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Foreword

This is the third and final volume of the HDM Handbook. The first :
volume covers the concepts and general philosophy of HDM. The second 4
volume discusses HDM's languages and tools. This volume presents in i
detail an example of the use of HDM.
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I FOLLOWING THE EXAMPLE

In carrying out the example, we follow the seven stages of
developnment. Many pages are required for the specifications,
representations, and implementations, and for the supporting
explanations and diagrams. We anticipate the reader's questioning the
need for such a lengthy discussion of an example that is certainly not a
large system. However, even with a moderate size system (such as ours)
there are a multitude of decisions that need to be made during the steps
of design, specification, and implementation. Using conventional design
techniques, many of these decisions are made informally, often without
even realizing that a decision has been made. Instead, in HDM we make
each decision explicit. As a result, the discussion of these decisions
gets rather lengthy, though we contend that these decisions must be
confronted by the designer (explicitly or not) in any -case. We
recognize that for an example of this size, many programmers would not
need the complete documentation offered by HDM in that they could retain
the decisions in their heads. Once a critical size is reached, however,
the number of decisions to be made becomes unwieldy unless a systematic
approach (such as the methodology of HDM) is adopted. We ask the
indulgence of those programmers and suggest that they extrapolate in
their minds to a larger system which might be more taxing.

The reader who carefully follows the details will gain an
understanding of how HDM encourages the developer to contemplate and
formulate decisions. In addition, he will be exposed to most of the
features of the languages of HDM. We recognize that many readers will
not be able to devote such careful effort to the example. To those we
recommend just a study of any two levels -- preferably the top two == of
the example, and that they follow the development of these levels
through all stages. An adequate introduction to the application of HDM
will be attained by this process.

We confess to the reader that the example occasionally departs from

reality to illustrate important features of HDM. For example, our

implementation of a file system is not realistic; it has been chosen to




illustrate the use of a module in more than one machine. In addition,
the design is somewhat more general than required. This is done to
include mechanisms appropriate to a large class of searching problems.
A few extra modules have been included to enable verification of the
implementations, which is not carried out here. 1In addition, we have
included more modules than necessary, in order to yield near trivial
representations and implementations. Some designers might accept more
complicated implementations at the benefit of fewer modules and

representations.

In Chapter 2, we present the high-level details of our example
system. In Chapter 3, we describe the modules of the extreme machines,
and in Chapter 4 we describe the modules of the intermediate machines.
In Chapter 5 we present the SPECIAL specifications for these system's
modules, and in Chapter 6 we present the machine representations. We
conclude this volume with Chapter 7, which contains a presentation of
the module implementations.




I1 CONCEPTUALIZATION: STAGE 1

In this stage, the overall intent of the system is described in a
sufficiently abstract manner to leave out detailed design decisions.
Since we have yet to develop a formal language for conceptualization,
our descriptions will be informal.

At the user 1level, the system is to provide the following

functional capabilities:

#* Provide a simple file system. The file system is to manage a
collection of files (word sequences). No explicit constraint
is imposed on the length of word that can be stored in a file.

® Provide a facility to enable the establishment of a frequency
count for the words of a user-designated file. It is assumed
that the user will wish to print the set of words (each word
once) in the designated file, together with the frequency
count for each word. The words are to be printed according to
their order in the file. The printer is outside the scope of
this example, but the words and their frequency counts are to
be stored in a form that is suitable for printout. In this
discussion, we will refer to the set of words and their
frequency counts as the histogram for the designated file.

® For purposes of computing the histogram, words in the
designated file are truncated to some length that is fixed at
system initialization. Thus, if the truncation length is
three, the words "patch" and "pat" are both treated as "pat".
The truncation feature can be used for a given file to count
all words that have a particular prefix.

Two considerations we impose on the design relate to modifiability
and performance:
®* With relatively minor extensions to the system, the user will
be able to compute the histogram to facilitate a printout

order based on other criteria, e.g., the number of occurrences
of a word, the length of a word, or alphabetical order.

* Wherever possible, the system performance is to be optimized
in favor of "time", possibly at the expense of "space".
The first consideration will influence the operations provided by the
level immediately below the wuser-interface. It must provide
capabilities over and above those being utilized by the current
user-interface, so that the user-interface can be altered without

N o I WY KT g AR e -\ remree . —— o PUR 2 -8 oy




affecting the lower levels.

Finally, in this stage we need to decide upon the primitive machine
for our example. Sometimes, we choose the primitive machine to be 1
given piece of hardware. More often, though, we choose a suitably
idealized primitive machine, yet one sufficiently simple to be easily
implemented on any hardware. for our example, we follow the latter
route, and assume:

®* The primitive machine is to provide two kinds of arrays, one
kind for characters and the other for integers.

Let us illustrate some of the decisions that are indicated above.

Figure II-1a depicts a file containing six words. The histogram
for this file, as it might appear on the printer, is shown in Figure
II-1b. Note that the words are printed in the order of their first
appearance in the file and that for a word containing more than three
characters, only the first three characters are considered in producing

the histogram.

If the print order is desired according to word frequency, then the
printer output is as depicted in Figure II-2. The conceptualization
does not prescribe the print order for a set of words all with the same
frequency counts. We have arbitrarily depicted the order among such

words to be according to first appearance in the file.

The reader should note that much is (intentionall&) left
unspecified in the above conceptualization; for example, nothing has

been said about:
* What is a word.
* How words are stored in the individual files,
* What operations are provided to the user.

®* How the words of the histogram are stored in order to
facilitate their printout according to the desired criteria.

% How the computations are to utilize the given truncation
length.

We will observe how these, and other issues, are confronted by

¢
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Figure II-1: Histogram for a File -~ Ordered by First Appearance
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Figure II-2: Histogram for a File -- Ordered by Word Frequency
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proceeding to the next stages.

We must keep in mind as we progress that design is an iterative
process. Oftentimes, the design process did not go as smoothly (nor as
linearly) as might be suggested by the following chapters. Sometimes we
had to backtrack and re-think certain decisions. This is inevitable for
a non-trivial system design implementation.

Another consideration that must be kept in mind is how the
specification language shapes the design itself, and how intuitive ideas
are expressed in the specification language. In particular, we want to
emphasize that conceptual "abstract data types" are manifested in

SPECIAL as designator types. That is, whenever we want an abstract
_ type, we typically specify it in SPECIAL as a designator type.
E Conversely, whenever we see a designator type in a SPECIAL
specification, we typicaliy have in mind a corresponding abstract type.
Thus, when we say that a given module supports designator type "x", we
mean that it supports the corresponding conceptual abstract type.
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II1 DEFINITION OF EXTREME MACHINES: STAGE 2

In this stage we organize the extreme machines (the user-interface
and primitive machines) into modules and list the operations and data
structures for each of these machines. We focus initial attention on
these two machines because of their criticality in the overall system
design. The user-interface 1is the only part of the system the user
interacts with directly. The primitive machine provides the foundation
on which the system rests. Thus, decisions relating to these two

machines are particularly significant -- these machines involve more
than just the development team. On the other hand, there is more
freedom in the selection of the intermediate machines (see next
chapter), and decisions underlying their design involve only the design

team. In HDM we postpone their consideration until later.

A. Presenting the Module Functions

At each stage of development, HDM is used to record the decisions
made at that stage. For Stage 2, the decisions relate to the following:

#® The decomposition of the user-interface and primitive machines
into modules.

* The functions, parameters, and designator and scalar types for
each extreme machine module.

(Note that these are refinements of what we indicated in Volume II as
the product of this stage.) It i{s convenient at this stage to divide the
3 data structures into two classes: those that are not subject to
. modification (parameters), and those whose value can potentially change
3 (V-functions). In this stage, we do not specify the behavior of

functions and parameters; rather, we just record their headers, which
; include declarations for the formal arguments and results. Exported
;‘ types (i.e., designator and scalar types) are also distinguished in this
i stage.

In principle, the documentation for some stages (in particular,
those that yield specifications, representations and implementations)
should be adequate for conveying the decisions made in that stage.

11
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However, it is clear that an accompanying informal description is a
significant help to a reader. For this stage (and Stage 3), the
informal description is particularly valuable in conveying decisions
that are in the designer's mind as he writes down the module
organization and functions, parameters and types, but are not completely
captured in the notation of the specification language. Hence, we
typically begin each module's specification with an English description
of the decisions that are made there and often allude to the many
decisions yet to be made.

It is emphasized that some of the decisions of this early stage are
subject to change as the system develops. We have attempted to
structure the discussion to reflect our thinking as we developed the
system, not as an after-the-fact description of the system. Thus,
missing from our initial description of the primitive machine are a few
auxiliary functions and modules, whose need were not apparent until

later stages.

B. Definition of The User Interface

Recall that the intent of our system is to provide:
® A simple file system for word storage and retrieval.

* The capability of computing frequency counts of words in a
designated word file (sequence). For purposes of computing
the frequency counts, the words of the file are viewed as

being truncated to some given length.

% The capability of organizing the distinet words of a sequence
and their respective frequency counts to facilitate their
printout. The order of printout is to be by first appearance
in t'.e designated sequence, but other orders, selectable by
the users, should be achievable with minor modifications to
the system.

Notice how we were able to partition the intent of the system into
three distinct, separable concerns. This naturally determines the
modularization of the user interface: one module for each concern.

The "sequences" module embodies the concept of word files;
"histogram" provides the mechanism for creating and storing a histogram

12




Figure 1II-1: Modular Decomposition of the User Interface




for a given sequence; "truncator" encapsulates the decision concerning
the truncation of words for computing the histogram. The facility for
truncation was placed in a module separate from that for computing the
histogram in order to emphasize that a change in the truncation length
has no bearing on the details of the "histogram" module.

The intermodule referencing is shown in Figure III-1.

Let us consider the three modules in turn.

1. Sequences

The "sequences" module is intended to resemble an extremely simple

file system. The major decisions are the following:

% Bach word file 1s viewed as an abstract object calied a
"sequence". Correspondingly, we provide a designator type for
sequences, called the "seq" designator type.

% Sequences can be dynamically created.

#® Sequences are composed of ‘"words", 1i.e., vectors of
characters.

% A sequence is grown by appending words, one at a time, to its
end.

. For a given sequence, operations are provided to indicate its
length, to retrieve a word at a given position in the
sequence, and to interchange the words in two given positions.

The following operations and data structures are provided for the

"seq" designator type:

string(seq n; INTEGER j) -> word w -=- a primitive visible
V-function that returns the j-th word w in sequence n.
"Word" is a named type that was informally defined above to
have as values all non-null vectors of characters; it is
precisely defined later. As the only primitive V-function,
"string" captures the state of each sequence in the system.

seqlen(seq n) -> INTEGER v -~ a derived visible V-function that
returns the current length of sequence n. As we will
observe, the value of seqlen(n) can be derived from the
primitive V-function "string".

create_seq() -> seqn -- an OV-function that creates a new
sequence, initializes it, and assigns a designator to it.

14




*

clear_seq(seq n) -- an O-function that clears a designated
sequence.

append{seq n; word w) -- an O-function that appends word w to
the end of sequence n.

swap seq(seq n; INTEGER i, j) -- an O-function that causes the
words in poaitions i and j to be exchanged. The need for
this operation is not intended to be apparent at this point.
The module "sequences", besides providing the abstraction of
a file system for users of the system, also appears in an
intermediate machine to implement other modules. The
operation "swap_seq" is required to carry out this
implementation, but need not be made available at the
user-interface.

Thus we see that this module somewhat resembles a sequential file
system, where the primitive element (record) in an individual file is a
"word". In our module, random access retrieval and exchanging of
elements is permitted, though words may be added only to the end.

Clearly, we have only characterized the gsyntax of the file system
interface. Aspects of the gemantics we have not indicated are:

% The state of an initialized sequence

% The state of a "cleared" sequence

* The maximum word size that can be accommodated

* The maximum number of words that can be accommodated
* How any operation is implemented

¥ What effect the 0O- and OV-functions have on the primitive
V-functions
Decisions relating to these issues are probably in our minds at this

point, but are not fully formulated until later stages.
2. Truncator

The histogram for a sequence is computed with respect to the
truncated words in the sequence. Truncator is a useful deployment of
modularity to separate the decisions regarding the computation and
retrieval of the histogram from those underlying the truncation of words
prior to their processing.

[ERY Ve Yo
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The major decision being made here is that the length to which
words are truncated is embodied in the initial state of the "truncator"
module. The "truncator" module provides the integer-valued parameter
"maxlength”, which is the truncation length for words.

The V-function "truncation(word w) => truncated_word tw" returns
for a given word w of length greater than maxlength a new word tw that
contains the first maxlength characters of w; if the length of w is less

than or equal to maxlength, then tw is equal to w. Note that tw is
declared to be of type "truncated_word" to emphasize that the range of
"truncation" is limited to those words whose length does not exceed
"maxlength®.

As we will observe, the function "truncation" is needed both to
specify the user-interface and to implement an operation of "histogram".
However, a user of the system need not have access to "truncation".

3. Histogram

Briefly, two major decisions are made at this point. The first is

to provide an operation that will compute the frequency count for each
distinct word in a designated sequence. In carrying out the
computation, all characters in a given word beyond the truncation length

"maxlength" are ignored.

The second is that the histogram is to be represented by two

tables, one to hold the set of words in the sequence (in truncated form)
and the other to hold the frequency count of each word.

The following functions are selected in connection with the above

decisions:

getword(INTEGER j) -> truncated_word tw -- a primitive visible
V-function that, in effect, 1s the table storing the
histogram's truncated words.

howmany(INTEGER jJ) -> INTEGER i -~ a  primitive visible
V-function that, in effect, 1is the table storing the
frequency counts.

histlen() -> INTEGER v -- a derived, visible V-function that

returns the number of words stored in the "getword" table
(i.e., the number of distinct words after truncation in the

16




ke, S

designated sequence).

hist(seq n) -~ an O-function that is invoked to form the
histogram for sequence n.

clear_hist() -- an O-function that clears the "getword" and
"howmany" tables.

Note that there are numerous decisions concerning the histogram
module that are not formulated here. For example, we have not
determined the order the words are stored in the "getword" table, the
resource limitations of the histogram module, nor the algorithm for
computing the frequency count of each word in the designated sequence.

4. HSL description of the user-interface

HSL (Hierarchy Specification Language) is a simple language for
expressing certain properties of abstract machines, and modules, and
their organization into a hierarchy. It is convenient to describe the
language by illustrating the HSL description of the user-interface,

INTERFACE
(user-interface
(sequences WITHOUT swap_seq)
(histogram)
(truncator WITHOUT truncation))

In general, an HSL description provides the following information
about an abstract machine:
#® The name given to the machine, in this case "user-interface"
* The modules that comprise the machine
® Any functions, parameters, types or designators of a module
that are not to be available to the next higher level machine
M, i.e., those that cannot be referenced in a program that

implements a module of M. For each module, such unavailable
functions are listed following the reserved word WITHOUT.

This completes the discussion of the user-interface. Now let us

Jump to the primitive machine.

C. Definition of The Primitive Machine

We emphasize here again that the primitive machine was somewhat

17




arbitrarily chosen. We wanted a machine that was low-level enough that
it could easily be implemented on any hardware, yet was idealized enough
that we would not be tied to the details of any particular piecz of
hardware. As a result, we chose one that provided character arrays,
integer arrays, and tneir respective designators as the primitive
machine. In addition, for simplicity we assume certain operations

discussed below are also provided by the primitive machine.

In the conceptualization stage it was decided that all of the
abstract data structures would ultimately be implemented in terms of
character arrays and integer arrays. Character arrays would be used to
hold the characters of which words are composed, and integer arrays to
nold the frequency counts of words in the hnhistogram, in addition to
other integer values whose need is perhaps not yet apparent. Thus, the

primitive machine contains the modules: "“intarrays" and "chararrays”.

Sinc= these modules are quite similar, tne design decisions that
underlie the choice of functions, parameters and designator types for
both modules can be presented in a single discussion.

* A designator type is associated with each of the two modules.
Bach array is associated with a unique designator.

% There is no mixture of types in an array, i.e., an array can
store either characters or integers. Note that this decision
was not based on a limitation of SPECIAL which does allow the
type of arguments and values to be a union of two or more
types.

# All integer arrays are of the same fixed length.

# All character arrays are of the same fixed length.

% Arrays can be dynamically created. The number of arrays that
can be created, however, is limited by the resources of a more
primitive machine that realizes "chararrays” and "intarrays".

* The elements of the arrays can be randomly accessed for
storage and retrieval.

Now let us consider each of the modules in turn.

18
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1. Intarrays

T This module provides the following: .

intarray -- a designator type whose values denote integer
arrays.

leni -- an integer parameter that is the length of each integer
array.

getint(intarray m; INTEGER j) ~> INTEGER v - a primitive
visible V-function that returns the integer stored at index j
of integer array m.

creaté_intarray() -> intarraym -~ an  OV-function  that :
associates designator m with a newly created and initialized k
integer array.

change_int(intarray m; INTEGER j, v) -- an O-function that
causes integer v to be stored in position j of integer array
m, independent of the value previously stored there.

2. Chararrays

This module provides analogous operations for character arrays:

chararray -- a designator type whose values are names of
character arrays.

lenc -- an integer parameter that is the 1length of each
character array.

getchar(chararray n; INTEGER j) -> CHAR ¢ -- a primitive visible
. V-function that returns the character in the j-th position of
H character array n.

create_chararray() -> chararray n - an OV-function that
associates designator n with a newly created and initialized
character array.

change_char(chararray n; INTEGER j; CHAR ¢) -- an O-function
that causes character ¢ to be stored in position jJ of
character array n.

In addition,  “"chararrays"™ provides an integer parameter,

"maxchararrays", that is the number of chararrays the module can

support.




3. Sumsary

It should be clear that there are numerous design decisions not
divulged in this stage, for example, the state of a newly initialized
array. These are addressed in Stage 4.

The choice of arrays as the primary primitive storage mechanism is
quite natural. Most programming languages provide an array mechanism
similar to that of these two modules, although there are differences
with respect to dynamic vs. compile-time creation of arrays. Some
readers might object to our assuming the existence of designators as
primitive entities. Some computers provide descriptors or capabilities
which exhibit most of the properties of designators. However, in the
absence of such protected names, a new primitive machine, situated below
the current machine (composed of "intarrays" and "chararrays") could be
defined. This new machine c¢ould provide integer arrays and character
arrays but named by, say, integers. The representation to this new
machine would map the intarray and chararray types to integers. (As we
have seen, a designator type can be represented by any set of
distinguishable items, e.g., integers, reals, characters, another
designator type, or a constructed type.) Thus, the protection offered by
the use of designators would still be available to all machines except

the lowest level.

Now that we have defined the extreme machines of the system, we
will define the intermediate machines proceeding downward.

20




IV DEFINITION OF INTERMEDIATE MACHINES: STAGE 3

In general, the number of intermediate levels is inversely related
to the "distance"™ in abstraction between the user interface and the
primitive machine. If the user interface supports extremely abstract
entities (relative to the primitive machine), the number of intermediate
levels will typically be large.

In our example system, the distance in abstraction is not unduly
large; hence, the number of intermediate levels is also moderate (as it
turned out, there are six). We proceed in a top-down manner, starting
with the user interface and working toward the primitive machine. We
have tried to keep the size of each step small. Small steps mean that
the difference in complexity between adjoining levels is also small;
hence, each level can be easily understood in terms of the abstractions
provided by the next lower level. Putting the small steps together
gives us a large step -- from the user interface to the primitive

machine.

The significant abstractions of the user interface (level6) are the
sequence data type and the "hist" operation, which constructs two tables
(for words and frequency counts). The next level (levelS5) provides the
same data abstractions as the user interface; its use is to decompose
"hist"™ into more primitive operations. Thus, level5 is used mostly to
support procedure abstraction. The remaining levels of the system are
used to provide successively more primitive representations for the
abstract types (and their operations) of the respective next higher
level. Thus, they are used mostly to support data abstraction.

Figure IV-1 depicts each of the abstract machines of the system,

their decomposition into modules and the dependency order of the modules
in each machines.

Table 1! gives the decomposition in HSL notation, as expected by
the HDM tools that deals with interfaces and hierarchy structures.

1'l‘he tables are included in Appendix A of this volume.
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Table 2 lists the functions, module parameters, and designator types of

-
e et ain ‘M_<.—AJ

each module. Note for V-functions we employ the following
abbreviations: "V" for visible, "H" for hidden, "P" for primitive, and
"D" for derived. Also note these headers define only the syntax of each

module's functions. We leave the specification of semantics to Stage 4.

it eAn s BRI b A kb e

A. Levels

The purpose of this machine is to provide facilities for the
implementation of "histogram". This is primarily accomplished by the

module "tally". While to the user of "histogram" it appears that the
two tables (for words and frequency counts) are formed instantaneously,

tally builds corresponding tables incrementally with the O-function

"insert_or_increment". If the next word in the designated sequence is
already in the word-table (as defined by the V-function "t_retrieve"),

[ e S

then "insert_or_increment" increments the count for that word in
2 "t_howmany" by one; otherwise, it adds the word to "t_retrieve™ and sets

i e tinn 1S

its count in "t_howmany" to one. Finally, "insert_or_increment" also
advances the file pointer for the sequence. Our intention is for

t_howmany(j) to contain the word count for the word stored in

t_retrieve(j). ;

Note that there is essentially no jump in data abstraction between
level6 and level5; "getword" corresponds to "t_retrieve", and "howmany"
corresponds to "t _howmany". The main difference between the levels is
in procedure abstraction. A few other decisions embodied in the i
selection of operations and data structures of "tally" are noted. |

The hidden, primitive V-function |

t_sequence() -> seq s
is used to denote the word sequence currently being processed. When the
processing of this sequence is complete, "tally" will generally be reset

before another sequence s' is selected for processing. However, without

resetting, another sequence s8' can be selected by invoking the )

O-function

t_initialize(s').

23

N0 Y N PO . s 5. e PR . T




Thus, the histograms for two (or more) composed sequences s,s' can be
formed. This generality in "tally" is not needed by "histogram"” as
described, but does not deleteriously impact the efficiency, and might
be useful if the conceptualization underlying "histogram" is changed.

The hidden, primitive V-function
t_pointer() -> INTEGER v
indicates the next word to be processed in the designated sequence.
Thus, t_pointer() serves as a file pointer for this sequence. A reader
might believe that it should be visible, 1i.e., available to the
implementation of "hist" for determining when the end-of-file 1is
reached. As will be noted in the next chapter, we decided to report the

"end-of-file" condition as an exception to "insert-or-increment".

Once the processing of a sequence is complete, it might be desired
to rearrange the word-table and frequency-table in order to facilitate
the printing of the words in a different order, e.g., by length or in
alphabetical order. The O-function

swap_tally(INTEGER i, j)
could be used by the implementation of “hist" for this purpose. Thus,
we have made the decision in forming the tables to first get all of the
words and their associated frequency counts into the tables, and later

to arrange the order of the tables.

Note that level5 also contains appearances of the modules
"sequences" and "truncator®. The role of the former is to give "tally"
access to the designated sequence, as passed down in the implementation
of "hist". For the latter, the parameter "maxlength"™ of "truncator" is
used to convert a word of the designated sequence into a
"truncated_word".

Now let us proceed to levellk, which implements tally.

B. Levell

The purpose of this machine -- containing the four modules
"sequences”, f"query", "hasher", and "truncator" -- is to implement
"tally® in an efficient manner. In processing the next word of the
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designated sequence, "tally" updates "t_retrieve" and "t_howmany" as

dependent on whether the word already appears in "t_retrieve".

The major design decision underlying "query" is to provide
mechanisms that can‘determine very rapidly whether a word has a prior
appearance. A hash-address scheme is utilized to decrease the average
search time for a word, as compared to linear or logarithmic searching
techniques.

This machine also provides the facilities for storing the
designator for the current sequence and the pointer to the next word in
that sequence to be processed. Let us now consider the definition of

each of the modules.

The "hasher" module provides the integer parameter

hash(word w; INTEGER upper),
which for a given word w will return an integer between 0 and upper-1.
It is intended that the implementation of "insert_or_increment" invoke
"hash" to receive a value that is a probe into a table maintained by
"query" -- see below. We decided to isolate the hashing function in its
own module for essentially the same reasons that "truncator" is a
separate module. Any modifications to the algorithm that implements
hash(w, upper), say to more evenly scatter the probes, has no bearing on
the functional behavior of the other modules of this machine. The
reader will note that "hasher" appears in all machines below leveld. In
order to simplify the exposition, we are assuming that the primitive
machine has a built-in hash function. Clearly, we could have written a
program to compute a hash address, but this would contribute little to
an explanation of HDM.

The "query" module provides the mechanisms for storing words and
the count associated with each word, and for carrying out a hash-based
search for the presence of a stored word.

