 1 INSET 1 .. v_int..bounds ) AND

(FORALL voarray nl -a n : intfor_voarray(nl) -a i));

OFUN oneworechar(vcarray n; CHAR c); $( adds character to end of
vcarray n)

EXCEPTIONS
RESOURCEERROR;

EFFECTS
'char(n, vclen(n) + 1) = c;

OFUN remove_chars(vcarray n; INTEGER ); $( removes i characters
from the end of vearray n)

EXCEPTIONS
underflow : vclen(n) < i;

EFFECTS
FORALL INTEGER j INSET [ 1 .. 1 1:

'char(n, vclen(n) - j + 1) = ?;

OFUN clear_vcarray(vcarray n); $( resets voarray to
the empty state)

EFFECTS
FORALL INTEGER J: 'char(n, J) =?;

ENDNODULE
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Table 12: Ye_'.ntarray.,Pairs Module

MODULE ye_intarray_..pairs
$( stores pairs, each composed of a vearray designator
and an intarray designator. Each pair is the
representation of a sequence designator)

TYPES
ye_intarray_.pair: STRUCTjOF(vcarray vearray_..part;

intarray intarray_..part);

EXTERNALREFS

FROM4 vearrays:
vearray: DESIGNATOR;
QYFUN create..vcarray()- vcarray we;

FROM intarrays:
nt array: DESIGNATOR;

QYFUN create_intarray()- intarray n;

FUNCTIONS

VFUN vcpairexit(vc_intarray.pair vnp) ->BOOLEAN b;
$( returns TRUE if the pair vnp has been previously

HIDDEN;strd

INITIALLY

b =FALSE;

QYFUN create_vc_intarray_.pair() -> vc...intarray...pair vnp;
$( creates a new pair by creating a new vcarray and.1 intarray, and joining them as a pair (STRUCT))

EXCEPTIONS
RESOURCEJERROR;

EFFECTS
vnp

-STRUCT(EFFECT3_OF create_vcarrayo,

ENDJ4ODUL air xi TS_OF create_intarrayo);

134



Table 13: Vo..RtoClls Module

MODULE Vc"etc_cells
$( provides separate cells for the storage of vcarray
designators, intarray designators, and integers)

EXTERN&LREFS,

FROM vcarrays:
vcarray: DESIGNATOR;

FROM intarrays:

intarray: DESIGNATOR;I

FUNCTIONS

VFUN v...get() -> vcarray vc; $(returns a stored vcarray designator)
ASSERTIONS

v...geto) ?;
INITIALLY

ve = ?

VFUN v...get....n) ->intarray n; $( returns a stored intarray
designator)

ASSERTIONS
v...gen()- ?

INITIALLY

n = ?

VFUN v...get..i() -> INTEGER v; $( returns a stored integer)
INITIALLY

v = 0;

OFUN vstore(vcarray vc); $( stores a voarray designator)
EFFECTS

'v...get() = vc;

OFUN vstore...(intarray n); $(stores a intarray designator)
EFFECTS

'v.get...n) -n;

OFUN v...store..i(INTEGER i); $(stores an integer)*1 EFFECTS

ENDMODUL9
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Table 141: Chararrays Module

MODULE ohararrays $( maintains a fixed nmber of fixed-length
character arrays)

TYPES

chararray: DESIGNATOR;

PARAMETERS

INTEGER maxohararrays; $( the maxium nauber of chararrays that
the module can support)

INTEGER lenc; $( the length of each chararray)

DEFINITIONS

BOOLEAN no_char(I4TEGER J) IS NOT j INSET 1 1 .. lena }

BOOLEAN too_many...chararrays
IS CARDINALITY(i chararray n 1 getchar(n, 1) ? I

>= maichararrays;

ASSERT IONS

lenc >= 1;

FUNCTIONS

VFUN getchar~chararray n; INTEGER J) -> CHAR c;
$( returns J-th character in n-th array)

EXCEPT IONS
no-char :no...char(J);

INITIALLY

VFUN mnt_for _chararray~chararray n) -> INTEGER v;
$( returns the unique integer corresponding to chararray

n)
INITIALLY

v 2 ?;

OYFUN create_chararrayo) -> chararray n;
V( creates a new chararray the contents of which become
some defined (not undefined) characters. A newly
generated designator Is returned)

EXCEPTIONS
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too-jany..chararrays : too.jsany...ohararray5;
EFFECTS

n z NEW(ohararray);
lintjfor...hararray( n)

x(SOME INTEGER 1 i INSET ( 1 . maxchararrays, k ND
(FORALL ohararray n1 -z n : int_ror...hararray(ni) Mai);

FORALL INTEGER j INSET I I1. leno 1:
'getohar(n, J) a (SOME CHAR a 1 a )

OFUN change...har(chararray n; INTEGER J; CUAR c);
VC replaces J-th character in n-th array by a)
EXCEPTIONS

no_char :nochar(j);
EFFECTS

'getchar(n, J) a ;

ENDL_MODULE
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Table 15: Chararrays..ntarray-Pairs Module

MODULE chararrays..intarray..pairs
$stores pairs, each composed of a chararray designator
and an intarray designa-tor. Each
pair is the representation of a vc_intarray_.pair)

