Report No. STAN-CS-86-784

LEVEL

RECENT DEVELOPMENTS IN THE COMPLEXITY
OF CCMBINATORIAL ALGORITHMS

by

Stanford Department of Computer Science éi } June 1880

Robert Endre Terjan

ADADD1122

!
Research sponsored by X
Neztional Scieace Feundation "
and ’ §
Office of Naval Reseazch i3
3!
COMPUTER SCIENCE DEPARTMENT 2
Stanford University 2
|
i
;. 3]
[‘,\/5\ N
1 <t pﬂf /
Ay A3 -
e | Setre ‘
- » .\,"v o y '.’
: o PN
CD g wr 3 e
£ A 5 L)
= P ¥ e
m * :‘\’ ot P =
O T e
CANZEY
- e % #
o - (Y SRR

UL CLASSIFIED

—_ ——

e . ——— ——

STCURITY CLASS FICATICN OF Twm & PAGE

ynen Data Enteredl

'ORT DOCUMENTATION PAGE RE4AD INSTRUCTIONS
REPOR: DO : BEFORE COMPLETING FORM
T OREFCAT NUVBER 2 GOVY 4CCESSINN NO | 9 RECIPIENT'S CATALOG MNUWBER

1?7 REPCRY DATE 13 KO. OF PAGES

71 CONTROLLING GFFICE NANME AND ADDRESS
O0ffice of Raval Research
Department ci the Nevy

June 1980 28

siiyors-B0-7ok D-Ap1r 452
4 TaiTee tarnd Summn! 5. TVFE OF REDORTY Z PERIDD COVEHED
Acueat Developments in the Corplexity of - technical, June-i586— —— .
Coroinatorial Algorithms ?i P /b t . .
5 v & // PRI P , 1. /_,1-;4 //
i
-6 PERCOAMING ORC REFORT-NUVSER— -
1 -
7. AGTHORLz: B - 7 STAN-CS-80-T9k
- ' s 3 - B. CONTRACT ORCRANT NUMBER(s!
1 oo Y /
- - ! 4
) Robert .:..cre/l'araa.n ‘ II/ u uh // 7 5 NST MCS-T7826856... ... o
{ .
- .) ONR NGOOL4-76-C-0230
—— Y Cwn 74 - >
- WS R Y 1= /
S§ PER OR\AING ORGANIZATION AAME AND ADDRESS _ 110~ 2ROG ROM- CL!:M‘NT->~PROJE-CI—T' 4
Derariment of Computer Science | /’/ ! Y, AREA & WORK UNIT NUMSERS
S:"nfo d Unaversity Y. 4 ; e 7_//
Svenford, Calitornia 943J5 USA L

15, SECUHKITY CLASS, {9f this cepary!

Durand Aeromautic 3uildinsz
<%]

Ardingien, Virginia 22217 Unclassified
14 MONITORING AGENCY NAME & ADDRESS of d.ff. from Controlling Offize)
OiR Representative - Philip Surra
15a. DECLASSIFICATION/DOWNGRADING

Roem 165

SCHEDULE

Stanford University.

16. DISTRIBUTICON STATENMENT (of this report)

Approved for public release; distribution unlinited.
g4 k= 3

17. CISTRIBUTION STATIMENT (of the abrtract entered .n Biock 20, if different trom rapory

18. SUPPLEMENTARY NOTES

o

. REY VWOATS (Continue on reverse side f nesessary and :dentifv by block aumber)

——

4 < P
\see other sige)

20 ABSTRACT (Continae on reverse side i necessary snd dentify by Fiock number)

2D 1473 _ UHCLASSIFIE

-‘«.

S Fer LT
JAT =)

)

EDITICN OF 1 NOV 65 IS OBSOLETE

\)i/

SPC"RITY CULASS.FICATION OF THIS PAGE .When Oata Sntered)

% e o g amen o

RN

L OO L

Pean.)
UHCTASSIFIED
SECURITY CLASS'FICATION CF THIS PAGL (Mner: Data £ niered)
19 KEY WORDS (Continuved)

il

e

<0 ABSTRALT (Continued?

Abstract. \/

The last three years have witnessed geveral major advances in the area of
combinatorial algorithms,cﬁféginclude improved algorithms for matrix mul-
tiplication zad maximum network flow, a polynomial-time algorithny for linear
programming, and steps ioviard 3 polynomial-time algorithm for graph isomor-
phista. This paper surveys these results and suggests directions for futurs research.
Included is a discussion of recent work by ike zuthor 2nd his ctudents on dyzamic
dictionaries, network flow problems, end related questions.

rt

t
i

915 TRAMN V4 ly S LSS UNCLASSIFIED

EDITION OF 7 NOV 65 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (Wren Daia Intersd)

» Complaxity of Combiuatorial Algorithms

2 YUV I P
Recent Dovelopmets in

Roberi Endre Tarjan
Computer Science Department
Stanford University
Stanford, California 94205

June, 1980

Abstract.
The last three years bave witnessed several major advances in tke area of

combinatorial algorithms. These include improved algorithms for matrix mul-
tiplication and maximur network flow, a polynomiai-time algorithm for linear
programming, and steps toward 3 polynomial-time algorithm for graph isomor-
phism. This paper surveys these results and suggests directions for future research.
Included is a discussion of recent work uy the author and his students on dynamic

dictionaries, network flow problems, and related questions.

Presented at the Fifth IBM Symposium on Foundations of Computar Science,
Hakone, Japan, May 26-28, 1880.