The major decisions wunderlying the module, including its
relationship with "hasher", are illustrated in Figures IV-2 and IV-3.
"Query" maintains three tables corresponding to the following

V-functions:




Figure IV-2: Hash Accessing of Words in "Query" -- 1
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Figure IV-3: Hash Accessing of Words in "Query" -- 2
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get_string (INTEGER J) => word w == a primitive, visible
V-function that is in correspondence with "t_retrieve” of
"tally".

check_count{INTEGER j) -> INTEGER -- a primitive, visible
V-function that is in correspondence with "t_howmany" of
"tally". Remember, the count for the word get_string(i) is
check_count(i).

dir(INTEGER p) -> INTEGER v -- a hash table whose entries are
indices into the get_string table. The intended domain of p
is between 0 and plen-1, where plen is a parameter of the
module.

Each word in "get_string” is pointed to by the integer in some
position p of "dir", where p is determined by a hash strategy. 1If a
word w is somewhere in "get_string", then w can be found by probing
slots in "dir" and using the value contained in the probed dir "slot" to
index "get_string". The probe function for a given word w is defined as

hash(w, plen)
probe(w, i-1)+1 mod plen

probe(w, 1)
probe(w, 1)

Thus, if w is in the table, then there is a j such that

w = get_string(dir(probe(w,Jj)))
A "direct hit" corresponds to j=1 and is illustrated in Figure IV-2a. A
"miss then hit" corresponds to j=2 and is illustrated in Figure IV-2b.
Finally, a "miss then empty slot" is illustrated in Figure IV-2c.

A new word w' is inserted into "get_string" only if it is not
already there. Thus, there can only be one j such that
w' = get_string(dir(probe(w',J))).
When w' is inserted into "get_string®™, its index into "get_string" is
stored in "dir" at the first empty slot starting at position
hash(w,plen).
Among the decisions we have not determined so far are:
% How to represent an empty slot
* How to handle a table that is "full"
The operations supplied by this module are the following:
size() -> INTEGER v -- a visible, derived V.function that

returns the number of words stored in "get_string".
A
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save(word w; INTEGER p) -- the O-function used to store a new
word at the end of the "get_string" table and put its
"get_string" index into position p of "dir".

add_count{ INTEGER p) -- an O-function used to increment the
frequency count associated with the word in position p of
"dir®, Presumably, it would be invoked when it has been
determined that the word of interest 1is already in
"get_string" and is pointed to by the position p.

swap_query(INTEGER i, j) -- an O-function used to interchange
the words and frequency counts stored in positions i and J of
both "get_string™ and "check_count".

reset_query() -- returns "query" to its initial state.

The purpose of the extremely simple "seq pointer_cells" module is
to provide storage for a sequence designator and an integer. The former
corresponds to the designated sequence for which the histogram is being
computed, and the latter to the pointer to the next word of that

i sequence to be processed. It 1is convenient to incorporate these
‘ facilities in a module that is separate from the other modules of the
machine, For convenience, we will view the module as providing two

? abstract cells for storage. The access V-functions for the sequence

designator and the integer pointer are respectively get_s() and get_p();

correspondingly, the respective store O-functions are store_s(seq s) and
store_p(INTEGER 1i).

Note that the module "truncator” appears at this level, but only
because we decided that it, similar to "hasher," is to be a primitive
module of the system. That is, its behavior -~ the value of "maxlength"

-=- is beyond the control of a user of the system.

C. Level3

This machine consists of the five modules "sequences",

"seq pointer_cells", "truncator", "hasher", and "intarrays". The last
("intarrays") 1is hidden above this level. Again, "“truncator" and
. "hasher" are not significant to this discussion since they appear in
¢ level3 only because the are needed at a higher level and are also
primitive. The module "seq pointer cells" also requires no discussion
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here since it 1is not used by leveld, and is not implemented until
level2.

The only role served by level3 is to implement "query" using a very
straightforward representation. The primitive V-functions "dir" and
"check_count" are each represented by an integer array of the module
"intarrays". The function "get_string™ is represented by a sequence of
the module "sequences". This particular sequence will be in a partition
of "sequences" that is only accessible to "query"; it is not used to
represent a user file-system.

D. Level2

This machine contains four modules relevant to this discussion --
"vearrays", "vc_intarray pairs", "vec_etc_cells", and "intarrays" -- in
addition to the modules "truncator" and "hasher". The purpose of the
machine is to provide the mechanisms to implement "sequences" and
"seq_pointer_cells". First, 1let us consider the definition of
"yecarrays" and its role (together with "intarrays") in implementing
sequences.

The "vcarrays" module maintains a collection of variable-length
character-arrays, each of whicn is identified by a "vcarray" designator.

A vcarray can expand or shrink but only from the end.

Before we describe the functions provided by "vcarrays", we discuss
how sequences are implemented. Each sequence is represented by a
separate vcarray and intarray. The characters for a given sequence word
occupy contiguous positions in the vcarray. The start and end positions
in the vcarray for the j-th word in the sequence a;e given by the
integers in positions 2J=1 and 23J in the intarray. Essentially, the
intarray is used as a directory structure for accessing words in the
vearray. Thus, the interchanging of two words in the sequence is
implemented as exchanging their respective boundary pointers in the

intarray.

An additional integer array is provided for the entire collection
of sequences. The i-th position in this array stores the number of
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words in the i-th sequence (see below). The maximum number of sequences
allowed is given by "v_int_bounds®, a parameter of the module.

The V-functions provided by the module are the following:

char(vcarray n; INTEGER i) -> CHAR ¢ =-- returns the i-th
character in vcarray n. '

int_for_vcarray(vcarray n) -> INTEGER v -- returns a unique
integer for each vcarray. This integer, as noted below,
serves as a pointer from n to a position in the integer array
for the collection of sequences. Thus, the length of
sequence s, represented (in part) by vearray n, is found in
position int_for_vearray(n) of this "collective" intarray.

The state changing operations are:

create_vcarray() -> vcarray n -- an OV-function that creates and
initializes a new vcarray designator.

one_more_char(vcarray n; CHAR ¢) ~-- an O-function that adds a
character to the end of the given vcarray.

remove_chars(vcarray n; INTEGER i) -- an O-function that removes
i characters from the end of vcarray n.

clear_vcarray(vearray n) -- an O-function that resets the given
vecarray.

We next discuss the "vc_intarray_pairs" module. Above we indicated
that a sequence is represented by a vcarray and an intarray. In terms
of SPECIAL each seq designator 1s represented as a STRUCT with two
components, a vcarray designator and an intarray designator. The type
"ve_intarray_pair" has as values all such structures. Note that only a
subset of all such structures are admissible as representations for seq
designators; in particular, the vcarray and intarray components in any
two admissible structures must be respectively distinet. This property
reflects our decision fé have a unique vcarray and intarray for each
sequence. The module "vc_intarray_pairs" records all of the structures
that have been allocated as representations for sequences. Its use in
the system is primarily for proof. However, the O-function

create_ve_intarray_pair () => vc_intarray_pair vnp
provides a morsel of procedure abstraction, by being a syntactic
substitute for successive invocations of
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create_vcarray(); create_intarray().

The purpose of the "vc_etc_cells" module 1is to represent.
"seq _pointer_cells". Recall, "seq pointer_cells" holds an integer and a
seq designator. Since a seq designator is represented by a
vcarray-intarray designator pair, we see that "vc_etc_cells" provides
three cells: for an integer, a vcarray designator, and an intarray
designator. (The use of "etc." in the module name is merely to keep the

module name reasonably short.)

The representation of sequences in terms of these modules is

described graphically in Figure IV-4,

E. Level1l Revisited

In Chapter 3 we discussed the definition of the levell machine,
formulating the decision that "chararrays" and "intarrays" are to be
primitive modules. At that point in the design process one could not
foresee the use of these modules in the design, nor the justification
for the other modules of levell: "chararrays_intarray_pairs",
"chararrays_etc_cells", "hasher", and "truncator®. We have previously
Justified the appearance of the latter two modules. We will temporarily
defer discussion of the former two in favor of indicating the role of

"chararrays”" and "intarrays" in implementing "vcarrays".

The representation of a vcarray is depicted in Figure IV-5. Each
vearray designator vj is represented by a unique chararray designator
nj. Recall that vcarrays are of variable length while chararrays are of
fixed length; thus, the length of a vecarray is bounded by the fixed
length of a chararray. The 1length of a vcarray from level2 is
represented at levell through an integer array that is provided for the
collection of chararray designators. Suppose vcarray vj is represented
by chararray nj. Then, the length of vj is given by the value contained
in position int_for_chararray(nj) of this "collective" integer array,
vwhere

int_for_chararray(chararray nj) -> INTEGER v

is an additional V-function to the "chararrays" module not mentioned in
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Figure IV-U4: Representation of a Sequence
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Figue IV-5: Representation of a Vcarray
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our previous discussion.

4 The “"chararrays_intarray_pairs" module stores a ;
chararrays_intarray_pair corresponding to each vc_intarray_pair of the :
level2 machine. Again, this module is not needed except that the proof {
requires all of the pairs to be conceptually recorded.

% 1 The "chararrays_etc_cells" module is used to implement the module

"vc_etc_cella"., Recall, "vc_etc_cells" holds an integer, a chararray

designator, and an intarray designator. Since a vcarray designator is
represented at levell by a chararray designator, we 3ee that
! "chararrays_etc_cells" provides cells for an integer, a chararray

designator, and an intarray designator.

In the next chapter we present the module specifications.
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V SPECIFICATION OF MODULES: STAGE 4

In this stage each of the modules in the system is specified in
SPECIAL. The intent of a specification is to completely characterize
the functional behavior of the module. One point we want to emphasize !
is that SPECIAL is not a programming language. Certainly, one can
produce efficient programs for a module that satisfy its specifications; 4
that is the goal of the entire system development. However, we do not
currently envision a compiler carrying out the translation from 3

specifications to efficient implementation code. This is currently a
task that requires significant creativity, and is likely to remain so ‘

for some time.

Below we present the specifications for each module, and in the
process justify the design decisions that underlie the specifications.
A specification for each machine can be derived by collecting the

specifications of all modules that comprise the machine.

A. Plan for Presentation of Specifications

In discussing the module specifications we will start with the user
interface and proceed downward through the hierarchy. Within a machine
the order will be to proceed generally upward through the external
references' partial ordering. A module specification is easier to
comprehend if all other specifications on which it depends have been !
previously understood. For each specification, we first present in
, English the major decisions revealed in the specification (and not in
| the previous stages), and then explain the details of the specification,
‘ Justifying its particular form as compared with alternatives.

The actual specifications can be found in the Appendix.

B. Sequences

ﬁ Recall that this module maintains a collection of word files
(sequences), each of which is identified by a unique "seq" designator.
The capabilities provided by this module are as follows:

37




A user of the module can request the creation of a new
sequence.

* An existing sequence can be cleared to its initial state but
never be deleted, i.e., there is no recycling of "seq"
designators.

® The words of a sequence are read-accessed by position.

®* A sequence is grown by appending words to the end.

* Two words of a sequence can be interchanged.

In this stage the major new decisions are:

* The length of a sequence is the number of non-undefined words
in the sequence.

% A newly created sequence is initialized to have length zero,
i.e., all words are undefined.

#* Sequence words occupy consecutive positions starting at
position one. Thus, if the length of a sequence is i, then
the word in position i+1 is undefined; furthermore, a word is
appended by placing it in position i+1.

®* There is no specified upper limit on sequence word lengths.

* The maximum number of words allowed in a sequence. is not
specified here, but rather is governed by the available
resources at lower levels. {

Let us now consider how the specifications -- as given in Table 3
in the Appendix -~ disclose these decisions (in addition to those
informally discussed when the module's functions were introduced in
Stage 1). i
In the TYPES paragraph we declare "seq" as a designator type and ]
"word" as a type whose value set contains all character vectors with %

positive length.
Now let us consider the function specifications in turn.

The primitive V-function
string(seq n; INTEGER j) -> word w
has single exception, which corresponds to no word being present at
position . The expression in the INITIALLY section, "w = ?" is
; shorthand for "initially, for all sequences the value of all positions
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is ?2". The reader might question the absence of any exception condition
corresponding to the formal argument n. What if a wuser invokes
"atring(n', j)" with some designator n' that is not an existing seq,
possibly being of a different type? 1Is it not necessary to intercept
such an exception? The following items indicate, respectively, why
there is no need to check via an exception for an argument of the wrong
type or for a seq that does not exist.

% Both SPECIAL and ILPL are strongly typed languages;
specifications or implementations with type-mismatches are not
well-formed and have no meaning. Such type-mismatches would
be mechanically detected by the HDM tools, and hence would not

require any handling at run-time by the exception-handling
mechanism.

# In this module, a seq designator is returned only via
invocation of "create_seq", and moreover, an existing sequence
is never deleted. Since the protection rules for designators,
embodied in ILPL, prevent the modification of a designator,
any seq designator passed as an actual argument must be valid.
The visible, derived V-function
seqlen(seq n) ~> INTEGER v
is expressed as the cardinality of the set that contains the indices of
all non-undefined words. Several interesting aspects of this
specification can be noted.
% It is emphasized that this is a specification for determining
the number of words in a sequence. It is not an

implementation, which can be (and is) simply carried out by
using a memory cell to hold the current sequence length.

® mgeqglen”" could have been defined as a primitive, visible
V-function, thus avoiding the need for this "derivation"
expression. However, a more complex mapping function for this
module would ¢then be required, namely to exhibit a
representation for the additional primitive V-function.
Generally, the number of primitive V-functions in a module
should be minimized.

The purpose of the OV-function
create_seq() -> seqn
is to create a new sequence and return the newly created designator n.
First, let us consider the single exception. Sometimes there is
insufficient information in a module to express conditions for the
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occurrence of an exception. This typically occurs when the
implementation of an O- or OV-function requests resources of the
module(s) it invokes. 1In lieu of precisely specifying the conditions
for an exception, we use the term "RESOURCE_ERROR" to indicate that the
invocation of the function could not be completed due to some exhaustion
of resources in a lower level. For an invocation of "create_seq", the
RESOURCE_ERROR exception could be caused by the exhaustion of lower
level (below "sequences") resources, but we choose to keep hidden from

the caller of "create_seq" the exact source of the exception.

It is of interest to note that the exception could be stated
entirely in terms of objects of "sequences" by providing (1) a
parameter, "maxsequences", intended to indicate the maximum number of
sequences that the module can support, and (2) a hidden V-function
"seq _exists(seq n) -> BOOLEAN b" that, in effect, records all of the
designators that correspond to known sequences. The initial value of
"seq exists" is FALSE for all n. The EFFECTS section of "create_seq"
would be augmented with the effect "seq exists{n) = TRUE". Thus, the
exception RESOURCE_ERROR in "create_seq" would be replaced by the

expression

CARDINALITY({seq n | seq exists(n) = TRUE})
>= maxsequences.

Clearly, this augmentation increases the length of the specification,
albeit not significantly. However, a more serious difficulty is
confronted in Stage 5 when it is necessary to map "maxsequences", say,
in terms of the parameters of lower level modules: "vecarrays",
"intarrays". (Let us assume that these modules-provided, respectively,
the parameters "maxvcarrays" and "maxintarrays"). One problem that
occurs is that the representation of both "sequences" and "qQuery" use
integer arrays. In order to derive a representation for "maxsequences"
it is necessary to pre-allocate the supply of integer arrays between
*sequences” and "query". For this example, the allocation is easy: two
integer arrays for "query", the rest for "sequences". However, in many
systems that allow for dynamic creation of objects, the division will
not be simple, and any pre-allocation is likely to result in inefficient
use of the resources. Thus, we generally advocate not pre-allocating
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the objects of a module among modules dynamically competing for them;
rather, we use RESOURCE_ERROR to trap exception conditions of such
dynamic behavior. Another justification for RESOURCE_ERROR is that it
defers the resolution of exception conditions to the lower levels of the
system.

To express as an "effect" the generation of a
never-previously-generated seq designator, we use the notation
NEW(seq) .
NEW is a predefined function in SPECIAL that requires an argument of
type DESIGNATOR. As part of the underlying semantics of NEW, it never

returns "7",

Now consider the single expression in the EFFECTS section. It
might not be immediately clear that an invocation of "create_seq" causes
a state change 1in "sequences", and consequently, that "create_seq"
should be an OV-function rather than a V-function. However, there is an
underlying state involving the designators, since the designator value
returned by an invocation of "create_seq" is dependent on previous
invocations. One might view the module as containing a primitive hidden
V-function:

available_sequences() -> SET_OF seq seqset,
which is initialized with some set of non-? designators. In lieu of
the effect we have specified for "create_seq()", we could then specify:

n INSET available_sequences();
NOT(n INSET 'available_sequences());

indicating that n was in the set of available sequences designators
before the invocation, but is not longer available after the invocation.
Note that these effects are non-deterministic since they do not specify
exactly which designator is returned. In the current version of SPECIAL
we decided to use the NEW construct as syntactic sugar, since the
selection of a previously unused designator 1is sSo common in
specifications.

One final note about the specification of "create_seq" concerns the

(apparent) absence of any effect to express the initialization of a
newly created sequence. Such an expression is not needed here since the
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initial value of "string(n, j)" is "?", which is precisely what is
desired of a sequence after it is "created". Thus, the act of creating
a sequence is to make a seq designator n available so that words can be
appended to n, swapped and subsequently read out.

The purpose of the O-function
clear_seq(seq n)
is to remove all words from a sequence. We express this effect by
indicating that the post-invocation value in all positions of the
sequence 1s to be "?%, An equivalent, but possibly less desirable
specification is

FORALL INTEGER j INSET {1..seqlen(n)}:
tstring(n, j) = ?

indicating that all positions in the sequence that previously stored
"defined" words, will have value "?" after the invocation. The reader
should note that in a specification conciseness is desirable, as

contrasted with an implementation where efficiency is generally vital.

The purpose of the O-function
append(seq n; word w)
is to place word w at the end of sequence n. As the effect indicates,
word w will be placed at position "seqlen(n) + 1", which is the
post-invocation end-position of the sequence. This specification
illustrates the purposeful omission in the EFFECTS section of V-function
positions whose values are left unchanged. The following expressions
are implicit:
FORALL INTEGER j "= seqlen(n) + 1:
'string(n, j) = string(n, J);
FORALL INTEGER j; seq n1 "= n:
‘string(n1, j) = string(n, Jj)
The first expression indicates that all positions of n except
seqlen(n) + 1 are left unchanged, and the second that all positions of
all other sequences are left unchanged.

Let us now consider the possible sources of a RESOURCE_ERROR
exception. Recall the decision of Stage 3 to represent a sequence in
terms of (1) a vearray to hold the characters of all words in the
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sequence, and (2) an integer array to hold the boundary positions of the
words. Thus, the implementation of an attempt to append a new word to a
sequence will require the appending of characters to some vcarray and
the appending of new integers into some integer array. Either of these
attempts could fail because of lack of room. It is possible to reflect
both of these resource limitations in terms of (proposed) parameters of
tsequences®; for the "vcarrays" limitation the "sequences" parameter
would be "maxcharacters", the total number of characters allowed; for
the "intarrays" 1limitation, the "sequences" parameter would be
3 "maxwords". With these parameters, the specification of "append" would
not require the exception RESOURCE_ERROR. However, we believe 1

&. ®* These augmentations needlessly clutter the specifications.

% % The user of "append" probably does not need to know the cause
| of exception (e.g., too many words, too many total characters,
: etc.).
j

# As for "create_seq", the exception 1is best handled at the
lowest level possible.

| The specification of the O-function
swap_seq(seq n; INTEGER i, j)

should be self-explanatory. Note that no order of operation is implied

in the EFFECTS section. After an invocation of "swap-seq" both
expressions will be TRUE. There is no relevant "intermediate" state.

A few concluding comments on the specification for the "sequences”
module can be noted. We previously mentioned that "?" is only to be
viewed as a specification constant indicating “no value"; it is never to
be returned as the result of a visible V-function or OV-function
invocation. The semantics of NEW preclude "create_seq" from returning
n72n . What about for "string” and "seqlen"? It is possible to prove,
based on the module specifications, that the "defined®™ words of a

sequence n are stored contiguously in the positions 1,...,seqlen(n).
This property is expressed as

FORALL seq n; INTEGER j:
IF § INSET {1..seqlen(n)}
THEN string(n,j)~=?
ELSE string(n,3)=7?;
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These expressions are illustrations of global aasertiona that are
properties of a module specification. Based on these global assertions,
the reader should convince himself that an invocation of "string(n, j)"
either raises an exception when the word in position j is "?" or returns
a bona fide word. By the semantics of CARDINALITY, "seqlen" never
returns "?7%.

We previously indicated that a designator is protected, i.e.,
designators may be manipulated only by functions in the module that
provides such designators. No other operation can be invoked to modify
a designator, and a designator cannot be typed in at a terminal. Thus,
designators serve as internal system names for objects. For external
access to the sequences, we envisage another module of the user
interface, not discussed in this report, denoted as
"name_space_manager®”. Via this module a user could give names to his
files, and the module would maintain hidden tables that store the
correspondence between usernames and sequence designators.

C. Truncator

This module specification, as given in Table 4, has four
paragraphs. The TYPES paragraph declares the subtypes "word" and
"truncated_word", which are used only in the FUNCTIONS paragraph.

The PARAMETERS paragraph declares the single parameter "maxlength",
which (as previously indicated) is the length beyond which words are
truncated for processing by "histogram".

Tne ASSERTIONS paragraph, in general, contains boolean-valued
expressions that are constraints on the values of parameters. Such
constraints must be satisfied by the initialization program that binds
values to the parameters. The assertion here specifies "maxlength" to
be positive, thus precluding an inconsistent specification for a
truncated word -~ see the "histogram" specification.

The perceptive reader might note that the desired constraint on
maxlength could be incorporated in an appropriate type declaration. In
lieu of the assertion, we could declare maxlength to be of type

44

a8 8] m s Ta "




positive_integer, defined as follows in the TYPES paragraph:
positive_integer: {INTEGER j | J > 0}.
The FUNCTIONS paragraph contains the specification for the derived
V-function ‘"truncation(word w) -> truncated_word tw", "Truncation" {

simply returns the first "maxlength" characters of an argument word;
i.e., it converts a word into a truncated_word.

D. Histogram

Table 5 depicts the specifications for "histogram®™. Recall that
the primary purpose of the module is to allow a user to select a
sequence (of the "sequences" module) from which two tables are formed:

"getword", which stores each distinct word of the sequence; and

"howmany", which stores the number of occurrences of each word in the

sequence. For processing by "histogram", only truncated words are
considered. The specification at first glance appears to be complicated
-~ indeed, it is the most complex of the modules of the system -- but,
most of complexity is due to the definitions that aid in structuring the i
specification and in enhancing the possibility for modification of i
design decisions, and to the comments that provide informal

explanations.

First let us list the major decisions that are captured in the
specifications. We omit those previously formulated in Stage 2.

% Words are to be stored in contiguous positions of the
"getword" table.

% Words in "getword" are ordered by their first appearance ‘in
the selected sequence s. More precisely, suppose that twl and
tw2 are two distinct truncated words. If the first occurrence
in 8 of a word wl such that truncation(w1) = twl appears
before the first occurrence in s of a word w2 such that

] truncation(w2) = tw2, then twl precedes tw2 in "getword".

: ® A histogram is to be formed for a selected sequence only if
the "getword"” and "howmany" tables are in their initial state.
This decision is explained below.

® It should be relatively easy to change the ordering criterion
for the storage of words in "getword".
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Figure V-1: Histogras Tables -- Ordering by First Appearance
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The second decision above is illustrated in Figure V-1, which is a
refinement of the decisions reflected in Figure II-1,

A scan of the specification of Table 5 reveals the section
EXTERNALREFS. Here all objects -- designator types, scalar types,
V-functions, and parameters -- of other modules that are referenced in
this specification are listed along with the modules in which they are
originally defined, in the same format as their declaration in these

modules. Recall that a module specification might not be
self-contained; that is, the module might share design decisions with
other modules (those referenced in the EXTERNALREFS section). The
module "histogram" externally references: the module "truncator" via
the parameter "maxlength"; and the module "sequences" via the designator
type seq and the V-functions "string" and_ "seqlen". Note that the
inclusion of the complete declarations for ﬁhese externally referenced
objects permits the syntactic and type conformance checking of the
module without requiring the specifications of the other modules.

Now let us consider the two types declared in the TYPES section.
The type "word™ is the subtype as declared in "sequences";
"truncated_word" is a subtype of "word", constituting all words whose
length does not exceed "maxlength". Note that the assertion in
"truncator"® on '"maxlength" assures that the set of words in
"truncated_word" is not vacuous. These two types are declared here to
enhance the comprehensibility of the specification; they are not
intrinsic to the specification as are designator types.

Let us proceed now to the specification of the functions. The
reader should have little difficulty with the three V-functions and
"clear_hist", For "getword" and "howmany", the exception precludes the
return of "?" as the result of an invocation. The effect of
Pclear_hist® is to return the primitive V-functions "getword" and
"howmany" to their initial state.