TYPES

chararrayintarraypair:
STRUCT_.OF(chararray ohararray..,prt; intarray intarray.part);

EXTERNALREFS

FROM chararrays:
chararray: DESIGNATOR;

FROM intarrays:
intarray: DESIGNATOR;

FUNCTIONS

VFIJN chararray..pairexists( chararrayintarray.air enp)
-> BOOLEAN b;

*returns TRUE If the pair crip has been previously stored)
HIDDEN;
INITIALLY

b = FALSE;

OFIIN store_chararrayintarray-pair( chararrayjntarray..pair onp);
$( creates a new pair by creating a new ahararray and
intarray, and joining them as a pair (STRUCT))

EXCEPTIONS
RESOURCEERROR;

EFFECTS
'chararray..pair..exists( cnp) =TRUE;

END40DULE
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Table 16: Chararrays-to.Cells Module

MODULE chararrays..eto_coells
$( provides separate cells for the storage of ohararray
designators, intarray designators, and integers)

EXTERMALREFS

FROM chararraya:
chararray: DESIGNATOR;

FROM intarrays:
intarray: DESIGNATOR;

FUNCTIONS

VFUN o...get() -> ohararray no;
$returns a stored chararray designator)
ASSERTIONS

c...get()?
INITIALLY

nc z ?

VFUN c...getn()o intarray n; $( returns a stored intarray
designator)

ASSERTIONS
cget() ?;

INITIALLY
n z?

VFUN cgeti()o INTEGER v; *(returns a stored integer)
INITIALLY

v = 0;

OFUN q_store~Chararray no); $(stores a ohararray designator)
EFFECTS

'a-..st( = no;

OFUN costorejn(intarray n); $(stores a intarray designator)

OUUNt-o n;

aFU store.J(INTEGER 1); *(stores an integer)
EFFECTS

,a-pt-'=

ENDJIODULE
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Table 17: Histogram Mapping

MAP histogram TO tally;

TYPES

word: ( VECTOROF CHAR vo ILENGTH(vc) > 0 )
truncated_word: ( word w ILENGTH(v) <= maxlength 1;

EXTERNAUI EFS

FROM histogram:
VFUN getword(INTEGER i) -> truncated-..word tw;
VFUN howany(INTEGER i) -> INTEGER v;

FROM truncator:
INTEGER maxlength;

FROM tally:
VFUN t_retrieve(INTEGER i) - truncated-word tw;
VFUN t_howmany(INTEGER i) - INTEGER v;

MAPPINGS

getword(INTEGER i): t...retrieve(i);

hoimany(INTEGER i): tjaowmany(i);

ENDJIAP
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Table 18: Tally Mapping

MAP tally

TO query, hasher, seqpointer.cells;

TYPES

word: ( VECTOROF CHAR vo LENGTH(vc) ) 0 1
truncated_word: ( word w 1LENGTH(w) < *axlength 1;

DEFINITIONS

BOOLEAN probe_succeeds(word w)
IS EXISTS INTEGER p INSET ( 0 .. plen - 1 1:

get-string(dir~p)) =w
AND (FORALL INTEGER i INSET

(hash(w, plen) .
IF p < hash(w, plen)

THEN p + plen ELSE p 1:
dir(i MOD plen) -=0);

$( returns TRUE if for word w there is a pointer p to the
word and that a linear search from the hash address of w
will hit the entry with w in it--that is, not hit an
empty entry first)

EXTERNALREFS

FROM tally:
VFUN t..retrieve(INTEGER i) -> truncatedword w;
VFUN t_hiowmanyC INTEGER i) -> INTEGER v;
VFUN t~sequence()- seq s;
VFUN t_..pointer()- INTEGER p;

FROM query:
INTEGER plen;
VFUN get...tring(INTEGER i) -> word w;
VFUN cheol~count(INTEGER i) -> INTEGER v;
VFUN dir(INTEGER p) -> INTEGER v.;

FAOM hasher:
INTEGER hash(word w; INTEGER upper);

FROM sequences:
seq: DESIGNATOR;

FROM seq..pointer _cells:
VFUN get..() ->seq a;
VFUN get-..p()- INTEGER p;
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PROM truncator:
INTEGER maxlength;

INVARIANTS

FORALL word w -- ?:
CARDINALITY(( INTEGER j get-string(j) = w ) <= 1;

*( guarantees that all defined words are stored no more
that once)

FORALL word w 1 w -: ? AND(EXISTS INTEGER J: get.string(j) = w):
probe_sucoeeds(w);
$( guarantees that all defined words that are stored in
"getstring" possess an appropriate link to their position in
"getstring")

MAPPINGS

t_retrieve(INTEGER i): get.string(i);

t_hoany(INTEGER i): oheck_ount(i);

t-sequenceo: gets();

t..pontero: getpo;

END_MAP
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Table 19: Query Mapping

MAP query, sequences TO sequenoes, intarrays;

TYPES

word: { VECTOR-OF CHAR vo I LENGTH(vo) > 0 1;
seql: I seq n I n -a uniquestring );

PARAMETERS

eq uniquestring; $( the unique string sequence; stores the
words of query)

intarray directorarray; $( the integer array containing the
directors into the unique sequence)

intarray count-array; $( the integer array containing the counts for
each word in the unique sequence)