This research was supported in part by National Science Foundation grant MCS-
7826858 and by Office of Naval Research contract N00014-76-C-0330. Repro-
duction in whole or in part is permitted for any purpose of the United States

government.

wl L A

== S e e ——IRE. N \—&"'% 3

1,

Reecnt Developments in the Complexity of Combinatorial Alzorithms N

Rcbert Endre Tarjan
Computer Science Department
Stanford University
Stanford, California 94305

4 1. Introduction.
In a 1978 paper (Tarjan [1978]), the auihor surveyed the then-current state
E of knowledge concerzing comrinatorial algorithms. Since the time that paper was
published, researchers in the area have obtained several major new results. These
3 include a sequence of more-and-more efficient algorithms for matrix muiliplics-
tion, a similar sequence of algorithms for maximum network flow, a polyneauai-
time algorithm for linear programming, and a number of new approaches to graph
isomorphism. In this paper we sbhall examine these recent advances, attempt to
3 access their significance, and suggest directions for future research. The paper in-
: cludes an examination of recent work by the 2uthor and his students on dynamic
: dictionaries, maximum flow problems, and related topics. Much oi ihe work we
3 shall describe is still uapublished.
. Before beginning this survey, it is useful to review the general framewurk
] :n which we shall view combinatorial algorithms and their complexity. We are)
interested in sequential algorithms; that is, in algorithms that perform only one .
step at a time. As a computer model, we use either a random-access machize “sith '

M uuniform cost measure (Aho, Hepereft, aad Ullman [1974]), or a pointer machine
/38 (Tarjar [1579]). With either machine model we can perform a single arithmetic -
' E or logical operaiion in constant time, and we can store or retrieve a single piec: *

of information in constart time.
The difference between random access machines and pointer machines lies in

\ a one-dimensicnal array of cells, each capable of holding a single piece of infor-
g mation (such az a real number). The memory of a pointer machinz is a linked
: structure consisting of a coliaction of nodes linked by peinters; each node consists
of a fixed finite number of fields, some of which are designated as containing
g pointers to other nodes. See Figure 1. Random access machines seem inherently
5 more powerful than pointer machines, since we can perform arithmetic en array
addresses but not on pointers. However, this difference in power amounts to at
most a factor of log n in running time, and in fact the algorithms we shall discuss
have the same asymptotic running times on either random-access machines or
pointer machines.

[Figure 1]

As a complexity measure we use the worst-case running time of an algorithm
as a function of the size of its input. We shall ignore constant factors. For graph
problems we shal! use n, the number of vertices, atd m, the number of edges, to
measure the input size. For algorithms that manipulate real numbers, measuring
input size is more problematic. The issue iz whether we should allow rational
" numbers of arbitrary precision (or even irrational numbers) as input, and count
any arithmetic operation as a single step, or whether we shou!d measure the size
of real numbers by the number of bits needed to represent them, and count each
bit operation as a single step. The former approach is truer to the spirit of al-
gebraic complexity, and we shall adopt it in the case of matrix multiplication
and maximum npetwork flow. The latter approach is more reasonable if we are
interested in issues of NP-completeness, and we shall adopt it in the case of linear
programming.

The paper comprises 7 sections. Section 2 examines the recently diccovered
ellipsoid method for V' sear programming and its implications for combinatorial
complexity. Section 3 discusses graph isomorphism. Section 4 surveys new work
on matrix multiplication. Section 5 zxamines recent results on dynamic dic-
tionaries, and Section 6 discusses network flow. Sectior 7 contains conclusions
and remarks about promising directions for future research.

LI A 0% Tl L

D ot e 0 200 10 B gt

R

T

o LA L O i

L A g

A G AL L £ A gl

2. Linear Programming.

Garey and Johnson’s beok on NP-completeness (Garey and Johnson {1979])
concludes with 3 list of problems whose stalus with respect to NP-compleieness
was unknown at the time the bosk was pubiished. A promizent problem on
this list is linear programming, which can he defined 2s follows: given a set of
linear inequalities a;z < b; for 1 < { < m, dnd a 7sctor = that satisfies these
inequalities and maximizes ¢z = ¢;2; 4+ - + ¢o2,. Here z = (23,...,2z5) I8 2
vector of n variables, each a; is a vestor of n real numbers, and the §;'s and ¢;’s
are real numbers.

There is a well-known 2nd empiricaily efficient aigorithm for linear program-
ming, Dantsig’s simplex method (Dantzig [1951]), but ihis algorithm runs in ex-
ponential time on certaia sets of input data (Klee and Minty [1872]). However,
Khachiyan {1979] managed to prove that a completely different method based
upon ideas of Shor {1970, 1677] zclves the linear programming problem in polyno-
mial time. The algorithm, which we shall call the ellipsoid method, is surprisingly
simple, and in retrospect it is a3 wonder that it was not disccvered many years
previously.

The key idea of the method is to use binary searck, maintaining an ellipsoid
that bounds the set of solutions. We shall aesume that the a;'s, 3;’s and ¢;’s
consict of integers, and that the size of the izput is measured by the numbsr of
bits £ required to write down all these integers in. binary. We note first that if the
function cz has a finite maximum, then the value of z achievicg the maximum
has a number of bits polynomial in £. If we add to our set of inequalities an
inequality cz > a, where a is a parameter, we can use binary search on & i
determine the maximum value of a for which a feasible solution exists.

Thus we have reduced our original optimization problem to the probiem of
solving a polynomial number of feasibility problems of the following form: given a
set of inequalities a;z < b; for 1 < ¢ < m, is there some value of z that satisfies
all the inequalities? By means of a second transformation (perturbing each ¥; by
a sufficiently small value) we can make all the inequalities strict.

Now we come to the heart of the matter. In order to search for feasible solu-
tions, we construct an ellipsoid guaranteed to contain at least a certzin volume of
solutions if there are any solutions at all. It suffices to choose a sphere ceantered
at the origin with sufficiently large (but polynomially bounded) radius. We then
repeatedly reduce the size of the bounding eilipsoid until either we find a solution
or the bounding ellipsoid is so small that it can’l contain any solutions, and thus
there are no solutions.