The specification for "hist(seq s8)" is the most complicated of the
system, and requires some explanation. First, consider the two
exception conditions, which preclude the formation of a histogram for
sequence s if (1) the module is not in its initial state, or (2) the
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implementation finds insufficient resources at the next lower level. It
is not difficult to understand the reasons for including the second
exception condition -~ at this level it is impoasible to predict if
there will be sufficient resources at lower levels to hold the histogram

tables.
Why do we require that the histogram be reset before proceeding?
Recall that if an O- or OV-function invocation causes an exception to be

; raised, then the module state must be as it was before the invocation.
[‘ One possible implementation for "hist" could, in sequentially processing
|

: the words of the sequence s, destroy the prior contents of the
*(‘ (representation of the) histogram tables. If a resource limitation is
{[; discovered in this processing, it would be required to restore the prior
} state as the RESQURCE_ERROR is raised thus, apparently, necessitating
' extra storage to save the contents of the tables. Of course, if the
' prior state is guaranteed to be the reset state, the restoration is
trivial, just requiring an invocation of some resetting operation at the

next lower level. Several comments are perhaps in order here:

8% The need for the "hist_not_reset" exception was not discovered
until the implementation for "hist" was considered.

# A planned change to HDM will allow the occurrences of state
changes with exception returns. The notion of exception
returns will be abandoned in favor of the more general concept
of "return". With this modification to HDM there would be no
need to reset the histogram tables before computing the
histogram of a sequence. 3

% With the implementation we have selected the exception :
RESOURCE_ERROR 1is never generated. If there is sufficient
space to store the sequence s, there is also sufficient space
to compute and store its histogram. It is impossible to
deduce this property from the information available in the
module. Instead, the implementation optimizer is relied upon
to discover unnecessary exceptions.

Now let us consider the EFFECTS section, which is meant to indicate
that "howmany"” and "getword" are modified to assure values as 1is
illustrated in Figure V-1, First we explain the defined functions used
in the EFFECTS section.

Occurrences(seq s; truvacated _word tw) is a defined function that
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returns the frequency count of tw in sequence s. It may be understood

in terms of the sequence s8' that is derived from s by truncating each
word w of s to a truncated_word tw. Then "occurrences(s, tw)" is
understood to specify the number of times tw appears in s'. Our
expression of this property in SPECIAL can be explained as follows:

The result is the cardinality of the set (st INTER s2),
wnere s1 is the set of integers between 1 and the length of
sequence s, and s2 is tne set of all integers i such that the
truncation of the i-th word in seduence s (i.e.,
truncation(string(s,i)) or string(s',i)) is equal to tw.

The purpose of including set s1 is to only consider "defined" words.
That is we do not wish to count the number of occurrences of the word

"?" in s, which is clearly unbounded.

Ith_word(seq s; INTEGER i) is a defined function that returns the
i-th truncated word in sequence 3' (derived from s as above) when we
consider only first appearances. The definition wuses the defined
function "occurset(s,j)", which returns the set of all truncated words
up through position j in s'. Note that occurset is defined recursively.
Thus, the position in s of ith word(s,i) is the smallest j such that the
cardinality of occurset(s,j)=1. For this j, ith_word(s,i) is
truncation(string(s,j)). Note that ith _word(s,k) is "?" if k is less
than or equal to zero or k is greater than the number of distinct
truncated words in s. The reader should convince himself he understands

this.

Once an understanding of the definitions 1is attained, the
expression in the EFFECTS section for "hist" should be clear. Note that
the specified effects for "howmany" is in terms of "getword". Note also
that the expression defines new values for "getword" and "howmany" for
all values of j, including those for which the resultant "getword" and
"howmany" values are "?", The specification is simpler than if only
values of j are considered such that "getword" and "howmany" are not
nen,  Obviously, the implementation will restrict its consideration to

~.

the smaller subset of J. S

We indicated in the "conceptualization™ for this problem that, as a

requirement, it should be relatively easy to modify the criterion by
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which the words are ordered in "getword". For example, suppose that the
desired ordering was by the frequency count of the words in s (as
depicted in Figure V-2) rather than by their first appearance. This new
ordering criterion is specified merely by changing the definition of

omodni s it bt

ith_word to be in terms of "occurrences",

Our specification for "histogram" could have been specified in a
somewhat more elegant, although less transparent, manner using a single
primitive, nidden V-function, as follows:

VFUN h_howmany(truncated_word tw) -> INTEGER v;
$(returns the number of occurrences of
the word tw in the histogram)
HIDDEN;
INITIALLY
v =0;

This single V-function is intended to hold the frequency counts for all
truncated_words in the universe, only a small fraction of which are
actually stored in the histogram, i.e., those that have non-zero
- occurrence values. The EFFECTS section of "hist" becomes extremely
simple, namely:

FORALL truncated_word tw:
'h_howmany(tw) = occurrences(s, tw).

The functions "getword"” and "howmany" would become visible, derived
V-functions, for which the DERIVATION sections would bear the burden of
expressing the ordering of the words. The reader might wish to develop
. those derivations himself, using essentially the same definitions as in

b Table 5.

Now that we have completed our description of the modules at
level6, we will proceed to level5, in particular to consider the module
ftally"™.

E. Tally

Recall that the purpose of "tally" is to provide the mechanism for
the implementation of the operations of "histogram". "Tally" implements
"hist"™ by processing a designated sequence in a word-by-word manner.

There are two primitive V-functions in "tally": "t_retrieve® and
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"t _howmany"; they correspond respectively to the V-functions "getword"

and "howmany" in "histogram". Two other primitive V-functions in
"tally", "t_sequence" and "t_pointer", respectively store the designator
for the sequence s currently being processed and the position of the

most recently processed word of that sequence.

The major O-function of "tally" is "insert_or_increment", which is
invoked to process the next word of the sequence "t_sequence". The
pr imary new decisions relating to the specification of
"insert_or_increment™ are the following:

# The truncation of the next word w, if not previously stored in

"t_retrieve", is placed at the end of "t_retrieve" and its

associated frequency count in "t_howmany" is set to 1.

Otherwise, the count associated with the (the truncation of) w
in "t_howmany"™ is incremented by 1.

#* An exception is generated if the most recently processed word
was the last word of the sequence "t_sequence()", i.e., if
there are no more words to process.

The major decisions underlying "tally" are illustrated in Figure

V-3. The next word "PATCH"™ is first viewed by "insert_or_increment" as
the truncated word "PAT", reflecting maxlength = 3. If "PAT" has not
been previously processed, then it is specified to be placed at the end
of the "t _retrieve" table and the corresponding position in "t_howmany"
is set to 1. Otherwise, "PAT" has already been processed and is
contained in "t_retrieve" -- let "PAT" be in t_retrieve(i); then

t_howmany(i) is incremented by 1.

Let us now consider the specifications for "tally" as given in
Table 6. Again, the types "word" and "truncated_word"” are declared as
in "histogram". The DEFINITIONS paragraph contains the definition for
"no_string", which is used in a straightforward manner as an exception.
The EXTERNALREFS paragraph 1lists the objects of "sequences" and
"truncator® on which "tally" is dependent.

The V-functions' function specifications are quite straightforward.
Note that the exception condition for "t_retrieve® and "t_howmany"
indicates an argument that corresponds to a position that stores an
"undefined™ word.
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The O-function "t_initialize(s)" causes s to be stored in the cel}

"t _sequence® and 0 to be stored in the cell "t_pointer" (which
represents the position of the most recently processed word).

The specifications for the O-functions ‘"swap_tally" and
"reset_tally" should be readily comprehended. As previously indicated,
the formation of a histogram for a sequence s is envisjoned to be a
two-pass process. In the first pass, all of the distinct (truncated)
words of s and their frequency counts are stored in the appropriate
tables, according to the appearance of the words in s. The second pass
is used to impose a different ordering, if desired. This is
accomplished through repeated calls on "swap tally".

The effects for "reset_tally" indicate that its invocation results
in a transition essentially back to initial state.

Now let us consider the most interesting specification, namely that
for "insert_or_increment". The specification contains an ASSERTIGNS
section, where assumptions on the state of the module and, perhaps, the
arguments to the function are listed. The assertions listed here are
unlike exception conditions, which are checked at run-time. We do not
specify the behavior of the function 1if it 1is invoked with the
assertions not satisfied. The one assertion to this function indicates

that the sequence call "t_sequence" has been previously initialized.

The exception conditions are straightforward, corresponding
respectively to no additional words in the designated sequence, and to a
resource exhausting at some lower level in handling the next word of the
sequence.

The first effect should pose no difficulties; it specifies that the
contents of the pointer cell becomes incremented by one as a result of
the invocation.

The second effect says:

Consider some { such that position i of the "t_retrieve"
table contains the truncation of the next word in the designated
sequence. If such an i is found -~ the word is in the table ~-
then the count "t_howmany(i)" associated with that word is to be
incremented. On the other hand, if it has not been previously
stored, as reflected by i being "?", then the next free position
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of the "t_retrieve" table is tu store the truncated word, and
the associated frequency count is to be set to one.

It is in general possible that in a LET expression more than one
value of the bound variable can sat.sfy the characterization. That,
however, is not the case here, since as indicated by the following
global assertion for "tally", a (defined) word never appears more than
once in "t_retrieve":

FORALL truncated_word tw “= ?:
CARDINALITY({INTEGER i | t_
INSET {0, 1}.

Note that the assertion is in terms of the type "truncated_word" to

retrieve(i) = tw})

emphasize that only such shortened words appear in the table.

The reader should continually convince himself that the EFFECTS are
specifications, not implementations. For "insert_or_increment®™ the
specifications indicate the changes that are to be effected to some
hypothetical data structures. The specification avoids any mention of
the concrete data structures, and how they are to be referenced and
modified. Clearly, the specification for "insert_or_increment™ hides
the hash-searching strategy in terms of the structures of "hasher",
"query", and "seq_pointer_cells". The latter provides the functions
represent "t_pointer" and "t_sequence", and to modify then. We now

discuss these three modules.

F. Hasher

The purpcse of "hasher", whose specification is given in Table 7,
is to provide the parameter "hash(w, upper)", which returns an integer
corresponding to a word w. As indicated previously, the implementation
of "insert_or_increment” will call on "hash" in searching for the
location (if any) of w in the tables of "query".

The assertion indicates that for a positive value of j, hash(w, jJ)
will be between 0 and j-1. As we will observe, the value of argument j
will be "plen", the upper limit on the domain of the "query" function
"dir". Note that the assertion need not exclude the word "?" as an
argument since "hash" will never be invoked with "?",
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It is appropriate to review the reasons for "hasher" being both a
Separate module and a primitive module. As we will note, the
specifications of "query" and "hasher" are completely independent. By
specifying "hasher" as a primitive machine we are assuming that "hash"
is a primitive operation. Of course, we could have placed "hasher" at a
non-primitive level and provided an implementation for ﬁhash". In any
event, the properties of "hash" specified in "hasher™ that "tally"
relies on are independent of the implementation, Nevertheless, the
performance of the system is certainly dependent on the scattering
properties of the implementation of "hash®. Currently, such performance
issues are beyond the scope of HDM.

G. Seq_pointer_cells

i This extremely simple module, displayed in Table 8, provides

storage for a seq designator and an integer, which respectively

correspond to the sequence being processed and the pointer to the most i
recently processed word of the sequence.

The specifications should be clear, except perhaps for the
motivation underlying assertion "get_s() ~= ?" for the function "get_s".
! The value of "get_s" is initially "?", which is subsequently changed
to some seq s as a result of an invocation of store_s(s), never to be
"?"® again. As should be clear by now, a visible function invocation is
never to return "?". The assertion for "get_s" indicates that the
functior will never be invoked (in the implementation of "taliy") when
it is in its initial state. Alternatively, we could have precluded the
return of "7" Dby providing the exception "get_s() = ?" but at the
expense of providing code in the implementation of "get_s" to detect the
exception in terms of lower level concepts. The "assertion" approach is

generally preferred if it does not unduly constrain the use of a module. i
pi

It is perhaps appropriate to justify the need for the module "

1Remember, the assertions section within a function specification ;
states assumptions on the state of the module and on the values of the o
actual arguments when the function is invoked in an implementation.

56




"seq pointer_cells", Recall that "tally" (which is at level5) provides
cells for the designated sequence and its.pointer. These are referenced
in the specification of "insert_or_increment", which 1is invoked to
process the next word of the designated sequence. On the other hand,
"query" processes a word that is passed as an argument. The origin of
the word is not important, and hence at leveld it 1s appropriate to
separate the processing of words (and their frequency counts) from the
Storage of the designator of the sequence being processed and its file
pointer.

H. Query

! The specifications for "query" are given in Table 9. Recall that
query provides two tables: "get_string® and "check_count", which
correspond respectively to the "tally" tables "t_retrieve"” and
"t_howmany"”. An additional table in "query" is "dir® (for directory),
‘ which contains pointers to positions in the other two tables. The
domain of "dir" is between 0 and plen-1, where plen is a parameter of
Query". As illustrated in Figure V-2, if a word is stored in position

J of "get_string™, then j is stored in some position p of "dir", where p
is determined by a hash strategy. What we have just indicated is in
reality the representation of "tally", which is formulated more
precisely in the next chapter. The major new design decisions for

"query" introduced in the specifications are the following:

* An empty slot in the "dir" table is identified by a value of
0.

® A new word w is inserted into the "get_string" table only by
invoking the function "save(w, p)". An exception is raised by
"save®™ if (1) dir(p) already points to w in "get_string", or
(2) dir(p) is non-empty and points to a word not equal to w.
If no exceptions are raised, w is stored as the new last word
‘{ of "get_string", the corresponding position is "check_count" 7

is set to 1, and position p of the "dir" is set to point to
the word position.

The above decisions are illustrated in Figure V-4.

Now let us consider the specifications of "query". First, note ]

that the type truncated word no 1longer appears. Although, in use
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Figure V-4: Design Decisions of Query
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"query" will only store words whose length does not exceed maxlength, it
is not relevant to the specifications of "query" that the words be so
constrained. Hence, these words will be considered to be just of type
word.

The single assertion of the module guarantees that there is at
least one slot in the "dir" table.

The reader should have no difficulty with the functions'
specifications. The initial value of dir(p) is O only for p in the
working domain of "dir" (0..plen-1); otherwise, the value is "?". For
"save", two exceptions have been added to the list given above, one to
make sure p is in the range 0..plen-1, and the other to trap resource

errors.

The O-function add_count(p) would be invoked when it has been
determined via an invocation of save(w,p) that w 1is already in
"get_string" at location dir(p). Thus, it remains to just increment the
appropriate value of "check _count", which is accomplished by invoking
add_count(p). For this use of the module, the two exceptions would
never be raised, and they could be replaced by the corresponding

assertions:

p INSET {0..plen-1};
-dir(p) ~= 0.

However, we have included the exceptions to allow a more general use of
the module. Note that no RESOURCE_ERROR exception 1is included for
"add_count™, since it is expected at this point that no such exception
will arise in the implementation. Actually, no exception is indicated
since arbitrarily large integers are accommodated.

We have now completed all of the specifications for modules of
levell, Let us now proceed to level3, which introduces the module
"intarrays".

I. Intarrays

Recall that the purpose of level3 is to provide the mechanisms to
implement "query". The V-function "get_string" is to be represented by
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a sequence, while the V-functions "dir" and "check_ count® are each to be
represented by an integer array. The specifications for the "intarrays"
module are contained in Table 10.

A newly created integer array is initialized with a defined integer
in each position. 1In this example all uses of integer arrays require
that all positions have initial value 0. However, we have decided not
to so constrain the 1initial value in order to illustrate a
non~-deterministic INITIALLY section, and to show (see Chapter VII) the
format of INITIALIZATIONS programs that, in this case, zero-out the
integer arrays.

Let us now proceed to 1level2, which introduces the modules

"vcarrays", "vc_intarray_pairs", and "vc_etc_cells",

J. Vearrays

As indicated in Figure IV-U4, each sequence is represented by a
vearray and an intarray, the former storing all of the characters of the
words, and the latter storing the endpoints of the words in the vcarray.
A single "collective" integer array also stores the number of words in

the various sequences.

A vcarray is a structure whose length can grow and shrink. The
specifications for "vcarrays" -- given in Table 11 -~ should be
reasonably straightforward, except for a few subtleties. The V-function
int_for_vcarray(n) returns a unique integer corresponding to each
vcarray designator, as it is created. As indicated in Figure IV-Y4, this
function associates a position in the sequence-length integer array with
the vcarray designator that represents (in part) each seq designator.
Thus, the length of the sequence represented by vcarray ve is found in
position int_for_vcarray(ve) of the sequence-length intarray.

The uniqueness of int_for_vcarray(n) is embodied in the

specification of

create_vcarray() -> vcarray n.
The value int_for_vcarray(n) associated with the newly created vcarray
deaignator is specified to be in the range 1..v_int_bounds, and to be
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different from the value associated with any other vcarray designator.
(Note that v_int_bounds is a parameter of the module.) As in the
specification of "sequences", the initial values in a newly initialized
vcarray remain "?%,

Though the implementation of a sequence has no need for a function
in "vcarrays" that returns the number of characters stored in a vcarray,
the concept of the length of a vecarray is useful in the specifications
of "one_more_char" and "remove_char", and hence is manifested by the
definition "veclen(n)",

TR

K. Vo_intarray_pairs

This extremely simple module -- given in Table 12 -~ serves to

allocate and record vcarray-intarray designator pairs, which are used to
; represent seq designators. As indicated in the TYPES paragraph, a
"vc_intarray_pair" is a structure of the two relevant components.
i The OV-function
i create_ve_intarray_pair -> ve_intarray_pair vnp

: is invoked to establish a new pair corresponding to a new sequence. The ]
' newly created pair is composed of a newly created vcarray designator and 1

a newly created intarray designator. The "EFFECTS_OF" construct is used
to indicate the state changes of the externally referenced modules
"vearrays" and "intarrays®". Since OV-functions are invoked, the
"EFFECTS_OF" statements each return a value, in addition to indicating a
state change in the referenced modules.

We previously considered specifications where a specification of a
module A referenced a V-function of module B. Once that V-function is

declared in the EXTERNALREFS paragraph of A's specifications it can be
freely referenced. If an O-or OV-function of A causes a state change in

B, then there are two approaches toward specifying this state change in
the EFFECTS section of that function:

® By reference to primitive V-functions of A, but quoted to
reflect new values.

® By reference to O- or OV-functions of A, with appropriate
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arguments. Such a reference is written as "EFFECTS_OF o(x,
y)® to indicate that the new state of A is as if o(x, y) was
invoked. It is not necessary that the implementation use o(x,
y). Note that if multiple external references 01, 02, ..., to
0- or OV-functions of A, then the new state of A is determined
by considering each of the 01, 02, ..., as being applied
simultaneously. The new state of A is the composition of the
effects of 01, 02, .... Clearly, the composition of the
effects might be inconsistent if the designer is not careful.

Often the second approach to specifying a new state for an externally

referenced module leads to a simpler specification.

L. Ve_etc_cells

The purpose of "vc_etc_cells" -. displayed in Table 13 -- is to
implement "seq pointer_cells®™, which provides storage cells for a seq
designator and an integer. Since each seq designator is to be
represented by a vcarray-intarray designator pair, "vc_etc_cells"
correspondingly provides single cells for a vcarray and an intarray
designator. "Vo_etc_cells"™ also provides a corresponding integer
storage cell, here called "v_get_i()".

In the case of each of the two V-functions that return designators
-~ "y_get()" and "v_get_n()" -- it is asserted that an invocation will
only be attempted if the value of the V-function is "defined". Since
there is no O-function to restore the initial state, the assertions are
guaranteed to be satisfied if the corresponding "store" function is
called before the V-function.

Now let us proceed to levell for which our concern is with the
newly introduced modules: "chararrays", "chararray_intarray_pairs" and

"chararrays_etc_cells".

M. Chararrays

The module "chararrays" provides a fixed number of fixed-length
character arrays, each of which is associated with a chararray
designator. In the system, each character array holds the characters of
a vearray (variable-length character array). The cells of a single
integer array, as indicated in Figure 1V-5, are used to hold the current
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lengths of each of the vcarrays.

The major decisions embodied in the specifications of "chararrays"

are:

* The length of each character array is at least one. As we
will note this property permits a simple characterization in
the specifications of the number of character arrays that
exist at any time.

% A newly created character array will contain arbitrary
characters.

———

# A function is included that returns a unique index into the 1
single integer array for each chararray designator.

Let us now discuss the specifications, which are depicted in Table

14, Two integer parameters -- "maxchararrays" and "lenc" -- are

provided to indicate the maximum number of character arrays that can be

created and the length of a character array.
Let us skip to the specifications of the functions. E

The specification of the V-function
getchar(chararray n; INTEGER J) ~> CHAR ¢

indicates that the initial value is ?, and that an exception is to be
raised if "getchar" is invoked with an argument j that is not between 1

and lenc.

The V-function
int_for_chararray(chararray n) => INTEGER

returns a unique integer for each chararray.

An invocation of the OV-function

ki create_chararray() -> chararray n

is intended to return a new chagarray designator n and to appropriately
define a value for "int_for_chararray(n)", _provided the number of
previously created character arrays is less than "maxchararrays". The
first effect is similar to those previously used to indicate the
creation of new designator. The second effect indicates that
ﬂ "int_for_chararray(n)" is to return an integer between 1 and lenc,
different from the integer associated with any other previously created
character. The third effect specifies that all positions of the newly
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created character array are to be initialized with some arbitrary
"defined™ character. Note that the expression characterizing the
exception

CARDINALITY({chararray n | getchar(n, 1) ~= ?})
>= maxchararrays

identifies an "existing" character array as having a "defined” character
in the first pocsition. That such a character will exist is guaranteed
by the third effect, and by the assertion that the length of a character
array is at least 1.

An invocation of the O-function
change_char(chararray n; INTEGER j; CHAR c)
simply causes the j-th character of character array n to be changed to
¢, provided j is between 1 and lenc.

N. Chararrays_intarray_pairs

The module "vc_intarray_pairs" provides the mechanism for recording
the vcarray-intarray designator pairs that correspond to existing seq
designators. The vcarray is not a primitive concept, but is represented
by the designator type chararray. Correspondingly, a vc_intarray pair
is represented by a chararray_intarray_pair, which consists of a
chararray designator and an intarray designator. The module
"chararrays_intarray_pairs" provides the mechanism needed to record all
such pairs that correspond to existing vc_intarray_pairs.

The specifications ~- Table 15 -- externally reference the
designator types chararray and intarray. In the TYPES paragraph, the
structured type chararray_intarray_pair is declared. The function
specifications are as indicated below.

The V-function

chararray_pair_exists(chararray_intarray_pair cnp) -> BOOLEAN b
returns TRUE if the pair cnp has been previously stored. The initial
value of the function is FALSE for all pairs.

The O-function

store_chararray_intarray_pair{chararray_intarray_pair cnp)
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is invoked to store a particular pair, cnp. A RESOURCE_ERROR exception
is provided to account for a limitation on the storage available for

holding pairs.

0. Chararrays_etc_cells

This module is used to represent the module "vc_etc_cells", which
holds a single vcarray designator, a single intarray designator, and a
single integer value. Since a vcarray designator is to be represented
by a chararray designator, "chararrays_etc_cells" provides single cells
. for a chararray designator, an intarray designator, and an integer. F
k The reader who has managed to work his way through the other
thirteen modules should require no additional explanation in support of
the specifications of Table 16.

This completes our discussion of the module specifications of the
system. The next chapter considers the inter-machine representations.
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VI MACHINE REPRESENTATIONS: STAGE 5

In this stage, we record decisions concerning the representation of
the abstract data structures of each machine (except the primitive
machine) in terms of those of the next lower level. 1In essence, one is
deciding here how the data structures of each represented machine are to
be assembled using the data structures of the representing machine.

It is convenient to emphasize here that, in essence, all modules of
a machine are represented together. This is in contrast with the
specification and implementation stages in which each module is
considered separately. As we will illustrate below, there is often a
sharing of decisions among the representations of the modules of
machine. This sharing typically relates to the establishment of
partitions of the representing machine for the modules of the
represented machine. ‘

SPECIAL is wused here as the language in which representation
decisions are formulated. A representation specification should be
readable, concise, precise, and implementation independent. The use of
non-determinism facilitates the formulation of

implementation-independent representations.

In the sections below we review the format of a representation
specification, and then present the overall structure of the
representations for the example, the scheme for discussing the
representations of each machine of the example, and a detailed

discussion of each of the representations.

A. Format of Representations

This section is a condensation of the chapter on mapping functions
in Volume II. Some of the paragraphs of a representation specification
contain information that is redundant with that in the module
specifications, but is included in the representation to permit its
checking for syntactic and type consistency. Other paragraphs contain
subsidiary information that aids in the structuring of the
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representation specification. In this section we focus on the two
primary paragraphs: MAPPINGS and INVARIANTS.

1. MAPPINGS paragraph

In the MAPPINGS paragraph, the representation decisions of the
upper machine are expressed in terms of the concepts of the lower
machine. The information in this paragraph serves two related purposes:

1. To characterize the representation decisions for the data
structures of the lower machine.

2. To permit the derivation of a mapped specification for the
upper machine, i.e., a specification for each of the modules
of the upper machine but in terms of concepts of the lower
machine. From the mapped specification for the upper machine
it is possible to derive entry and exit assertions for the
purpose of verifying programs the programs that implement the
operations of the upper machine. Aside from verification, a
mapped specification for a module describes the functional
behavior expected of the module's implementation.

