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Foreword

Work on the languages and tools of HIK involved many people over a

number of years. The person most involved with this effort was Lawrence

Robinson. H14D, as a comprehensive development methodology, is primarily

due to his efforts. Olivier Roubine was heavily involved in the

language design efforts and in the design and implementation of the

tools. Other significant contributions were made by Karl Levitt, Bob

Boyer, Brad Silverberg, and Bernard Mont-Reynaud.
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I Introduction

In this volume we present the languages and tools of the SRI

Hierarchical Development Methodology (HDM). The languages provide a way

of recording and communicating decisions made throughout the stages of

j system design, specification, implementation, and verification. The

tools assist the system developer during this development process. The

current set of tools is used primarily to determine whether certain

well-formedness and consistency criteria are satisfied.

IThe languages of HDM are intended to capture the concepts and

computational model described in Volume I. SPECIAL (Snecification and

Assertion Language) is used to specify modules and mapping functions.

HSL (hierarchy .pecification Language) is used to describe the

structuring of modules into machines, and machines into systems. ILPL

(Intermediate Level Erogramming Language) is used to record module

implementation decisions. In addition, the final implementation code is

written in some executable programming language such as Pascal, Euclid,

Ada, etc. Such implementation languages could also be considered

"languages of HDM", though we take a narrower view and restrict our

attention to SPECIAL, HSL, and ILPL.

In the next chapter of this volume we discuss the general need for

specification languages, and describe how our particular specification

language (SPECIAL) relates to HDM. Chapter III gives an overview of

module specification. Chapter IV presents the expression level of

SPECIAL, while Chapters V and VI respectively present specifications for

modules and mapping functions. Chapter VII describes HSL, and Chapter

VIII describes ILPL. Finally, Chapter IX discusses the tools of HDM.
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II Specification Languages

In the last few years much research has been devoted to

specification methods. The objective of a specification method is to

describe the external behavior of a program without describing or

constraining its internal implementation. To describe the external

behavior of a program, a specification must provide the following

information:

- what operations it can be asked to do,

- what information it must be given,

- what results are obtained, including error indications, and

- the effects of prior operations on subsequent operations.

One might also wish to include information about the resource

I requirements of the program, but such performance specifications are

i still beyond the ability of existing specification methods. Thus, we

restrict our attention to functional specifications.

The specification method should be able to define completely the

external behavior of the programs, since programs that have unintended

or incompletely understood side-effects can inflict nasty surprises. It

is also very desirable that the specification of a program not constrain

the subsequent implementation of the program, provided that the external

behavior is as specified. Any implementation that possesses the

properties demanded by the specification is said to be "correct".

Our demand that a specification be precise and unambiguous dictates

the use of specification languages with well-defined syntax and

semantics, and rules out the use of informal languages such as English.

Some of the benefits of a formal specification language are:

-The presence of a precise specification provides a rugged
interface between program units in a complex system. The
programs that implement a specification can be designed and
implemented, and subsequently modified, without consideration
of the use that is to made of them. Similarly, the programs
that are to invoke the specified facilities can be designed
and implemented without concern for any specific details of

5

I



the implementation. The specification completely defines the
interactions between the programs and hides everything else.

- The rigor of a formal specification ensures a more complete
design, and a better statement and understanding of details.
Important decisions cannot be overlooked or equivocated about,
and the decisions are all documented unambiguously.

- The specification can serve as an interface between designer
and implementor, as well as between implementor and user.

- The specification provides a reference for the documentation
of the program, for the construction of tests, for the
maintenance and development of the program, and for
re-implementation of the program.

- The use of a formal specification provides the opportunity for
program proof and eventually perhaps even automatic
programming.

A. Definition of the System Requirements

A requirement definition must express precisely what the user wants

from the system, in contrast to a (functional) specification which

states exactly what the system is to do. The distinction is somewhat

fuzzy, though in typical usage, the user's requirements are much less

specific. He needs a certain effect achieved, but may not need to

predetermine the precise command or sequence of commands to be used, nor

may he be concerned with precisely what formats are used or what the

error indications will be. Occasionally a user will require exact

compatibility, and then his requirement definition will have to be a

specification. Otherwise, the broader the requirement definition can be

made while still requiring the function needed by the user, the more

freedom is left to the designers to optimize the system and the better

they will be able to make the system.

B. Formal Specifications

The necessary mathematical basis for formal requirements definition

is at this time regretfully not well understood, and no acceptable

general approach to requirements currently exists. On the other hand,
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methods for formal specifications do exist. The purpose of a

1specification is to provide a precise definition of the intended

behavior of a system of programs, a program, or program component. This

definition should not constrain the means by which the implementation

achieves the desired results, for instance by presuming certain internal

data representations or algorithms. But the specification should

completely define the externally observable behavior of the program, so

that the only effects that can be discovered by a user are precisely

defined by the specification. In effect, the specification defines a

"black box" of known behavior and unknown internal construction.

A specification should be complete, in that for any operation, its

result can be deduced from the specification; the specification should

also be consistent, in that it not contain contradictory (hence,

unimplementable) constraints, such as "X=O AND X:1".

Since a formal specification is a mathematical object, one can

demonstrate in a formal, rigorous manner that a given specification
possesses certain postulated properties. For example, we may want to

prove from a stack specification that "Top(Push(x)) = x". The prospect

of powerful mechanical theorem provers that can establish complex

properties of specifications automatically makes this aspect

particularly attractive.

Coupled with a modular approach to system design, the formal

specification method significantly reduces the severity of program

modification and maintenance problems. Information about a given

module's behavior is communicated to users solely through the module's

specification, and not through its program code. Thus, suppose that a

given module's specification remains constant while its implementation

is changed (and the implementation stays consistent with the

specification); then the modules using the given module are not affected

and do not have to be changed.

Traditional informal specifications can still serve a useful

purpose. They can be used to convey the meaning of a module in a more

accessible though necessarily less rigorous manner. Informal notations

may also serve as instructions or suggestions to the implementor,

7
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something especially desirable since formal specifications are meant to

be implementation-independent. HD4 does not provide guidelines for such

informal specifications, but does permit informal comments to be

embedded into a specification.

C. Types of Formal Specifications

For the purpose of this exposition, we distinguish among three

approaches to module specifications: operational, state-machine, and

axiomatic. The HDM approach falls under the state-machine category.

An operational specification is a set of programs that by

definition exhibits the desired behavior. For the purposes of

specification, simplicity and clarity rather than efficiency are the

most important considerations. Though in a strict sense an operational

specification may be viewed as a grossly inefficient (though by

definition correct) implementation, we typically do not include the

specification itself when we consider "implementations". Rather, an

operational specification serves as a reference point against which (the

functional behavior of) other implementations are compared. The problem

of proving the correctness of an implementation thus becomes the problem

of proving program equivalence: demonstrating that the specification

and implementation programs are computationally equivalent.

An operational specification language is usually chosen for its

elegance and clean semantics. Example 3 of such languages are pure Lisp,

the theory of Boyer-Moore [1, and the axiomatized subset of Pascal [4J.

A number of problems result from the operational approach.

Sometimes we may want to leave some cases unspecified (e.g., the order

of evaluation of operands in arithmetic expressions), or allow some

latitude in the exact output produced as long as it satisfies some

output constraint (e.g., the solution to some equation within a given

tolerance). This is not possible with an operational specification; the

specification oversoecifies the problem. An operational specification

can also misleadingly suggest a strategy for implementation. It is

misleading because (functional) specifications are constructed without

8



regard for efficiency; this is not true for implementations. In

addition, there is the hazard that an operational specification, as a

program, may not always terminate. For these reasons, we do not

tconsider operational specifications further.
The concepts of the state-machine approach have been fully

explained in Volume I. The essential notions are:

- An explicit state is referred to and modified.

- Non-procedural mathematical expressions are used to
characterize state changes and returned values.

Of the axiomatic approaches, the algebraic approach of John Guttag

[3] has attracted the most interest. This approach consists of

contraints, called axioms, on particular sequences of operations such

that the effect for an arbitrary sequence of operations can be deduced

from these axioms. In contrast to the state-machine approach, the

algebraic approach involves only an implicit concept of state. The

approach sometimes leads to shorter specifications and produces

specifications in a form consistent with some verification systems.

However, we favor the state-machine approach for the following reasons:

-It gives the effect of a module operation in an explicit

manner, rather than indirectly through a set of axioms. Our
experience is that the explicit approach is more intuitive and

transparent, and specifications are more easily developed and

comprehended. Algebraic specifications have been criticized
for their opaqueness, and for their failure to provide "feel"
for what in being specified.

-It has been applied to the specification of some important
large systems, such as SIFT, an ultra-reliable avionics
computer with software-implemented fault tolerance [7], and
PSOS, a provably secure operating system [53.

D. Aspects of SPECIAL

Though SPECIAL is not a programming language in the conventional

sense, it has greatly benefited from the lessons learned in programming

language design. The basis for these advances has been a better

understanding of the programming process and an elucidation of the

underlying mathematics.



SPECIAL provides a means for recording decisions for modules and

mapping functions developed while using HDM. Specifically, SPECIAL

provides ways to: (1) specify a module's internal data structures and

constraints upon the initial values of those data structures; (2)

characterize a module's operations, their effects on the internal data

structures of the machine, and the conditions under which the operations

may be invoked; (3) protect a module's objects; and (4) support the

interrelationships among the modules of a machine and between machines

at adjacent levels.

These considerations have dictated the high level structure of

SPECIAL. Below are some of the issues we considered important.

A specification language should be:

Clear and Descriptive: As we discussed in the critique of the

operational approach, clarity and simplicity are of utmost importance.

Specifications are meant to be read and understood, not executed. A

good specification language should enable the designer to manipulate

abstract entities as he distills the essential characteristics and omits

the procedural details. The specification language need not contain

features common to executable programming languages, features whose only

purpose is to speed-up the compilation process or to assist the compiler

produce efficient code. As a result, we have made SPECIAL a

declarative, non-procedural language, rather than an imperative,

procedural one.

Semantically Well-Defined: The need to place specification

languages on firm mathematical ground, and the derived benefits, are

discussed at length in the previous section. SPECIAL is based on

first-order predicate calculus and set theory, which also serve as the

basis for several verification systems.

At the present time, only a subset of SPECIAL has been formalized.

Using the theory of Boyer-Moore, we have given formal semantics to most,

but not all, of the essential HDM concepts [2]. The major goal of the

continuing HDM effort is to formalize the entirety of our specification

language. Until that effort is complete, however, when we speak of

SPECIAL being "formal", we are referring to the formalized subset.

10
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Well-iAe dr kX a Cs 1t of Trools: A comprehensive

set of tools can aid in detecting inconsistencies. There are two

general types of inconsistencies in a specification: semantic and

syntactic. A specification with a semantic inconsistency is one that

contains some constraint no implementation can satisfy, e.g., the

constraint "x=O AND x=1". While it is not possible to write a program

that can detect all such semantic errors, many can be exposed by

mechanical theorem provers. On the other hand, syntax errors can always

be detected. The current set of HDM tools is primarily concerned with

detecting such errors of syntax. (At SRI we use the powerful

Boyer-Moore theorem prover to help detect the more difficult semantic

errors.) Syntax errors fall into two general classes: context-free and

context-sensitive errors. The context-free class relates to the

specification's phrase structure and is easily handled by well-known

algorithms for context-free parsing. Context-sensitive errors usually

reflect naming inconsistencies (e.g., two distinct formal parameters

with the same name to a given operation or function) or data type

violations (e.g., the expression

b = 17 + TRUE

where b is of type BOOLEAN). Strong typing in SPECIAL is part of the

language, and specifications that violate the strong typing rules are

regarded as being "ill-formed".

We have tried to keep SPECIAL free of "innovations" and "new

features". The real ideas of SPECIAL are to be found in the concepts of

HDM, as discussed in Volume I, and not in the details of the language

design. SPECIAL is just a medium, and the success of SPECIAL as a

language design can be judged by how well it captures HDM concepts

without introducing extraneous details.

11



I
III Overview of Abstract Machine and Nodule Specification

An abstract machine specification is a definition of the machine's

external properties. Since each module of a given machine is only

loosely dependent -- if at all -- on the other modules in the machine,

we will (for simplicity) concentrate in this chapter on the

specification of one-module abstract machines. The detailed example of

Volume III contains several instances of nontrivial multi-module

machines.

A module is conveniently viewed as containing internal data

structures and providing operations to users of its interface. The data

structures define the state of a module. (As we present module

specifications more completely, we will see there are additional

components to the state.) The operations provide the means by which the

state may be accessed and/or modified from the outside.

A module's data structures are characterized by tate-fun ns,

which are to be distinguished from mathematical functions. There are

two types of state-functions: primitive and derived. The primitive

ones are the only ones that actually define state. A derived

state-function is some expression over the primitive state-functions; as

such, it is simply a shorthand abbreviation. The specification must

give each state-function's functionality (i.e., its domain and range);

for the primitive state-functions, the specification must also specify

the constraints upon the initial values; for the derived ones, it must

give the derivation.

The execution of an operation may either "raise an exception" or

"return normally". In general, a normal return involves a returned

value and a state change. The returned value is described in terms of

constraints it must satisfy. The state change is described by relating

the post-invocation values of the state-functions to their

pre-invocation values.

An exception return occurs when one of the exception fnitions

associated with the operation is satisfied (raised). An exception

condition depends on the state of the maohine and on the values of the

13



operation's actual arguments. An exception return includes an

indication of which exception was raised. In the current version of

SPECIAL, no state change may occur if an exception is raised. For the

specification of a bounded stack "push" operation, a typical exception

condition would be an expression that detects an attempt to push a value

onto a full stack.

For a given sequence of operations, the final value of a

state-function is determined inductively: the specification for the

state-function gives its initial value, and the specifications for the

operations derive post-invocation state-function values from their

pre-invocation values. 1

We next present a small example to illustrate these points. A few

of the terms used below have not been explained, but the reader should

still be able to follow the example. The example defines an unoounded

push-down stack of objects called stack_elems. The data structures are:

VFUN Access(INTEGER i) -> stack_elem s;
HIDDEN;
INITIALLY FORALL INTEGER i: Access(i) = UNDEFINED;

VFUN Size() -> INTEGER i;
HIDDEN;
INITIALLY i = 0;

The data structure Access defines the current elements in the

stack, and Size gives the current stack size. Initially the stack is

empty; hence, Access(i) is UNDEFINED for all INTEGER i, and SizeC) is 0.

The operations are:

1To be completely precise, we should say that we determine the final
consaint on the state-function's value, rather than the value itself.
This is because both the initial value and the operation effects are
specified through constraints which in general may not be uniquely
satisfied.

14
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VFUN Top() -> stack elem 3;
EXCEPTIONS empty: Sizeo=O;
DERIVATION Access(Sizeo);

OF UN Push(stack elem s);
EFFECTS

'Sizeo) = Size(+1;
Access(Size)+1) = s;

OVFUN Pop() -> stack elem s;
EXCEPTIONS empty: Size)=O;
EFFECTS

'Size() = Size(-1;
s = Access(Sizeo);
'Access(Sizeo) = UNDEFINED;

(In the above, 'f denotes the post-invocation value of the

state-function f. We call this the state-function's quoted value.) If a

state-function value is not mentioned in an operation's effects section,

it is assumed that the operation does not change the given

state-function's value.

Briefly, Top causes no state change and returns the top of the

stack as long as the stack is not empty. Push places a new element on

the stack by increasing the stack size by one, leaving all previous

elements where they were, and inserting the new element on the top.

Note that Push causes a state change though it neither returns a value

nor has any exceptions. Finally, the stack is popped with the operation

Pop. Pop shrinks the size of the stack by one, returns the

pre-invocation top as its value, and specifies that the previous top now

"no longer exists". (This will be explained in more detail in later

chapters.)

There is another formulation we could give that would make Size a

derived, rather than a primitive, state-function. This would be to

define Size as the cardinality of the set {INTEGER i I Access(i)
UNDEFINED). As a result, two effects would be removed: the one that

increments Sizeo) in Push, and the one that decrements Size() in Pp.

