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and by allowing for the capability to combine several simplex iterations

into one. Computational results with a computer code implementation of

An Algorithm for a Least Absolute Value g
\g Regression Problem with Bounds on the Parameters L
i :
: ABSTRACT §
This paper presents a special purpose linear programming algorithm
: f to solve a least absolute value regression problem with upper and lower
' E bounds on the parameters. The algorithm exploits the problem's special %
'% structure by maintaining a compact representation of the basis inverse {

the algorithm is given.
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1.  Introduction
Least absolute value (LAV) regression has become popular recently as

a robust estimation technique [11] . This has come about as a result of

an increasing awareness of the limitations of least squares analysis

and the development of efficient algorithms for obtaining LAV estimates [Z2,5] .
This paper considers a restricted least absolute value regression

problem of the following form.

e 3

n
(1) Minimize .z, |y, - 381 %4385 |

subject to Lj S.Bj f_Uj » J=1,2,4 ... 5, m.

For purposes of exposition, it is assumed that all Bj's have upper and
lower bounds. An absence of an upper (lower) bound on a parameter can
be handled within the algorithm to be developed here by either assigning
an arbitrarily large positive (negative) value for the bound, or by assuming
the existence of this pseudo-bound and handling it logically (i.e., no
value is actually assigned). The former method is used in our computer
code implementation.

Special purpose algorithms for the least squares (LSQ) equivalent of
(1) are given by Armstrong and Frome [1] and Waterman [18]. These algorithms
were able to deviate from the standard linear programming (LP) approach to
solving restricted LSQ problems, conmonly called quadratic programming

problems, by utilizing the special structure of the constraints. Because




the objective function of (1) is convex, a modification of the algorithms

found in [1) and [18] can also be used to solve the restricted LAV problem.
The majorchange is that an unrestricted LAV problem must be solved at any stage
rather than an unrestricted LSQ problem. However, inasmuch as the most efficient
solution method for the unrestricted LAV problem utilizes LP and the constraints
of (1) can be handled within the LP framework, it would seem appropriate to
specialize the existing LAV-LP algorithms to solve (1). This is done in the

next section.

2. Algorithm

Charnes, Cooper and Ferguson [8) appear to be the first to have
demonstrated that linear LAV problems can be rewritten as LP problems.

Employing their result here, problem (1) is equivalent to:

n + -

(2) Minimize I (68, +68;, ),
i=1 ! !

subject to m + _
A RCTRTIA LT,
j=1
LJ BJ<UJ’ J=],2’ s M
+ - :
Gi >0 and 51 > 0, i=1,2, ... , N,

Davies [10], Barrodale and Roberts ([5] , and Spyropoulos, Kiountouzis
and Young [17) give closely related special purpose primal simplex algorithms

to solve (2) when bounds on the parameters are not present. These algorithms
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currently appear to be the most efficient method to solve the unrestricted
LAV problem. Armstrong and Hultz [3] and Barrodale and Roberts [6] develop
primal LP algorithms for a LAV problem with arbitrary linear constraints
on the parameters. Both algorithms can be applied to problem (2). Armstrong
and Hultz [3] solve the restricted LAV problem using techniques from interval
linear programming [9] while Barrodale and Roberts [6] utilize a modification
of their unconstrained algorithm which was presented in [4]. The algorithm
proposed here is a specialization of the method from [3]. It will be demon-
strated that considerable computational simplications are possible when the
constraints are of the important special form present in (2).

To aid in the discussion to follow, the constraints of (2) are

rewritten in matrix notation as:

(3) X8+ 16 - 18 =Y,
(4) L<Ig<cU,
(5) st >0ands™ > 0.

The dual problem of (2) is:

n m m
i + +
i=1 J=1 J=1
subject to n
.E Tr.ix,ij + w + Vj = 0, J = 1) 2) ’ m
i=1
m <1l,i=1, 2, s N
“1 2_-1,i=1, 2, ..,ﬂ
Wj io’j=1' 2’ oo’m

Yy >0, =12, ..., m

The dual problem (6) will be used later with the explanation of the algorithm.

o

e e
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From the results presented by Armstrong and Hultz [3) , all the
information required to execute a primal LP algorithm can efficiently be
obtained from a 1ist of indicators and the inverse of an m by m basic matrix.
Thismatrix,XB,canber@presented(afterrowand column interchanges), relative

to problem (2), as follows.

where XF is an r by r full rank matrix, XR is an r by m-r matrix, 0 is an

m-r by r zero matrix and I is an m-r by m-r identity matrix. This structure
assumes that r rows of X and m-r rows corresponding to the bound constraints
are in the basis. The following discussion will assume that the rows and

columns of the problem have been explicitly reordered to obtain this structure.