To carry out a general step of this reduction process, we test the center z
of the ellipsoid for feasibility. If z satisfies all the inequalities, we are done. If
not, we ind a violated inequality a;z > ;. We then construct a new ellipsoid

4

éﬁj
=

i

a8

.
Sl R

i "mlﬁiiﬂﬁmﬁi!n.ﬁm{'"“ i

D YA 1 1
.

containiug those points in the old eliipsoid that sztisfy a;z < b;. See Figure 2.
The crucial poiut is that the volume of the new ellipsoid is smaller by a constant
factor {deperding polynomially on 1) than the volume of the old ellipsoid; thus
after a polynomial number of steps either we find a feasible solution or we can
terminate the process and declare that no solutions exiat. For further details of
the algorithm, sec Gacs end Lovas [1979] oz Aspvall aad Stone [1579].

[Figure 2]

Kkachiyan’s discovery has led to an explcsion of research on related issues.
Of primary interest are the questions, *Is the algorithm efficient {or can it be made
$0)?” and “What implications doex the algorithm have for other combinaterial
problemaz?” As a tentative answer to the firel question, it seems that the ellipsoid
method is pot competitive in practice with the simplex method, although ihis
matter deserves further study.

The tkeoreiical implicstions of the ellipsoid method are more interesting.
The algorithm does not depend beavily on linearity, only on the convexity of
the solution space. Indeed, Kozlov, Tzrasov, and Khaciyan {1579) have extended
the algorithm fc convex quadratic programming. On the other hand, the linear
casz is the most interesting from the poind of view of combinatorics. A standard
techiique of operations researchers is to use linear programming o attack integer
programming problems. The idea is to define an integer programming problem
os a linear programming pioblem with a large (poseibly exponentizi) number
of inequalities, in such a3 wav the inequaiities defining ths problem are easy to
generate. Karp and Papadimitriou {1972} have proved a negative resalt for this
approach. any NP-complete combinatorial eptimization problem cannot be poly-
nomially characterized by a set of linear inequalities, unless NP = co-NF. By
“polynomially characterized” we mean that the set of inequalities is in NP; that
is, given an inequality that is in the set we can construct a polynomial-length
proof of this fact. Since it is unlikely that NP = co-NP, this means that any
combinatorial optimization problem that can be polynomially characterised by
inequalities is uniikely tc be NP-complete.

In order {c run the 2llipzoid method, we do not need aa explicit listing of
all the inequalities defining the problem buf oniy a way to test whether a point
is feasible and to generate a violated inecuality if it is rot. Suppuie we have a
combinaterial epimization problem for which it ie pussible o lest feasibility and
generate a violated inequality in polynomial time. Th-n by means of Khachiyan's
algorithm we can solve the combinatoriul sptimisation proviem in polynomial
time (if certain other weak ccmditions are saiisfied). Karp and Papadimitriou
and inderendently Grotschel, Lov4ss, acd Schrijver {1980} made this observation,

5

i

WAUEE WA A

wbich implies that NP-complete probleme are unliely $o have poivnomisl time

generators of violated inequalities. The resvlt also means Lkt the ellipsoid method .
is in some sense-a universal methed for cembigaterial optimization nroblems, and
it can be used to generate new fast algoritkms. For instance, Grotechel, Loviss,
and Schrijver have derived a rolynomisi-time algorithm for verlex packing in
perfect graphs. This area appears to be ripe for furtber wotk. For an exceileat
non-technical discussion of Khachiysn's aigorithm and its implication for com-
binatorial optimisatior, see Loviss {1980

b Aol e

S NN AL S A KU RS SRS O VA e g

3. Grapk Izomorphlsra,

Ancther of Garey and Johnson’s open problems is graph izomorphism: given
twe nudirecied grapes Gy and Gy, determine whether there is 3 one-to-orne map-
ping of the vertices of G; cnto the veriices of G, that preserves adjacency. This
probien tas a number of applications, especially in the cataloguing of chemical
mclecules. Although no one has ret discovered a polynemial-time algorithm for
graph isomorphism, much progress has beea made recently.

tdost of the early algorithms for graph isomorpbism (zee for instance Corneil
and Gotlieb {1970}, Read and Corneil [1977}) combine backirack search with
2 partition refinement method to reduce the size of the search space. Such a
method is very eificient in practice but requires exponential time on some higaly
symmetric graphks, because the refinement scheme becomes useless. For various
special classes of graphs, efficient algorithms are known. These classes icclude :
trees (Abo, Hoperoft, and Uliman [1974]), pianar graphs (Hopcroft and Tarjan
{1972], Hoperoft ard Wong [1974]), series-parallel graphs (Valdes, Tarjan, and
Lawler {1679}), and interval graphs (Cclbourn and Booth {1978]), for which linear-
time algorithms exist. The tree isomorphism algorithm depends upon clever use
of lexicographic sorting. The algorithms for series-parallel graphs and interval N
graphs are siraightforward extensions of the algorithm for trees. The algorithm
for planar graphs combines the tree isomorphism algorithm with a lincar-time
decomposition into triconnected components (Hopcroft and Tarjan {1973]), and
a reduction method for triconnected embedded planar graphs. The method is
fast for three reasons: the reiationship among triconnected components can be
represented by a decomposition tree, a triconnected planar graph has only two
planar embeddings, and there is a linear-time aigorithm for embedding a planar
graph (Hopcroft and Tarjan [1974]). Recenily Lichtenstein [1980] has discovered
a polynomial-time isomorphism algorithm for graphs embeddable in s projective
piane, and Miller {1980] and Filotti and Mayer [1980] have found a polynomial-
time isomorphism aigorithm for graphs of any fix=d geaus. These methods com-
bine fast embedding algoritams (Filotti, Miller, and Reif [1979]) with a careful
analysis of the ways a g-aph can be embedded in a surface of the appropriate
genus.

