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Path-Regular Graphs

W *¥
David W. Matwula and Daanny Dolev

Computer Science Department
Stanford University
Stanford, California 94305

June 1930

Abstract: A graph is vertex-[edge-]path-regular if a list of shortest
paths, allowing multiple copies of paths, exists where every pair of

vertices are the endvertices of the same number of paths and each vertex

[edge] occurs in the same number of paths of the list, The dependencies
and independencies between the various path-regularity, regularity of
degree, and symmetry properties are investigated. We show that every
connected vertex-[edge-]symmetric graph is vertex-[edge-]path-regular,

but not conversely. We show that the product of any two vertex-path-
regular graphs is vertex-path-regular but not conversely, and the iterated
product GxGx ... XG 1is edge-path-regular if and only if G is
edge-path-regular. An interpretation of path-regular graphs is given
regarding the efficient design of concurrent communication networks.

Keywords: concurrent network flow, product graphs, regularity,
shortest paths, symmetry.
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I. Introduction and Summary.

A combinatorial regularity property of a graph is expressed by a
numerical requirement on the consistency of structure within the graph.
The standard property that a graph is regular oI degree k , requiring
simply that each vertex be adjacent to exactly k other vertices, has
received the most thorough investigation in the literature, The more
stringent conditions of "strongly regular" [C78] and "distance-regular"
[B74] have also received considerable treatment. In this paper we
characterize and investigate the regularity of connectivity that can
exist between all pairs of vertices concurrently. This regularity is
realized by the identification of equitable numbers of shortest paths
between all pairs of vertices that at the same time make equitable use
of either each vertex, each edge, or both. To develop the concept of
path-regularity we explicitly specify our terminology for describing
shortest paths in a graph. Other graph theoretic terms not defined here
may be found in Harary [H69].

For n >0, the sequence VorVyseeesVy of distinet vertices of the

graph G , where ViV is an edge of G for all 0< i< n-1, shall

i+l
denote a path of length n ., Paths are assumed unordered, so VgrVyreeerVy
and vn’vn-l"” »Vo denote the same path. Vertices Vo and vn are
endvertices of the path VgrVyreeesVy s with all other vertices of the
path then being interior vertices. The path vo,vl, eeesV is a shortest
path of G whenever any other path with endvertices Vo and Vo has

length at least n , with d(vo,vn) = n then denoting the Jistance between

= and

0 length at least one have a distinct pair of




endvertices. The path Yo

and is also said to have the nondistinct pair Vo1 Vg of endvertices,

of length zero has the single endvertex Vo »

Hence a connected graph may be taken to contain shortest paths between
. every (unordered distinct or nondistinct) pair of vertices,

For the complete bipartite graph Kl,S of Figure 1{(a), every pair
of vertices are the endvertices of a unique shortest path. A list of
all the resulting shortest paths would then have each edge, but not each
f vertex, occur in the same number (5) of paths of the list, providing a
» concept of regularity for the shortest paths versus the edges of K1,5 .
The list of all shortest paths for the cycle C5 of Figure 1(b) would
then have each vertex occur in the same number (6) of shortest paths
and each edge occur in the same number (3) of shortest paths, yielding
a stronger concept of regularity encompassing the shortest paths, vertices,
ié and edges of CS .
4 graph Ks xKé of Figure 1(¢) in composing a path list, then it is

If we allow multiple copies of shortest paths of the

possible to exhibit a list of shortest paths of KB xxé where each pair

of vertices v,v'e‘V(KS xkb) are the endvertices of the same number of

shortest paths of the list and where each vertex, but not each edge, is

ﬁ 3 in the sane number of shortest paths of the list. This then provides

l a concept of regularity for shortest paths versus vertices of Ks xKé .
Formally, let a list (equivalently multiset) denote a finite

collection of elements where multiple copies of each element may occur

in the list. A nontrivial graph G 1is termed vertex-path-regular

[respectively, edge-path-regular] with parameters (k’mv) [respectively

(k,me) ] if an associated list £ of shortest paths of G exists where

every pair of vertices are the endvertices of exactly k > 1 paths of ¢
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and each vertex [respectively, edge] occurs in exactly m, [respectively,

m, ] paths of £ . A graph is strongly path-regular with parameters
(k,mv,me) and associated list £ of shortest paths if it is both
vertex-path-regular with parameters (k,mv) and edge-path-regular with
parameters (k,me) for the same associated list § . For completeness
the trivial graph is taken to be vertex-, edge-, and strongly path-regular

with parameters (k,k) , (k,k) and (k,k,k) , respectively, for every

k >1. Agraph is said to be vertex-, edge-, or strongly path-regular
whenever there exist some parameters for which the graph has the

specified path-regularity property, and a graph is said to be path-regular
if it is at least either vertex- or edge-path-regular.

From our preceeding discussion it is then clear that K1,5 of
Figure 1(a) is edge-path-regular with parameters (1,5) , and CS of
Figure 1(b) is strongly path-regular with parameters (1,6,3) . For
K.j xK2 of Figure 1(c), consider the list § containing two copies of

every shortest path of length at most one in K3 xK2 and one copy of

every shortest path of length two. By direct application of the definition
this list £ is then sufficient to confirm that }% xK2 is vertex-path-
regular with parameters (2,1L4) .

Note that if G is vertex- or edge-path-regular with parameters
(k,mv) or (k,me) » respectively, or strongly path-regular with parameters
(k,mv,me) » then the associated list must have each vertex of G present
as a path of length zero with multiplicity k and each adjacent pair of
vertices of G present as a path of length one with multiplicity k .

Thus it is sufficient to show that each edge occurs in exactly (me-k)

paths of length > 2 of the list to confirm the edge-path-regularity




property, and/or that each vertex occurs as an interior vertex in

exactly mv—kIV(G)| paths of the list to confirm the vertex-path-

regularity property. Consider the wheel W. of Figure 2. Giving

5
multiplicity 2 to the shortest paths of length two with interior

vertex vy and multiplicity 1 to the other shortest paths of length

two, we note that each edge then appears in the same number (2) of

these paths., Hence W_. is edge-path-regular with parameters (4,6) .