1I
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IV The Expression Level of SPECIAL

SPECIAL can be decomposed into two distinct language levels, the

expressin level and the snecifigation level. The expression level is

concerned with the way expressions are constructed; the specification

level is concerned with the way expressions are put together into module

specifications and mapping functions. The expression level of SPECIAL

is very much like the expression Ieel of other modern languages.

Readers familiar with languages such as Pascal, Alphard, CLU, etc., will

find few new ideas here.

In this chapter we discuss expressions, types, operations on types,

and miscellaneous expression forms.

A. Expressions

The concept of expressions is at the heart of SPECIAL. Expressions

are composed into assertions (predicates) that in turn are used to

describe: initial conditions for primitive state-functions; derivations

for derived state-f'unctions; exception conditions,

state-transformations, and returned values for operations; mapping

functions; and invariant properties-

An expression denotes a value. At the oase level, an expression is

a constant or a variable. A constant refers to a single, unique value.

A variable assumes its value from a specified set of values; in any

given instance, the variable denotes one of those values.

More complicated expressions are constructed by composing an

. -operator with a sequence of operands (arguments). Each argument is

itself an expression. Operators may be predefined (e.g., + or NOT) or

user-defined. User-defined operators may be state-functions,

value-returning operations, or user-defined expression forms.

B. Types

A tyI is a set of values. Values of a given type may be

17
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manipulated only through the set of operations defined on that type.

With the exception of the special value UNDEFINED as explained below,

every constant is of a particular, distinct primitive type. A

variable's type is the range of values it may assume. An operator has a

type associated with each argument and with its result. Thus, the type

of an expression is: if the expression is elementary (i.e., a constant

or variable), then the type is the type of the given constant or

variable; otherwise, the type is the result type of the expression's

operator.

The semantics of SPECIAL specify the type for each constant and for

the arguments and result of each predefined operator. Correspondingly,

SPECIAL provides mechanisms by which variables and user-defined formal

arguments and results are declared, i.e., associated with a type.

SPECIAL requires that types of actual arguments be "compatible"

with the types of the formal arguments. These restrictions are imposed

to prevent the writing of some "meaningless" expressions..

There are three classes of types in SPECIAL: primitive types,

subtypes, and constructed types.

1. Primitive Types

Primitive types are the building blocks from which other types are

constructed. As such, primitive types cannot be decomposed. The only

value that two primitive types may (and do) have in common is the

distinguished value UNDEFINED, which is an implicit member of every

type.

SPECIAL has three primitive types: predefined, scalar, and

designator. The predefined types are the familiar INTEGER, REAL,

BOOLEAN, and CHAR. The usual kinds of operations apply to these types.

In SPECIAL, however, these types possess their true mathma l
properties. Hence, the notions of overflow, round-off error, etc.,

which apply to the machine counterparts of these types, are not

applicable to these types in SPECIAL.

The BOOLEAN constants are TRUE and FALSE. CHAR constants are

denoted by single characters within single quotes, e.g., 'A'.

18



Scalar types are user-defined (unordered) finite sets of enumerated

symbolic constants. For example, the scalar type primarycoor could be

the set [red, blue, yellow), the only buiLt-in operation permitted on

scalar types is equaLity. There is no added generality in including

scalar types in SPECIAL since the values of a scalar type can always be

represented by integers, for example. However, scalar types do serve

useful purposes. First, they improve readability. In a program that

deals with the days of tha week, Monday, Tuesday, ... , Sunday are much

aore mnemonic than 1,2,... ,7. Second, since scalar types have only a

limited set of buiLt-in operations, type-checking can invalidate sucn

nonsense expressions as "red + yellow < blue", wnicn would be Legal with

integers.

Designator types are the means by which abstract data types are

defined in SPSCIAL. For example, if we wanted a stack data type, we

would declare "stack" as a designator type. Each value of a designator

type, called a designator, is used to name an object of an abstract data

type. There is a one-to-one correspondence between designators and

conceptualized abstract objects of a given type. Thus, each designator

value of our type "stack" denotes the name of a distinct stack object.

the only built-in operations that apply directly to designators are

equality and NEW. (The designated object itsalf may be modified by

supplying tne designator for that object as an argument to a

state-changing operation. In this way, designators are somewnat

analogous to pointers in programming languages.) The operation NE4 takes

the name of. a designator type as its argument and returns a never-used

designator for that type. There are no designator constants except

UNDEFINED; after initialization, the.;only way to create a designator Is

through the use of NEW.

The set of all currently allocated designators constitutes part of

the state of the module that supports the given designator type. Thus,

designator allocation is a state-changing operation.

2. Subtypes

A subtype is a specified subset of a given type. We will see how
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to specify subtypes once we present the ways to specify sets. A subtype

inherits the operations of its constituent type.

3. Construoted Types

There are three flavors of constructed types: union, aggregate,

and structured. The value set of a union type is the union of the value

sets of its several constituent types. A union type inherits the

operations of its constituent types.

An aggregate type is a homogeneous collection of objects from a

given constituent type. The two kinds of aggregate types are sets and

vectors. A set data type's value set is the powerset of its constituent

type's value set. For example, the type SET_OF {a,b) has the value set:

{ (), (a), (b), {a,b) ). Vectors are like sets except they are (1)

ordered and (2) always finite. Vectors in SPECIAL are really indexable

sequences.

A structured type is similar to a PL/I structure or a Pascal

record. An example is the type complexnumber with two REAL components,

realpart and imagpart.

The operations defined for the above constructed types are

discussed at length in a later section.

4. The Role of UNDEFINED

It is often useful in a specification to indicate that a given

object in a module does not exist. We use the particular symbol

UNDEFINED (also, "?") to represent "no value" or non-existence. If we

used a particular conventional value in each case -- say, 0 for integers

-- to indicate "no value", the implementation would be constrained to

supply that same value even though it may not "exist". "?" has the

advantage that it does not constrain implementations. For example, if

we pop a stack, the specification could either leave the old top value,

or change it to "?". In the former case, the implementation would be

forced to leave that value around even though it may be inaccessible by

the module's operations. In the latter case, however, the

implementation is not forced to represent this "non-existent" popped
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val ue.

In a specification, "?" can only be meaningfully manipulated with

the equality relationals (= and ~:). For all other appearances of "?"

as an actual argument to a given function or operation, the result is

"?". For example, both ?=? and ?-=2 are TRUE, while ?+2 is ?.

Because "?" symbolizes the lack of a value, it is never actually
used in an implementation. Thus, no value-returning operation should be

specified to return "?" for any feasible set of actual arguments. In

addition, since a user of a module cannot pass "?" as an actual argument

to an executing program, there is no need in a module specification to

specify a returned value, a state change, or an exception condition for

an UNDEFINED argument.

"?" is a distinct, implicit member of every SPECIAL type. Thus the
type INTEGER is actually the value set

I ..., -2, -1, 0, 1, 2, . . } U {?

5. Type Specifications

Each variable, formal argument, and formal result must be declared

(or associated with a type), before use. A type specification is either

an explicit type specification or a named type. Examples of some

explicit type specifications for the different kinds of types are:

predefined INTEGER
BOOLEAN

scalar [red, blue, yellow)

subtype (1, 3, 5, 7)
(INTEGER i I i > 0)
11 .. 10)

aggregate SET_OF INTEGER
VECTOROF (red, blue, yellow)

structured STRUCTOF(REAL realpart; REAL imagpart)

union ONE_OF(INTEGER,REAL)

A named type associates an identifier with a type specification,

e-g.,

complex-number: STRUCTOF(REAL realpart; REAL iua~part)
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Then a complexnumber variable cx can be declared

complexnumber cx

A designator type must be a named type. We write

stack: DESIGNATOR

to declare the stack designator type, and then

stack s

to declare the variable s of type stack.

C. Extended BNF Notation

The notation we use for syntax equations in this document is based

on an extended form of BNF (Backus-Naur Form). In this notation,

nonterminals are enclosed in angle brackets; the left side of a rule is

separated from the right side by a colon; and special characters that

are terminals appear within single quotes, e.g., '' . We also use the

following meta-constructs:

the enclosed elements appear 0 or more times

[... ]+. the enclosed elements appear 1 or more times

the enclosed elements are optional

an alternative between the enclosed elements

In the above, [ and I serve as meta-parentheses. When there is no

danger of ambiguity, we may omit the meta-parentheses.

D. Operations on Types

1. Predefined Types

The built-in operations on predefined types are the logical,

arithmetic and relational operators that apply to objects of types

INTEGER, REAL, BOOLEAN, and CHAR. The logical operators are AND, OR,

negatior (NOT or -), and implication (=>); each takes BOOLEAN

argument(s) and has a BOOLEAN result. The arithmetic operators are +, -

(unary or binary), i, /, and MOD. Each operates on numbers, which is an

object of type INTEGER or REAL. Objects of both numeric types can be
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freely intermixed as arguments to the arithmetic operators. An operator

having only INTEGER arguments has an INTEGER result; otherwise the

result is REAL. Each relational operator returns a BOOLEAN result. The

ordering relationaLs <, <=, >, and >= each take two numbers as

arguments. The equality relatLonals, = and -=, permit objects of any

two non-disjoint types as arguments. 1

mere are at the present time no built-in operators besides

equality for objects of type CHAR.

2. Sets

SPECIAL provides the following set operators: UNION, INTER, DIFF,

INSET, SUBSET, and CARDINALITY. They correspond respectively to:

union, intersection, set difference, membership, set inclusion, and

cardinaLity.

The UNION operator takes two set-valued arguments and has a

set-vaLued result. Assume (without toss of generality) that tne types

of the two arguments are respectively of the form

ONE0OF(SEr OF AI,...,SETOF An)

and

ONE0oF(SErOF BI,...,SETOF Bin),

where each AL and Bj is a type specification. (Note that ONEoF(SEr OF

x) is equivalent to SETOF x.) Then the type of the result is the

"ONEOF" of SETOF ONEOF(Ai,Bj) for 1<=i<=n, 1<=j<=m. For example, if

sl has the type SET OF INTEGER and s2 nas the type ONEOF( SETOF REAL,

SET OF CHAR), then the type of sl UNION s2 is

ONEOF (
SETOF ONEOF( INTEGER,REAL ),
SETOF ONEOF( INtEGER,CHAR ))

The intersection operator is defined in a similar way. It also

takes two set-valued operands and has a set-valued result. We assume

ISince ",?" is part of every type, two types can never, striotly
speaking, be disjoint. For zimplicity, however, we will regard the
intersection of two types as being empty if the only element Ln common
is "?".
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the above "ONE_OF" form for the types of the arguments. The INTER

operator requires that the arguments be sets whose constituent types are

not disjoint. More precisely, we requirel

(U Ai) I (U BJ) i (1. (1)

The result type of INTER is the "ONE_OF" of SET_OF xij, where xij

is the intersection of Ai and BJ. For example, if si has type

SET_OF ONEOF(INTEGER,REAL) and s2 has type ONE_OF(SET OF INTEGER,

SETOF REAL), then the type of the result of Si INTER s2 is

ONEOF( SET_OF INTEGER, SETOF REAL ),

the type of s2. If s3 has type ONEOF( SET_0F INTEGER, SETOF CHAR),

the result type of sl INTER s3 is SETOF INTEGER.

The DIFF operation also takes two set-valued operands and has a

set-valued result. The disjointness restriction (1) from above also

applies to DIFF. The type of the result is the type of the first

argument.

The INSET operation takes a first operand, say, with type A and a

second set-valued operand, say with type of the above ONE_OF form. The

restriction here is that

A I (U Bj) * 1
The result of INSET is BOOLEAN.

The SUBSET operation takes two set-valued operands and has a

BOOLEAN result. It also has the disjointness restriction (1).

CARDINALITY allows any finite set as an argument and returns an

INTEGER result.

In addition to the above conventional set operators, SPECIAL also

provides MIN and MAX. MIN and MAX each take a finite set of numbers as

argument and respectively return the set's minimum or maximum element.

If the argument set is empty, the result is UNDEFINED.

Sets are specified with forms called set constructors. An

tenioal requires an enumeration of the individual

elements. The elements of an extensional constructor may in general be

U denotes set union, I set intersection.
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expressions, though they are typically constants. Examples of

extensionally constructed sets are (red, blue, yellow} or SET(red, blue,

yellow) for the set containing the primary colors, and () or SET() for

the empty set.

An in constructor supplies a necessary and sufficient

property of the elements. The intensional constructor for sets has the

form

'{' <typespec> <symbol> '' <pred> '}'

where <pred> is a predicate. The value of such an expression is the set

that contains all values in the type <typespec> such that when

substituted for free occurrences of <symbol> within <pred>, <pred> is

TPUE. We have already used an intensional constructor to specify the

set of positive integers: (INTEGER i 1i > 01. The set of odd integers

between 1 and 9 (inclusive) could be defined by the intensional

constructor

{INTEGER i 1 1<=i AND i<=9 AND (i MOD 2 = 1))

or by the extensional constructor

{1, 3, 5, 7, 91.

The eran t constructor is used to specify sets of numbers.

The constructor defines a set by giving expressions for the endpoints of

a closed interval; the set contains all elements in the interval. The

general form for a subrange constructor is:

'{' <expr> '..' <expr> '}'

If both endpoint expressions have integer type, the resulting set also

has integer type; otherwise, it has real type. The first expression

gives the left endpoint, the second the right endpoint.

IA subrange constructor {el .. e2} with result type t is equivalent

to the intensional constructor (t x 1 el <= x AND x <= e2}. For

exanfple, (1.0 .. 4.01 is equivalent to [REAL x 1 1.0 <= x AND x <= 4.01.

Also, (1 .. 41 is equivalent to (INTEGER i 1 1 <= i AND i <= 41, whcih

in turn is equivalent to (1, 2, 3, 41. Note that (4 .. 31 denotes the

empty set.

The intensional constructor is the most general one.
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As we will see in later sections, there are constructors for

vectors and structures, too.

3. Vectors

There are two operations on vectors. LENGTH takes a vector-valued

argument and has an INTEGER result. The value of LENGTH(v) is the

number of elements in the vector v. The extraction operation is written

v[i], where v is a vector-valued expression and i is an integer-valued

expression in the range 1 to LENGTH(v). The result is the ,jth element

of v, and its type is the constituent type of v; e.g., if v has type

VECTOR_OF REAL, v[i has type REAL.

An extensional vector constructor with n elements defines a vector

with respective elements in positions 1 to n. The intensional

constructor has the syntax

VECTOR '(' FOR <symbol>
FROM <expr> TO <expr> ':' <expr> ')'

We define the value of an intensional constructor of the general form

VECTOR(FOR i FROM f_.expr TO texpr: f(i))

in terms of a closed interval of integers whose respective left and

right endpoints are given by f-expr and t-expr. The elements of this

interval are denoted by the ordered sequence el,...,en, where

n = t_expr - f,_expr + 1. Now, the above constructor describes a vector

v such that vii] = f(ei), for 1<=i<=n. If n<1 (i.e., fexpr > t._expr),

the vector is empty.

For example, the extensional constructor

VECTOR(I, 3, 5, 7)

describes the same vector as

VECTOR(FOR i FROM 1 TO 4: 26i - 1)

and as

VECTOR(FOR J FROM 0 TO 3: 2*j + 1)

SPECIAL provides a shorthand notation for constants of type

VECTOR_OF CHAR, I.e., character strings. As an illustration, "ABC" is

the same as VECTOR('A','B','C'). (Note that the double quotes in "ABC"

are required; they are not meta-symbols here.)
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4. Structures

Structures have an extractor operation and two varieties of

extensional constructors. If "complex_number" is a named type that

represents STRUCTJOF(REAL realpart; REAL imagpart), then the extractors

for the type are x.realpart and x.imagpart, where x is an object of

complex_number type. The type of an extraction is the type of the

associated selector. For example, x.realpart and x.imagpart are both

REAL.

The two varieties of constructors work by selector name and by

position, respectively. The selector name constructor reflects a view

of structures that is consistent with that embodied by the extractor

operation. This view sees a structure as an unordered collection of

components, each identified by a selector name. Thus, the constructor

specifies a structure by associating a value with each selector name,

and does not depend on the order of the components in the type

specification.

