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CONTRIBUTION OF ANTISIMMETRIC AND SYMETRIC WAVES TO THE
REFLECTION OF SOUND IN A FLUID BY A THICK, HOMOGENEOUS PLATE

INTRODUCTION

In a recent report Rudgers [11 describes the acoustical behavior of thick,
fluid-loaded plates. Since exact elasticity theory leads to considerable
mathematical complexity and does not lend itself, in general, to easy physical
interpretation, the analysis in that report is based on the Timoshenko-mindlin
thick-plate theory [21. The principal contribution of the latter theory is
the introduction into classical plate theory of transverse shear, for the
case of bending, or flexural, waves. The approximation inherent in this
theory is represented by an effective shear modulus. This modulus is fixed
by Mindlin in such a way that the wave speed approaches the Rayleigh wave
speed at high frequencies.

Further analysis of this effective shear modulus is discussed in a report
by Dubbelday [3], where it is shown that one may derive the correction factor
for the shear modulus by comparing the approximate theory with the exact
elasticity theory. Moreover, a similar development may be applied to exten-
sional waves. Both types of waves, the flexural and the extensional, can be
considered as the low-frequency representatives of zero order Lamb waves, the
antisymmetric corresponding to flexural waves and the symmetric corresponding
to extensional waves. In Ref. (3], a thick-plate formulation is developed for
the symmetric waves, and a correction factor is defined for the shear modulus
that is analogous to the correction factor in Timoshenko-Mindlin theory.

The analogous behavior of the two wave types prompted an investigation
of the relative contribution of antisymmetric and symmetric waves to the
plate-fluid interactions studied by Rudgers (1]. In the present report,
the role of antisymmetric and symmetric waves is analyzed for the case
where a plane wave is reflected by a homogeneous, isotropic plate loaded
by a fluid on one side. First, the problem is stated in mathematical
form for the more general case where a fluid is situated on each side of
the plate. Next, the reflection coefficient is evaluated for the case
where the plate is fluid loaded on one side only, the fluid on the other
side becoming a vacuum. The reflection is interpreted as being due to
the cooperation of an antisymmetric wave and a symmetric wave. The
reflection coefficient can be described in terms of a "structural response

*function", as defined by Rudgers (4]. The structural response function
of the two types of waves in combination is related to the response
functions of the two types separately as an effective impedance given in
terms of the values of two parallel impedances.

Manuscript submitted July 31, 1980
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This study differs in several aspects from work on the subject of
wave reflection by plates by Lyamshev (5] and Graff et 07. [6]. Lyamshev
considers reflection due to flexural and extensional waves from the
point of view of thin-plate theory. Graff et a. modify the Lyamshev
approach by replacing the flexural wave of thin-plate theory by that
arising from Timoshenko-Mindlin thick-plate theory. The extensional waves,
however, are still modeled by thin-plate theory. In the present study,
both flexural and extensional waves are modeled by thick-plate equations
and thus are corrected for the influence of effective shear. As a
consequence, the result can be applied for high frequency also, and moreover
the effect of the first-order antisymmetric and symmetric waves is included.
Also in the present report, the relative contribution of the two wave types
to the reflection is shown; this is not discussed in the two references
mentioned above.

A quantitative measure for the relative "strength" of the two wave
types is obtained by computing the ratio of the cross-sectional average
of the square of the particle displacement amplitudes for the symmetric
and antisymmetric waves. This ratio equals the ratio of the average
kinetic energy densities associated with the two wave types. When this
ratio is plotted as a function of the angle of incidence of the incoming
wave, it shows a resonance phenomenon. Whenever the trace speed of the
wave in the fluid equals the wave speed of a free wave in the plate of a
given type, the amplitude of that given wave type dominates over the
other. Away from resonances the ratio of the energies of the two wave
types is about unity.

MATHEMATICAL FORMULATION

The geometry of a plane wave in a fluid interacting with a flat
plate is shown in Fig. 1. The incident wave, with wave number ko in a
fluid with acoustic wave speed co and density po, impinges on a plate at
an angle e measured with respect to the normal to the plate. The density
of the plate is P. and its thickness is 2d (comparable to the thickness h
as used by some authors; e.g., Ref. [2]). The wave number of straight-
crested waves in the plate is k, and the phase speed is c. For the sake
of generality, it is assumed that the opposite side of the plate is in
contact with a fluid of density P' and phase speed c'. The transmitted
wave has a wave number k' and an angle of transmission 6'.