5

Alternatively, giving multiplicity 1 to the same paths contalning vy

and multiplicity 2 to the other shortest paths of length two allows

us to confirm that Ws is vertex~path-regular with parameters (5,27) .

The graph Ws is not regular (of degree), so by Theorem 1 of the next
section can not be strongly path-regular. Hence the example W.

)
demonstrates that a graph can be both vertex-path-regular and edge-path-

regular without being strongly path-regular.

Path-regular graphs may be visualized as providing efficient design
of communications networks., Let the vertices of an edge-path-regular
graph with parameters (k,me) represent communication bases in the
network and the edges trunk lines each capable of hosting m, channels
of concurrent communication., The edge-path-regularity property then
allows for k dedicated communication channels to be provided between
every pair of bases concurrently. Furthermore, the channel allocation
is efficient both in that all dedicated channels follow shortest paths
and that every trunk line is used to full capacity. If the constraint
in a communication network is alternatively related to a fixed level of
switching capacity at every communication base, then the vertex-path-

regular graphs indicate efficient network design. The associated lists




'S

Figure 2,

The wheel W5 which is vertex-path-regular
with parameters (5,27) and edge-path-regular
with parameters (4,6) , yet not strongly

path-regular.




of the path-regular graphs, as specified for the examples of Figures 1
and 2, then provide the dedicated channels for such a communication
network interpretation. This concurrent comunication interpretation
provides some motivation and an intuitive appeal to many of our
derived results but is not explicitly mentioned in the balance of the
paper.,

The example graphs of Figures 1 and 2 all possessed considerable
symmetry that was instrumental in the demonstration of the respective
path-regularity properties of these graphs, As succinctly noted by Biggs

in his book Algebraic Graph Theory [B74], "A symmetry property of a grapi

is related to the existence of automorphrisms -- that is, permutations of
the vertices which preserve adjacency. A regularity property is defined
in purely numerical terms. Consequently, symmetry properties induce
regularity properties, but the converse is not necessarily true."

In Section IT we investigate the dependencies and independencies
between the various regularity, path-regularity, and symmetry properties.
Our main result is in accord with the preceeding observation on regularity

and symmetry properties. Specifically, we show that:

(i) a connected vertex-symmetricr/ graph is vertex-path-regular but
not conversely,

(ii) a connected edge-symmetric:t/ graph is edge-path-regular but not
conversely, and

(iii) a connected graph that is both vertex- and edge-syametric is

strongly path-regular but not conversely.

*
—/ Also termed vertex-transitive by some authors.

*¥%
——/ Also termed edge-transitive by some authors.




.;‘ These results insure that many important classes of graphs have a

; path-regularity property. Cycles, cubes and regular camplete k-partite
graphs are strongly path-regular, and any complete bipartite graph is
edge-path-regular. We also indicate in Section II the considerable
extent to which the vertex-, edge-, and strongly path-regular properties
are independent of other graph properties and parameter values.

The fact that a graph is vertex- or edge-path-regular does not

determine the parameters (k’mv) or (k,me) wniquely, but it uniquely
determines their ratio. Hence we define 0(G) = k/mv as the vertex-

i path-regularity of the vertex-path-regular greph G and 5(G) = k/me

as the edge-path-regularity of the edge-path-regular graph G . In

Section III we obtain the following formulas for evaluating o(G) and

p(G) :

For any vertex-path-regular graph G Wwith n vertices and { edges,

( a for G of any diameter,
= [a(v,v')+1]
v,v' € V(G)
O(G) =
-—z-n———- for G of diameter 2,
* L 3n" -n-2¢

and for any edge-path-regular graph G with n vertices and ¢ >1 edges,

( £

b)) d(V’V')
v, v' e V(G)

for G of any diameter

p(G) =

4 . .
L ?(H:I)-—l if G has diameter <2.




A table of values of 0(G) and p(G) is then provided for the major
classes of path-regular graphs. In Section IIT we also derive some
nontrivial necessary conditions for a graph to be vertex- and/or

edge-path-regular involving inequalities between the relative size

of the cuts and separating sets of the graph and the required values
J for 0 and p from the preceeding formulas.

There is an intimate relation between shortest paths in the product graph
GxH and the shortest paths of G and H , This relation is exploited in

Section IV to obtain our major results on the products of path-regular graphs:
*
(1) The product-/ graph GxH 1is vertex-path-regular whenever G and

H are both vertex-path-regular, but not conversely, and

(ii) the product graph GxH is edge-path-regular if and only if G

and H are both edge-path-regular with |V(G)|p(G) = |V(H)|p(H) ,
where specifically GxGx...xG 1s edge-path-regular if and

only if G 1s edge-path-regular,

Finally, in Section V, we propose and discuss several interesting
open questions that arose in our investigation of path-regular graphs,
of which the most intriguing to us is the following: 1Is there an

edge-path-regular graph G with p(G) = r for every nonzero rational r

in the unit interval?

f77Also termed the Cartesian product graph., The product graph is defined
in Section IV.

16
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II. Regularity, Path-Regularity and Symmetry.

The primary goal of this section is to determine the dependencies
and independencies between the various regularity, path-regularity, and
symmetry properties. Our first theorem provides some affirmative
implications between regularity (of degree) and path-regularity
properties. Although the wheel ws of Figure 2 illustrates that a
graph can be vertex-path-regular and/or edge-path-regular without
being regular, Theorem 1 demonstrates that a strongly path-regular
graph must be regular. And conversely, although the property that the
connected graph G be regular of degree k 1is not by itself sufficient
to induce either the vertex- or edge-path-regularity property for G,

the property that the connected graph G be strongly regular is

sufficient to make G strongly path-regular. Note that G is strongly

regular with parameters (il,i2,15) whenever G is regular of degree il R

where also any two adjacent vertices have exactly i, common neighbors,

2

and any two nonadjacent vertices have exactly i, common neighbors.

