
AD-A091 270 SRI INTERNATIONAL MENLO PARK CA F/6 912

THE SRI INTERNATIONAL HIERARCHICAL DEVELOPMENT HANDBOOK. VOLUME--ETC(U)
JUN 79 W L SUTTON, L ROBINSON N00123-76-C-0195

UNCLASSIFIED NOSC-TD-366-VOL-1 NL....EillEl/lEEi
I ! flllffffif .f
I//I//IIIII//I
EIIIIEEEIIIEEE
E/IIIIIIIIII//
EIIIIIIIIIIIII
IEIIIEEIIIIII.

L -F

I
Tehnca Doumn 36

T S I" -I

* a,
Technical Document 366

+ ! I THE SRI INTERNATIONAL HIERARCHICAL+;i I ;DEVELOPMENT HANDBOOK

-' - Volume I: The Foundations of HDM

f' June 1979
10. > Prepared for

""" '° I Naval Ocean Systems Center

I .

I.JU Approved for public release; distribution unlimited

NAVAL OCEAN SYSTEMS CENTER
!--+ I , SAN DIEGO, CALIFORNIA 92152

i t _ 11 04 042

NAVAL OCEAN SYSTEMS CENTER, SAN DIEGO, CA 92152

AN ACTIVITY OF THE NAVAL MATERIAL COMMAND

SL GUILLE, CAPT, USN HL BLOOD
Commander Technical Director

ADMINISTRATIVE INFORMATION

The HDM Project was funded under Navy Element 62721 N. The work leading to
this publication was the result of NOSC Contract N001 23-76-C-0195 with SRI International.
The principal researchers were Dr. Karl Levitt (Volume Ill), Mr. Lawrence Robinson (Vol-
ume I), and Dr. Brad A. Silverberg (Volume 11). The Navy Technical Monitor for the work
performed under contract was W. Linwood Sutton, NOSC Code 8324.

Reviewed by Under authority of
J. B. Balistrieri, Acting Head V. J. Monteleon, Acting Head
C3 1 Facilities Engineering & Command, Control, Communications

Development Division and Intelligence Systems Department

0.

I ~UNCLASSIFIED --

%ECUAITY CLASSIFICATION OF THIS PAGE Oflhen Date Entersd

REPORT DOCUMENTATION PAGE BFRE COMPLETINSOR

NOSC Technical Document 366
a &p;ERIOtyO EE1~FTRNT A HIERARCHICA DEVELOPMENT/ CJJ .f

Volume I& The Foundations of HDNI 6 La I~g~
AUTHR(@ 11. CONTRACT OR GRANT NUMEER(I)

/ W. Linwoo~dTatton conwwt monitor)
~ -- N~l~123-76-C 195

~ ~... ~, ~ss 15. PROGRAM ELEMENT, PROJECT, TASK

SRI International AREA & WORK UNIT NUMBERS

Menlo Park, CA 94025

114. MONTOLING AGENCY NAME AN ADDRESS.1144 -Naval Ocean Systems Center, CoeJ2unclsi& e

Sa igC 25 Ise. DECL ASSI FIC ATION /DOWNGRADING
* _ __ _ _ __ _ _ _SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

I 17. DISTRIB3UTION STATEMENT (of the abstract entered In Block 20, if different treet Report)

ISI. SUPPLEMENTARY NOTES

19. IKEY WORDS (Continue an reverse aide it neceeeiy nvmd Identify by block number)
abstract machines, abstraction, formal specification, hierarchical structure, Hierarchical Development
Methodology (HDM), modules, software development process, software methodology, verification.

20. ABSTRACT (Continue on reverse side it neeeeiy and identify by block numiber)

'-HDM (the SRI Hierarchical Development Methodology) is an approach to software development that attempts
to structure the overall development process by providing a unified framework that addresses most aspects of
system development. Volume I of the HDM Handbook describes the basic concepts of HDM and shows how
these concepts have been embodied in a computational model. It also presents procedures and guidelines for
using them to produce a software system..

DD I AN7 1473 EDITION Or I Nov 6S is OBSOLETE UNCLASSIFIED
O1O0?0-LF.014-6601* I- SECURITY CLASISIFICATION OF THI1S PAGE (Wheni fat

iSCtRnTY CLASSIFICATION OF THIS PACC tUhm base 8aIrn*

UNCLASSIFIED
SCCURITry CLAWMPICATION OF THIS PAWWWO~u 08# UR'D

THE HDM HANDBOOK

Volume 1: The Foundations of HDMI
3 U Deliverable AOOB

SRI Project 4828
Contract N00123-76-C-0195

June 1979

Ii By: Lawrence Robinson, Computer Scientist

Computer Science Laboratory
Computer Science and Technology Division' 0 Prepared for:

Naval Ocean Systems Center
San Diego, California 95152
Attention: W. Linwood Sutton, Contract Monitor

?NTIS R&

1DTIC T"

I -

*1 C at

. '/E,.-c'"

j()

I CONTENTS

I INTRODUCTION TO THE HD 4 HlNDSOOK 3

A." ' 4 3

B. The Structure of the Handbook 6

1. Volume 1: The Foundations of HD4 6
?. Volume II: The Languages and Tools of HD4 6
3. Volume III: A Detailed Example in the Use of HDM 6

C. Other References 7

IT INTRODUCTION TO VOLUME I 9

I ElI THE CONCEPTS OF HID4 11
. A. Abstraction 11

B. Hierarchies of Abstract Machines 18 i
C. Modularity 23

D. Fornal Specification 25

E. Formal Verification 26

F. Data Representation 29

G. The Decision Model 32

1. The Importance of Early Decisions 32' -- 2. The Importance of Decision Interdependence 35
3. The Profusion of Decisions 36
4. The Scattering of Decisions 36
5. Relation of Decisions to Other HDM Concepts 37

H. The Contributitons of HD4 37

IV THE BSIS OF HD 39

A. HierarchicaL Structure in HNM 39

1. kbstract Machines and Programs 39
2. kbstract Machine Realization 41

3. Hierarchies Of Abstract Machines 46

B. Modular Units of Specification 47

1. Introduction 47
?. Modules 49
3. Representation Clusters 57

'4. T-oplementation Clusters 63
5. Module Dependencies 64

I--

F _ _ _ _ _

6. Exceptional Conditions 69

V THE STAGES OF HI4 71

A. Introduction 71

R. Conceptualization (Stage 1) 73

C. Extreme Machine Detinition (Stage 2) 75

D. Abstraction Formation and System Structure Definition 76
(tage 3)

E. Module Specitcation (Stage 4) 77

F. Data Representation (Stage 5) 79

G. Abstract Implementation (Stage 6) 80

H. Concrete Implementation (Stage 7) 81

I. Formal Verification 81

J. Remarks 82 -

VI THE EvFECTIVE USE OF HDM 85

k. Introduction 85

B. The Use of Abstraction 85

C. Modularity 87
D. Hierarchioal Decomposition 88

E. Data Representation 90

F. Indications of Misuse of HDU 92

G. Conclusion 94

u [I

Foreword

I This volume includes an introduction to all three volumes of the

Handbook:

Volume I: The Foundations of HDM
Volume II: The Languages and Tools of HD
Volume III: A Detailed Example in the Use of HDM

j The author wishes to acknowledge the considerable assistance of

Karl N. Levitt, Brad A. Silverberg, Peter G. Neumann, and Jack

Goldberg in the preparation of this volume, as well as of HDM users such

as Richard J. Feiertag and Tom Berson, whose feedback has greatly

increased the applicability oi HDM. The author is also indebted to Lin

Sutton for his patience.

Lawrence Robinson is currently with The Ford Aerospace and

Communications Corporation, Palo Alto, California.

- M

II

.-

I INTRODUCTION TO THE HDM HANDBOOK
A-

The HDM Handbook is a three-volume tutorial on the Hierarchical

Development Methodology (HDM), evolved at SRI International (formerly

Stanford Research Institute) to aid in the production of correct,

reliable, and maintainable software systems.

A. HDM

HDM is an approach to software development that attempts to

structure the overall development process by providing a unified

framework that addresses most aspects of system development. It extends

and integrates many of the techniques proposed by Dijkstra, Parnas,

Hoare, and Floyd.

HDM can be understood in terms of its computational model and its

concepts, languages, and tools. It integrates the concepts of

abstraction, hierarchical decomposition, modularity, and formal

specification. These provide the basis for the moutational model,

consisting of abstract machines, data representations, and abstract

programs, together with modular units for their specification.

Under HDM, the system development process is divided into seven

stages, as follows.

0 (Stage 1) Conceptualization of the system's requirements.

0 (Stage 2) Selection of the user interface and the target
machine.

* (Stage 3) Decomposition of the system into a hierarchy of

components, that is, the formation of abstractions.

• (Stage 4) Specification of each component.

* (Stage 5) Representation of the data of each component in
terms of the data of the component(s) at the next lower level.

" (Stage 6) Abstract implementation of the operations of each
component.

* (Stage 7) Conversion of the abstract implementations into

executable code.! l 3

ki I nnnnnm m ~ w w~

, ..

Each of these stages adds structure and precision to the development

process.

Of these seven stages, Stages 1-4 are part of the design process,

and Stages 5-7 are part of the implementation process. These stages

proceed in roughly sequential order, although considerable backtracking

is common in the design stages. In addition, there are optionally

associated with HDM a variety of stages relating to verification. For

present purposes these may be thought of as a logical Stage 8, although

the effort can be distributed as follows to provide verification during

the design process, rather than merely at the end.

0 (For Stage 1) Justification of the requirements.

0 (For Stage 4) Verification of the consistency between
specifications and requirements.

* (For Stage 6) Verification of the consistency between abstract
programs and specifications.

* (For Stage 7) Verification of the consistency between

executable programs and abstract programs.

There are various explicit language used with HDM to express

decisions made and details established during the design and

implementation stages. These deal with the following issues:

• The structure of the hierarchical decomposition

• The intended behavior of each component, specified as an
independent entity

* The relationships among the data in different components,
i.e., relating abstract data objects to more concrete data
objects

0 The implementation decisions for each component, described as

abstract or concrete programs

There are also tools used with HDM that help to determine if the

structure, specifications, representations, and implementations are each

syntactically well-formed in themselves, and consistent with each other.

The major benefits of HDM can be summarized as follows:

* It encourages the structuring of systems into components (each
of manageable size), according to the principles of modularity

4

.1
described by Parnas [12).

* HDM focuses attention on the properties of data: its
abstraction, specification, and representation. This is vital
in effectively designing large systems -- e.g., see Hoare [7).

* It encourages a designer to formulate systematically and to
record precisely decisions made during system development
£13). Design decisions that have significant impact on the
system and that would be difficult to change later are
formulated early in the development process. Decisions that
have only minor impact on the system are postponed.

* It provides tools that support the development of a system by
alerting developers to inconsistencies and by performing many
detailed bookkeeping chores.

HDM is currently being used in the development of several

experimental systems (e.g., [10], £3), [19), [4]) and two production

systems, KSOS (9) and its companion system KSOS-6. Implementations for

these systems are currently planned or in progress. All but one of

these systems involves design verification, and program verification is

expected to be undertaken in most of them.

Nevertheless, HDM is not yet complete. Most importantly, a formal

semantics for only a subset of HDM's specification language (SPECIAL)

currently exists [I]. Work continues on formalizing all of SPECIAL.

In addition, the tools to support Stages 6 and 7 are currently
under development (although the language for expressing implementation
decisions has been completed and is used in this handbook). Many

additional tools that are not described in this handbook also exist,

notably those ;-elating to verification. These include tools for

verifying the consistency of specifications with a formal model for

multilevel security, and tools for verifying program-specification

consistency.

HDM is continuing to evolve, and its evolution will continue as

more is learned -- through its use -- about its applicability in the

software development process. Thus, HDM is simultaneously a facility

for software production and a vehicle for research. In particular,

difficult topics concerning performance analysis and parallel processing

are being studied. Future versions of this handbook will incorporate

5

I

changes in HDM that result from its continuing evolution.

B. The Structure of the Handbook

I. Volume I: The Foundations of HDM

The work of Dijkstra, Parnas, Floyd, and Hoare has produced several

powerful concepts for improving the quality of software systems. These

concepts have been integrated and then embodied in a computational model

that forms the basis of HDM. Volume I describes these concepts and the

computational model, and presents procedures and guidelines for using

them to produce a software system. The presentation is detailed, but is

intended to be understandable to those who are moderately familiar with

system design.

2. Volume II: The Languages and Tools of HDM

Volume II provides a self-contained description of the features of

the languages of HDM and its main on-line tools, from the viewpoint of a

user of HDM. It also contains a short summary of the ideas presented in

Volume I.

3. Volume III: A Detailed Example in the Use of HDM

HDM has been created for use in the development of real (and

therefore, unfortunately, large) software systems. Thus a true

understanding of its operation and an appreciation of its benefits are

difficult to achieve without an illustration of its application to the

development of a large software system. The example chosen for this

volume (a system that computes a frequency table of words in a file) is

large enough to illustrate the capabilities of HDM, although it is not

as complex as some systems (as noted above) currently using HDM. The

example system is developed step-by-step, the languages of HDM are

presented, and the decisions actually made during system development are

described.

6

C. Other References

A valuable though slightly out-of-date guide to he languages and

I tools of HDM is given in "The SPECIAL Reference nual" [18]. An

overview of HDM suitable for project managers is found in "1DM --

j Command and Staff Overview" [16].

7I

Ib

I

i i
1
1

I

I

I

1
!7

I

I III IIr l i li '---"i - -'-I' ' ' - - ..

I II INTRODUCTION TO VOLUME I

HDM provides an integrated collection of languages and tools that

aid in the software development process. HDM addresses many of the

aspects of the general software problem -- namely that software is often

late, too costly, unreliable, and noncompliant with its requirements.

In an attempt to address the software problem, researchers have

advanced many concepts that can be applied to achieve quality software.

These concepts take the form of desirable properties, design techniques,

guidelines, and procedures. However, the mere presence of these

concepts is no guarantee that the quality of software can be improved.

Although there have been some benefits from this intellectual ferment,

these guidelines have largely failed to improve the quality of

production software because they have been piece-meal attempts rather

than comprehensive solutions.

