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AVRADCOM Research and Technology Laboratories

SUMMARY

A finite difference code for predicting the high-speed flow over the
advancing helicopter rotor is presented. The code solves the low-frequency,
transonic small disturbance equation and is suitable for modeling the effects
of advancing blade unsteadiness on blades of nearly arbitrary planform. The
method employs a quasi-conservative mixed differencing scheme and solves the
resulting difference equations by an alternating direction scheme. Computed
results show good agreement with experimental blade pressure data and illus-
trate some of the effects of varying the rotor planform. The flow unsteadiness
is shown to be an indispensible part of a transonic solution. It is also shown
that, close to the tip at high advance ratio, cross-flow effects can signifi-
cantly affect the solution.

INTRODUCTION

Air flow past a helicopter rotor blade exhibits many very complex features
such as three-dimensional unsteady effects, shock-wave motions, vortex inter-
actions, and stall. A complete numerical simulation cannot even be attempted
yet, but it is possible with the present-day computers and numerical methods
to model some of these features and acquire a better understanding of some of
the mechanisms involved.

The model used in this study is a perfect fluid model that is further
simplified by the small-disturbance approximation. Weak, almost normal shock
waves are accounted for by retaining the leading nonlinear term in the stream-
wise direction. This model is useful for simulating the subsonic and transonic
flow past the advancing blade. Under these conditions the incidence is usually
small, and the results presented correspond to nonlifting blades. A proper
wake representation is required to extend this simulation to lifting configur-
ations. Prediction of the complicated rotor vortex structure is not within
the scope of the present work.

*ONERA exchange scientist.



It is hoped that this report and the code named and referred to hereafter
as THREED will be useful tools in their limited scope and that enough flexibil-
ity has been built into THREED to allow for later improvement.

This work was done while the author was on assignment at the U.S. Army
Aeromechanics Laboratory, Ames Research Center, Moffett Field, California,
according to the Memorandum of Understanding (MOU) agreement between Office
National D'Etudes et de Recherches Adrospatiales (ONERA), France and U.S. Army
at Ames on helicopter research.

The author wishes to express his thanks to Dr. C. Capelier, Director of
the Aerodynamics at ONERA and Dr. I. C. Statler, Director of the U.S. Army
Aeromechanics Laboratory as well as his colleagues at the Ames Research Center
who made this visit possible, and most pleasant. Special thanks go also to
Mrs. C. Coulombeix and Mr. Li of ONERA for the hardship of losing their group
leader for nine months. Finally, a "grand merci" to Chris Dolnack for the
very good typing.

EQUATION AND BOUNDARY CONDITIONS

The mathematical model used in this report is the three-dimensional
unsteady (low-frequency) small-disturbance transonic equation as derived by
M. P. Isom (ref. 1, p. 20). This equation is derived in a blade-attached
Cartesian coordinate system under the usual assumptions:

1 - M2(1 + 11)2 _ 0(62/3)

= 0(0)

where

M =2 tip Mach number due to the blade rotationa.

V
SIR . advance ratio

6 blade thickness

£ = (inverse of the aspect ratio

R blade radius

c chord of reference

Qrotational velocity

a,, sound speed

V forward velocity of the rotor
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In condensed notation the equation can be written:

AtX~ [B 21 + B '."i)] + xa Cy "z (1)D tat ax a ax rx D x 3y ay2 az 2

where -/

2M2  (y + P cos t) :"

62/3B -1 - M2(y + cos t)2  D -LC T'B:3r-

ju::tifieat i"'-... ..

B' Y + 1 M2(y + c - .2 y otBy-.. SDistr ibu',t in/ !

C 2M2  p sin t(y + V cos t) AvaIabi-L-Y ....

e2 Dist 1 SZpicl

E- 1 ' '_
t, x, y, and are the dimensionless dependent variables normalized by 9,
c, R, and 6-113 c, respectively, and y is the ratio of the specific heats.
At each time step NS in THREED, the coefficients are computed and stored in
one-dimensional arrays

A(J), B(J), BP(J), C(J). D(J), E(J), J - 1, ... JM

for all values of the spanwise index J. Allowance is made in the code for a
term A'a/t for which the value of the coefficient is stored in AP(J) and
has been set to zero for all present uses.

Initial and boundary conditions are required. To integrate this equation
the initial condition used is usually the quasi-steady solution (i.e., *xt - 0
in eq. (1)).