Since this report is primarily concerned with the application of
HDM to software development, our discussion of representations is
oriented to (1) the characterization of decisions. However, it is
convenient to justify the specific notation with regard to verification.
Consequently, let us consider what must be contained in the MAPPINGS
paragraph to permit the derivation of mapped specifications.

A machine specification is composed of expreasions that reference
primitive V-functions and parametersa. (Sometimes the expressions are in
terms of other functions, e.g., O-functions as in an "EFFECTS_OF"
expression, or in terms of user-supplied definitions, but by appropriate
substitution such expressions can always be written just in terms of
primitive V-functions and parameters.) The MAPPINGS paragraph is to
contain sufficient information to replace all references to the upper
machine primitive V-functions and parameters by appropriate references
to those of the lower machine. To accomplish this, we use the following
format to define the mapping for each primitive V-function, V, and each
parameter (which could be a parametric function) P, of the upper

machine:
V(typespec, a,; ...) : expri
P(t:ypespec1 dys ...) ¢ expr2
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To the left of the colon, the upper machine function and its formal
arguments are declared as in the module that defines the function. The
expression on the right is in terms of lower level concepts -- primitive
V-functions and parameters -- but containing references to the arguments
declared on the left side. (The expression expr2 that characterizes the
representation of the parameter does not reference primitive V-functions
of the lower level.) What exprl1 serves to characterize can be understood
as follows:

% The type of expr1 is the same as that of "V", except in the
case of a designator type as explained below.

® Expr1 serves as a definition for "V", with the intention that
each reference to "V" in the specification for the upper
machine will be replaced by expri1 in order to form the upper
machine's mapped specification. From another viewpoint, expri
indicates how each value stored in the "V" table of the upper
machine is to be composed from values stored in the tables of
the lower machine.

A similar interpretation applies to expr2.

As a simple example consider the primitive (hidden) V-function:
stack_val (INTEGER j) -> INTEGER v,

which returns the integer stored in the j-th location of a stack.
Assume this module "stack" is to be represented in terms of a module
"array" that contains the primitive V-function

elt(INTEGER j) -> INTEGER v.
The mapping for "stack val" is to capture the following representation
decision: the value of the stack pointer is to be stored in the 0-th
location of the array, and the values of the stack that are "defined"
are to be stored starting with location 1 of the array. Based on this
decision the mapping for "stack_val" is as follows:

stack_val (INTEGER j) :
IF J INSET {1 .. elt(0)}
THEN elt(J)
ELSE ?
Let us now consider the mapping of designator types. For the
simple stack example, the arguments and return values of the relevant
V-functions of both the upper machine and the lower machine are all of

type INTEGER. Such predefined types and all constructed types
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ultimately composed of predefined types can be freely used in a mapping.
What if the type of an argument or return value of a function of the
upper machine is a designator type, or a constructed type composed of
one or more designator types? Such a type has no meaning in the lower
level unless the designator type is associated with a module that
appears in both the upper machine and the lower machine. If the ;
designator type does not also appear in the lower machine, we must
specify a type mapping for the designator type as follows:

designator_type : typeL
where type, jg any type that can be associated with the lower machine.
In essence, this mapping gives a template for the representation of each

of the designators of the upper machine.

» For example, assume that the stack module supported a collection of
stacks, each of which is associated with a designator of type "stack",

| and that each such designator is to be represented by an element of the
designator type "array". Then, the type mapping would simply be:
stack: array.

It is understood that each "stack" designator is to be represented by a

unique "array" designator.

If the primitive V-functions for these extended modules each have
an argument corresponding to the specific stack or array, then the
mapping for "stack_val" would become:

stack_val(stack s; INTEGER j) :
IF j INSET {1 .. elt(s, 0)}
THEN elt(s, J)
ELSE ?

Each reference to s on the right side is assumed to be for a variable of

| type "array_name". Note that we could have elected to represent "stack”

designatnrs via integers, as indicated by the mapping:
F stack : INTEGER.

, In this case, each array is identified by a unique integer, at the
ﬂ expense of sacrificing the protection (e.g., strong type checking)
afforded by thg use of designators.

; Let us now consider the INVARIANTS paragraph.
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2. INVARIANTS paragraph

Sometimes the use of a lower machine by the abstract programs that
implement the operations of the upper machine does not involve all of
the generality that the lower wmachine offers. This more restrictive
use, not reflected by the specifications of the lower machine or the
mappings, 1is conveniently characterized by the invariants in the
INVARIANTS paragraph. Each invariant, which is a boolean-valued
expression Jjust in terms of lower-machine concepts, expresses a
constraint on the values that can be acquired by V-function positions
and parametric functions. (The reader might note that invariants
characterize implementation decisions, and hence their formulation might
be better deferred to Stage 6. At present, they are considered in Stage
5 because they can be conveniently check for consistency relative to the

other paragraphs in a representation.)

As with most of the other statements of HDM, invariants serve an
important role for both proof and the formulation of decisions.

% With regard to proof, each invariant can be assumed TRUE as an
entry assertion to each operation of the lower level, and must
be proven TRUE as a result of the operation. The use of
invariants often significantly simplifies proofs of
implementation.

® With regard to the characterization of decisions, invariants
serve to indicate assumptions on how the lower level is to be
used. Similar to the decisions of other stages, the
invariants enable a dialogue between those responsible for
formulating representation decisions, and those for writing
the abstract programs; (both tasks could be performed by the
same individual in which case the writing-down of decisions is
Just good bookkeeping practice). The assumptions embedded in
the invariants often lead to simplifications in the programs,
although it is incumbent on the programmer to ensure that the
invariants are satisfied as a result of each invocation of the
lower machine.

Typically there are many invariants that could be disclosed in this
paragraph. However, it is recommended that only essential invariants be
written-down. The essential ones are those that are the basis for
simplifications in the abstract programs, or are necessary for proof.
Not surprisingly, the revelation of all such essential invariants is not
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completed until subsequent stages are considered.
Our example system illustrates several interesting invariants.

Representations contain other paragraphs, but their detailed
discussion is best discussed in the context of the example. The next
section considers the overall structure of the representations for the

example system.

B. Representation Structure of the Histogram Example

Figure VI-1 displays the coarse structure of the inter-module
representations for the example system. We previously indicated that
the representation for the upper machine MU in terms of the lower
machine ML essentially considers all modules of the upper machine and
the lower machine simultaneously. It is appropriate now to refine that
statement. In particular, we will decompose both the represented
(upper-level) and the representing (lower-level) machine into

submachines for the purpose of structuring the representation.
1. Structure of represented machines

First, consider the upper-level machine. In Figure VI-1, each
distinct upper-level submachine is shown with an arrow emanating from
it. For purposes of data representation, a given represented machine
(the upper machine) can be decomposed into submachines, MU1, MU2, ... ,
each composed of disjoint sets of modules, such that the union of the
MULI 1is MU. Two collections of modules, MUi, MUj, are considered as
separate upper-level submachines for representation if for all pair of
modules, one in MUi and one in MUj, there are not representation
decisions in common. As we will note, there are several degrees to
which two (upper) modules A and B can share representation decisions.

® A V-function position of some module of ML can be used to
represent V-function positions of both A and B. This is the
most extreme form of sharing of representation, and is usually
avoided since it precludes the separate verification of the

implementation of A and B. Our example does not exhibit this
form of sharing.

®* The V-function positions associated with a V-function of some
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module C in ML can be divided into two disjoint sets
(partitions) ~-- one as part of the representation of A, and
the other of B. In this case, the representations for A and B
are disjoint as they bear on the implementation proofs for A
and B. (In effect, C can be viewed as two distinct modules --
C' used by A and C'' used by B.) However, it is convenient to
group A and B in the same submachine for purposes of
representation. This form of sharing of representation
decisions occurs often in applying HDM, primarily where a
given module is used in the representation of two or more
machines, but for simplicity is only given a single
specification and implementation. For this example the
designator values of "sequences" (level3) are partitioned into
two subsets -- a single designator to represent "query" and
the remainder to be available to a user of "sequences" above
leveld, To express this partitioning it is convenient to
combine "sequences" and "query" into a single wmachine for
purposes of representation.

% The same decision impacts the representation of entities in
both A and B although the representations for A and B involve
disjoint V-functions (possibly in different modules) of ML.
For example, consider the decision to represent the type "seq"
of "sequences" (level3) as a vearray-intarray pair. This
decision impacts the representation of both "sequences" and
"seq pointer_cells". For the latter module, the decision on
the representation of seq designators impacts the
representation for the seq-returning function "get_s". Such
situations typically follow the schema: upper module A
supports designator type d; upper module B contains a function
that returns an object of type d; and type 4 does not appear
at the lower level. As a result, module B must know the
representation of type d, as supported by module A,

Sometimes two modules A and B are grouped together for convenience
in a submachine in the absence of a shared representation decision if
the declaration of the primitive V-functions of A requires a reference
to module B. As we will note, this is the basis for "histogram™ and
"truncator" and for "tally" and "truncator® being organized as
submachines, even though no representation is required for "truncator"”.
The inclusion of "truncator" permits the syntactic checking of the
representation specification without reference to other modules outside
of the machine.

Figure Vi-1 identifies representations between two appearances of
the same module as tne identity transformation. In this case, the
primitive V-functions, parameters, and designator types of the
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upper-level appearance are mapped down identically to those in the
lower-level, and no such entity is needed by any other module of the
upper-level in-the declaration of primitive V-functions.

2. Structure of representing machines

Now let us briefly consider the issues involved in organizing the
lower-level machine into submachines for representation. Again, this
decomposition enhances the understandability of the representation
specifications. One can always elect not to decompose the lower-level
machine.

In Figure VI-1, a representing submachine is shown as a collection
of modules with an entering arrow. The basis for selecting a subset of
the modules as a submachine is that at least one entity of each module
is used in the representation of a submachine of the upper-level. By
"use" we mean a reference in a mapping or in an invariant. It is
recommended ~- but not essential -- that the submachines of the
lower-level be disjoint to avoid the need to demonstrate the mutual
consistency of the representations that are in terms of the overlapping
submachines. Note that for a machine which is both a represented
machine and a representing machine (i.e., all machines except the
user-~interface and the primitive machine), the two decompositions need
not be the same.

Before discussing the individual representations in detail, we will
indicate the scheme for presenting the representations.

C. Scheme for Representation Specifications

Our plan for presenting each of the representation specifications
is similar to that followed for the module specifications. First, a
brief review is given of the purpose of the two submachines followed by
an overview of the representation. Second, the major dezisions of the
representation are listed. Third, the representation specification is
discussed relative to the decisions.
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D. Histogram Representation

This representation is for the submachine embodying "histogram" and
"truncator® in terms of the submachine containing "tally” and
"truncator". Typically, the name selected for the representation is
that of the most significant module of the upper-level machine.
Briefly, the data structures of "nistogram" are the two primitive
V-functions: "get_word", which returns the "truncated_word" associated
with an integer argument, and "howmany®", which returns the integer
(frequency count) associated with an integer argument. (Remember that
"howmany(1i)" is the count for "get_word(i)".) Similarly, "tally" has two
corresponding primitive V-functions, "t_retrieve"” and "t_howmany", in
addition to two other primitive V-functions that are not involved in the
representation of "histogram”.

As indicated previously, a user of "histogram" has the power to
create a histogram for a designated sequence by invoking a single
operation. Hovever, "tally" provides the mechanism for constructing the
histogram by processing the words of the designated sequence in turn.
There is no jump in data abstraction between the two modules. Instead,
the difference 1is in procedure abstraction. Thus, there are no
interesting representation decisions to discuss.

Table 17 depicts the representation as cast in SPECIAL. Since
there is no data abstraction, the representation is straightforward, but
does illustrate the basic paragraph structure of a representation. The
first line,

MAP histogram TO tally
identifies the modules that comprise the upper-level machine, (those to
the left of "TO") and the lower-level machine (those to the right of
"TOo").

The TYPES paragraph declares named types that are referred to in
subsequent paragraphs. These types typically enhance the readability of
the representation, and are often as declared in some module
specification. No new designator types can be declared here. For this
example, the type "truncated_word"™ is in terms of "maxlength™ and thus
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necessitates the inclusion of "truncator" in both machines.

The EXTERNALREFS paragraph lists primitive V-functions, parameters,
designator types, and scalar types of the modules that are "involved" in
the representation. All such entities of the modules in the upper-level
machine must be 1included since, obviously, they must be given
representations. Only those entities of the lower-level machine that
are referred to in the representation need be fincluded. The information
given for each primitive V-function is taken from the header of the
module specification that includes this function. Similar information
is provided for the paraneters and designator types.

The basic format of the MAPPINGS paragraph was discussed in a
previous section. A mapping must be provided for each entity of the
upper-level modules. In this case the mappings are trivial, reflecting
the absence of data abstraction. Our requirement that each upper-level
entity in the EXTERNALREFS paragraph be mapped is the reason for
included the trivial mapping for "maxlength".

Now let us proceed to the representation for level5.

E. Tally Representation

This representation is for the represented cluster consisting of
"tally" (level5) in terms of the levelld representing cluster consisting
of "query", "seq_pointer_cells", and “hasher®". The primary purpose here
is to represent the four primitive V-Iunctions of "tally":
"t_retrieve™, "t_howmany", "t_sequence", and "t_pointer”. Recall that
"t _retrieve" returns a truncated_word corresponding to some integer;
"t howmany" returns an integer value (frequency count) corresponding to
an integer; "t_sequence" returns a seq designator corresponding tc the
sequence for which the histogram is being constructed; and "t_pointer"
returns an integer that identifies the 1location in the designated

sequence of the next word to be processed.

The module "seq pointer_cells" provides two primitive V-functions
that are used to trivially represent "t_sequence®™ and "t_pointer". The
module "query", similar to "tally", provides the mechanism to store
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words and their associated frequency counts. In addition, it enables
the efficient determination of the existence of a word in a "query"
table. A hash searching scheme is utilized here, where the module
"hasher" provides a function that for a given word returns an integer in

a particular range.

The major representation decisions embodied here are listed below.
The first relates to the data structure representation for "tally"; the
latter two to the use of levell by the "tally" implementation. These
are in reality implementation decisions, but are conveniently formulated
here as invariants.
® The data structure mapping for "tally"™ is trivial. Each of
the four primitive V-functions of "tally" are associated with

a primitive V-function of either " query" or
"seq _pointer_cells".

® A given word appears no more than once in the "get_string"
table of "query".

% If a word w is in the j-th location of "get_string" table and

if the initial hash probe corresponding to w is p, then some

location in the "dir" table of "query" between p and the first

empty slot contains the value j. This decision reflects the
usage of the "query" data structures to accomplish hash
searching.

Now let us consider the representation specification as displayed
in Table 18. The EXTERNALREFS paragraph lists the relevant entities of
six modules. Four of these modules are directly involved in the
representation, while "sequences" and "truncator" provide entities that
are just referenced. (Since "sequences" also appears in the lower level
machine, its representation does not need to be known here. This
situation is contrasted with our shared representation schema in the
previous section.) Included are the primitive V-functions and parameters
of the represented cluster ("tally") and the representing cluster
("query", "seq pointer_cells", "hasher"), while only those entities of
"sequences" and "truncator” that are actually referenced are included.
For "sequences", the referenced entity is the designator type seq, used
to 1identify the type returned by "t_sequence®” and "set_s"; for
f"truncator", it is the parameter maxlength, used to define the type
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truncated_word. Again, it is emphasized that seq and maxlength are not
represented nor are the targets of any representation; they are included
here so that the tally representation will be self-contained for
checking purposes.

The MAPPINGS paragraph indicates the trivial representation
decisions for the four primitive V-functions of "tally”.

The interesting aspects of the representation specification are in
the INVARIANTS paragraph. Each of the invariants expresses a constraint
on the state of "query" that is to be satisfied for the initial state,
and after each O-function invocation. These constraints are stronger
than those implied by the specifications, and reflect the non-arbitrary
manner ir which the O-functions of "query" are invoked. As previously
indicated, the invariants express implementation decisions, but are
conveniently considered at this stage since they are cast as boolean
expressions in terms of the primitive V-functions, parameters, and types

of the representing machine.

The first invariant:

FORALL word w ~= ?2:
CARDINALITY({INTEGER j | get_string (j) = w})
<= 1,

indicates that no defined word is to appear more than once in the
"get_string" table. By referring to the specifications for "query" --
Table 9 -- it is clear that successive invocations of "save"

save(wl, 0);
save(wi, 1);

in a newly initialized "query" module will cause the word wl to appear
in locations 0 and 1 of "get_string". By writing the above invariant we
are indicating that a program implementing "tally" will never generate
such a sequence of invocations of "save". Before invoking save(wi, p1)
for some empty slot pi, it will be assured that wil does not already
appear in the "get_string" table.

The second invariant characterizes the hashing scheme that is
employed here, and is a stacement of what is depicted in Figures IV-2
and IV-3. Here, use is made of the DEFINITIONS facility to structure
the invariant. First consider the defined function "probe_succeeds",

79

ditssnien, ; PP




P s

which expresses the hashing condition for a word w.

probe_succeeds(word w) IS
EXISTS INTEGER p INSET {0 .. plen-1}:
get_string( dir(p)) = w
AND (FORALL INTEGER i INSET
{hash(w, plen) ..
IF p < hash(w, plen)
THEN p + plen
ELSE p}:
dir(i MOD plen) ~= 0).

This function returns TRUE if: the word w is in location dir(p) of the
"get_string" table for some p such that for all locations d of the "dir"
table between hash(w, plen) and p (allowing for "wrap-around" if p <
hash(w, plen)), it is the case that dir(d) "= 0. That is, there are no
empty slots between hash(w, plen) and p.

The second invariant

FORALL word w |
w "= ? AND (EXISTS INTEGER j | get_string(Jj) = w:
probe_succeeds(w)),

expresses the restriction that all words w that appear in the

"get_string" table satisfy the hashing condition.

This completes our description of the representation of "tally"™,
The primitive V-functions of "tally" map down identically to lower level
entities, so the most interesting aspect of the rearesentation
specification is in the invariants that capture the use of "query" to
represent a hash searching scheme. Let us now proceed to the

representation of "query".

F. Query Representation

This representation is for the represented cluster of "sequences"
and "query" in terms of the representing cluster of "sequences" and
"intarrays"®. The primary purpose here is to represent the three
primitive V-functions of "query" ("dirn, "get_string", and
"check_count™) and its parameter ("plen") in terms of the entities of
*sequences"” and "intarrays". As we will observe, the selected
representation is quite simple; "get_string™ is represented as a
sequence, while the other two primitive V-functions of "query" are
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represented as integer arrays.

The reader might question the need to include "sequences"” in the
represented cluster, There is a sharing of representation decisions
between "query" and the instance of "sequences" at the upper level. As
we will note, the shared decision is that the particular sequence used
to represent the "get_string" table is not available to the instance of
"sequences"” at the upper level. That is, the representation induces a
partitioning of the lower level "sequences" module.

Now let us discuss the representation as displayed in Table 19.
First note the PARAMETERS paragraph, which has not been confronted in
the previous representations. In general, this paragraph declares
constants or functions that are needed in the INVARIANTS or MAPPINGS
paragraph. It is emphasized that:

® A  representation parameter 1is only depeandent on the
representing modules. That is, the type of the parameter is

derived as some combination of predefined types and designator i
types of the representing machine. i

* A representation parameter remains constant. In the next i
chapter, we will show that representation parameters are bound
to values when the upper level modules are initialized.

For this representation, three parameters are declared:

unique_string: a seq designator for the sequence that
represents the "get_string" table.

director_array: an intarray designator for the integer array
that represents the "dir" table,.

count_array: an intarray designator for the integer array that
represents the "check_count" table.

The TYPES paragraph introduces the type "seqi",

seql: {seqn | n "= unique_string},

i which is seen to be a subtype of seq of the lower level "sequences"
} module. That is, the type "seqi" has as values all designators of the
|

: lovwer 1level "sequences" module except the particular designator
q "unique_string"”.

J i Now consider the first mapping in the MAPPINGS paragraph:
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"seq: seql1". The values of the (upper-level) designator type seq are
represented by values of the (lower-level) designator type seql. These
values are all the seq designators of lower level sequences module
except "unique_string".

The remaining mappings should be easily understood. For example,
the second mapping:

string(seq n; INTEGER j): string(n, j)
indicates that for each seq designator n of the upper level "sequences"
module and for each integer j, the values of string(n, j) map down to
string(n, j), where the latter n is a reference to a seq designator of
the lower level "“sequences" module. Thus, "string" is identically
mapped.

The third mapping: "plen: leni" indicates that the "query"
parameter "plen" is to be represented as the "intarrays" parameter

"leni"™ -~- the length of the fixed-length integer arrays.

The fourth mapping:
get_string(INTEGER j): string(unique_string, j)
indicates that the Jj-th word in the "get_string" table is to be

represented as the j-th word in the sequence "unique_string".

The fifth mapping:

dir(INTEGER p): getint(director_array, p + 1)
indicates that the p-th integer in the "dir" table is to be represented
as the (p + 1)-th integer in the integer array "director_array". Recall
that the domain of interest for "dir" is 0..plen-1, while the domain of

interest for "get_int" is 1..leni.

A single invariant is included,

FORALL INTEGER j INSET {1..leni}:
getint(director_array, j) INSET
{0..seqlen(unique_string)},

which indicates that the "director_array" will only contain values
between 0 and seqlen(unique_string), the number of words in the
particular sequence "unique_string". This invariant reflects the use of
the integer array "director_array" as a repository for either 0's or
pointers to words in the sequence "unique_string".
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Now let us proceed to the representation of "sequences" and other

modules of level3.

G. Sequences Representation

Here we consider the representation for the 1level3 cluster of
"sequences", "intarrays", and "seq pointer_cells" in terms of the level2
cluster of "vcarrays", "intarrays", "vc_intarray_pairs", and
"yve_etc_cells" (see Table 20). The main decision expressed here is to
represent each sequence in terms of a variable length character array,
i.e., in terms of a vecarray and an integer array. More explicitly, the

decisions are as follows:

1. The vcarray corresponding to a sequence n will hold the
characters of all words of the sequence, with no separators
between words. The corresponding integer array will hold the
position of characters in the vcarray that are the first and
last character of each word. Figure IV-4 shows the basic
representation scheme.

2. Bach seq designator is to be represented as a pair consisting
of a vcarray designator and an intarray designator.

3. A particular integer array, "nstrings", is set aside to hold
the number of words in each sequence.

4, Assume that a sequence n is represented by a vecarray ve and
integer array m. Then the position in "nstrings" that holds
the number of words in sequence n is given by

int_for_vearray(ve),

where "int_for_vecarray" is a primitive V-function of the
"vcarrays" module that maps a vcarray designator ve to an
integer. This V-function is provided by "vecarrays" in lieu of
a built-in pointer facility in the HDM languages.

5. Recall that "seq pointer_cells" provides ¢two primitive
V-functions: "get_s" and "get_p"; the former is conveniently
viewed as a cell holding a seq designator. In view of
decision (2), "get_s" is naturally represented in terms of two
cells of "vc_ete_cells", which respectively hold a vcarray
designator and an intarray designator.

6. Each of the pairs that represent seq designators are held via
the V-function "ve_pair_exists" of the module
"ve_intarray_pairs".
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Now let us consider the representation as depicted in Table 20.

First consider the second and third named types declared in the
TYPES paragraph. (The fourth declares "word" as in previously discussed
module and representation specifications, while the discussion of the
first named type must await elaboration of entities that comprise its
definition.)

"Vc_intarray_pair" is a structure type defined as:

STRUCT_OF(vcarray vcarray_part; intarray intarray_part).
For any particular value of the type, the first component is a vcarray
designator with selector "vcarray_part", while the second component is a
intarray designator with selector "“intarray_part". This type has as
values all pairs such that the first compoaent is a vcarray and the
second is an intarray. Only a subset of these pairs are used as
representations for seq designators. For example, assume the
representations of seq designators n1, n2 are the respective structures
(vel, m1) and (vc2, m2), where vei is a vecarray designator, and mi is an
intarray designator. Then, the structure (vel, m2) is certainly in the
type "vc_intarray_pair", but is not a representation of a seq. It is
useful in the representation specification to identify, as a type, all

elements of "vc_intarray_pairs™ that also represent a seq.

The V-function

ve_pair_exists(ve_intarray_pair venp) -> BOOLEAN b

of the module "vc_intarray_pairs" is intended to keep track of all such
pairs.

Thus the third named type, "vc_intarray_pairi®,

{ve_intarray_pair venp | ve_pair_exists(venp) = TRUE}

has as values all pairs that, at any instant, are allocated to the
representation of seq designators. Note that the values of
"vc_intarray_pair1" vary dynamically. Each new creation of a sequence,
which precipitates the establishment of a new representing pair, adds a
new value to the type "vc_intarray_pairi®,

In the PARAMETERS paragraph ihe intarray designator "nstrings" is
declared. The integer array corresponding to "nstrings" is used to hold
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the number of words in each sequence. It is reasonable to declare
"nstriugs" as a representation parameter since it will be established
when the "sequences" module is initialized. We know that there will be
additional integer arrays set aside for the representation of sequences,
namely one integer array for each sequence to hold the boundary
positions of the representation of words. Let us denote the set of such
integer array designators as "inclength", which is defined in the
DEFINITIONS paragraph as follows:

{intarray m | EXISTS vc_intarray_pairt vnp :
vnp.intarray_part = m}.