In developing HDM, we have selected some particularly useful

concepts and integrated them into a unified approach that encourages

- software developers to think about software development in terms of

these concepts. This approach defines a system as consisting of a set

of components arranged in a particular structure. The components are

specified using languages developed for that purpose. Some properties

of the specifications can be evaluated by on-line tools; others can be

measured by subjective evaluation. The languages and tools of HDM have

been designed to enforce its concepts and to realize its mechanisms.

This volume describes the basic concepts of HDM. The stages

provide a suggested ordering of system development. Guidelines for the

use of HDM are also presented.

19I

III THE CONCEPTS OF 1DM

This chapter describes the following concepts that serve as a basis

for HDM. These concepts are based largely on ideas first proposed by

Dijkstra, Parnas, Floyd, and Hoare.

0 Abstraction of procedure and data

O Hierarchies of abstract machines

* Appropriate modularity

* Specification of modules

1 Verification of design and of implementation

• Data representation

The chapter then presents a model for describing the structure and

interdependence of decisions, and concludes with a description of HDM's

approach to the integration of these concepts.

A. Abstraction

Abstraction is potentially the most powerful technique available to

system designers, having been used by mathematicians and scientists for

centuries. There may be many valid ways to look at a large system, each

way approriate in a particular context. A is the process of

isolating just those properties of a system interface that need to be

visible in order to explain that interface or to understand it more

easily. Anabstrajct of a system is a set of properties that can be

used in place of the system itself, under particular circumstances.

The use of abstraction in software has not been as fundamental nor

as universal as is common in many engineering disciplines. This is

primarily due to a lack of adequate methods for describing software

abstractions and the failure to agree on a standard set of abstractions

for software design.

We illustrate different kinds of abstraction with the example of a

conventional flop-flop in engineering. The different usages of

11

II

abstraction are important in describing and understanding complex

concepts and systems.

When we take previously defined or existing components, connect

them together in "accepted" ways, and regard the assemblage as an

indivisible unit, we have performed f abtrac ion. In other

words, we abstract certain operational properties of the individual

components and assign these properties to the abstracted entity. The

other direction, decomposing the abstracted object into functional

components, can be considered an instance of the "divide and conquer"

approach.

Functional abstraction relates to the ogeratignal behavior of an

object. The result of the abstraction is a set of "higher-level"

operations. Note that the input and output data processed by that

object remain the same.

The definition of the object's behavior should be independent of

any given implementation. An implementation is proved "correct" by

demontrating that the externally observable operation of the

implementation is precisely that given by the definition. Once the

definition is formulated, however, nlUy that definition may be consulted

regarding the object's behavior; we may not look inside its

decomposition and reason about the implementation. The abstraction acts

like a "black box".

Two views of functional abstraction are presented for the flip-flop

example. The first is a realization of a flip-flop in terms of discrete

electronic components, e.g., transistors, resistors, capacitors, etc.

-- see Figure I-la. The second is a realization of a flip-flop via

units called logic gates, which are in turn composed of discrete

electronic components. A gate is shown in Figure III-ib, and the

realization of a flip-flop in terms of gates is shown in Figure IIl-ic.

The astute reader will have realized that the second view presents a

hierarchy of abstractions.

Now, to understand the operation of the flip-flop (i.e., how the

flip-flop transforms its data of voltages and currents), we derive its

behavior from the known behavior of its components (operating on the

12

A

Figure III-1: Functional Abstraction

R eOq

(a) A FLIP-FLOP IN TERMS OF PRIMITIVE COMPONENTS

1IN1 -Av

1N2 0 - OUT

II
1(b) A GATE IN TERMS OF PRIMITIVE COMPONENTS

IN

I qI

I (a) FLIP-FLOP IN TERMS OF TWO GATES G

I 13

same data).

Note that in general, the difficulty of such an analysis depends on

(1) how "abstract" are the components, and (2) how appropriate is the

abstraction. For example, since (1) logic gates are more abstract than

discrete components, and (2) the abstraction of "logic gates" is

appropriate for flip-flops, we would expect the logic gate view to be

more advantageous in the analysis of flip-flops.

It is important to see that an abstraction also hides some of the

properties of its components. For example, in our logic gate

abstraction of a flip-flop, we analyze a flop-flop in terms of logic

gate properties, and n=t discrete component properties, even though

logic gates are composed of such discrete components. Thus, if we want

our flip-flop to provide some capability not provided by logic gates,

the logic gate abstraction is inappropriate.

When it is desired to build a flip-flop meeting certain voltage and

current specifications, a configuration of possible components can be

analyzed to determine whether or not it meets its specifications. One

advantage of functional abstraction is that many of an object's

components may be identical; it is necessary to understand the

replicated component only once in order to understand all of its

occurrences. Thus, we see that functional abstraction encourages the

re-usage of known components, which in turn encourages the construction

of a hierarchy of abstractions.

In representational £ r the data operated on by the system

or its components are conceptually replaced by simpler data having only

a subset of the properties of the original data. For example, because a

gate or a flip-flop has only two stable voltages at its inputs or

outputs, the information in each input or output line can be represented

as a single bit, representing high/low output. See Figure III-2a for

the representational abstraction of a flip-flop composed of gates. Note

that some data can vanish under representational abstraction. For

example, the power supply and ground do not convey any information about

the dynamic function of the flip-flop, so they have been eliminated.

Using this abstraction, a gate can be thought of as outputting a

14

-L

Figure 111-2: Representational Abstraction and Mathematical
Models

I
I/

@~ NOR

A NOR B

(AVB)

r q

la) A FLIP-FLOP USING BITS AND NOR GATES

(representational abstraction)

J .s r. vOLD NEW

• i
q 0 0 1

"1
0 x1

0' 1 X 0

MWHERE Z = NOTcQ

X = anything
= indeterminate

(b) A FLOW-TABLE DESCRIPTION OF A FLIP-FLOP

(mathematical abstraction)

"TI

11

I
LI__ __ __ __

Boolean function of its inputs (e.g., "and," "or," "not"). Using this

representational abstraction, circuits containing gates can now be

analyzed using Boolean algebra. As the above example illustrates,

representational abstraction usually incorporates some measure of

functional abstraction. Specifically, we now think of a gate as a

Boolean-valued function of its Boolean inputs and analyze the operation

of circuits containing gates within the mathematical domain of Boolean

algebra, rather than within the electrical engineering domain of

voltages and currents.

In programming language terms, we think of each kind of logic gate

as an operation within an abstract data type. Each operation ("and",

"or", "not", etc.) takes Boolean arguments and has a Boolean result.

The operations are abstractions of their respective functions, and the

arguments/results are representational abstractions of their respective

inputs/outputs.

Encompassing both types of abstraction is the technique of

mathmaicAl models. The data of a mathematical model provide a

representational abstraction of the modelled object's data, thougn the

components of the model may have no relationship to actual components of

the object. The properties of the data visible outside the object,

after representational abstraction has been applied, must be identical

to the properties of the data external to the model. Note that viewing

a flip-flop in terms of logical gates operating on Boolean values is a

particular mathematical model in which the components of the model have

actual structural components.

Another model of a flip-flop is a flow-table (see Figure III-2b),

in which the flip-flop's output q is a function of the inputs and the

previous value of q. This function is defined in the table. The

representational abstraction is given in terms of Boolean values, as

described above. The function (the only component of the model) has no

embodiment in the actual components of the model.

Modelling is the most powerful form of abstraction, because the

model of an object can be structured independently of any of the

object's possible realizations.

16

II
The different kinds of abstraction have all been applied to

software systems. Functional abstraction is sometimes called "procedure

abstraction"; an example of procedure abstraction is a compiler that is

composed of a parser and a code generator. Representational abstraction

is sometimes called "data abstraction"; an example of data abstraction

is the "integer" operations of a hardware machine, which are actually

operations on a representation of integers as bit strings. Mathematical

modelling corresponds to external specification of a program's behavior;

an example of specification abstraction is the use of the external

specification (i.e., a mathematical model) of a file system (instead of

the code) to describe its behavior. HDM supports all three types of

abstraction where applicable.

Different views are possible in forming abstractions of an object,

depending on the properties that one wishes to describe or study. For

example, the concept of an automobile implied by the owner's manual is

different from that implied by the service manual, which is in turn

different from the molecular interactions that govern the behavior of

the automobile. As discussed earlier, the difference between the object

and its abstraction depends on which properties have been abstracted,

and on the distance (or grain) or the abstraction.

A basic engineering paradigm is to (1) design a system to meet

particular specifications and (2) analyze the'system to verify that it

does meet its specifications. Both specification techniques and

analysis techniques make use of abstraction, and promote understanding

and and communication. The difference between software and other

- - engineering disciplines is that in other engineering disciplines the

- - nature of the abstraction is either inherent -- as with a flip-flop

composed of electronic components -- or has been discovered as the

product of years of study (as with gates). In software the gap between

the low-level components (e.g., the hardware or the programming

language) and the completed system is great.

Standard sets of intermediate abstractions would be useful. As new

problem areas in software are explored, new software abstractions can be

expected to emerge.

17

B. Hierarohies of Abstract Machines

An initial step in applying the concepts of abstraction to software

development was the "hierarchy of abstract machines" approach of

Dijkstra [2].

Any programming problem can be posed as follows: "Write a

collection of programs P. to execute on an abstract machine M. The

programs must have the following properties: ..." (See Figure III-3a.)

For the purposes of HDt, an abstract machine consists of (1) a set

of in da ta AILA strujturu, which define its state at a given moment,

and (2) a set of oeations, by which the internal data structures can

be accessed or modified. Each abstract machine has an abstract machine

language in which abstract 2 (denoting sequences of abstract

machine operations) can be written. eor some hardware machines, like

the IBM 370, the machine language is relatively primitive when compared

to the machine language for direct execution machines such as an APL or

Pascal machine.

An abstract machine's internal data structures are _qrLqApa-qsaj,

i.e., accessible only through the operations of that abstract machine.

From the vantage point of the abstract machine, its operations may be

thought of as indivisible. With indivisible operations, a new operation

cannot be invoked until the operation in progress has terminated. Thus,

any set of values for the machine's internal data structures must have

been reached by a finite sequence of operations (assuming a correct

initial state and correct operation). Although indivisibility is not

necessary in implementation, it provides a convenient conceptual way of

viewing the design.

For purposes of illustration, the set of possible values of the

internal data structures of an abstract machine can be viewed as the

state space of the abstract machine; a particular assignment of values

to the internal data structures can be viewed as a state or point in the

state space -- See Figure III-4a. An operation invocation, resulting in

a state transition, is represented as a directed arc from one state to

another -- Figure III-4b -- and a program invocation, or sequence of

18

' 1Figure 111-3: Hierarchies of Abstract Machines

) m

(a) A SET OF ABSTRACT PROGRAMS P RUNNING ON AN ABSTRACT MACHINE M

Pn

M

(b) AN ABSTRACT MACHINE Mn REALIZED BY A SET OF ABSTRACT
PROGRAMS Px ON ANOTHER MACHINE M

Pn

DP(n-1)
M

M (n- 1)

P(n-2)

M2I P

= M1 = M

(c) A HIERARCHY OF ABSTRACT MACHINES

I
I i ll 19
U

Figure 111-4: The State View of a Machine

STATE STATE SPACE

(al A STATE AND A STATE SPACE

OLD STATE NEW STATE

0. -.0

STATE TRANSITION

(b) AN OPERATION INVOCATION (A state transition)

EEE
(c1 A PROGRAM INVOCATION (A sequence of state transitions)

1.1

REPRESENTATION

R(Usl) *® R(Us2) } IMPLEMENTATION

(d) REALIZATION OF AN ABSTRACT MACHINE IN TERMS OF ANOTHER

20

state transitions, is denoted by a sequence of these arcs -- Figure

III-4c.

A complex programming problem is generally difficult to solve by

writing the programs P in one step. Instead, another set of programs Pn

might be written, whose function is equivalent to that of P, and that

(logically) executes on an abstract machine Mn. Executing Pn on Mn must

produce the same external results as executing P on M. If Mn is

selected properly, then the writing of the program set Pn can be a much

simpler task than that originally required for the collection P. Since

Mn may not have a physical embodiment, it is necessary to realize Mn in

terms of M in order to achieve the ultimate goal of a running system.

That is, each operation of Mn is implemented an abstract program running

on M. Note that Mn's internal data structures are a data abstraction of

those of M, and its operations are a procedure abstraction of a set of

programs running on M. Note also that a specification for Mn is a model

for any of its realizations.

In the state view of abstract machines, realization can be

described as follows. Each operation invocation of the upper machine is

implemented by a program invocation on the lower machine. Thus, a new

programming problem emerges, that of implementing the operations of Mn

as a set of programs running on M (see Figure III-3b).

If Mn is significantly more abstract than M (as is the case in

large systems), then a sequence of abstract machines

M2,. .. M(n-1)

may be used to bridge the gap between M and Mn. (For notation's sake,

we refer to M as M1.) Given the sequence of abstract machines

= M1, ,M and program set Pn, we must also construct program sets

P1, P2, ... P(n-1)

where program set Pi runs on machine Mi and implements the operations of

machine M(i+1), for 1<i<n. Each program in set Pi implements an

operation of M(i+). The target machine M1 is known as the primitive

Smachie. All other abstract machines are non-primitive. A graphical

view of a hierarchy of abstract machines is shown in Figure III-3c.

A familiar example of the abstract machine concept is the use of

21

microprogramming for families of hardware machines. For example, all

members of the IBM System/370 family have the same instruction set --

denoting a single abstract machine -- which is realized on different

hardware architectures through microprogramming. The physical

realization of a 370/168 may be (and is) totally different from that of

a 370/135, yet both machines present the same abstract machine to the

user.

Similarly, a programming language interpreter presents an abstract

machine to its users. Though two LISP interpreters may have completely

different implementations and even be running on different machines, the

user still sees only a LISP interface, and can execute only LISP

commands (i.e., instructions on the LISP abstract machine).

Abstract machines have also been used to describe operating

systems, message processing systems, data base systems, and components

of compilers and verification systems.

