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An Algorithm for a Least Absolute Value L

Regression Problem with Bounds on the Parameters

ABSTRACT

This paper presents a special purpose linear programming algorithm

to solve a least absolute value regression problem with upper and lower

bounds on the parameters. The algorithm exploits the problem's special

structure by maintaining a compact representation of the basis inverse

and by allowing for the capability to conine several simplex iterations

into one. Computational results with a computer code implementation of

the algorithm is given.
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1. Introduction

Least absolute value (LAV) regression has become popular recently as

a robust estimation technique [11] . This has come about as a result of

an increasing awareness of the limitations of least squares analysis

and the development of efficient algorithms for obtaining LAV estimates [2,5]

This paper considers a restricted least absolute value regression

problem of the following form.

n m
)Minimize ifi Yi " jl xij j

subject to Lj < Oj Uj , j = 1, 2, ... , m.

For purposes of exposition, it is assumed that all $.'s have upper and

lower bounds. An absence of an upper (lower) bound on a parameter can

be handled within the algorithm to be developed here by either assigning

an arbitrarily large positive (negative) value for the bound, or by assuming

the existence of this pseudo-bound and handling it logically (i.e., no

value is actually assigned). The former method is used in our computer

code implementation.

Special purpose algorithms for the least squares (LSQ) equivalent of

(1) are given by Armstrong and Frome (i and Waterman [18]. These algorithms

were able to deviate from the standard linear programing (LP) approach to

solving restricted LSQ problems, commonly called quadratic programing

problems, by utilizing the special structure of the constraints. Because
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the objective function of (1) is convex, a modification of the algorithms

found in [I] and 1181 can also be used to solve the restricted LAV problem.

The majorchange is that an unrestricted LAV problem must be solved at any stage

rather than an unrestricted LSQ problem. However, inasmuch as the most efficient

solution method for the unrestricted LAV problem utilizes LP and the constraints

of (1) can be handled within the LP framework, it would seem appropriate to

specialize the existing LAV-LP algorithms to solve (1). This is done in the

next section.

2. Algorithm

Charnes, Cooper and Ferguson [81 appear to be the first to have

demonstrated that linear LAV problems can be rewritten as LP problems.

Employing their result here, problem (1) is equivalent to:

n + -

(2) Minimize E ( 6i + 6i  ),
i=l

subject to m +
E xi j  + 6. - 6: Y , i 1 1, 2, ... , n

j=l

L < 0< Uj , j'= -, 2, ... m

+ 0 and 6 >O0, i =l, 2,... ,n.

Davies [10], Barrodale and Roberts [5] , and Spyropoulos, Kiountouzis

and Young [17] give closely related special purpose primal simplex algorithms

to solve (2) when bounds on the parameters are not present. These algorithms
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currently appear to be the most efficient method to solve the unrestricted

LAV problem. Armstrong and Hultz [3] and Barrodale and Roberts [6] develop

primal LP algorithms for a LAV problem with arbitrary linear constraints

on the parameters. Both algorithms can be applied to problem (2). Armstrong

and Hultz [3] solve the restricted LAV problem using techniques from interval

linear programing [9 while Barrodale and Roberts [6] utilize a modification

of their unconstrained algorithm which was presented in [4]. The algorithm

proposed here is a specialization of the method from [3]. It will be demon-

strated that considerable computational simplications are possible when the

constraints are of the important special form present in (2).

To aid in the discussion to follow, the constraints of (2) are

rewritten in matrix notation as:

t+

(3) XO + 16+ - I6 =Y,

(4) L < Ia < U,
(5) 6+ > 0 and 6" > 0.

The dual problem of (2) is:

n m m
(6) Maximize Z 1 iYi + E w U + V jL

subject to n

i=I£  i i j + wj + j= , j = 1, 2, ... , m

7ri < 1,i , 2, .. ,n

7i> = 1, 2, ... , n

w < 0, j = 1, 2, ... , m
vj 1_0, j 1 , 2, .. ,m

The dual problem (6) will be used later with the explanation of the algorithm.
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From the results presented by Armstrong and Hultz [3] , all the I

information required to execute a primal LP algorithm can efficiently be

obtained from a list of indicators and the inverse of an m by m basic matrix.

This matrix, XB, can be represented(after.rowand column interchanges), relative

to problem (2), as follows.

XB( XR)

where XF is an r by r full rank matrix, XR is an r by m-r matrix, 0 is an

m-r by r zero matrix and I is an m-r by m-r identity matrix. This structure

assumes that r rows of X and m-r rows corresponding to the bound constraints

are in the basis. The following discussion will assume that the rows and

columns of the problem have been explicitly reordered to obtain this structure.