DEFINITIONS

INTEGER seqlen(seq n) IS
CARDINALITY(I INTEGER j I string(n, J) M;

$( number of words in sequence n)

EXTERNALREFS

FROM sequences:
seq: DESIGNATOR;VFUN striG(seq n; INTEGER J) -> word w;

FROM4 query:
INTEGER plen;
VFUN dir(INTEGER p) -> INTEGER i;
VFUN check_.oount(INTEGER J) -> INTEGER v;
VFUN getstring(INTEGER J) -> word w;

FROM intarrays:
intarray: DESIGNATOR;
INTEGER leni;
VFUN getint(intarray m; INTEGER J) -> INTEGER v;

INVARIANTS

FORALL INTEGER j INSET ( 1 .. leni }:
getint(director_array, J) INSET 1 0 .. seqlen(untiquestring) I;

$( means that all integers in the director-array are
between 0 and the length of the unique-string sequence.
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This invariant guarantees that any number retrieved from
the director array (and within the designated bounds)
either corresponds to a null entry (0) or indexes a valid
entry in the unique sequence)

CARDINALITY( (INTEGER j I getint(director-array, J) 0 )
: leni - seqlen(unique.string);

$( guarantees that if there is an empty slot (a zero
entry) in the director array, then there are fewer than
leni words in the unique sequence; also guarantees that
leni is no less than the length of the unique sequence
(so that any reference to this sequence will also be a
valid reference into the count array))

MAPPINGS

$( the first two mappings are for sequence entities,
indicating that all sequence designators are available
at the upper interface with the exception of
"uniquestring" , used exclusively by query)

seq: seql;

string(seq n; INTEGER j): string(n, J);

$( the remaining mappings are for query primitives)

plen: leni;

getstring(INTEGER j): string(unique_string, J);

dir(IWr-GER p): getint(directorarray, p + 1);

checkcount(INTEGER j): getint(countarray, J);

END-NAP
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Table 20: Sequences Mapping

MAP sequences, intarrays, seq..pointer...ells

TO voarrays, intarrays, vcjntarray..pairs, vo_etc-cells;

TYPES

intarrayl:
I intarray ma NOT m INSET(inclength UNION ( nstrings )I

vq_intarraypair:
STRUCT_OF(vcarray vcarray_..part; intarray intarray..part);

vc._intarray_.pairl:
( vc...intarraypair vcnp vc__.pair_exists(vanp) z TRUE 1

word: I VECTOILOF CHAR ye LENGTH(vc) > 0 1

PARAMETERS

intarray nstrings; $( integer array storing the nuber of strings
in the sequences)

DEFINITIONS

INTEGER le....seq( vcintarray..pair 1 vnp)
IS getint(nstrings, it_for_vcarray(vnp.varray..part));

IS ( mapped length of sequence n)

INTEGER ival(vcjintarray~pairl vnp; INTEGER i)
Igetint(vnp.intarray..part, i); $( value in the intarray that

holds the word boundary
positions for sequence n)

SET_OF intarray inclength
IS lintarray m 1 EXISTS ye_intarray__pair vnp : vc_..pair...exits(vnp)

AND vnp.intarray..part =U);
$( integer arrays, each of which corresponds to a
vcarray; the values in the positions of each array are
the vocarray positions at the boundaries of strings)

EXTERNALREFS

FROM sequences:
seq: DESIGNATOR;
VFUN string(seq n; INTEGER J) ->word w;

3 FROM intarrays:
- intarray: DESIGNATOR;

INTEGER leni;
VFUN getint(intarray a; INTEGER J) -> INTEGER v;
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FROM seqpointer_cells:
VFUN gets() -> seq n;
VFUN getp() -> INTEGER p;

FROM voarrays:
vcarray: DESIGNATOR;
INTEGER v_intbounds;
VFUN char(vcarray ve; INTEGER J) -> CHAR c;
VFUN int_for_vcarray(vcarray vc) -> INTEGER v;

FROM vc_etc_cells:

VFUN v.et() -> vcarray vc;
VFUN vget_.n() -> intarray n;
VFUN vgeti() -> INTEGER v;

FROM vq_intarraypairs:
VFUN vcpairexists(vcintarray_.pair vcnp) -> BOOLEAN b;

INVARIANTS

v_int_bounds <= lenin;
$( guarantees that any integer corresponding to a vcarray is a
valid index in an integer array)

MAPPINGS

$( the first three mappings are for the

representation of the intarray primitives)

intarray: intarrayl;

leni: leni;

getint(intarray m; INTEGER j): getint(m, J);

$( the next two mappings are for the representation of
string primitives)

seq: vcintarraypairl;

string(seq n; INTEGER j):
IF J INSET ( 1 .. len-seq(n) }

THEN VECTOR(FOR i FROM 0
TO ival(n, 2'j) - ival(n, 2*j - 1)

char ( n. vcarray._.part,
i + ival(n, 24J - 1)))

ELSE ?;

$( the following mappings are for seq..pointercells
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primitives)

get...po: v...get..io;

get,_.sO): STRUCT(v~geto, v...get..no);