For each two adjacent levels in a hierarchy of abstract machines,

each upper-level state maps to a V of lower-level states, and two

distinct upper states must map to disjoint sets of lower states. The

implementation of an upper-level operation relates the upper level to

the lower level in the following manner. Let Uo be the implemented

upper-level operation, Usl the initial upper state, and Us2 the final

upper state (i.e., Uo takes Usl to Us2). Furthermore, we let R denote

the set-valued representation function that takes an upper-level state

as argument and returns the set of lower states used to represent the

given upper one. Now, the implementation of Uo on the lower machine

will start in some state in R(Us) and end up in some state in R(Us2).

It may go through other lower intermediate states on its way, but just

as long as it takes some state Lsl in R(Usl) to some Ls2 in R(Us2), the

implementation is correct. The situation is illustrated in Figure

III-4d.

Note that since the upper level may hide some properties of the

lower level, it is possible for some lower states to not represent an

upper state. Correspondingly, the lower machine may provide some

capabilities that are not available to the user of the upper machine.

22

ktU

tFor example, consider the case of an operating system viewed as an

abstract machine running on top of another abstract machine, the machine

hardware. The user of the operating system (here, the "upper" machine)

will have many capabilities, though it is unlikely that he will be

permitted to directly access and modify certain "privileged" information

that the bare user of the hardware does have access to.

The hierarchies of abstract machines approach mitigates the

problems of producing large software systems in various ways. The

abstraction provided by a non-primitive abstract machine hides

complexity from the users of that machine. Its definition can be

relatively simple even if the implementation is necessarily complex.

C. Modularity

A lar system is one that is divided into easily replaceable

parts called .modulg. To be "easily replaceable," a module must have a

well-defined external interface that should be the only information

needed to produce a replacement. Thus, a module should be replaceable

by any module with the same external interface, even if the new module

has a different implementation.

In most engineering discipines, modular systems are commonplace.

Attempts to achieve modularity in software systems seem to have often

failed -- particularly in large systems -- largely because the

interfaces among components were not well understood. For example, a

component might have many external interfaces, such as a shared variable

or a common data format, that are not explicitly considered to be part

of the interface by the system designers. An attempt to replace such a

component (or to change it) would often lead to a catastrophic system

failure, because some implicit part of the module's interface was not

considered. Most software systems today suffer from such "unwritten

assumptions."

An attempt to achieve modularity in software systems should have

two steps:

I Define what each software module is and what should be

23

described in its interface.

B Define the interface to each software module.

The first step is described in this section, and the second is described

in Section III.D.

Parnas [12] has found that certain forms of modularity are

particularly useful in confronting the difficult problems associated

with many phases of the software development process. He has attempted

to identify specific criteria for decomposing a system into modules, and

has described his technique by providing the following characteristics

of a module in such a decomposition.

* A module consists of a set of programs that can be invoked by

other programs (those outside the module).

* There are two kinds of decisions made in designing the
programs of a module: those that define the external behavior
of the module, which are available to all programs outside the
module; and the remainder of the decisions, which are hidden
from use by the programs outside the module. Examples of
decisions that should be hidden are data formats, accesses to
a common data structure, and specific implementations of a

particular program of the module.

* The activity of implementing a module (i.e., writing its
programs) can be carried out by one programmer, who may have
no knowledge of how other programmers are implementing other
modules.

* Two sets of programs can advantageously be made into separate
modules if the decisions hidden by each set of programs are
independent. This separation is particularly important in

decisions that are likely to change, e.g., data formats. One
should encapsulate in a module containing no other decisions
the programs that have access to the changeable decisions.
This will insulate the remainder of the system from the
effects of possible changes to these decisions. (Note that
the modularity of the implementation need not be identical
with the modularity of the abstract machines. For example,

several abstract machines may be implemented jointly.
Similarly, separately compilable programs may be bound or
jointly compiled for execution efficiency.)

These criteria are loosely known under the terms "information hiding"

and "module decoupling".

The key problem addressed by modules is that essentially all useful

24

I - -. -

I
j systems are subject to frequent modification in their lifetime, and that

it is important for any technique of structuring to localize the effect

of the likely changes.

D. Formal Specification

Achieving the goal of modular systems requires that a programmer

understand the impact of invoking a module's operations without knowing

its internal details. To portray the behavior of a module independently

of its implementation, Parnas has suggested a form for writing module

specifications [14]. Parnas' specification technique describes each

operation, in a semi-formal way, in terms of changes to the module's

(internal) data structures. However, as an ultimate goal he advocates

fr. specifications.

Although the need to specify a system is generally accepted, the

use of informal rather than formal specifications is superficially

appealing -- because less effort is generally required to read and write

informal specifications. However, informal specifications suffer from

the following deficiencies:

* They are often incomplete, with respect to both the desired
effects and the anticipted exceptional conditions.

They can be ambiguous.

* They cannot be checked for consistency.

* They often include (and prematurely bind) details of
implementation.

They cannot be used as the basis of proofs that the
(informally) specified system is correctly implemented.

The shortcomings of informal specifications can be overcome by

employing a more rigorous specification language whose syntax and

semantics are formally defined. An example of a formal specification

language is first-order predicate calculus. Specifications written in a

formal specification language can be machine-checked syntactically for

well-formedness and semantically for self-consistency and consistency

with other specifications. (Determination of consistency is in general

25

I

an undecideable problem, though many aspects can be checked

automatically). Ideally a well conceived specification language should

not sacrifice readability, while at the same time be sufficiently rich

to characterize completely the effects and the exceptional conditions of

each specified operation.

The specification language we have developed for HDM is called

SPECIAL (Specification and Assertion Language). One major goal of HDM

is to make SPECIAL completely formal. At the time of this writing, the

goal has only been partially met. We have developed a formal semantics

for a substantial but not complete subset of SPECIAL [1, and work

continues on formalizing the entire language.

E. Formal Verification

Testing is the approach most commonly used to decide whether a

program, or an entire software system, meets its requirements. However,

testing is inadequate because

It is impossible to test all inputs to many programs of even
moderate-size.

* As Dijkstra has stated, testing reveals only the presence, and
not the absence, of errors in a program.

An alternative method of analyzing programs is formal verification, from

which it is theoretically possible to demonstrate with a rigorous

mathematical proof that a program meets its formally stated

requirements.

Formal verification is the act of proving mathematically that a

program's actual behavior is consistent with some specification of its

intended behavior. Many techniques for verification have been

developed. Using the inductive assertion technique developed by Floyd

[6], the specification is written as a pair of assertions, or predicates
in first-order logic, that describe the expected relationship among the

values of the variables or data structures before and after the
execution of a program. The input assertion places constraints on the

values of the input variables, and the output assertion indicates the

intended relationship between the values of the output and input

26

I -

variables. Given a program, a pair of assertions, and a formalization

of the semantics of the programming language, it is then possible to

construct a theorem (called a vxrifig.ion S& ngX n) whose validity

implies that the program meets its specifications.

In terms of the state representation shown in Figure III-5a, the

assertions represent subsets of the state space. Verification

establishes that if the initial state of a program's execution occurs

within the subset denoted by the input assertion, then the program will

terminate and its final state will fall within the subset denoted by the

output assertion.

So far, the success of verification has been limited to

moderate-sized systems (e.g., 1000 lines of code in a higher-level

language) in restricted problem areas. Verification needs much

development before it can be applied to large systems. At this time.

verification technology is limited by the following problems, as the

systems on which it is employed become larger and more applied:

a The assertions are too long and difficult to formulate.

*The programs are too large.

* Most programming languages are semantically too complex to
formalize.

* Most application domains are too complex to formalize.

* The relationships among the many programs in the system are
often too complex to formalize.

* It is difficult to tell whether a given set of assertions
actually states a system's requirements.

There are several possible ways to improve the program verification

process:

0 Increase the power of automatic theorem provers to be able to
prove theorems resulting from more complex assertions and a
richer set of application domains.

0 Structure the proof of the program into many small proofs,
rather than a few large proofs.

9 Restrict the semantics of programming languages and the

27

Ii_ _ _ _S-i~~

Figure 111-5: Program Verification and Data Representation

STATES SATISFIED STATES SATISFIED
BY BY

INPUT ASSERTION OUTPUT ASSERTION

00 ASSERTIONS REPRESENT
SETS OF STATES

(a) VERIFICATION OF AN ABSTRACT PROGRAM

FORMAL

SPECIFICATION

OPERATION INVOCATION
AT UPPER LEVEL

- *PROGRAM INVOCATION

AT LOWER LEVEL

MAPPED

SPECIFI(CAT ION

(b) DATA REPRESENTATION AND HIERARCHICAL VERIFICATION

28

relationships among programs so that they can be formalized.

Recently it has been recognized ([11], £10), [9)) that even if the

verification of a system is not completed, important benefits can be had

by designing a system so that it can be verified at some future time.

The process of preparing a system for verification leads to a deep

Iexamination of all decisions made in system development. As a result of

this examination, a better system results.

F. Data Representation

Many applications of programming are based on mathematical concepts

(e.g., set theory, numerical mathematics, linear algebra). Often a set

of programs implements a mathematical model, meaning that the model is a

specification of the set of programs. However, it is not always

possible to verify the implementation of the model, because the model

may be expressed in different terminology from that of its

implementation. For example, operations on sets (e.g., insert an

element into a set, delete an element from a set, check if an object is

an element of a set, choose a random element from a set) can be

implemented as a collection of programs operating on arrays, the

contents of an array representing the elements of a set. In set theory,

the operations on sets are typically described in terms of the concepts

of "S is a null set" and "x is an element of set S." These concepts,

however, have no meaning with regard to arrays.

Hoare's proposed solution [8] to this problem requires the

I definition of an additional relation called a data presentation
function. This function defines the data of the mathematical model in

I terms of the data of the implementing programs. A data representation

function can be "applied" to the specification of an operation written

* in terms of a mathematical model, resulting in an assertion (called a

Maned specification expressed in terms of the data of the implementing

program. Proof of correctness, using the techniques of program

verification described above, can then proceed. For the set example, we

may represent set S by an array A and an integer variable C (denoting

the cardinality of S). An element e is in S if and only if e occurs in

29

I
, .. , 4n . :. ,. ;-. , -. .,, € - ,,

the subarray (A[1] ,,, A[C]).

See Figure 111-6 for an illustration of this representation

function for a set with five elements. From this representation

function, it can easily be seen that a null set is expressed by any

array in which C = 0.

Robinson and Levitt (17] have extended this idea to the

verification of hierarchies of formally specified abstract machines,

where the mathematical model is the specification of an abstract machine

and the set of implementing programs is a set of programs running on a

lower-level machine. Note that in this proof technique, the system is

structured hierarchically, and the proof is structured in the same way

as the system. For a two-level hierarchy, an illustration of data

representation in terms of states (Figure III-5b) shows how the states

of an operation invocation on the upper-level machine are represented by

the states of a program invocation on the lower-level machine. This

approach is immediately extendable to an arbitrary number of levels.

In addition to their role in formal verification, data

representation functions serve as an important aid in the design process

in general. First it must be pointed out that the need to represent

data is universal in software development (e.g., all different kinds of

data in a system are represented in terms of machine words, which are

nothing more than bit strings). In most cases these representation

decisions are expressed using informal techniques, such as pictures and

prose. However, by requiring a formal statement of the data

representation function, the designer is obliged to consider certain

aspects that might otherwise escape his attention (e.g., which data is

hidden, the ordering of data items in a data structure). Such important

issues might escape his attention until much later, at which time the

implementation code might require significant modification. The use of

data representation functions is one example of how a mechanism that was

originally developed only for proof has also shown its usefulness in

more general aspects of software development (the use of formal

specifications is another).

30

AL

Figure 111-6: A Set Represented as an Array

b Y Z S

(a) AVALUEOFSETS

INDEX VALUE

1 x

2 y

3 z

A 4a c5
5 b

6 anything

7 anything

n anything

(b) THE VALUE OF A, C THAT REPRESENTS S

S(AC) - Afi, I 1 < i -- C

1c) A REPRESENTATION FUNCTION FOR S IN TERMS OF A AND C

31.

I 1

31

I 1

' II i _ . j .j., * .

G. The Decision Model

In developing any software system, decisions are made (either

explicitly or implicitly) that in combination ultimately determine all

aspects of the system -- its behavior, performance, maintainability,

etc. Most views of software concentrate on the system as it exists at a

given point in time (the product of those decisions) rather than the

decisions themselves (the process by which the system has been

developed). Information about decisions can be extremely valuable in

software development no matter what development method is used. Parnas

(13] was one of the first to recognize the importance of recording

decisions, and elevated them to a primary descriptive role in his

research on system families.

In the decision model, a software system at any stage of its

development results from a sequence of decisions, in which each decision

in the sequence is dependent only on the ones occurring before it (see

Figure III-7a).

A decision may pertain to any aspect of software development:

design (e.g., to build an operating system around a centralized virtual

memory mechanism), data representation (e.g., how to represent the

queues in the operating system's scheduler), and implementation (e.g.,

to use a "least-recently-used" algorithm for page replacement). There

can be much discussion about exactly what a decision is and how it can

be described, but in this document a decision will exist only as a

conceptual tool, without recourse to formal definitions or notations.

Many difficulties in systems -- with their structure, development,

and documentation -- can be examined using the decision model. From

several observations about decisions, certain problems in software can

be traced, and certain requirements outlined for solutions. The other

concepts of HDM can be shown to aid in the management of decisions

according to this analysis.

1. The Importance of Early Decisions

Because a decision is dependent only on certain previously made

decisions, the early decisions in software development are those that

32

LAj•

I Figure III-7: The Decision Model

d i d2 d3 dn 2 dn 1 d n
I e -e-- 0 . - -0-O-- - o

Ia) A SEQUENCE OF DECISIONS

d 1 d 2 d i di+ 1 dn- 1 d nK ORIGINALSYSTEM O- O ... Oa 0" -

CHANGING d d i d2 (d)(dA c

CHANGINGd. *-a *
" * - "a

d1 d2 d' i d'i+n d'mnI d' m

NEW SYSTEM *-- ... 5-- *"*

(b) CHANGING A DECISION

d ad 2 d 3 d 4 dd d 6 d 7 d8 9-0 - d 10

d
1

d2 d3 d4

d5 d6 d7 d8

d
9

40 INTERDEPENDENCY GRAPH OF DECISIONS IN A SEQUENCE

I
I

33

7

iii

have the largest number of decisions depending on them. If a decision

is changed, potentially all subsequent decisions may have to be changed

(see Figure III-7b). Thus, the early decisions are the most important

ones, because they potentially require the greatest number of later

decisions to be changed. A change in a decision may occur as a result

of adapting the system to meet changed requirements, of fine-tuning a

system, or of fixing a bug. When an early decision is changed late in

the software development process, it is often necessary to redo a system

almost completely, even if the change is a small one. Several possible

solutions can be proposed:

Make the decisions first that are least likely to change.
Postpone those that can easily change during system
development. This is simply a matter of ordering decisions in
a particular way, without necessarily changing them. An
example is the decision to have a particular data item in the
system. The presence of this item may be a basic decision
that has to be made, but the format of this item or its
location relative to others can be postponed to a later time.