The two-dimensional wave vectors are represented by the expressions

ko - kosinei - kocosek (1)

for the incident wave,

ko - kosinei + kocosek (2)

for the reflected wave, and

k' k'sine'i - k'cos8'k (3)
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Fig. 1 - Geometry of fluid-loaded plate

for the transmitted wave. The unit vector i is parallel to the faces of
the plate, the unit vector k is perpendicular to the faces of the plate.
It is assumed that these three waves have a harmonic dependence on time
and space coordinates. The assumed time-dependence exp(iwt), where W is
the angular frequency, is suppressed.

The space dependence of the (partial) pressures in the fluids is given
by the following expressions. For the pressure Pi of the incident wave

Pi - Pi exp[-iko(x sine-zcose)], (4)

for the pressure Pr of the reflected wave

Pr expf-iko(x sine+zcose)], (5)

and for the pressure Pt of the transmitted wave

Pt w Pt expf-ik'(x sine'-zcose')]. (6)

The total pressure in the fluid at the surface of the plate on the side of
the incident wave is

p(z - d) Pi + Pr " (Po + P)exp(-ikx), (7)

iI



where Po - Pi exp(ikod cose) and P - Pr exp(-ikod cose). The pressure at

the surface of the plate on the opposite side is

p(z - -d) - P'exp(-ikx), (P)

where P' - Pt exp(-ik'd cos6'). Here the coincidence condition is used,
namely

k = kosine - k'sine'. (M)

The equations of motion in thick-plate theory are obtained by integration

of the differential equations of motion in the direction perpendicular to
the plate and by subsequent substitution of approximate average values for
the integrals of the displacements and their moments. Details are given in
Ref. [3]. There are two equations for the antisymmetric wave:

D D2X _ 21c 2Gd(aw 2 o , (10)2 12 d(- + ¢) +. psw 2 d 3¢X "O

and 2K2Gd(E2W + a - -) + qa + 2-s2dW 0, (11)

1 ax2  ax z

and two equations for the symmetric wave:

(X + 2G)- U + XL+ p w 2U - 0 (12)
ax2  ax

and 2 d2 K 2 Gl - 2(X + 2G)x-2 DU + qz + p w2d23 2  ax2  X s d

The displacement components in the x direction parallel to the plate and
in the z direction perpendicular to the plate are represented in thick-
plate theory by

u - U +z X

and w - W + zx, (14)

respectively.

The symbols in Eqs. (10) through (14) are defined as follows. The
elastic properties of the plate are characterized by Young's modulus F
and Poisson's ratio v, or alternatively by the first Lam4 constant X and
the shear modulus G. The bending of a plate is characterized by a bending
stiffness D equal to (2/3)Ed 3/(l-v 2 ). These elastic constants are related
to various wave speeds ii the solid or in the plate. The speed cd of
dilatational waves in a solid is given by

X + 2C - Pscd 2 , (15)
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the speed c. of shear waves in a solid is given by

C - psCs 2 , (16)

and the speed Cp of extensional waves in a plate is given by

D - (2/3)d 3psCp 2. (17)

The various wave speeds are normalized through division by cs. The
resulting relative wave speed is indicated by Y, which is subscripted in
the same way as the corresponding wave speeds c. The displacements in the
plate are described by an average displacement in the x direction 11, an
average displacement in the z direction W, an average rotational displacement
of the cross section x, and an average strain in the z direction x. The
correction factors KI1

2 and K2 serve to relate the effective shear moduli
connected with the thick-plate approximation to the actual shear modulus C.
The loading of the plate by the fluids on both sides is expressed in terms
of the normal stress 0, on the faces of the plates. Because of the symmetry
character of the two wave types, the loading of the plate for antisymmetric
waves is given by a quantity qa equal to oz(d)-oz(-d), while the corresponding
quantity for symmetric waves qs is given by qs - az(d) + az(-d). The
condition that the stress is continuous at any boundary leads to the following
relations between the stress component oz and the pressure in the fluid at the
two surfaces of the plate:

Sa z(zd)oz(z=-d) - -(Po+P)+P', (iP)

q f az(z-d)+az(z--d) = -(Po+P)-P'. (19)

Also, at the interfaces, the component of the particle velocity in the solid
in the z direction has to equal that in the fluid. This leads to the
relation between pressure gradient in the fluid and particle acceleration in
the solid at a boundary. In general, one has

I p 32W 2W (20)
(fluid) (solid),

which gives for z = d:

ik(Po-P)cot8-pow 2(W + Xd) - 0, (21)

and for z - -d:

ikP'cot8'-p'w2(W-Xd) - 0. (22)

If one assumes traveling wave solutions for the field variables ¢, W/d, V/d,
X, the equations of motion, Eqs. (10)-(13) transform into linear algebraic
equations. Adding the boundary conditions Eqs. (21) and (22) results in a
set of six homogeneous equations in seven unknowns. This set can be advan-
tageously represented in the form of a matrix of the coefficients. The rows
are indicated by the numbers of the equations, and the columns are marked

5
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by the corresponding amplitudes (see Table I). The pressure amplitudes
are made dimensionless through division by (p0ocs

2 ). By the familiar
methods of linear algebra, one can derive the ratios between the amplitudes
of the unknowns.

