
Stanford Department of Computer Science June 1980

RepoTt No. STAN-CS-80-794

A
RECENT DEVELOPMENTS IN THE COMPLEXITY

OF COMBINATORIAL ALGORITHMS

by

Robert Endre T"rian

Research sponsored by

National Science Fc.undation
and

Office of Naval Research

COMPUTEA SCIENCE DEPAhTMENT
Stanford University

C..

<V "d
_ '.I'-

I °*

..o-.IZ :;^-



UK~ CLAS S L I ED__________-

',FCU~tiTY CLASSi CA'7iC. 0f T- P.'-,F .ruin Data Entered)

REPt OR i OCUM ENTTNPG READ hVSTPUC7IO'

IE .!FfORE COMPLETING FORM

J~~3fT cvE 1 3 RC!PIENTS CAT.-~LOG NUMBER -
4 T lan~d Sumtn'i 5. TVFE OF AE-'ORT ~-PERIOD COVEkED,

t cent Deve'.cp~ents in the Cox~plexity o."tcn" ~ LiQ
Cz bn atrial A1&lorithms*

. UTC*R~ o/t STMI-CS-80-7054
U ;~ / -8, COr4TRACT-OR-Ar-NUI% 1E(s:Rbr*z-ndret-arianJUf- -NS V'~

P~NIRMI MRACZA$O S

Ci P=_RFORMING ORGANIZATIO~~~~~~~N AME AND ADDRESS 1. ~clRM-MM-?T.-AJ-T _SC_
Departrenz of Computer Science ARE & OR UNIT NUMBERSIt.nfordJ University l/

1S-anford, Ca3lJ- o.. ___9_,305_USA
________________ 1 F REPORT DATE I 3NO. CFPGS

IICONIROLLING O~FFICE NAM.E AND ADDRESS
Julne 1.980 28'fice of Njaval. Re search1.SEUTYCAS fthsCr -

iDear~ment ocf: the Navy 1.SCRT LS.(fti eot
Arling-,zn, Virgini a 22217 Unclassified

14 MONITORING AGENCY NAIVE & ADDRESS ilf d.ff. from Controlling Offi:e)

01-R Representative - Philip Surra taDCASFCTO/ONRON

Dur'and Aez-omautic 3uac1ing, Room 165 j SCHEDULE
Stanford Universgity. I_______

16. D!STR;8UTION STATEIMENT (of this report)

Approvd for biic release; distribution vunliiited.

7.CISTRIBUTION STA.T _MENT 10f the Ottract entered n Biock 20. if diflerant tromn r.sporl

1i.SUPPLE "ENTAR'. NOTES =r

19. %EY V.OACS (Continue on re~erte stde if nteessay and identify by block .'umbetl

20 AeSRC Cni~eo ees iei eesr n dftf ytoi numher)

(see Other side)

O 1 JA'1473 _5sr~ I E-
EDITION OF1NOV 65 IS ORSOLETE SFC%.RiTY CLASS.FICATYON 0!' THIS PAGE -When Dati EntceedI

Rr~



U..ASSIFiEI
SECURITY CIrASS'FICA ION OF THIS PAGL ('w-, Data Entetid)

10 KEY WORDS ICantinted) ,

0 ABSTRACT (ConSnued!

Ab tract.
The !ast three years have witnessed teveral major advances in the area of

combinatorial algorithms,,- incl ude improved algorithms for matrix mul-
tiplication and maximum network flow, a polynomial-time algo:ithn for linear
programming, and steps toward a polynomial-time algorithm for graph isomor-
phism. This paper surveys these resuilts and suggests directions for future research.
Included is a discussion of recent work by the author and his rtudents on dynamic
dictionaries, network flow problems, and related questions.
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Abstract.
Trhe last three years have witnessed several major advances in the area of

combinatorial algorithm:i. These include improved algorithms for matrix mul-

tiplication and maximum network flow, a polynomial-time algorithm for linear

proraniming, and steps toward a polynomial-time algorithm for graph isomer-

phism. This paper surveys these results and suggests directions for future research.