3

Theorem 1, A strongly path-regular graph with parameters (k,mv,me)
and n vertices is regular of degree (2m.v--kn--k)/me . On the other

hand, any strongly regular graph with paramneters (il,i?,i > 1) an.

3

n > 2 vertices is strongly path-regular with parameters (k,mv,me)

where k=%, %=n%+ﬁﬁbeV2,mdme=%+ﬂﬁdgm.

Proof, Let the n vertex graph G be strongly path-regular with
parameters (k,mv,me) , where £ is the associated list of paths. Any
specific vertex v of G will occur as an endvertex in k(n-1l) paths

of length at least ocne in ¢ , and each of these paths will contain




i
|
!
|

exactly one edge incident to v . Also, v will occur as an interior
vertex in mv-kn paths of § , wahere each of these paths will contain
exactly two edges incident to v . Thus the total number of occurences
of edges incident to v in all paths of g is 2mv-kn-k . But the
total number of occurences of edges incident to v in all paths of ¢
is also given by mexdegree(v) since each edge of G occurs in m,
paths of £ . Therefore degree(v) = (2mv-kn--k)/me for any v in G .
For the second part of the theorem let the graph G = (V,E) have

n >2 vertices and be strongly regular with parameters (il, 12, 13 > 1) .

Let the list § contain i, copies of the zero length path v for every

3

veV , :‘L3 copies of the path v, w for each edge vwe E , and one copy

of the path wu, v, w for every nonadjacent pair of distinct vertices w,weV

and every distinct v adjacent to both u and w . The fact that

every two nonadjacent vertices of G have 1 common neighbors implies

3

that £ contains k = i, > 1 shortest paths between every pair of

3
vertices of G . Any edge vwe E occurs in 13 paths of length one

cf £ . Noting that there are -i_ -1 vertices other than v adjacent

174

to w and not to v and also -i_-1 vertices other than w adjacent

17
to v and not to w, the edge vw also occurs in 2(11-5.2-1) of the

paths of length two of £, so in total in m_ = :'L3 + 2(il-i2-l) paths

of £ . Every vertex veV will occur as an endvertex in ni3 paths
of £ and as the mid-vertex of il(il-iQ-l)/E paths of length two of ¢,

so in total in ni ie-l)/e paths of ¢ . Hence G 1is strongly

5+ (4y-
path-regular with the associated list £ . 0]

12
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As another partial converse to the first part of Theorem 1 we now
derive the following lemma which will be employed in the subsequent

theorem.

Lemma 2. Every graph which is both regular and edge~path-regular is

strongly path-regular.

Proof. Let the n vertex graph G be regular of degree j and
edge-path-regular with parameters (k,me) s wnere § 1is the associated
list of paths. For any vertex v of G , there are jme occurences
of edges incident to v in the paths of g . A total of k(n-1) of
the jme such occurences correspond to v being an endvertex, the
remainder corresponding to v being an interior vertex of the paths,
Each occurence of v as an interior vertex of a path involves exactly

two occurences of edges incident to v in that path, so v must occur

as an interior vertex in [jme-k(n-l)]/e paths of £ . Hence each
vertex v of G occurs in [jme+-k(n-l)]/2 paths of £, so G is

strongly path-regular with parameters (k, [,jme+k(n-l)]/2,me) . 3

As previously noted, the symmetries characterized by the automorphisms

of a graph induce extensive numerical regularity properties, although the
converse implications generally do not hold. 1In accord with this maxim,
the standard vertex and edge symmetry properties of graphs are now shown
to induce the corresponding vertex- and edge-path-regularity properties

while the converses are shown to fail by counterexamples,

i 13




Theorem 3.

(1) Every connected vertex-symmetric graph is vertex-path-regular, but
not conversely;

(i1) every connected edge-symmetric graph is edge-path regular, but nnt
conversely;

(iii) every connected graph that is both vertex- and edge-symmetric is
strongly path-regular. However, there exist strongly path-regular
graphs that are, respectively, not vertex-symmetric aai not

edge~symmetric,

Proof. let G = (V,E) be connected and either vertex-symmetric or
edge-symmetric or voth. Iet k(u,v) be the number of distinct shortest
paths between u and v in G, and let K = lem{k(u,v) |u,veVv} .

Let the list £ contain k*/k(u,v) copies of each distinet shortest path
between u and v for all pairs of vertices of V , so then every pair
u,veV are the endvertices of k* paths of ¢ .

Assume G 1s vertex-symmetric, For each veV , form the sublist £v
caomposed of all paths of § containing the vertex v , For aay v,ueV,
the assumption that G 1is vertex-symmetric means there exists an
automorphism « mepping v into u . Now any path p of £v is
mapped by « to a path, &{p) , containing the vertex u wnhere a(p)
is also a chortest path between its endvertices in G, so a(p) is
in L, - Furthermore, each distinet shortest path between the endvertices
of the path p 1is mapped by a into a distinct shortest path between
the endvertices of the path «(p) and vice-versa for the inverse

automorphism a-l . Thus p has the same multiplicity in £v as a(p)

1k

r-
F,




has in £, 80 |;v| < |£u| . since a} is an automorphism mapping ‘
u into v, |;v| = |£u| , and G 1is vertex-path-regular verifying (i).

Now assume G 1is edge-symmetric and for each edge ecE form the
sublist xe composed of all paths of £ containing the edge e . For i
any two edges e,e' ¢ E , the assumption that G is edge-symmetric means
there exists an automorphism @ which maps edge e into edge e' .
By the same argument as preceeding we then obtain that |£e| = |£e,| i
for any edges e,e'eE , so G 1is edge-path-regular verifying (ii).
Noting that the same list ¢ was utilized in the proofs of both (i)
and (ii) then verifies (iii).