Other researchers bave attempted to use degrez consiraints or symmetry
properties to aid in testing isomorphism. Miller [1977] showed that isomorphism
is in co-NP for arc-transitive trivalent praphs; that is, if two such graphs are
nor-isomorphic, thre is a polynomial-lsagth proof of this fact. Lipton [1980]
discovered an nOU°8™) _tima isomorphism algoritbm for arc-transitive trivalent
graphs, and Babai [1980] found an nO(/#198™) _time ajgerithm for strongly regular
graphs. The major breakthrough was Babai's discovery (Babai [1979]) of a random

7

S b A
[RLTY L O] TR A]

§

it
|

|

J

i

T

|

f
%ﬁi&iﬂ.ﬂgﬁm&

polynomial-time algorithm for vertez-colored graphs with bounded color muiti-
plicities. Babai’s werk is impertant much more for his technicues than for the
specific results to be obtained. He was able to use properties of the sutomorphism
group of a graph, describing this group by meauns of a tower of subgroups, in
such a way that one could quickly consiruct the tower. This work was extended
by Hoffman {1980], who found a random nCR98%).tine algenthm for a ciass of
graphs called “cone graphs®. Fusst, Eoperefi, and Luks (private communication)
made Babai’s methods determinisiic and generslized Hcfman’s aigorithm ¢s test
isomorphism of trivzlent graphs determisistically in 007} time. Luks [1980]
reduced the running tirme of the algorithm for trivalent graphs to polynomizl and
found an nOls ™ time algerithm for graphs of any fixed valence.

Extrapsolating this work, it seems likely that a polynomial-time isomorphism
algorithm for graphs of any fixed degres will sson be discovered. Whether this
will lead to a polynomial-time algorithm for the general problem is less clear.
Much of the recent work on isomorphisia depends hearily on properties of finite
groups, and a complete solutior may require naw resulls in group theory or ab
least ingenious use of old ones.

4. Matrix Multiplieation.

Not ali retearch in combinatorizl complexity has besn dewated to finding
polynomial-time zlgoritams for problems not knowr to have them. Much effort
has also been devoted to finding faster algorithms for probiems already known
to be zolvable in polynomial time. For example, let us examine recent progress
on matrix multiplication. See Tabie 1. The classical algorithm foz this problem
multipliez two n X n msirices in O(n®) time. Strassen [1969] discovered 3 way to
multiply two 2 X 2 matrices with only seven muitiplications, and using this obser-
vation constructed a recursive algorithm to multipiy s X n matrices in O(n'c8s7)
time.

[Tzble 1]

Afier a hiatus of nine years, Pan [1978] found = slightly fasier (O(n*7%)
vs. O(n**%%)) methed. Pan used sa ingepious and complicated technique called
“aggregating, uniticg, and cancelling.” A key point in Pan’s approach was o
use fairly large size matrices (n = 70j as the batis for the recursion, rathr than
very small matrices {n = 2 or 3 or 4). Shoriiy after Pan’s resuit appeared, Bini,
Capovaai, Romani, and Lotti [1979] introduced a notion of ®approximate” matsix
multiplication, and produced an O{n?7%) -time alzorithm to multiply matrices in
this approximate sense. Schonhage [1979] showed ikal any approximate matrix
multiplication aigorithm can be converted into an exact ope, and ke further
showsd that any method for multiplying sparse matrices can be converied into a
method {o muitiply dense ones. The culmination of SchSnhage’s advances was an
O(r25%%%) _time algorithm. Subsequent work by Fan, Schonhage, and Winograd,
using = combination of these technigues, has produced a sequence of fastcr-and-
faster algorithms; the best bound currentiy claimed is O{n?4%t), due to Pan
(private communication). Pan has recently writien a long paper (Pan [1930]) sur-
veying these developments. It may be possible {o multiply matrices in O(n+%
time for any positive ¢; certainly the receat resulle lead in this direction.

0 Y p———

§
3
Z
=
2
3
‘:é
3
.3
;i‘_%
=
E|
E
=
g
E
2
3
=2
2
%
;_,_%
=
2
3
%
%
E

5. Dynamie Dictionaries.

Fast algorithms require the use of appropriate data structures, some of which
are quite complicated. In this section we shall examine efficient ways to represent
one important type of data structure, called a dynamic dictionary. A dynamic
dictionary consists of a collection items, each with an associated key. We assume
that the keys are totally ordered and can be compared; we furtker assume that
no two keys are the same. We are interested in performing the following kicds of
operations ca dynamic dictionaries:

(a) Given a key, access the item (if any} with this key.

(b) Insert a new item in the dictionary.

5 (c) Delete a given item from the dictionary.

- - {d) Merge two dictionaries into a single dictionary. !

- (e) Corcatenate two dictionaries, such that al! keys in one dictionary are smaller
than all keys in the cthe:. -~ 3

- . {f) Split a dictionary on a giver key into 2 dictionary containing all keys no]

- larger than the given key and a dictionary containing all keys larger than the

given key.

Dynamic dictionaries have widespread uses in computer science; see Knuth
[1973]. There are a number of *ays to represent such dictionaries. If only accesses
and insertions are to be performed, a hash table (Knuth [1973]) can be used. Hash
tables allow accesses and ipsertions in O{1) time or the average, although the
2 worst-case time is O(n), where n is the number of items in the dictionary. Hash
tables can be adapted to allow efficient deletion, but not merging, concatena-
. tion, or splitting; such tabies do not aintaia the ordering informaticn needed to
efficiently merge, concatenate, or split. A balanced tree structure, such asa 2—3
<N tree (Ahc, Hopcroft, and Uilman [1974)) or more generally a B-tree {Bayer and
McCreight [1972]), a height-balanced tree (Knuth {1973]), or a weighi-balanced
tree (Reingold, Nievergelt, and Deo [1974]), is appropriate if such operations are
tc be performed. Such a structure allows access, insertion, deletion, concatena- 1
tion, and splitting in O{logn) time (see Aho, Hopcroft, and Ullman [1974] for
instance). ;

There are a number of recent results on dynamic dictionaries. Brown and '
Tarjan [1979] showed how to merge two dictionaries represented as height-balanced
= trees in O(m log) time, if the smaller dictionary has m items and th larger one
] hae n items. This result also holds for B-trees and for weight-balanced trees. ;
Brown and Tarjan [1980] showed how to maintain “fingers” into 2—3 trees so that
access is very fast on the vicinity of a finger. Their proposed structurz supports)
fast access, finger creation, insertion, and deletion, as long as the insertions and

2 10

- -

LRl

deletions occur in separate parts of the tree. Huddleston {private communication),
Maier and Salveter {1979], and Mehlhorn [1979b] independently used less balanced
versions of B-trees to extend Brown and Tarjan’s results so that arbitrary inser-
tions and deletions are fast.