Included is a discussion of recent wor'r iiy the author and his students on dynamic

dictionaries, network flow problems, and related questions.
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Recent Developments in the Complexity of Combinatorial Algorithms

Robert Endre Tarjan
Computer Science Department

Stanford University
Stanford, California 94305

1. Introduction.
In a 1978 paper (Tarjan [1978), the author surveyed the then-current state

of knowledge concerning combinatorial algorithms. Since the time that paper was
publis hed, researchers in the area have obtained several major new results. Thee
include a sequence of more-and-more efficient algorithms for matrix multiplic,,
tion, a similar sequence of algorithms for maximum network flow, a polync'aiai-
time algorithm for linear programming, and a number of new approaches to graph
isomorphism. In this paper we sball examine these recent advances, attempt to
access their significance, and suggest directions for future research. The paper in-
cludes an examination of recent work by the author and his students on dynamic
dictionaries, maximum flow problems, and related topics. Much ot the work we
shall describe is still unpublished.

Before beginning this survey, it is useful to review the general framework
in which we shall view combinatorial algorithms and their complexity. We are
interested in sequential algorithms; that is, in algorithms that perform only one
step at a time. As a computer model, we use either a random-access machine .nith
uniform cost measure (Aho, Hepcroft, and Ullman 119741), or a pointer machine
(Tar jap [1979]). With either mpchine model we can perform a single aithmetic
or logical operattion in constant time, and we can store or retrieve a single piec..
of information in constar, time.

Te difference between random access machines and pointer machines lies in
their memory organization. The memory of a ranudOm accs machine consists ofA
a one-dimensional array of cells, each capable of holding a single piece of infor-
mation (such as a real number). The memory of a pointer machine is a linked
structure consisting of a collection of nodes linked by pointers; each node consists
of a fixed finite number of fields, some of which are designated as containing
pointers to other nodes. See Figure 1. Random access machines seem inherently
more powerful than pointer machines, since we can perform arithmetric on array
addresses but not on pointers. However, this difference in power amounts to at
most a factor of log n in running time, and in fact the algorithms we shall discuaiz
have the same asymptotic running times on either random-access machines or
pointer machines.
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[Figure 11

As a complexity measure we use the worst-case running time of an algorithm
as a function of the size of its input. We shall ignore constant factors. For graph
problems we shall use n, the number of vertices, and m, the number of edges, to
measure the input size. For algorithms that manipulate real numbers, measuring
input size is more problematic. The issue is whether we should allow rational
numbers of arbitrary precision (or even irrational numbers) as input, and count
any arithmetic operation as a single step, or whether we shouid measure the size
of real numbers by the number of bits needed to represent them, and count each
bit operation as a single step. The former approach is truer to the spirit of al-
gebraic complexity, and we shall adopt it in the case of matrix multiplication
and maximum network flow. The !atter approach is more reasonable if we are
interested in issues of NP-completeness, and we shall adopt it in the case of linear
pro gramming.

The paper comprises 7 sections. Section 2 examines the recently ditcovered
ellipsoid method for 'inear programming and its implications for combinatorial
complexity. Section 3 discusses graph isomorphism. Section 4 surveys new work
on matrix multiplication. Section 5 siamines recent results on dynamic dic-
tionaies, and Section 6 discusses network flow. Section 7 contains conclusions
and remarks about promising directions for future research.
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2. Linear Programming.
Garey and Johnson's book on NP-completeness (Garey and Johnson 1979])

conclud:.. with a list of problems whose stallus wi.h respect to N-P-completeness
was unknown at the time the book wag publi3hed. A prominent problem on
this list is linear programming, which can be defined as followE: given a set of
linear inequalities aix < bi for 1 < i < m, find a vector z that satisfies these
inequalities and maximizes cz = cixz + -+ cz,,. Here z (zl,.., z,.) is a
vector of n variables, each a, is a vector of n real numbers, and the bi's and cj's
are real numbers. i