On the mean surface of the blade the flow tangency condition is expressed

(cf. ref. 1) as:

-"(y + p COS t)f'(x) at z " 0

az

At the innermost grid location, Ymtn' two boundary conditions can be
used:

1. A symmetry condition (equivalent to a flat tunnel wall in wing
calculations)

21 = 0 (specified by setting JSYM - i in THRED)

ay



2. A strip-theory condition (used for rotor blades or semi-infinite wings)

ay2

In the far field a Dirichlet (€ = 0) or a Newman (DO/Dn = 0) condition has been
used. The upstream boundary is usually taken as the uniform undisturbed flow
0 - 0).

COORDINATE TRANSFORMATION AND THE CORRESPONDING MESH SYSTEM

In order to treat a large class of planform shapes, a coordinate trans-
formation is made prior to the discretization of the equation. This transfor-
mation incorporates some one-dimensional stretching capabilities concentrating
the mesh in regions of large gradients; in particular, near the surface of the
blade, near the leading edge, and near the tip. The coordinate transformation
is of the form, (x,y,z) ( ,

where

E(x,y)

n n(y)

Equation (1) now becomes:

AB (a) + B'(11) + [a~ D( E) 2

+ (C 22T+ 2D 21f. -2 L + an 29 2.') +ir )2E + Bax ay 9y "y a an an 2 +\Ez/ a 2  ax2 ag

2 2 2) 2a 2  a~ 2
+ 2 B + +- D -- +2S + D 2--- - + E 2

ax ax2 \a) ( x ay ay 2) aE y 2 a 2

(2)

The coefficients in equation (2) are the partial derivatives of the trans-
formation. This form of the equation is called semiconservative; the metric
coefficients are brought outside the 9/a, a/an, a/i symbols. it can be
shown that, if the transformation is sufficiently regular, the jump conditions
are preserved across a discontinuity.

Computation is made of four first partial derivatives and five second
partial derivatives. They are 9E/9x, 9E/y, 3n/ay, and 9/az (called in
THREED XIX, XIY, YIY, and ZIZ, respectively) and ac/ax 2, 92E/aXy, a2C/qy 2,
92n/9y 2, and 92;/9z 2 (called in THREED XIX2, XIXY, XIY2, YIY2, and ZIZ2,
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respectively). These quantities are computed at each interior mesh point by
using finite difference approximations of the coefficients of the inverse
transformation and the following identities:

Iax a1 = a x

an ay

1 = az 2C

at aya anxan

and, similarly,

ax a
2 + 3

2 x Qg)
2

0 __ -- +X
''

3o aa + 2 x a at+ 32x at an
0 9ax 3y +  2 Dx Dy DE an ax ay

o a n - + 32Y (aT)
2

The derivatives ax/aE, . .. are evaluated by finite differences at point
i,j as

(ax)i - xi+il - x-~

,j 2A

These expressions include second-order terms O(A + A )2 + O(A1)2 ]. The mesh

is constructed in three steps. In the first step the locations of the span-
wise stations are defined. The following stations are specified:

Ymln innermost station on the blade, typically Yn 0.5 (Y is
referred to as YN in THREED)

YC a special station on the blade (e.g., a kink in the planform),
typically yc 0.9 (Y c YC in THREED)

y d the tip of the blade Yd 1 (yd YD in THREED)

5



Ymax outermost radial station, typically Ymax 1.5 (y x YX in
THREED)

In addition to these real numbers the corresponding integers (JC S 3D) must be
defined. This determines how many stations for computation are located

between I (Ymin) and JC (yc), JC (yc) and JD (yd), and JD (yd) and (yM x).
The following analytical expressions are used to define the mesh stations:

J > JD Y(J) = YX + os )(YD-YX)

J < JC Y(J) = os + os T c)(YC - YN)

JC < J S JD Y(J) = YC + c (YD YC)TiD - Tc

where the variable n is defined between 0 and 1 by

JM- 1

The planform of the blade then yields the locations xa and xf of the leading
and trailing edges as functions of J. For this purpose, a piecewise analyti-
cal representation is made of the planform. The chordwise coordinate trans-
formation has no radial dependence for all points beyond the tip. In THREED

xa and xf are called XA(J) and XF(J).