,; Thus "inclength" is the set of all intarray designators used to
§§ represent sequences.
i

_ Now we are prepared to indicate the partitioning of intarray
% designators «f the lower level appearance of "intarrays" obetween
"sequences" and the upper level appearance of "intarrays". The named
; type "intarrayi", given by ]
{intarray m | NOT m INSET(inclength UNION {nstrings})},

| contains as values all intarray designators except those in the set
| "jnclength" UNION {nstrings}. Thus, the first mapping,
"intarray: intarrayi", indicates that the intarray designators

available to the upper level appearance of "intarrays" are that subset
of the lower level intarray designators contained in the type intarrayi.
The remainder of the 1lower 1level designators are allocated to

"sequences".

The second and third mappings merely indicate that the parameter
"leni", and the V-function "getint" are mapped identically.

The fourth wmapping, '"seq: vc_intarray_pairi", expresses the
decision that each seq designator is to be represented as a
vearray-intarray pair, where the intarray designator is restricted to be
in the set inclength,

The fifth mapping indicates how the words of a sequence are to be
formed from a vcarray and an intarray. Two defined functions are useful
in formulating the mapping. First, consider

len_seq(ve_intarray_pair1 vnp),
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given by

getint(nstrings, int_for_vcarray(vnp.vecarray_part)).
It returns the integer that corresponds to the number of words in the
sequence represented by the vcarray-intarray designator pair vnp.
(Recall that

int_for_vecarray(ve)

returns a unique integer corresponding to the vcarray designator ve.
Uniqueness is guaranteed by the "vcarrays" module specification in Table
1.)

The second defined function is
ival(ve_intarray_pairt vnp; INTEGER i),
given by
getint(vnp.intarray_part, 1i).
It returns the i-th integer in the intarray that is part of a

vearray-intarray representation of a sequence.

Now consider the mapping for the "sequences" primitive V-function
"string(seq n; INTEGER j)":

IF § INSET {1..len_seq(n)}
THEN VECTOR(FOR i FROM O TO ival(n, 2%#3j) -~ ival(n, 2%j-1):
char(n.vcarray_part, 1 + ival(n, 2%j-1)))
ELSE ?

The j-th word of sequence n is represented by the vector formed from
conszcutive characters in the representing vcarray. The boundary
positions of this string of characters are found in the 2j-th and
2j+1-th positions of the represeating integer array. If § is not a
valid 1location for a word, then the word (and, of course, its

representation) is "7,

The last two mappings for the primitive V-functions of
"seq pointer_cells” are trivial. For "get_p", which returns an integer,
ihe representation is simply "v_get_i". The mapping for "get_s" is:
get_s (): STRUCT(v_get(), v_get_n()).
The representation of a seq designator (returued by "get_s") has two
components: the "vcarray_part? {s held by "v_get"™ and the
"intarray_part®” by "v_get_n".




This completes our description of the representation of "sequences"
and related modules. Now let us proceed to the final mapping, for

"veoarrays" and related modules.

H. Vcarrays Representation

In this section, we present the representation of the level2
cluster of "ycarrays", "intarrays", "vc_intarray_pairs", and
"yo_etc_cells" in terms of the 1levell cluster of fchararrays”,
"intarrays", "chararrays_intarray_pairs", and "chararrays_etc_cells".
The "heart" of the representation is concerned with how each vecarray is
composed from a (fixed-length) character array and a value in a
particular location of an integer array. Three other modules that share
representation decisions with "vcarrays" are 1included in the
representing cluster: "intarrays" and "vecarrays" divide up the integer
arrays of the lower level appearance of "intarrays", and "vc_etc_cells®
and "vc_intarray_pairs" depend on the representation of the "vcarray"

designator type.

The major representation decisions expressed here are:

# Each vecarray designator is to be represented by a unique
chararray designator.

#® The characters in each variable-length character array are
held in corresponding locations of a (fixed length) character
array. A particular integer array, named "length_array",
holds the locations in the character arrays of the last
character of each represented vcarray. A unique position in
"length_array" is associated with each character array, namely
the position defined by the T"chararrays" V-function
"int_for_chararray(chararray n)". Figure IV-5 depicts this
representation decision.

# The vearray-returning function "v_get()" of "vc_ptc_peils" is
represented by the chararray-returning function "c_get()" of
"chararrays”.

® A vearray-intarray designator pair (i.e., a vc_intarray_pair)
is represented by a pair consisting, respectively, of the
corresponding chararray designator and the same intarray
designator.

Now we are ready to discuss the details of the representation
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specification appearing in Table 21. It is convenient to discuss the
represented modules in the following order: "intarrays®", "vcarrays",
"vc_etc_cells", and "vc_intarray_paira".

A single integer array with designator "length_array" is allocated
to the representation of "vcarrays"; the remaining integer arrays are
available to the upper level appearance of "“intarrays". We first
declare a subtype

intarray1: {intarraym | m "= length_array}
and then define the mapping of (the upper level appearance of) intarray
to be "intarray: intarrayi". The remaining entities of "intarrays", the
parameter "leni" and the V-function "getint™, are mapped identically.

Now consider the representation of "vecarrays". The designator type
"vcarray" is simply represented by the designator type "chararray". The
most interesting representation expressed here is for the "vcarrays"
V-function "char®”, as follows:

IF j INSET {1..getint(length_array, int_for_chararray(n))}
THEN getchar(n, J)
ELSE ?

The j-th character of vcarray n is represented as getchar(n, J)
provided j is in bounds (namely between 1 and the current length of the
vcarray). This "length-value" is represented as the value in position
int_for_chararray(n) -- n being the chararray designator that is the
representation of vcarray n -- of the integer array "length_array". If
J is not in bounds, then the value returned by char(n,j) is 2.

The module "vcarrays" contains the parameter "v_int_bounds", the
value of which is the upper limit of the range of "int_for_vcarray(n)®.
Since the range of "int_for_chararray(n)" is constrained by the length
of the integer arrays, it is natural to represent "v_int_bounds" as

"leni"®.

In order to understand the need for the single invariant
“"leni >= maxchararrays" it 1is necessary to 1look ahead to the
implementation of the "vcarrays" OV-function "create_vcarray()". As
indicated in Table 11, the invocation can return a RESOURCE_ERROR. What
resources of levell modules could become exhausted?
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1. Clearly, all of the available character array -- initially
size "maxchararrays" -- could be used up.

3 2. In addition, "length_array", which holds the current lengths
} of each vcarray, could be exhausted.

In general, both of these conditions would have to be considered by the
implementation of "create_vcarray()". However, if it is guaranteed that
the availability of an additional character array implies the existence
of an available slot in "length_array", the condition (2) need not be
handled in the implementation.
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Now let us consider the representation of "vc_etc_cells". The
primitive V-function "v_get_n" returns an intarray designator; it is

trivially represented by the "chararrays_etc_cells" function "c_get_n".

f Similarly, "v_get_i" (which returns an integer) is trivially represented
by "c_get_i" (which also returns an integer). Since vcarray designators
are being represented by chararray designators, it follows that "v_get"
(whick returns a vcarray designator) is represented by "c_get" (which

f returns the corresponding chararray designator).

Finally, we consider the representation of the "vc_intarray_pairs"
V-function

ve_pair_exists(ve_intarray_pair vnp) -> BOOLEAN b.
Since the type "vcarray" is represented by the type "chararray", the
structure type "vc_intarray_pair"™ is represented by a structure type
whose first component is of type "“chararray". This correspondence is
implicit in the mapping of the designator types. We have called this
lower-level structure type "chararrays_intarray_pairs". Then
"ve_pair_exists" is trivially represented by the function

"chararray_pair _exists".

I. Summary of Representations

Five representation specifications have been described for this
example, excluding the identity mapping that is the case for several of
the module representations. Most of the representations are quite
simple, reflecting a small jump in data abstraction between adjacent
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machines. The three most interesting mappings were for:
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"Tally", illustrating the use of invariants to characterize a
hash storage scheme,

n"Sequences", illustrating the representation of a word
sequence in terms of a variable length character array, an
integer array that indicates boundary positions for words, and
a position in an integer array that holds the number of words
in the sequence.

"Ycarrays", illustrating the representation of a variable
length entity in terms of those whose length is fixed.

S At A e e

The remaining mappings are almost trivial, either involving no real

data abstraction, or involving the use of an array to represent a

function.

Now we can proceed to the next stage -- implementation.
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VII MODULE IMPLEMENTATION: STAGE 6

A. Introduction

In this chapter we discuss Stage 6, which i3 concerned with the
formulation of implementation decisions. In HDM, each module in a
system is to be implemented separately. For a module that appears at
multiple adjacent levels, only the lowest level appearance is actually
implemented. However, for convenience at this stage, each module in the
system is viewed as having an implementation, although for a module m in
machine M, that also appears in M;_;, the implementation will be the
identity. These identity implementations are not present in the i

ultimately generated code -- stage 7.

In order to understand what must be expressed in a module
implementation, consider what it means to invoke a visible operation of
a module m of the top level machine, with actual values for arguments.
Such an invocation precipitates a sequence of invocations to visible
' operations (or parameters) of modules that are at the next lower level
; or at the same level. =gach such invoked operation itself precipitates a
‘ sequence of invoked operations, and so on until the operations of the

primitive machine are invoked and evaluated. The processing of a
) top-level invocation is thus similar to the processing of a nesting of ﬁ

non-recursive subroutine invocations.

Thus, an implementation of a module consists of an abstract program

for each operation and parameter. Each such abstract program is a

shorthand deseription of a sequence of invocations of other operations

f ) for each invocation of the program itself. An additional program
g N denoted as the "initializations” program serves to drive a module into
" its injtial state. This program, understood to be executed before any
J . operations of the module are invoked, invokes the other operations of
| any other module -- already initialized -~ just as any other program.
After the execution of the "initializations" program for a given module,

the value of its primitive V-functions and parameters (as derived by

applying the representation functions to the values of the primitive

V-functions and parameters of the next lower level modules) will have
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their initial values. It is assumed that the modules of the primitive
machine are in their initial state when "powered-up". Thereafter,
modules are initialized in an obvious order starting with the modules at
level2.

In the remainder of this section we discuss: (1) the structure of
the implementations for the histogram example, (2) the scheme for
presenting the implementations, and (3) a detailed discussion of each of
the module implementations.

Before proceeding, the reader should review Chapter 7 (ILPL) of
Volume II.

B. Structure of Implementations for Example

In order to assist the reader in following the subsequent sections,
we display the coarse structure of the system implementation in Figure
VII-1. 1Iu this view the abstract machines are organized as modules as
in previous depictions of the system -- Figures IV-1 and VI-1 -- the
latter two for the purposes of describing specifications and
representations. In this view, a module sometimes appears in several
machines with the "identity" implementation serving to implement an
appearance in terms of the next lower level appearance. The other
modules have non-trivial implementations, possibly in terms of modules
at the same level -- as for "tally" and "vc_intarray_pairs" -- and
several lower level modules. An arrow from module A to B indicates that
in the implementation of A there is a reference to an operation or
parameter of B. As we will note, the abstract programs for a module can
reference designator types of a module, but not necessarily operations
of that wmodule. Such references are not explicitly depicted in the
illustration.

Figure VII-1 also illustrates the partitioning of the level3
appearance of "sequences" and the level2 and 1levell appearances of
"intarrays". In the case of "sequences" its designator set ~- and the
V-function position associated with designators -- is divided into two
partitions. One partition contains the seq designator "unique_string”
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for the private use of "query2 in its implementation of the histogram;
the other partition contains the remaining seq designators, all of which
are ultimately available at the user interface, and correspond to word ;

sequences that a user will directly manipulate.

Figure VII-2 depicts the implementation structure, but in a form
where a module appears only once., The implementation dependencies are
also clearer here, since all modules that serve to implement a module m

are shown below m.

C. Scheme for Presenting Implementations

In the following sections we present the implementations for each
module of the example. The discussion for each module consists of three

parts as follows:

1. A brief review of the module being implemented and of the
implementing modules.

2. A listing of the decisions underlying the implementation.

3. A detailed discussion of the abstract programs.

D. Histogram Implementation

Recall that the '"histogram"™ module provides the operation
"hist(n)", which generates the histogram corresponding to a word
sequence n. The j=th word and its corresponding frequency count can be
retrieved by invoking the operation "getword(j)" and "howmany(j)", E
respectively.

The module "tally" provides the operations to implement the
operations of "histogram™. 1In particular, the implementing operations
are: ]

t_initialize -- identifies a particular word sequence n, for
which a histogram is to be formed.

insert_or_increment -- processes the next word of the identified
sequence n. If the word has not been previously seen then it
is placed in the tables of "tally"; otherwise its associated
frequency count is incremented.
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t_retrieve -- returns a word at position J.

t_howmany -- returns the frequency count of the word stored at
position J.

reset_tally -- clears the "tally” module.

The major decisions that are revealed in the implementation of
"histogram™ are as follows:
#* The retrieval of a word and its frequency count for the

histogram are trivially implemented by the corresponding
"tally" operations.

® The resetting of "histogram®™ is trivially implemented by the
"reset_tally" operation.

% The generation of the histogram for sequence n is
(approximately) accomplished by a simple program that
repeatedly invokes "insert_or_increment™ for each successive
word of sequence n,

Thus there is no jump in data abstraction between the two modules. The
only substantive difference is in procedure abstraction; "hist"
processes the words of sequence n in one "fell-swoop", while
"insert_or_increment" processes the words one at a time.

Let us now discuss the ILPL implementations as given in Table 22.
The header

IMPLEMENTATION histogram IN_TERMS_OF tally
identifies the implemented module and the lower-level ones that
implement it. (Note that there may be upper-level implementing modules,
too. Only the lower ones, however, appear after the "IN _TERMS OF".) In

general, the implementing set can contain more than one module.

In the TYPES paragraph one can declare named types that will be
used in the implementation. As in the case of the representation
specifications, the names are merely a shorthand for the type
definitions, and thus serve mainly to enhance the readability of the
implementation; no new designator types can be declared here.

The EXTERNALREFS paragraph identifies module entities that are
referred to in the implementations. In the case of the implemented
module ("histogram") all visible operations must be declared, in
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addition to designator types corresponding to arguments or returned
values., Similarly, for the implementing modules {upper and lower), all
entities (visible operations, parameters, designator types and scalar
types) that are needed in the implementation must be declared.

The IMPLEMENTATIONS paragraph contains the ILPL programs for each
of the operations of "histogram®™. No program is required to initialize
the module since its initial state is just the initial state of "tally", 4
transformed by Lthe representation for "histogram" to "tally". Four of !
the five implementations are almost trivial. We will discuss in detall
the program for "getword"™ to illustrate the notation, and that for
"hist", which is the only non-trivial program here.

The program for "getword" is as follows:

VPROG getword(INTEGER j) -> truncated_word tw;
BEGIN
EXECUTE tw <- t_retrieve(j) THEN
ON no_string : RAISE(no_word);
ON NORMAL : RETURN;
END; ;
END; ]

The header line identifies the kind of program (here, VPROG, which means
it implements a visible V-function), the program name, and its argument
and returned value. The body of the program consists of an invocation
of the "tally" operation "t_retrieve". Here a V-function is invoked
with the expectation that either an exception will be raised {and

handled), or a "normal® return will occur. If the value of j is such as

to cause the return of the exception "no_string” -- which, as portrayed
in the specification for "tally" (Table 6), corresponds to j being out
of bounds -~ then the exception "no_word" is raised, and the program
terminates. Otherwise, the value of j is acceptable and the result of
"t _retrieve(j)" is returned from "getword(j)".

Now consider the program for "hist(n)". This program consists of

three parts as follows:

1. Determine if the "tally”" tables for the storage of words and
frequency counts are cleared; if not raise an exception.

2. Initialize the "tally"” module to handle a new sequence n.
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3. Process the words of sequence n in turn; if the resources of
"tally" are exhausted before all words of the sequence can be
successfully processed then raise an exception; otherwise
return successfully.

For the first part we have

IF t_len() "= O
THEN RAISE(hist_not_reset);
END_IF;

Here, the V-function "t_len" is invoked for which no exception return is
specified -- see the specifications of "t_len" in Table 6 ~~ and, hence,
only the "normal" return need be handled in the implementation. Thus,
exception "hist_not_reset" is raised if it has been determined that the
value of "t_len" is not 0, which indicates that the "tally" word and
frequency tables contain entries, and thus that the histogram, as
reflected in terms of its representation, is not in its reset state.

For the second part of the program for "hist(n)" we have
t_initialize(n);
No exception is specified for this O-function. As 1indicated in the
specifications, the effect here is to initialize the "tally" tables that
keep track of the current sequence and the next word in that sequence to

be processed.

For the third part we have

UNTIL no_more_room DO
EXECUTE insert_or_increment() THEN
ON no_more_words : RETURN;
ON RESOURCE_ERROR : SIGNAL(no_more_room);
ON NORMAL : ;
END;
THEN
ON no_more_room :
reset_tally();
RAISE(RESOURCE_ERROR);
END;

The event "no_more_room" is declared by its position following
"UNTIL". Mnemonically, this event is intended to portray the absence of
room in the "tally" module to handle additional words., It is intended

that the loop body be repeatedly executed until the statement
"SIGNAL(no_more_room)" is executed, at which time control passes to the
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*handler” for the event "no_more_rooa". Here, the loop body is an
EXECUTE statement that involves an invocation of the O-function
"insert_or_increment", with three possible results:

1. The exception "no_more_words" is raised, corresponding to all
words of the sequence n having been processed. In the event
of this exception, we have finished generating the histogram .
and control can return from the program "hist". F

2. The exception "RESOURCE_ERROR™ is raised, corresponding to
some unspecified exhaustion of resources at a lower level. In
! the event of this exception, the handler transfers control to
the handler for the event "no_more_room"™. "Reset_tally" is
3 then invoked and causes the "tally" module to be returned to |

(a state that maps up to) the initial state of the "histogram"
module. Following this, the exception "RESOURCE_ERROR" is

raised.

3. A "normal" return is made, corresponding to successful ]
processing of the current word.

Note that this program could have been written without the event
"no_more_room". The two statements in the handler for this event could
have been substituted for the "SIGNAL" statement in the handler for
"RESOURCE_ERROR". Our intention was to illustrate the use of declared
events, and also to improve the structure and readability of the

prograa,
' We will not discuss the remaining programs of the implementation:
b  "howmany", "histlen", and "clearhist". A reader should have no

difficulty understanding them. ]

Now let us proceed to a discussion of the implementation for

~aian L

“tally".

E. Tally Implementation

The concern here is with the implementation of "tally" in terms of
the modules "query", "seq pointer_cells", "hasher", "truncator®", and
"sequences". For the latter two modules, it is the level5 appearance
(the level of "tally") that is referenced in the implementation, as
depicted in Figure VII-1. However, for this particular example, the
references could be to the module appearances at leveld, since there is
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no partitioning of the leveld appearances of either "sequences" or
"truncator®™ for the use of distinct level5 modules.

As indicated above, "tally" provides the operation
"insert_or_increment()", which gives the appearance of processing the
next word w in some previously identified sequence n. By "processing”,
we mean first w is truncated to form a word tw; if tw is not already in
the table, it is placed at the next free location of the "t_retrieve"
table and the frequency count for that position in the "t_howmany" table
is set to 1; otherwise, (tw is already in the table), its count in the
"t_howmany" table is incremented by 1. Operations are also provided to
access the two tables, and to swap a pair of entries. Recall that the
swapping operation permits the rearrangement of the tables once all

words of a sequence have been processed.

Now 1let us briefly review the relevant capabilities of the
implementing modules.

The "sequences" module provides the operation "string(n,j)", which
permits the retrieval of the j-th word in sequence n.

The "truncator" module provides the parameter "maxlength", the
length beyond which characters are ignored in forming a "trruncated_word"
from a "word".

The "seq pointer_cells" module provides two cells, one for the
storage of a seq designator, and the other for the storage of an
integer.

The "hasher” module provides the parametric function

hash(word w; INTEGER upper)
which returns an integer in the range O..upper-1 corresponding to w.

The "query"™ module bears most of the burden in implementing
"tally". In particular, "query" provides the following:

get_string and check_count, which provide direct access to words
and integers, respectively.

size(), which returns the number of words stored in the
"get_string" table.

save(w, p), which causes the word w to be saved at the next free
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position J in the "get_string" table and causes the position
p in a "dir"® table to hold that value j, provided p is an
eapty slot in the "dir" table. Also, the value in location j
of the "check_count" table is set to 1 if the operation is
successfully completed. In essence, "dir" is treated as a
hash table, and the argument p is a probe into the table
derived from a hashing function on the word w.

add_count(p), which adds 1 to the value in position j of the
"check _count" table, where j is the value of "dir(p)".

swap_query(i,j), which simultaneously exchanges the entries in
both the "get_string” and "check_count" tables.

reset_query(), which clears the tables to their initial state.

The major decisions reflected by the implementation of "tally" are

as follows:

® The initialization of a sequence n involves the storing of n
in one of the cells in "seq pointer cells" and 0 (pointing to
the beginning of the sequence) in the other cell.

% A word is truncated prior to its processing by the "query"
operations.

8% Reflecting the hash searching scheme, if a word w appears at
location j of the "get_string" table, then dir(p) = j for p
between hash(w,plen) and some pi1, where dir(p1) = 0. A word
appears only once in the "get_string" table. These decisions
were captured by the invariants in the representation for
"tally" (Table 18). Plen, a parameter of "query", is the
number of entries in the "dir" table.

: Now, let us discuss the interesting implementations as given in
Table 23. It is not necessary to discuss the implementations for
"t _len", "t_retrieve", "t_howmany", "reset_tally", "t_initialize"™ and !

"swap_tally"; they are quite simple,

Let us consider the one interesting implementation, that for

"insert_or_increment™”. First, note the ASSERT statement

get_s{) ~= ?;

It is assumed that before "insert_or_increment" is invoked, a "defined"

value, 1i.e., a seq designator, 1is in the Tget_s" cell of
: "seq_pointer_cells". Otherwise, it would be necessary to provide an
exception corresponding to an "undefined" value being there.
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The body of the program can be viewed as consisting of five parts:

1. Initialize local variables n, k to the current seq designator
and the index of the last word that was processed.

2. Fetch the next word w from the current sequence. If there is
no "next word", then raise the exception "no_more_words".

3. Assign the local variable tw to be the truncation of w.

4. Assign local variable p to be the result of applying "hash" to
tw; p is the initial hash probe.

5. Attempt to "save" the word tw. That is, determine if tw is
already in the 1'"get_string"™ table, in which case its
corresponding frequency count in the "check_count" table is
incremented by one; or if tw is not there, then store it at a
"conveniently accessible"™ location and set its count to 1.
The sesarch commences at position hash(tw,plen) of "dir" and
continues until one of the following happens: the word is
found, an empty slot in the "dir" table at location pi (i.e.,
dir{pi) = 0) is encountered, or all "dir" slots are examined
without success. The attempt to "save" could also fail due to
a "resource error".

Let us examine the code for part 5, which corresponds to the
following loop statement:

FOR p1 FROM p to p + plen - 1 UNTIL done DO
p2 <- p1 MOD plen;
EXECUTE save(tw, p2) THEN
ON hit : add_count(p2);
SIGNAL(done);
ON wrong_word : ;
ON RESOURCE_ERROR : RAISE(RESOURCE_ERROR);
ON NORMAL : SIGNAL(done);
END;
THEN
ON done : store_p(k + 1);
RETURN;
ON NORMAL : RAISE(RESOURCE_ERROR);
END;

The iteration covers the plen integers starting with the initial hash
probe p. The event "done" is declared to correspond to successfully
finding tw. Each 1iteration simply 1involves an invocation of
"asave(tw,p2)". There is no need to check explicitly for the exception
"no_dir" (see Table 9) since it is clear that p2 will always be between
0 and plen-1. The renainiﬁg exceptions and "normal® return associated
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with "save" are used in an essential way to effect control in the
progranm.

® The exception "hit" corresponds to the word being there. It
is thus necessary to increment the count associated with word
tw, as 1s effected by invoking "add_count(p)", and then
transferring to the code assoclated with the handler for event
"done". This handler code just causes the index that points
to the just processed word of the sequence to be incremented
by one. Note that there is no need to check explicitly for
the ¢two exceptions of *“add_count(p)": "no_dir" and
"empty_slot”. In this context we know that these exceptions
cannot occur.

% The exception "wrong word" corresponds to a word twl "= tw
being stored at location dir(p2) of the "get_string” table.
No action is to be taken here, i.e., the next iteration of the
loop is to be executed.

% The exception "RESOURCE_ERROR" corresponds, as usual, to an
| exhaustion of resources at some lower level. In this case the
f exception "RESOURCE_ERROR" for "insert_or_increment" |is
raised.

| #® The "NORMAL" return corresponds to the slot p2 being empty;
: thus the effects of "save" indicate that tw is now in the
! "get_string" table at the first empty location, and the
! corresponding count in the M"check_count” table becomes 1.