There is a well-known and empirically efficient algorithmn for linear program-

ming, Dantzig's simplex method (Dantzig 11951]), but this algorithm runs in ex-
ponential time on certain sets of input data (Klee and Minty 11972]). However,
Khachiyan [19791 managed to prove that a completely different method based
upon ideas of Shor [1970, 197T' solves the linear programming problem in polyno-
mial time. The algorithm, which we shall call the ellipwoid method, is surprisingly
simple, and in retrospect it is a wonder that it was not discovered many years
previously.

The key idea of the method is to use binary search, maintaining an ellipsoid
that bounds the set of solutions. We shall assume that the ai's, bi's and cj's
consist of integers, and that the size of the input is measured by the number of .
bits t required to write down all these integers in binary. We note first that if the
function cz has a finite maximum, then the value of x achieving the maximum
has a number of bits polynomial in t. If we add to our set of inequalities an
inequality cz > a, where a is a parameter, we can use binary search on a to
determine the maximum value of a for which a feasible solution exists.

Thus we have reduced our original optimization problem to the problem of
solving a polynomial number of feasibility problems of the following form: given a
set of inequalities aiz < bi for I < i < m, is there some value of z that satisfies
all the inequalities? By means of a second transformation (perturbing each bi by
a sufficiently small value) we can make all the inequalities strict.

Now we come to the heart of the matter. In order to search for feasible solu-
tions, we construct an ellipsoid guaranteed to contain at least a certain volume of
solutions if there are any solutions at all. It suffices to choose a sphere centered
at the origin with sufficiently large (but polynomially bounded) radius. We then
repeatedly reduce the size of the bounding ellipsoid until either we find a solution
or the bounding ellipsoid is so small that it cant contain any solutions, and thus
there are P,) solutions.

To carry out a general step of this reduction process, we test the center z
of the ellipsoid for feasibility. If z satisfies 411 the inequalities, we are done. If
not, we find a violated inequality az > bi. We then construct a new ellipsoid

4I
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containing those points ina the old ellipsoid that satisfy aiz < bi. See Figure 2.
The crucial poiiit is that the 'volume of the new ellipsoid is smaller by a constant
factor (depending polynomially on n-) than the volume of the old ellipsoid; thus
aftei a polynomial number of step3 either we find a feasible solution or we can
terminate the process and declare that no solu tions exist. For further details of
the algorithm, see Gacs and Loiv [19T91 o~s Aspyall azd Stone 17S9J.A

[Figure 21r

Khachiyan's discovery has led to an explesion of research on related issues.
Of primary interest are the questions, 'Is the algorithm efficient (or can it be made
so)' " and 'What imnplications does the algorithm have for other combinaterial
problera??' As a tentative answer to the firtt question, it seems that the ellipsoid
method is not competitive in practice with the simplcx method although t'his
matter deserve3 further study.

The theoretical implications of the ellipsoid method are more interesting.
The algrorithm does not depend heavily on linearity, only on the convexity of
the sohatiozi space. Indeed, Koslov, Tarasov, and Khaciyan '19791 have extended
the algorithm to convex quadratic programming. On the other hand, the linear

= casa is the most interestiknr from the point of view of combinatorics. A standard
terhique of operations researchers is to use linear programming to attack integer
programming problem., The idea is to define. an integer programming problem
v's a linear progra-mming pioblem wmit a rge (possibly exponential) number
of inequalities, in such a way the inequalities defining the problem are easy toA
generate. Karp aned Papadimitriou 119791 have proved a negative result for this
approach. any NP-camplete combinaiorial optimization problem cannot be poly-
nomially characterized by a -.et of linear inequalities, unless NP = co-NP. By
apolynomially characterized' we mean that the set of inequalities is in NP; that

is, given an inequality that is in the set we can construct a polynomial-length
proof of this fact. Since it is unlikely that NP = co-NP, this means that any
combinatorial optimizatioD problem that cap. be polynomially characterized by
inequalities is unlikely to be NP-cow-plete.