The positional constructor views a structure as an ordered

collection of components, and disregards selector names. It specifies

elements by position, in a similar manner as the extensional vector

constructor.

For example, STRUCT(realpart: 1.0,imagpart: 0.0), STRUCT(I.0,

0.0), and STRUCT(imagpart: 0.0,realpart: 1.0) all denote the same

complexnumber. They are A" the same as STRUCT(0.0,1.0).

5. Union Types

Suppose we have a variable of type ONEF(tl,t2), and wish the

result of an expression to be f(x) if x is of type t1 and g(x) if x is

of type t2. This is done with the TYPECASE expression. We write:

TYPECASE x OF
tl: f(x);
t2: g(x);

END
The type labels (here, tl and t2) must refer to disjoint types; the type

of the object variable (here, x) must be the union of all the type
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labels; and the type of the entire expression is the union of the types

of the component expressions (here, f(x) and g(x)).

E. Miscellaneous Forms

1. Quantified Expressions

A quantified expression represents a formula in first-order logic.

There are two quantifiers: universal and existential, denoted

respectively by FORALL and EXISTS. The syntax for quantified

expressions is

[FORALLIEXISTS] <qualifications> ':' <pred>

where <qualifications> is a sequence of one or more <qual>s separated by

semicolons.

<qualifications>: <qual> [';' <qual>] •

A <qual> is a <simpledec> followed by an optional domain restriction. A

<simpledec> is a kind of declaration, and is explained in Section V.C.

<qual>: <simpledec> <domrestriction>?
<dom_restriction>: INSET <setexpression>

'I' <pred>
I <relop> <expr>

The domain restriction within a <qual> adds no generality but improves

readibility. For example, we may write

FORALL INTEGER x INSET s : p(x)

to mean, "for all integers x in set s, p(x) is TRUE". This is

equivalent to

FORALL INTEGER x : (x INSET s) => p(x)

Similarly, we may write

EXISTS INTEGER x I q(x) : p(x)

for the equivalent

EXISTS INTEGER x : q(x) AND p(x).

2. Characterization Expressions

Sometimes we write expressions in which an object with a particular I
value or property is used repeatedly. As a result, we have provided two

forms, called characterization expressions, in which a group of J
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variables is first characterized (bound to values) and then used within

an expression. The value of the form is the value of the expression.

The first of these forms, the LET expression, has the following

syn tax

LET <quals1> IN <expr>

waere <qualsl> is like <qualifications> above, except that within each

<qualsi> qualification the domain restriction is now mandatory.

As an example, consider a tanle implemented as a function tbl of

one integer argument. The table has keys stored in even positions and

associated values in subsequent positions. We would like to calculate

f(v) + g(v), where v is the value (of type t) corresponding to the key k

in the table. This can be expressed with

LET t v 1 EXISTS INTEGER I >= 0 : even(i) AND tbl(i)-k
AND tbl(i+1)=v

IN f(v) + g(v)

If a qualifying expression does not uigualy characterize a

qualified variable, then the variable may assume any one of the

satisfying values in the expression body (the expression following the

IN). Thus, the LET expression may in general denote any one of a set of

values. With regards to the above example, this means that if v1, v2,

all satisfied the qualifying expression, the value of the LET

expression would be any one of f(vl)+g(vl), f(v2)+g(v2), ... (but not

f(vi)+g(vj)) for iij).

In addition, if a qualification expression is unsatisfiable, then

its associated qualified variable is bound to "?" in the expression

body.

A restricted form of tne LET expression is called a SOME

expression. It has the form

SOME <qualIl>

where

<quall>: <simpledec> <donarestriction>

(Note that <qual1> is the qualification that applies for <quals1> in the

LET expression.)
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An expression such as SOME REAL x 1 p(x) may assume as value any

REAL x such that p(x) is TRUE. It is equivalent to

LET REAL x 1 p(x) IN x.

3. Conditional Expressions

The conditional expression has the form

IF <pred> THEN <expri> ELSE <expr2>

If <pred> is TRUE, the value is the value of <expri>; if FALSE, it is

the value of <expr2>; otherwise (if <pred> is "?"), it is "?". The type

of the result is the union of the respective types of <expri> and

<expr2>.
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V The Specification Level of SPECIAL: Module Specifications

In the discussion of the specification level, we show how module

specifications are constructed from expressions at the expression level.

But first we must introduce some vocabulary.

A. V-functions, 0-functions, and OV-functions

So far we have talked about modules in terms of operations and

state-functions. For historical reasons, however, SPECIAL specifies a

module in terms of so-called V-functions, 0-functions, and OV-functions.

V-functions have two purposes: to define the state of the module,

and to provide information about the state to the module's users. In

terms of our former model, V-functions serve simultaneously as

state-functions and as value-returning operations that reveal but not

modify state. The "V" in V-function conveys the _alue-returning idea.

The dual role for V-functions leads to shorter specifications,

since the function used to characterize a data structure may also be

used as an operation to query the value of the data structure. It is

possible, however, to specify that a given V-function serve solely as a

state-function. Such V-functions, called hidden V-functions, may not be

invoked by an executing implementation program. Hidden V-functions,

though, may be externally referenced in a module specification. We give

an example that illustrates this important distinction in Section V.I.2.

The state-changing operations of our former model are now called 0-

and OV-functions. The distinction between these two types of functions

is that an OV-function both causes a state change and returns a value,

whereas an 0-function only causes a state change.

B. Module Specifications

A module specification in SPECIAL consists of six paragraphs, each

of which is optional in a given specification. In its most general

form, the top-level structure looks like:
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MODULE <symbol>

TYPES
<types body>

PARAMETERS
<parameters body>

DEFINITIONS
<definitions body>

EXTERNALREFS
<externalrefs body>

ASSERTIONS
<assertions body>

FUNCTIONS

<functions body>

END-34ODULE

where <symbol> is the name of the module.

The TYPES paragraph contains the declarations for all internal

named types (including designator types) used in the module

specification. The PARAMETERS paragraph contains the declarations for

symbolic constants called module mrAa&nr. Parameters are similar to

V-functions, except that their values cannot be changed. The

DEFINITIONS paragraph contains the definitions for macro-like auxiliary

function definitions. The EXTERNALREFS paragraph contains the

declarations for objects of other modules that are externally referenced

in the specification. These objects include designator and scalar

types; V-, 0-, and OV-functions; and parameters. The ASSERTIONS

paragraph contains (1) assertions that are constraints on the module's

parameters, and (2) invariants of the module that need to be proved from

its specification. Finally, the FUNCTIONS paragraph contains the

definitions for all V-, 0-, and OV-functions of the module.

In the next sections we look at each of these paragraphs in detail

and give the respective syntax equations. In Appendix B we give the

complete LALR(1) grammars for SPECIAL and ILPL, as used by the

specification parsers in the tools. The syntax equations presented here

were designed with clarity in mind, so they differ from the ones in the
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Appendix. The languages described here also differ slightly from those

currently supported by the tools, though the intention is to bring the

tools completely up-to-date in the near future.

We first describe in detail the pervasive notion of declaration.

C. Declarations

In general, a declaration associates a type specification with a

list of symbols. It is useful to distinguish between a declaration that

refers to a single symbol and one that refers to possibly multiple (>=1)

symbols. We call the former a <simpledec>, the latter a <fulldec>.

Note that all <simpledec>s are also <fulldec>s, but not vice versa.

The relevant syntax equations are:

<declaration>: <fulldec> 1 <simpledec>

<fulldec>: <typespec> <symbollist>

<simpledec>: <typespec> <symbol>

<symbollist>: <symbol> [',' <symbol>]*

<declaration list>: <declaration> [';' <declaration>]*

We discuss type specifications in detail in the next section.

The following <declaration list> illustrates the above equations.

INTEGER i;
REAL x,y,z;
VECTO._OF(CHAR) string;

STRUCT__OF(REAL realpart,imagpart) ix,jx;
stack s;

{red, yellow, blue) color

D. TYPES Paragraph

The TYPES paragraph contains the declarations for all internal

named types, including designator types. The paragraph body consists of

a sequence of type declarations. Each type declaration associates a

list Qf symbols with either a type specification or the keyword

DESIGNATOR.
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The corresponding syntax equations are:

<types paragraph>: TYPES [<typedecl> ';']+

<typedecl>: <symbollist> ':' [DESIGNATOR I <typespec>]

<typespec>: <symbol>
<subtype>
<scalar type>
<predefined type>
<structure type>
<united type>
<aggregate type>

<subtype>: <setexpression>

<scalar type>: <scalartype setexpression>

<predefined type>: INTEGER 1 REAL I BOOLEAN I CHAR

<structure type>: STRUCT_OF '(' <declaration list> ')'

<united type>: ONE_OF '(' <typespeclist> ')'

<typespeclist>: <typespec> [',' <typespec>]*

<aggregate type>: [SETOF 1 VECTOR._OF] <typespec>

The following is an example <types paragraph>.

TYPES
stack: DESIGNATOR;
posint: (INTEGER i 1i > 0);
number: ONE_OF(INTEGER, REAL);
complexnumber: STRUCT_.OF(number imagpart, realpart);

char_string: VECTOROF CHAR;

color: (red, yellow, blue);

one_toten: (1 .. 10);

Of the types declared in a given module specification, only the

designator and scalar named types are "exported"; that is, they are the

only types that may be referenced by other modules.

The set expression in a subtype specification may contain parameter

and V-function references. The latter case means that it is possible

for the value set of a subtype to vary dynamically, since V-functions

can vary over time with the module's state.
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E. PARAMKTERs Pragrn ph

As repositories for state information, primitive V-functions are

subject to change in value due to invocations of 0- or OV-functions. In

some module specifications there may be primitive V-functions that never

change value. These V-functions attain their value upon initialization

and are never modified thereafter. Such non-varying V-functions are

usually (but not necessarily) specified as module parameters. Lile

primitive V-functions, module parameters constitute components of state.

As is the case for V-function invocations, parameter invocations

are not permitted to effect a state change. This implies that a

parameter may not return a previously unallocated designator, for

designator allocation involves a modification of the underlying module

state. A fixed set of designators, however, may be allocated and bound

to a parameter at initialization time. Objects of non-designator types,

on the other hand, are regarded as "system constants" that do not

contribute to a module's state. Thus, a parameter may always return one

of these objects.

The default constraint on parameter values is the assertion TRUE;

that is, any value will do. The default may be overridden by

constraints in the ASSERTIONS section.

Because the INITIALLY clause in a V-function specification is also

in general a predicate that may not be uniquely satisfied, parameters

provide no added generality over V-functions. Nevertheless, parameters

do serve a useful purpose. They correspond to the intuitive notion of

an implementation-provided immutable object (value or function) and

provide an easy way to specify a module that depends on such objects

-- whose bindings are not known A riori. Since there is no way to modify

a parameter, the proof of constancy is trivial.

Parameters are typically used to:

1. Define a resource limitation that is not known a priori. For
example, a module that provides a bounded stack might have a
parameter maxstacksize.

2. Provide certain "built-in" functions, for example "sin".
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3. Provide a fixed collection of designators that is part of the
module's initial state, i.e., the designators are allocated at
module initialization time.

All parameters are visible; that is, they may be called exte,'nally

by implementations of other modules.

A parameter declaration associates a type specification with a set

of symbols. The type specification gives the result type for each

parameter named in the associated set of symbols. The declarations for

the formal arguments of a parametric function follow the function's name

in the list of symbols. The syntax equations are:

<parameters paragraph>: PARAMETERS [<parmdecl> ';']+

<parmdecl>: <typespec> <symbol> <formalargs>?
[ ',' <symbol> <formalargs>? ]*

<formalargs>: ' ' (declaration list>? ')'

A sample PARAMETERS paragraph is thus:

PARAMETERS
INTEGER ma_stacksize;
REAL sin(REAL x), cos(REAL x), epsilon;

F. DEFINITIONS Paragraph

The definitional facility in SPECIAL provides the mechanism by

which auxiliary (mathematical) functions may be defined for use within

the module specification. In such a definition, the specification gives

the name of the function, declarations for the formal arguments, the

type of the result, and the function body. Constants may be defined in

a similar manner, with the formal argument list omitted.

The function body is a SPECIAL expression. When evaluated, the

expression is not permitted to cause a state-change. This means that

0-, OV-, and quoted V-functions may not appear within the expression.

The names that may appear are: the definition's formal arguments,

unquoted V-functions, parameters, named types, the given function's name

itself (for recursive definitions), and the names of other definitions.

Function definitions and applications are subject to all the normal

type-checking rules. This means that the type of the function body must
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be consistent with the declared result type. The result type, in turn,

must be consistent in a given application with the expected type.

The syntax for the DEFINITIONS paragraph is:

<definitions paragraph>: DEFINITIONS [<definition> ';1']

<definition>: <typespec> <symbol> <formalargs>?

IS <expression>

An example DEFINITIONS paragraph is:

DEFINITIONS
BOOLEAN propersubset(set sl, s2) IS

(sl SUBSET s2) AND s1"=s2;

INTEGER fact(INTEGER i) IS

IF i<=O THEN 1 ELSE i 0 fact(i-1);

G. EXTERNALREFS Paragraph

Here we declare all externally referenced objects: parameters,

functions, and named types from other modules referenced in the current

specification. (Remember that the only referencable named types are

designator and scalar types.) Since these objects may include

state-changing operations (0- and OV-functions) and quoted V-functions,

we see that a given module can alter the state of other modules. A full

discussion of how external referencing induces module dependencies is

contained in Volume I. Recall that the "externalref" relation induces a

partial ordering.

For each externally referenced module, we first give the module's

name and then declarations for its referenced objects. We have already

seen declarations for named types and parameters; we now see how

functions are declared.

A function declaration gives the function name, its kind (VFUN,

OFUN, or OVFUN), declarations for its formal arguments, and a

declaration for the result type (for V- and OV-functions only). We

sometimes call a function declaration a fin header.

The syntax equations for the EXTERNALREFS paragraph are:
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<externalrefs paragraph>: EXTERNALREFS <externalgroup>+

<externalgroup>: FRQ <symbol> 1:' [<externalref> ';']

<externalref>: <exttypedecl> 1 <parmdecl>
<functiondecl>

<exttypedecl>: <symbollist> ':'
[DESIGNATOR 1 <scalar type>]

<functiondecl>: <vfunheader>
<ofunheader>
<ovfunheader>

<vfunheader>: VFUN <symbol> <formalargs>
'->1 <resultargs>

<ovfunheader>: OVFUN <symbol> <formalargs>
'->' <resultargs>

<ofunheader>: OFUN <symbol> <formalargs>

<resultargs>: <declaration>

For example, suppose that a given module manipulates stacks and

arrays of real numbers, provided respectively by the stack and array

modules. The referenced stack objects are the stack designator type and

the Create stack, Push, and Pop stack operations. The referenced array

objects are the array designator type and the Createarray, Elt, and

Change array operations. Elt(arr,i) denotes arr[i); Change(arr,i,x)

causes arr to be changed so that Elt(arr,i) = x. Note that the stack

and array modules may provide other objects that can be externally

referenced; the ones listed above, however, are the only ones referenced

by our given module. Assuming that no other modules are externally

referenced by our module, its EXTERNALREFS paragraph might be:
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EXTERNALREFS

FROM array_.module:
array: DESIGNATOR;
OVFUN Createarray(INTEGER lbd,ubd) -> array a;
VFUN Elt(array a; INTEGER i) -> REAL x;
OFUN Change(array a; INTEGER i; REAL x);

FROM stack_module:
stack: DESIGNATOR;
OVFUN Createstack() -> stack s;
OFUN Push(stack s; REAL x);
OVFUN Pop(stack s) -> REAL x;

H. ASSERTIONS Paragraph

As we have previously discussed, the ASSERTIONS paragraph contains

two kinds of assertions:

1. Constraints on parameters. The implementation' s
initialization program must bind the parameters to values that
satisfy these constraints.

2. Module invariants. These invariants must be proved from the

module specification.