0 Make decisions in favor of generality and adaptability. Too
often, designers view the system as immutable and static.
Design so the system can be modified easily in response to
inevitable change. For example, a decision to support any
constant maximum number of processes is more general than the
decision to support at most 32 of them. It is desirable to
parameterize such constants whose values may in fact
subsequently have to be changed.

* Minimize the dependency on earlier decisions where possible,
and encapsulate related decisions into common modules or
abstract machines.

* The concern for "efficiency" is often a false and misplaced
one. Many systems suffer from premature optimization that
wires-in certain hard-to-modify decisions but does not
noticeably improve efficiency. If the system is designed in a
modular manner, one can identify from the running system the
consumptive modules and replace them with more efficient
implementations.

* Evaluate all decisions made before proceeding. Thus, if a bad
decision is made and detected almost immediately, there is
little penalty incurred in having to redo subsequent
decisions. This is especially necessary early in the
development process. For example, several levels of
evaluation are probably needed before what is usually
considered a "deSign review". When the design review finally

34

occurs, many decisions have already been made about
representation and implementation, without questioning the
basic system decisions on which the former are based. This
can lead to much redoing of effort if the early decisions are

changed.

0 Emphasize the process by which the earliest decisions are
made. The early design decisions are often specified
informally and are traditionally not subjected to as rigorous

an analysis as the final code -- which must work properly.

However, the early decisions deserve more time and effort than

the later ones, if they are going to have the effect of

increasing the cost of backtracking.

* Document the system according to the time at which decisions
are made. Too often the record of the time ordering of

decisions is lost in an unstructured document, or worse yet,
in the code. It is often difficult to maintain a system in
which a record of individual decisions is not kept. This is
also of value durinng backtracking (design changes followed by
corresponding implementation changes).

2. The Importance of Decision Interdependence

According to the decision model, for a given decision di in the

sequence S dl, ... , dn), every subsequent decision dj (i<j~n) in S

zU be dependent on di. In actuality, many of the dJ are independent of

a given di. A more accurate version of the decision model may be

[constructed as a partial ordering instead of a sequence, illustrating

the true dependency among decisions. (In the example of Figure III-7c,

no decisions are dependent on d4, while several are dependent on d7.)

This partial ordering may also be applied with clusters of decisions at

a node, instead of a single decision. Difficulties in system

development and maintenance can occur because decisions in a system are

too interdependent or because the interdependence among the decisions in

a system is not precisely known. Two solutions to these problems are as

follows:

* Reflect the interdependence of decisions in the system
documentation.

I * Structure a system so as to minimize the interdependence among
groups of decisions.

!
I 35 :

-- Z 2 : , 2,, ,.., : :... 7 *. .:. .. .17: _________...

3. The Profusion of Decisions

Many of the problems that occur in managing software development

decisions would not be serious if there were only a small number of

decisions. However, even in a small software system, there are hundreds

-- maybe thousands -- of decisions to be made. (See the example of the

use of HDM in Volume III of this handbook.) Many difficulties in

software result from this profusion of decisions.

In such cases, it is difficult to keep track of which decisions

have actually been made. Thus, a common error in software development

is to recognize the need for a decision that has in fact already been

made -- either earlier by the same person or in some other part of the

system by someone else. When these two (identical) decisions are

resolved consistently, there is no problem (at least initially);

however, if they are made differently, the system is unsound. For

examDle, an argument to a procedure may be informally assumed to be a

non-negative integer; the code may handle only a positive integer,

blowing up when it is given zero as an argument.

Two guidelines are useful in managing the proliferation of

decisions.

Write down all decisions. Obviously, this is easier said than
done. Unless there is a framework for what constitutes a
complete set of decisions, this will be extremely difficult.

* Write decisions precisely. Mathematical English (the language
of mathematics textbooks) can be used, but is difficult to
check for syntactic and semantic consistency. Some formal
language is probably the answer.

4. The Scattering of Decisions

Even if the decisions of a system are to be written down.

conventional methods allow the recording of the same decision to be

scattered throughout the system. An example of decision scattering is a

shared data format. As a result, it may seem that a decision is made in

only one place, or a few places, when in actuality it is made in many

other places that are difficult to track down, especially in a large

system. When this decision is changed, but not every embodiment of it

36

g 'A p
I .7..; "

is changed, the result is an inconsistent system. Two aids to combat

decision scattering problems are as follows.

6 Structure the system so that a single decision is localized as
much as possible to a small part of the system. This
minimizes the scattering phenomenon.

I . Make explicit all sharing of decisions among parts of the
system. Thus, when a decision is scattered among parts of the
system, the scope of the scattering is well-defined.

5. Relation of Decisions to Other HDM Concepts

IMany of the concepts of HDM described above (e.g., abstraction,

hierarchical structure, modularity, formal specification, formal

verification, data representation) are closely related to the decision

model. Abstraction, hierarchical structure, and modularity provide

means for structuring and grouping large numbers of decisions in

particular ways. This grouping occurs both according to the time when

decisions are made (by separating the development activity into stages

-- e.g., definition, representation, and implementation of abstract

machines), and according to dependency (by categorizing groups of

I decisions within modules and levels). Levels of abstraction and modules
provide a way of describing the interdependence of decisions and

j criteria for minimizing that interdependence. Modules are also a way of

localizing decisions to a single part of the system. Formal

Jspecifications at all stages of development provide a means of

documenting all decisions in a precise and complete manner. Formal

verification provides a means for deciding the consistency among

decisions. The decision model is a useful vehicle for formulating may

issues in software development.

I I Subsequent discussions of HDM in this handbook make frequent use of

the decision model, either for justifying a particular feature of HDM or

J Ifor discussing particular issues in developing actual systems using HDM.

I -H. The Contributions of HDM

The concepts of Dijkstra, Parnas, Floyd, and Hoare are significant

advances in understanding the complexity of software and the difficulty

1 37

in developing large software systems. The development of these concepts

has been accompanied by great expectations, i.e., that their use would

cause a significant improvement in the quality of software and a

reduction in its total cost. Previous attempts to use such concepts

have fallen far short of expectations, because each concept in isolation

is not powerful enough to solve the entire software problem and because

the concepts have no languages and tools to support them.

The major contribution of HDM is to embody these concepts into an

integrated approach that is supported by languages and tools. Some of

the concepts such as abstraction and modularity are reflected in

particular components of HDM (e.g., abstract machines and modules),

while others, such as formal specification and the decision model are

reflected throughout HDM. Specifically, HDM is derived from these

conceNts as follows.

* The "hierarchy of machines" approach of Dijkstra provides the
basis for HDM. The "data representation" method proposed by
Hoare, and by Robinson and Levitt is also incorporated.

* The "module" concept of Parnas is used to define units of
decomposition for abstract machines, data representations and
implementations.

* Formal specifications are used to specify all of the
components of a system (e.g., abstract programs and abstract
machines) and their hierarchical interconnections. Remember,
though, that at the present time complete formality is more of
a goal than a reality.

38

Ii
IV THE BASIS OF HDM

This chapter shows how the foregoing concepts are integrated into

HDM, including the use of modules, abstract machines, abstract programs,

data representations, and implementations.

A. Hierarchical Structure in HDM

In HDM, a software system is viewed as a hierarchy of abstract

machines. Each abstract machine can be viewed as providing a particular

set of capabilities or facilities through a particular interface to its

user(s) (e.g., an operating system, a data base manager, or an

interpretive language environment).

Each abstract machine is first specified as a distinct, independent

entity. Next (in the data representation stage), its data structures

are defined in terms of the next lower level abstract machine. Finally

(in the implementation stage), each abstract machine (except for the

lowest-level machine) is then given an implementation in terms of

abstract programs written in the language of the next lower level

abstract machine.

This section provides a detailed description of the basis of HDM

sufficient to allow a new user of HDM to begin to think about systems in

terms of abstract machines and abstract programs.

1. Abstract Machines and Programs

As mentioned in Section III.B, an abstract machine supported by HDM

consists of a set of internal data structures and a set of operations

that access or modify the values of the internal data structures. Each

abstract machine has the following properties.

It accomplishes work by executing sequences of operations on
behalf of its users (e.g. a program or a human). It provides
a self-contained environment, having neither side effects nor
additional operations.

* It receives input either through arguments to its operations
or by fetching values from those of its internal data

39

structures that represent input devices.

* It produces output either as the result of one of its
operations or by storing values in those of its internal data
structures that represent output devices.

It encapsulates its internal data structures, i.e., does not
allow access to or modification of the data except through the
operations of the abstract machine. The effects of its
operations are specified only in terms of the abstract
machine's own internal data structures.

* It provides operations that appear to be indivisible. This
means that the internal data structures always appear
externally to be in a self-consistent state. (Note that this
has interesting implications for the specification of Internal
parallelism.)

O It can operate in an environment containing asynchronous
events. In such an environment, multiple users or

* asynchronous programs can share the use of an abstract
machine, or asynchronous programs can be used to implement its
operations. As in a sequential (synchronous) environment, an
abstract machine running in an asynchronous, parallel
environment provides a set of indivisible operations to users
and programs. (Asynchronous operation of abstract machines is
not a subject of this handbook. Consult [10] for more
information.)

An absract proram is a string in a particular programming

language which, when interpreted, describes a sequence of operations on

an abstract machine. An abstract program has the following properties.

* It contains no permanent data structures of its own. Local
variables may be used, but do not survive a particular
invocation of an abstract program. All permanent data is
stored in the internal data structures of the abstract
machine, which must provide whatever data structures are
needed (e.g., arrays, strings, lists).

It may contain calls to subroutines, if provded by the
abstract programming language.

* It contains only control statements, assignment statements (if
local variables are used), subroutine calls, and invocations
to the operations of an abstract machine.

* It may invoke the operations of only one abstract machine.
Any subroutines called by the abstract program are subject to
the same restriction.

40

.r

"I

* It communicates with the abstract machine on which it executes
by means of the arguments to and results of operation
invocations, and by notification of exceptional conditions.

SAn example of a set of abstract programs running on an abstract

machine can be found in a company's management information system, in

which employees can charge their working hours to any one of several

project accounts. From the employee time cards and from information on

projects and employees, programs must generate at regular intervals a

paycheck for each employee and a financial status report for each

project, while updating the permanent information on both projects and

employees. A possible abstract machine to solve this problem would

contain facilities representing a time card input file, a paycheck

output file, an employee data base, and a project data base. Two

abstract programs can be provided, one to produce paychecks -- updating

the employee data base -- and one to produce project status reports --

updating the project data base. The system structure is shown in Figure

IV-1. This structure becomes more complex as new functions are

specified, such as the ability to update the data bases to provide for

new employees, new projects, salary changes, etc. Note that the

primitive abstract machine provided -- perhaps a hardware machine, an

operating system, or a COBOL processor -- is not the machine designed

here. However, the primitive machine could be any of these and the same

system description would apply. This is an example of the use of

abstraction, the postponement of particular decisions -- in this case

the nature of the underlying machine -- until later in the

software-development process. Note also that the physical storage of

the various data entities -- whether on disk, on tape, or in main memory

-- is not specified. Again this is an example of abstraction.

2. Abstract Machine Realization

As discussed above, the abstract machine provided in most

programming problems is not the one most desired. To develop the

desired system, there is a choice between two alternatives: to write

extremely complex programs on the abstract machine provided, or to write

simple programs on the abstract machine desired and to realize the

41

A

Figure IV-1: Abstract Machines in a Management Information System

PAYCHECK PROJECT STATUS ABSTRACT

PROGRAM REPORT PROGRAM PROGRAMS

READ/ UPDATE READ WRITE

WRITE UPDATE

EMPLOYEE PROJECT PROJECT ABSTRACT
TIME CARDS PAYCHECKS DATA BASE DATA BASE STATUS MACHINE

REPORTS

42

I
abstract machine desired in terms of the one provided. There are two

aspects to realizing a given abstract machine in terms of the next

lower-level machine: (1) the representation of each data structures of

the upper machine in terms of the lower-level machine, and (2) the

implementation of each operation of the upper machine as an abstract

program running on the lower machine.

The step of recording data representation decisions is a very

important one, even though it was originally introduced only to

construct proofs. When the upper machine is realized in terms of the

lower, the data structures of the upper are usually different from those

of the lower. The programs that implement the upper machine are thus

operating not on the data of the upper machine's specification (i.e.,

the data structures of the upper level), but rather on the data of the

lower machine (i.e., the data structures of the lower level).

The recording of data representation decisions is a vital step

towards implementing an upper machine in terms of a lower machine.

Essentially, data representations map the state space of the upper level

to the state space of the lower. Before actual implementation programs

can be written -- programs that manipulate lower-level data structures

-- we must know how the data structures of the upper level are to be

represented. The relationship between the two sets of data structures

is thus a set of decisions made in order to write these implementation

programs. If these decisions are not written down, people working on

the implementation programs may become confused. In addition,

maintenance may become a real problem, because the representation

decisions will be "lost" and will have to be reconstructed by reading

the code. Data representation specifications are analogous to the

diagrams (e.g., control bloc formats in operating systems) that are

often used in conventional methods to describe the same kinds of

I decision. When the implementation of the abstract machine is finally

written, the data representation becomes an invaluable point of

reference to both developers and maintainers.

An example of abstract machine realization occurs in an operating

system based on a virtual memory ([10), [3], [15)). In this system one

i 43

-Aii AMA

level (or abstract machine) provides a virtual memory, as well as some

other facilities (such as multiple processes and process

synchronization). The goal of a virtual memory is to allow a program to

have a large address space (called a virtual address space), which is

potentially larger than the main memory that would normally be available

to it. The program would access this virtual address space uniformly,

as if it were referencing main memory. This is the abstraction.