The computer code utilizes two arrays to implicitly achieve this reordering.
It will be demonstrated that allthe computations required in the
algorithm can conveniently be performed by inverting only XF’ which shall be

referred to as the working basis. The inverse of XB is given by:

><
"
T . g




B,
The solution of (1), B, can be partitioned into B = EF

R
where E} is the current value of qj, Jj=1,2,...,r, and Ek is the current value of

Bi» J=r+l,r+2,...,m. From equations (3) and (4), g = ! (YB)

J B Y¢

where YB are the values of the dependent variable corresponding to the r rows

of X in the basis.and C assumes the value of either U or L depending on whether

Bj, jer+l,r+2,...,m is at its upper or lower bound.

B x;’ -x,;’xR Y
B \o 1 c
B = ¢
Y

- -1 -1 B
Be = (X -Xg ' X )( )
F F FR'\Bg
| -

(7) BF = xF (YB - XRBR)

By a list of bound indicators, the elements of Eﬁ will be assigned to their
upper( or lower ) bound value.

Define IB to be the index set of the rows of X in the basis,
and NB to be the index set of nonbasic rows of X. The basic and nonbasic
rows of I will be determined implicitly within the computer code by the value
of r and the current column ordering. The discussion here assumes explicit

reordering at-.each iteration.




The deviations for (2), or the reduced costs for the dual
problem (6), are given by:
(8) d; =y - X{E » 11,2, ... ,n.
The dua) variables corresponding to the nonbasic rows are assigned a value
depending on the sign of the deviation, that is, i} = sign (di)’ ie NB.
Degeneracy occurs when di =0, i € NB. In the computer code, the initial value
assigned to m; when di =0, i € NB, is arbitrarily defined to be +1, and
thereafter, the value is determined by the steps of the algorithm. A thorough
treatment of the problem of degeneracy can be found elsewhere (see Charnes (7]
for example) and this phenomenom will not be examined here.

Define the nonbasic dual variables w; and vj to be zero. Define

Tg to be the vector of the basic dual variables. Tg Can be partitioned into

T and <1, ; that is,
BF BR ( )
T = T P T
B BF BR
Ta = (T, T T, T T T
B B]. 82,..., Br’ Br+]’ Br+2""’ Bm )
where TR = (Tp T T
BF ( B]’ 82,..., Br )
Tp o (T T T
BR ( Br+l’ Br+2""’ Bm ) )

The vector Tg consists of the basic dual variables corresponding to the r rows
F

of X in the basis (XB), and g consists of the basic dual variables corresponding
R
to the basic bound constraints. The nonbasic dual variables i}, i € NB, are set to
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+1 or -1. The nonbasic wj and Vj are zero. Thus, from (6), the current values

of the basic dual variables can be obtained from the dual constraints.

; 0 J=1, 2 r
S R TR P B
- T £ j= r+1, r+2 "
ifl TBixij + TBj + i g B L xij = 0, J= r4l, s soe s N
T
gXg = Mg
H = ] ] 2’ ]
where BJ iENBwixU. J=1 m
— T.-1
g = -HgXg
- -1 -1
— = B * "B
8 F R 0 1
ﬂ _ o
(9) TBF HBFXF
T, -T, - H
(1) "sp ~ B'r " "By

Since this is a primal algorithm, the necessary condition for

optimality is dual feasibility. The optimality condition for (2) is:

(11) -li;fi+” i=],2,...,n,
[ (12) W< 9, i=12,...,m
(13)and 733 0, i=12,...,m

If the optimality condition is not satisfied, then there exists one or more

basic rows where condition(11), (12)or (13) is violated. Define g to be the

e e ey e gy g
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dual variable most violating a bound restriction. If k < r, the k-th row of Xg
will be chosen to leave the basis. On the other hand, if k > r, the k-th row of
I will be selected to leave the basis. Define p = sign(rB ). The value of o
indicates if er is to be increased or decreased,p = <1 implies that er

is to be increased and o = +1 implies that“’Bk is to be decreased.

The simplex algorithm of linear programming maintains at zero the
current deviations of all basic constraints except the k-th. In other words,
the 8 and & of the comstraints X.8 + &; - &7 =y,, i¢cIB, i#k, remain zero
and Bj, J >r, jfk remain fixed at their upper or lower bound. The deviation of
the k-th basic constraint is increased to a value, 6 , and another constraint
enters the basis with a deviation of zero. The algorithm determines the value,

8, to increase the deviation of the k-th basic constraint while (a) decreasing

the objective value (ignoring degeneracy), (b) maintaining primal feasibility

and (c) obtaining dual feasibility in the k-th basic variable of the dual problem.

If k > r, the algorithm guarantees that the bound restriction on Bk
is not violated. The maximum change of Bk possible while still maintaining
the feasibility of this constraint is Uk - Lk. Thus, an upper bound on the
change in the value of Bk is given by 6
{ Uk - Lk for k > r

+ @ for k < r

1

(14) o

.