To show none of the converses hold first consider the wheel wj
of Figure 2, W,

5
both vertex- and edge-path-regular, demonstrating that neither the

is neither vertex- nor edge-symmetric, yet it is

converse of (i) nor (ii) hold.
For counterexamples to the converse of (iii) first note that
Folkman [F67; cM78, p. 95] has demonstrated the existence of a regular

graph which is edge-symmetric but not vertex-symmetric. By part (ii)

of this theorem and Lemma 2 such a graph is then strongly path-regular
h without being vertex-symmetric, To demonstrate that a strongly path-
regular graph need not be edge-symmetric, consider the graph C5+C5
canposed of two distinct chordless five cycles along with all edges
between vertices of these distinct five cycles. The list containing
each path of G of length zero or one with multiplicity 7 , each path
of length two in a chordless five cycle having multiplicity 2 , and
each path of length two with nonadjacent endvertices in one chordless

five cycle and midvertex in the other five cycle having multiplicity 1,




! is sufficient to confirm that C5+C5 is strongly path-regular with

paraneters (7,77,11) . Although C +C5 is clearly vertex-symmetric,

5

3 it is not edge-symmetric since some edges are in chordless five cycles

and others are not, completing the theorem, [

From Theorem 3 it follows that the class of strongly path-regular

graphs is quite broad, including all cycles, complete graphs, regular

complete k-partite graphs, and the cubes of every dimension. Also

all canplete bipartite graphs are edge-path-regular. As might be
expected, the condition that a graph be vertex-, edge-, or strongly
path-regular is quite independent of most other typical parameter values
and/or properties associated with a graph, a partial summary of which is

noted in the following.

Corollary 3.1. There exist strongly path-regular graphs of any specified

girth, or of any specified diameter, or of any specified edge or vertex

connectivity, or of any specified chromatic number,

Proof, The cycle Cn is strongly path-regular of girth n and

diameter | n/2] , thus realizing any specified girth or diameter.

The complete graph Kn+l » regular complete bipartite graph Kn n?
i

and n dimensional cube are all examples of strongly path-regular

graphs of edge and vertex connectivity n . The camplete graph Kn

and any regular camplete n -partite graph have chromatic number n .

16
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Two properties of a graph will be termed independent properties

if there are examples of graphs exhibiting all four possible cases:

(a) having both properties, (b) having each specified property
without the other, and (c) having neither property. Figure 3 provides
examples showing that the property that a regular graph be strongly
path-regular is independent of the property that a graph be either

(1) Hamiltonian, or (ii) Eulerian, or (iii) planar. Verification
that the graphs of Figure 3 satisfy the respective properties is
straightforward from standard results in the literature regarding these
properties. To confirm that the cited example graphs are not strongly
path-regular, consider the following: Every edge of an n vertex graph,
other than Kh ; that is edge-path-regular with parameters (k,me) must
have each edge occur in me-k > 1 paths of length at least two in the

associated list., Alternatively:

Observation, If G 1is a graph other than a complete graph where same
edge of G does not occur in any shortest path between any nonadjacent

endvertices in G, then G is not edge-path-regular, hence also not

strongly path-regular.

17
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1
Hamiltonian Not Hamiltonian Bulerian
* Planar Not Eulerian Not Planar
Regular and
Strongly
‘ Path-Regular
| !
|
| {
Regular and ! !
Not Strongly l
Fath-Regular

Figure 3. Graphs showing that the property that a connected regular
graph be strongly path-regular is indenpendent of the
properties that a graph be either (i) Hamiltonian, or

(ii) Pulerian, or (iii) planar.

Now let us return to the primary theme of this section which is to

describe the dependencies and independencies that exist between the various
regularity, path-regularity, and symmetry properties. In Figure L and

the following corollaries we describe the extent to which the vertex-path-
regularity and edge-path-regularity properties are distinct and independent of

other regularity and symmetry properties,

)
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Vertex-symmetric Not vertex-path-regular

Not regular

( vertex-path-regular )
=2
and regular ( = Not vertex-symmetric)

Edge-symmetric

(= edge-path-regular)

Not edge-path-regular
(= Not edge-symmetric) A__,

Figure 4. An indjcation of the independence of regularity,
path-regularity, and symmetry properties.

Corollary 3.2, The property that a graph be edge-path-regular is
independent of the property that a graph be (i) vertex-symmetric,

or (ii) vertex-path-regular, or (iii) regular,

Proof, All possible cases are covered by the examples of Figure k.
Three of the four example graphs are immediately seen to have the
indicated properties. The other graph, K3><K2 s is the classic example
of a grapn that is vertex- but not edge-symmetric, and we need oanly show
that it is not edge-path-regular, From the theorems proved in Section IV
it follows that Kix Kj is vertex symmetric but not edge-path-regular

for any i > Jj >2 . We include a separate proof for K3)<Kb to keep

this section self-contained.
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| Let the six edges of Ks,(Ké that are in triangles be type A

| edges and the other three be type B edges. Note that every shortest
path of length two in Ks)(Ké uses one type A and one typs B edge,
so any list of shortest paths in which every pair of vertices of K3 XKé
are the endvertices of the same numnber of shortest paths can not have

each edge occur in the same number of paths., [

Corollary 3.3. The property that a graph be vertex-path-regular is
independent of the property that a graph be (i) edge-symmetric, or

(ii) edge-path-regular, or (iii) regular.

Proof. All cases for (i) and (ii) are confirmed by the examples of
Figure 4. To show that the property of being vertex-path-regular is
independent of the property of being regular, note that KE has both
properties, Ki,e has neither property, and the wheel W,

5
is vertex-path-regular but not regular, Finally the regular graph of

of Figure 2

Figure 3 (lower right corner) that is Fulerian and not planar and not

strongly path-regular is readily seen not to be vertex-pasth-regular
as the separating vertex would have to be an interior vertex of too

many paths.,

|
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I1I. Evaluation of Path-Regularity.

:
¥

Although knowledge that a graph G 1is either vertex- or edge-path-regular
is not sufficient to determine the parameters (k,m) , it is now shown to

be sufficient to determine their ratio k/m'. The class of vertex- and

edge-path-regular graphs of diameter two are of special importance and

the ratio k/m takes on a particularly simple formulation in that case.