However, the implementation is different: the information in a

program's virtual address space is scattererd throughout primary memory

and secondary storage. If the program tries to access a virtual address

that is currently resident in main memory, as determined by a

lower-level facility called a memory mapping, the memory mapping will

provide the proper physical address and the location will be accessed.

If, on the other hand, the program tries to access a virtual address

that the memory mapping determines is resident in secondary storage, the

information will be brought into main memory (using the secondary

storage address contained in the memory mapping), the memory mapping

will be updated to reflect the new position of the information, and

finally the information will be accessed as if it had already been in

main memory. The response to the calling program is the same in either

case -- the correct information is accessed; in the latter case it just

takes longer. The memory mapping maps segments of virtual addresses to

physical storage. The ordering of the segments in virtual storage is

independent of their ordering in physical storage. The data

representation for the virtual memory mechanism could be stated

informally as follows:

If the memory mapping determines that a is represented in
main memory, then the contents of virtual address a are the
contents of the main memory address mapped to by a; otherwise
the contents of virtual address a are the contents of the
secondary storage address mapped to by a.

An abstract machine structure for this realization is described in

Figure IV-2. The top level contains facilities for the virtual memory

and multiple processes -- both to be provided to upper levels in the

operating system -- and the bottom level provides facilities for main

memory, secondary storage, memory mapping, and multiple processes.

44

j Figure IV-2: Abstract Machine Realization for a Virtual Memory

VLIRUALMULTPLEUPPER
MEOYPROCESSES MACHINE

REALIZATION

MANSECONDARY MEMORY MULTIPLE LOWER
MEMORY STORAGE MAPPING PROCESSES MACHINE

I4

......

(Note how the same facility, multiple processes, appears at two adjacent

levels. This phenomenon will be an important motivating factor in

developing the mechanisms to support modularity.) Note that the

top-level machine, containing the virtual memory, is conceptually more

simple than the lower-level machine, though the realization of the

virtual memory is extremely complex. This illustrates a major goal of

HDM: to make systems appear conceptually simple at higher levels in the

face of (1) complex lower-level facilities and (2) a complex

realization.

3. Hierarchies of Abstract Machines

In many cases the realization of an abstract machine is in itself a

aifficult programming problem, and cannot be easily accomplished in one

step. Thus, in realizing a particular abstract machine Mn in terms of a

primtive machine M1, it may be necessary to hypothesize a sequence of

abstract machines

Mn, M(n-1), M(n-2), M1

where in each case, Mi can be realized in terms of M(i-1) in a

relatively straightforward manner.

A sequence of machines determined to be a solution to a given

programming problem is said to be a hierarchical machine decomposition

of that problem. Issues raised during hierarchical decomposition lead

to a better understanding of the problem to be solved. In the past uses

of HDM, the hierarchical decomposition has generally been a highly

creative iterative process, although it tends to converge quite rapidly

toward a stable framework upon which minor modifications can be made.

It is recommended that the writing of complete specifications be

deferred until the hierachical decomposition has stabilized, and that

the writing of code be deferred until the specifications have been

thoroughly checked. There is usually much discussion about a proposed

hierarchical decomposition (leading to changes) before a satisfactory

one is agreed upon. At this point, the writing of specifications can

begin. After all abstract machines are specified, each non-primitive

abstract machine is realized in terms of the one below it in the

46

[i

hierarchy.

One question that frequently arises during the process of

hierarchical decomposition is, "What issues determine the number of

abstract machines in a hierarchical decomposition?" Several general

observations are relevant:

* It is completely the decision of the designer how many
abstract machines to have in a hierarchy. The statement "Mi
has a straightforward realization in terms of MJ" is a
subjective one. Another designer may not agree, and would
insert an abstract machine Mk (or maybe more) between Mi and
MJ so that he could make the statement.

* The hierarchy may be expanded as the system is developed. The
difficulty of realizing a particular abstract machine Mi in
terms of MJ may not be fully appreciated when the hierarchy is
first conceived. At some later time the designer may choose
to add an intermediate machine Mk to simplify the overall
programming task. Typically a hierarchy that is adequate for
presenting a system may be too coarse for its ultimate
realization -- thus the need to add levels.

More exact statements concerning criteria for hierarchical

decomposition -- especially what constitutes a straightforward

realization -- will be given in Chapter VI.

An example of a hierarchical decomposition can be found by

extending the operating system example from Section IV.A.2. In this

hierarchy, described in Figure IV-3, several levels have been added to

the system shown in Figure IV-2: one supporting pages (M2), between the

"virtual memory" level (M3) and the "physical memory" level (Ml); one

supporting file directories (M4), where "files" are segments from the

virtual memory mechanism; and one supporting interprocess communication

(M5). This partial hierarchy is similar to that of PSOS (Provably

Secure Operating System) [1I, an operating system that has been

specified using HDM.

B. Modular Units of Specification

1. Introduction

The abstract machine model of Section IV.A is sufficient by itself

47

.

Figure IV-3: Part of an HDM Hierarchical Decomposition

M5 - "INTERPROCIESS VIRTUAL FILE INTERPROCIESS MULTIPLE

COMMUNICATION MEMORY DIRECTORIES COMMUNICATION PROCESSES

M4 'ILS"MEMORY DIRECTORIES PROCESSES

M3 - "VIRTUAL MEMORY" MRY pROCE

M2 "AE"PAGES
PAGE MULTIPLE

M2 "PAGES" CMASES

MI "HSCLSOAE MI EODARY MEMORY MULTIPLE

M PHYSICAL STORAGE STORAGE MAPPING PHOCESSES

48

to describe any software system. However, systems that are structured

using the abstract machine model alone do not necessarily reflect

Parnas' criteria for modularity [12). For this reason HDM combines the

advantages of the abstract machine model and of modularity in the Parnas

sense by requiring the specification of abstract machines, data

representations, and abstract implementations to be done in terms of

units. These units are modules (for specifications),

representation clusters (for representations), and implementation

clusters (for implementations). These modular units allow a closely

related set of decisions to be grouped into a common unit of

specification and allow loosely coupled groups of decisions to be

expressed in different specifications.

2. Modules

As illustrated in Section IV.A, an abstract machine may consist of

different modules. The following attributes of a module are noted.

1. A module is part of an abstract machine. An abstract machine
may be described in terms of its component modules.

2. A module may appear in multiple abstract machines in the same
hierarchy. The same specification may be used to describe all
of the module's appearances.

3. A module's behavior is largely independent of that of other
modules within the same abstract machine, but some
interconnections among modules in the same machine are
permitted, by allowing the specification of one module to
reference the entities of another.

4. A module specification (like an abstract machine
specification) is written independently of any possible
realization. The implementation of a module must be
independent of the realizations of all other modules in the
system, even those within the same abstract machine. The
realization of a module A whose specification references the
specification of a module B must depend only on the
specification -- and not the realization -- of module B. In
order to achieve this attribute, a module's internal data
structures must be encapsulated, and its operations must be
indivisible (as with an abstract machine).

Attributes (1) and (2) are intuitive. Attribute (3) raises the

question, "Why allow interconnections among modules, if modules are

49

i

supposed to be independent?" If total independence were allowed, it

would be very difficult to decompose certain systems into modules. In

actual systems, all kinds of minor decisions are shared, even among

modules whose operation is (and whose implementations are) separable.

For example, in the operating system example in Section IV.A.3, two

abstractions, "pages" and "page mapping," may know about the page size.

Apart from that, these two facilities could be specified separately.

Attribute (4) guarantees that the interconnections among module

specifications permitted by attribute (3) maintain the most important

property of modules, complete independence of the realizations of

different modules. With these attributes in mind, a module can now be

defined, in a manner analogous to an abstract machine.

More formally, a mgdul. may be thought of as a triple <0. I, E>,

where 0 is a set of operations, I is a set of internal data structures,

E is a set of external data structures, and I and E are disjoint. Each

operation in I is defined as a relation that constrains the

post-invocation values of data structures in I and E based on their

pre-invocation values and the operation's actual arguments. This

definition implies that all interconnections among modules are expressed

by allowing the operations of one module to access and change the values

of the data structures of another. If any of the external data

structures of a module A are also internal data structures of a module

B, the relation A ref B (or "A references B") is true. If

C1, C2, ..., Cn

is a sequence of modules such that A = C1, B = Cn, and

Ci ref C(i.1) for lli<n

is true, then the relation A ref+ B is true. ref+ is the positive

transitive closure of ref. There are two rules concerning the ref and

ref+ relations:

1. The set of modules of any abstract machine is closed under the
ref relation, i.e., if A ref B holds, any abstract machine
that contains A also contains B. This rule must be enforced
to allow the definition of an abstract machine as a complete
environment for an abstract program.

2. ref must be non-symmetric, i.e., if A ref B is true, then

50

I

jB ref A must be false. In terms of ref+, this means that ref
must not contain any circularities, i.e., A ref A must never
be true. When we refer to the non-circularity of the ref
relation, we are in fact talking about the non-circularity of
the induced ref+ relation. The non-circularity rule must be
enforced to guarantee (a) the encapsulation of the module's
internal data structures, (b) the indivisibility of its
operations, and (c) the independence of the realizition of any
module from the implementation of any other mod le. The
reason for restriction (c) is presented in Section IV.B.4.

Graphic views of both correct and incorrect uses of both relations

are illustrated in Figures IV-4 and IV-5, respectively, where A, B, and

C are modules and a directed arrow from A to B means A ref B. (Note

that ref is not a partial ordering, as it is not transitive.)

Thus, an abstract machine can be described as a set of modules.

The following observations apply to the relationship between modules and

abstract machines:

1. A nonempty set of modules S within an abstract machine M that
is closed under ref (and thus ref+) is said to be a .AqbAaJL1"n
of M. This is because S by itself could define an abstract
machine, since its description is self-contained. Note that
if Si and S2 are submachines, Si UNION S2 is also a
submachine. (We use UNION, INTER, and DIFF to denote set
union, set intersection, and set difference, respectively.)

2. Two or more modules may be combined to form a single module.
Thus, if <01, I1, El> and <02, 12, E2> are modules, then
<0, I, E> is their combination, where

0 = 01 UNION 02,

I = II UNION 12, and

E = (El UNION E2) DIFF (11 UNION 12).

3. A single module may be decomposed into two or more modules,
subject to the non-symmetry of ref. Thus, the module
<0, I, E> may be decomposed into two modules ml <01, II, El>
and m2 = <02, 12, E2>, where

(01 INTER 02) =},
(I INTER II) =),
0 = 01 UNION 02,
I = I1 UNION 12,
E = E2 UNION E2 and
ml ref m2 and m2 ref ml are not both true

The criteria for decomposing modules, aside from these rules,
are subjective, and are discussed in Chapter VI, as well as in
[12].

j 51

Figure IV-4: Correct Uses of ref and ref

Aref B Aref+B

A ref C A ref+ C

A ref 8 A ref+ 8

8 ref C A ref+ C

B ref+ C

52

.~I-

j Figure IV-5: Incorrect Uses of ref and ref+

ABSTRACT
MACHINE

B C

A B

B C

1 53

A module is thus a structuring of decisions in several senses. In

terms of the decisions about the external behavior of modules, if

A ref B holds, then the decisions about the behavior of A are dependent

on those about the behavior B, but not vice ymrsa. If A and B are

independent (i.e., neither A ref B nor B ref A holds) then the decisions

about the behavior of A are independent of those about the behavior of

B. For any two modules A and B, the decisions about the implementation

of A are independent of those about the implementation of B.

An example of the ref relation can be found in operations that

transfer information between an I/O device and main memory. The data

structures for the device and for main memory can be put in different

modules, "device" and "main-mem". The operation "read," which transfers

some information from the device to somewhere in main memory, can be in

either "device" or "main__mem". The definition of the ref relation will

depend upon which module the "read" operation is placed in, as shown in

Figure IV-6. (Other operations besides the "read" will be necessary to

implement both modules successfully.)

The ref relation, however, is not specified directly in module

specifications. Rather, it is derived from the externalref relation.

When module A references either the internal data structures or the

operations of module B in a specification, then A externalref B holds.

Note that if A externalref B and B externalref C, then it is possible to

have A ref C without having A externalref C. This is because an

operation of A may reference an operation of B, which in turn references

the internal data structures of C. For an example of the externalref

relation, see Figure IV-7. Like ref, externalref must not admit

circularities. Because module specifications are written using the

externalref relation, only this relation (and externalref+) will be used

in subsequent aiscussions.

Typically the decomposition of a system into modules occurs

concurrently with its decomposition into abstract machines. Each

abstract machine of the system "introduces" one or more modules -- those

that occur at this level and above but not at lower levels -- and

"hides" one or more other modules -- those that occur at lower levels

54

z:

Figure IV-6: Two Different Modular Decompositions of a Problem

RED CONTENTS R CONTENTS OF CONTENTS

OPERATION MAIN MEMORY EOY

DEVICE MODULE MAIN-MEM MODULE

READ CONTENTS COTNSOCNETSF
PEAIN OF DEVICE MAINMMR ANMMR

DEVICE MODULE MAIN-MEM MODULE

55

I
I " 55

Figure IV-7: The externalref Relation

module A module e module C

operation OA Operation O0: data structure O

references references only
operation 0 dat structure D C

A :xternhlref 8

B externalref C

A ref C

NOT A ref B

NOT A externalmf C

A ref+ C

B ref+ C

A externulref+ B

A externalref+ C

B externlrof+ C

56

but not at this level or above. For example, in Figure IV-3, where each

abstraction can be viewed as having a separate module, abstract machine

M3 introduces the "virtual memory" module, while hiding the "pages" and
."page mapping" modules.

3. Representation Clusters

There are several approaches to defining a modular unit for

representation decisions. One extreme would be to require a single

grouping of representation decisions for an entire abstract machine.