An interesting question is what happens if we want to bias the dictionary so
that certain items are easier to access than others. This is desirable, for instance,
in keyword tables for compilers and in language dictionaries, where some words
are accessed much more often than others. To study this nvestinn we cezsume
that cach item ¢ has a weight w;, end that we wish to minimige *he sum of the
weighted access times)", w;t;, where ¢; is the access time of item {. Knuth
[1971) and Hu and Tucker [1971] have proposed efficient algorithms to construct
optimum binary search trees; Xnuth’s algorithm requires O(n?) time but allows
items to be stored in internal nodes of the tree; Hu and Tucker’s algorithm uses
O(nlogn) time but requires that all the items be in external tree nodes. Garsia
and Wachs [1977] have given an interesting variant of the Hu-Tucker algorithm.

Optimum binary search trees are not suitable if insertions and deletions
are to be performed, because they require too much time to update. Mehlhern
(1978, 1979a] has investigated the question of dynamicaily maintaining an almes*-
optimum tree. An entropy argument shows that the sum of the weighted access
times in an optimum tree is bounded below by a constant times E?:; w;log X,
where w = 3.7, w;; thus the goal is to maintain a tree in which each item ¢
has O(1 + log &) access time. Mehlhorn has described a complicated versicn of
weight-balanced trees with the following properties:

fa) O(1 + log &) time to access, insert, or delete item ¢;
(b) O(1 + log :T?(%,%%) time to change the weight of item ¢ from w; to w),

where w is the total weight before the change and ©f is the total weight after
the change.

Bent, Sleator, and Tarjan [1980) have found a way to implement dynamic dic-
tionaries that is not only much simpler than Mehlhorn’s but allows fast concatena-
tion ard splitting; specifically, O(1 4 log %) time to concatenate dictionaries of
total weights w and w' with w > v, and O(1 +log é,%) time to split a dicticnary
at item ¢. The data structure resembles a 2 — 3 tree. Each node in the tree has
between zero and three children. Ceriain nodes contain items; others are non-
item nodes (an item node coatains exactly one item). A symmetric-order traversal
of the tree visits the items in order by key. An item node has a left son and
a right son, either or both of which can be missing; a non-item node has either
two or three children. In addition, each node has a Jevel, defined as follows: the
leve! of a node containing item ¢ is [log w;]; the level of a non-item node is one

11

E ‘?“7‘1"3 a-‘i!mlmiﬂlﬁudllwwhm.wm.w e

TP ANEFNRRERIIR

ol ¥ N LIy

L

Sl e

f ll"n“-llimmﬂ%I'ﬂ’tﬁl’wwwmﬂhnuh'vl)v'-mnux LA b s i

M

1
o mmmaat v sy 0 O

b Gl G St Sy o A i LR

greater than the minimum of the levels of its children. We impose the additional
reruirement that the level of a node b strictly greaisr than the levels of all its

children; thus all children of a non-item nods have the same levol. Figure 3 gives
an exampie of such a iree.

.

[Figure 3]

g (et A s S Y

It is not hard t» implemen: access, insertion, deletion, coxcateration, split-
ting, and weight change on such trees. Analysing the efficiency of these operations,
however, vequires a clever accounting argment. The data structure has net only

the obvious applications but aizo a number of not-go-obvious ones, as we shall see
in the next section.

L el

E;

o g g B e g Iy'm ARk Sl YR g gy

LA e

12

=
%
2
£
é:;
E
5
3
ES
E
X
3
i
H
E
£
Z
E
£
=
=
S
=
b
2
==
=
=
2
e
E
=

8. Maximum Network Fiow.

An important special caze of huear programming is the meximum network
fow problem: given a directed graph G = (V, E), two distinguished vertices, a
source 3 and a sink ¢, and a non-negative capacity c¢(¢) on each edge ¢, find a
flow of maxiinum value frem & to t. A flow is defined by a value f(¢} on each
edge e, such tkat 0 < f(e) < ¢:¢); for every vertex v except the source and sink,
the total fiow on cdges entering v must equal the total flow on edges leaving v.
The value of the flow is the total flow on edges leaving the source {or equivalently
on edges entering the sink;.

Ford and Fulkerson [1962] were the first to study this problem. They proved
the famous max-flow min-cut theorem, which states that the value of 2 muzimum
flow equals the capacity of a minimum cut. (A cut is a partition X, X of the
vertices such that s € X and ¢ € X; the capacity of the cut is the total capacity
of edges leaving X and entering X.) They proved this theorera by means of an
augmenting path metbod which, given a flow, attempts to find a path from s to ¢
along which the flow can be increased. If the algorithm finds such a path, the flow
value is increased appropriately. If not, the method iocates a cut whose capacity
is equal to the value of the current flow.

Ford and Fulkerson’s methed does not automatically give a fast algorithm
for maximum network flow. If the capacities are large integers, the method can
require enormous amounts of time; if the capacities are irrational, the method
need not terminate. However, if the search for augmenting paths is systematic,
the method leads to a fast algorithm. Tabie 2 shows the running times of various
maximum network flow algorithms based on this idea.

[Table 2]

Karp and Edmonds [1972] were the first to give a polyncmial-time algorithm
for maxiraum flow. They showed that if a shortest augmenting path is always
selected, then no more than O(nm) augmentations take place. From this they
obtained an O(nm?)-time algorithm. Independently Dinic [1970] made the same
observation, and further noted that all the augmenting paths of a given length
can be found at once, in O{nm) time, giving an overall bound of O(n®m). All the
recent progress on maximum flow is based on Dinic’s work.