Theorem 4. ILet G be a vertex-path-regular graph with parameters (k;mv)

where G has vertex set [vl, ,...,vn} and [ edges. The vertex-path-

Y2
regularity 0(G) is then given by

( n - for G of any diameter, (1)
) [d(vi,vj)+l]
i<
k
U(G) = E— = <
v
2n ~ .
——— for G of diameter <2, (2)
| Y 3n -n-21

where d(vi,vj) denotes the distance between v, and vy .

Proof, Let G be a vertex-path-regular graph with parameters (k,mv)
and associated list § of shortest paths., The total number of vertices
. in all paths of £ is given by k 2 [d(vi,v.)+l] since each pair
i< J
of vertices Vi vj are the endvertices of k paths of length d(vi,vj)
where each such path contains d(vi,vj)+l vertices. But the total
nunber of vertices in all paths of § 1is also givea by nm since
each vertex occurs in m  paths of £ . Thus k b2 [d(vi,vj)+l] = m_,

i<y
verifying formula (1).
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When G has diameter at most two, § inust then contain exactly
kn paths of length zero, k{ paths of length one, with the remaining

k[n(n-1)/2 - 1] paths of length two, yielding formula (2). O

An analogous result is now stated for edge-path-regular graphs,

where the proof is immediate by the same arguments utilized in the

preceeding theorem.

Theorem 5. Let G be an edge-path~regular graph with parameters (k,me)

where G has vertex set {vl,ve,...,vn} and f >1 edges. The
edge-path-regularity p(G) is then given by
r S S— for G of any diameter, 3)
z d(vi,v.)
i<j J
k
p(G) = -m— = <
e
f .
h—(—ﬁ-_fm for G of diameter S 2 . ()-))
\.

From (1) and (3) we then obtain:

Corollary >.1. For any strongly path-regular graph with n vertices

and [ > 1 edges,

E.(%Y = p(lG) + % n(1+l) . (3)

Formulas (1) ~ (1) allow for straightforward computation of ¢(G)
and p(G) when G is known to be vertex- ani/or edge~path-regular.
Complete graphs, cycles, regular camplete J-partite graphs, and the
cubes of all dimensions are xnown to be strongly path-regular from the

results of Section II, and the values of ¢ and p for these graphs

; 22




Classes of Graphs

vertex-path-regularity

—
—

edge-path-regularity

1
Complete: Kn o 1
n even, n >4 8 5 8
(n+2) n2
Cycle: Cn
n odd, n 2 3 82—- 8
(n+2)"-1 o1
Regular Complete
2 Ji-i
Jj -partite: Ki 5 5 2ji+i-1 ji+i-2
> PEARERD )
\__\/_J
J
j -dimension Cube: Qj __'_’_gfff'__ ‘§5I
(3+2)27 7 +1 2

Product of

Complete Graphs: Ki X KJ.

—2 -
31j-1-3+1

Not edge-path-regular

for i>j>2

Complete Bi-partite: K. .
1y J

Not vertex-path-

i#3d

regular for

ij

PP rigaing

Table 1.

Values of the wvertex-path-regularity and edge-path-

regularity for several important classes of path-regular

graphs.
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are tabulated in Table 1. The product graph Ki)(Kj is vertex symmetric,
hence vertex-path-regular. The value of o for Kix Kj along with the
value of p for the edge-path-regular complste bipartite graph Ki,j
are also given in Table 1. The relation between 0 and g givea by (Y)
is seen to hold for the four classes of strongly path-regular graphs in
Table 1, The fact that Ki)(Kj is not edge-path-regular for i > j >?2
follows from Theorem 8 of Section IV. It is also noted in Table 1 that
Ki,j is not vertex-path-regular for i # j « For this fact consider
that in any list having the same numnber of shortest paths between all
pairs of vertices of Ki,j for 1 > j , the number of times a vertex
occurs as an interior vertex of a path of the list is greater for vertices
of the j membered set than for the i membered set.

Utilization of formulas (1) - (4) as in Table 1 reguires that we
first know that the graphs have the corresponding path-regularity property.
A test to determine if a particular graph is vertex- and/or edge-path-
regular can be developed utilizing the computational procedure of linear

programming. Such a test to determine it a graph is edge-path-regular

is outlined in the following.

A Test for Edge-Path-Regularity of G. E

et P = {pl,pE,...,pj} be the set of all shortest paths of the

graph G . Assign nonnegative weights X; to the paths of F such that:

(i) the sum of the weights X, for all paths of P between the
endvertices v,v' e V(G) is uaity for every pair v,v'eV(G) ,

(ii) the sum of the weights on the paths containing the edge e < E(G)

is less than or equal to =z for every e- k(G) , and




(iii) 2 in is the minimum value of 2z satisfying the constraints
of (i), (ii), where 2 in 81 be found efficiently by linear

programming techniques. From Theorem > we then obtain:

(a) if 1 £ |E(6) | s then G 4s not edge-path-
Znin 2 d(v,v')
v,v' e V(G)
regular,
(b) if —= = |E(G) | , then G is edge-path-
Zmin 2z a(v,v')
v,v' e V(G)

regular, where 2 in is the value of 1/p(G) and integral
parameters (k,me) can be found by rationalizing the
fractional values of x; that are obtained (rational
solution values for xi are guaranteed for such a linear

program).

A test for vertex-path-regularity is readily obtained by an analogous
linear program utilizing formula (1) for the test criteria.

Although such tests can be reasonably efficient when the number
of shortest paths is not prohibitive (e.g. when diameter(G) = 2 ),
they can become computationally intractable. Furthermore, they do not
readily identify general classes of graphs that either possess or fail
to possess a particular path-regularity property. To complement the
results of Section II which determined large classes of graphs that
have particular path-regularity properties, it is desirable to identify
certain necessary structural properties of path-regular graphs whose
absence is then sufficient to insure that certain general classes of

graphs do not possess a particular path-regularity property. Some
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nontrivial necessary conditions for graphs to be vertex- and/or

edge-path-regular are obtained by examining the cuts and separating

vertex sets of the graphs.