The computer code utilizes two arrays to implicitly achieve this reordering.

Itwill be demonstrated that allthe computations required in the

algorithm can conveniently be performed by inverting only XF1 which shall be

referred to as the working basis. The inverse of XB is given by:

X1 = (F R
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The solution of (1), ], can be partitioned into = -0Ri

where 'F is the current value of J j=l,2,...,r, and 'RR is the current value of

j=r+l,r+2,...,m. From equations (3) and (4), X I (B)
B CI

where YB are the values of the dependent variable corresponding to the r rows

of X in the basis. and C assumes the value of either U or L depending on whether

0j, j=r+l,r+2,... ,m is at its upper or lower bound.

N (X F -X R) ( B)

"WF 0 1"

_6R C

S(x 1  -XF XR) R

(7) F = XI (YB - XRR)

By a list of bound indicators, the elements of -R will be assigned to their

upper( or lower ) bound value.

Define IB to be the index set of the rows of X in the basis,

and NB to be the index set of nonbasic rows of X. The basic and nonbasic

rows of I will be determined implicitly within the computer codeby the value

of r and the current column ordering. The discussion here assumes explicit

reordering at-each iteration.

L44_
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The deviations for (2), or the reduced costs for the dual

problem (6), are given by:

(8) di = ,i 1,2, ...,n.

The dual Variables corresponding to the Ponbasic rows are assigned a value

depending on the sign of the deviation, that is, ii = sign (d.), iE NB.

Degeneracy occurs when d. = 0, 1 c NB. In the computer code, the initial value1

assigned to ni when di = 0, i e NB, is arbitrarily defined to be +1, and

thereafter, the value is determined by the steps of the algorithm. A thorough

treatment of the problem of degeneracy can be found elsewhere (see Charnes [71

for example) and this phenomenom will not be examined here.

Define the nonbasic dual variables w and v3 to be zero. Define

TB to be the vector of the basic dual variables. TB can be partitioned into

and r that is,

TB TBF TB R

TB  T BlipTB 2,..., TBr TBr+l TBr+ 2,*** TBm )

where TBF B 11 TB2,.., TB )
TB(=TBl  .B2 * , B m

8BR= B Br+1 ,  B r2, ..., B m ).

The vector TB consists of the basic dual variables corresponding to the r rowsBF

of X in the basis (XB), and T consists of the basic dual variables corresponding

to the basic bound constraints. The nonbasic dual variables t i i c NB, are set to
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+1 or -1. The nonbasic w. and v. are zero. Thus, from (6), the current values

of the basic dual variables can be obtained from the dual constraints.

r
Z= Xij + Z -iX = 0, j=1, 2, .... ri B1 ij icNB ij

r_
rI T B x i j  + T Bj + i X.. 0, j= r+l, r+2, ... ,

1=1 jl j i NB '

tX ~HT
BXB H B

where HB. =iN xi. j = 1, 2, ... , m
3 hNB

tB -H HXl 

T (HT, HT)[ F 1R]

(9) -T = HT X-
BF BFF

(13) TBR -TBFXR- H BR

Since this is a primal algorithm, the necessary condition for

optimality is dual feasibility. The optimality condition for (2) is:

( ) - +I , 12, ...,n,

(12) wj :S 3, j

(13)and vi> 0, j 1,2,...,m.

If the optimality condition is not satisfied, then there exists one or more

basic rows where condition (11), (12)or(13) is violated. Define TB to be the
m Bk
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dual variable most violating a bound restriction. If k < r, the k-th row of XB

will be chosen to leave the basis. On the other hand, if k > r, the k-th row of

I will be selected to leave the basis. Define p = sign(r ). The value of p
Bk

indicates ifT~ is to be increased or decreased,p = -1 implies that T
idctsif B kBk

is to be increased and p = +1 implies that tBk is to be decreased.andk

The simplex algorithm of linear programming maintains at zero the

current deviations of all basic constraints except the k-th. In other words,

+ +the 6i and 6: of the constraints X.a + 6 - 6i=y i, i EIB, ifk, remain zero1 1 1
and 8j, j > r, jtk remain fixed at their upper or lower bound. The deviation of

the k-th basic constraint is increased to a value, G , and another constraint

enters the basis with a deviation of zero. The algorithm determines the value,

8, to increase the deviation of the k-th basic constraint while (a) decreasing

the objective value (ignoring degeneracy), (b) maintaining primal feasibility

and (c) obtaining dual feasibility in the k-th basic variable of the dual problem.

If k > r, the algorithm guarantees that the bound restriction on k

is not violated. The maximum change of 8k possible while still maintaining

the feasibility of this constraint is Uk - Lk. Thus, an upper bound on the

change in the value of ak is given by 01.