The second step in mesh construction, in the chordwise direction, is
defining

Xmin upstream boundary, typically xmin z -8 (xmin XN)

xmax downstream boundary, typically xmax z 6 (xmax - XX)

and the indices IA : IF which determine how many stations are located
between 1 (xmin) and IA (xa), IA (xa) and IF (xf), and IF (xf) and IM (Xmax)-
Similar analytical expressions are used to define the mesh stations in x:

I > IF X(IJ) - XX + cos F [XF(J) - XX]

I < IA X(I,J) = XN + cos 1 [XA(J) - XN]

IA < I S IF X(I,J) - XA(J) + - cos( 1 - ) [XF(J) - XA(J)]

6



where the variable is defined between -1 and 1 by

+ 2(1 - 1)

IM - I

In the third step in the vertical direction the following are defined:

Zmin lower boundary, typically Zmin -3 (zmi n ZN)

Zmax upper boundary, typically Zmax 3 (z ZX)

and the indices KU = KO + 1 which determine how many stations are located
between I (zmin) and KO (nearest to the lower surface of the blade), and KU
(nearest to the upper surface of the blade) and KM (zmax). The mesh stations
in z are defined by using the analytical expressions:

K > KO Z(K) = ZX - cos I t)ZX

K KO Z(K) = ZN - cos( -)ZN

where C is defined between -1 and 1 by

+ 2(k - 1)
KM- 1

The mesh dimensions in the code are set up to allow for maximums of IM = 64,
JM = 32, and KM - 32.

FINITE DIFFERENCE SCHEME

In equation (1), the nonlinear term (3/9x)[B(a4/3x) + B'(3/3x)2 ], which
is often written nonconservatively as VOxx, is responsible for the mixed
character of the flow. It is well established that a mixed scheme must be
used for the nonlinear flux discretization (refs. 2 and 3), given as follows
for a uniform mesh spacing:

Let V. = B + 2B' 1+2-iz 2Ax

In the following four cases to be considered the nonlinear term is discretized;
e.g.,

Case 1 V 1 0 Vi- 1 0 (subsonic point)

4i+i - 20i + 0i-1
Discretization: V i  Ax2

(the indices j and k, which are invariant, are not indicated).
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Case 2 V < 0 Vi 1 < 0 (Supersonic point)

2€ +

Discretization: Vi_ x

Case 3 V1 < 0 V Z 0 (sonic point)

- i i-1 +  i-2
Discretization: Vi  - I

i ~Ax 2

Case 4 V > 0 Vi_ 1 < 0 (shock point)

- 2 + - i - 2i-~1i-2

Discretization: Vi  + V_A2 i Ax2

In contrast to most small disturbance codes (typified by refs. 4 and 5),
the discretization of the sonic point (case 3) eliminates some spurious oscil-
lations that appear when the sonic line is located close to the leading edge
of a blunt airfoil in a region where the flow experiences a rapid acceleration.
It can be shown that the discretization that is proposed here is consistent
with the equation, but it is not strictly conservative. However, the error of
conservation is small, and not larger than 0(Ax). The shock-point discre-
tization, however, ensures conservation of mass at the shock point.

The next term in equation (1) is the cross-derivative term. This term is
small inboard where the flow is subsonic and two-dimensional. However, for
large advance ratios (v 0.5) and for values of azimuth and radius where the
transonic flow has a large radial component, its effects cannot be neglected.
In fact, in these cases the cross-derivative term, which is usually treated
explicitly (i.e., always at the previous time level (ref. 5)), has a destabi-
lizing effect and can strongly reduce the time step required for maintaining
overall stability.

For values of C z 0, corresponding to a negative sweep angle, the cross-
derivative term is discretized as:

e,J+1 - *i,j - €%i,j+i + ¢-~

C.
Ax Ay

For values of C < 0, corresponding to a positive sweep angle, the following
discretization is used:

¢iJ - ¢ij-i - oi-ij + ¢i-,j-i
cj Ax Ay

The schemes that are presented for uniform mesh spacing extend readily
to the mesh obtained from the coordinate transformation. The coefficient of
the cross-derivative is now

8
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c + 2Daxa y ay ay

For discretization of the term c(aE/ax)(aC/ay)( 2
0/aC

2) a centered scheme is
used at all points:

at ij i+i - 2 i+ *i-1

j ax ay A2

SOLUTION ALGORITHM

The time-accurate integration is obtained by using an Alternate Direction
Implicit (ADI) scheme that breaks the three-dimensional problem into three one-
dimensional problems in each coordinate direction. The advantage of this
scheme is its inherent stability, at least in the case of a linear equation,
regardless of the local Courant number. Indeed, when solving a complicated
problem, in a mesh where the cell sizes may vary by one or more orders of mag-
nitudes, it would be very time-consuming to limit the time step to satisfy the
Courant number associated with the smallest cell.