Such a grouping is too coarse, because it does not allow the possibility

of grouping representation decisions according to individual modules

within the abstract machine. The other extreme would be to group the

rcpresentation decisions on the basis of a single module. Such a

grouping is too fine, because it does not allow representation decisions

f:r several upper-level modules to be shared, or grouped together into a

common unit. The solution is to allow the grouping of representations

into units called representation clusters, which describe the

representation decisions for one or more upper-level modules. In this

way the software designer can decide Whether upper-level modules should

be in different representation clusters, indicating a separation of

representation decisions, or whether they should be in the same

implementation cluster, indicating a sharing of representation

decisions.

A representation cluster defines the internal data structures of

the upper modules of the cluster in terms of the internal data

structures of the lower modules of the cluster.

In some cases a module of the upper machine is not an upper module

of the cluster, but is externally referenced by one or more of the upper

modules. Though this situation seems anomalous, in fact it is not. An

upper-level entity from some other representation cluster may be

referenced even though it does not play a part in the given

representation. A more complete discussion of this situation is given

in the chapter on representations in Volume II.

. ~Four schemas of representation clusters can be described, with each

57

I ...•[

Figure IV-8: Schemas of Representation Clusters

A

B B

Al A2

B2

A1 3

14)

L
58

schema describing different types of decision dependencies. The schemas

are illustrated in Figure IV-8.

1. A single upper module (defining a submachine), and one or more
lower modules. This represents a maximum separation of
representation decisions. The implementation of the upper
module is dependent only on the specification of the upper
module, on the specifications of all lower modules, and on the
representation cluster.

2. Two or more upper modules (defining a submachine), with one or
more lower modules. In this case the representation decisions
are shared among the upper modules. For each upper module At
of the cluster, its implementation is dependent only on the
specifications of Ai, on the specifications of all upper
modules AJ such that Ai ref AJ is true, on the specifications
of all lower modules, and on the representation cluster. Note
that in order for the implementations of all modules in such a
representation cluster to be independent, the internal data
structures of different nodules must map to disjoint sets of
data structures in the lower modules.

3. Two modules Al and A2, where Al ref A2 is true, are upper
modules of different representation clusters. In this case
there may be some representation decisions (those of certain
data types) shared among the representations of Al and A2.
For more details of this phenomenon, please consult Volume III
of this handbook, where examples are presented. In any case,
the shared decisions are presented redundantly in both the
representation clusters of Al and A2, so that the dependencies
are as stated in schemas (1) and (2).

4. A single module is the lower module of two or more
representation clusters. For this to be allowed, the

condition of schema (2) must be met.

A set of representation clusters Cl, C2. Cn define an abstract

I I machine representation of abstract machine M2 in terms of abstractII
machine M1 if and only if

1. Each module of M2 is an upper module of exactly one Ci
(1< i < n).

2. For each Ci, each upper module is in M2.

3. Each module of M1 is a lower module in at least one Ci.

4. For each Ci, each lower module is in M1.

3 Note that the same module may appear as both an upper and a lower

59

module in a given representation cluster, because the same module may

appear in different abstract machines in a given hierarchy. In almost

all cases, these separate appearances of the same module have the same

implementation of their operations. However, these appearances may not

always have the rame data structures. The following possibilities for

data representations arise for when the same module appears in two

adjacent abstract machines in a hierarchy, described graphically in

Figure IV-9.

1. A simple identity representation of data structures. This is
marked with the letters "ID."

2. One or more additional upper modules Al, A2. ... , An "sharing"
a representation with a module B. In most cases all data
structures in the upper appearance of 8 are represented
identically in B's lower appearance. If this is the case, the
data structures of the upper appearance of B are a subset of
those of its lower appearance.

3. Sometimes one or more of the "new" modules will reference B.
This is permissible, but the implementor of such an upper
module must be careful not to confuse the data structures of B
that are referenced from those that are representing the data
structures of the implemented module.

Of course a module may have a different implementation (with a

non-identical representation) in each of two adjacent levels in which it

appears. In this case, the two appearances can be different modules

when appearing in representation clusters.

Pin example of an actual representation cluster may contain "arrays"

(a module that manages arrays) on the bottom and "stacks" (a module that

manages stacks), "queues" (a module that manages queues), and "arrays"

on the top. Each stack or queue is represented by a single array and

each top-level array is represented identically. Thus, the three upper

modules partition the data structures of the lower -odule, as shown in

Figure IV-1Oa. Note that if the stacks and queues were stacks and

queues of arrays, then the relations "stacks" ref "arrays" and "queues"

ref "arrays" are true, as shown in Figure IV-10b.

60

Figure IV-9: Representing the Same Mobdule at Different Levels

B

I D

B

A A

12)

16

Figure IV-10: Two Actual Representation Clusters

STACKSQEE ARRAYS

ARRAYS

OF ARRAYSOARARAAY

62

4. Implementation Clusters

Just as we grouped upper and lower modules at representation time

into units called representation clusters, we group upper and lower

modules at implementation time into units called implementation

clusters. As with a representation cluster, an implementation cluster

consists of a set of upper modules, a set of lower modules, and a set of

externally referenced modules (upper modules not implemented by the

cluster but whose operations are invoked in the programs of the

cluster).

The way in which external refsrences are handled dictates whether

or not the implementation cluster preserves module independence. Recall

that if module A externalref module B, then some operations of module A

are specified in terms of the operations and/or internal data structures

of modu' B. This means that some operations of A access or change the

internal data structures of B (and sometimes modules that are externally

referenced by B). The implementation of A can access or change the

internal data structures of B in either of two ways:

By manipulating the lower-level data structures -- those that
represent the internal data structures of B - by invoking
lower-level operations. This is how the implementations of
B's operations access and change B's internal data structures.

' By calling operations of B to perform the changes.

Note that the first method does not preserve the independence of

B's realization, because the programs of A now depend on B's

representation. In addition, such a scheme would allow programs

external to B to manipulate B's internal data structures in a

potentially unauthorized way, thus violating the encapsulation provided

by B. The second method preserves both the independence of B's

realization and the encapsulation of B's internal data structures.

Thus, the programs of an implementation cluster for a module A may

invoke both the operations of the target machine and the operations of

modules in any machine externally referenced by A.

In Section IV.B.2 it was stated that the externalref relation among

modules must not be circular. The reason for this restriction is

63

_ ___ _ I

apparent after examining implementation clusters in which such

circularity is allowed. For example, suppose A and B are modules, where

A externalref B and B externalref A are both true. (See Figure IV-11

for a graphic representation of this example.) Suppose further that Al

and A2 are operations of A and that Bi is an operation of B. Now if the

implementation of Al invokes BI and the implementation of Bi invokes A2,

then the realizations of modules A and B are not independent, violating

one of the fundamental rules of HDM. The lack of independence results

from the fact that when the implementation of Al invokes BI, the

internal data structures of A are in some state known only to the

implementor of A. This state may be inconsistent. Thus, when the

implementation of Bi cals A2, the implementor of B would have to know

about the state of A, in order to write a program that makes sense.

Such knowledge would violate the independence of the realizations of

modules A and B. For this reason, .,ircularity in external references is

not allowed. This restriction is somewhat stronger than need be,

because circularity destroys realization independence only when there i.s

circularity in the invocation of a single operation. However, having a

hierarchical dependency of specifications is also desirable, allowing

systems to be realized one module at a time.

5. Module Dependencies

To summarize the discussion of modularity, it is useful to present

a schematic example containing modules, representation clusters, and

implementation clusters (collectively referred to as clusters), and

examine the interdependencies of the decisions in each cluster.

The example is a two-level system, described in Figure IV-12, with

modules A, B, C, and D at the upper level and modules E, F, and C at the

lower level. The relations A externalref B and B externalref C are

true. There is one representation cluster, RC. with upper modules A, B,

C, and D and lower modules E, F, and C. There are three implementation

clusters: IC1 (upper module A, lower modules E and F), IC2 (upper

module B, lower modules F and C), and IC3 (upper module D and lower

module C). The upper appearance of module C is implemented identically

by C at the lower level.

64

Figure IY-1l: Inconsistent States in Circular External References

module A module 6

I *Invocation of A2 when module A is in an inconsistent state (known only to implementor of module A)

65

F gure IV-12: Mlodular Schema for an Example

C \ C

E F C

MODULE

SREPRESENTATION
CLUSTER

IMPLEMENTATION
CLUSTER

EXTERNAL

REFERENCE

66

4'o

Let us use the notation X dep Y1 Yn to mean that the decisions

in cluster X may be dependent on the decisions in cluster YI,...,Yn.

Considering the externalref relation, we get the following: A dep B, C

and B dep C. Note that dep for modules follows the externalref+

relation. The dep relation is a worst-case approximation of

dependencies. In the example, it may be the case that no decision in A

is dependent on any decision in C (i.e., the set of decisions in B that

A is dependent on may be disjoint from those in B that are dependent on

any decisions in C). However, we do know that, for any clusters X and

Y, if X dep Y does not hold, the clusters are totally independent.

From the representation cluster, we get the relation RC dep A, B,

C, D, E, F. This results from the fact that a representation cluster is

dependent on all of its upper and lower modules.

From the implementation clusters, we get the following relations:

ICI dep RC, A, B, C, E, F; IC2 dep RC, B, C, F; and IC3 dep RC, C, D.

This results from the fact that an implementation cluster depends on all

of its upper and lower modules, and on any representation clusters whose

upper modules include any upper modules of the representation cluster.

The total dependency graph is shown in Figure IV-13. The least

dependent clusters are modules C, D, E, and F, and the most dependent

clusters are implementation clusters ICI, IC2, and IC3. This is as it

should be, because modules are where the decision-making process begins

and implementation clusters are where the decision-making process ends.

It may seem as if the example schema shows more dependency than should

occur in a system. However, several observations are relevant.

1. The connectivity in actual systems is somewhat less than was
presented in the example. Limiting both external references
and the size of representation clusters cuts this connectivity
considerably.

2. The dependency relation dep is a worst-case one, so the
situation may in actuality be better than it appears.

3. In systems developed according to conventional methods, there
may appear to be less connectivity (according to such measures
as subroutine calling dependency). However, there is usually
a great deal of implicit connectivity in such systems (with
such items as shared data and common formats).

67

. -- 7 --,LL _.L -. -..... ' " -.-::

Figure IV-13: Dependency Graph for the Example

B

AE

IC,

68

!q
I

4. With this analysis, it is known that clusters for which no
dependency relationship exists are totally independent.
Knowledge of independence allows easy separation of work
assignments once the system is decomposed into modular units.

The most important thing to remember is the close correspondence
between the interdependency among HDM clusters and the interdependency

among decisions in the software-development process.

6. Exceptional Conditions

In incorporating an exception mechanism into HDM, it was desired to

use as simple a mechanism as possible that still allowed the benefits of

the exception concept. The HDM exception mechanism operates only as a

return from an operation invocation. No other signalling or

control-changing mechanisms (e.g., transfers, state saving, or resuming

of uninterrupted operations) are allowed. The specification of an

operation under HDM adheres to the following rules:

* A single, "normal" return is associated with state change, a
returned value, or both.

* An arbitrary number of "exceptional" returns can be named and
associated with conditions (based on the arguments to the

operation and the values of the internal data structures).
Neither a state change nor a returned value is associated with

an exceptional return.

These rules are supported in SPECIAL, HDM's language for module

specification.

The following programming constructs facilitate the use and

implementation of operations with this exception mechanism:

* A statement for signalling an exceptional condition in an
implementation. This causes the program to reti-n with
notification of a particular exceptional condition.

* To allow for the handling of exceptional conditions, a

statement that contains an operation invocation followed by a
CASE-like construct, one case for each expected excepbtonal

return.

These programming constructs are found in ILPL, HD4's abstract

programming language. When ILPL programs are translated into actual

running code, the above constructs can easily be expressed in terms of

69

the appropriate constructs of the target language.

70

~~j

V THE STAGES OF HD

[A. Introduction

The interdependency among decisions in software development

prescribes a partial time ordering in making these decisions. At any

given time, new decisions should be made that are dependent only on

decisions that have already been made. As seen from the discussion of

dependencies as related to modularity, the dependencies among groups of
Idecisions correspond to dependencies among clusters in HDM4. Thus, the

dependency among decisions also prescribes a partial ordering in the

generation of clusters in HDM.

However, the software development process is not so easy that this

partial ordering can be adhered to in practice. The problem to be

solved is not always fully understood throughout the software

development process. As a result, any of several things may occur:

1. The dependency among decisions is not known, due to a lack of
understanding, when certain decisions are made. This results
in the violation of the partial ordering, sometimes with
severe consequences in terms of work to be redone.

2. Wrong decisions are made due to a lack of understanding. When
understanding finally occurs, much existing work may have to
be redone.

In these cases the project manager must often choose between the cost of

redoing the work and the cost of not redoing it. Many managers have

chosen the false economy of not redoing work that had to be redone.
These horror stories have led for some people to reject top-down design

altogether and claim that in software development one should design two

systems: the first to learn from (and throw away) and the second to be

actually used.

This gap between the theory and practice of software development is

a warning to those who put forth a step-by-step method of software

development. However, it is desirable to put forth a suggested ordering

of activities in software development, assuming ideal conditions. Even

when things do not go perfectly and the time ordering is not strictly

followed, the ordering provides a series of milestones by which to

J 71

1

measure progress. When the system has been completed, the results can

be presented as if the system were developed in an orderly way. It is

with these thoughts in mind that an ordering of activities in HV4, each

activity called a stage, is presented.

It should be noted that the stages of HDM, which represent a

structuring in time, should not be confused with the hierarchical and

modular structure of the system, which is a static structuring of system

components. The two concepts are orthogonal, and should be treated as

such.

A decision should be recorded when it is made, even if that

recording does not coincide with the ordering of the stages. The

failure to record a decision has more severe consequences than making a

decision in a non-standard order. Thus, it is sometimes desirable to

depart from the stages as the decision-making process takes its own

course.

The stages of HNI are as follows:

1. Conceptualization -- Identifying the problem to be solved and
the role of the system in solving it.

2. External Interface Definition -- Defining the abstract
machines (and possibly the abstract programs) that interact
with the outside world. The modular structure of these
abstract machines is also defined.

3. System Structure Definition -- Defining the hierarchy of
abstract machines, and the decomposition of all machines into
modules.

4. Module Specification -- Writing specifications (in SPECIAL)
for each module of each machine in the hierarchy.

5. Data Representation -- Defining the internal data structures
of each non-primitive abstract machine in terms of the
internal data structures of the machine at the next lower
level, using representation clusters.