Theorem 5. The graph G = (V,E) with vertex set {vl,vz,...,vn} and

1> 1l edges:

(i) can be edge-path-regular only if for any cut (A,A) CE,

l (A’ A) l > _..__.__L.__
lal 1Al T = d(vi,vj)
i<
where further if G has dlameter at most two, only if

(BB) L ; ()
o] &) 5 FEDE

(ii) can be vertex-path-regular only if for any separating vertex set
S c V, such that no edge joins any point of the non-void set

A c V-8 to any point of the non-void set B = V-S-A,

Is| > n (8)
laus| |Bus| > [d(v,,v.)+l]
. . 1" J
i<
where further if G has diameter at most two, only if
S 2
l l 2 5 n . (9)
laus| |BUS| 3n° -n-24
l Proof. Let § bve a list of shortest paths of G such that every pair

of vertices V.o vJ. are the eandvertices of k paths of § , and consider

two cases:
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(1) Assume further that each edge of G 1is contained in m, paths of
the list f . Then for any cut (A,A) c E, note that k|a| |;\|
paths of £ have one endvertex in A and one in A and so must

contain an edge of (A,A) , hence k|A| |A7.‘ < mel(A,}-\)l or

JICYV IR S

lal [A} T e

From (3) and (4) we obtain (6) and (7).

(ii) Assume for this case that each vertex of G is contained in exactly
m paths of £, and let SV separate Ac V-5 fram B = V-S-A .
Each vertex of § is the endvertex of k|V| paths of £, and any
path of ¢ with one endvertex in A and the other in B contains
at least one vertex of §, so k|S| |V|+ k|A| |B] <m |s| and

|s| _ s}
|aj 8| + s} Iv]  |aus| |Bus|

x <
m -—
v

Then from (1) and (2) we obtain (8) and (9). O

Theorem 6 will now be utilized to characterize a large class of graphs

that are vertex-path-regular but not edge-path-regular.

Corollary 6.1, Let G be edge- and vertex-symmetric with diameter at
most two and regular of degree r > L . Then GxK, is vertex-path-

regular but is not edge-path-regular.

Proof. When G is vertex-symmetric and connected Gy K2 will also be
vertex-symmetric and connected, hence vertex-path-regular by Theorem 2.
Iet G have n vertices and { = 525 >2n edges. The cut (A,A)

separating le(? into two copies of G has |(A,;.)\ =n and




|a] = |A] = n, so if GxK, is edge-path-regular from (6) we obtain

|E(ex K,)|

<

Sl

. 10
Z d(v.,v.) (10)
i< d

VisVye V(G x KQ)
Now G)(K2 has 2¢+n edges, which are the number of vertex pairs at
distance one in GxK2 . Furthermore GxK2 has 2[(2) -2]+24 vertex

pairs at distance two, and 2[( g )~ 2] vertex pairs at distance three,

which is the diameter of Gx}(2 o Thus

>
& alvgevy)
1<)

ViaVy€ V(G x K2)

21+n+2(2[(’21) - £]+2£)+5(2[(;)- 2])

5n° - hn-by

But then from (10) noting ¢ >2n,

1 > 24+n

n Sne-hn-hl

5
P4 5n-12 ’

a contradiction. Hence GxK2 is not edge-path-regular.




IV. Products of Pata-Regular Graphs.

Given a class of graphs satisfying a specified symmetry or regularity
property, it is often possible to determine a broader class of grapus
possassing the same symetry or regularity property by performing certain
standard graphical cogposition operations on member graphs of the class.,

For the graphs G and H the product, GxH 1is the griph with vertex
set V(3) xV{H) where (v,w) is adjacent to (v',w') in GxH whenever
v=v' and w is adjacent to w' in H, or whenaver w=w' and v

is adjacent to v' in G . Regarding symmetry, it is straightforward

to show that the product of any two vertex-symmetric graphs is vertex-
symmetric, however, even the product of an edge-symnetric graph with
itself need not be edge-symmetric, e.g, Kl,?’(K1,2 is not edge-symmetric,

Regariing path-regularity properties, deeper relations between graphs and
their products are obiained beyond “hwose attributable simply to considerations
of symmetry. The stronger results are inhereat ia the relation between
shortest paths in G, H , and GxH as noted in the following. If
vo,vl,...,vP is a saortest path from Yo to vi in G and
wo,wl,...,wq is a shortest path from L) to wq in H, then

(VO’wO) ’ (VO’wl) 3 ey (VO’wq-l) ’ (Voqu) ) (vl’wq) ) oo (vp-l’wq) ’ (Vp: Wq)

is a shortest path from (vo,wo) to (vp,wq) in GxH . Thus certain
shortest paths in GxH may in effect be camposed simply by concatenating
shortest paths in G end H . Furthermore, every edge of any particular
shortest path from (vo,wo) to (vp,wq) in GxH is either of type
(v'yw)(v",w) , denoting an edge v'v" of a path from v. to v

0 q
in G, or of type (v,w')(v,w") , denoting an edge w'w" of a path

from w to wq in H , where in fact these paths must be shortest paths




in G and H , respectively. Thus a particular shortest path of GxH
may be decomposed by projections into G and H , determining a unique
pair of shortest paths in G and H . These relations between shortest
paths in G, H, and GxH provide sufficient foundation to obtain

several results on the products of path-regular graphs.

Theorem 7. The product graph GxH 1is vertex-path-regular wheaever

the graphs G and H are both vertex-path-regular.