Table I Matrix of coefficients of equations describing
reflection by fluid loaded plate.

Field variables -2

0 W/d U/d XP/(pocs
2 ) P/( 0c 2 )

I 1~(kd2(y
.o i(kd)c 2  0 0 0 0 0

(10)
y 2)-

I

- -- - ---- -- -- -- - ------------------ -- -- -- --

(I i(kd)K 12 (kd)2 0 , po/2ps  :o12ps  -0o/2p

2)0 0 0
(K ? -Y I

(12) 0 0 (kd) 2 (yd2 y 2) ijkd) (yd 2 2) 0 0 00i

-j~k) 2 -K 2
-i (kd) (yd2-2 )  kd 2( 2  

- 02 , :,/2, 2

(13) 0 d "o/20s o/2s 0/2sY2) + Yd z

* I

1 y2 (kd)2  0 y2(kd)2  -i(kd)cote i(kd) cotO 0

- -- - ---- -- -- -- ------------------------ -- -- -----
221 0k4 ,

(22) 0 , Y2(kd)2  0 Y2(kd) 0 0 -i(kd)(Co/c')cot9'
I I

REFLECTION OF SOUND BY PLATE LOADED BY FLUID ON ONE SIDE

The matrix of the coefficients of the equations describing reflection
of sound by a plate loaded by a fluid on one side only is obtained from the
matrix in Table I by omitting the sixth row and the seventh column. The
matrix elements of the matrix of Table I are indicated by 'ij. Two
subdeterminants are defined by the following expressions:

Aa M= l M2 2 -M12 M2 1  (2-)

and

As = ff33 M44 -t!34 1143 (?4)

6.:* ----. ,



The reflection coefficient is evaluated first for the case where only

antisymmetric waves participate. One finds that the factor (P/Po) in the
expression for the reflection coefficient given by

Pr/Pi - (P/Po)exp(2ikodcosO) (25)

is as follows:
2ieacote + (kd)y 2(po/ps)1l1
2iAacotG - (kd)yz(Po/ps) 1 I . (26)

The subscript a refers to antisymmetric waves. By algebraic manipu-
lation one can transform the right-hand side of Eq. (26) to

2 (27)
(P/Po)a = 1 - 1(2iAacOt6)/[(po/ps)Y~kdMll

This form of the expression shows the appearance of the structural response

function Qa for antisymmetric waves defined by

Ra -- 2Aa •(2p)
(Po/Ps)yzkdM1jsinE(

In an analogous manner, one can show that the pertinent factor in the
reflection coefficient for symmetric waves only may be written as

2

(P/Po)s - I - 1 + icose (29)

where the structural response function Q. for symmetric waves is defined
by

2As
(pops)y1zkd_ 3 3 sin• (30)

The subscript s refers to symmetric waves.

If one allows both antisymmetric and symmetric waves to participate,
the first factor in the expression for the reflection coefficient becomes

21(cota)AaAsy 2kd(po/ps)M2 3Aa+y
2 (kd)(po/ps)M 1 As (

(P/P) "21(cote)AaAs-y '(kd)(po/Ps)M33Aa-YZ(kd)(po/ps)llAs' 3

This can be again written in terms of a response function Q for the combi-
nation of the two types of waves,

(PIP0) WI - 2 01
1+i~cose

where the response function 4 is related to the response functions for
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antisymmetric and symmetric waves separately by

1I 1 (1)

This relation concurs with the interpretation of the response function as
describing the displacement in the solid as a response to the pressure
exerted at the face of the plate. The two types of waves act as two
"channels", and the response function for the two channels in parallel
is computed as one would in the case of an equivalent impedance for two
parallel impedances.

Notice that the absolute value of the reflection coefficient is
unity, the reflection causes only a phase shift in the wave. This is
understandable since no energy is lost in the process, due to the absence
of an energy-dissipating mechanism.