The syntax for the paragraph is simple:

<assertions paragraph>: ASSERTIONS [<expression> ';']+

We further require that the type of each expression be BOOLEAN.

For a bounded stack module specification, where the bound is given

by the integer parameter max_stack_size, the ASSERTIONS section would

likely require the bound to be positive. That is,

ASSERTIONS

max_stack_size > 0;

A more involved case would be for a module that provides as a

parameter a sorting function in REAL vectors. Assuming that our sorter

module does nothing else than provide this sorting function, its entire

specification might be:

39

* -.~ -~ -- --~.- .--,



MODULE sorter

DEFINITIONS
INTEGER #occurrenoes(VECTOROF REAL v; REAL x) IS

CARDINALITY(INTEGER 1 t v(i x));

PARAMETERS
VECTOROF REAL sort(VECTOR_OF REAL v);

ASSERTIONS
FORALL VECTOR_OF REAL v:

(LENGTH(sort(v)) = LENGTH(v))

AND

(FORALL i 1 1 <= i AND i <= LENGTH(v):
#occurrences(v,v[i]) = #occurrences(sort(v) ,v[il))

AND

(FORALL i 1 1 <= i AND i < LENGTH(v):
sort(v)[i] <= sort(v)(i+1]);

ENDJMODULE

These assertions state that the sorted vector is a permutation of

the argument vector, and that the elements of the sorted vector are

indeed sorted. Thus, these assertions capture formally the intuitive

notion of a sort function.

I. FUNCTIONS Paragraph

We finally get to what is usually the most important paragraph in a

specification, the FUNCTIONS paragraph. This paragraph contains the

definitions for all the module's V-, 0-, and OV-functions.

There are three kinds of function definitions, one for each of the

three kinds of functions (V-, 0-, and OV-). The information contained

in each kind of definition naturally varies with the kind of function

being defined. One section all three in general have in common is the

optional ASSERTIONS section. This section, using the same syntax as the

ASSERTIONS paragraph, specifies a list of conditions that must be

guaranteed by any program calling the given function. Most often these

conditions depend on the function's arguments. The assertions are
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regarded as a that may be taken for granted wLn-Qe

function( is invoked in an implementation. In implementation terms,

this means that if a call is made upon a function when all of the

function's assertions are M& satisfied, then the function may possibly

fail to execute properly.

As mentioned, the syntax for the ASSERTIONS section is the same as

ftr the ASSERTIONS paragraph.

<assertions section>: <assertions paragraph>

1. V-function'Definition

As we discussed in Section V.A, V-functions have two purposes: to
define (part of) the state of the module, and to provide such state
information to the module's users. Correspondingly, a V-function

definition must define the V-function's behavior both as a

state-function and as an operation.

A V-function definition starts off with the function's header.

That is, it states that a V-function is being defined, and then gives
the function's name, declarations for its formal arguments, and a

declaration for its result.

The next part of the definition establishes whether the V-function

may be referenced as an operation by programs outside the module, or

whether it serves solely as a state-function. In the former case, we
say the function is visible; in the latter, hidden.

If the function is hidden, the keyword HIDDEN appears here.

Otherwise (if the function is visible), we characterize its exception

conditions, if there are any. Note that since a hidden V-function may

not be invoked in an implementation, it may not have an assertions

section.

The following discussion of the exceptions section also applies to

0- and OV-function definitions.

The exceptions section is a list of exception conditions, each

typically of the form "exceptionname: booleanexpression". If any of
the exception condition expressions is TRUE when the function is called,
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the function returns immediately with a notification of the raised

condition's name. If (and only if) all exception condition expressions

are FALSE does a normal return take place.

The order in which the exception conditions are listed is

important: exception condition exi may be raised if and only if: (1)

its associated expression is TRUE, and (2) the associated expressions

for ex 1 , . . . ,exi. 1 are all FALSE. Once a satisfied exception condition

is found, subsequent ones are not tested.

Sometimes there is insufficient information in a module to express

conditions for the occurrence of an exception. This typically occurs

when the implementation of a function requests resources of the

module(s) it invokes. Since we may not be able to characterize such a

condition explicitly, we use the special exception condition

RESOURCE-ERROR to indicate that the invocation of the function could not

be completed due to some exhaustion of resources at a lower level.

(Note that this special exception condition is not of the typical "name:

expr" form.) The program that implements the function in question is

responsible for sorting out the causes of resource exhaustion and for

returning an indication of RESOURCE_ERROR.

There is another exceptions condition not of the typical form: the

EXCEPTIONS_OF construct. It has the form

EXCEPTIONSOF <call> ''

where <call> is an application of an external function. The

interpretation of this construct is that for each exception condition of

the named external function, a corresponding one in the current function

is derived as follows: the exception name stays the same, and the

expression is obtained by substituting the actual parameters of the

<call> for the free occurrences of the external function's formal

arguments in the original expression. The order of the exception

conditions is preserved.

The EXCEPTIONSOF construct is one of the two places where 0- and

OV-functions may be externally referenced in a specification. The other

is in the EFFECTS_OF construct, which we discuss in the 0-function

definition subsection.
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The syntax for the exceptions section is:

<exceptions>: EXCEPTIONS [<exception-condition> ';']+

<exceptioncondition>: <symbol> ':' <expression>
RESOURCE.ERROR
EXCEPTIONSOF <call>

We require that each exception condition <expression> be Boolean-valued.

If a visible V-function does not have any exception conditions, the

exceptions section is omitted.

The next part of a V-function definition is the optional ASSERTIONS

section.

The final part of the definition depends on whether the function is

jiji or derived. Note that this is independent of whether it is

hidden or visible.

If the function is primitive, this part of the definition

characterizes the initial conditions for the function. The form is:

INITIALLY booleanexpression

We regard each (free) occurrence of the V-function's result variable in

an INITIALLY expression as denoting the V-function's value for a given

set of arguments, and universally quantify the INITIALLY expression over
all possible argument sets. For example, in Chapter III we gave the

V-function specification

VFUN Access(INTEGER i) -> stack_elem s;
HIDDEN;
INITIALLY FORALL INTEGER i: Access(i) = UNDEFINED;

An equivalent INITIALLY expression is the more concise

INITIALLY s = UNDEFINED;

The former INITIALLY expression can be obtained from the latter by
substituting "Access(i)" for "s", and then quantifying over all INTEGER

i.

If the function is derived, we provide its derivation. This form

is

DERIVATION expr

subject to the constraint that the type of expr be compatible with the

function's declared result type. The derivation is not a general
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constraint on the V-function's value, but rather an expression that

directly gives the V-function's value (similar to a DEFINITION).

The collected syntax for a V-function definition is thus:

<vfundefn>: VFUN <symbol> <formalarg> '->'
<resultargs> ';'
[HIDDEN ';': <exceptions>?)
<assertions section>?
[ <initial cond> 1 <derivation> ]

<initial cond>: INITIALLY <expression> ';'

<derivation>: DERIVATION <expression> '' '

The following SPECIAL specifications are for the stack V-functions

of Chapter III:

VFUN Access(INTEGER i) -> stackelem 3;
HIDDEN;
INITIALLY s = ?;

VFUN Size() -> INTEGER i;
HIDDEN;
INITIALLY i = 0;

VFUN Top() -> stack_elem 3;
EXCEPTIONS

empty: Sizeo) = 0;
DERIVATION

Access(Size ));

2. 0- and OV-function Definitions

Since the definitions for 0- and OV-functions are so similar, we

present them together and draw the necessary distinctions when

appropriate.

Two distinguishing characteristics of 0- and OV-functions are:

-1. They are visible.

2. They are permitted to effect a state-transformation.

The former dictates that we give an exceptions section, the latter that

we define the function's state-transforming effects.

The first part of the definition gives the function's header. For

O-functions, which do not return values, the form is

OFUN <symbol> <fbrmalargs> ';'
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The header for OV-functions includes a declaration for the result:

OVFUN <symbol> <fbrmalargs> '->' <resultargs> ';'

The second part of the definition contains the exceptions section;

if the function has no exceptions, it is omitted. A full discussion of

the exceptions section is given in the foregoing discussion of

V-function definitions.

The third part of the definition is the optional ASSERTIONS

section. This section is treated in Section V.I.

The final part of the definition is the EFFECTS section. This

required section defines the function's effect through a list of

assertions that relate the post-invocation values of the module's

V-functions to their pre-invocation values. A post-invocation value of

a V-function is denoted by preceding the function's name with a single

quote ('). All V-function values that do not appear quoted in the

EFFECTS section of a given operation are left unchanged by that

operation.

A few important points about the EFFECTS section must be

emphasized.

1. Unlike exception conditions, effect assertions are unordered.
The list of assertions is really a c of assertions;
the intended AND is replaced by a ";" for readibility purposes
(although they could still be specified with explicit ANDs).

2. The assertions may possibly not uniquely determine the
post-invocation values; that is, they ari constraints, not
assignments: mathematical equations that need to be
satisfied, not program statements. For example, if f, g, and
h are V-functions, the following list of effects

'f() + go = f() + g);
'f() > f() + ;

'ho = (ho + 1) iiOD 5;

does not uniquely characterize f and g. It does however

uniquely determine h.

3. The non-procedural nature of the EFFECTS section is
illustrated again with the following example.

'Size() Sizeo+1;
'Sizeo) = Sizeo-1;
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These are n& assignments to Size; rather they are
.Jcnaint constraints since 'Size() cannot equal Size()+1
and Size(-1 at the same time.

1. Assertions about quoted derived V-functions are really
assertions about the quoted values of the underlying primitive
V-functions.

5. If a V-function value is not mentioned in an EFFECTS section,
it is assumed not to have changed.

6. If an OV-function is being defined, the EFFECTS section must
also constrain the result.

0- and OV-functions of other modules can be referenced by means of

the EFFECTSOF construct. If "ofn" is the name of an external

O-function with formal arguments flf2,..., then "EFFECTS_.OF

ofn(al,a2,...)" denotes the list of effect assertions that would be

obtained by taking ofn's entire effect list and substituting al,a ,...

for the free occurrences of fl,f2,.... For referenced OV-functions,

the expression "x = EFFECTS_OF ovfn(al,a2,...)" means that, "x is equal

to the result of ovfn(al,a2,...) and all effects of ovfn, with the
appropriate argument substitutions, are TRUE".

The syntax for an O-function definition is thus:

<ofundefn>: OFUN <symbol> <formalargs> ';'
<exceptions>?
<assertions section>?
<effects section>

<effects section>: EFFECTS [<effects expr> ';']+

where <effects expr> is a Boolean expression that may contain

"EFFECTS-OF <call>" terms. Similarly, the syntax for an OV-function is:

(ovfundefn>: OVFUN <symbol> <formalargs>
'->' <resultarg> ';'

<exceptions>?
<assertions section>?
<effects section>

The specifications for our stack operations Push and Pop are:
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OFUN Push(stack_elem s);

EFFECTS
'Size() Size() + 1;
'Access(Size() + I) = s;

OVFUN Pop() -> stack_elem s;
EXCEPTIONS

empty: Sizeo) = 0;
EFFECTS

'Size() = Size() - 1;
s = Access(Sizeo);
'Access(Sizeo) = ?;

Since the derivation for Top() is Access(Sizeo), the assertion "s

Access(Sizeo)" is equivalent to the assertion "s = Topo".

An interesting example of how hidden V-functions may be used is the

specification of a "Replace" stack operation that achieves its effect by

externally modifying stack_module's state. The desired effect of

OVFUN Replace(stackelem sl) -> stack_elem s2;

is

'Access(Sizeo) = sl AND s2 = Access(SizeC))

This uffect would appear in Replace's EFFECTS section, and Access and

Size would be declared in the EXTERNALREFS paragraph. Though hidden

V-functions may be externally referenced in a module specification, they

may not be externally called by an implementation program. In this

case, Replace's implementation may n= contain the sequence
s2 <- Access(Size());
Access(Sizeo) <- sl;

RETURN(s2);

Rather, it must use only the visible operations. The following achieves

the desired effect:

s2 <- Popo;
Push(sl);
RETURN(s2);

Note that the EFFECTS section for Replace could not contain the

effects

s2 = EFFECTSOF Pop(); EFFECTS_OF Push(sl);

because these effects would produce the unsatisfiable constraint

'Size() Size)-1 AND 'Size() Size)+1
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Thus, we see that the term "hidden" relates to implementation, not

specification.
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VI The Specification Level of SPECIAL: Mapping Functions

This chapter presents that part of SPECIAL that is used for writing

mapping functions.

For each pair of adjacent abstract machines we must specify how the

data structures of the upper machine are represented in terms of the

data structures of the lower level. The mapping functions provide a

medium for expressing such representation decisions. By employing

SPECIAL for the mapping functions, the representations are expressed in

a precise and concise notation.

An upper-level machine is represented in terms of a lower-level

machine through one or more mapping functions. Each mapping function

relates some subset of the upper-level modules to a subset of the

lower-level modules. These subsets are called s. Each

upper-level module must appear in one (and only one) mapping function;

thus, if a modAle appears in several (contiguous) hierarchy levels, only

the lowest-level occurrence is mapped. Two upper-level modules are in

the same submachine if they share representation decisions. The "only

if" of this statement, however, is not true: the partition need not be

the smallest one; two modules may be grouped together in the absence of

a shared representation decision purely for convenience or ease of

specification. A full discussion of the ways upper-level modules can

share representation decisions is contained in Volume I.

The basis for aggregation of lower-level modules is simply demand:

the lower-level modules of a given mapping function are simply those

that provide some part of the representation.

The collection of mapping functions for a given upper-lower machine

pair is used to associate upper-level states with lower-level states.

Each upper-level state is associated with a sat of lower-level states.

Distinct upper states must be represented by disjoint sets of lower

states. The state of a machine, the reader will recall, is defined by

the values of each primitive V-function (for each possible set of

arguments), the values of each parameter, and the set of existing

designators for each designator type. As a result, a mapping function
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maps the upper-level primitive V-functions, parameters, and designators

down to those of the lower level.

We now discuss how these representation decisions are expressed.

For each upper-level primitive V-function

VFUN pv(tl fl;t2 f2; ...) -> tr result;

there is a maglnnn ex~resaion

pv(tl fl;t2 f2; ... ) expr

The expression on the right in general depends upon entities from the

lower-level machine (primitive V-functions, parameters, designator

types, and scalar types) and upon pv's formal arguments (fl,f2,...).

The type of "expr" is the same as the type of pv's result (here, tr),

except as noted below. The intention is for this expression to provide

a value for pv (for each possible set of arguments) solely in terms of

lower-level entities.

Since "expr" is supposed to deal with lower-level concepts only,

how do we interpret occurrences in "expr" of an argument fi if the

associated type ti depends on designator or scalar types of the

upper-level? The answer is that we must also provide mapping

expressions for the upper-level scalar and designator types, mapping

them to type specifications that involve only predefined SPECIAL types

and types defined by the lower-level modules. An appearance of fi is

thus understood to have the zapi type of ti when it appears in "expr".

A similar situation exists with regards to the type of pv's result.

If the type of the result depends only on predefined types, then this

type and the type of "expr" must be the same; otherwise, if it depends

on upper-level types, then the type of "expr" must be the result's

Zaamd type.

The mapping expressions for parameters are just the same as those

for primitive V-functions, except that the right side may not reference

the lower-level's primitive V-functions.

A. Paragraphs of a Mapping Function Specification

We now present the SPECIAL syntax for mapping function
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specification. Like a module specification, a mapping function consists

of a number of paragraphs. Some of the paragraphs contain information

that is redundant with that in the module specification, but is included

in the representation to permit syntactic (including type-consistency)

checking. Other paragraphs contain subsidary information that aids in

the structuring of the representation specifications. The two major

paragraphs are the MAPPINGS and the INVARIANTS paragraphs.

The general form for a mapping function specification is

MAP <symbollist> TO <symbollist>;

TYPES

<types body>

PARAMETERS

<parameters body>

DEFINITIONS
<definitions body>

EXTERNALREFS
<externalrefs body>

INVARIANTS

<invariants body>

MAPPINGS

<mappings body>

END_MAP

Of course, in a given specification, some of these paragraphs may be

missing.