ENDJ4iAP
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Table 21: Voarrays Mapping

HAP vearrays, intarrays, vo..intarray...pairs, vc...eto-cells
TO chararrays, intarrays, chararrays.intarray..JairS,

chrarrayetC..Cell3;

TYPES

intarrayl: ( intarray m 1 -= lengtharray I
vo_intarray_.pair:

STRIICTOF(vcarray voarray_..part; intarray intarray__part);
chararray..intarrayLpair:

STRUCT_OF(chararray chararraypart; intarray intarray_.part);

PARAMETERS

intarray length..array; $( the designator for the integer array that
contains the lengths of the vcarrays)

EXTERNALREFS

FROM vcarrays:

vcarray: DESIGNATOR;
INTEGER v_mt__bounds;
VFUN int,_for _vcarray(vcarray vc) ->INTEGER i,

FROM vc_intarray__..pairs:
VFUN vc .air...exist(vc...intarraypair vnp) ->BOOLEAN b;

FROM vc_etc_cells:
VFNv..get() -> vearray vc;

VFUN vgt__p.() ->intarray m,
VFUN vget..i()o INTEGER v;

FROM intarrays:
intarray: DESIGNATOR;
INTEGER leni;
VFUN getint(intarray m; INTEGER i) ->INTEGER v;

FROM chararrays:
chararray: DESIGNATOR;
INTEGER maichararrays;
VFUN getohar(ohararray n; INTEGER i) ->CHAR c;
VFUN int_for_ohararray~chararray n) ->INTEGER v;

FROM chararrays....ntarrayj..pirs:
VFUN ohararray_..pairexists( ohararray..ntarraypair onp)

->BOOLEAN b;
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FROM ohararrayseto~cells:
VFLJN oget() -> ohararray n;
VFUN oget _n) - intarray mn;
VFUN c...get() - INTEGER v;

INVARIANTS

leni >= maxchararrays;

MAPPINGS

$( the first four mappings are f'or vearray primitives)

vearray: chararray;

v-int_bounds: leni;

char(vcarray n; INTEGER j):
IF j INSET ( 1 ..getint(length.array, int..for_chararray~n))

THEN getchar(n, J)
ELSE ?;

int-for-vcarray(vcarray n): int_for_hararray(n);

*the following three mappings are for intarray
primitives)

intarray: intarrayl;

leni: leni;

getint(intarray mn; INTEGER i): getint(n, i);

$the following three mappings are for the vcetcoaells
primitives)

vgeto: cgeO;

v...get _no: c..getno;

vgetio: o...get...io;

$( the following mapping is for the ve-intarray_..pairs

module)_

vo...pair exists(vcintarray..pair vflD): chararraypjair-exists(vnp);,

END-MAP
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Table 22: Histogram Implemientation

IMPLEM4ENTATION histogram INLTERMS .OF tally;

TYPES

word: ( VECTOR_OF CHAR vo LENGTH(vc) > 0 1
truncated_word: I word w 1 LENGTH(w) <= maxlength)

EXTERNALE EFS

FROM histogram:
VFUN getword(INTEGER i) -> truncated..word w;
VFUN howimany(INTEGER i) -> INTEGER v;
VFUN histlen() -> INTEGER v;
OFUN hist(seq s);
OFUN clear.h13to);

FROM tally:
VFUN t_retrieve(INTEGER J) ->word W;
VFUN t_howmany(INTEGER J) ->INTEGER v;
VFUN t_len() -> INTEGER v;
OFUN t_initialize(seq s);
OFUN insert_or_incrementO;
OFUN reset..tallyo;

FROM sequences:
seq: DESIGNATOR;

FROM truncator:
INTEGER maxlength;

IMPLEMENTATIONS

VPROG getwordC INTEGER J) ->truncated-..word tw;
BEGIN

EXECUTE tw <- t_retrieve(j) THEN
ON no_string : RAISE (n...word);
ON NORMAL: RETURN;

END;
END;

VPROG howmany(INTEGER J) -> INTEGER v;
BEGIN

EXECUTE v <- t_hoirmany(j) THEN
ON no_string : RAISE(no...word);
ON NORMAL :RETURN;

END;
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END;

VPROG histlen() -> INTEGER v;
BEGIN

v (- t_leno;
RETURN;

END;

OPROG hist(seq n);
BEGIN

IF t-len()- 0
THEN RAISE(hist-not-reset);
END_IF;

t_initialize(n);
UNTIL no_more_room DO

EXECUTE insert,_or_inorement() THEN
ON no_more_words

RETUR NO;
ON RESOURCE3RROR SIGNAL(noL_more_room);
ON NORMAL
END;

THEN
ON no more _room

reset_tallyo;
RAISE(RESOURCEJERROR);

END;
END;

OPROG olearhisto;
BEGIN

reset_tallyo;
END;

END_IMPLD14ENTATION



Table 23: Tally Implementation

IPLDIENTATION tally INLTER?4S_OF query, sequjences, hasher,

aeq..pointer..oelis, truncator;