Karzanov [1674] improved Dinic’s running time to O(n®) by discovering how
to find all augmenting paths of a given length in O(n?) time. Karzanov's algorithm
is quite ~omplicated, but Malhotra, Kumar, and Maheshwari [1978] obtained a
very simple algorithm that achieves the same time bound. Cherkasky {1977] dis-
covered an O(n?m!/?) algorithm, improved by Galil [1978] to O(n%/3m3/3). Galil
and Naamad [1979] and independently Shiloach [1978] found an O(nm(log)3)

13

algorithm, which Sleator and Tarjan {1980] improved to O(nmlogn).

The Sleator-Tarjan algorithm obtains its speed by using sophisticated data
structures that maintain the flow information implicitly; thus it is not necessary
to perform an augmentation by changing the flow in every edge of the augmerting
path. The general method is illustrated in Figure 4. The algorithm maintains a
tree of edges with residual capacity whose root is the sink. The path from the
source to the sink in this tree defines an augmenting path. Ar wugmentation is
performed on this path, saturating at least one edge and cavsing {he tree to break
into at least two edges. The tree i reassembled by adding new edges with vesidual
capacity, and the process is repeated.

[Figure 4}

[Figure 5]

To represent the tree, the algorithm decomposes it into paths, as in Figure
5. Before an augmentation is perfermed, the paths representing the tree are
rearranged, by splitting and concatenation, so that the source and sink are on
the same path. Then the augmentation procceds. Galil and Naamad [1979)
and Shiloach [1979] showed that only O(logn) splits and concatenations occur
per augmentation. By representing each path of the tree by a data structure
consisting of a balanced binsry tree, they obiained an O(logn) bound per split
or concatenation, an O{{log n)?) bound per augmentation, and an O(nm(log 1)?)
bound overall. By representing each path by a dynamic dictionary implemented
as described in Section 5, Sleator and Tarjan were able to reduce the time per
augmentation to O(logn), saving a factor of logn in the overall running time.
This algorithm seems hard to beat; further improvements ic maximum flow may
require a basic approach different from and mo:e powerful than Dinic’s.

14

7. Remarks.

What are we to conclude fiom all these new results in combinatorial com-
plexity? First, it is clear that NP-completeness is a very powerful and precise
tool for classifying combinatorial problems; it seems that any natural problem
is either NP-hard or has a polynomial-time aigorithm. The candidates for coun-
terexamples, such as linear programming and graph isomorphism, are yielding to
diligent attack. Thus the P = NP guestion becomes, if anything, even mora
important. In generai, it seems that the lack of a non-trivial lower bound for a
problem is a good reasox to believe that faster algorithms exist for it.

Second, some polynomial-time algorithms, such as the sophisticated aigo-
rithms for network flow, show promise of being quite practical. Others, such as the
fastest methods for matrix multiplication, are only asymptotic results and seem
to hold no implications for practice. In order to detect such differences, much
more study is needed of algorithmic ozerhead, the associated constant factors,
and the practical trade-offs between algorithms.

Third, the careful and systematic study of data structures is extremely im-
portant in the design of algorithms that are fast both in theory and in practice.
In particular, there is much to be learned about the properties of various kinds of
trees and their use as data structures. We still lack an adequate theory that will
fit the appropriate data structure to each problem we wish to solve.

Fourth, the advent of very-large-s«ale integrated circuits has raised entirely
new questions for combinatorial compiexity. We are faced with the problems
of designing new models of complexity matched to the new hardware, and of
discovering what part of the knowledge obtained for sequeatial algorithms will
translate into the new framework, which will incorporate large-scale concurrency.
Thus parallel algorithms and spatial layout problems are important topics for
future research.

15

s iig

u
[l
il

i i

BEIRE

E

. i 'V’W‘WWHWMW“MMJ w1
1 PO 1 1 A

References

A.V Aho, J. E. Hopcroft, and J. D. Ullman [1974). The Design and Analysis of
Computer Algorithms. Addison-Wesley, Reading, Mass.

B. Aspvall and R. E. Stone [1979]. “Khachiyan’s lizear programming aigorithim,”
Report STAN-CS-79-726, Computer Scieace Department, Stanford University,
Stanford, California.

L. Babai [1979]). “Moute-Carlo algorithms in graph isomorphism testing,” un-
published manuscript.

L. Babai [1980]. “On the complexity of canonical labeling of strongly regular
graphs,” SIAM Journal on Computing, to appear.

R. Bayer and E. McCreight [1972). “Organization and maintenance of large or- :
dered indexes,” Acta Informatica, 173-189.

S. Bent, D. Sleator, and R. E. Tarjan, “Biased 2— 3 trees,” submitted to Twenty-
first Annua! Symposium on Foundations of Computer Science.

D. Bini, M. Capovani, F. Remani, and G. Lotti [1979]. *O(n?77%%) complexzity
for n X n approximate matrix muitiplication,” Information Processing Letters

8,234-235.

M. R. Brown and R. E. Tarjan [1979]. "A fast merging algoritbm,” Journal ACM
26, 211-226.

M. K. Brown and R. E. Tarjan {1980]. “Design and analysis of a data structure
for representing soried lists,” SIAM Journal on Computing, to appear.

B. V. Cherkasky [1977]. *Algorithm of construction of maximal flow in networks
with complexity of O(V3VE) operations,” Mathematicai Methods of Solution of
Economical Problems 7, 117-125.

C. J. Colbourn and K. S. Booth [1979]. *Linear time automorphism algorithms
for trees, interval yraphs, and planar graphs,” unpublished manuscript.

D. G. Corneil and C. C. Gotlieb [1370]. “An efficient algorithm for graph isomor-
phism,” Journal ACM 17, 51-64.

G. B. Danizig [1951). “Mazimization of a linear fuaction of variables subject
to linear inequalities,” Activity Analysis of Production and Allocation, T. C.
Koopmazs, ed., Wiley, 339-347.