In order to run the 2lliproid method, we do not need an explicit listing of
all the -irequalities defining the Drotflem but only a way to test whether a point
is feasible and to generate a violated inequality if it is not. Suppuie we have a
combinatorial opimization problem for which it is pussible to test feasibility and
generate a violated inequality in. polynomial time. Th-n by means of Khachiyan 's
algorithm we can solve the combinatorial tiptimisation proo~em in polynomial
time (if certain other weak conditions are satisfied). Karp and Papadimitriou

r and inderendently Gr~tschal, Loviss, and Schrijver 119801 made this observation,
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which implies that NP-complete problems are unlikely t have poI'-momial timegenerators of violate! Inequalities. The result also means that the ellipDoid method
is in some sense-a universal method for combiratorial optimi-;atioD rotblems. andit can be used to generate new fas". agorithm;. For indnce, Gr6V shel, Lovasz,and Schrijver have derived a polynomiW-time algorithm for vertel packing inperfect graphc. This area appears to be ripe for fuitbh work. For an exceilentnon-technical discussion of Riachiyan's algorithm and its implicaton for com-
binatorial optimization, se Lowiss I IoI .
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3- Grsph bomarpbhsra.
Anothmr o'f Garey- and Johnson's open problems is graph isomorphism: given

t-wx idirecetmd grapa's G, and G2, determine whether there is a one-to-one map-
ping of thpe vertices of G, cnto the vertices of G2 that preserves adjacency. Tis
Probien Las a number of applications, especially in the cataloguing of chemical
mc-decules. Although no one has -et discovered a polynomial-time algorithm for
graph isomorphismn, much progress has been maade recently.I Most of the early algorithms for graph isomorphism (see for instance Gorneil
and Gotlieb [1970], Read and Corneil 119771) combine backtrack search with
a partition refinementA method to reduce the size oil the search space. Such a,
method is very efficient in practice but requires exponential time on some highly
symmetric graphs, because the refinement scheme becomes useless. For various
special classes of graphs, efficient algorithms are known. These classes irzclude
trees (Aho, Hopcroft, and Ullman 119741): planiar graphs (Hopcroft and Tarjan
11972], Hopcro-ft and Wong 119741), series-parallel graphs (Valdes, Tarjan, andI Lawler 11,9791), and interva graphs (Colbourn and Booth [19791), for which linear-
time algorithms exist. The tree isomorphism algorithm depends upon clever use
of lexicographic sorting. The algorithms for series-parallel graphs and interval
graphs are straightforward extensions of the algorithm for trees. The algorithm
for planar graphs conbines the tree isomorphism algorithm with a lintar-time
decomposition into triconnected components (Hopcroft and Tarjan 119731), and

bareduction method for triconnected embedded planar graphs. The method isJ
fast for three reasons: the relationship among tricounected comnponents can be
represented by a decomposition tree, a triconnected planar graph has only two
planar einbeddings, and there is a linear-time algorithm for embedding a planar
graph (Hopcroft and Tarjan 119741). Recent ty Lichtenstein 119801 has discovered

polynomial-time isomo.-phism algorithm for graphs embeddable in a projective
plane, and Miller 11980) and Filotti and Mayer [1980i have found a polynomial-
time isomnorphism algorithm for graphs of any fIAXed genun. Thee methods com-
bine fast embedding algoritilms (Filotti, Miller, and Reif 119791) with a careful
analysis of the ways a g--Aph can be embedded in a surface of the appropriate