TYPES

word: I VECTOROF CHAR vo LENGTH(ve) > 0 )

trunoate&..vord: ( word w ILENGTH(v) <= .axlength 1

EXTERNALRES

FROM tally:
VFUN t_retrieve(ITEGER J) - truncated_word w;
VFUN tjiomany(INTEGER J) - INTEGER v;
VFUN t_len() -> INTEGER v;
OFUN t_initialize(seq a);
OFUN insert-or-incranento;
OFUN swap...tally(INTEGER i, J);
OFUN reset..tallyo;

FRCM query:
INTEGER plen;
VFUN getstring(INTEGER J) ->word w;
VFUN checkcountINTEGER J) ->INTEGER v;
VFUN size() -> INTEGER v;
OFUN save(word w; INTEGER p);
OFUI add...count(INTEGER p);
OFUN swapquery(INTZGER i, J1);
OFUN reset..queryo;

FROM sequences:
seq: DESIGNATOR;
VFUN string(seq n; INTEGER J) -> word w;

FROM hasher:
INTEGER hash(word w; INTEGER upper);

FROM seq_..pointer_cells:
VFUN get..p()o INTEGER 1.;
VFUN get-W.()- seq n;
OFLJN storep(INTEGER i);
OFUN storesa(seq n);

FROM truncator:
INTEGER uaxlength;
VFUN trunoation(word w) ->trunoated~word tv;

IMPLEENTATIONS
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VPROG tlen() -> INTEGER V;
BEGIN

V (- 31zeo;
RETURN;

END;

VPROG t,_retriyoCINTEGER J) ->truneated_word tw;
BEGIN

EXECUTE tw <- get....tring(j) THEN
ON no_wyord RAISE(nOs3tring);
ON NORMAL RETURN;
END;

END;

VPROG tjhoiiaany(INTEGER J) -> INTEGER v;
BEGIN

EXECUTE v <- checkccount(j) THEN
ON no_word RAISE(nos3tring);
ON NORMAL RETURN;
END;

END;

OPROG reset_tallyo;
BEGIN

reset...queryo;
END;

OPROG t_initialize(seq n);
BEGIN

stores3(n);
store..p(O);

END;

OPROG swap..taly(INTEGER i,j);
BEGIN

EXECUTE swap-.query(i, J) THEN
ON no_wordi RAISE(no..stringl);
ON no_word2 :RAISE(no..string2);
ON NORMAL :RETURN;
END;

END;

OPROG insert-or_incremento;
*(ASSERT gets(

$(some sequence, whose histogram is to be formed, has
been initialized)

DECLARATIONS
seq n;
INTEGER p, p1, p2, kc;
word w;
truncated_word tw;
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BEGIN
ni( getsO;
kc <- get-pO ;
EXECUTE w (- string(n, Wc.)

*(get the next word from the sequence)
THEN

ON no_word :RAISE (nopjore-words)
ON NORMAL

END;
tw <- truncation(w); $(truncate the word)
p <- bash(tw, plen); $(generate a hash address)
FOR pl FROM p TO p + plen - I UNTIL done DO

$(search for appearance of w or an empty slot by
attempting to insert)

P2 <- p1 MOD plen;
EXECUTE save(tw, p2) THEN

ON hit :$(found tw; add count and finish)
add..count( p2);
SIGNAL(done);

ON wrong..yord ;$(word is not tw; continue search)
ON RESOURCE..ERROR :RAISE(RESOURCEERROR);
ON NORMAL :SIGNAL(done);

$(found an empty slot; save has inserted word; finish)
END;

4 THEN
ON done

store..p~k + 1);
RETURN;

ON NORMAL :$(search for tw or empty slot failed; no more room)
RAISE(RESOURCEJRROR);

END;
END;

OPROG reset_tallyo;
BEGIN

reset~queryo;
store..p(O);

END;

END_IMPILmiENTATION
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Table 24: Query Impiementation

IMPLEMENTATION query INLTERMS.OF sequences, intarrays;

TYPES

word: f VECTOR_OF CHAR vo 1 LENGTH(vc) > 0 )

PARAMETERS

intarray director _array, count...Array;
seq unique...equence;

EXT ERNA LREFS

FROM query:
INTEGER plen;
VFUN getstring(INTEGER J) -> word w;
VFUN check_count(INTEGER J) -> INTEGER v;
VFUN size() -> INTEGER v;
OFUN 3ave(vord w; INTEGER p);
OFUN add~.ount(INTEGER p);
OFUN swap..query( seq n; INTEGER 1, J);
OFUN reset..queryo;

FRCM sequences:
seq: DESIGNATOR;
VFUN string(seq n; INTEGER J) -> word w;
VFUN seqlen( seq n) ->INTEGER v;
OVFUN oreate...seq()o seq n;
OFUN clear_seq(seq n);
OFUN append(seq n; word w);
OFUN swap....eqINTEGER i, J);

FROM intarrays:
intarray: DESIGNATOR;
INTEGER leni;
VFUN getint(intarray m; INTEGER J) -> INTEGER v;
OVFUN create..intarray() -> intarray m;
OFUN change...int(intarray m; INTEGER J, v);

INITIALIZATION

DECLARATIONS
INTEGER i;

BEGIN
count_array <- create_intarrayo;

director_array <- create~intarrayo;
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unique-sequenoe <- create-seqo;
FOR i FROM 1 TO leni DO

change.int(direotor..array, 1, 0);
END;

plen (- len;
END;