B T et e . -

PRI,

E
;




The algorithm next calculates 02, the maximum change possible in the
deviation of the k-th basic constraint if the primal feasibility in the Bj, ﬁ
j=1,2,...,r is to be maintained. Define i

X} for k < r 3

F(k) = :
£ = 1 I}
-Xg XR(k) for k > r

where X;%k) is the k-th column of X;1, and X is the k-th column of X,.

R(k) R

(Bj - Lj)/(-paj) for PE5 < 0, J=1,2,...0r3
(15) o, = min

2 .
U, - B, ) f . > 0, j=1,2,...,r.
(Y BJ)/( oEJ) or pg; >0, §=1,2 r
To calculate the maximum change in the deviation in the k-th basic
constraint while continually decreasing the absolute sum of the deviations,
03, the algorithm utilizes the basis entry tests of Barrodale and Roberts [41.

These tests determine a nonbasic dual variable which is to enter the basis.

The procedure is to calculate the ratio values:

(16) (d;)/(p0,) for po, > 0, i=1,2,...,n
where (xil,xiZ"" xir)E for k <r, i € NB

i (xil’xiZ"" xir)g * X for k >r, i € NB

The dual variable "o(p) is chosen as a candidate to enter the basis

by a ranking of the ratios and the following feasibility check on g
k

p-1
(i) ITBkl - izl 2|¢o(i)| >1 forkz<r

p-1 E

(ii) ITBkl - 151 2|¢°(1)| >0 fork>r
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p
(111) g | - .E 2l¢o(i)| <1 fork<r
k i=1
and

p
(iv) ITBkl - ifl 2|¢o(i)| <0 fork>r

where do(})I < d°£2)| < ... < Sﬁiﬂ:ll < dO(g)
%] = %) = 7 [%(pe-1){" [%0(p)

The value of 03 equals This process is implemented in the computer

d

code version of the algorithm with the partial sort process of Armstrorg,

Frome and Kung [21.
The value of © is therefore
(17) o = min{el, 02, 93}.
In the case of O = 61, the working basis does not change. On the

1 must be updated. In any

other hand, if © # ©,, a new basis is formed and X
event, the nonbasic dual variables corresponding to the candidate list of ratios
with ratio values less than © will remain nonbasic but will switch from their
current bound to their opposite bound value. The other changes in the primal
and dual variables are given as follows.

If o= 01 By switches bound value and xB is not changed. Relating
this situation to the dual problem, the nonbasic wj enters the basis and the
basic Y3 leaves the basis if Bk switches from its lTower to upper bound. On
the other hand, if Bk switches from its upper to lower bound value, the non-
basic v enters the basis and the basic W; leaves the basis.

IfO = 02, a nonbasic row of I will enter the basis, and XB will
k

leave the basis, where XB is the k-th row of the basis XB' In the dual
k
problem, the nonbasic wj or vj will enter the basis and Tg will leave the basis.
k




If o= 03, a nonbasic row of X will become basic, the k-th row of XB

(associated with the basic dual variable, TBk) will leave the basis. In terms
of the dual problem, the nonbasic L will become basic.
There are five cases in the updating process of x;l.

Case 1: If k <r, © =0y, this is the situation when a row of X, is leaving
the basis and a row of X is entering the basis. The update of X;lis
the standard simplex pivot.

Case 2: Ifk<r,0=0, this is the situation when a row of Xg is leaving

1

the basis and a row of I is entering the basis. Since X; contains

the rows of X in the basis, the dimension of XEI will be decreased
by 1.

Case 3: Ifk>r, 0=0, XEI does not change.

Case 4: If k > r, 0 = 05, this is the situation when a row of I is leaving the
basis, and a row of X is entering the basis. The dimension of x;l will
be increased by 1.

Case 5: If k>r, 0=0,, this is the situation when a row of I is leaving
the basis and a row of I is entering the basis. The dimension of XEI
does not change.

The algorithm then updates the deviations by

(18)  dy+ d; - POXX51y) »  1=L.2....0m.

The algorithm 21so updates the indicators used for re-ordering purposes.

The iterative process continues until the condition -1 < tg, <t i=1.2,...,r

i
and 131 <Oor 181 > 0, i=r+l,r+2,...,m is satisfied.

3. Steps of the Algorithm

In this section a step-by-step statement of the algorithm is outlined.

Step 1. The initial values of Ek are found from the following:

QHIAE g g e




(1)
(i1)
(iii)

(i)

(i1)

(ii1)

oo citndiiine

Step 4. Calculate g and T
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If Lj 5-83 5,Uj, the j-th element of é, Sj, is set equal to Lj.

If Lj 5-Bj <», set Bj Lj.