Other researcheui bare attemptei to use degree constraints or symmetry
properties to aid in te.-ting isomorphism. Miller [1977] showed that isomorphism
is in co-NP for are-transitive triv_-4ent graphs; that is, if two such graphs are
nOD-isomorphic, thre ig 'I polynomial-length proof of this fact. Lipton 119801
discovered an nOo 11) -tiuic isomoT.-phism algorithm -for arc-transitive trivalent,
graphs; and Babai [19801 found an nO(VIo 1* ) -time aigorithm for strongly regular
graphs. The major breakthrough was Babai's discovery (Babai 11979]) of a random
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polynomial-time algorithm for vertex-colored graphs with bounded color multi-
Dlicities. Babai'r work isi mpertau-t much more for his technicmez than for the
specific results to be obtained. He was abl-e to use properties of the automorphismI group of a graph, describing this group by meas of a tower of subgroups, insuch a way that one could quickly construct the tower. 'This work was extended
by Hoffman 11198D], who found a ranadom n 0 9 4 -firae algorithm for a class of
graphs called 'cone graph?. FuWst, Roperuft, and Luks (pri-fate communication)
made Babai's methods deterministic and- genershized Helf!man's aigorithm t test
isomorphnismn of trialent graphs deteriuistically injr.O" time. Luks 11980j
reduced the running time V. the algorithm for tzialent graphs to polynoiiz and
found an no ?Lr)time algorithm for gaphs of any fixed valence.

Extrapolating this work, it seen.s likely that a polynomial-time isomorphism
algorithm for graphs of auy fixed degreeP will soon te discomeed. Whether thit
will lead to a polynomial-time algorithm for the general problem is less clear.
Much rof the recenit work on isomorphism depends heavily on properties of finiteM
groups, and a complete solution~ may require nviw ruets it. group theory or e,
least ingettious use of old ones.
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4. Matrix Miultlplleation.
Not all reearch in combinatorial complexity has been denoted to finding

polynomial-time algori'hms for problems not known to hae them. Much effort
has also been devoted to finding faster algorithms for problems already known
to be solvable in polynomial time. For example, let us examine recent progress
on matrix multiplication. See Table 1. The classical algorithm for this problem
multipliens two n X n matrices in O(n') time. Strassen [199] discovered a way to
multiply two 2 X 2 matrices with only seven multiplcations, and usdn tbis obser-
.ation constructed a recursive algorithm to multiply n X n matfices in 0(ss'm. T)

time.

[Table 11

After a hiatus of nine years, Pan [1978] found. & slightly faster (O(nt'-s )

vs. Q(n2 -*1 )) method. Pan used an ingenious and complicated technique called
"aggregating, uniting, and cancelling.? A key point in Pan's approach was to

usse fairly large size matrices (n = 70) as the bazs for the recurion, rathr than
very small matrices (a = 2 or 3 or 4). Shortly after Pan's result appeared, Bini,
Capovani, Romani, and Lotti [19791 introduced a notion of 'approximate* matri
multiplication, and produced an O(fnlm -time algorithm to multiply matrices in
this approximate sense. Sch~nhage [19791 showed tba. any approximate matrix
multiplication algorithm can be converted into an exact oDe, and he further
showed that any method for multiplying sparse matrices can be converted into a
method to multiply dense ones. The culmination of Schbnhage's advances was an
O(n6oss) -time algorithm. Subsequent work by Pan, Schbnhage, and Wiograd,
using a combination of these t-chniques, has produced a sequence of faster-and-
faster algorithms; the best bound currently claimed is 0(n2-4'+), due to Pan
(private communication). Pan has recently written a long paper (Pan [1980]) ur-
veying these developments. It may be possible to multiply matrices in O(ar+5 )

time for any positive c; certairly the recent reltzlead in t dirvtior.

A
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S. Dynamie Dictionaries.