IKPL34ENTATIONS

VPROG getstring(INTEGER J) -> word w;
BEGIN

EXECUTE w <- strig(unique-sequence, J) THEN
ON noword RAISE(noword);
ON NORMAL
END;

END;

VPROG check_oount(INTEGER J) -> INTEGER v;
BEGIN

IF j < 1 OR j > seqlen(unique_sequence)
THEN RAISE(no_word);
END.IF;

v <- getint(count_array, J);
$(no exception will occur since all intarrays are long enough

to hold information about all words currently stored)
RETURN;

END;

VPROG size() -> INTEGER v;
BEGIN

v <- seqlen(uniquesequence);
RETURN;

END;

OPROG save(word w; INTEGER p);
DECLARATIONS

INTEGER J, j1;
BEGIN

EXECUTE J <- getint(diretorarray, p+1) THEN
ON noint : RAISE(nodir);
ON NORMAL :
END;

IFJ z 0 THEN
$(slot is empty, try to append word with count of 1)
EXECUTE append(unique_sequence, w) THEN

ON RESOURCEURROR : RAISE(RESOURCEERROR);
ON NORMAL :

J1 <- seqlen(uniquesequence);
ohangetnt(direotorarray, p, J.1);
ohange-int(oountarray, jl, 1);

$(no exoeptions oan be returned from above calls
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since it has been determined that there is an
empty slot in the direotorarray, whioh then
implies that there is more room in the
countarray)

RETURN;
END;

ENDIF;
$(slot is not empty; determine itf word there is w or another
word)
IF w = string(unique_sequence, J)

THEN RAISE(hit);
ELSE RAISE(wrong._word);
ENDIF;

END;

OPROG add count(INTEGER p);
DECLARATIONS

INTEGER J;
BEGIN

EXECUTE j <- getint(diretorarray, p+1) THEN
ON no_int : RAISE(nodir);
ON NORMAL:
END;

IFj = 0
THEN RAISE(empty_slot);
ENDIF;

change_nt(count_array, j, getint(countarray, J) + 1);
END;

OPROG swap_query(INTEGER i, J);

BEGIN
EXECUTE swap seq(unique3sequence, i, J) THEN

ON no_wordi : RAISE(no_wordl);
ON no_word2 : RAISE(noword2);
ON NORMAL
END;

END;

OPROG reset-queryo;
DECLARATIONS

INTEGER i;
BEGIN

clearseq(uniquesequenoe);
FOR i FROM 1 TO leni

DO changeint(director array, i, 0);
END;

END;

END_IMPLEMENTATION
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Table 25: Sequences Implementation

IM4PL34ENTATION sequences INLTERMSOF voarrays, intarrays,

vc...intarraypairs;

TYPES

word: I VECTORJ.OF CHAR vo LENGTH(vc) > 0 )
vo_intarray_.pair:

STRUCT_..OF(vcarray vcarraypart; intarray intarray__.part);

PARAMETERS

intarray nstrings;

EXTERNALREFS

FROM sequences:
seq: DESIGNATOR;
VFUN string(seq n; INTEGER J) -> word w;
VFUN seqlen( seq n) ->INTEGER v;
OVFUN create_seq()- seq n;
OFUN clearseq(seq n);
OFUN append( seq n; word w);

i ~ OFUN swapsaeq(seq n; INTEGER i, J);

FROM4 vcarrays:
vearray: DESIGNATOR;
VFUN Char(vcarray vca; INTEGER J) ->CHAR c;
VFUN int_for_ycarray(vcarray voa) ->INTEGER v;
OFUN one_more_char~vcarray vca; CHAR c);
OFUN remove_chars(vcarray vca; INTEGER 0);
OFUN clear_vcarray(voarray yea);

FROM intarrays:
intarray: DESIGNATOR;
INTEGER lent;
VFUN getint(intarray m; INTEGER J) -> INTEGER v;
OFUN cbange..int(intarray m; INTEGER J, v);

FROM4 va_intarray...pairs:
OVFUN create_vq_intarray...pair()- vo_intarray_.pair vnp;

TYPEMAPPINGS

seq : w_intarraypair;
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INITIALIZATION

DECLARATIONS
INTEGER i;

BEGIN
natrings <- createintarrayo;

E N I PLfl4EN T A T IO N S

VPROG string(seq n; INTEGER J) ->word w;
DECLARATIONS

vearray ve;
intarray m;
INTEGER i, k, lower, upper;

BEGIN
va <- n.vearray_..part;
i <- int-for-vcarray(vc);
kc <- getint(nstrings, 0);
IF j < 1 OR j > kc

THEN RAISE (noword);
ELSE

m <- n.intarray..part;
upper <- getint(m, 20j);
lower <- getint(m, 20.J-1);
w <- VECTOR(FOR p FROM4 0 TO upper -lower

RETURN; char(vc, p o lower));

ENDIF;
END;

VP*tOG seqlen( seq n) -> INTEGER v;
BEGIN

v <- getint(nstrings, intfor~vcarray(n.voarraypart));
RETURN;

END;