6. Abstract Implementation -- Writing abstract programs to
implement each operation of each non-primitive abstract
machine, using implementation clusters.

7. Concrete Implementations -- Translating, by hand or machine,
the abstract programs into executable code.

72

A graphic presentation Of HItt's stages shown in Figure V-i. Each
stage is discussed in some detail. This chapter concludes with a

discussion of how the stages are actually used in the software

development process. (Note that verification may be associated with

several of these stages, notably 4, 6 and 7.)

B. Conceptualization (Stage 1)

Conceptualization is the process of determining what problem the

desired system should solve, without favoring any possible solution to

the problem. This is sometimes called requirements analysis or systems

analysis. Conceptualization is primarily a process of examining the

world outside of the system and determining how the system fits into

that world.

The idea in conceptualization is to put as few constraints on the

system as possible, while still satisfying the desired requirements.

When these constraints are determined, they should be stated as

precisely as possible. Some work has been done in the formal statement

of requirements of systems developed using HDM, particularly with
respect to data security (5] (along with earlier work at the Mitre

Corp.) and reliability in the presence of hardware faults [19).

Currently, HDM has no all-purpose language in which requirements can be

formally expressed, so these requirements are typically stated by means

of a mathematical model. In the near future, some attempt will be made

to develop a general language for conceptualization.

In the conceptualization of systems developed according to HDM, it

is important to relate the problem domain to the computational model of

HDM. For example, some systems are best specified as an abstract
machine specification (e.g., an operating system or a database manager),

while others are best specified as an abstract program running on a

particular abstract machine (such as a translator). In addition, some

parts of the external world can also be modeled in terms of HDM-
mechanisms; for example, a network protocol can described as an abstract

program, and a processor can be described as an abstract machine.

73

1

Figure V-1: The Stages of HDM

cc**~ c**c (d

CONCEPTUALIZATION EXTERNAL INTERFACE SYSTEM STRUCTURE MODULE
DEFINITION DEFINITION SPECIFICATION

~(h)

DATA ABSTRACT CONCRETE FORMAL

REPRESENTATION IMPLEMENTATION IMPLEMENTATION VERIFICATION

74

jNote that requirements can be either extremely vague (e.g., a

compiler must generate good code) or extremely specific (e.g., a

specific hardware machine or network protocol must be used), thus

putting widely differing constraints on the system designer. The

conceptualization phase should therefore retain flexibility wherever

possible, because there is no single level of abstraction at which all

requirements can be stated. The more specific the requirement, the more

detail that must be used to state it. It is the need for intellectual

flexibility that makes conceptualization a difficult activity.

In terms of the decision model, requirements are the earliest

decisions and affect the entire course of the development. Like other

decisions, requirements may change during and after the development of

the system. However, because they are established first, they are

potentially the most difficult (or costly) to change. Every effort must

be made to:

1. Establish as requirements only those decisions that are

essential to the system development being successful.

2. Foresee the spectrum of changing requirements, so that the
developed system will adhere to various sets of requirements
within that spectrum, i.e., design as general a system as
possible.

3. Structure the system so that any potential changes in

requirements will have a minimal effect on the system, i.e.,
make the system easy to change with respect to that family of
requirements.

C. Extreme Machine Definition (Stage 2)

In Stage 2 an informal definition of the highest level abstract

machine (the system's external interface) and the lowest level abstract

machine (the primitive, or target, machine) is produced. For each of

these abstract machines, the informal definition consists of a

decomposition into modules, an enumeration of the names of the data

structures and operations for each module, and a description of the

externalref relation for the modules at that level. Prose descriptions

of the decompositions, as well as the names for the data structures and

75

* - **-.----- * . ----.- - - -

operations, are also useful. In this stage, careful attention must be

given to the results of the conceptualization stage; it is also useful

to provide a justification that the proposed interface meets the

requirements.

In Stage 2 decisions are made concerning the external behavior of

the system, i.e., the behavior of the highest level abstract machine.

These decisions are then grouped into modules such that the decisions

within a module have high interdependence and the decisions in different

modules have a low interdependence. The implementation of the top-level

machine and the usability of the bottom-level machine must be carefully

considered, since the function of the external interface may have to be

redefined (if the requirements allow) as subsequent decisions are made.

Unless the two levels share a module, the top and bottom machines are

totally independent. Decisions within each level may possibly be

related only if they occur within the same module or within modules

connected by the externalref+ relation.

D. Abstraction Formation and System Structure Definition (Stage 3)

In Stage 3 the activities are essentially the same as in the

previous stage: forming the abstractions of machines at various levels,

decomposing them into modules, listing the names of the operations and

data structures of each module, describing the externalref relation

among the modules, and writing informal descriptions of each operation

of each module. However, the thought processes and decisions are those

of design -- of constructing a system structure to connect to the

external interface.

Two activities proceed simultaneously during this stage:

1. Intermediate Machine Definition -- This can proceed in any of
several ways (as illustrated in Figure V-2): Top-down --

given an upper-level machine and a primitive machine, decide
on a new machine somehow "closer" to the primitive machine
than the upper-level machine to realize the upper-level
machine; Bottom-up -- given the top-level machine and a
lower-level machine, decide on a new machine somehow "closer"
to the top-level machine than the lower-level machine that is
easy to realize on the lower-level machine; and

76

pit+

I
4Iiddle-outwards -- deciding on a good set of abstract
mechanisms on which to build the system, and realizing both
the mechanisms in terms of the primitive machine and the
top-level machine in terms of the mechanisms. The method can
be even more random than those stated above.

2. Modular Decomposition -- In decomposing a machine into
modules, attention must be given to common facilities
occurring at multiple levels. When maximum sharing of
facilities at multiple levels occurs, it is possible in the
subsequent implementation to write less code, to save space,
and possibly to save time.

Note that as the system is developed in the subsequent stages, it may be

desirable to add more intermediate levels or to change the

modularization. These changes have minimal effect because they change

neither the operations nor the data structures of existing levels.

In Stage 3 close attention is paid to how an abstract machine may

be realized (abstractly) in terms of the machine below it in the

hierarchy. "Ease of realization" should be a primary criterion in

choosing intermediate abstract machines.

Decisions concerning different levels of the hierarchy are related

only if the levels share a module. Decisions within a level are related

only if the decisions occur within the same module or within modules

connected by the externalref+ relation.

E. Module Specification (Stage 4)

In Stage 4 the specifications for each module of each abstract

machine are written in SPECIAL. This provides a precise and explicit

recording of decisions that were made during Stages 2 and 3. Specifying

a module consists of:

1. Specifying initial values for each data structure.

2. Specifying each operation as a change in the values of the
data structures.

3. Enumerating the operations and data structures to be shared
between two modules for which externalref is true.

Module specification is listed as a separate stage because it takes a

j long time and because a lot is learned about the system. Many earlier

77

Figure V-2: Methods for Defining System Structure

TOP

- " A GOOD REALIZATION OF TOP,
- ._ - AND "CLOSER TO BOTTOM THAN TOP

BOTTOM

(a) TOP-DOWN

TOP

"CLOSER TO TOP THAN BOTTOM,

-- AND EASY TO REALIZE ON BOTTOM

BOTTOM

(b) BOTTOM-UP

TOP

Si A GOOD GENERAL MECHANISM, AND
\ T "IN BETWEEN" TOP AND BOTTOM

BOTTOM

(c) MIDDLE-OUTWARDS

78 ,,7MU.

I[
decisions may have to be changed as a result of what Is learned during

this stage.

In this stage, careful attention must be given to completeness and

consistency. A complete abstract machine specification defines the

effects of each operation on all internal data structures of the

machine. For a given operation this definition may specify specific

changes for the data structures, or may specify a class of possible

changes -- any one of which satisfies the specification. In the latter

case the specification for the operation is nondeterministic.

To define consistency, it is useful to recall the definition of the

state of an abstract machine: an association of a particular value with

each element of the machine's data structures. An abstract machine

specification is consistent if each operation specifies at least one

valid destination state for every valid source state, without conflict.

An example of an inconsistent specification is one which asserts two

conflicting values (e.g., X = 2 AND X = 3). Clearly in no valid state

can any data structure have more than one value, thus the inconsistency.

F. Data Representation (Stage 5)

In Stage 5 data representations are written for the data structures

each of non-primitive abstract machine in terms of the data structures

of the abstract machine at the next lower level. This consists of the

following activities.

1. The modules of the upper and lower machines are divided into
representation clusters.

2. For each representation cluster. (a) each internal data

structure of each upper module is defined in terms of the
internal data structures of the lower modules, and (b)
invariants -- or consistency conditions -- on the internal
data structures are written.

Data representations make it clear what the implementation of each

upper-level operation must do to the lower-level data structures, but

not necessarily how that is accomplished in terms of lower-level

operations. The invariants express consistency conditions for the

79

lower-level data structures to represent a valid upper-level state (for

example, in a module that maps keys to values, the keys may be stored in

a parti.cular order to facilitate searching).

Just like module specifications, data representations must also be

complete and consistent. Here, completeness means that each data

structure at the upper level must be given a value Jerivable from the

values of the lower-level data structures. Consistency of a data

representation means that for any given upper-level state, there is a

unique set of lower-level states that represents it. An example of an

inconsistent data representation is one which defines the values of two

distinct upper-level data structures A and B as the value of the single

lower-level data structure C. If the upper machine is ever in a state

in which A and B have different values, an impossible situation arises.

Clearly C cannot have two different values at the same time, and thus

there is an inconsistency.

G. Abstract Implementation (Stage 6)

In Stage 6 each operation of each non-primitive abstract machine is

implemented as an abstract program running on the abstract machine at

the next lower level. This stage has two activities:

1. Dividing the set of upper modules into implementation
clusters, with each cluster usually consisting of :ne upper
module and a set of lower modules.

2. For each implementation cluster, (a) each operation is
implemented as an abstract program in ILPL that calls
operations of lower-level modules and of modules externally
referenced by the module in which that operation occurs, and
(b) an initialization program is provided.

Most of the decisions made at this stage are straightforward,

because they have largely been dictated by decisions already made. If

the implementation is extremely difficult, it means that insufficient

care was made in making the earlier decisions.

In this stage, care must be taken to provide for the signalling of

upper-level exceptions and the handling of lower-level ones. Any

lower-level exception that is not handled is assumed not to occur. It

80

__41

J may also be the case that a given upper-level operation is not

implementable using the operations of the lower level. In this case

either the uoper level or the lower level must be changed, to achieve a

running system.

H. Concrete Implementation (Stage 7)

In Stage 7 the abstract programs (in ILPL) produced in Stage 5 are

translated into code for which some compiler, assembler, or interpreter

-ilready exists. This translation can be done either by hand or

automatically. The aim is to match the HDM1 computational model to the

computational model of the target machine's language. Any discrepancy

between computational models requires accommodation of the data types,

the storage allocation scheme, and the signalling and handlin3 of

exceptions, as well as of the ability to encapsulate data.

After the concrete code for each operation of each implementation

cluster has been produced, there is yet some work necessary to produce a

running system. This requires a hierarchical initialization, starting

with the lowest level and proceeding upward. When the top-level

initialization program has been run, the system is ready to operate.

Research into ILPL translation and hierarchical initialization has

just begun. It is anticipated that the results of this research will

lead to changes to ILPL, and to automatic tools to accomplish both of

these tasks. In addition, rewards may be reaped from optimization of

the ultimate code, using information resulting from the application of

HDM.

I. Formal Verification

Formal verification involves a mathematical proof of formally

stated properties of a software system. In HDM, formal verification

takes two forms:

1. Proofs that the user interface of the system has certain
properties. These are called design proofs, and are
associated with Stages 1, 2, 3 and 4.

81

2. Proof that the system's implementation (i.e., abstract
programs) meets its specification. These are called

implementation proofs, and are associated with Stages 5, 6,
and 7.

Note that design proofs without implementation proofs do not guarantee

that the system implementation has the desired properties.

Technologies for design proofs are conceptually straightforward.

'Fxamples for security are described in [5] and for fault tolerance in

[19).

In general, the verification of a system's implementation is more

difficult than the design proofs. HDM significantly enhances the

possibility of verifying a large system as follows: by structuring the

proof of the system according to the system's hierarchical and modular

structure, and by allowing simpler assertions in terms of abstract data

structures. Implementation proofs involve showing the consistency

between code and specifications. Proofs also can be used to demonstrate

(1) the consistency of modules and mapping functions and (2) that all

exceptions are either handled or impossible. This is because

implementation proofs for systems not having these desirable properties

cannot be completed. The technology for implementation proofs is

described in [17).

J. Remarks

In general, the (first seven) stages outlined above provide a rough

framework for system development. It is stressed that the stages do not

occur sequentially, and that considerable backtracking may in fact

occur. Several acceptable variations to the stages outlined here are

possible, as for example the following.

* Introduce new intermediate levels into the system after

specifications for existing levels have already been written.

* 9pecify each machine as soon as it is identified, rather than
waiting for the other machines to be defined.

* Determine the external interface after, rather than before,
the intermediate levels (only If no specific constraints
exist).

82

In all cases the representation of a level should follow its

specification, and its implementation should follow its representation.

Otherwise, the specifications of abstract machines and data

representation would lose much of their value.

The clusters generated at each stage can become a point of dialogue

and review 3mong the system's designers and other parties. he result

of this dialogue and review nay often be that early decisions are

discarded and replaced, resulting in work that must be redone. However,

this is a normal procedure in a system development. If this process is

stifled, inferior decisions will be allowed to perpetuate, resulting in

an inferior product that may not meet its requirements. The stages of

4D4 provide for many natural review points in the software development

process, with the aim of correcting inferior decisions as early as

possible in the software development process.

83

A .

VI THE EFFECTIVE USE OF HI0

A. Introduction

The preceding chapters of this volume have presented the concepts
and mechanisms of HDN, but have not dealt with how to use HDM

effectively. Software development is 3 difficult undertaking,

regardless of what aids are used. HDM Is primarily an aid to

structuring and recording the decisions made, but it cannot make these

decisions for the software developer.