Control is transferred to the "done" handler to update the

» pointer.
ﬁ. If the loop completes the quota of plen iterations, then control passes
to the "NORMAL® handler at the scope of the "FOR" statement. (This
handler is optional, and was not needed in the implementation of "hist"

ﬁ ~- see previous section.) In this event, all slots of the "dir" table
have been investigated without finding the word tw, an eampty slot, or
without raising an "RESOURCE_ERROR" exception. At this time, it is only
possible to raise the exception "RESOURCE_ERROR" for the invocation of
"insert_or_increment". :

This completes our description;df the implementations for "tally".
Now, let us proceed downward to the implementation of "query".

| F. Query Implementation

The concern here is with the implementation of *"query" in terms of
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"ssquences” and "intarrays". As indicated in Figure VII-1, it is the
lower level appearance -- level3 -- of "sequences" that is participating
in the implementation. Recall that "query" provides two accessible
tables: "get_string” and "check_count", which respectively hold words
and integers. The primary O-functions are ‘"save(w,p)" and
"add_count(p)"; the former enables the storing of word w at the next
free position J in the "get_string"” table, where the p-th location in
the hidden table "dir" is then assigned the value j. Exceptions are
returned corresponding to a word w' (possibly being the same as w)
already being in the "get_string" table at location dir(p). On the
other hand, an invocation of "add_count(p)" causes the j-th location of
the "check_count" table, j = dir(p), to be incremented by one provided
dir(p)~=0. The other operations of "query" that are to be implemented
are "size", "swap_seq", and "reset_query".

Now, let us briefly consider the operations of the two modules used
in the implementation. Recall, "sequences" maintains a collection of
variable-length word files (sequences). The sequence operations of

interest here are:
® create_seq, which creates a new sequence
% string, which enables random retrieval of a word in a sequence
8 seqlen, which returns the number of words in a sequence
% append, which attaches a word to the end of a sequence
® clear_seq, which resets a sequence

® swap_seq, which exchanges two words in a sequence.

The module "intarrays" maintains a collection of integer arrays,
each of fixed length "leni®. The intarray operations of interest here

are:
® create_intarray, which creates a new integer array

& getint, which retrieves an integer from a location in the
array

® change_int, which causes an identified position in an array to
attain a new value.
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In the previous chapter we presented the decisions for the
representation of "query". Briefly, the "get_string" table is
represented by a particular sequence given the name "unique_string”.
Each of the other tables is represented by an 1integer array:
"check count™ by "count_array", and "dir" by "director_array". In the
case of "dir(p)", "defined" values are returned for p in the range
0..plen-1, while in the representation, defined values will appear for
positions 1..leni.

The major implementation decisions divulged here are:

* The initialization of "query" creates the sequence and the
integer arrays that represent the "query" functions. It is
necessary to initialize all positions of the array
"director_array" with 0, while "count_array" can have
arbitrary values.

® The initialization binds a value to the "query" parameter
" n
plen”.

% The successful "saving" of a word appends it to the sequence
"wnique_string".

% Numerous exception conditions associated with the "sequences"
and "intarrays" operations can be shown never to occur, and
hence can be omitted from the implementations.

Now let us consider the implementations, as displayed in Table 24.
First note the PARAMETERS paragraph, in which designators are declared
for two integer arrays and for a sequence. An INITIALIZATION program is
required for "query" to create the two integer arrays and the sequence,
and to bind the returned designators to the names declared as parameters
of the implementation. Also, the module parameter "plen" is bound to
the "intarrays" parameter "leni". The binding is accomplished as an
assignment statement; for example, the statement

unique_string <- create_seq()
binds ™unique_string"™ to the designator returned by the invocation of
“ereate_seq()". It is assumed here that these parameters retain their
values between invocations of functions in the module. Note that the
statement

FOR i FROM 1 TO leni DO
change_int{(director_array, i, 0)
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causes all positions in the "director_array" to be initialized with 0;
otherwise, the values would be random integers, as seen from the
specifications -- Table 10.

Most of the programs are trivial and do not not require any
significant discussion. However, those for "check_count(j) -> v" and
"save(w,p)" illustrate a few interesting details. The program body for
the former is

IF j < 1 OR j > seqlen(unique_string)
THEN RAISE(no_word);
END_IF;

v <- getint(count_array, j);

RETURN;

In order to determine if j is in bounds it is determined if it is in the
range 1..seqlen{unique_string), i.e., if there exists a "defined" word
at position j of "unique_string". If j is out-of-bounds the exception
"no_word" is returned for "check_count®™. Otherwise, the value in the
j-th position of the "count_array" is returned. Note that no exception
is anticipated for the call on "getint". Informally, if it has been
determined that there exists a word at position j, then there exists a
count for that word in the "count_array". The invariant presented in
Table 19:

FORALL j ! string(unique_string, Jj) = ? :
j INSET {1 .. leni}

captures this property of the usage of "intarrays" and "sequences" by
the implementing programs for "query".
Now consider the body for the program for "save(w,p)". It consists

of three parts as follows:
1. If p is out of bounds, then the exception "no_dir" is raised.

2. If the p-th slot is empty, then try to append the word w to
the "unique_string”. If carried out without a resource error,
then the "director_array" and the "count_array" are updated.

3. If the p-th slot is not empty, then determine if the word
corresponding to it is w (the exception "hit" is raised) or
not w (the exception "wrong word" is raised).

The body of the program is as follows; a blank line separates the

three parts.
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EXECUTE j <- getint(directorarray, p-1) THEN
ON no_int : RAISE(no_dir);
ON NORMAL : ;

END;

IF j = O THEN
EXECUTE append(unique_string, w) THEN

ON RESOURCE_ERROR : RAISE(RESOURCE_ERROR);
ON NORMAL :
J1 <~ seqlen(unique_string);
change_int(director_array, p, j1);
change_int(count_array, j1, 1);
RETURN;
END;
END_IF;

IF w = string(unique_string, j);
THEN RAISE(hit);
ELSE RAISE(wrong_word);
END_IF;

Note that no exception 1is expected for the ¢two invocations of
"change_int" in part two. It has already been determined in part 1 that
p is in bounds. Moreover, by the above invariant it is also assured
that j1 is between 1 and leni. Again, no exception is expected for the
invocation of "string" in part three. An invariant of the "query"

representation

FORALL INTEGER p INSET {1 .. leni}
getint(director_array, p) INSET {0..seqlen(unique_string)}

ensures that that value j of part 3 corresponds to an existing word.

This completes our discussion of the implementation for "query®.

Now let us proceed downward to the implementation for "sequences".

G. Sequences Implementation

The concern here is with the implementation of "sequences" in terms
of "vecarrays", "intarrays", and "“vc_intarray_pairs®. As indicated in
Figure VII-1, all of the implementing modules are at the lower level --
level2. Recall that the moduiec "sequences" maintains a collection of
variable length word files, here denoted as sequences, where each word
is a vector of characters. With each sequence is associated a unique
seq designator. The operations provided by the "sequences" module allow
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direct read access to words in a sequence, append a word to the end of a
sequence, and interchange two words of a sequence; a few additional
operations, as previously discussed, are also provided.

The "vcarrays" module maintains a collection of variable length
character arrays, denoted as vcarrays. With each vecarray we associate a
unique "vearray" designator. The operations of the module needed in the

implementation of "sequences” are the following:
char(vca, jJ) -- returns the j-th character of vcarray vea.

int_for_vcarray(vca) -- returns a unique integer corresponding
to vcarray vea.

one_more_char(vca, ¢) -- appends character ¢ to vcarray vea.

remove_chars(vca, i) -- removes the i last characters from
vcarray vea.

clear_vcarray(vca) -- clears vcarray vea to its initial state.

Recall that the module "intarrays®™ maintains a collection of
integer arrays, each of which is of the same fixed length "leni". Each
integer array is identified by a unique intarray designator. Operations
are provided to enable direct read and write access to a selected

integer array.

Let us review the decisions underlying the representation of
"sequences" in terms of "vcarrays" and "intarrays". Each sequence is
represented by a unique vcarray and a unique integer array. As such,
each seq designator is represented as a pair consisting of a vcarray
designator and an intarray designator. Each vcarray and intarray
designator can appear in the representation of no more than one seq
designator. In the representation of a sequence, the vcarray holds the
characters of each word in the sequence, but without regard for the
Separation between words. The characters of a word appear in successive
positions, but the groups of characters perceived as words do not
necessarily appear in the same order as in the sequence. The
information about the separation of characters in the vcarray as words
is held in the integer array. In particular, the positions of the first
and last characters of the i-th word, as represented in the vcarray, are
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held in positions 2%i and 2%i - 1 of the integer array. A distinct
integer array (with designator "nstrings") holds the current length of
each sequence. In particular, the length of sequence n is held in
position int_for_vearray(vca) of nstrings, where vca is the vcarray
component of the representation of seq n.

We have not yet indicated the facilities provided by the module
"vc_intarray_pairs®. For our purposes here, this module provides the
operation "create_vc_intarray_pair", which returns a vcarray-intarray

pair.
The major decisions expressed in the implementation are the
following:

®* The creation of a new sequence is done by invoking
"create_vc_intarray_pair".

®* The initialization of a newly created sequence requires
storing 0 in the corresponding location in the "nstrings"
array -- a new sequence has zero length.

®* The appending of a word to sequence n is implemented by
appending the characters, one at a time and in order, to the
end of the corresponding vcarray. In addition, the
corresponding position in the "nstrings" array is updated to
reflect the new length of the sequence, and the corresponding
positions in the integer array representing sequence n are
updated to indicate the boundary positions of the word.

#* The interchanging of two words in sequence n is implemented by
interchanging the corresponding boundary positions of the
words as represented in the integer array associated with n.

* Numerous exception conditions associated with invocations of
"vearrays" and "intarrays" functions can be shown not to
occur, and hence are deleted from the programs.

Now consider the implementations as given in Table 25. This
implementation contains the TYPE_MAPPINGS paragraph, which, in general,
displays the mapping of the designator types of the implemented module
m, essentially as previously given in the representation specification
for the machine cluster containing the lowest level appearance of m.
For this implementation the designator type seq is mapped to the type
ve_intarray_pair, which is defined to be a structure in the TYPES

paragraph.
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Again, most of abstract programs are readily understood without a
detailed discussion. However, we will discuss two of the programs in
order to 1illustrate some of the new syntax introduced here, and to
illustrate some of the aspects of abstract programs, in general. First,
consider the body of the program for "create_seq() -> n"

EXECUTE n <- create_vc_intarray_pair() THEN
ON RESOURCE_ERROR : RAISE(RESOURCE_ERROR);
ON NORMAL :
change_int(nstrings, int_for_vcarray(n.vcarray_part),0);
RETURN;
END;

Note that in the body, n is a vearray-intarray pair. The program

returns "RESOURCE_ERROR" if no more pairs can be created. Otherwise, it

is necessary to insert 0 in the position of the "nstrings" array that

corresponds to the newly created sequence. That position is given by
int_for_vecarray(n.vearray_part)

Note that no exception is expected for the invocation of "change_ int"

since the invariant of the representation specification for "sequences"
leni >= v_int_bounds

guarantees that if a new pair is successfully generated (which implies

that a new "vcarray" designator vca is generated) then the value of

"int_for_vcarray(vca)" is constrained to not exceed "leni" -- the length

of an integer array.

The final statement in the program
RETURN;
indicates that the returned value is to be the newly generated pair
(i.e., n). However, by virtue of the type mapping, the type of the
value as perceived by the invoker of "create_seq" 1is seq. This
illustrates the implicit type conversion between the arguments and
return value of the operation and the references to them in the body of

the program that implements the operation.

Let us now briefly consider the program for "append(n, w)". It
consists of four parts as follows:

1. Initialize the local variables vec, i, j, r.
2. Determine if there is sufficient room for one additional word
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in the integer array that holds the boundary positions of the
words for sequence n. There is room if there are at least two
unused positions at the end of the array. A "RESOURCE_ERROR"
is raised if two such positions do not exist.

For each character of w, in turn, attempt to place it at the
end of the vcarray vc that represents n. The appending
process stops if there is insufficient room for an additional
character, and a "RESOURCE_ERROR" is raised for "append".

If parts (2) and (3) are both successfully completed, then
i update the two next free positions in the "boundary" integer
i array to correspond to the newly appended word. Also,
increment by 1 the position in the "nstrings" array
corresponding to sequence n.

With regard to part (3) it is not necessary to remove the ;
characters of w already stored in the vcarray if a resource error is '
encountered. Although the state of the "vcarrays" module has been
changed by the partial appending of a word, the state presented by
"sequences" (the state of "vcarrays" and "intarrays" transformed by the

representation specifications for "sequences”) is not changed, as is

proper when an invocation of an operation causes a exception return. Of
i v course, the vcarray vc is now full and cannot accommodate any more
characters. As an embellishment, one might replace part (3) by the
following program segment

FOR k FROM 1 TO LENGTH(w) DO
EXECUTE one_more_char(ve, wlk]) THEN
ON RESOURCE_ERROR :
‘ remove_chars(ve, k-1);
1 , RAISE(RESOURCE_ERROR);
ON NORMAL : ;
END;
END;

The k-1 characters of w stored prior to the overflow of the vcarray ve
are removed by the invocation of "remove_chars(ve, k-1)", thus returning
"vearrays" to its state prior to the execution of any statements in
"append". It is not necessary to check for the "underflow" exception
for "remove_chars", since it is clear that there are at least k-1

2kl v
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characters in the vecarray.

This completes our discussion of the implementations. The
remainder of the implementations are very straightforward and should be
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easily comprehended. The reader who has reached this point (without . {

skipping) should indeed be congratulated,

We remind the reader that we have accomplished much more than the
design of a single program. Rather, we have specified a family of
systems, capable of a large number of implementations, scale choices,
and extensions. The example itself is rather simple, but the mechanisms

employed are of the same type and nature as those that would be used for

the specifications of very large and complex systems. In other words,

your effort, we believe, has a great potential application.




A. SPECIFICATIONS FOR THE EXAMPLE

The following tables contain all specifications for the example
discussed in this volume.
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Table 1: STRUCTURE OF THE EXAMPLE

(INTERFACE level6
(sequences)
(histogram)
(truncator))

(INTERFACE level5
(sequences)
(tally)
(truncator))

(INTERFACE levell
(sequences)
(seq_pointer_cells)
(query)
(hasher)
(truncator))

e

(INTERFACE level3
( sequences)
(seq_pointer_cells)
(intarrays)
(hasher)
(truncator))

(INTERFACE level2
(vearrays)
(intarrays)
(ve_intarray_pairs)
(ve_etc_cells)
(hasher)
(truncator))

— T pp—

(INTERFACE levell
(chararrays)
(intarrays)
(chararrays_intarray_pairs)
(chararrays_etc_cells) _ 4
(hasher)
(truncator))

(HIERARCHY example
(level1 IMPLEMENTS level2 USING vcarrays) )
(level2 IMPLEMENTS level3 USING sequences) :
(level3 IMPLEMENTS levell USING query) ]
(levelld IMPLEMENTS level5 USING tally)
(level5 IMPLEMENTS level6 USING histogram))
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vP
vP

VP
VP

HP

vp
vP

Table 2: OBJECTS OF MODULES AND MAPPINGS

HISTOGRAM MODULE

VFUN getword(INTEGER j) -> truncated_word w
VFUN howmany(INTEGER J) -> INTEGER 1

VFUN histlen() -> INTEGER v

QFUN hist(seq s)

OFUN clear_hist()

SEQUENCES MODULE

seq: DESIGNATOR

VFUN string(seq n; INTEGER j) -> wvord w
VFUN seqlen(seq n) -> INTEGER v

OVFUN create_seq() -> seq n

OFUN clear_seq(seq n)

OFUN append(seq n; word w)

OFUN swap_seq(seq n; INTEGER i, j)

TRUNCATOR MODULE

INTEGER maxlength
truncation(word w) <> truncated_word tw

TALLY MODULE

VFUN t_retrieve(INTEGER j) -> truncated_word tw
VFUN t_howmany(INTEGER j) -> INTEGER v

VFUN t_len() -> INTEGER v

VFUN t_pointer() -~> INTEGER v

VFUN t_sequence() -> seq s

OFUN t_initialize(seq s)

OFUN insert_or_increment()

OFUN swap_tally(INTEGER i, j)

OFUN reset_tally()

SEQ_POINTER_CELLS MODULE

VFUN get_s() ~> seq s
VFUN get_p() ~> INTEGER v
OFUN store_s(seq s)
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INTEGER plen
') 4
VP
VD
HP
OFUN reset_gquery()
intarray: DESIGNATOR
VP
vecarpray: DESIGNATOR
INTEGER v_int_bounds
VP
VP

HP

OFUN store_p (INTEGER i)

e a il

QUERY MODULE

VFUN get_string(INTEGER j) -> word w
VFUN check _count(INTEGER j) -> INTEGER v
VFUN size() -> INTEGER v

VFUN dir(INTEGER p) -> INTEGER v

OFUN save(word w; INTEGER p)

OFUN add_count(INTEGER p)

OFUN swap_query(INTEGER i, j)

HASHER MODULE

INTEGER hash(word w; INTEGER upper)

INTARRAYS MODULE

INTEGER leni :
VFUN getint(intarray m; INTEGER j) -> INTEGER v
OVFUN create_intarray() -> intarray m

OFUN change_int(intarray m; INTEGER j, v)

VCARRAYS MODULE

VFUN char(vcarray n; INTEGER i) -> CHAR ¢
VFUN int_for_vecarray(vecarray n) -> INTEGER v
OVFUN create_vcarray() -> vcarray n

OFUN one_more_char(vearray n; CHAR ¢)

OFUN remove_chars(vecarray n; INTEGER i)

OFUN clear_vcarray(vecarray n)

VC_INTARRAY_PAIRS MODULE

ve_pair_exists(ve_intarray_pair vnp) ~> BOOLEAN b
QVFUN create_vc_intarray_pair{) -> vc_intarray_pair vnp
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VC_ETC_CELLS MODULE

VFUN v_get() -> vecarray ve
VFUN v_get_n() -> intarray n
VFUN v_get_1i() -> INTEGER v
OFUN v_store(vcarray v)

OFUN v_store_n(intarray n)
OFUN v_store_i(INTEGER 1)

CHARARRAYS MODULE

chararray: DESIGNATOR

INTEGER maxchararrays

INTEGER lenc

VFUN getchar(chararray n; INTEGER j) -> CHAR ¢
VFUN int_for_chararray(chararray n) -> INTEGER v
OVFUN create_chararray() -> chararray n

OFUN change_char(chararray n; INTEGER j; CHAR c¢)

CHARARRAYS_ETC_CELLS MODULE

VFUN c_get() -> chararray nc
VFUN c_get_n() =-> intarray n
VFUN c_get_i() -> INTEGER v
OFUN c_store(chararray nc)
OFUN c_store_n(intarray n)
OFUN c_store_i(INTEGER 1)

CHARARRAYS_INTARRAY_PAIRS MODULE

VFUN chararray_pair_exists(chararray_intarray_pair cnp) g
-> BOOLEAN b ;
OFUN store_chararray_intarray_pair(chararray_intarray_pair
enp)

HISTOGRAM MAPPING
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TALLY MAPPING

QUERY MAPPING

seq unique_string
intarray director_array
intarray count_array

SEQUENCES MAPPING

intarray nstrings

VCARRAYS MAPPING

intarray length_array
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Table 3: Sequences Module

MOIULE sequences
$( maintains an unspecified number of variable length
sequences of character strings (words) , each string of
variable length. For reading, words can be randomly
accessed. New words can be inserted at the end of a
sequence. Words can be exchanged)

csum < buinbondo v ire

TYPES

seq: DESIGNATOR; $( sequences )
word: { VECTOR_OF CHAR vec | LENGTH(ve) > 0 };

DEFINITIONS

BOOLEAN no_word(seq n; INTEGER j)
IS NOT j INSET { 1 .. seglen(n) };

FUNCTIONS 3

VFUN string(seq n; INTEGER j) -> word w; $( returns the j-th
string in sequence n)
EXCEPTIONS
no_word : no_word(n, j); ]
INITIALLY
: W= 7

VFUN seqlen(seq n) -> INTEGER v;
$( returns the number of strings in sequence n)
DERIVATION

' CARDINALITY({ INTEGER j | string(n, j) "= ? 1);

OVFUN create_seq() -> seq n;
$( creates a new sequence all words of which are
undefined. A newly generated designator is returned)
EXCEPTIONS
RESOURCE_ERROR;
EFFECTS
n = NEW(seq); 3

OFUN clear_seq(seq n); $( clears sequence n)
¥ EFFECTS
§ FORALL INTEGER j: 'string(n, jJ) = 7?;

OFUN append(seq n; word w);
$( appends word w to the end of the sequence n)
EXCEPTIONS
RESOURCE_ERROR;
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EFFECTS
'string(n, seqlen(n) + 1) = w;

OFUN swap_seq(seq n; INTEGER i, J);

$( exchanges words in positions i and j of saquence n)

EXCEPTIONS
no_word1 : no_word(n, 1i);
no_word2 : no_word(n, j);

EFFECTS
tstring(n, 1)
tstring(n, j)

string(n, j);
string(n, 1);

END_MODULE
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Table 4: Truncator Module

MODULE truncator $( provides a function that truncates the length
of a word to a fixed maximum length)

TYPES

word: { VECTOR_OF CHAR vc | LENGTH(ve) > 0 };
truncated_word: { word w | LENGTH(w) <= maxlength };

PARAMETERS

INTEGER maxlength;

ASSERTIONS

maxlength > 0;

FUNCTIONS
VFUN truncation(word w) -> truncated_word tw;
$( truncates the word w to maxlength)
DERIVATION
VECTOR(FOR i FROM 1 TO MIN({ maxlength, LENGTH(w) }):
wiil);

END_MODULE
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Table 5:

Histogram Module

MODULE histogram
$( forms and maintains a histogram of the truncated words
of an identified sequence s; the histogram words are
stored according to the order of their appearance in the
sequence 8)

TYPES

word: { VECTOR_OF CHAR vc | LENGTH(ve) > 0 };
truncated_word: { word w | LENGTH(w) <= maxlength };

DEFINITIONS
BOOLEAN badarg(INTEGER i) IS NOT(i INSET { 1 .. histlen() });

INTEGER occurrences(seq s; truncated_word tw)
IS CARDINALITY( { 1 .. seqlen(s) }
INTER { INTEGER i | truncation(string(s, 1))
= tw 1);
$( number of occurrences of words whose truncation is tw
in sequence s)

SET_OF truncated_word occurset(seq s; INTEGER i)
IS IF { = O THEN (}
ELSE occurset(s,i - 1) UNION {truncation(string(s,i))};
$( the set of all truncated words whose truncaton occurs
up to and including the i-th position of sequence s)

truncated_word ith_word(seq s; INTEGER i)
IS truncation(
string(s, MIN({ INTEGER j |
CARDINALITY(occurset(s, j)) = i})));

$(the i-th distinct truncated word in sequence s)
EXTERNALREFS

FROM sequences:
seq: DESIGNATOR;
VFUN string(seq s; INTEGER i) -> word w;
VFUN seqlen(seq s) -> INTEGER v;

FROM truncator:
INTEGER maxlength;
VFUN truncation{word w) -> truncated_word tw;

FUNCTIONS
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VFUN getword(INTEGER j) -> truncated_word w;
$( returns the j-th word in the histogram)
EXCEPTIONS

no_word : badarg(J);
INITIALLY
w7

VFUN howmany(INTEGER j) -> INTEGER v;
$( returns the number of occurrences of the word at

position in the histogram)
EXCEPTIONS
no_word : badarg());
INITIALLY
v= 7

ot & M. i . a0 o

VFUN histlen() -> INTEGER v;
$(returns the number of words currently stored in the
histogram)
DERIVATION
CARDINALITY({INTEGER i | getword(i) ~= ?});

OFUN hist(seq s); $( forms a histogram of the sequence s)
EXCEPTIONS
hist_not_reset : histlen() ~= 0;
| $( the histogram is not cleared)
! RESOURCE_ERROR ;
g EFFECTS
| FORALL INTEGER j:
'hownany( j) = occurrences(s, 'getword(j))
AND 'getword(j) = ith_word(s, j);

OFUN clear_hist(); $( clears the histogram)
EFFECTS
FORALL INTEGER j: 'getword(j) = ? AND 'howmany(Jj) = ?;

END_MODULE
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Table 6: Tally Module

MODULE tally
$( maintains a collection of strings (words) , each of
whose numbers of occurrences and values can be stored
and referenced by a unique index. The words are stored
contiguwusly. A "swap” function allows the exchanging of
any two words stored in the histogram)

TYPES

word: { VECTOR_OF CHAR ve | LENGTH(ve) > 0 }; §
truncated_word: { word w | LENGTH(w) <= maxlength };

DEFINITIONS
BOOLEAN no_string(INTEGER j) IS j < 1 OR J > t_len();

truncated_word truncation(word w)
IS VECTOR(FOR i FROM 1 TO MIN({ maxlength, LENGTH(w) 1)
: wlil);