The first <symbollist> gives the names of the modules in the

upper-level submachine, the second the names of the lower-level modules.

The TYPES paragraph here has the same syntax and somewhat the same

purpose as the TYPES paragraph in a module specification. Though they

both give named type definitions, these types are for convenience only;

"exportable" types must be defined in a modul specification. Thus, new

designator or scalar types may not be introduced in a mapping function.

The PARAMETERS paragraph here also has the same syntax as its

module specification counterpart. The parameters of a mapping function,

51



however, serve a somewhat different purpose. Each mapping function

pzrameter denotes a lower-level object (element or function) that is

assumed to exist and remain fixed in value throughout the use of the

lower-level modules by those at the upper-level. These objects can be

freely referred to in other paragraphs of the mapping function.

Typically, a parameter is a particular lower-level designator used in

representing some upper-level object, or is some function of lower-level

designators.

For example, suppose that a lower-level module provides

fixed-length character arrays (chararrays); and in the mapping function,

we want to assume the existence of a particular chararray, say one that

contains character representations of the digits 0-9. Then, the

PARAMETERS paragraph would contain the declaration

chararray digits

wich declares a particular chararray named "digits". Thereafter in the

mapping function we may assume the existence of "digits". If we want a

parameter to possess certain properties, we place the appropriate

constraints in the INVARIANTS section. In this case, we probably want

"digits" to have the properties (1) its indices range from 0 to 9, and

(2) the Jth position contains the character representation of i.

Of course, some implementation program is required to set-up such

parameters and bind them to values consistent with the constraints in

the INVARIANTS paragraph.

The DEFINITIONS paragraph is identical in syntax and purpose to its

module specification counterpart. Functions are defined here for use

within other mapping function paragraphs. The only names that may

appear freely in the function body are those of its arguments,

lower-level entities, and the function's name itself (for recursive

definitions).

The EXTERNALREFS paragraph declares the relevant entities from the

upper- and lower-level modules, and has the same syntax as the

EXTERNALREFS paragraph in a module specification. All of the

upper-level primitive V-functions, parameters, designator types and

scalar types must be mentioned here, while only the participating
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lower-level ones appear. In addition, we also declare here entities

from modules not in the upper or lower representation clusters but which

nonetheless are referenced in the mapping specification.

We illustrate a typical situation with an example. In the upper

cluster is a module that provides stacks of char_string designators, and

in the lower cluster is a module that provides charstring arrays. The

way in which char_string stacks are represented in terms of char_string

arrays is independent of how char_string designators themselves are

represented. Thus, the char_string designator is externally referenced

in the representation specification, though the char_string module is

not in either the upper or the lower representation cluster. It is,

however, in both the upper- and lower-level machines.

The INVARIANTS paragraph is the mapping function counterpart of the

ASSERTIONS paragraph for module specifications. Each invariant in the
paragraph is a constraint on the values of the lower-level's

V-functions, module parameters, and mapping function parameters. These

invariants reflect the non-arbitrary way in which the lower-level

modules are used. As such, they are typically stronger than assertions

which can be proved from the lower-level module specifications alone.

Upper-level entities are not permitted to appear in INVARIANT

expressions.

It must be proved that the implementation indeed holds each of

these constraints invariant. That is, for each implementation of an

upper-level operation, we assume that the invariants always hold on

entry and then show that they are always TRUE on exit. Finally, we

prove that the initialization programs establish the invariants

initially. By induction then, these invariants are always true (hence,

they indeed are invariants).

Typically, there are many invariants that could be disclosed in

this paragraph. It is recommended, however, that the specifier use

discretion and record only those invariants that are necessary for proof

or that form the basis for simplifications in the abstract programs.

The syntax for the INVARIANTS paragraph is:

<invariants paragraph>: INVARIANTS [<expression>'; ']+
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We require that each <expression> be Boolean-valued.

An example of invariants that characterize the desired properties

of the "digits" chararray discussed above are:

INVARIANTS
lbound(digits) = 0 AND hbound(digits) 9;
FORALL INTEGER i INSET (0 .. 9):

elt(digits,i) = numchar(i).;

where numchar is given by the definition

CHAR numchar({O..9} i) IS
IF i=O THEN '0'
ELSE IF i=1 THEN '1'
ELSE IF i=2 THEN '2'
ELSE IF i=3 THEN '3'
ELSE IF i=4 THEN '4'
ELSE IF i=5 THEN '5'
ELSE IF i=6 THEN '6'
ELSE IF i=7 THEN '7'
ELSE IF i=8 THEN '8'
ELSE '9';

Finally, there is the MAPPINGS paragraph. It contains a list of

mapping expressions, one for each upper-level entity from the

EXTERNALREFS paragraph: primitive V-functions, parameters, designator

types, and scalar types. The purpose and general form for these mapping

expressions is given at the beginning of this chapter.

The syntax equations for the paragraph are:

<mappings paragraph>: MAPPINGS [<map> ';']+

<map>: <vfunmap> 1 <parmmap> 1 <typemap>

<vfunmap>: <symbol> <formalargs> ':' <expr>

<parmmap>: <symbol> <formalargs>? ':' <expr>

<typemap>: <symbol> ':' <typespec>

Please refer to the previous MAPPINGS discussion for the appropriate

context-sensitive constraints on these equations. The <typespec> in a

<typemap> must depend solely on lower-level entities.

B. A Small Mapping Function Example

We now consider how a bounded stack might be represented in terms
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of an array. The entities of the (upper) bounded stack module are:

- the designator type "stack"

- tne primitive V-functions

Access(stack s; INTEGER i) -> INTEGER x;
Size(stacK s) -> INTEGER j;
Maxsze(stack s) -> INTEGER i;

The relevant array moduLe entities are:

- the designator type "array"

- the primitive V-functions

elt(array a; INTEGER i) -> INTEGER x;
Lbound(array a) -> INTEGER 1;
hbound(array a) -> INTEGER n;

In this representation, we Intend to associate with each stack an

array having Lbound no Larger tnan 0 and hbound = 4axsize. The 0'th

position in the array holds the stack pointer, which also serves as the

representation for Size. Since Lbound does not enter into the mappings,

its externaLref is omitted.

MAP stack_moduLe TO array-moduLe;

EXrERNALREFS
FROM stack_moduLe:

stack: DESIGNATOR;
VFUN Access(stack s;INrEGER 1) -> INTEGER x;
VFUN Size(stack s) -> INTEGER J;
VFUN MaxsLze(stack s) -> INTEGER i;

FROM arrayjuodule:
array: DESIGNATOR;
VFUN aLt(array a;INTEGER i) -> INTEGER x;
VFUN hboundt array a) -> INTEGER n;

MAPPINGS
stack: array;
Access(stack s; INTEGER i):

IF I INSEt {1 .. eLt(s,O)} THEN elt(s,i) ELSE ?;
SizestacK s): eLt(s,O);
Maxssze(stack s): hbound:s);
ENDMAP
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C. mapped Speciticationa

The mapping functions are also used to derive a&2td segifications

for the upper-level modules. From the mapped specifications it is then

possible to derive entry and exit assertions for the programs that

implement the upper-level operations. Each such program is next proved

correct with respect to its entry and exit assertions. A full

discussion of this method of hierarchical proof is contained in (6].

Mapped specifications for a given upper-level module are obtained

in the following manner. For V-functions and parameters, mapping

expressions follow the schema:

g(tl fl;t2 f2;...) : exPg(flf2,...)

For types, they follow the schema:

t : typespect

The mapped specifications are thus formed from a given module

specification (relative to a given mapping function) by substituting

1. expg(ala2,...) for g(al,a2,...)

2. typespect for t

The interpretation of 'exPg(al,a2,...) is that it denotes an expression

just like exp except that all V-functions appear quoted. For example,

'(IF a=O THEN vfun(a)+1 ELSE vfun(a)-1)

denotes

(IF a-O THEN 'vfun(a)+1 ELSE 'vfun(a)-1)

Furthermore, if the result variable of a V-function occurs in the

INITIALLY constraint, we embed the constraint in a FORALL expression as

follows. If exp is the INITIALLY constraint for vfun(tl fl;t2 f2;...)

and r is the result variable (of type tr), then we replace exp with:

FORALL tl fl;t2 f2;... :LET tr r = vfun(fl,f2,...) IN exp

All type definitions from the mapping function specification are

also carried over to the mapped specification.

An example of mapped specifications for our familiar bounded stack

is given in Appendix A.
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VII The Hierarchy Specification Language

HSL (Iiierarchy apecification Language) is a simple language for

describing how modules are collected together into machines, and how

machines are structured into a hierarchy. The former is given by a

sequence of INTERFACE clauses, one for each machine; the latter is given

by the HIERARCHY clause.

In general, each INTERFACE clause provides the following

information about an abstract machine:

1. The machine's name

2. The modules that comprise the machine

3. Any functions, parameters, scalar types, or designator types

that are not to be made available to the next higher-level
machine. By "available," we mean that such objects may not be
called by a program implementing an upper-level module. Note
that hidden V-functions are by definition unavailable, so are
not included in this list of unavailable objects.

It should be emphasized that a given module may appear in more than one

machine, and may make different objects available in different machines.

The syntax for an INTERFACE clause is:

<interface>: '(' INTERFACE <symbol> <module info>+ ')'

<module info>: '(' <symbol> [WITHOUT <symbol>+]? ')'

The <symbol> in <interface> names the machine; the first one in

<module info> gives a module's name; and the ones in the optional

WITHOUT part give the names of unavailable objects from the given

module.

The HIERARCHY clause contains a list of subclauses, each of which

discloses the names of a lower-upper machine pair, and the names of the
mapping functions that connect the two machines. These subclauses are

ordered from lowest (primitive) to highest level.

The syntax for the HIERARCHY clause is:

<hierarchy>: '(' HIERARCHY <symbol> <level>+ ')'

<level>: '(' <symbol> IMPLEMENTS <symbol> USING
<symbol>+ ')'
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The <symbol> in <hierarchy> names the specified hierarchy; the first one

in <level> gives the name of the lower machine in the lower-upper pair;

the second one gives the name of the upper machine in the pair; and the

ones in the USING part give the names of the appropriate mapping

functions. Currently, the name of a mapping function is given by the

name of the file in which it is stored.

The INTERFACE and HIERARCHY clauses are put together into an HSL

specification as follows:

<hsl>: <interface>+ <hierarchy>

As an example, consider a two-level hierarchy where the primitive

level provides arrays and the second level provides stacks. The HSL

specification might be:
(INTERFACE stackmachine (stack-module))

(INTERFACE arraymachine (array-module))

(HIERARCHY stacker
(array__machine IMPLEMENTS stack_machine USING stack-array))

Note that stacokarray.MAP is the name of the file that contains the

stack-to-array mapping function.
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VIII ILPL Specifications

In this chapter we are concerned with the formulation of

implementation decisions. We first discuss our view of the important

qualities of an implementation language, and then present our particular

implementation language, ILPL.

A. Qualities of an Implementation Language for HD1

Though ILPL has profited greatly from the advances in programming

language design, we have also been motivated to eliminate many of the

complicated mechanisms and so-called "features" that characterize most

current and proposed languages. Some of the complexity has been

transferred to other languages of HDM, and some has been omitted

altogether.

ILPL is not intended as a stand-alone programming language (though

it could be), and at present, no ILPL compiler exists. Rather, ILPL has

been designed to express implementation decisions in a framework that

supports the concepts and mechanisms of HDM. The actual "running code"

for the system is written in a conventional programming language. ILPL

is viewed as a language that fits between SPECIAL and such a

conventional programming language -- hence the modifier "intermediate".

Some of the following implementation language desiderata relate to

programming languages in general, others to an implementation language

for HIl in particular.

The language should D& simple. Many programming languages suffer

from an overabundance of irregular, overly complicated, and poorly

understood mechanisms. Our aim has been to eliminate as much as

possible from the language while maintaining expressive power and

flexibility. Among the troublesome features we have eliminated are

pointers, unrestricted side-effects, complicated argument passing

disciplines, and built-in synchronization primitives. Whenever a need

for one of these mechanisms has occurred, we have been able to provide

an appropriate module that supports the desired mechanism.
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aTha . Ag hould hae a A UAa3A~ 2iAj semantic. Modern

programming languages should be designed with formal proof in mind. One

approach is axiomatization, that is, to provide a proof rule for each

construct in the languaL . Those features that are difficult to

understand and use are often, not surprisingly, the most difficult to

axiomatize. Such features are best left out of the language. Although

we are only now writing proof rules for ILPL, we have attempted to

include only those constructs that are easily axiomatized.

M an should suport the writing L o "structur prgraaa".

It is now well-accepted that structured programs are easier to write,

read, modify, and prove. HDM, if used properly, should lead to modular,

provably correct programs. HDM also supports the more narrow

"goto-less" view of structured programming. Besides the usual

if-then-else and loop control constructs, ILPL also provides a

structured exception handling mechanism, and omits the "goto" statement.

The lanuage should be fully integrate into HO. Although any

language can, in principle, be used for implementation in HDM, an

intermediate-level HDr-based implementation langauge can narrow the

(often frighteningly wide) gap between specification and running code.

As integrated into HDM, ILPL programs incorporate HDM concepts and

mechanisms both at the specification and at the expression level. ILPL

programs can also be checked for consistency with specifications from

other stages, in particular, with hierarchy descriptions, module

specifications, and representation specifications.

.The language should D& tranb t2 effcint cod. The

abstract ILPL programs are intended to be specifications for the

ultimate implementation code. It should be possible, nevertheless, to

translate automatically an ILPL specification with relative ease into

either a common high-level language or an assembly language. As a

result, we have left out of ILPL those mechanisms that cannot be

implemented efficiently. In addition, there are some optimizations that

are particularly appropriate to ILPL programs, such as elimination of

impossible exception conditions and in-line expansion of calls to small

subroutines.

60



B. Overview of ILPL

In HDM, each module in the hierarchy is implemented by a collection

of ILPL programs. When the user invokes a visible operation of the

top-level machine, he sets into motion a chain of cascading invocations:

the top-level invocation precipitates a sequence of invocations of

visible functions or parameters of (1) modules at the next lower level,

or (2) modules at the same level but "below" the given one according to

the partial ordering induced by the external reference relation. Each

such invoked operation itself precipitates a sequence of invoked

operations, and so on until the operations of the primitive machine are

invoked and executed.

Each module implementation includes:

- programs for each of the module's visible functions

- an INITIALIZATION program

- programs that serve as private subroutines which cannot be
invoked by programs outside of the given collection.

The INITIALIZATION program is to be executed before any operations of

the implemented module are invoked. Its purpose is to drive the module

to its initial state. In doing so, it may invoke operations of the

lower implementing modules, but not of the uW= implementing ones.

Thus, assuming that the primitive machine is in its initial state when

"powered up," we see that the INITIALIZATION programs are executed in

bottom-up order, starting with level 2.

More precisely, a module is in its initial state if the values

obtained by applying the representation functions for the module's

state-functions (primitive V-functions and parameters) to the values of

the next-lower level's state-functions satisfy the initial value

constraints from the module's mapped specification.

For a module that appears at multiple adjacent levels, only the

lowest-level appearance need actually be implemented.
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C. The Expression Level of ILPL

With the below exceptions, the expression level (types, type

operations, and expression forms) of ILPL is exactly the same as that of

SPECIAL. In this way, expression level concepts of SPECIAL carry over

directly to ILPL.

The difference is that in SPECIAL an expression is a mathematical

denotation of a value; there is no notion of "computing the value" of a
mathematical denotation. On the other hand, the same expression in ILPL

has an underlying implementation that when executed computes the denoted

value; the notion of computation here is inherent. Such considerations

have caused us to omit from ILPL those types, operations, and expression

forms of SPECIAL that in-their full generality cannot be implemented

efficiently. Spec-ifically, we have omitted (1) the set data type and

its associated operations, and (2) quantified expressions (i.e., FORALL

and EXISTS). Set types involve objects of possibly infinite

cardinality, and quantified expressions involve quantifications over

possibly infinite domains. Unfortunately, practical imolementations for

these very useful specification objects do not exist. If the designer

wants finite versions of these objects, he can easily specify them as

modules and provide his own (practical) implementations.