A software developer educated in conventional techniques who is

just beginning to use HDM will have an even more difficult time than he

would using conventional techniques, because HDM has a particular

computational model that places many constraints on the software

developer. For example, for a particular problem, a developer may have

in ,mind a technique that violates the restrictions of HDM, and he will
be forced to find another way to solve it.

This chapter provides guidelines on how to use the concepts and

mechanisms of HDM to develop software systems, both to provide

heuristics as to how to make decisions and to help a software developer

in becoming accustomed to a new way of thinking.

Most of the ;uidelines listed here address the early decisions, and

their structuring (i.e., hierarchical and modular decomposition). Later

decisions concerning specification, representation, and implementation

are illustrated in Volume I1. This chapter concludes with a statement

of trade-offs and a list of potential indications of misuse of HDM.

B. The Use of Abstraction

4 The most Important step In the use of HDM Is to learn how to use

abstraction effectively, particularly abstract machines and abstract

programs.

& good exercise is to imagine a particular programming problem and

to postulate an abstract machine (and possibly an abstract programs) to

S85LIi

solve it. It is surprising how many problems yield machines of the

following forms:

A machine that manages a collection of abstract objects, where
most often an object is a simple data structure. The rules
for manipulating such objects will be enforced by defining a
restricted set of operations. Details of representation,
implementation algorithms, and allocation strategies are not
part of the machine's definition.

* A content-addressed memory, or a machine that performs a table
look-up (e.g., a directory).

A machine that performs certain kinds of data transformation
that are easily described in terms of the end results (e.g.,
sorting).

A machine that perpetrates some kind of "illusion" on its
users (see below).

In postulating abstract machines, there must be a great emphasis on

the nature of the data and on the primitive operations on the data,

rather than on the actual processing algorithm for the data. For

example, if the task at hand is to do process control, one first asks

not what the steps in process control are, but what is the data that

must be manipulated in order to perform process control functions. The

algorithm can always be developed and investigated once the primitive

machine is decided upon.

Some of the "standard" abstractions that have proven themselves

useful in software systems are

A virtual processor (achieved through multiprogramming) that
allows multiple programs -- each executing in a separate
process -- to operate as if each one had a hardware machine to
itself. Each process, however, has access to the central
processor for relatively small slices of time.

0 A virtual memory, which provides a program with the illusion
of a large, directly-addressahle memory space, even if the
actual information is scattered throughout primary and second
memories that are shared by many users. In the actual
implementation, a program generates a virtual address that
either is mapped via a memory mapping table (if the
information is in core) or generates a memory fault, causing
the information to be brought into core from secondary
storage.

86

Tt

h 'list-processing language with automatic garbage collection
(e.%., LISP) in vsich a user gets the illusion that he has an
unbounded amount Of list storage available. The amount of
list storage available to the user is actually finite, but
list cells that are no longer in use are automatically
reclaimed and presented to the user as "new" list cells. A
user can write programs that have no kinowledge of this
reclamation mechanism.

Rttelational data bases, In which a user can aCeSs data based
solely on certain properties, or relations, on both the
structure and content of the data. Tie actual file structure
and lookup mechanism is hidden from the User. A relational
data base is an example of an abstract machine that Was
proposed without a particular realization in mind. Tie
efficient realization of' relational data bases efficiently is
still an open research problem.

Note that all of these standard abstractions are especially Interesting

because they deceive the user (as in idea (5) above). A prospective

user of 4D4Y should become familiar with "standard" abstractions so as to
be better able to create his own.

Two questions should be asked immediately after defining an

abstract machine, In order to see whether the abstract machine is

appropriate for the task at hand:

1. Is it easy to use?

2. Is it easy to implement?

Both the intended use and the intended implementation of the abstract

machine should be sketched out, informally at least, to evaluate the

choice of abstraction. In many cases, small changes that improve the

abstraction will become obvious. In other cases, a completely different

abstraction will be needed, or even a hierarchy of abstractions Section

C. Modularity

Once an abstract machine has been decided upon, it is necessary to

break It up into modules, or units of specification that can be

implemented separately.

In decomposing an abstract machine into modules, the operations and

87

data structures of the machine should be examined carefully. The

combination of the two following conditions is that under which a group

of data structures and operations can be found such that the group forms

a separate module without external references.

1. No operation within the group accesses any data structures
outside of the group, and

2. No operation outside of the group accesses any data structures

within the group.

In many cases these constraints cannot be totally followed, but a

group of operations and data structures almost follows these rules. In

this case a module can be formed, in which the exceptions to the rules

determine the external references to and from the module. Whether or

not all such cases should be decomposed depends on the number and nature

of the external references: there should not be "too many" external

references, i.e., the module should be loosely coupled to the rest of

the machine; and the externalref relation should be non-symmetric (i.e.,

externairef+ should not contain circularities). This process continues

until a satisfactory modular decomposition is reached.

There may be some difficulty in achieving the non-symmetry in the

externalref relation. For example, suppose there are two potential

modules A and B that externally reference each other. This problem can

often be solved by (1) moving operations from one module to another so

that the external references go in one direction only or (2) creating a

third module containing operations that externally reference each other

(see Figure VT-i). If even this method fails, then A and B must be

combined into a single module.

D. Hierarchical Decomposition

This is the process of developing a sequence of intermediate

machines to bridge the gap between the top and bottom machines in a

system. Proceeding from bottom to top, the sequence should describe a

gradual evolution from the facilities that are present to the facilities

that are desired. This means that certain facilities appear and others

are hidden as one proceeds upward on the hierarchy. In most cases, when

88

Is r Ir I I

I Figure Vt-i: kohieving externairef 4on-syurnstry

1 OR

-~externdll rotation

- - ~ posiiblO oxgonedrof relation

89

two related abstractions are considered, It is obvious which one belongs

"above" the other in the hierarchy. However, this is not always so,

when it seems that two abstractions are interdependent. In this case an

approach called sandwiching can be applied, in which two slightly

different manifestations of the same abstraction appear at two different

levels, surrounding the abstraction with which there is interdependence.

(See Figure Vt--2a.)

For example, it may appear that a virtual memory system (called V)

and a multiprogramming system (called processes) are interdependent for

purposes of realization: V4 needs processes to enable a process to wait

for a requested memory block to be brought into main memory, and

processes need VM to store the state information for the large number of

processes that it manages. At the bottom would be a physical storage

facility (called fixed memory). This problem can be solved by a

sandwich with an intermediate facility, a multiprogramming facility in

which process states are stored in physical storage (called fixed

processes). The structure of the resulting hierarchical system is shown

in Figure VI-2b. Fixed processes is realized in terms of fixed memory,

V4 is realized in terms of fixed processes and fixed memory, and

processes is realized in terms of fixed processes and virtual memory.

Note that fixed memory and fixed processes are hidden, and VM and

processes are introduced, as one proceeds from bottom to top.

E. Data Representation

There is only one recommendation for decomposing a data

representation betwee n two abstract machines into representation

clusters: allow representation clusters with multiple upper modules
only when necessary. Wo schemas for this recommendation present

themselves:

1. A single representation cluster with two or more upper modules
may be split up when the data structures of the upper module
map to disjoint data structures in the lower module
(illustrated in Figure V-3a).

2. When external references among upper modules occur, the upper
modules do not always have to appear in the same

90

Figure Vt-?: Sandwicehing in Hlierarchical Decomnpsition

A B

A B C BD

ia) SCHEMATIC REPRESENTATION laves represmnt realization dependency)

VM PROCESSES

IMPOESSv IE RCSE
'1FIXED MEMORY FIXED MEMORY FIXED PROCESSES

1 (b) EXAMPLE FROM OPERATING SYSTEMS (arcs represent reallzation depesdencyl

I 91

representation cluster (illustrated in Figure VI-3b).

F. Indications of Misuse of HI

There are several potential situations that may indicate a misuse

of FlrY. Collowing is a list of some of the most common ones, 3long with

suggestions as to the possible underlying difficulty and and proposed

solutions.

Too many interconnections (external references) among modules
at the same level. In this case the modules are not really as
independent as they should be. This difficulty can be caused
either by having too many modules - in which case multiple
modules should be combined - or by having the wrong

decomposition - in which case a better decomposition

(according to some of the criteria mentioned above) would

help.

* Module specifications that are too complex, e.g., too long,
having too much detail, or having too many primitives. This
problem is caused most often by thinking at too low a level of

abstraction. One should try to eliminate the irrelevant
details or rethink the "essence" of the problem to be solved.
If the number of functions alone is the problem, then one

might try further modular decomposition or a different choice
of "primitive" operations (they may be too primitive for the

task at hand). One may have designed too much generality into

the system. Unless wide application of the module is a
certainty, a particularization of the functionality of the
module to the problem at hand may help.

* Representation clusters or implementation clusters that are

too complex. This can be caused either by having made the
wrong representation or implementation decisions, or (more

probably) by having too great a jump In abstraction between

the upper and lower machines. In the latter case, the
insertion of one or more intermediate levels or a different
choice of upper and lower machines is helpful.

* Difficulty in visualizing the solution of the problem using
abstract machines. This is often the result of a designer

having dealt only with programs in the past, and not yet

having acquired the experience to think in terms of abstract

machines. However, there are certain classes of problems for

which the abstract machine model is not attractive (e.g.,

applications that require a lot of processing but have very

little data, such as numerical mathematics). In this case

other techniques, such as procedure abstraction, can still be

used with HDM.

92

-- mo

Figure '11-3: Separation of Represenltationl Clusters

BA8

c C

(a) SHARED REPRESENTATIONS

A B

C D c g

(b) EXTERNAL REFERENCES

93

ADA. 7 SRI INTERNATIONAL MENLO PARK CA F/6 9/2
THE SRI I NTERNA IONAL HIERARC HICAL DEVELOPMENT HANDBOOK. OLUME--ETC(U)

JUN 79 L STTON L ROBINSON N0012376.-C-09N

UNCLASSIFIED NOSC-TD-366-VOL-l NL2mhEW

UIvins too many modules or too many levels. This is not
always a difficulty, because HN was intended to allow maximum
structuring to ensure certain benefits in the development of
large software systems. The larger the system, the more
structure that will be expected, and indeed required, to make
the effort manageable. However, too much structure can always
be reversed without any creative effort: Aultiple modules can
alwys be combined into a single one, and intermediate levels
can always be eliminated.

4t1l determinations of difficulty are of course subjective. In many

Cases HDM will be blamed for needlessly inserting complexity into a

system. Another way of looking at it is that HTA! merely reflects the

complexity that is there already. One can judge this better by reading

the example.

G. Conclusion

Using these guidelines successfully still takes considerable skill.

However, if a system developed according to HDY4 meets all the guidelines

without encountering these difficulties, then it is reasonably certain

that the concepts and mechanisms of HD have been successfully applied.

-9

94 II

-U

REFERINCES

(1] Boyer, Robert S. and J Strother Moore.
A Forma Stmati r .tI AnI digra] Program Design

Technical Report, SRI Computer Science Laboratory, November 1978.
[2] E. W. Dijkstra. "Notes on Structured Programming," 0. J. Dahl, et

Al (ed.), Auu .eaing, Academic Press, 1972.

(3) Feiertag, R. J. and P. G. Neumann.~ ~ ~ M Foundati..o fa roabysecure.O.nrat,ng.,sy..ste.m~o)

pages 115-120.
Proc. NCC, June, 1979.

[4] Feiertag, R. J. and K. N. Levitt.
i£IQ.
Technical Report, SRI International, April 1979.
Final Report.

(5] Feiertag, R. J., K. N. Levitt, and L. Robinson.
Proving Multilevel Security of a System Design.
O.gra&g,.SystemRxijd 11(5):57-66, November 1977.
Z=j. Sixth S~moos im 9a oern yal Privstsm , Purdue

University, West Lafayette, Indiana.
(6] Floyd, R. W.

Assigning Meanings to Programs.
Mathematical Aspects of Computer Science, Vol. 19, Proc. of

Symposia in Applied Mathematics.
American Mathematical Society, Providence, Rhode Island, 1967, pp.

[7] Hoare, C. A. R. "Notes on Data Structuring," 0. J. Dahl, etAl
(ed.), Stkicg.eiw EgarQgammng, Academic Press, 1972.

[8) Hoare, C. A. R.
Proof of Correctness of Data Representations.
A LQU to a 1:271-281, 1972.

(9] McCauley, E. J. and P. Drongowski.
L=o: Dlgn qfa .aurg Operating JXALM.
Proc. NCC, June, 1979.

(10] Neumann, P. G., R. S. Boyer, R. J. Feiertag, K. N. Levitt, and L.
Robinson.

Technical Report, Stanford Research Institute, February 1977.
Final Report, SRI Project 4332.

[11) Neumann, P. G.
ComAgII System SekgiUrity Eatio , pages 1987-1095.
Proc. NCC, January, 1978.

(12) Parnas, D. L.
On the Criteria to Be Used in Decomposing Systems into Modules.

tJU 15(12):1053-1058, December 1972.
(13] Parnas, D.L.

On the Design and Development of Program Families.
I=TZJfs. AM Software Enzing*rl" 2(1):1-9, March 1976.j [14] Parnas, D. L.

95

L

A Technique for Software Module Specification with Examples.
Communications of the k.M 15(5):330-336, M'y 1972.

[15) Price, W. R.
Implications of a Virtual Memory Mechanism for Implementing

Protection in a Family of Operating Systems.
ND thesis, ,arnegie-Metlon University, Department of Computer

Science, June, 1973.
[16) Robinson, L.

0DM - Command and Staff Manual.
Technical Report CSL-49, SRI International, February 1978.
SRI Project 4823.

(17 'Robinson, L. and K. N. Levitt.
Proof Techniques for Hierarchically Structured Programns.
Communications of the 4CM 20(4):271-283, April 1977.

(18) Roubine, 0. ani L. Robinson.
The SPECIML Reference Manual.
T-chntcat Report CSL-45, Stanford Research Institute, January

1977.
SRI Project '4828.

[19) 'Wensley, J. H., L. Lamport, J. Goldberg, 4. W. Green, K. N.
Levitt, P. M. Mlliar-Smith, R. E. Shostak, and C. B. Weinstock.
SIFT: Design and knalysis of a Fault-Tolerant Computer for

kircraft Control, pages 1240-1255.
Proc. IEEE Vol. 66, No. 10, October, 1978.

96