Fast algorithms require the use of appropriate data structures, some of which
are quite complicated. In this section we shall examine efficient ways to represent
one important type of data structure, called a dynamic dictionary. A dynamic
dictionary consists of a collection items, each with an associated key. We assume
that the keys are totally ordered and can be compared; we further assume that
no two keys are the same. We are interested in performing the following kinds of
operations ca dynamic dictionaries:

(a) Given a key, access the item (if any) with this key.
(b) Insert a new item in the dictionary. I
(c) Delete a given item from the dictionary.
(d) Merge two dictionaries into a single dictionary.
(e) Corcatenate two dictionaries, such that al! keys in one dictionary are smaller

than all keys ,n the othei.
(f) Split a dictionary on a given key into P dictionary containing all keys no

larger than the given key and a dictionary containing all keys larger than the
given key.

Dynamic dictionaries have widespread uses in computer science; see Knuth
[19731. There are a number of -ways to represent such dictionaries. If only accesses
and insertions are to be perfo'rmed, a hash table (Knuth f19731) can be used. Ha.th
tables allow accesses and insertions in 0(l) time on the average, although the
worst-case time is 0(n), where n is the number of items in the dictionary. Hash
tables can be adapted to allow efficient deletion, but not merging, concatena-

A tion, or splitting; such tables do not maintain the ordering information needed to

efficiently merge, concatenate, or split. A balanced tree structure, such as a 2-3
tree (Aho, Hopcroft, and Ullman [1974]) or more generally a B-tree (Bayer and
McCreight [19721), a height-balanced tree (Knuth [1973]), or a weight-balanced
tree (Reingold, Nievergelt, and Deo [1974]), is appropriate if such operations are

tc be performed. Such a structure allows access, insertion, deletion, concatena-
§ ! tion, and splitting in O(log n) time (see Aho, Hopcroft, and Ullman [1974] for

instance).
There are a number of recent results on dynamic dictionaries. Brown and

Tarjan [1979] showed how to merge two dictionaries represented as height-balanced
trees in O(m log A) time, if the smaller dictionary has m items and th larger one
has n items. This result also holds for B-trees and for weight-balanced trees.
Brown and Tarjan [1980] showed how to maintain "fingers" into 2-3 trees so that
access is very fast on the vicinity of a finger. Their proposed structure supports
fast access, finger creation, insertion, and deletion, as !ong as the insertions and

10
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deletions occur in separate parts of the tree. Huddleston (private communication),
Maier and Sa!veter 11979], and Mehlhorn [1979b] independently used less balanced
versions of B-trees to extend Brown and Tarjan's results so that arbitrary inser-
tions and deletions are fast.

An interesting question is what happens if we want to bias the dictionary so
that certain items are easier to access than others. This is desirable, for instance,
in keyword tables for compilers and in language dictionaries, where some words
are accessed much more often than others. To study this '!;qAt~in we tssume
that acb Item i has a weight wi, end that we wish to minimize k.he sum of the

weighted access times wi ti, where ti is the access time of item i. Knuth11971] and Hu and Tucker [1971] have proposed efficient algorithms to construct

optimum binary search trees; Knuth's algorithm requires 0(n2 ) time but allows
items to be stored in internal nodes of the tree; Hu and Tucker's algorithm uses
O(n log n) time but requires that all the items be in external tree nodes. Garsia
and Wachs [1977] have given an interesting variant of the Hu-Tucker algorithm.

Optimum binary search trees are not suitable if insertions and deletions
are to be performed, because they require too much time to update. Mehlhorn I

11978, 1979a] has investigated the question of dynamically maintaining an almosq,
optimum tree. An entropy argument shows that the sum of the weighted access
times in an optimum tree is bounded below by a constant times
where w = ELI wi; thus the goal is to maintain a tree in which each item i
has 0(1 + log -) access time. Mehlhorn has described a complicated version of
weight-balanced trees with the following properties:

%a) O(1 + log J) time to access, insert, or delete item i;
(b) 0(1 + log - time to change the weight of item i from toi to w ,

where w is the total weight before the change and 0 is the total weight after
the change.