Since ILPL is an imperative language, with sequencing, local

variables and assignment staiements, the characterization expressions

(LET and SCME) have been rendered unnecessary, and thus have also been

omitted from ILPL.

All the other types, type operations, and expression forms from

SPECIAL have remained intact in ILPL, with all the same type-checking

rules. The following table lists the ILPL types and expression forms.

primitive INTEGER, REAL, BOOLEAN, CHAR,
types subtypes (including subranges), I

scalar types, and designator types

constructed vector, structured, and union types
types I
express ion IF-THEN-ELSE
forms

62

to.



The operations on the above types are the same as those mentioned in

Section IV.D.

Although set types have been eliminated, there is still a need for

set expressions (i.e., set constructors) in the type specifications for

subtypes and scalar types. This is, however, the only place in an ILPL

specification where set expressions may appear.

D. The Specification Level of ILPL

Like SPECIAL specifications, an ILPL specification consists of a

number of paragraphs. In its most general form, the top-level structure

looks like:

IMPLE4ENTATION <symbol> IN_TERMS_OF <symbollist>;

TYPES
<types body>

PARAMETERS
<parameters body>

EXTERNALREFS
<externalrefs body>

TYPEMAPPINGS
<typemappings body>

INITIALIZATION
<initialization body>

IMPLEMENTATIONS

<implementation body>

END__IMPLE4ENTATION

The <symbollist> in the header's IN_TERMSOF clause gives the names of

the implementing modules from the lower-level only. The EXTERNALREFS

paragraph lists the names of all implementing modules, upper and lower.

1. The "Informational" ILPL Paragraphs

In the TYPES paragraph, the designer declares the "internal" named

types that are used in the implementation. The types declared here are

similar to those declared in the TYPES paragraph of a mapping function:
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they serve mainly to enhance the readibility of the implementation and

cannot introduce new designator types. The designator and scalar types

from the implemented and implementing modules are declared in the

EXTERNALREFS paragraph.

The PARAMETERS paragraph here is a copy of the PARAMETERS paragraph

from the mapping function for the representation cluster containing the

given module as an upper module. These parameters are constant values

and functions of the lower level that are used to represent the

upper-level module and must now be implemented. The implementations for

these parametric values and functions appear respectively in the

INITIALIZATIONS and IMPLEMENTATIONS sections.

Implementation parameters often name designators from the lower

level. Though the value of such a parameter may not change (i.e., the

parameter may not be on the left-side of an assignment), the object

represented by that designator, however, may in fact be modified. That

is, the parameter may appear as an actual argument to an 0- or

OV-function that modifies the object's state. Thus, the parameter

itself remains constant, though the state-functions that depend on the

designator's type may change as indirect effects are achieved.

The EXTERNALREFS paragraph here is similar in both form and meaning

to the previous EXTERNALREFS paragraphs. From the implemented module

are declared here all visible operations, designator types and scalar

types. From the implementing modules are declared only those entities

actually used in the implementation. All modules that appear in the

EXTERNALREFS paragraph but not in the implementation's header are

assumed to be modules from the same level as the implemented module.

The objects typically externally referenced from such modules are I
designator types and parameters. The information regarding which

implementing modules are "upper" and which are "lower" is used by the

verification system. J
The TYPEMAPPINGS paragraph includes the mapping expressions for the

implemented module's designator and scalar types, as previously given in

the mapping function for the representation cluster containing the given

module as an upper module. In addition, it contains type mappings for j
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externally referenced types for which knowledge of their representations

is required by the implementation. The type mappings are applied in the

implementation programs in the same way they are used to obtain mapped

specifications. For example, if "stack: array" is a type mapping in a

given implementation, then all occurrences in program bodies of

variables of type stack are understood to actually have type array.

As an example of a case where knowledge of an externally referenced

type's representation is required, consider the implementation of a

module that provides stacks of char_strings in terms of HDM vectors.

Let's also assume that the charstring module appears at the stack

module's level. Now, if the char_string module does not also appear at

the lower level, then the stack implementation must know how char_string

designators are represented. On the other hand, if the char_string

module j& at the lower level, then the stack implementation need not

have this information. The intended representation in this case is

"VECTOR_OF char__string". In both cases, the charstring designator is

externally referenced in the stack implementation, though only in the

former case does a type mapping for the char_string designator appear.

The syntax of the TYPEMAPPINGS paragraph is thus a restricted form

of the syntax for a MAPPINGS paragraph:

<typemappings paragraph>: TYPEMAPPINGS [<typemap> ';']+

2. ILPL Programs

In the remainder of this chapter we discuss the last two paragraphs

in an ILPL specification. These paragraphs give -the implementation's

programs.

The general structure of an ILPL program is:

<pgm header>
DECLARATIONS

<declaration list> ';'

BEGIN
<stmtgroup>

END;

The header identifies the program's purpose, gives the program's name,

and declares its formal arguments and result.
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The simplest header is

INITIALIZATIONS

which identifies the program as the one that initializes the module's

state. Initialization involves: (1) invoking programs of the lower

level to initialize the module's V-functions, and (2) assigning values

to value parameters - both parameters from the implemented module and

parameters from the implementation's PARAMETERS paragraph (i.e.,

representation parameters). Value parameters retain their values

between invocations; that is, they are not like local variables.

For each (visible) module operation there is a program that

implements that operation. For each 0-function there corresponds an

O-program with header

OPROG <symbol> <formalargs> ';'

where <symbol> is the name of the implemented O-function, and

<formalargs> matches the given function's formal argument list in its

module specification. Similarly, for each OV-function there is an

OV-program with header

OVPROG <symbol> <formalargs> '->' <resultarg> '''

and for each (visible) V-function and parametric function there is a

V-program with header

VPRO- <symbol> <formalargs> '->' <resultarg> ';'

VPROGS are also used to implement parametric functions. Again, the

formal and result argument declaration lists in the above headers should

match the ones in the function's module specification.

The other headers are for subroutines that are callable by other

programs in the implementation but not by programs outside the given

implementation. A subroutine that may cause a state change (i.e., one

that may call 0- and OV-programs of other modules) but does return a

value is called an OSUBR. Similarly, a subroutine that invokes only

V-programs of other modules and returns a value is called a VSUBR.

Finally, a subroutine that may both cause a state change and return a

value is an OVSUBR.

The DECLARATIONS section in an ILPL program declares the program's
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local variables. It is understood that each time the program is invoked

these variables have no value, i.e., they do not retain values between

invocations. Recall, however, that V-functions do retain values between

invocations. There is no inner scope in a program beyond the

DECLARATIONS section in which variables can be declared.

Between the BEGIN and END brackets is a list of program statements,

called a <stmtgroup>. In general, these statements may reference PROGs

and parameters other modules and SUBRs and implementation parameters of

the given module.

<stmtgroup>: [<strut> 1;1]+

We now discuss the types of ILPL statements. The most trivial

statement is the empty statement. The most basic "real" statement is

the assignment statement, of the general form:

<lhs> '<-' <expression>

The expression on the right-hand side may contain applications of

value-returning programs. The type of the right-hand side must be

compatible with the type of the left. The left-hand side of an

assignment may be a variable, a structure component, or a vector

element. Syntactically,

<lhs><: <symbol>

<lhs> '.' <symbol>
<lhs> '[' <expr> ']'

Of course, the -,expr> in the last alternative must be integer-valued.

A program invocation may also appear as a basic statement by

itself, like a procedure call in Algol 60 or Pascal. If the invoked

program is value-returning, its returned value is discarded.

Programs that implement operations, however, may in general return

from an invocation with an exception. We have provided a mechanism

whereby such programs can be invoked and exceptions be handled in a

structured manner. This mechanism is the EXECUTE statement. For

example, if f is the name of an OV-function with exceptions exl, ex2,

and RESOURCEERROR, the program implementing f could be called as

follows:
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EXECUTE x <- f(y) THEN
ON exl:
ON ex2: ...

ON RESOURCE_ERROR: ...
ON NORMAL: ...

END;

On a normal return, x is assigned the returned value of f(y) and the

statements in the NORMAL handler are executed; otherwise, for an

exception return, the statements in the corresponding exception handler

are executed.

A similar format is used for invocations of other function types.

If the invoked function does not return a value (i.e., an O-function),

or the returned value is not to be retained, the left part of the

assignment is omitted.

A given exception handler may be omitted if the corresponding

exception can never occur. If such a handler is omitted and the

corresponding exception does occur, then the program aborts. The NORMAL

handler may be omitted anytime no special action is desired on normal

return. If omitted and a normal return occurs, execution continues at

the following statement (i.e., the one after the EXECUTE statement).

The EXECUTE format should be used whenever it is possible for an

invoked operation to have an exception return. If no exception returns

are possible, the operation can be invoked in the more conventional

manner.

The syntax for the EXECUTE statement is:

<execute stint>: EXECUTE
[<lhs> '<-']? <functioncall> THEN

<execute handler>+
END

<execute handler>: ON <xeq event list> ':' <stmtgroup>

<xeq event list>: <xeq event> (',' <xeq event>]*

<xeq evei , <symbol> 1 RESOURCE-ERROR I NORMAL

A given event may occur in only one handler. Furthermore, execute

events besides NORMAL must be valid exception names from the invoked

function' s specification.
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Now that we know how to invoke a program, we next discuss how to

return from one. A program causes an exception return with the

statement

RAISE I0 ([<symbol> 1 RESOURCE-ERROR] )'

Again, the name of a raised exception must be a valid exception name for

that operation. A normal return is effected either by "falling off the

end" of the program, or by executing

RETURN;

For value-returning programs, the value returned is the final value of

the formal result argument.

In recent years there have been extensive pleas for "structured"

control constructs in programming langugages. The primary target has

been the "goto" statement, which potentially allows for arbitrary jumps.
Undisciplined use of the goto often leads to "rat's nest" programs that

are extrememly difficult to understand. Instead, it has been suggested

that programs be realized as a proper nesting of statement constructs.

Besides the usual if-then-else and loop "structured" control

constructs, ILPL also provides event-driven statements along the lines

proposed by Zahn [8]. The first such construct allows for the

sequential execution of a group of statements that may be "quick exited"

by "signalling" one of a set of "events". This construct has the form:

EXPECTING el,e2 DO

SIGNAL(el);

SIGNAL(e2);

THEN
ONel: ...
ON e2: ...
ON NORMAL: ...

END;

The first line declares the list of events that are applicable for the

given statement. Here, there are two events, el and e2. For each

declared event there is a corresponding event handler after the

construct's statement body (i.e., after the THEN). If a SIGNAL

statement in the statement body is executed, control is transferred
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immediately to the corresponding event handler; on the other hand, if

the statement body is executed without hitting a SIGNAL, control goes to

the NORMAL handler. If the corresponding handler for a given event is

missing when that event is signalled, or, for the NORMAL handler, when

control falls through the body, then control continues at the statement

following the END. If no handlers at all are provided, then the THEN is

omitted, too.

The syntax for the EXPECTING statement is thus:

<expecting strut>: EXPECTING <symbollist> DO
<stmtgroup>

[THEN <event handler>+]?
END

<event handler>: ON <eventlist> ':' <stmtgroup>

<eventlist>: <event> [',' <event>]*

<event>: <symbol> I NORMAL

The next event-driven statement is an event-driven repeat-until

loop. The UNTIL statement is similar to the EXPECTING statement, except

that its statement body is repeatedly executed until one of its declared

events is signalled. Since an explicit signal is required to exit the

loop, it is meaningless (hence, not permitted) to have a NORMAL handler

for an UNTIL statement. The syntax for the UNTIL statement is the same

as for the EXPECTING statement, except (1) UNTIL naturally replaces

EXPECTING, and (2) as mentioned, NORMAL is not allowed as an event name

in a handler.

Event statements may be nested, and each nesting introduces a new

scope of event names. A SIGNAL statement within an event statement body

may only signal an event from the innermost active scope. Since the

event handlers for a given event statement are outside of its statement

body, they may signal events from the next outer scope. For example,

consider the following fragment:
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UNTIL 91,e2 DO
EXPeCrING el,e3 DO

SIGNAL(e3);

SIGNAL(e 1);

THEN
ON el: ...
ON s3: SIGNAL(e2);
ON NORMAL: ...

END;
tHEN

ON a1:.. ;

ON 92:
END;

rhe signaLLing of e3 In the inner scope aausas e2 In tha outer scope to

be signalled. Note that el in the inner scope is a different event
altogether from the el In the outer seope.

ILPL also provides a standard FOR Loop, which Looks Lice:

FOR i FROM exprl BY axpr2 ro axpr3 DO
<stmtgroup>

END

Tne counting variaoLe (here, i) and all of be range expressions (here,

exprl, expr2, and expr3) must have INTEGER type. rne BY part may be

omitted, In which case the counting variabLe is incremented by 1 each

Iteration. The semantics of tn- FOR Loop may oe descrloed by the

following code segment:

L <- exprl;
12 <- expr2;
L3 <- expr3;
UNTIL Loopexit DO

IF L > 13 THEN SIGdAL(loopexit); 9NDJF;
<stmtgroup>
I <- I + 12;

END;

the FOR and the UNTIL statements can be combined to maks a

FOR-UNTIL statement, which is an UNTIL statement withn a FOR header

grafted onto the front. In the FOR-UNTIL statement, the rO part of tie

FOR header is optionaL; if omitted, the Loop is executed untiL some

event Is expLicitLy signaLLed. As Long as the TO part appears, a

FOR-UNTIL statement Is allowed to have a NORMf.L nandLer, which appLies
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to loop exits caused by the index variable falling out of range.

The syntax of the FOR-UNTIL statement is:

<formuntil stat>: <for_untilhead> DO
<stmtgroup>

[THEN <event handler>+]?
END

<foruntilhead>: <forhead> UNTIL <symbollist>

<forhead>: FOR <symbol> FROM <expr> [BY <expr>]?
[TO <expr>]?

As mentioned, ILPL also provides an if-then-else statement. It

contains a single THEN clause, followed by an arbitrary number of ELSIF

clauses, followed by an optional ELSE clause. We saw a simple example

in the above code fragment for the FOR loop semantics. The syntax of

the if-then-else in ILPL is:

<if stmt>: IF <ifclause> <elseclause> END_IF

<ifclause>: <expr> THEN <stmtgroup>

<elseclause>: [ELSIF <ifclause>] [ELSE <stmtgroup>]?

Of course, we require the <expr> in <ifclause> to be Boolean-valued.

The last statement type in ILPL is the TYPECASE statement, based on

the TYPECASE expression form discussed in Section 4.4.5. It allows for

structured transfer of control based on the type of the expression that

is given as an operand. The statement has the syntax:

<typecase stint>: TYPECASE <expr> OF <caselist> END

<caselist>: [<typespec> ':' <stmtgroup>]+

Complete examples of ILPL specifications are contained in Volume

III.

S. Argument Passing in ILPL

The semantics of argument passing in ILPL is quite straightforward,

namely call-JM-yalu. Some explanation is needed, however. Consider,

for example, a program with the following header:

OPROG pushi(stack s; INTEGER i);
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rae formal arguments correspond respecttveLy to tna (name of the)

seLected stacic, and an integer to be pusnsd. If "pusni" is invoiced

with:

pushi sl,* 3)

it can oe viewed that th foLlowLng assignments are made upon

invocat ion.

s <- sl;
I <- J;

rnat is, the arguments to "pushi" are evaLuated once, and taeir vaLues

copLed onto the two Local variabLes s and i inside the body of dpushi".

Any reference to s and I in the body of "pushi" is aence to tne copLes,

and assignments to s or i do not affect sl or J, as would be the 3ase

with caLL-by-raference. It is permitted in ILPL, though In generaL not

recommended, to assign to formal arguments.