RELATIVE CONTRIBUTION OF ANTISYMMETRIC AND SYMMETRIC WAVES

For the case of reflection or transmission of sound by a plate, one
can assess the relative participation of the two types of waves by looking
at the ratios of the displacement components. The following ratio of the
displacement U in the x direction due to the symmetric wave divided by the
corresponding displacement due to the antisymmetric wave Ixd at the
surface of the plate is obtained from the matrix in Table I,

M24AaU /(Oxd) - - (34)

The analogous expression for the displacements in the z direction is

Xd/W M33Aa (5
xdlW = M11

To obtain a measure for the relative participation of the two wave
types based on both u and w displacement components, one might consider
the kinetic energy density E averaged over a cross section and one cycle.
The average energy density E for each wave is proportional to the cross-
sectional average of the sum of the squares of the u and w displacement
components of that wave; i.e.,

E - 1/d f (u2 +w2 )dz. (36)
0

The ratio of the averagq kinetic energy density of the symmetric wave Fs
to that of the antisymmetrid wave Ea is found to be

E _ (U/d) 2 +X2 /3 - a2Es" ('Ud) +/ -- /Y '1 4 72 +"3322/ (?7)
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Fig. 2 - Relative participation of symmetric and
antisymmetric waves in reflection by plate

In Fig. 2, the ratio Es/Ea from Eq. (37) is graphed as a function of
the incidence angle e. The specific case of steel with V = O.302P and
cs W 3264 m/s is chosen. With a propagation speed of sound in water at
4*C of 1447 m/s, the value of co/c s is equal to 0.443. The value of the
dimensionless wave number was chosen to be kod - 5. The correction factors
KI and K 2 in the matrix elements of Table I used in Eq. (37) are set equal
to YR the relative Rayleigh wave speed. The resonance type features in
Fig. 2 are due to coincidence between the trace speed of the incident wave
and the free wave speed of antisymmetric or symmetric waves in the plate.
The specific type of the free wave is indicated by the symbols a and s,
respectively. The subscripts o and 1 indicate the order of the wave.
One may notice that away from these coincidences the kinetic energy is
practically evenly divided between the antisymmetric and the symmetric waves.
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The behavior of the graph in Fig. 2, in relation to the material
properties of the fluid and plate, is clarified by Fig. 3. In this
figure, the dispersion relations for Lamb waves are shown in dimensionless
form, namely the relative wave speed -y n c/c5 as a function of the non-
dimensional wave number ksd for shear waves. The only free parameter in
this figure is Poisson's ratio v. It determines the exact shape of the
curves, but qualitatively the general behavior of the curves varies little
when Poisson's ratio is given a different value. The dispersion curves
are shown for the zero and first-order antisymmetric Lamb waves a. and
al, respectively, and for the zero and first-order symmetric Lamb waves
so and sj, respectively. This figure is intended for qualitative
information only; it is only approximately correct in its scale.

2.0 I To o
1.8 ASYMPTOTE ASYMPTOTE

L2
1.6-

1.4- so at 90£1.0-

0.8-

0.2

!I I . . . I I I

0 1 2 3 4 5 6 7 8
ksd

Fig. 3 - Graphic representation of coincidence condition

A wave impinging on the plate is characterized by both a wave number
kod in the fluid and by the angle of incidence e. The coincidence
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condition given by Eq. (9) fixes the relative phase speed y in the plate
for a given value of kod and a given angle 6 by the relation

y M Co/(c~sin8). (3)

The graphic representation of this equation is shown in Fig. 3 by the
dashed line parallel to the vertical axis. This line starts at 8 - 900
and goes to infinity for 6-%O0. The location of the starting point at
a - 90* is determined by the ratio of the phase speed in the fluid to the
shear wave speed in the plate co/c s. The abscissa of the starting point is
ksd - (kod)/(co/C), and the ordinate is Y - co/ca. Wherever the dashed line
in Fig. 3 intersects a dispersion curve, the trace speed of the incident
wave equals the free wave speed of one of the wave types. That wave type
will be dominant due to the presence of the factor (Aa/As) in Eq. (?7). The
location of the starting point at 8 = 90* determines which of the four
dispersion curves will be intersected by the dashed line. Thus the value
of the wave number kod in the fluid and the ratio of the wave speed in the
fluid to the shear wave speed in the solid co/c s determine the appearance
of the curve in Fig. 2. This explains why, in this specific figure, one
has coincidence peaks for the three wave types ao, So, and al, respectively,
starting from e - 900.

CONCLUSIONS

The main conclusion of the present study is that one should take into
account the contribution of symmetric waves to the reflection of sound by
a plate. Coincidence between the trace speed of the impinging wave in the
fluid and the free wave speed of a wave in the plate of a given type,
antisymmetric or symmetric, leads to dominance of that wave type over the
other. Away from coincidence, the distribution of kinetic energy between
the two wave types is about equal.
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