Bent, Sleator, and Tarjan 1980 have found a way to implement dynamic dic-
tionaries that is not only much simpler than Mehlhorn's but allows fast concatena-
tion and splitting; specifically, 0(1 + log -) time to concatenate dictionaries of
total weights w and wt with w to, and 0(1 + log A) time to split a dictionary
at item i. The data structure resembles a 2 - 3 tree. Each tode in the tree has
between zero and three children. Certain nodes contain items; others are non-
item nodes (an item node contains exactly one item). A symmetric-order traversal
of the tree visits the items in order by key. An item node has a left son and
a right son, either or both of which can be missing; a non-item node has either
two or three children. In addition, each node has a level, defined as follows: the
level of a node containing item i is [log wiJ; the level of a non-item node is one

11



greater than the minimum of the levels of its children. We impose the additional
requirement that the level of a node be strictly greater than the levels of all its
children; thus all children of a non-item node have the same levwl. Figure 3 givee
an example of such a tree.

[Figure 31
It is not hard to implement access, insertion, deletion, concateration, split-ting, and weight change on such trees. Analyzing the efficiency of these operations,

however, requires a clever accounting argment. The data structure has not onlythe obvious applications but Woo a number of not-so-obvious ones, as we shall see
in the next section.
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6. Maximum Network Flow.
An impnrtant special case of linear programnming is the maximum network

flow problem: given a directed graph G = (V, E), two distinguished vertices, a
source a and a sink t, and a non-negative capacity c(e, on each edge e, find a
flow of maximum value from t to t. A flow is defined by a value f(e) on each
edge e, such that 0 < f(c) K ce); for every vertex v except the source and sink,
the total fhow on edges entering -) must equal the total flow on edges leaving v.
The value of the flow is the total flow on edges leaving the source (or equivalently
on edges entering the sink,.

Ford and Fu!kerscn 11962] were the first to study this problem. They proved
the famous max-flow min-cut theorem, which states that the value of a muximum
flow equals the capacity of a minimum cut. (A cut is a partition X, X of the
vertices such that 8 E X and t E Y; the capacity of the cut is the total capacity
of edges leaving X and entering Y.) They proved this theorem by means of an
augmenting path method which, given a flow, attempts to find a path from a to t
along which the flow can be increased. If the algorithm finds such a path, the flow
value is increased appropriately. If not, the method locates a cut whose capacity
is equal to the value of the current flow.

Ford and Fulkerson's method does not automatically give a fast algorithm

for maximum network flow. If the capacities are large integers, the method can
require enormous amounts of time; if the capacities are irrational, the method
need not terminate. However, if the search for augmenting paths is systematic,
the method leads to a fast algorithm. Tabie 2 shows the running times of various
maximum network flow algorithms based on this idea.

[Table 2]

Karp and Edmonds [1972] were the first to give a polynomial-time algorithm
for maximum flow. They showed that if a shortest augmenting path is always
selected, then no more than 0(nm) augmentations take place. From this they
obtained an O(nm')-time algorithm. Independently Dinic [19701 made the same
observation, and further noted that all the augmenting paths of a given length
can be found at once, in O(nm) time, giving an overall bound of O(nm). All the
recent progress on maximum flow is based on Dinic's work.

Karzanov [19741 *mproved Dinic's running time to 0(n3 ) by discovering how
to find all augmenting paths of a given length in O(i2) time. Karsanov's algorithm
is quite -omplicated, but Malhotra, Kumar, and Maheshwari [1978] obtained a
very simple algorithm that achieves the same time bound. Cherkasky 11977] dis-
covered an O(n 2ml/2) algorithm, improved by Galil [1978] to 0(n5/sm 2/-). Galil
and Naamad [1979] and independently Shiloach [1978) found an O(nm(log )2)

13



algorithm, which Sleator and Tarjan 119801 improved to O(nm log n).
The Sleator-Tarjan algorithm obtaius its speed by using sophisticated data

structures that maintain the flow information implicitly; thus it is not necessary
to perform an augmentation by chaaging the flow in every edge of the augmenting
path. The general method it illustrated in Figure 4. The algorithm maintains a
tree of edges with residual capacity whose root is the sink. The path from the
source to the sink in this tree defines an augmenting path. An 4ugmentation is
performed on this path, saturating at least one edge and caitsing the tree 0 break

into at least two edges. The tree is reassembled by adding new edges with residual
capacity, and the process is repeated.