However, since the equation being solved is nonlinear, there is a prac-
tical limitation which can be associated with vortex shedding in lifting
cases or configurations with shock motion. This means that the cell sizes
must never be so small on the airfoil surface and near the trailing edge
that the allowable time step for maintaining stability is unnecessarily
limited.

A Crank-Nicholson averaging between the levels n and n + 1 is used
since it can be shown on the linearized equation that a stable scheme results.

The three steps of the ADI-Crank-Nicholson algorithm are as follows:

Step 1

a B ( -2( n + 2 +)a--xx at 3E a ay 2 +a

, 2--+2 a a at 2n
+~ aC-n a 21 a_+_a
(cax ay ayay/ acan axa a E2

(iy2 n Z \
2 

a n

ay/ an2~ kaz/ a ( )2
~22 (X2 +at )+2& ax aX2 at at 2 ay2 at

+Da2n±e-+ E a iEa +c a 24T
an 2 z a4 -axay at
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It should be noted that the underlined terms are treated explicitly. However,
an implicit scheme can easily be devised based on switching from a centered
difference approximation to 3

2 /aC2 when (c /ax)(aC/3y) a 0, and to an
upwind difference approximation when (cE/x)(3a/ay) < 0. Test results for a
swept tip showed very little difference between the implicit treatment and the
explicit scheme given previously.

Step 2

A i- c L n+2 ian, a2en
ax At ,2 ax ay ay ay)\ ona - ;V

(an 2 - Dn 92n n~-aP+A-f a y / 2 2 a T n

Step 3

In1E 2 n+1 2 !en 32 n1i nA~~-~-( z ) 2 2n~* - _

ax ~ At / 2 az, D2 ; 2 / 2 DZ2 ( a

After these equations are discretized according to the method discussed in the
Finite Difference Scheme section, the algebraic system is inverted by using a
tridiagonal or quadradiagonal direct solver. Particular attention is given,
when defining the finite difference analogues, to ensure that the main diagonal
term could be chosen as pivot in the elimination process. All the terms, which
are treated implicitly, contribute to the main diagonal with the same sign.

Each complete time step requires approximately 2.5 sec of CPU time of the
CDC 7600 computer. A rectangular blade computation requires approximately
half an hour of total run time. For swept tips, where there is a more severe
time-step limitation, the total run time is an hour. The corresponding mesh
is composed of approximately 35,000 nodes.

RESULTS

Some three-dimensional steady (hover) flows are simulated for three blade
geometries: a rectangular blade, a swept-tip blade, and a blade combining a
swept and parabolic tip (fig. 1). The pressure distributions are presented
for three sections of the blades in figures 2(a-c) for blade A, figures 2(d-f)
for blade B, and figures 2(g-i) for blade C. As can be seen, the effect of

sweep is favorable inboard. The shock waves either are weakened or disappear
on blade C. Close to the tip, however, the opposite trend seems to occur, with
blade C experiencing the largest supersonic pocket. The global effect is
favorable for the swept tips in hover.

Three-dimensional unsteady flows past a rectangular blade of aspect ratio
A - 7, have been computed at Mach numbers M = 0.6 and advance ratios (p) of
0.45, 0.5, and 0.55. The blade has no twist and is equipped with a symmetric
NACA OOXX profile of varying thickness along the span. ONERA experimental

10
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data for the same rotors and test conditions are available for comparison
(ref. 4). Figure 3 shows the radial stations for the experimental pressure
measurements. The corresponding results are shown in figures 4(a-c) for the
azimuth of 600 and in figures 4(d-f) for the azimuth of 1200 at the lowest
advance ratio. For the advance ratio of v = 0.5, the results are presented
in figures 4(g-l). Figures 4(m-r) show results for V = 0.55 for the same
two azimuth angles of 600 and 1200. Also plotted in these figures are the
quasi-steady results, which correspond to 32 /atax = 0. As can be seen, the
unsteady results agree better with the experimental results, indicating a non-
negligible unsteady term 32 /Dt~x. Furthermore, a comparison of the quasi-
steady solutions at azimuth angles of 600 and 1200 exhibits the influence of
the cross-derivative a2 /axay, which increases toward the tip.