(14) Uk - Lk for k > r

+® fork < r
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The algorithm next calculates (32' the maximum change possible in the

deviation of the k-th basic constraint if the primal feasibility in the 8.,

j=1,2, ... ,r is to be maintained. Define

x for k < r

_XFXk for k > r

-1XF
where X is the k-th column of X and X is the k-th column of X.F(k) F ' R(k) R"

(8j - Lj)/(-pC.) for pC. < 0, j=1,2,...,r;
15 02  

=  min (U. - M P)/( pa) for pCg > 0, j=i,2,...,r.

To calculate the maximum change in the deviation in the k-th basic

constraint while continually decreasing the absolute sum of the deviations,

03, the algorithm utilizes the basis entry tests of Barrodale and Roberts [4].

These tests determine a nonbasic dual variable which is to enter the basis.

The procedure is to calculate the ratio values:

(16) (di)/(pOi) for 0 i > 0, i=1,2,. ..,n

where I (xi1 xi2""' xir)C for k < r, i c NB

x (ilXi2. , Xir) + Xik for k > r, i c NB

The dual variable 7(p) is chosen as a candidate to enter the basis

by a ranking of the ratios and the following feasibility check on TB

p-1
I) T I - Z 2100(1)I > 1 for k < r

k 1=1

(li) TBkI - p-i 21 o()I,  > 0 for k > r

. i
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P

(iii) Ite I -iEI 210ti\, < 1 for k < r

and
P(iv) ITk I - ilZ 2 10o(i) < 0 for k > r

where d0 1  ~ ~ d~~ d0 (1,lw (l)- o(2) 0< " ' o(p-1) 0 0(p)

The value of 03 equals . This process is implemented in the computer

code version of the algorithm with the partial sort process of Armstrorg,

Frome and Kung [2].

The value of 0 is therefore

(17) 0 = min{0 I , 02, 03}.

In the case of 0 = 01, the working basis does not change. On the

other hand, if 0 j 01, a new basis is formed and XF must be updated. In any

event, the nonbasic dual variables corresponding to the candidate list of ratios

with ratio values less than 0 will remain nonbasic but will switch from their

current bound to their opposite bound value. The other changes in the primal

and dual variables are given as follows.

If 0 = 01, ak switches bound value and XB is not changed. Relating

this situation to the dual problem, the nonbasic w. enters the basis and the

basic vi leaves the basis if Ok switches from its lower to upper bound. On

the other hand, if Ok switches from its upper to lower bound value, the non-

basic v. enters the basis and the basic wj leaves the basis.

If 0 = 021 a nonbasic row of I will enter the basis, and XBk will

leave the basis, where XBk is the k-th row of the basis X.. In the dual

problem, the nonbasic wj or vj will enter the basis and TBk will leave the basis.



If 0 = 033 a nonbasic row of X will become basic, the k-th row of XB

(associated with the basic dual variable, TB ) will leave the basis. In terms
k

of the dual problem, the nonbasic Ts will become basic.

There are five cases in the updating process of XF1 V

Case 1: If k < r, 0 = 03. this is the situation when a row of XB is leaving

the basis and a row of X is entering the basis. The update of XF is

the standard simplex pivot.
Case 2: If k < r, 0 = 02 this is the situation when a row of XB is leaving

the basis and a row of I is entering the basis. Since X-1 contains

the rows of X in the basis, the dimension of X-1 will be decreased

by 1.

Case 3: If k > r, 0 = 01, XF1 does not change.

Case 4: If k > r, 0 = 03. this is the situation when a row of I is leaving the

basis, and a row of X is entering the basis. The dimension of X will

be increased by 1.

Case 5: If k > r, 0 = 02, this is the situation when a row of I is leaving

the basis and a row of I is entering the basis. The dimension of XF1

does not change.

The algorithm then updates the deviations by

(18) dt - di - POxix k) i=,2,...,n.

The algorithm elso updates the indicators, used for re-ordering purposes.

The iterative process continues until the condition -1 < TBi +1, i=1,2,...,r

and T. <0 or > , i=r+1,r+2,...,m is satisfied.

3. Steps of the Algorithm

In this section a step-by-step statement of the algorithm is outlined.

Step 1. The initial values of IrR are found from the following:

following ..:.-



(i) If Li a < Uj, the j-th element of B, 8j, is set equal to Lj.

(ii) If L < -3<o , set ;. = L."

(iii) If -< j < Uj, set j = Uj. V
After interchanges, = ( F F9RYT, where D R

is a vector of values equal to the upper or lower bound values of the restric-

ted parameters.