U..
J

If - < Bj 5_Uj, set Bj

After interchanges, g = (BF, BR)T, where BR
is a vector of values equal to the upper or lower bound values of the restric-
ted parameters.

Step 2. Formulate the initial basis, XB‘

If all the parameters are restricted, XB is an m by m identity
matrix.

When all the parameters of the problem do not have bound res-
trictions, the algorithm attempts to form the basis matrix XB
by choosing a full rank XF matrix from the coefficients of the
unrestricted parameters. If this procedure fails to create an
initial Xg, the algorithm advances to (iii).

A full rank matrix XB is now formed by including in the initial
basis as many additional rows from the ideatity of (4) as is
necessary. The Bj's corresponding to these rows are assigned

upper and lower bounds of plus and minus infinity.

Only the values of XF] and the cnrresponding parameter

indices of X;] are used for the remaining computations.

Step 3. Calculate éF and d, based on (7) and (8). Determine the values of

ii, i € NB, based on the sign of d,.

B based on (9) and (10).
F R

Step 5. Check for the optimality conditions given by (11), (12) and (13).
If these are satisfied, terminate. Otherwise, go to step 6.

RN,

ST T

—-——
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Step 6. Determine the value of p from the sign of g where eris the dual
k
variable most violating a bound restriction.

Step 7. Calculate O 02. Y and © from (14), (15), (16) and (17).

1’
Step 8. Ifo = 91, Bk switches to its opposite bound value. Go to step 12.

Step 9. Ifo = 02, the dimension of X;l is decreased by 1 if k < r. On the

other hand, the dimension of x;l does not change if k > r. Go to

step 11.

1

Step 10. If © = 05, the dimension of X; remains the same if k < r. Ifk>r,

the dimension of Xz'

1

will be increased by 1. Go to step 11.
Step 11. Update x; and the other basic indicators.
Step 12. Update the deviations based on (18), and the values of mis 1 e NB,

based on the sign of the updated values of di' Go to step 4.

4. Computational Results

To evaluate the efficiency of the algorithm given here, a FORTRAN ver-
sion of the algorithm presented here called RESL1 was tested against the algo-
rithm INTBND developed by Armstrong and Hultz [3]. The INTBND code solves
least absolute value problems with arbitrary linear constraints on the para-
meters. Both codes employ the revised simplex method of linear programming.
The observations for the study have been drawn from various uniform distribu-
tions usimg a random number generator. Al1l the problems were solved by the
CDC 6600 in the University of Texas at Austin. The results presented in
Table 1 are mean times and iteration counts for a set of 5 problems with the

same characteristics.

DT S M NANEES - DO SR - il iy
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Table 1

(A comparison between RESL1 and INTBND)

Number of  Number of Number of Time Number of
parameters observations g:::;:zéﬁzed (in CPU milleseconds) iterations -
RESL1 INTBND RESL1 INTBND

5 50 0 29 56 5 6
5 50 2 75 115 9 11
10 100 0 158 376 1R 18
10 100 5 679 968 31 44
15 150 0 323 1004 14 28
15 150 15 2750 5629 49 144
15 200 0 830 1671 23 37
15 200 10 VARR 5463 39 9%
20 200 0 1383 3016 32 55
20 200 12 6230 9334 80 152
20 250 0 1693 3897 34 60
20 250 14 7565 12566 77 165
25 250 0 1263 5663 27 73
25 250 20 8970 14445 97 251
25 300 0 1311 6086 24 68
25 300 18 14128 18751 139 275

I 30 300 0 2543 9142 41 86

! 15 500 10 7644 16872 n 147

| 15 500 0 1673 4643 26 i 64

ST Ty T, T e
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Our computational study indicates that the algorithm RESL] is

consistently faster than INTBND on all problem sizes. Also, RESL1
utilizes a reduced basis inverse and requires less computer storage

than INTBND. P

4, Conclusion

Since the time of Laplace [16), minimizing the sum of absolute
deviations has been considered as a criterion for parameter estimation.
Recently, LAV estimators have been widely examined as a robust estimation
technique [11Jand with this interest has come a demand for efficient
algorithms to provide LAV estimates for a variety of statistical models.
This demand has been satisfied primarily by the specialization of linear
programming to take advantage of the distinctive characteristics of the
problem.

This paper presents an approach to solve least absolute value

problems with bound restrictions on the parameters. The algorithm

presented here exploits the structure of the problem to maintain a
compact representation of the basis inverse. All computations required
m. in the algorithm can be performed by means of a reduced basis.

The algorithm also combines several standard simplex pivots into one.

Computational experience with a FORTRAN version of this algorithm
compared to a FORTRAN version of the algorithm developed by Armstrong
and Hultz (3] indicates its superiority in terms of computer time

and storage.
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