THREED CODE

THREED has been coded in FORTRAN by using only standard statements. In
its present form it is adapted to the CDC 7600 computer of the Ames Research
Center, NASA, Moffett Field, California. The Small Core Memory (SCM) length
is 27,257 decimal words and the Large Core Memory (LCM) length is 131,072 deci-
mal words. THREED is divided into one main program and four subroutines:

SUBROUTINE MESH defines the mesh and computes the metric coefficients
SUBROUTINE SLOPE computes the slope of the blade at each point
SUBROUTINE POT integrates the potential equation

SUBROUTINE CP computes the pressure coefficient on the blade

The data as they are read in and printed out are shown in appendix A. The
values shown correspond to the results plotted in figure 4(g-l). A short
explanation of the parameters as well as the notation in THREED follows:

i) HM = 0.6 Mach number
ALPHO = 0 mean incidence of the sinusoidal motion, deg
DALPH = 0 amplitude of the incidence variation, deg
IROT = 1 rotating blade case
IROT = 0 fixed blade or wing case
AV = 0.5 advance ratio
GM = 1.4 ratio of specific heats

ii) NSTP = 601 number of time steps

ITER = 400 number of iteration steps
DTN - 0.0001 minimum time-step size in the relaxation process (rad)
DTX = 0.01 maximum time-step size in the relaxation process (rad)

NMOD = 8 number of elements in the time-step sequence based on
DTN and DTX

TI = -1.5708 initial time (rad)
NPR = 100 time step at which results are printed

iii) YC - 0.9 location of the kink or a special span location
YD - 1 tip of the blade

III



KSG - 1 indicates that the blade is symmetric with respect to
z = 0

KSG = 0 indicates that the blade is not symmetric
DEL = 0.12 thickness of the basic profile as defined subsequently
AR - 7 aspect ratio of the blade

iv) JYSM - 0 indicates that a strip-theory condition is used at the
root

JYSM = 1 indicates that a symmetry condition is used at the root
KSYM - 1 there is a lower-upper symmetry
KSYM = 0 there is no lower-upper symmetry

KGRAD = 1 a Neuman boundary condition is used
KGRAD = 0 a Dirichlet boundary condition is used

v) IM = 64 number of mesh points in the E direction (564)

JM = 32 number of mesh points in the n direction (S32)
KM = 32 number of mesh points in the direction (532)

vi) IA = 18 leading-edge index (IA : IF)
IF = 48 trailing-edge index (IF 5 64)
JC = 11 kink station index (JC 5 JD)
JD = 21 tip station (JD 5 32)

KO = 16 lower-surface index
KU = 17 upper-surface index (KU = KO + 1 : 32)

vii) XN = -8 location of most upstream surface
XX = 6 location of most downstream surface
YN = 0.5 location of innermost surface
YX = 1.5849 location of outermost surface
ZN = -3 location of most bottom surface
ZX = 3 location of most tip surface

viii) The basic airfoil is defined by two sets of values representing the
abscissas and the ordinates of points on the profile. The maximum number of
points is 101. The points are distributed in sequential order around the air-
foil, starting from the trailing edge describing the upper surface, then the
lower surface, and then back to the trailing edge.

NP = 101 total number of points (5101)
(NP + 1)/2 must correspond to the leading edge

When the geometry changes rapidly it is preferable to concentrate the
points near the leading and trailing edges in order to ensure the best pos-
sible accuracy for linear interpolation. The coordinate profile at the mesh
location N is

XP (N) abscissa
ZP (N) ordinate

The planform geometry of the blade is defined by piecewise-analytic formulas
in the subroutine MESH. An example is given in appendix B for a swept tip.
The functions XA(J) and XF(J) are defined in the loop starting with

12



77 DO 6 J =1, JM

and ending with

87 6 CONTINUE

as shown in the box.

CONCLUSIONS

A finite difference code for predicting the high-speed flow over an
advancing helicopter rotor is presented. The code solves the low-frequency
transonic small disturbance equation and is suitable for modeling the effects
of three-dimensional advancing blade unsteadiness. This work was inspired by
a similar method developed by F. X. Caradonna (ref. 5). However, the computer
code THREED incorporates some important new features, especially the capabil-
ity for treating nonrectangular blade tips. Computed results show good
agreement with experimental blade pressure data and illustrate some of the
effects of varying the rotor planform. The flow unsteadiness is shown to be
an indispensible part of a transonic solution. It is also shown that close to
the tip at high advance ratio, cross-flow effects can significantly affect the
solution.