Step 2. Formulate the initial basis, XB-

(i) If all the parameters are restricted, XB is an m by m identity

matrix.

(ii) When all the parameters of the problem do not have bound res-

trictions, the algorithm attempts to form the basis matrix XB

by choosing a full rank XF matrix from the coefficients of the

unrestricted parameters. If this procedure fails to create an

initial XB , the algorithm advances to (iii).

(iii) A full rank matrix XB is now formed by including in the initial

basis as many additional rows from thp ideatity of (4) as is

necessary. The 08 s corresponding to these rows are assigned

upper and lower bounds of plus and minus infinity.

Only the values of XF 1and the cnrresponding parameter

indices of XFI are used for the remaining computations.
F

Step 3. Calculate 6F and di based on (7) and (8). Determine the values of

i, I c NB, based on the sign of di.

Step 4. Calculate TBF and TBR based on (9) and (10).

Step 5. Check for the optimality conditions given by (11), (12) and (13).

If these are satisfied, terminate. Otherwise, go to step 6.

_ --. . . L_ = / : . '- .L _- : _ __. .. M I
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Step 6. Determine the value of p from the sign of B where TBkiS the dual

variable most violating a bound restriction.
Step 7. Calculate 01, 2 , 0 31 anid 0 from (14), (15), (16) and (17). :

Step 8. If 0 = 01P a switches to its opposite bound value. Go to step 12.

Step 9. If 0 = 2  the dimension of X-1 is decreased by 1 if k < r. On the
doe F

other hand, the dimension of XF1 does not change ifk>r. Goto

step 11.

Step 10. If 0 = 03 the dimension of XF1 remains the same if k < r. If k > r,F_

the dimension of XF1 will be increased by 1. Go to step 11.
-1F

Step 11. Update XF and the other basic indicators.

Step 12. Update the deviations based on (18), and the values of ui', i c NB,

based on the sign of the updated values of d. Go to step 4.

4. Computational Results

To evaluate the efficiency of the algorithm given here, a FORTRAN ver-

sion of the algorithm presented here called RESLI was tested against the algo-

rithm INTBND developed by Armstrong and Hultz [3]. The INTBND code solves

least absolute value problems with arbitrary linear constraints on the para-

meters. Both codes employ the revised simplex method of linear programing.

The observations for the study have been drawn from various uniform distribu-

tions usiWg a random number generator. All the problems were solved by the

CDC 6600 in the University of Texas at Austin. The results presented inj Table 1 are mean times and iteration counts for a set of 5 problems with the

same characteristics.

1.y
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Table 1

(A comparison between RESLI and INTBND)

Number of Number of Number of Time Number of

parameters observations unrestricted (in CPU milleseconds) iterationsparameters

RESLI INTBND RESLI INTBND

5 50 0 29 56 5 6 "1
5 50 2 75 115 9 I1
10 100 0 158 376 11 18
10 100 5 679 968 31 44
15 150 0 323 1004 14 28
15 150 15 2750 5629 49 144
15 200 0 830 1671 23 37
15 200 10 2111 5463 39 95
20 200 0 1383 3016 32 55
20 200 12 6230 9334 80 1 152
20 250 0 1693 3897 34 60
20 250 14 7565 12566 77 165
25 250 0 1263 5663 27 73
25 250 20 8970 14445 97 251
25 300 0 1311 6086 24 68
25 300 18 14128 18751 139 275
30 300 0 2543 9142 41 86
15 500 10 7644 16872 71 147
15 500 0 1673 4643 26 64

lo g, __1_______ Iim 0 IN

4!,f
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Our computational study indicates that the algorithm RESLI is

consistently faster than INTBND on all problem sizes. Also, RESLI

utilizes a reduced basis inverse and requires less computer storage

than INTBND.

4. Conclusion

Since the time of Laplace (161, minimizing the sum of absolute

deviations has been considered as a criterion for parameter estimation. [
Recently, LAV estimators have been widely examined as a robust estimation

technique 11]and with this interest has come a demand for efficient

algorithms to provide LAV estimates for a variety of statistical models.

This demand has been satisfied primarily by the specialization of linear

programming to take advantage of the distinctive characteristics of the

problem.

This paper presents an approach to solve least absolute value

problems with bound restrictions on the parameters. The algorithm

presented here exploits the structure of the problem to maintain a

compact representation of the basis inverse. All computations required

in the algorithm can be performed by means of a reduced basis.

The algorithm also combines several standard simplex pivots into one.

Computational experience with a FORTRAN version of this algorithm

compared to a FORTRAN version of the algorithm developed by Armstrong

and Ilultz (31 indicates its superiority in terms of computer time

and storage.

=]1
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