EXTERNALREFS |

FROM sequences:
seq: DESIGNATOR;
VFUN string(seq n; INTEGER i) -> word w;
VFUN seqlen{seq n) -> INTEGER v;

FROM truncator:
INTEGER maxlength;

FUNCTIONS

VFUN t_retrieve(INTEGER j) -> truncated_word tw;
$( returns j-th string in tally which has one or more
occurrences)
EXCEPTIONS
no_string : no_string(J);
INITIALLY
tw = 73 ;

VFUN t_howmany(INTEGER j) -> INTEGER v;
$( returns no. of occurrences of the j-th non-undefined
string in tally)
EXCEPTIONS
no_string : no_string(J);
INITIALLY




V=17

VFUN t_len() -> INTEGER v; $( returns current no. of strings in
DERIVATION
CARDINALITY({ INTEGER i | t_howmany(i) ~= ? });
VFUN t_pointer() -> INTEGER v;
$( returns the value of the pointer into the sequence
whose histogram is being computed)
HiIDDEN;
INITIALLY
v =17

VFUN t_sequence() -> seq s; $( returns the current sequence

whose histogram is being computed)
HIDDEN;

INITIALLY
s =7

OFUN t_initialize(seq s); $( sets current sequence to be s, and

; the pointer to 0)
; EFFECTS

't_sequence() = s;
't_pointer() = 0;

i OFUN insert_or_increment();

, $( inserts the next string of the current sequence at the
end of the tally sequence, provided that string has not
been previously stored; sets the count value for that
string to 1; if the word has been previously stored then
its count-value is incremented by 1)

ASSERTIONS

t_sequence() "= ?;
EXCEPTIONS
no_more_words : t_pointer() >= seqlen(t_sequence());
RESOURCE_ERROR ; 5
EFFECTS
't_pointer() = t_pointer() + 1;
LET INTEGER i |
t_retrieve(i)
= truncation(string(t_sequence(), 't_pointer()))

e INIF i ~=?
THEN 't_howmany(1i) = t_howmany(i) + 1
- ELSE 't_retrieve(t_len() + 1)

= truncation(string(t_sequence(), 't_pointer()))
AND 't_howmany(t_len() + 1) = 1;

OFUN swap_tally(INTEGER i, j); $( exchanges the truncated words

and the tallies of indices i and Jj) i
EXCEPTIONS

no_string1 : no_string(1i);
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no_string2 : no_string(Jj);
EFFECTS

't_retrieve(i) = t_retrieve(j)

't_retrieve(J) = t_retrieve(i)

't_howmany(i) = t_howmany(j);

't_howmany(J) = t_howmany(1);

OFUN reset_tally(); $( resets the set of strings to initial state)

EFFECTS
*t_pointer() = 0;
FORALL INTEGER {1:
't_howmany(1i) = ? AND 't_retrieve(i) = ?;

.
’
.
4

END_MODULE
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Table 7: Hasher Module

MODULE hasher
$( provides a mechanism for returning an integer

(hash probe) corresponding to a word. The range of the
returned integer is between 0 and "upper” ~1)

TYPES
word: { VECTOR_OF CHAR vc | LENGTH(ve) > 0 };

PARAMETERS :
INTEGER hash(word w; INTEGER upper);

ASSERTIONS

FORALL word w; INTEGER j:
IF § <1
THEN hash(w, J) = ?
ELSE hash(w, jJ) INSET { 0 .. j ~ 1 };

END_MODULE
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Table 8: Saq Pointer_Cells Module

MODULE seq_pointer_cells $( maintains two cells, one for a
sequence and one for a pointer)
EXTERNALREFS

FROM sequences:
seq: DESIGNATOR;

FUNCTIONS
VFUN get_s() -> seq s; $( returns the stored seq designator)
ASSERTIONS
get_s() "= 73
INITIALLY
s =7
VFUN get_p() -> INTEGER v; $( returns the value of the integer
pointer)
INITIALLY
v =z 03
OFUN store_s(seq s); $( stores a sequence designator)
EFFECTS
‘get_s() = s;

OFUN store_p(INTEGER 1); $( stores the INTEGER i)
EFFECTS
‘get_p() = i

END_MODULE
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Table 9: Query Module

MODULE query
$( maintains a sequence of strings (words) that are

referenced by an index and by auxiliary pointers
(directors -- i.e. hash table indices) and retains a
count of the number of occurrences of the string
associated with each index. A new word can be
arbitrarily inserted at the end of the query sequence
and associated with a specified pointer. Two entries in
the query sequence can also be swapped.)

TYPES

word: { VECTOR_OF CHAR vc | LENGTH(ve) > 0 };

PARAMETERS

INTEGER plen; $( total number of directors)

DEFINITIONS
BOOLEAN badarg(INTEGER j) IS NOT j INSET { 1 .. size() };

BOOLEAN baddir(INTEGER p) IS NOT p INSET { 0 .. (plen ~ 1) };

ASSERTIONS

plen >= 0;

FUNCTIONS

VFUN get_string(INTEGER j) -> word w; $( returns the j-th string)
EXCEPTIONS
no_word : badarg(j);
INITIALLY
W= ?;

VFUN check_count (INTEGER j) -> INTEGER v;
$( returns current no. of occurrences of j~th string)
EXCEPTIONS
no_word : badarg(J);
INITIALLY
v=7

VFUN size() -> INTEGER v; $( returns current no. of strings)
DERIVATION
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CARDINALITY({ INTEGER j | get_string(Jj) == ? };

VFUN dir(INTEGER p) -> INTEGER v;
$( returns the p-th director to the string sequence and
frequency lists; p is a hash table index)
HIDDEN;
INITIALLY
v =(IF p INSET { O .. plen - 1 } THEN O ELSE ?);

OFUN save(word w; INTEGER p);
$( stores a word at the end of the query sequence,
provided the pth director does not point to w or any
other word. The pth director is set to point to the
newly stored string.)
EXCEPTIONS
no_dir : baddir(p);
hit : get_string(dir(p)) = w;
wrong_word : dir(p) ~= 0;
RESOURCE_ERROR ;
EFFECTS
‘get_string(size() + 1) = w;
'dir(p) = size() + 1;
‘check_count(size() + 1) = 1;

OFUN add_count(INTEGER p); $( increments the count of the string
associated with the pth director by one) 1
EXCEPTIONS ]
no_dir : baddir(p); {
empty_slot : dir(p) = 0;
EFFECTS
*check_count(dir(p}) = check_count(dir(p)) + 1;

OFUN swap_query(INTEGER i, j); $( exchanges the words at positions
i and j of the query sequence)
EXCEPTIONS
no_wordl : badarg(i);
no_word2 : badarg(j);
EFFECTS

'get_string(i) = get_string(Jj); ]

'get_string(J) = get_string(i); i
'check_count{i) = check_count(J); : l
'check_count(J) = check_count(1);

OFUN reset_query(); $( resets the module)
EFFECTS
FORALL INTEGER j: 'check_count(j) = ?;
FORALL INTEGER j: 'get_string(j) = ?;
FORALL INTEGER p INSET { 0 .. plen - 1 }: *dir(p) = O;

END_MODULE




G OB I M eow

Table 10: Intarrays Module

MODULE intarrays $( maintains a fixed, but unspecified, number of
fixed-length integer arrays)

TYPES

intarray: DESIGNATOR;

PARAMETERS

INTEGER leni; $( no. of integers in an array)

DEFINITIONS

BOOLEAN no_int(INTEGER j) IS NOT j INSET { 1 .. leni };

FUNCTIONS

VFUN getint(intarray m; INTEGER j) -> INTEGER v;
$( returns j-th integer in array m)
EXCEPTIONS
no_int : no_int(j);
INITIALLY
v =7

OVFUN create_intarray() -> intarray m;
$( creates a new intarray whose elements are initjalized
to some defined integer; a resource error is returned if
no more intarrays can be created)
EXCEPTIONS
RESOURCE_ERROR;
EFFECTS
m = NEW(intarray);
FORALL INTEGER j INSET { 1 .. leni }:
tgetint(m, j) =(SOME INTEGER i | 1 “= ?);

OFUN change_int(intarray m; INTEGER j, v); $( replaces j-th integer
in array m by v)

EXCEPTIONS

no_int : no_int(Jj);
EFFECTS

‘getint(m, J) = v;

END_MODULE
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Table 11: Vcarrays Module

MODULE vcarrays
$( maintains a unspecified number of variable-length
character strings i.e., vcarrays. Each vcarray has a
current length within which any character can be
randomly accessed. The vcarray is modified by appending
a character to the end of the vcarray, removing a string
of characters from the end of the vcarray, or by ;
clearing the vcarray.) !

TYPES

vearray: DESIGNATOR; $( names for variable-length character arrays)
PARAMETERS

INTEGER v_int_bounds; $( max value of integer corresponding to a
vcarray designator)

DEFINITIONS

INTEGER velen(vearray n) IS
CARDINALITY({ INTEGER j ! char(n, j) "= 2 D)3
$( returns no. of characters in character vcarray n)

FUNCTIONS

VFUN char(vcarray n; INTEGER i) ~> CHAR c;
$( returns j-th character in vearray n)
‘ EXCEPTIONS
no_char : NOT i INSET { 1 .. velen{(n) };
; INITIALLY
e = 7

VFUN int_for_vcarray(vcarray n) -> INTEGER v;
$( returns a unique integer for each vcarray)
INITIALLY
v=17

OVFUN create_vcarray() -> vecarray n;
$( creates a new vcarray the contents of which are
undefined. A newly generated designator is returned.
A unique integer is associated with this designator.)

EXCEPTIONS
RESOURCE_ERROR ;
EFFECTS
n = NEW(vcarray);
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'int_for_vecarray(n)
= (SOME INTEGER i | 4 INSET { 1 .. v_int_bounds } AND
(FORALL vearray n1 "= n : int_for_vcarray(n1) ~= i));

OFUN one_more_char(vcarray n; CHAR ¢); $( adds character to end of
vecarray n)
EXCEPTIONS
RESOURCE_ERROR ;
EFFECTS
‘char(n, vclen(n) + 1) = c;

OFUN remove_chars(vearray n; INTEGER 1); $( removes i characters
from the end of vcarray n)
EXCEPTIONS
underflow : velen(n) < i;
EFFECTS
FORALL INTEGER j INSET { 1

.o 1
'char(n, velen(n) - j + 1) =

}:
?;

OFUN clear_vcarray(vcarray n); $( resets vcarray to
the empty state)

EFFECTS
FORALL INTEGER j: 'char(n, j) = 73

END_MODULE
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Table 12: Vec_Intarray_Pairs Module

MODULE vec_intarray_pairs
$( stores pairs, each composed of a vcarray designator
and an intarray designator. Each pair is the
representation of a sequence designator)

TYPES

ve_intarray_pair: STRUCT_OF(vearray vecarray_part;
intarray intarray_part);

EXTERNALREFS /

FROM vcarrays:
vearray: DESIGNATOR;
OVFUN create_vcarray() ~> vearray ve;

FROM intarrays:
intarray: DESIGNATOR;
OVFUN create_intarray() -> intarray n;

FUNCTIONS

VFUN vc_pair_exists(ve_intarray_pair vnp) -> BOOLEAN b;
$( returns TRUE if the pair vnp has been previously
stored)
HIDDEN;
INITIALLY .
b = FALSE; |

OVFUN create_vc_intarray_pair() -> vec_intarray_pair vnp;
$( creates a new pair by creating a new vcarray and
intarray, and joining them as a pair (STRUCT))
EXCEPT IONS
RESOURCE_ERROR ;
EFFECTS
vnp
= STRUCT(EFFECTS_OF create_vcarray(),
EFFECTS_OF create_intarray());
‘ve_pair_exists(vnp) = TRUE;

END_MODULE
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Table 13: Vec_Etc_Cells Module

MODULE vc_etc_cells
$( provides separate cells for the storage of vcarray
designators, intarray designators, and integers)

EXTERNALREFS

FROM vcarrays:
vearray: DESIGNATOR;

FROM intarrays:
intarray: DESIGNATOR;

FUNCTIONS

VFUN v_get() -> vecarray ve; $( returns a stored vcarray designator)
ASSERTIONS
v_get() ~= 7;
INITIALLY
ve = 73

VFUN v_get_n() => intarray n; $( returns a stored intarray
designator)
ASSERTIONS
v_get_n() ~= ?;
INITIALLY
n=s ?;

VFUN v_get_i() -> INTEGER v; $( returns a stored integer)
INITIALLY
v = 03

OFUN v_store(vearray ve); $( stores a vcarray designator)
EFFECTS
tv_get() = ve;

OFUN v_store_n(intarray n); $( stores a intarray designator)
EFFECTS
‘v_get_n() = n;

OFUN v_store_i(INTEGER 1); $( stores an integer)
EFFECTS
‘v_get_1() = {;

END_MODULE
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Table 14: Chararrays Module

MODULE chararrays $( maintains a fixed number of fixed-length
character arrays)

TYPES
chararray: DESIGNATOR;

PARAMETERS
INTEGER maxchararrays; $( the maximum number of chararrays that
the module can support)

INTEGER lenc; $( the length of each chararray)

DEFINITIONS
BOOLEAN no_char(INTEGER j) IS NOT j INSET { 1 .. lenc };

BOOLEAN too_many_chararrays
IS CARDINALITY({ chararray n | getchar(n, 1) "= 7 })

>= maxchararrays;

ASSERTIONS

lenc >= 13

FUNCTIONS

VFUN getchar(chararray n; INTEGER j) -> CHAR c;
$( returns j-th character in n-th array)

EXCEPTIONS
no_char : no_char(j);

INITIALLY
c:?;

VFUN int_for_chararray(chararray n) -> INTEGER v;
$( returns the unique integer corresponding to chararray

n)
INITIALLY
v=7
OVFUN create_chararray() -> chararray n;
$( creates a new chararray the contents of which become
some defined (not undefined) characters. A newly
generated designator is returned)

EXCEPTIONS
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too_many_chararrays : too_many_chararrays;
EFFECTS
n = NEW(chararray);

'int_for_chararray(n)
= (SOME INTEGER i1 | 1 INSET { 1 .. maxchararrays } AND

(FORALL chararray n1 "= n : int_for_chararray(ni) “z 1));

FORALL INTEGER j INSET { 1 .. lenc }:
'getchar(n, j) = (SOMECHAR ¢ | ¢ "= ?);

OFUN change_char(chararray n; INTEGER j; CHAR ¢);
$( replaces j-th character in n-th array by c)

EXCEPTIONS
no_char : no_char(j);
EFFECTS
‘getchar(n, j) = c;
END_MODULE
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Table 15: Chararrays_Intarray_Pairs Module

MODULE chararrays_intarray_pairs
$( stores pairs, each composed of a chararray designator
and an intarray designator. Each
pair is the representation of a vc_intarray_pair)

TYPES

chararray_intarray_pair:
STRUCT_OF (chararray chararray_part; intarray intarray_part);

EXTERNALREFS

FROM chararrays:
chararray: DESIGNATOR;

FROM intarrays:
intarray: DESIGNATOR;

FUNCTIONS

VFUN chararray_pair_exists(chararray intarray_pair cnp)
=> BOOLEAN b;
$( returns TRUE if the pair cnp has been previously stored)
HIDDEN;
INITIALLY
b = FALSE;

OFUN store_chararray_intarray_pair(chararray_intarray_pair cnp);
$( creates a new pair by creating a new chararray and
intarray, and joining them as a pair (STRUCT))
EXCEPTIONS
RESOURCE_ERROR;
EFFECTS
*chararray_pair_exista(cnp) = TRUE;

END_MODULE
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Table 16: Chararrays_Etc_Cells Module

MODULE chararrays_etc_cells
$( provides separate cells for the storage of chararray

designators, intarray designators, and integers)
EXTERNALREFS

FROM chararrays:
chararray: DESIGNATOR;

FROM intarrays:
intarray: DESIGNATOR;

FUNCTIONS

VFUN c_get() -> chararray nc;
$( returns a stored chararray designator) o
ASSERTIONS ’
c_get() “= 7;
INITIALLY
ne = ?;

VFUN c_get_n() -> intarray n; $( returns a stored intarray
designator)
ASSERTIONS
c_get() == 73
INITIALLY
n= ?;
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VFUN c_get_i() -=> INTEGER v; $( returns a stored integer)
INITIALLY
v = 03

OFUN c_store(chararray ne); $( stores a chararray designator)
EFFECTS
'c_get() = ne;

OFUN c_store_n(intarray n); $( stores a intarray designator)
EFFECTS i
‘oc_get n() = n;

OFUN c_store_1(INTEGER 1); $( stores an integer)
EFFECTS
‘o _get_1() = i;

END_MODULE
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Table 17: Histogram Mapping

MAP histogram TO tally;

TYPES

word: { VECTOR_OF CHAR vc | LENGTH(ve) > 0 };
truncated_word: { word w | LENGTH(w) <= maxlength };
EXTERNALREFS
FROM histogram:
VFUN getword(INTEGER i) -> truncated_word tw;
VFUN howmany(INTEGER i) -> INTEGER v;

FROM truncator:
INTEGER maxlength;

FROM tally:

VFUN t_retrieve(INTEGER i) -> truncated_word tw;
VFUN t_howmany(INTEGER i) -> INTEGER v;

MAPPINGS

getword(INTEGER i): t_retrieve(i);
howmany( INTEGER i): t_howmany(i);

END_MAP

.
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Table 18: Tally Mapping

i

MAP tally i
TO query, hasher, seq pointer_cells; :

TYPES

word: { VECTOR_OF CHAR vc | LENGTH(ve) > 0 };
truncated_word: { word w | LENGTH(w) < maxlength };

DEFINITIONS i

BOOLEAN probe_succeeds(word w)
IS EXISTS INTEGER p INSET { O .. plen - 1 }:
get_string(dir(p)) = w
AND (FORALL INTEGER i INSET
{ hash(w, plen) ..
IF p < hash(w, plen)
THEN p + plen ELSE p }:
dir(i MOD plen) ~= 0);
$( returns TRUE if for word w there is a pointer p to the
word and that a linear search from the hash address of w
will hit the entry with w in it--that is, not hit an
empty entry first)

EXTERNALREFS

FROM tally:
VFUN t_retrieve(INTEGER i) -> truncated_word w;
VFUN t_howmany(INTEGER i) -> INTEGER v;
VFUN t_sequence() -> seq s;
VFUN t_pointer() -> INTEGER p;

FROM query:
INTEGER plen;
VFUN get_string(INTEGER i) -> word w;
VFUN check_count (INTEGER i) -> INTEGER v;
VFUN dir(INTEGER p) -> INTEGER v;

FAOM hasher:
INFEGER hash(word w; INTEGER upper);

FROM sequences:
seq: DESIGNATOR;

FROM seq_pointer_cells:
VFUN get_s() -> seq s;
VFUN get_p() -> INTEGER p;
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FROM truncator:
INTEGER maxlength;

INVARIANTS
FORALL word w "= ?:
CARDINALITY({ INTEGER j | get_string(Jj) = w }) <= 1;
$( guarantees that all defined words are stored no more
that once)
FORALL word w | w ~“= ? AND(EXISTS INTEGER j: get_string(Jj) = w):
probe_succeeds(w);

$( guarantees that all defined words that are stored in
"get_string™ possess an appropriate link to their position in

"get_string")
MAPPINGS

t_retrieve(INTEGER 1): get_string(i);
t_howmany(INTEGER i): check_count(i);
t_sequence(): get_s();

t_pointer(): get_p();

END_MAP
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Table 19: Query Mapping

MAP query, sequences TO sequences, intarrays;

TYPES

word: { VECTOR_OF CHAR vc | LENGTH(ve) > 0 };
seql: { seqn | n “= wmique_string };

PARAMETERS

seq unique_string; $( the unique string sequence; stores the
words of query)
intarray director_array; $( the integer array containing the
directors into the unique sequence)
intarray count_array; $( the integer array containing the counts for
each word in the unique sequence)

DEFINITIONS

INTEGER seqlen(seq n) IS
CARDINALITY({ INTEGER j ! string(n, 3j) ~= ?}1);
$( number of words in sequence n)

EXTERNALREFS

FROM sequences:
seq: DESIGNATOR;
VFUN string(seq n; INTEGER j) -> word w;

FROM query:
INTEGER plen;
VFUN dir(INTEGER p) -> INTEGER i;
VFUN check_count (INTEGER j) -> INTEGER v;
VFUN get_string(INTEGER J) -> word w;

FROM intarrays:
intarray: DESIGNATOR;
INTEGER leni;
VFUN getint(intarray m; INTEGER j) -> INTEGER v;

INVARIANTS

FORALL INTEGER j INSET { 1 .. leni }:
getint (director_array, j) INSET { 0 .. seqlen(unique_string) };
$( means that all integers in the director_array are
between 0 and the length of the unique_string sequence.
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This invariant guarantees that any number retrieved from
the director array (and within the designated bounds)
either corresponds to a null entry (0) or indexes a valid
entry in the unique sequence)

CARDINALITY( {INTEGER j ) getint(director_array, j) = 0 })
= leni - seqlen(unique_string);

$( guarantees that if there is an empty slot (a zero
entry) in the director array, then there are fewer than
leni words in the unique sequence; also guarantees that
leni is no less than the length of the unique sequence
{so that any reference to this sequence will also be a
valid reference into the count array))

Ml S kit s < e man e

MAPPINGS
$( the first two mappings are for sequence entities,
indicating that all sequence designators are available

at the upper interface with the exception of
"mnique_string® , used exclusively by query)

seq: seql;
string(seq n; INTEGER j): string(n, J);

$( the remaining mappings are for query primitives)
plen: leni;

get_string(INTEGER j): string(unique_string, j);

,\

dir(INTEGER p): getint(director_array, p + 1);

check _count(INTEGER j): getint(count_array, j);

END_MAP
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Table 20: Sequences Mapping

MAP sequences, intarrays, seq pointer_cells
TO vcarrays, intarrays, vc_intarray_pairs, vo_etc_cells;

TYPES

intarrayi:

{ intarray m | NOT m INSET(inclength UNION { nstrings }) };
ve_intarray_pair:

STRUCT_OF(vcarray vcarray_part; intarray intarray_part);
ve_intarray_pairt:

{ vc_intarray_pair venp | ve_pair_exists(venp) = TRUE };
word: { VECTOR_OF CHAR vc | LENGTH(ve) > 0 };

PARAMETERS

intarray nstrings; $( integer array storing the number of strings
in the sequences)

DEFINITIONS

INTEGER len_seq(vc_intarray _pairl vnp)
IS getint(nstrings, int_for_vcarray(vnp.vearray_part));
$( mapped length of sequence n)

INTEGER ival(vc_intarray_pair1l vnp; INTEGER 1)
IS getint(vnp.intarray_part, 1); $( value in the intarray that
holds the word boundary
positions for sequence n)

SET_OF intarray inclength
IS {intarray m | EXISTS vc_intarray_pair vnp : ve_pair_exists(vnp)
AND vnp.intarray_part = m};
$( integer arrays, each of which corresponds to a
vearray; the values in the positions of each array are
the vcarray positions at the boundaries of strings)

EXTERNALREFS

FROM sequences:
seq: DESIGNATOR;
VFUN string{seq n; INTEGER j) -> word w;

FROM intarrays:
intarray: DESIGNATOR;
INTEGER leni;
VFUN getint(intarray m; INTEGER j) -> INTEGER v;
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FROM seq_pointer_cells:
VFUN get_s() -> seq n;
VFUN get_p() -> INTEGER p;

FROM vcarrays:
vearray: DESIGNATOR;
INTEGER v_int_bounds;
{ VFUN char(vcarray ve; INTEGER j) -> CHAR c;
VFUN int_for_vcarray(vcarray ve) -> INTEGER v;

FROM vc_etc_cells:
VFUN v_get() -> vcarray ve;
VFUN v_get_n() <> intarray n; !
VFUN v_get_i() -> INTEGER v; ;

FROM ve_intarray_pairs:
VFUN ve_pair_exists(vc_intarray_pair venp) -> BOOLEAN b;

g
bt il i

INVARIANTS

v_int_bounds <= 1leni;
$( guarantees that any integer corresponding to a vcarray is a
valid index in an integer array)

MAPPINGS

$( the first three mappings are for the
é representation of the intarray primitives)

intarray: intarrayi;
leni: leni;

1 getint{intarray m; INTEGER j): getint(m, J);

$( the next two mappings are for the representation of
string primitives)

seq: vc_intarray_pairi;

i string(seq n; INTEGER j):
i IF § INSET { 1 .. len_seq(n) }
i THEN VECTOR(FOR 4 FROM O
‘ TO ival(n, 2%j) - ival(n, 2%j - 1) :
char(n.vecarray_part,
i + ival(n, 2%§ - 1)))
ELSE 7;

$( the following mappings are for seq pointer_cells
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primitives)
get_p(): v_get_1i();
get_s(): STRUCT(v_get(), v_get_n());

END_MAP

| f
3 4
13

|
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Table 21: Vearrays Mapping

MAP vcarrays, intarrays, vc_intarray_pairs, vc_etc_cells
TO chararrays, intarrays, chararrays_intarray_pairs,

chararrays_etc_cells;