[Figure 41

IFigure 5]

To represent the tree, the algorithm decomposes it into paths, as in Figure
5. Before an augmentation is performed, the paths representing the tree are
rearranged, by splitting and concatenation, so that the source and sink are on
the same path. Then the augmentation proceeds. Galil and Naamad 119791
and Shiloach [19791 showed that only O(logn) splits and concatenations occur
per augmentation. By representing each path of the tree by a data structure
consisting of a balanced binary tree, they obtained an O(log n) bound per split
or concatenation, an O((log n)2 ) bound per augmentation, and an O(nm(log n)2)
bound overall. By representing each path by a dynamic dictionary implemented
as described in Section 5, Sleator and Tarjau were able to reduce the time per
augmentation to O(logn), saving a factor of log r. in the overall running time.
This algorithm seems hard to beat; further improvements in maximum flow may
require a basic approach different from and mo:e powerful than Dinic's.

te
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Remarks.
What are we to conclude from all these new results in combinatorial com-

plexity? First, it is clear that NP-completeness is a very powertul and precise
tool for classifying combinatorial problems; it seems that any natural problem
is either NP-hard or has a polynomial-time algorithm. The candidates for coun-
terexamples, such as linear programming and graph isomorphism, are yielding to
diligent attack. Thus the P = NP question becomes, if anything, even more
important. In general, it seems that the lack of a non-trivial lower bound for a
problem is a good reasoa to believe that faster algorithms exist for it.

Second, some polynomial-time algorithms, such as the sophisticated algo-
rithms for network flow, show promise of being quite practical. Others, such as the
fastest methods for matrix multiplication, are only asymptotic results and seem
to hold no implications for practice. In order to detect such differences, much
more study is needed of algorithmic overhead, the associated constant factors,
and the practical trade-offs between algorithms.

Third, the careful and systematic study of data structures is extremely im-
portant in the design of algorithms that are fast both in theory and in practice.
In particular, there is much to be learned about the properties of various kinds of
trees and their use as data structures. We still lack an adequate theory that will
fit the apropriate data structure to each problem we wish to solve.

Fourth, the advent of very-large-s&.ale integrated circuits has raised entirely
new questions for combinatorial compiexity. We are zced with the problems
of designing new models of complexity matched to the ne'V hardware, and of
discovering what part of the knowledge obtained for sequential algorithms will
translate into the new framework, which will incorporate large-scale concurrency.
Thus parallel algorithms and spatial layout problems are important topics for
future research.

I
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Figure i4. Candidate edges for augmenting paths. Bold edges
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Date Discoverer Exponent of n

11969 Strassen 28o7

October 1978 Pan 2.795

November 1973 Bini, et.al. 2,78

June 1979 Schb5nhage 2.609

rOctober 1979 Pan 2.6o5[

October 1979q Schb5nhage 2.54i8

October 1979 Pan and Winograd 2.522 I
March 1980 Pan 2.149+

I Table 1. improvements in m~atrix mu1*Uplication.
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Date Discoverer Running Time

1956 Ford and Fulkerson --

1969 Edmonds and Karp O(nm 2

1970 inic O(n2 r-)

1974 Karzanov 0(n5 )

1978 Malhotra, et. al. 0(n3)

W197 Cherkasky 0(12m1/2)

Galil O(n5 3 m ! ) 

1979 Galil and Naamad, Shiloach 0(n m(log n) 2 ) I

1980 Sleator and Tarjan O(nmlogn

Table 2. Improvements in maxi~mur network flow.
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