VPROG create..seq() -> seq n;
BEGIN

EXECUTE n <- create_ye_intarray...pair() THEN
ON RESOURC-RROR :RAISE(RESOURCEYRROR);
ON NORMAL:

change..int(ntrings, int..for..ycarray(n .vcarray..pert), 0);I RETUR N;
END;

END;

OPROG olearseq(seq n);
BEGIN

EN; hatt.....nt(nstrings, it_for_varray(n.vearray..part), 
0);
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OPROG append(seq n; word w);
DECLARATIONS

voarray vo;
intarray m;
INTEGER i, J, k, q, r;

BEGIN
vc <- n.vcarray_part;
i <- int-forvearray(vc);
j <- getint(nstrings, i);
r <- 2 0 J;
$(the following statement determines if there is room in the
intarray to store boundary positions for an additional word)

IF r + 2 > leni
THEN RAISE(RESOURCE ERROR);
END_IF ;

$(now put the characters of w into the voarray one at a time)
FOR k FRCE 1 TO LENGTH(w) DO

EXECUTE one_morechar(ve, w[k]) THEN
ON RESOURCEJRROR :
$(no more room; remove inserted characters)
removechars(ve, k-1);
RAISE (RESOURCE..RROR);

ON NORMAL
END;

END;
$(set length, lower and upper boundaries)
chengeint(nstrings, i, J+1);
m <- n.intarray_part;
q <- getint(m, r);
changeint(m, r+1, q+1);
changetnt(m, r, q~p);

END;

OPROG sap_seq(seq n; INTEGER 1, J);
DECLARATIONS

vearray vo;
intarray m;
ITEGER p, q, r, s, t;

BEGIN
$( check index bounds)

vo <- n.voarray-part;
p <- int_for_voarray(vo);
q <- getint(natrings, p);
If £ < I OR i > q

THEN RAISE(nowordl );
ENDIF;

IF J < 1 OR J > q
THEN RAISE(noword2);
ENDJIF;

$( swap upper and lower bounds)
a <- n.intarray.part;
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r -2 1;

s -2 J;
t <- getint(m, r);
change..int(m, r, getint(m, 9));
change-.int(m, 9, t);
r <- r -1
a <- a 1
t <- getint(m, r);
change..int~m, r, getint(m, s));
change~int(E, a, t);

END;

ENDL_IMPLEXENTATION
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Table 26: SeqPointer_Cells Implementation

IM4PLEMENTATION seq...pointer-cells INLTER4S.. sequences, voarrays,

intarrays, vo...eto-cells;

TYPES

vc_intarraypair:
STRUCT_OF(vcarray vcarray..part; intarray intarray..part);

EXTERHALREFS

FROM seq~pointercells:
VFUN get-.so)- seq a;
VFUN get-iC)- INTEGER v;
OFUN 3tore....(seq 3);
OFUN store-p(INTEGER i);

FROM sequences:
seq: DESIGNATOR;

FROM vcarrays:
vcarray: DESIGNATOR;

FROM intarrays:
intarray: DESIGNATOR;

FROM veo_etc_ cells:
VFUN v...get() -> vearray va;
VFUN v.getn()- intarray m;
VFUN v..etj() - INTEGER v;
OFUN v...store(vcarray ye);
OFUN v_store_n(intarray m);
OFUN v-store_iCINTEGER i);

TYPE _MAPPINGS

seq: vo_intarray..pair;

IMPLI24ENTATIONS

YPROG get..s() -> seq s;
BEGIN

s <- STRLJCT(v...geto, vget..no);
RETURN;

END;

VPROG get~p()- INTEGER p;
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BEGIN
p <- v..get...io;
RETURN;

END;

OPROG store-s(3eq 3);
BEGIN

v _store(s3vcarray..part);
v_store_n(a.intarray_.part);

END;

OPROG store,.p(INTEER i);
BEGIN

v-tore..i(i);
END;

END_INPLD14ENThTION
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Table 27: Voarrays Implementation

IMPLEMENTATION voarrays INLTERM4SOF chararray3, intarrays;

PARAMETERS

intarray length..array;

EXTERNALREFS

FROM voarrays:
vcarray: DESIGNATOR;
INTEGER v_mnt_bounds;
VFUN char(vcarray vc; INTEGER i) ->CHAR a;
VFUN it_for_vcarray(vcarray vo) ->INTEGER i;
OVFUN create_vocarrayo) -> voarray vc;
OFUN oneL_more_char(vcarray vc; CHAR c);
OFUN remove_chars(vcarray vc; INTEGER 1.);
OFUN clear _vcarray(vcarray vc);

FROM chararrays:
chararray: DESIGNATOR;
VFUN getchar~chararray n; INTEGER J) -> CHAR c;
VFUN int_for_chararray(chararray n) -> INTEGER i;
QYFUN create_chararray() -> chararray n;
OFUN change..har(chararray n; INTEGER 1; CHAR a);

FROM intarrays:
intarray: DESIGNATOR;
VFUN getint~intarray m; INTEGER J) -> INTEGER v;
OVFUN create_intarrayo) -> intarray m;

OFUN change...int(intarray m; INTEGER J, v);

I TYPEJKAPPINGS

vcarray : chararray;