Altnough the calling dis3ipLine is call-by-vaLue, tnus precLuding

modification to sl ItseLf in "pusL", It is Imoortant to note tnat tne

primitive V-functLons of tne array module, which are used to impLement

stacics, can be modified by caLLs to array 0- and OVPROGs in the "pusni"

body. For eaample, if we represent a stack by an array wltn tne stacK

pointer In position 0 of tne array, tne code for tne Implementation of

"pushl" might be:

OPROG pusnl(stacc s; iNrEGER I);
BEGIN

change's,O, elt(s,O)+1);
change(s,ett~s,O), i);

END;

(Note tnat we have disregarded exceptions lere). As a result of tne

calls to the 0-function "change", the values of the primitive V-function

"elt" of the array module hiave changed. raus side-effects are allowed,

but only indirect ones tnrough the Invocation of 0- or OV-functions of

-- the Lower-leveL machine.
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IX The Tools of HDN

The tools of HDM create a (partial) environment for manipulating

system specifications. The tools themselves are written in INTERLISP

under TOPS-20 or TENEX. The most relevant aspect of this implementing

environment for the tools user is the file handling subsystem. The user

should be familiar with how files are created and manipulated on the

system (TOPS-20 or TENEX) on which his version of the tools resides.

On these systems a file name has the form:

<DIR>PRE. EXT.n

where

DIR is the directory,

PRE is the prefix,
EXT is the extension,
n is the version number.

A. General Presentation of the System

The components of a system specification, as we have discussed,

are:

- An HSL description, which describes how modules are collected

together into machines, and how machines are organized
hierarchically into a system.

- Module specifications for all modules in the system.

- Mapping functions for all representation clusters.

- ILPL implementations for all modules.

Generally, each individual specification must satisfy certain

consistency criteria. Internal consistency criteria are concerned with

self-contained properties of the specification, while external

consistency criteria relate to properties of the specification

considered in a larger context.

Our system consists of various functional units which perform the

necessary checks. The system is set-up as an INTERLISP .subsystem

containing commands for each functional unit in the environment. The
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environment is invoked at the operating system command level by typing

the subsystem's name. For example, on the SRI-KL machine where the

subsystem is stored in <HIER>NS.EXE, the subsystem is invoked by typing

<HIER>NS

The functional units are the module handler, the mapping function

handler, the implementation program handler, the interface handler, and

the hierarchy handler. Each takes as input one or more files and

produces either error diagnostics or a "link" file, which records the

successful completion of the particular set of consistency checks.

Typically, a link file contains information about the processed

file that needs to be consulted when other specifications, say for other

modules in the same machine, are processed. For example, the link file

would typically include a list of a module's external references. As a

rule, a link file is produced only when all the relevant checks have

been carried out and met: the link file's existence is prima facie

evidence of the correctness of some part of the system. However, it may

be the case that after having checked, say, an interface, the user

changes the specification for some contained module without re-checking

the interface. The source file for the new module will thus have been

created later than the link file for the interface. This is a typical

case of inconsistent files, and will be detected automatically. It can

be remedied by performing all the necessary interface checks to create

up-to-date link files.

B. The Module Handler

The module handler expects a source file containing a SPECIAL

module specification. The command that checks a module specification's

internal consistency is

CHECKNODULE(modulename)

where

modulename. SOURCE

is the file containing the desired module specification. In verifying

that the given specification complies with the rules of SPECIAL, the
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command operates in two phases, the first to check for context-free

errors, the second to check for context-sensitive errors. Sometimes

these phases are called the "syntactic" and the "semantic" phases,

respectively.

The first phase passes the specification through a context-free

parser for SPECIAL module specifications. If a syntax error is

encountered, an error message is printed that displays the invalid

syntactic token between !!! ... ! I ! in a "window" of 100 characters of

the source text. At this point the user (currently) has three choices

for error recovery:

1. R - Replace the offending lexeme by an arbitrary string. This
will cause a new version of the file to be generated and the
parse to be restarted at the point of error.

2. T - Teco. This will cause the TECO text editor to be invoked
as a subprocess, the source file to be yanked, and the
"cursor" to be positioned before the first character of the
offending lexeme. The user can then arbitrarily modify the
file. When the editor is exited, control is returned to
CHECKMODULE where the parsing may continue: (a) at the point
of error - option D, for default, (b) at the beginning of the
file - option S, for start over, or (c) at an arbitrary
location in the file, specified by a relative byte address in
the file. This latter approach is very unreliable because the
parser does not backtrack its internal state to that point.

3. A - Abort. This will abort the parse and go into error mode.

If at any time the user is unsure of how a prompt may be answered, he

should type "'?", which will cause the various permissible responses to

be listed and explained.

When the entire file has been successfully parsed, the full file

name is printed and the second phase is initiated.

The second phase is mostly concerned with the enforcement of the

type rules, scope rules, and other context-sensitive constraints.

Various error or warning messages may be issued, giving some information

about the location of the error, the kind of error, and sometimes

context information in a prefix form of the original source expression.

For example,
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would appear as

( a b)

If no errors were detected during the second phase, the user is

asked whether he wants a link file made. If the answer is Y, a link

file modulename.MLINK will be written, and its name returned as the

value of CHECKMODULE; if the answer is N, no link file will be created

and CHECKMODULE returns with value T.

The link file is used by the interface handler to check the

module's external references against their original definitions.

The other command in the module handler is

REFORMAT(inputfilename outputfilename)

This causes the modulp specification contained in inputfilename to be

pretty-printed on the file outputfilename. If outputfilename is

omitted, a new version of the input filename is created and serves as

the output filename. For example,

REFORMAT(STACK. SOURCE)

will cause the specification in STACK.SOURCE to be pretty-printed on a

file whose name is a new version of STACK.SOURCE.

Note that any file can be typed at the terminal from within the

tools by the command "TTY filename".

C. The Napping Function Handler

The mapping function handler is separated into two functional

units, one that checks internal consistency, the other external

consistency.

The internal consistency checker CHECKMAPSPEC is the counterpart of

CHECKHODULE for mapping functions. It is invoked with

CHECKMAPSPEC(mappingfnname)

where the desired source file has filename mappingfnname.MAP. Similar

to CHECKMODULE, CHECKMAPSPEC consists of two phases: a context-free

parse, and a context-sensitive check. The link file here is given

filename

mapping fnname. SYNLINK
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Mapping function specifications may also be pretty-printed with the

REFORMAT command.

The external consistency checker is invoked with the command

CHECKMAP (name)

and will attempt to take its input from the link file name.SYNLINK. The

checks are:

- File system consistency: each of the modules referenced in
the corresponding mapping function should have been previously
checked -- which means there should be MLINK files for them --
and the corresponding source files should not have been
modified since then.

- External type consistency: all the objects that have been
declared external in the mapping function specification are
checked against their original declaration in the module
specifications.

- Completeness: there must exist a unique mapping expression
for each primitive object of the "upper" module. This check
can fail in three ways: an object may have no representation;
there may be an object appearing in the mapping function
specification which is not a primitive object of the "upper"
module; or a primitive object may have more than one
representation.

If all the checks are performed correctly, a link file is created

under the filename name.SEMLINK.

D. The Implementations Checker

Similar to the mapping function checker, the implementations

*I checker contains functions to check both the internal and external

consistency of ILPL programs. At the time of this writing, the

. implementations checker is only partially implemented. As a result,

some of the details described in this section may change. Users of the

tools will be notified, however, of any such changes.

The first command,

CHECKIMPLSPEC( implname)

takes its input from file implname.IMPL and checks for context-free3 Ierrors in its first phase and for context-sensitive errors in the second79:



phase. The name of the generated link file here is implname.ISYNLINK.

The second command,

CHECKIMPL(name)

takes its input from name.ISYNLINK and performs analogous checks as

CHECKMAP.

E. The Interface Handler

This checker deals with interface specifications. We take the

syntax for an interface specification from the HSL description in

Chapter 7.

<interface>: '(' INTERFACE <symbol> <module info>+ ')'

<module info>: '(' <symbol> (WITHOUT <symbol>+]? ')'

The <symbol> in <interface> names the machine; the first one in <module

info> gives a module's name; and the ones in the optional WITHOUT part

name objects from the given module that are not to be made available to

the next higher level.

Filenames for interface specifications should have extension

INTERFACE.

The command

CHECKINTERFACE (inter facename)

will cause the interface in file interfacename. INTERFACE to be checked

for the following criteria:

- The specification must be well-formed syntactically.

- The prefix of the filename must be the same as the interface
name.

- All modules appearing in the interface specification must have
been previously specified and checked, and should not have
been modified after the check.

- No two objects from modules in the given interface may have

the same name.

- The objects on a WITHOUT list must have been defined in the
specification of the corresponding module.
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- The interface must be closed under external references. That
is, all externalrefs of a given module in the interface must
be to other modules in the interface. In addition, the types
of the externalrefs must be compatible with the declared types
in the defining module.

If all these checks are carried out correctly, a link file

interfacename.ILINK is created.

It is also worth noting that this command follows the "Do as much

as you can" philosophy: if a module has not been specified, all the

checks that can be made with the available information are still

performed. However, the interface specification will still be

considered incomplete, and no link file will be produced.

F. The Hierarchy Handler

Within a hierarchy in HDM, two interfaces are connected if there is

a set of mapping functions that implements all the modules of one

interface in terms of objects that are visible in the other. A

hierarchy is thus specified by giving the names of all the interfaces

and mapping functions.

<hierarchy>: '(' HIERARCHY <symbol> <level>+ I)'

<level>: '(' <symbol> IMPLEMENTS <symbol> USING
<symbol>+ ')'

The <symbol> in <hierarchy> names the specified hierarchy; the first one

in <level> givds the name of the lower machine in the lower-upper pair;

the secon, one gives the name of the upper machine in the pair; and the

ones in the USING part give the filename prefixes for the files that

contain the appropriate connecting mapping functions. The lower machine

of the first level clause is the hierarchy's primitive machine. The

command

CHECKH IERARCHY(hierarchyname)

takes its input from file hierarchyname.HIERARCHY and performs the

following checks.

- The hierarchy specification must be syntactically correct.

- Each lower machine in a level clause must be either the
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primitive machine or the upper machine for some previous level
clause. Furthermore, each machine except the root must appear
once and only once as the upper machine in some level.

- For each level clause, link files must exist for both
interfaces and for all mapping functions.

- Each level clause must be consistent and complete.

A given level clause is consistent when the upper modules of the named

mapping functions exist in the upper machine, and the lower modules in

the lower machine. The clause is complete when all modules in the upper

machine serve as upper modules in the level's mapping functions. Note

that some mappings may be specified implicitly: these are identity

mappings for modules which appear in both the upper and lower machines

but which are not named explicitly as an upper module in the level's

mapping functions. Such identity mappings need not be actually

specified.

Note that a module may appear in several machines, and that a

mapping function specification may be used in several level clauses.

Successful completion of these checks will cause the link file

hierarchyname.HLINK to be created. Although this file does not link to

any particular treasure, it contains interesting information about the

files that have been used in order to check the hierarchy, and can be

helpful for restoring the consistency of the file system.

G. Command Abbreviations

For convenience, all the commands can be invoked with an

abbreviated form. As presented, commands are invoked with the form

command(arg)

The abbreviated form uses an abbreviated command name and drops the

parentheses. Its form is:

abbrevcommand arg

Note that all commands except REFORMAT take a single argument; REFORMAT

takes a second optional argument. The system will prompt for a missing

argument.
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The abbreviations are:

ICMO for CHECK14ODULE
CMS for CHECKMAPSPEC
CMA for CHECKMAP
CIF for CHECKINTERFACE
CHE for CHECKHIERARCHY
REF for REFORMAT
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A. Mapped Specifications for a Bounded Stack

MODULE boundedstack..module

TYPES
stack: DESIGNATOR;

FUNCTIONS
VFUN Access(stack s; INTEGER i) -> INTEGER elem;

HIDDEN;
INITIALLY elem = ?;

VFUN Size(stack s) -> INTEGER i;
HIDDEN;
INITIALLY i = 0;

VFUN Maxsize(stack s) -> INTEGER j;
INITIALLY j = ?;

OVFUN Create_stack(INTEGER bound) -> stack s;
EXCEPTIONS

Dad_bound; bound < 1;
RESOURCE__ERROR;

EFFECTS
s = NEW(stack);
'Maxsize(s) = bound;

OFUN Push(stack s; INTEGER elem);

EXCEPTIONS

full: Size(s) = Maxsize(s);
EFFECTS

'Access(s,'Size(s)) = elem;
'Size(s) = Size(s) + 1;

OVFUN Pop(stack s) -> INTEGER elem;
EXCEPTIONS

empty: Size(s) = 0;
EFFECTS

'Size(s) = Size(s) - 1;
elem = Access(s,Size(s));
'Access(s,Size(s)) = ?;

VFUN Top(stack s) -> INTEGER elem;
EXCEPTIONS

empty: Size(s) = 0;
DERIVATION

Access(s,Size(s));
END..MODULE
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MAP bounded_staci~module TO array-m.~odule;

EXTERNALREFS
FROM4 bound ed...stack..module:

stack: DESIGNATOR;
VFUN Acoes3(stack s; INTEGER i) -> INTEGER x;
VFUN Size(stack a) -> INTEGER J;
VFUN Maxsize(stacc a) -> INTEGER 1.;

FROM array-podule:
array: DESIGNATOR
VFUN elt(array a; INTEGER i) -> INTEGER x;
VFUN hbourid(array a) -> INTEGER hl;

MAPPINGS
stack: array;
Access(stack s; INTEGER i):

IF i INSET {1 .. elt(s,O)} THEN elt(s,i) ELSE ?;
Size(stack s): elt(s,O);
Maxsize~stack s): hbound(s);

END_MAP
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The mapped FUNCTIONS specifications for bounded_stack are:

VFUN Access(stack s; INTEGER i) -> INTEGER elem;
HIDDEN;
INITIALLY

FORALL stack s; INTEGER i
(IF i INSET (1. .elt(s,O)J

THEN elt(s,i) ELSE ?)

VFUN Size(stack s) -> INTEGER i;
HIDDEN;
INITIALLY

FORALL stack s :elt(sO) =0;

VFUN Maxsize(stack s) ->INTEGER J1;
INITIALLY

FORALL stack s : fbound(s)l

OVFUN Create_stackCINTEGER bound) -> stack s;
EXCEPTIONS

bad-bound: bound < 1;
RESOURCE-A.RROR;

EFFCT NEW(array);

'hbound(s) =bound;

OFUN Pus'h( stack s; INTEGER elem);
EXCEPT1IONS

f'ull: elt~s,O) =hbound(s);
EFFECTS

(IF 'eJlt(s,O) INSET {1..'elt(s,O))
THEN 'elt(Weilt(s,O)) ELSE ?)
=elem;

'elt(s,O) =elt(s,O) + 1;

OVFUN Pop( stack s) -> INTEGER elem;
EXCEPTIONS

empty: elt(s,O) =0;
EFFECTS

lelt(s,O) =elt(s,O) -1
elen = (IF elt(s,O) INSET (1. .elt(s,O))

THEN elt(s,elt(s,O)) ELSE ?);
(IF elt(s,O) INSET (1. .elt(s,O))

THEN elt(s,elt~s,O)) ELSE ?)