TYPES

intarrayt: { intarray m | m "= length_array };

vc_intarray_pair:
STRUCT_OF (vcarray vecarray_part; intarray intarray_part);

chararray_intarray_pair:
STRUCT_OF(chararray chararray_part; intarray intarray_part);

PARAMETERS

: intarray length_array; $( the designator for the integer array that
contains the lengths of the vcarrays)

EXTERNALREFS

FROM vcarrays:
vearray: DESIGNATOR;

INTEGER v_int_bounds;
VFUN char(vcarray n; INTEGER j) -> CHAR c;

VFUN int_for_vcarray(vcarray vec) -> INTEGER i;

FROM vc_intarray_pairs:
VFUN vc_pair_exists(ve_intarray_pair vnp) -> BOOLEAN b;

FROM vc_etc_cells:
VFUN v_get() => vcarray ve;
k- VFUN v_get_n() ~> intarray m;
1 VFUN v_get_1i() ~> INTEGER v;

FROM intarrays:
intarray: DESIGNATOR;

INTEGER leni;
VFUN getint(intarray m; INTEGER i) -> INTEGER v;

P FROM chararrays:

chararray: DESIGNATOR;

INTEGER maxchararrays;

VFUN getchar(chararray n; INTEGER i) -> CHAR c;
VFUN int_for_chararray(chararray n) -> INTEGER v;

FROM chararrays_intarray_pairs:
VFUN chararray_pair_exists(chararray_intarray_pair cnp)
=> BOOLEAN b;
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FROM chararrays_etc_cells:
VFUN c_get() -> chararray n;
VFUN c_get_n() -> intarray m;
VFUN c_get_1i() ~> INTEGER v;

¢ LGt gk st i

INVARIANTS

leni >= maxchararrays;

MAPPINGS

$( the first four mappings are for vcarray primitives)

vearray: chararray;

1 v_int_bounds: leni;

: char(vcarray n; INTEGER j):
| IF j INSET { 1 .. getint(length_array, int_for_chararray(n)) }

} THEN getchar(n, j)
| ELSE ?7;

int_for_vcarray(vecarray n): int_for_chararray(n);

|
)
3 $( the following three mappings are for intarray
| primitives)

intarray: intarray1;
leni: leni;
getint(intarray m; INTEGER 1): getint(m, 1); ;

$( the following three mappings are for the vc_etc_cells
primitives) i
)

v_get(): c_get(); '
3 .. i
L . v_get_n(): c_get_n();
v_get_1i(): c_get_i();

$( the following mapping is for the vec_intarray_pairs
module)

ve_pair_exists(ve_intarray_pair vnp): chararray_pair_exists(vnp);

END_MAP

.
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Table 22: Histogram Implementation

IMPLEMENTATION histogram IN_TERMS_OF tally;

TYPES

word: { VECTOR_OF CHAR vc | LENGTH(ve) > 0 };
truncated_word: { word w | LENGTH(w) <= maxlength} ;

EXTERNALREFS

FROM histogram:
VFUN getword(INTEGER i) -> truncated_word w;
VFUN howmany(INTEGER i) -> INTEGER v;
VFUN histlen() -> INTEGER v;
OFUN hist(seq s8);
OFUN clear_hist();

FROM tally:
VFUN t_retrieve(INTEGER j) -> word w;
VFUN t_howmany(INTEGER j) -> INTEGER v;
VFUN t_len() -> INTEGER v;
OFUN t_initialize(seq s);
OFUN insert_or_increment();
OFUN reset_tally();

FROM sequences:
seq: DESIGNATOR;

FROM truncator:
INTEGER maxlength;

IMPLEMENTATIONS

VPROG getword(INTEGER j) -> truncated_word tw;
BEGIN i
EXECUTE tw <- t_retrieve(j) THEN
ON no_string : RAISE(no_word);
ON NORMAL: RETURN;
END;
END;

VPROG howmany(INTEGER j) -> INTEGER v;
BEGIN
EXECUTE v <~ t_howmany(Jj) THEN
ON no_string : RAISE(no_word);
ON NORMAL : RETURN;
END;
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END;
VPROG histlen() -> INTEGER v;
BEGIN
v <= t_len();
RETURN;
END;

g OPROG hist(seq n);
BEGIN
: IF t_len() "= 0
THEN RAISE(hist_not_reset);
END_IF;
t_initialize(n);
UNTIL no_more_room DO
EXECUTE insert_or_increment() THEN
ON no_more_words :
RETURN() ;
ON RESOURCE_ERROR : SIGNAL(no_more_room);
ON NORMAL : ;
END;
THEN
ON no_more_room :
reset_tally();
RAISE(RESOURCE_ERROR);

END;
END;

OPROG clearhist();
BEGIN

reset_tally();
END;

END_IMPLEMENTATION

o it e S
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Table 23: Tally Implementation

IMPLEMENTATION tally IN_TERMS_OF query, sequsnces, hasher,
seq_pointer_celis, truncator;

TYPES

word: { VECTOR_OF CHAR ve | LENGTH(ve) > 0 };
truncated_word: { word w | LENGTH(w) <= maxlength };

EXTERNALREFS

FROM tally:

VFUN t_retrieve(INTEGER j) -> truncated_word w;

VFUN t_howmany(INTEGER j) -> INTEGER v;
VFUN t_len() -> INTEGER v;

OFUN t_initialize(seq 3);

OFUN insert_or_increment();

OFUN swap_tally(INTEGER i, J);

OFUN reset_tally();

FROM query:
INTEGER plen;
VFUN get_string(INTEGER j) ~> word w;
VFUN check_count(INTEGER j) -> INTEGER v;
VFUN size() -~> INTEGER v;
OFUN save(word w; INTEGER p);
OFUN add_count(INTEGER p);
OFUN swap_query(INTEGER i, j);
OFUN reset_query();

FROM sequences:
seq: DESIGNATOR;
VFUN string(seq n; INTEGER j) -> word w;

FROM hasher:
INTEGER hash(word w; INTEGER upper);

FROM seq_pointer_cells:
VFUN get_p() -> INTEGER i;
VFUN get_s() -> seq n;
OFUN store p(INTEGER 1);
OFUN store_s(seq n);

FROM truncator:
INTEGER maxlength;

VFUN truncation(word w) -> truncated_word tw;

IMPLEMENTATIONS
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VPROG t_len() -> INTEGER v; '

BEGIN F|
v <~ size(); :
RETURN;

END;

VPROG t_retrieve(INTEGER j) -> truncated_word tw;
BEGIN
EXECUTE tw <- get_string(j) THEN
ON no_word : RAISE(no_string);
ON NORMAL : RETURN; }
END;
1 END;

VPROG t_howmany(INTEGER j) -> INTEGER v; 1
BEGIN
EXECUTE v <- check_count(j) THEN
ON no_word : RAISE(no_string);
ON NORMAL : RETURN; '
END;

END;

| OPROG reset_tally();
l BEGIN

| reset_query();
END;

BEGIN 1
store_s(n); 1
store_p(0); r

END;

i

E! - OPROG t_initialize(seq n);
i
|

OPROG swap_taliy(INTEGER i,]); ?
BEGIN
EXECUTE swap_query(i, Jj) THEN b
ON no_word1 : RAISE(no_stringt); .
ON no_word2 : RAISE(no_string2);
ON NORMAL : RETURN;
END;

END;

OPROG insert_or_increment();
$(ASSERT get_s() "= 73)
$(some sequence, whose histogram is to be formed, has
been initialized)
DECLARATIONS
seq n;
INTEGER p, p1, p2, k;
word w;
truncated_word tw;
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BEGIN
n <- get_s();
k <~ get_p();
EXECUTE w <- string(n, k+t)
$(get the next word from the sequence)
THEN
ON no_word : RAISE(no_more_words);
ON NORMAL : ;
END;
tw <- truncation(w); $(truncate the word)
p <~ hash(tw, plen); $(generate a hash address)
FOR p1 FROM p TO p + plen - 1 UNTIL done DO
$(search for appearance of w or an empty slot by
attempting to insert)
p2 <~ p1 MOD plen;
EXECUTE save(tw, p2) THEN
ON hit : $(found tw; add count and finish)
add_count(p2);
SIGNAL(done);
ON wrong_word : ; $(word is not tw; continue search)
ON RESOURCE_ERROR : RAISE(RESOURCE_ERROR);
ON NORMAL : SIGNAL(done);
$(found an empty slot; save has inserted word; finish)
END;
THEN
ON done :
store_p(k + 1);
RETURN;
ON NORMAL : $(search for tw or empty slot failed; no more room)
RAISE(RESOURCE_ERROR);
END;
END;

OPROG reset_tally();

BEGIN
reset_query();
store_p(0);

END;

END_IMPLEMENTATION




Table 24: Query Implementation

IMPLEMENTATION query IN_TERMS_OF sequences, intarrays;

TYPES
word: { VECTOR_OF CHAR vc } LENGTH(ve) > 0 };

PARAMETERS

intarray director_array, count_array;
seqQ unique_sequence;

EXTERNALREFS

FROM query:
INTEGER plen;
VFUN get_string(INTEGER j) -> word w;
VFUN check_count (INTEGER j) -> INTEGER v;
VFUN size() -> INTEGER v;
OFUN save(word w; INTEGER p);
OFUN add_count (INTEGER p);
OFUN swap_query(seq n; INTEGER i, J);
OFUN reset_query();

FROM sequences:
seq: DESIGNATOR; |
VFUN string(seq n; INTEGER j) -> word w; i
VFUN seqlen(seq n) -> INTEGER v; ;
OVFUN create_seq() -> seq n; !
OFUN clear_seq(seq n);

OFUN append(seq n; word w); }
OFUN swap_seq(INTEGER i, J); é

FROM intarrays:
intarray: DESIGNATOR;
INTEGER leni;
VFUN getint(intarray m; INTEGER j) -> INTEGER v;
OVFUN create_intarray() -> intarray m;
OFUN change_int(intarray m; INTEGER j, v);

INITIALIZATION

DECLARATIONS
INTEGER 1;

BEGIN
count_array <- create_intarray();
director_array <- create_intarray();
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unique_sequence <~ create_seq();
FOR { FROM 1 TO leni DO
change_int(director_array, i, 0);
END;
plen <~ leni;
END;

IMPLEMENTATIONS

VPROG get_string(INTEGER j) -> word w;

BEGIN
EXECUTE w <- string(unique_sequence, j) THEN

ON no_word : RAISE(no_word);
ON NORMAL :
END;

END;

VPROG check_count (INTEGER j) -> INTEGER v;

BEGIN
IF § < 1 OR j > seqlen(unique_sequence)

THEN RAISE(no_word);

END_IF;
v - getint(count_array, Jj);
$(no exception will occur since all intarrays are long enough

to hold information about all words currently stored)

RETURN;
END;

VPROG size() -> INTEGER v;

BEGIN
v <- seqlen(unique_sequence);
RETURN;

END;

OPROG save(word w; INTEGER p);
DECLARATIONS
INTEGER J, i1;

BEGIN
EXECUTE J <~ getint(director_array, p+1) THEN

ON no_int : RAISE(no_dir);
ON NORMAL :
END;

IF J = 0 THEN
$(slot 1s empty, try to append word with count of 1)

EXECUTE append(unique_sequence, w) THEN
ON RESOURCE_ERROR : RAISE(RESOURCE_ERROR);
ON NORMAL :
31 <~ seqlen(unique_sequence);
change_int(director_array, p, j1);

change_1int(count_array, 1, 1);
$(no exceptions can be returned from above calls
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since it has been determined that there is an
empty slot in the director_array, which then
implies that there is more room in the
count_array)
RETURN;
END;
END_IF;
$(slot is not empty; determine if word there is w or another
word)
IF w = string(unique_sequence, Jj)
THEN RAISE(hit);
ELSE RAISE(wrong_word);
END_IF;
END;

OPROG add_count (INTEGER p);
DECLARATIONS
INTEGER j;
BEGIN
EXECUTE j <- getint(director_array, p+1) THEN
ON no_int : RAISE(no_dir);
ON NORMAL: ;
END;
IF § = 0
THEN RAISE(empty_slot);
END_IF;
change_int(count_array, j, getint(count_array, j) + 1);
END;

OPROG swap_query(INTEGER i, j);
BEGIN
EXECUTE swap_seq(unique_sequence, i, j) THEN
ON no_word1 : RAISE(no_word1);
ON no_word2 : RAISE(no_word2);
ON NORMAL : ;
END;
END;

OPROG reset_query();
DECLARATIONS
INTEGER 1;
BEGIN
clear_seq(unique_sequence);
FOR i FROM 1 TO leni
DO change_int(director_array, 1, 0);
END;
END;

END_IMPLEMENTATION
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Table 25:

IMPLEMENTATION sequences IN_TERMS_OF vcarrays, intarrays,
ve_intarray_pairs;

TYPES

word: { VECTOR_OF CHAR vec | LENGTH(ve) > 0 };
ve_intarray_pair:

STRUCT_OF (vcarray vcarray_part; intarray intarray_part);

PARAMETERS

intarray nstrings;

EXTERNALREFS

FROM sequences:
seq: DESIGNATOR;
VFUN string(seq n; INTEGER j) -> word w;
VFUN seqlen(seq n) -> INTEGER v;
OVFUN create_seq() -> seq n;
OFUN clear_seq(seq n);
QFUN append(seq n; word w);
OFUN swap_seq(seq n; INTEGER i, j);

FROM vcarrays:
vearray: DESIGNATOR;
VFUN char(vcarray vca; INTEGER j) -> CHAR c;
VFUN int_for_vearray(vcarray vca) -> INTEGER v;
OFUN one_more_char(vcarray vea; CHAR ¢);
OFUN remova_chars(vcarray vea; INTEGER 1);
OFUN clear_vcarray(vecarray veca);

FROM intarrays:
intarray: DESIGNATOR;
INTEGER leni;
VFUN getint(intarray m; INTEGER j) -> INTEGER v;
OFUN change_int(intarray m; INTEGER j, v);

FROM ve_intarray_pairs:

OVFUN create_vc_intarray_pair() => ve_intarray_pair vnp;

TYPE_MAPPINGS

seq : vec_intarray_pair;

Sequences Implementation
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INITIALIZATION

DECLARATIONS
INTEGER i;
BEGIN
nstrings <- create_intarray();

END;

IMPLEMENTATIONS l

VPROG string(seq n; INTEGER j) -> word w;
DECLARATIONS
vecarray vce;
intarray m;
INTEGER i, k, lower, upper;
BEGIN
: ve {- n.vearray_part;
] i <~ int_for_vcarray(ve);
k <- getint(nstrings, 1i);
g IF § <10R J>k
THEN RAISE (no_word);
ELSE
m <- n.intarray_part;
upper <- getint(m, 2%j);
y lower <- getint(m, 2%j-1);
! w <- VECTOR(FOR p FROM 0 TO upper - lower :
char(ve, p + lower)); :
! RETURN; s
: END_IF;
' END;

VPROG seqlen(seq n) -> INTEGER v;

BEGIN
v <- getint(nstrings, int_for_vcarray(n.vcarray_part));
RETURN;

END;

VPROG create_seq() -> seq n;
BEGIN
EXECUTE n <- create_vc_intarray_pair() THEN
ON RESOURCE_ERROR : RAISE(RESOURCE_ERROR);
ON NORMAL :
change_int(nstrings, int_for_vcarray(n.vcarray_part), 0); {
RETURN; .
END;

o

END;

OPROG clearseq(seq n);
BEGIN
change_int(nstrings, int_for_vcarray{n.vearray_part), 0);

e et b e A
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OPROG append(seq n; word w);
DECLARATIONS
vearray vc;
intarray m;
INTEGER i, J, k, q, r;}
BEGIN
ve <- n.vecarray_part;
i <~ int_for_vcarray{ve);
J <« getint(nstrings, i);
r<=2% j
$(the following statement determines if there is room in the
intarray to store boundary positions for an additional word)
IF r + 2 > leni
THEN RAISE(RESOURCE_ERROR);
END_IF;
$(now put the characters of w into the vecarray one at a time)
FOR k FRoM 1 TO LENGTH(w) DO
EXECUTE one_more_char(ve, wlk]) THEN
ON RESOURCE_ERROR :
$(no more room; remove inserted characters)
remove_chars(ve, k-1);
RAISE(RESOURCE_ERROR);
ON NORMAL : ;
END;
END;
$(set length, lower and upper boundaries)
cheange_int(nstrings, 1, j+1);
m <~ n.intarray_part;
q <~ getint(m, r);
change_int{(m, r+1, q+1);
change_int(m, r, q+p);
END;

OPROG swap_seq(seq n; INTEGER {, j);
DECLARATIONS
vearray ve;
intarray m;
INTEGER p, q, r, 8, t;
BEGIN
$( check index bounds)
ve <~ n,vearray_part;
p <~ int_for_vecarray(ve);
q <- getint(nstrings, p);
IF1<C10R1D>q
THEN RAISE(no_word1);
END_IF;
IF §J<10RJ>q
THEN RAISE(no_word2);
END_IF;
$( swap upper and lower bounds)
2 <~ n.intarray_part;
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r<<-2%4j;
8 (-2 ® §;
t <- getint(m, r);
change_int(m, r, getint(m,
change_int(m, s, t);
r-r - 1;
8 <¢-8 - 1;
t <- getint(m, r);
change_int(m, r, getint(m, 8));
change_int(m, s, t);

END;

END_IMPLEMENTATION




Table 26: Seq Pointer_Cells Implementation

IMPLEMENTATION seq pointer_cells IN_TERMS_OF sequences, vcarrays,
intarrays, vc_etc_cells;

TYPES

ve_intarray_pair:
STRUCT_OF (vearray vcarray_part; intarray intarray_part);

EXTERNALREFS

FROM seq _pointer_cells:
VFUN get_s() ~> seq s;
VFUN get_i() <> INTEGER v;
OFUN store_s(seq 8);
OFUN store_p(INTEGER i);

FROM sequences:
seq: DESIGNATOR;

FROM vcarrays:
vearray: DESIGNATOR;

FROM intarrays:
intarray: DESIGNATOR;

FROM vc_etc_cells:
VFUN v_get() -> vecarray ve;
VFUN v_get_n() -> intarray m;
VFUN v_get_i() -> INTEGER v; 4
OFUN v_store(vcarray ve);
OFUN v_store_n(intarray m);
OFUN v_store_i(INTEGER 1);

TYPE_MAPPINGS

seq: ve_intarray_pair;

IMPLEMENTATIONS

VPROG get_s() -> seq s;

BEGIN
8 <- STRUCT(v_get(), v_get_n());
RETURN;

END;

VPROG get_p() -> INTEGER p;




BEGIN
p <= v_get_i();
RETURN;

END;

OPROG store_s(seq s);

BEGIN
v_store(s.vcarray_part);
v_store_n(s.intarray_part);

END;

L

OPROG store_p(INTEGER 1);
BEGIN

v_store_i(1);
END;

END_IMPLEMENTATION
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Table 27: Vcarrays Implementation

IMPLEMENTATION vcarrays IN_TERMS_OF chararrays, intarrays;

PARAMETERS

intarray length_array;

EXTERNALREFS

FROM vcarrays:
vearray: DESIGNATOR;
INTEGER v_int_bounds;
VFUN char(vcarray ve; INTEGER i) -> CHAR c;
VFUN int_for_vcarray(vearray ve) -> INTEGER i;
OVFUN create_vcarray() -> vcarray vc;
OFUN one_more_char(vcarray vec; CHAR c¢);
OFUN remove_chars(vcarray vec; INTEGER 1);
OFUN clear_vecarray(vearray ve);

FROM chararrays:
chararray: DESIGNATOR;
VFUN getchar(chararray n; INTEGER j) -> CHAR c;
VFUN int_for_chararray(chararray n) -> INTEGER i;
OVFUN create_chararray() ~> chararray n;
OFUN change_char(chararray n; INTEGER i; CHAR c);

FROM intarrays:
intarray: DESIGNATOR;
VFUN getint(intarray m; INTEGER j) ~> INTEGER v;
OVFUN create_intarray() -> intarray m;
OF UN change_int(intarray m; INTEGER j, v);
TYPE_MAPPINGS

vearray : chararray;

INITIALIZATION
BEGIN
length_array <- create_intarray();
v_int_bounds <- leni;
END;
IMPLEMENTATIONS
VPROG char(vcarray n; INTEGER 1) -> CHAR o;
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DECLARATIONS
INTEGER §;
BEGIN
§ <- getint(length_array, int_for_chararray(n));
IF1 <10R1i>
THEN RAISE(no_char);
ELSE ¢ <- getchar(n, j);
RETURN;
END_IF ;
END;

VPROG int_for_vcarray(vecarray n) -> INTEGER v;
BEGIN

v <~ int_for_chararray(n);

RETURN;
END;

OVPROG create_vcarray() =-> vcarray n;
DECLARATIONS
INTEGER 1i;
BEGIN
EXECUTE n <- create_chararray() THEN
ON too_many_chararrays :
RAISE(RESOURCE_ERROR);
ON NORMAL:
$(set length indicator to 0)
i <= int_for_chararray(n);
change_int(length_array, i, 0);
END;
END;

OPROG one_more_char(vcarray n; CHAR c);
DECLARATIONS
INTEGER 1, J;
BEGIN
J <~ int_for_chararray(n);
i <- getint(length_array, Jj);
EXECUTE change_char(n, i+1, ¢) THEN
ON no_char : RAISE(RESOURCE_ERROR);
ON NORMAL :
change_int(length_array, J, 1+1);
END;
END;

OPROG remove_chars(vecarray n; INTEGER 1);
DECLARATIONS

INTEGER J, k;
BEGIN

j <~ int_for_chararray(n);

k <- getint(length_array, J);

IFP k<1

THEN RAISE(underflow);
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ELSE change_int(length_array, J, k - 1);
END_IF;
END;

OPROG clear_vcarray(vearray n);
DECLARATIONS

INTEGER i; i
BEGIN ;
change_int(length_array, int_for_chararray(n), 0); ’

END;
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Table 28: Veo_Intarray_Pairs Implementation

IMPLEMENTATION ve_intarray_pairs IN_TERMS OF vcarrays, intarrays,
chararrays, chararrays_intarray_pairs;

TYPES

vearray._intarray_pair:

STRUCT_OF (vearray vcarray_part; intarray intarray_part);
chararray_intarray_pair:

STRUCT_OF ( chararray chararray_part; intarray intarray_part);

EXTERNALREFS

FROM vc_intarray_pairs:
OVFUN create_vc_intarray_pair() -> vc_intarray_pair vnp;

FROM vcarrays:
vearray: DESIGNATOR;
QVFUN create_vcarray() -> vearray ve;

FROM intarraya:
intarray: DESIGNATOR;
OVFUN create_intarray() -> intarray m;

FROM chararrays_intarray_pairs:
OFUN store_chararray_intarray_pair(chararray_intarray_pair cnp);

FROM chararrays:
chararray: DESIGNATOR;

TYPE_MAPPINGS

vearray: chararray;

IMPLEMENTATIONS

OVPROG create_vc_intarray pair() -> ve_intarray_pair vnp;
DECLARATIONS
vearray vo;
intarray m;
BEGIN
EXECUTE ve <- create_vcarray() THEN
ON RESOURCE_ERROR : RAISE(RESOURCE_ERROR);
ON NORMAL : ;
END;
EXECUTE m <~ create_intarray() THEN
ON RESQURCE_ERROR : RAISE(RESOURCE_ERROR);

167




ON NORMAL : vnp <- STRUCT(ve, m);
store_chararray_intarray_pa1r( vnp);

END;
END;

END_IMPLEMENTATION
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Table 29: Vo_Etc_Cells Implementation

IMPLEMENTATION vc_etc_cells IN_TERMS_OF vcarrays, intarrays,
chararrays_etc_cells;

EXTERNALREFS

FROM vc_etc_cells:
VFUN v_get() -> vcarray ve; y
VFUN v_get_n() -> intarray m; |1
VFUN v_get_i() -> INTEGER i; '
OFUN v_store(vecarray ve);
OFUN v_store_n(intarray m);
OFUN v_store_i(INTEGER i);

T e e s

FROM vecarrays:
vearray: DESIGNATOR;

FROM intarrays:
intarray: DESIGNATOR;

FROM chararrays etc_cells:
VFUN c_get() -> chararray n;
VFUN c_get_n() -> intarray m;
VFUN c_get_i() -> INTEGER v;
OFUN c_store(chararray n);
OFUN c_store_n(intarray m);
OFUN c_store_i(INTEGER 1);

3 TYPE_MAPPINGS

veoarray: chararray;

IMPLEMENTATIONS

i VPROG v_get() -> vcarray vec;
BEGIN

ve <~ c_get();

RETURN;
END;

VPROG v_get_n() -> intarray m;
BEGIN

m <- c_get_n();

RETURN;
END;
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VPROG v_get_i() -> INTEGER 1i;
BEGIN
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i <= c_get_1i();
RETURN;
END;

OPROG v_store(vecarray ve);
BEGIN

c_store(ve);
END;

OPROG v_store_n(intarray m);
BEGIN

c_store_n(m);
END;

OPROG v_store_1i(INTEGER J);
BEGIN

c_store_1i(J);
END;

END_IMPLEMENTATION