INITIALIZATION

BEGIN
length..array <- create_intarrayo;
v.intbounds <- leni;

END;

IMPLEMENTATIONS

YPROG ohar Cvoarray n; INTEGER i) -> CHAR o;
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DECLARATIONS
INTEGER J;

BEGIN
j <- getint(length-.array, int_for_chararray(n));
IF i < 1 OR i > j

THEN RAISE(io..har);
ELSE a <- getokiar(n, J1);

RETURN;
ENDIF;

END;

VPROG int-for.-yevarray(vcarray n) ->INTEGER V;
BEGIN

v <- int_for_ohararray(n);
RETURN;

END;

OVPROG create...carray() -> voarray n;
*1 DECLARATIONS

INTEGER i;
BEGIN

EXECUTE n <- create_chararrayo) THEN

ON too_many-..chararrays
RAISE(RESOURCE3-RROR);

ON NORMAL:
$(set length indicator to 0)
i <- int_for_chararray(l);
chage~int(length.array, 1, 0);

END;
END;

OPROG one_more_char(vcarray n; CHAR a); j

DECLARATIONS
INTEGER 1, J;

BEGIN
j <- int_for_chararray(n);
i <- getint(length..array, J);
EXECUTE change.char(n, i+1, a) THEN

ON no_char :RAISE(RESOURCEERROR);
ON NORMAL

change-int(length..array, J, 1+1);
END;

END;

OPROG removecohars(voarray n; INTEGER i);
DECLARATIONS

INTEGER J, k;
BEGIN

,j <- int~for_ahararray(n);
kc <- getint(lngth..array, J1);
IF kc< i

THEN RAISE(underflow);
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ELSE change-int(1.ngthLarray, k, ic );
END..JF;

END;

OPROG clear-vcarray(vcarray n);
DECLA RATIONS

INTEGER i;
BEGIN

change-int(length-array tY ~ hrary~) 0);
END;I

END-IMPLENENTATION
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Table 28: Vo_Intarray.aira Implementation

IPL34ENTATION vo_intarray__.pairs INTRMS..OF izoarrays, intarrays,

chararrays, ohara,.*raya_1.ntarray_..pairs;

TYPES

voarray~intarraypair:
STRUCTOF(vearray vcarraypa't; intarray intarraypert);

chararray-intarray-_pair:
STRUCTO.F( chararray chararray_..part; intarray intarray.part);

EXTERNALREFS

FROM vojntarray-_.pair3:
OVFUN create...ycjntarraypair() -> vc...intarray...pair vnp;

FROM vearrays:
vearray: DESIGNATOR;
OVFUN create..vcarray()- vearray ye;

FROM4 intarrays:
Intarray: DESIGNATOR;
OVFUN create.intarray()- intarray m;

FROM chararraysintarraypairs:
OF'UN store_chararray~itarray.air( chararrayntarray..pair cnp);

FROM chararrays:
chararray: DESIGNATOR;

TYPEL_MAPPINGS

- - voarray: ohararray;

DiPLEMENTATIONS

OVPROG createvc_intarray_.pair() -entarray_.pair vnp;
DECLARATIONS

vearray ye;
BEIntarray m;

EXECUTE ye <- areate..yarray() THEN
ON R3SOU1RCE...RHR : RAISE(RESOURCEJERROR);1 ON NORMAL:;
END;

EXECUTE a (- create-intarray() THENION RESOURBCE-ERROR RAISE(RESOURCLJRROlB);
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ON NONIAL :vnp <-STRUCT(vO, an);
3tore-chararrayintarray__pair( vnp);

END;
END;

ENDD4PL4ENTATION
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Table 29: Vo~to_.Cells Implementation

IMPLEMENTATION vc-.etcells ILTR4S .OF voarrays, intarrays,
chararrays-s.tO-001ell ;

EXTBRNALREFS

FROM vo..eto-cells:
VFUN v..get() -> vearray vC;
VFUN v..get..n()o intarray m;
VFUN v..get..i()o INTEGER i;
o~uN v_store(voarray vc);
OFUN v-store..n(intarray M);
OFuN v_sptore..i(INTEGER i);

FROM4 voarrays:
voar ray: DESIGNATOR;

FROM intarrays:
intarray: DESIGNATOR;

FRCM chararrays.o.t_cells:
.1VFUN c-get() -> chararray n;

VFUN c...get...n()o intarray 3;

A VFUN c-get..i()o INTEGER v;
OFUN a_store(ohararray n);
OFUN a_store..n(intarray in);
OFUN c-store..i(INTEGER i);

TYPE-MAPPINGS

voarray: ohararray;

I14PLE4ENTATIONS

VpROG v..get() -> Yearray ve;
BEGIN

vo <- o-geto;
RETURN;

END;

VpROG vget..n() -> intarray M;
BEGIN

m <- o...gt...no;
RETUR N;

END;

VPROG v....et..i()o INTEGER 1;
BEGIN
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RETURN;
END;

OPROG v_store(voarray vo);
BEGIN

c-store(vc);
END;

OPROG v_stor...n(intarraY mn);
BEGIN

o__storen(m);
END;

OPROG v-storei(INTEGER J1);
BEGIN

o_store..i(J);
END;

ENDItPL4ENTATION
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