VFUN Top( stack s) -> INTEGER elem;
EXCEPTIONS

empty: elt(s,O) =0;
DERIVATION

(IF elt(s,O) INSET (1.. 'elt(s,)
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THEN 'elt(s,elt(s,O)) ELSE ?);
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B. Grainars for SPECIAL and ILPL

<special> : MODULE <symbol> <fparagraphlist>
MAP <symbollist> TO <symbollist> 1;'

<mparagraphist>

<actuallist> '(' ')'
'C' <expressionlist> ')'

<addop> : '+
UNION
DIFF

<aexp> <aexp> <addop> <fact>
<aexp> <addop> <symbol>
<symbol> <addop> <fact>
<symbol> <addop> <symbol>
<fact>
<aexp> '-' <fact>
<symbol> '-' <fact>
<aexp> '-' <symbol>
<symbol> '-' <symbol>

<assertions> ASSERTIONS <listofexpressionsemi>

<bexpl> . <bexpi> OR <bexp2>
<symbol> OR <bexp2>
<bexpl> OR <symbol)
<symbol> OR <symbol>
<bexp2>

<bexp2> <bexp2> AND <bexp3>
<symbol> AND <bexp3>
<bexp2> AND <symbol>

<symbol> AND <symbol>
<bexp3>

<bexp3> : <not> <bexp3>
<not> <symbol>
<bexp4>

<bexp4> : <aexp> <relop> <aexp>
<symbol> <relop> <aexp>
<aexp> <relop> <symbol>
<symbol> <relop> <symbol>

, <aexp>

<call> "'I <call>
<symbol> <actuallist>
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<Case> :<typ03peCificatioiu> 1:' (expression>

<caselist> :<case> 1;1
<case> ';' <caselist>

<declaration> (fulldecl>
<symbol>Idcaainit dcaain

(dcaaifhs><declarationl> ;<dcatin

(declarations> DECLARATIONS <declarationlist>';

<declwithoptionalargs> <simpledec>
<simpledec> <formalargs>

<definition> <deciwithoptionalargs> IS <expression>

<definitionlist> <definition> 1;'
<definition> 1;' <definitiolllist>

<definitions> DEFINITIONS <definitionlist>

<delay> DELAY UNTIL (expression> ';1

DELAY WITH (listofexpressionsemfi> UNTIL
<expression> 1;'

<effexc..of> EFFECTS_OF] EXCEPTIONSOF

<effects> EFFECTS <listofexpressioflsemi>

<effectsmacro> :<eff_excof> <call>

<exception> :<expression> t;1

<symbol> I :I <expression> 1; 1

<exceptions> EXCEPTIONS <exception>
<exceptions> <exception>

<expression> <bexpi> '=>' <bexpi>
<symbol> '=0' <bexpi>

I' I <bexpl> I=>' <symbol>
I<symbol> '=>I (symbol>
I<ifexpressiol>
I<typecaseexpression>
I<letexpression>
I<someexpressiol>
<quanti fiedexpression>

I<bexpl>
<symbol>
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<epesonit exrsin

<epesols><expression> <xrsinit

<externalgroup> FROM <symbol> 1:t <externalreflist>

<externaigrouplist> <externaigroup>
(externaigroup> <ex ternaigroupi1st>

(externalref> (typedeclaration>
1 <parameterdec>

<functiondec>

<externalreflist> <externairef> 1;'
<externairef> ';' <externaireflist>

<externalrefs) EXTERNALREFS <externaigrouplist>

<fact> :(fact> (multop> <superfact>
1 <symbol> <multop> <superfact>
(fact> <multop> <symbol>
<symbol> <multop> <symbol>
<superfact>

<fafterass> <functions> END_MODULE.
IEND-..MODULE

(fafterdecl> <parameters> <fafterparm>
I<fafterparm>

*1 fafterdefs> <externalrefs> <fafterext>
<fafterect>

<fafterext> <assertions> <fafterass>
I<fafterass>

<fafterparm> <definitions> <fafterdefa>
I<fafterdefs>

<faftertype> <declarations> <fafterdecl>
(fafterdeol>

<fieldvalue> :<symbol> ':1 <expression>

<fieldvaluelist> :<fieldvalue>
<fieldyalue> 1,1 <fieldvaluelist>

<foraaalargs>'C ')

'(' 1)' 'E' <deolarationlist>'J
I(' <deolarationlist> I)'

I (' <declarationlist> I)'
'(' <declarationlist> J
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<t'paragraphlist> <types> <faftertype>
<t'aftertype>

<t'ulldecl> <siinpledec>
<fulldeci> 1,1 <symbol>

<t'unctiondec> <ofunheader>
<ovfunheader>
<vfunheader>

<functions> FUNCTIONS <functionspeclist>

<functionspec> <vfunspec>
<ofunspec>
<ovfunspec>

<functionspeclist> <functionspec>
<functionspec> <functionspeclist>

<if'expression> IF <expression> THEN <expression>
ELSE <expression>

<init_ deriy> INITIALLY
DERIVATION

<interface> HIDDEN';
<exceptions>

<invariants> INVARIANTS <listofexpressionsemi>

<letexpression> LET <qualificationlist> IN <expression>

<listofexpressionsemi> <expressi.on> ';'

<expression> ';' <listofexpressionsemi>

<localassertions> ASSEATIONS <listofexpressionsemi>

<logicalconstant> TRUE
FALSE
UNDEFINELD

RESOURCEEhALD

<mafterdeci> <parameters> <mafterparm>
<mafterparm>

<mafterdefs> <externairefs> <mafterext>
<mafterext>

<mafterext> <invariants> <aafterinv>
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<mat'terinv>

<mafterinv> <mappings> ENDMAP
I<mappings> IM4PLEMENTATIONS
ENDMAP
IMPLEMENTATIONS

<iafterparm> <definitions> <mafterdets>
<mafterdefs>

<maftertype> <declarations> <mafterdeci>
(mafterdecl>

<mapping> <symbol) ':1 <expression>

I<symbol> ':1 <typespeci>
<symbol> <±ormalargs> 1:1 <expression>

.1<mappinglist> <mapping> ';'

<mapping> ';1 <mappinglist)

<mappings> MAPPINGS <mappinglist>

* <minusexp> -'<minusexp>

<term>
~I<symbol>

<mparagraphlist> <types> <mat tertype>
<maftertype>

<multop>lo

MOD
INTER

<not> NOT

<ofunheader> :OFtJN <symbol> <formalargs>

<ofunsection> :<localdefs>
1 <delay>

<exceptions>
<localassertions>

I<effects>

<ofunspec> <ofunheader> 1;'
I<ofunspec> <ofunsection>

<ovfunheader> OVFUN <symbol> <formalarga>
'->' <resultarga>

<ovfumspeC> <ovfunheader> ;
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<ovfunspec> <ofunsection>

<parameterdec> <declwithoptionalargs>
I <parameterdec> ',' <symbol>

<parameterdec> ',' <symbol>
<formalargs>

<parameterdeclist> <parameterdec> ';'
<parameterdec> ';' <parameterdeclist>

<parameters> PARAMETERS <parameterdeclist>

<predefinedtype> INTEGER
REAL
BOOLEAN
CHAR

<qualifdeclist> <qualification>
<simpledec>
<symbol>
<qualification> ';' <qualifdeclist>
<simpledec> ';' <qualifdeclist>
<symbol> ';' <qualifdeclist>

<qualification> <simpledec> 'I' <expression>
<simpledec> <relop> <expression>
<symbol> Il' <expression>
<symbol> <relop> <expression>

<qualificationlist> <qualification>
I <qualification> ';' <qualificationlist>

<quantifiedexpression> <quantifier> <qualifdeclist> ':'
<expression>

<quantifier> FORALL
EXISTS

<range> FOR <symbol> FROM <expression> TO
<expression>

<relop> -9-,

'>'

INSET

SUBSET

<resultargs> <declaration>
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<setexpression> 'P<expressionlist>'J

'P<simpledec> '1' <expression> '
1 'f <symbol> 'I' <expression> 'IP
'1' <expression> I..' <expression> '1'

<31MPledec> <typespeot> <symbol>
I<setexpression> <symbol>
I<symbol> <symbol>

<someexpres31on> : SOM4E <qualification>

(strUCtureconstructor> :STRUCT I(' 'P'
STRUCT IC' <expressionlist> 9't

ISTRUCT I' (tieldvaluelist> I)'

<structuretype> 'STRUCT\OLF' I(' <declarationlist> ')'

<superfact> (minusexp> 1^' <supertact>
<symbol> 1^1 <superfact>

I<minusexp> '^' <symbol>
(symbol> '^' <symbol>
<minusexp>

<symbollist> <symbol>
<symbol> 1,' (symbollist>

<term> <call>
STRING

INUMBER
<logicalconstant>
<term> 'P <expression> ']'

I<symbol> I' <expression> I'
I'C <expression> I)'
I<term> '.' <symbol>
I<symbol> 1.1 <symbol>
(unaryf'unction> I(' <expression>')

I<setexpression>
I<vectorconstructor>
I<structureconstructor>
<effectsmaoro>

<typecaseexpression> TYPECASE <symbol> OF <caselist> END

<typeconstructor> SETJOF
1VECTOROF

<typedeclaration> <symbollist> ':' DESIGNATOR
I<symbollist> ':' <typespecification>

<typedeclarationlist> :<typedeclaration> ';'

<typedeclaration>';
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<typedeclaratiolalst>

<types> : TYPES <typedelarationlist>

<typespeo> : <typespeci>
<setexpression>

I<symbol>

<typespecI> <predefinedtype>
<structuretype>I

<typeconstructor> <typesPec>

<typespecification>' <typespec>I

<typespeClist> :<typespec>
I<typespec> ',<typespeclist>

<unaryfunction> CARDINALITY
ILENGTH
INEW

MAX

<unitedtype> :ONEOF 1(' <typespecl13t>')

<value> :<init_deriv> <expression> ';'

<vectorconstructor> :VECTOR I(' I)'
1 VECTOR I(' <expressionlist> )

VECTOR I(' <range> ':1 <expression>')

<vfunheader> VFUN <symbol> <formalargs>
'->' <resultargs>

<Vfunsection> <looaldefs>
<interface>

I<value>
I<localassertions>

<vfunaspec> <vfunheader> ;

I<vtizaspec> <vtunsection>
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<ilpi> IMPLD4ENTATION (symbol> IN_TERMS_OF
<syabollist> ';' <typesq> <parmsq>
<externalretaq> <typemappingsq>
<initiali£zationq> <implementationsq>
END....XPLENTATION

<addop>: +

<aexpri> <aexpri> <addop> <aexpr2>
<aexprl> '-' <aexpr2>
<aexpr2>

<aexpr2> <aexpr2> <multop> <aexpr3>
<aexpr3>

<aexpr3> :''<term>
<term>

<bexprO> :<bexprO> OR (bexpri>
<bexpri>

(bexprl> (bexprl> AND <bexpr2>
<bexpr2>

<bexpr2> NOT <bexpr3>
1 <bexPr3>

<bexpr3> <aexpri> <relop> <aexpri>
<aexprl>

<body> BEGIN <3tmtgroup> END ';'

<caselist> :TYPE <typespec> 1:1 <stmtgroup>
I<caselist> TYPE <typespec> ':1

<stMtgroup>

<declaration> :<typespec> <symbollist>

<declarationlist> :<declaration>
I<declarationlist> 1;' <declaration>

<declarations> DECLARATIONS <declarationlist>';

(declarationsq> <declarations>

<do> :DO
ASSERT

<elseclause> :ELSE <stmtgroup>
IELSIF <ifolause> <elseclause>

99



<event> :NORMAL

RESOURCEERROR
(symbol>

(eventcaWe : ON <eventlist> ':' <stmtgroup>

<eventoasep> % <eventoase>
<eventeasep> <eventoase>

<eventlist> :<event>
<eventlist> ''<event>

<expect...jtil> EXPECTING
UNTIL

<expr> <bexprO>
(itexpression>

<exrlit><exprl>
<e<exprl13t>S<er> >

<exprli3tq> <exprlist>

<exprq> .<expr>

<externaigroup> :FROM <symbol> 1:1 <externarefl13t>

<externalgroupp> :<externalgroup>
I<externalgroupp> <externalgroup>

<externalref> :<typedec>
<parameterdec>

*<functiondec> -

<externalreflist> <externalref> 1;'
<externalreflist> <externalref> ;

<externalrefs> BXTERNALREFS (externalgroupp> -

<externalrefsq> :<exter'nalrefs>

<forhead> :FOR <symbol> FROM <aexpri> TO <aexpri>
FOR <symbol> PROM <aexpri> BY <aexpri>

TO <aexpri>
IFOR <symbol> FROM <aexpri>
IFOR <symbol> PROM <aexpri> BY <aexpri>
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'C'') '' <eoartdolit>'1
1' ' declarationolist9t>
I(' <declarationlist> I)'
I(' <declaratioilist> 9']

<rormalargsq> <formalargs>

<functioncall> <symbol> IC' <exprlistq> )

*<functiondec> <ofunheader>
<ovfunheader>
<vfunheader>

* *<header> <vhead> <symbol> <formalarga>
'->' <declarati~on>9;

<ahead> <symbol> <formalargs> ';'

INITIALIZATION

<ifelause> <expr> THEN <stmtgroup>

<ifexpression> :IF <expr> THEN <expr> ELSE <expr>

<implementations> : IMPLEMENTATIONS <programp>

<implementationsq> :<implementations>

<initialization> : INITIALIZATION <doclarationsq> <body>

<initializationq> :<initialization>

<lhs> (siapleih3>
I(' <lhslist> '

*<lhalist> <ihs>
I (hslist> ''<iha>

<logicalconstant> TRUE
FALSE

<multop> of

MOD

<ofunheader> :OFUN (symbol> <formalarga>

<ohead> :OPROG

IOSUBR
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<ovfwiheader> : QYPUN <symbol> <tormalarga>

<parameterdec> : <simpledec> <tormal argsq> <parustar>

<parudeclist> : <parameterdec> 1;1
I<parindeolist> <perameterdec> 1;1

<parms> :PARAMETERS <parmdeelist>

(parmsq> <parms>

<parmstar) (parmstar> ,'<symbol> <formalargsq>

<predefinedtype> INTEGER
REAL
BOOLEAN
CHAR

<program> <header> <declarationsq> (body>

(programp> <program>
<programp> <program>

<raise_signal> RAISE
ISIGNAL

<range> FOR <symbol> FROM <expr> TO <ex pr>

<relop>

<setbody> <exprl13tq>
<simpledec> ' <expr>
<expr> I..' <expr>

<setexpr> '1' (setbody> 'P

<simpledeo> :<typespe0l> (symbol>
I<symbol> <symbol>

<31mplelhs> <symbol>
I<simplelkhs> I[' <expr> I'
I<3iMp1lh3b> 1.1 (symbol>

<stint> :<iba> '<-' <expr>
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<funationcall>
IRETURN
(raise_...ignal> ' <event>')
IF <ifalause> <elaeolauge> 8NDJIF
I<rhead> <do> <stotgroup> END
<untilbead> <do> <ststgroup> THEN

<eventoasep> END
IEXECUTE <runationoall> THEN

<eventoasep> END
EXECUTE <symbol> '<-' <funattonoall>

THEN <eventoasep> END
ITYPECASE <expr> OF <caselist> END

<stmtroup><stmtgroup> (stmt> 1;1

<structureconstructor> STRUCT I(' (exprlist> I)'

<symbollist> <symbol>
<symbollist> 1,1 <symbol>

<term> <symbol>
NUMBER

ISTRING
I<logicalconstant>
I<functionoall>

''<expr>')

<term> 1.1 <symbol>
<term> 1(1 <expr> ']'

I<unaryfunation> I(' <expr> '
<structureconstructor>
< vectoroonstructor>

(typedec> : symbollist> ':1 DESIGNATOR
I<symbollist> 1:1 (typespea>

<typedeclist> <typedec> 1;1

< typedeclist> <typedec> 1;'

(typemappings> : TYPE._MAPPINGS <typemappingsbody>

(typemappingsbody> :<symbol> 1:1 <symbol> 1;1
I <typemappingsbody> <symbol> 1:1

<symbol> 1;1

<typemappingsq> :<typemappinga>

<types> :TYPES <typedeolist>

<typespco> :<typespeol>
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(s~ymol>

<setexpr>

<typespeci> :<predefinedtype>
ONEOF I(' (typespeCliat> )

ISTRUCT..OF I(, <declarationhist>')
VECTOROF <typespeo>
ISCALAR 1(' <3yabolli3t> ')P

<typespeclist> <typespec>
<typospeclist> 1,' <typespec>

<typesq> <types>

<unaryfunction> LENGTH
INTPART
FRACTPART

<izitilhead> expect...Ltil <eventlist>
<forhead> expect-umtil <eventlist>

<vectorconstructor> VECTOR ''<exprhistq>')
1VECTOR ' <range> 1:' <expr>')

<vfunheader> : VFLIN <symbol> <formalargs>
'->' <declaration>

<vhead> :VROG
VSUBR
OVPROG
OVSUBR
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