L S Ly

LT T

L,

iy

16

z
E
~
E
=
3
=
2
E
]
;
=
=

i

g e
W e o

=3

E. A. Dinic [1970]). *Algorithm for solution of a problem of maximal flow in a
network with power estimation,” Soviet Math. Dokl. 11, 1277-1280.

J. Edmonds and R. M. Karp [1972]. “Theoretical improvements in algorithmic
efficiency for net work fiow preblems,” Journa! ACM 19, 248--264.

I. S. Filotti, G. L. Miller, and J. H. Reif [1979]. “On determining the geaus of a
graph in O(vo(')) steps,” Proc. Eleventh Annuai ACM Symposium on Theory of
Computing, 27-37.
I. 8. Filotti and J. N. Mayer [1930]. A polynomial-time algorithm for deter-

mining the isomorphism of graphs of fixed genus,” Froc. Twelfth Annual ACM
Symposium on Theory of Computing, 236-243.

I. S. Filotti, G. L. Miller, and J. H. Reif [1979]. “On determining the genus of a
graph in O(vo(')) steps,” Proc. Eleventh Annual] ACM Symposium on Theory of
Computing, 27-37.

L. R. Ford and D. R. Fulkerson [1962]. Flows in Networks, Princeton University
Press, Princeton, New Jersey.

%

g

e

ol DA

P. Gédcs and L. Lovdss [1979). “Khachian’s algorithm for linear programming,”
Report, STAN-CS-79-750, Computer Science Department, Stanford University,
Stanford, California.

Z. Galil [1978]. *A new algorithm for the maximal flow problem,” Proc. Nine-
teenth Annual Sympesium on Foundations of Computer Science, 231-245.

Z. Galil and A. Naamad [1979]. “Network flow and generalized path compres-
sion,” Proc. Eleventh Annual ACM Symposium on Theory of Computing, 13—
26.

M. R. Garey and D. S. Johnson [1979]). Computers and Intractibility: A Guide to
the Theory of NP-Completeness, W. H. Freeman, San Francisco.

A. M. Garsia and M. L. Wachs {1977]. “A new algori hm for minimum cost binary
trees,” SIAM Journal on Computing 6, 622-642.

M. Grotschel, L. Lovdss, and A. Schrijver [1980]). “The ellipsoid method and its
consequences in combinatorial opiimization,” Report No. 80151-OR, Institut fir
Okonometrie und Operations Research, Universitit Bonn.

C. M. Hoflman [1980]. “A polynomial-time algorithm for determining the isomor- 3
phism of graphs of fixed genus,” Proc. Twelfth Annual ACM Symposium on
Tk-ory of Computing, 244-251.

——— e b
L G Bl L

17

|
fg
|

J. E. Hopcroft and R. E. Terjan [1972). “Isomorplism of planar graphs,” Com-
plexity of Computer Computaticns, R. E. Miller and J. W. Thatcher, eds., Plenum
Press, New York, 131-152.

J. E. Hoperoft »ad R. £. Tarjan [1973]. *Dividiag a graph into triconnected
components,” SIAM Journal on Computiny; 2, 135-158.

J. E. Hopcroft and J. K. Wong [1974]. “Liuear time algorithm for isomorphism of
planar graphs,” Proc. Sixth Annual ACM Symposium on Thecry of Computing,
172-184.

T. C. Hu ard C. Tucker [197}]. *Optimum computer search trees,” SIAM Journal
on Applied Mathematics 21, 514-532.

R. M. Karp and C. H. Papadimitriou [1980]. *On linear characterizations of com-
binatorial optimization problems,” TM-154, Laboratory for Computer Science,
Mass. Inst. of Technology, Cambridge, Mass.

A. V. Karzanov [1974). “Determining the maximal flow in 2 network by the
method of preflows,” Soviet Math. Dokl. 15, 434-437.

L. G. Khachiyan [1979). *A polynomial algorithm for linear programming,”
Doklady Akademia Nauk USSR 244, 191-194.

V. Klee and G. Minty [1972]. “How good is the simplex algorithm?”, Inequalities
I, O. Shisha, ed., Academic Press, 159-175.

D. E. Knuth [1971]. *Optimum binary search trees,” Acta Informatica i, 14-25.

D. E. Knuth [1973]. The Art of Computer Programming, Yolume 3: Sorting and
Searching, Addison-Wesley, Heading, Mass.

M. Z. Kozlov, S. P. Tarasov, and L. G. Hacijan [1979]. “Polynomial solvability of
convex quadratic programming,” Soviet Math. Dokl. 20.

D. Lichtenstein [1980]. *“Isomorphism for graphs embeddable on the projective
plane,” Proc. Twelfth Annual ACM Symposium on Theory of Computing, 218
224.

.R. J. Lipton [1980). “The beacon set approach to graph isomorphism,” SIAM

Journal on Computing, to appear.

L. Lovész [1980]). “A new linear programming algorithm - better or worse than
the simplex method?”, Math. Intelligencer, to appear.

18

L oA LML S Ly P M L 2 L Lt

e

.

,

E. M. Luks [1980]. *“A polynomial-time algorithm for testing isomorphiem of
trivalent graphs,” submitted to T'wenty-first Annual ACM Symyosizm oc Faunda-
tions of Computer Science.

D. Maier and S. C. Salveter [1979]. “Hysterical B-trees” Technical Report No.
79/007, Department of Computer Science, State University of New York st Stony
Brook.

V. M. Malbotra, M. P. Kumar, and S. N. Maheshwari [1878]. "An O(V?) alge
rithm for finding the maximum flows in networks,” Iaformation Processing Lette:s
7, 277-278.

K. Mehlhorn [1978]. “Arbitrary weight changes in dynamic trees,” Bericht *8/04,
Fachbereich 10 — Angewandte Mathematlk und Informatik, Universitat sles Saar-
landes, Saarbriicken.