Proof, Assume G and H are vertex-path-regular with parameters
(kG,!nG) and (kﬂ,mﬁ) » respectively. Then G and H are also
vertex-path-regular for parameters (k' ,mé) and (k' ,m}‘{) where

k' = LCM(kG,}LH,E) and mé = mGk'/kG » with mI:I defined similarly.

let £, be a list of shortest paths of G where each vertex of G

G

occurs in m('; paths of the list, and where every pair of vertices

of G are the endvertices of k' paths of IG . Further assume

these k' paths are then (arbitrarily) divided into k'/2 forward
paths and k'/2 reverse paths. Define I with designation of forward
and reverse paths similarly. The above designations can be viewed as
yielding k/2 oriented paths between every ordered pair of vertices
in G and in H,

Compose a list £ of paths in GxH as follows. For each distinct

pair of vertices (vo,wo),(vp,wq) e V(Gx H) , pair up each of the k'/2

forward paths, from Y to Vp of the list :,G s say VO’Vl""’vp )

with a distinct one of the k'/2 forward paths from w, to v, of

' the list "'1-1 , say wo,wl, ...,wq s to determine a path

(VO’WO) ’ (Vl:Wo) ) seey (Vp_l;WO) ’ (VP:WO) ’ (VP:Wl) 3 ece s (Vp’wq-l) ’ (VP:Wq)
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of £, and also pair up each of the k'/2 reverse paths vp,vl')_l,...,v]'.,vO
of the list g, with a distinct one of the k' /2 reverse paths

wq,w('l_l, ...,wi,wo of .:H to determine

(Vpqu) ’ (Vi)_l:"q) » seey (V]'_:Wq) ’ (VO’wq) ’ (VO’w:l-l) 2 eeey (VO)W_-'L) P (VO’WO)

of £ . The forward paths can be viewed as oriented fram (vo,wo) to
(vp,wq) in GxH , and the reverse paths as oriented from (vp, wq)
to (vpWy) in GxH . Also include k' copies of the single vertex

path (vo,wo) in g for each (vo,wo)ev(GxH) .

Thus for every pair of vertices of GyH , the list ¢ contains
k' shortest paths between those vertices. Each vertex (v,w) of GyxH
is then an endvertex of k'|V(GxH)| paths of £ . The paths of ¢ in
which (v,w) is aa interior vertex may be divided into three subclasses.

Each of the mg, - k' [v(c)| paths of g, containing v as an interior
J

vertex is utilized in forming |V(H)| paths of ¢ in which (v,w) is

an interior vertex. Similarly, each of the m}'i-k' |V(H)| paths of :’H
containing w as an interior vertex is utilized in forming |V(G)|
other paths of g in which (v,w) is an interior vertex. Finally,
there are (|v(G)|-1)(|v(H)|-1) pairs of vertices (v',w),(v,w') of
GxH with v' £ v, w' #w, where each such pair are the endvertices
of k'/2 other paths of ¢ containing (v,w) as an interior vertex.
This accounts for all occurences of (v,w) in the paths of g , and
confirms that (v,w) occurs in the same number of paths, specifically
mé‘V(H)‘ + m}'1|v(c)| - %'— (\v(exH) |+ |V(G) |+ |v(H)| -1) , for any

(vow)eV(GxH) . Heace GxH is vertex-path-regular. 0O




T T

Surprisingly, the converse of Theorem 7T does not hold., Specifically,
it is straightforward tou show by enumerating appropriate paths that
(B XK1,2 is vertex-path-regular with parameters (2,24) , even though
K1,2 is not vertex-path-regular.

Explicitly contained in the proof of Theorem 7 is the fact that the
parameter k' for GxH can be as small as the least common multiple
of kG and kH except for only an adlitional factor of 2 wnen kG

and kH are both odd.

Corollary 7.1. If G and H are vertex-path-regular with paramneters
(kG?mG) and (kH’mH) » then GxH is vertex-path-regular for parameters

(kaH’meH) where kaH = LCM(kG,kH,z) .

To achieve the edge-path-regular property for a product grapn,

GxH , of edge-path-regular grapns G and H , we mist be able to
choose respective parameters (kG,mG) and (kH,mH) so that (i)
the number of occurences of a vertex of G as an endvertex in the
associated list xG » Eiven by |V(G)|kG » is the same as the number
of occurences of a vertex of H as an endvertex in the associated
list &, » given by ‘V(H)|kH , and (ii) the edge multiplicities
m, and m, are equal. The quantity, |V(G)|p(G) , is termed the
end-degree of the edge-path-regular graph G , and its critical

significance is evident in the following theorem.

Theorem 8, The product graph GxH is edge-path-regular if and only

if G and H are both edge-path-regular of the same end-degree, i.e.,
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with |v(G)|p(G) = |V(H)|p(H) . Furthermore, if GxH is edge-path-regular,
then GxH, G, and H all have the same end-degree and

p(GxH) = pla)/|vH)| = pH)/ V(@] . (11)

Proof. Assume G and H are edge-path-regular with the same end-degree,
We may then assune G and H are edge-path-regular for the parameters
(k,mG) and (k,mH) where ]V(H)l/mH = |V(G)|/mG - Let g, bea

list of shortest paths of G where each edge of G occurs in m, paths

G
of the list, and where every pair of vertices of G are the endvertices
of k paths of G . Define o similarly. By the same construction
utilized in the proof of Theorem 7, compose a list § of shortest paths
in GxH . PFor every pair of vertices of GyxH , the list ¢ as
previously noted contains k shortest paths with those vertices as end-
vertices. Furthermore, each of the mG paths of £G containing wvv!
as an edge is utilized in foming |V(H)| paths of £ containing
(vyw){v',w) as an edge for each we V(H) , and these are the only
occurences of (v,w)(v',w) as an edge in the paths of £ . Similarly
eacn of the My paths of 5 containing ww' as an edge is utilized
in forming |V(G)| wpaths of £ containing (v,w)(v,w') as an edge
for each veV(G) , and these are the only paths of ¢ :containing
(vyw)(v,w') . since mG|V(H)| = mH|V(G)| » GxH is edge-path-regular.
Assume GxH 1is edge-path-regular, and that £ is a list of
snortest paths of G xH where every pair of vertices of GyxH are
the endvertices of Kk paths of ¢ and where each edge of GxH
sv_eV(G) , each of the

o°'p
(2]
k|V(H)|" paths of £ with endvertices (vo,w) and (vp,w') for some

occurs in m paths of f£ . For any fixed v




w,w' € V(i) identifies [by considering only the constituant edges

(v',w*)(v',w") ] a shortest path between v, and v. in G . For each

0 P
of the |V(G) \2 ordered pairs of vertices of G we then so identify
k|V(H) \2 paths of G, and out of all these paths exactly m|V(H)]|

of them will contain any specified edge vv' e E(G) . Hence G is
edge-path-regular with p(G) = |V(H)|p(GxH) . The corresponding

argument for p(H) then campletes the theorem, O
Analogous to Corollary 7.1 and by the same reasoning we obtain:

Corollary 8.1. If G and H are edge-path-regular with parameters
(kG,mG) and (kﬂ’m}{) where ‘V(G)lk(}/mG = lV(H)lkH/mH, then GxH
is edge-path-regular for parameters (k
kovu = LCM(kG,kH,2) .

By noting that the process of constructing the paths of GxH in

m where
GxH 3x H)

the list § from the paths of the associated lists ,\:G and :'H was

identical in Theorems 7 and 8, we obtain:

Corollary 8.2. The product graph GxH is stroagly-path-regular
wnenever G and H are both strongly-path-regular of the same end-

degree.

For an iterated product Gy Gx...xG of a path-regular graph

we immediately obtain from Theorems 7, 8 and their corollaries:

Theorem 9, For the graph G 1let G[l] = G, and G[‘ﬂ = st(‘j'l]

for j >2 ., Then forany j >1

3
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(i) G[J] is strongly path-regular with parameters (k,m‘[r'j],mg'j])
whenever G 1is strongly path-regular with parameters
(k,m‘[,l],méll) anl k 1is even.

(ii) G[j] is vertex-path-regular with parameters (k,mE'J]) whenever
G 1is vertex-path-regular with parameters (k,m‘[rl]) and k is
even.

(iii) G[J] is edge-path-regular with parameters (k,me|V(G)|‘j-l)

whenever G 1is edge-path-regular with parameters (k,me) and

k 1is even.

Significant from Theorem 9 is the ability to readily identify a

large class of graphs from which the edge-path-regular property does
not derive from the edge-symmetry property. For example, the graph
K,L;’I]l for any j >2 anl any m f n is edge-path-regular by Theorem 9,
but is clearly not edge-symmetric.

k For cases where G is vertex-symmetric, Theorem 9 demonstrates

’ that G{j] is vertex-path-regular for parameters (k,mv) where k can
be chosen independently of j . This is in sharp contrast to the
dependence of k on J that would be implicit from the earlier proof
of Theorem 2., More specifically note that there are m! distinct
shortest paths between opposite corners of the m-dimensional cube Kgm] .

Yet from Theorem 9 it is possible to specify just two shortest paths

between any aad every pair of vertices of Kém] such that the resulting
list of shortest paths has the same number of paths containing any

specified vertex and the same number of paths containing any specified

edge,




V. Open Questions Regarding Path-Regular Graphs.

The previous sections have developed some fundamental properties
regarding path-regular graphs. At the same time some interesting
questions have arisen that suggest further directions for research

concerning the property of path-regularity.

Question 1. Given that p(G) is always rational and in the range
0 < p(G) <1, is there an edge-path-regular graph G with p(G) = i/J

for any rational 0<i/j<1?

Comment. From Table 1 it is seen that p(Ki j) =1/ for j>1,
] s Z

and p(K2 2) = (j-1)/§ for any j > 2, yielding the extreme

’2’-.-,
J
irreducible fraction values for the range 0 < i/j <1 . Many other

intermediate rational values are obtained by the classes of edge-path-
regular graphs so far identified, and composition rules such as in
Theorem 9 provide further classes of achievable rational values for o .
The more comprehensive problem of characterizing all realizable parameter
values (k,mv) , (k,me) and (k,mv,me) for vertex-, edge-, and strongly
path-regular graphs may also yield interesting results, but appears less

traztable.

Question 2, For which directed graphs D is it possible to construct a
list £ containing exactly one directed path between each pair of
vertices, such that each vertex and/or each directed edge occurs in the

same nurnber of directed paths of ¢ ?

Comment . From the discussion at the end of Section IV it is clear that

the symmetric directed graph whose directed edges correspond to the edges of




the m-dimensional cube Q = Kgm]

n

has the property described.
Furthermore, the constructions utilized in the proofs of Theorems 7

and 8 should provide for the identification of numerous classes of
directed graphs having this desired property. Such graphs could be
applicable to the problem of synthesis of communication networks
requiring a single dedicated directed channel concurrently between

every pair of vertices where the network must utilize the same type

of multichannel cadle for all arcs., A more comprehensive task would

be to develop and investigate the concept of path-regularity for general

directed graphs.

Question 3, Is there a good characterization for the classes of

vertex-path-regular, edge-path-regular, and strongly path-regular graphs?

Comment. Several results in this paper lead to the conclusion that
a simple characterization of path-regular graphs may not be possible.
The fact that many nonsymmetric as well as symmetric graphs have particular
path-regularity properties probably precludes a coanstructive approach
starting from a limited set of path-regular graphs and using identified
composition procedures, The fact that 05)<Ki’2 is vertex-path-regular
even though Kl’2 is not, suggests further difficulties in fashioning a
characterization. Attempts at characterization using procedures similar
to the linear programming test of Section III probably will yield only
variations of the definition of path-regularity rather than genuine
alternative characterizations. A more promising approach is to generalize
and extend the concept of cut [M30] and separating vertex set as employed

in Theorem 6 in view of the Mengerian duality [H69, p. L7] that exists in
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the non concurrent case, i.e., regarding paths between a single fixed

pair of vertices and their separating cuts and vertex sets.

As a final observation we note that many simplifications and
further specialized results for path-regularity properties can be
obtained regarding the specific class of graphs of diameter 2,

and we are pursuing that approach in a subsequent paper [DM 50].
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