K. Mehlhorn [1979a). “Dynamic binary search,” SIAM Journal on Coraputing 8,
175-198.

K. Mehlhorn [1979b]. “A new data structure for representing sorted lisis,” Fach-
bereich 10 - Informatik, Universidt des Saarlandes, Saarbriicken.

G. L. Miller [1977]. “Graph isomorphism, general remarks,” Proc. Nintd Annua!
ACM Symposium on Theory of Computing, 143-150.

G. L.Miller [1980]. “Isomorphism testing for graphs of bounded genus,” Proc.
Twelfth Annual ACM Symposium on Theory of Computing, 225-235.

V.Y. Pan [1978]. “Strassen’s algorithm is not optimal,” Proc. Nineteentk Annual
Symposium on Foundations of Computer Science, 166-176.

Uiy] m ol
[re—— WMWWWM, o T ‘,‘«“ e by AL -
W s

s
L T

: ' V. Y. Pan {1980]. “New combinations of methods for the acceleration of matrix
¢ multiplication,” unpublished manuscript.

7 R. E. Read and D. G. Corneil [1977). “The graph isomorphism disease,” Jouranal

3 { Graph Theory 1, 339-363.

' E. M. Reingold, J. Nievergelt, and N. Deo {1974]. Combinatoriai Algerithms:
Theory and Practice, Prentice-Hall, Inc., Englewood Cliffs, N.J.

A. Schonhage j1979]. *Partial and {oial matrix multiplication,” Technical Report,
Mathematisches Inssitut. Universitdt Tibingen.

Y. Shiloach }1978]. “An O(nIlog? I) maximum-Sow algorithm,” Technical Report
STAN-CS-78-702, Computer Sciznce Department, Stanford University, Stanford,
California.

1e

N. Z. Shor [1970]. “Convergence rate of the gradient descent method with dilation
of the space,” Kibernetika 2, 80-85.

N. Z. Shor [1577]. “Cut-off method with space exiension in convex programming
problems,* Kibernetika 13, 94-95.

D. Sleator and R. E. Tarjan [1980]. “An O(rmlogn} algor'thm for maximum
uetwork flows,” submitted to Tweaty-firsi Annual Symposium oa Foundations of
Computer Science.

V. Strassen [1969]. “Gaussian elimination is not optimal,” Num. Math. 13, 154-
356.

R. E. Tarjan [1978]. “Complexity of combinatorial algorithms,” SIAM Review
20, 457-491.

R. E. Tarjan [1979]). “A class of algorithms which require nonlinear time to main-
tain disjoint sets,” J. Computer and System Sciences 18, 110-127.

J. Valdes, R. E. Tarjan, and E. L. Lawler {1979]. “The recognition of series

paralle! digraphs,” Proc. Eleventh ACM Symposium on Theory of Computing,
1-12.

20

?ﬁf
;Sé
2
3
E
E
5
E::
=z
z
3
El
]
B
=
=
£
=
E|
%j
!
'.f?_é
g
=
g
E]
|
.1_3.
=
3
2
E
%
E
E::::
E
El
El
s}
g
El
%
=l
3
E
E
3
£
=
5

s
(o]

\O
o

o
=

Figure 1.

»
N

p]
~
1?

bt
p

Ay

(c)

Ay
vertex ',,—”’/

e
3 [3 4
5 \ j

A directed graph and its computer representation.
(2) Graph.
(v) Representation oy two arrays.

(¢) Representation by a linked structure.

i 32 N R)l A UM M LRAE LL

L

e

‘,(m:u NPT

Figure 2.

B
-1
-

One step of the ellirscid method.

S = solution space.

1
|

= 014 bounding elipsoid.

it
|

= inequality violated by center of

v

= new bounding e€llipsoid.

(U}

.
3
&
]
F
i
F
i
i
i

O L T e

Y O R 8

Jh

Figure 3(s).

Relative frequency

Relative level

S07h
7638
1853
1869
2272
4312
2509
2255
5767
3017
15568
5739

A I O T L = S o B (VI

A

Relative frequencies of the twelve most cczmon

words.

Relative level is level minus ten.

23

=
3
=
=
=

TR Pt 4 ™ R RS AR ST 0 TS 1 TSRS T 7% N A g 5 G | VAR I THIATIOTEERLT S Y TR R
R TR § 4 e R

Biased 2-3 tree containing the words in
gure 3(a).

F

'3
3
o

Figure 3(b).

FIRE § Rty ey

N T e e s :7_,_,,,: il

-

1 - »
TN Wb 1 1

gt

it

Lt

R

Figure L,

Candidate edges for augmenting paths. Bold edges
denote spanning *tree., Sending flow along path from

source Lo sink seturates edge e, . which is replaced

by & in the tree,

[EEr—e ¥ o

Sk L

w Wl

Figaxe 5.

paths, one of which leads from source

source

ecompcsiticon of the original t o+ of “jmre b inte

to sink.

g

= g

AL dbe Db o b o Al b, Boi LI

3

o it el n AL e, Bt M

"

B
k)
=
=

Date

1969
October 1978
November 1973
June 1979
October 1979
October 1979
October 1979

March 1980

Discoverer

Strassen

Pan

Bini, et,al.
Sch¥nhage

Pan

Schbnhage

Pan and Winograd

Pan

Exponent of n

2.807
2.7%
2.78

2,609
2,605
2.548
2,522

2,49+

Table 1. Improvements in matrix mwlsipiication.

27

Date Discoverer

1956 Ford and Fulkerson ——
1969 Edmonds and Karp 0(nm°)

1970 pinic o(n°m)

1974 Karzanov 0(173)

1978 Malhotrs, et, al. o)

1977 Cherkasky o(u2 u*/?)
1578 Galil o3 u2/3)
1979 Gelil and Naamed, Shiloach o(nm(log n)?}
1920 Sleator and Tarjan o(nmlogn}

Teble 2. Improvements in maximum network flow.

e S S, 1 o ¥y

Bodliiiohiteind b

69 e B s P

e B A L Betp e ih

N AR BB bt e 0

28