Ames Research Center
National Aeronautics and Space Administration

and
Aeromechanics Laboratory

AVRADCOM Research and Technology Laboratories
Moffett Field, Calif. 94035, April 10, 1980
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APPENDIX A

SAMPLE OF DATA AS READ IN AND PRINTED OUT OF CDC 7600 COMPUTER

MACH MEAN INCIDENCE ROTATION ADVANCE HFAT

NUMBER INCIDENCE VARIATION YIN RATIO RATIO

.6 0. 0. 1 .5 1.4

NO.TIME NO.STEPS MIN STEP MAX STEP RELAXATION INITIAL FINAL IMPR.

STEPS RELAXATION RELAX RELAX CYCLE TIME TIME STEPS

601 40 .0001 .01 8 -1.570R 1.5708 100

SPECIAL TIP GEOM. BASIC ASPECT

SPAN LOCATION SYMMETRY THICKNESS RATIO

LOCATION Y/N
.9 1. 1 .12 7.

ROOT SYM UP-LO LATERAL

CONDITION SYMMETRY GRADIENT
Y/N Y/N Y/N

0 1 1

NO.X NO.Y NO.Z
MFSH MESH MESH
64 32 32

LEADING TRAILING SPECIAL TIP LOWER UPPER

EDGE EDGE SPAN NO. NO. SURFACE NO. S.NO.

I8 4R 11 21 16 17

MIN.X MAX.X MIN.Y MAXY MIN.Z MAX.Z

SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE

-8.n 6.0 .5 1.5A49 -3. 3.

14



bASIC PpOLFl F
NO.PI)INTS I NfIFX AKSC I SSA (IqI)l NIATF

10 1
I 1.nno .0013
2 nil . -01'
3 .9061 .001i8
4 .9011 .0025
5 .R43 .0034
6 .9755 .0046
7 .q649 .no61

H .9r24 .0077
q .q312 .0096

to .9222 .0117

11 .9045 .0139
12 .P53 .0163
13 .R649 .1RR
14 .8423 .0214
15 .9187 .0241
16 .7939 .0269
17 .7679 .0297

1A .7409 .0325
19 .7129 .0354

20 .6P41 .0382
21 .6545 .0409
22 .6243 .0436
23 .5Q37 .0461
24 .5627 .0486
25 .5314 .050q

26 .5000 .0529
27 .4686 .0548
28 .4373 .0564
29 .4063 .057P

30 .3757 .0588
31 .3455 .0596

32 .3159 .0600
33 .2R71 .0600

34 .2591 .0596
35 .2321 .0589
36 .2061 .0577
37 .I13 .0562
38 .1577 .0542
39 .1355 .0519

40 .1147 .04ql

41 .0955 .0460
42 .077P .0426

15 j



BASIC PROFILE
NO. POINTS INDEX ABSCISSA ORDINATE
1O1

43 .0618 .038c
44 .0476 .034q

4i .0351 .0305
46 .0245 .0259

47 .0157 .0211
48 .0089 .0161
49 .0039 .0109
So .0010 .0055
9 1 .0000 .0000

52 .0010 -. 0055

53 .0039 -. 0109
94 .008q -. 0161
55 .0157 -. 0211
96 .0245 -. 0259
57 .035l -. 0305
58 .0476 -. 0348
59 .0618 -. 0389
0 .0778 -. 0426

61 .0Q55 -.04AO
62 .1147 -. 0491
63 .1355 -. 0519

64 .IS77 -. 0542
65 .IR13 -. 0562

66 .2061 -. 0577
67 .2321 -. n589
68 .2591 -. 0596
69 .2871 -. 0600
70 .3159 -. 0600
71 .3455 -. 05q6
72 .3757 -.0588
73 .4063 -. 0578
74 .4373 -.0564

75 .4A86 -,0548
76 .5000 -.0529

77 .5314 -. 0509
78 .5627 -. 0486

79 .5937 -. 0461

80 .6243 -. 0436

Ri .6545 -. 040o

82 .6841 -. 0382
83 .7129 -. 0354

84 .7409 -. 0325
85 .767q -. 02Q7
R6 .7939 -. 026q

87 .8187 -. 0241
88 .8423 -. 0214

16
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BASIC PROFILE
NO. POINTS INDEX ABSCISSA ORDINATE
101

R9 .R645 -. O19

90 .8853 -. 0163
ql .9045 -. 0130

92 .9222 -. 0117
93 .9382 -. 0096
94 .9524 -,0077
q5 .9649 -. 0061
q6 .9755 -. 0046
97 .9R43 -. 0034
98 .9911 -. 0025
qQ .9q61 -. 0018

Ino 19Q90 -.0014
101 1.0000 -.0013

17
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APPENDIX B

SUBROUTINE MESH

Y (j ) =vC+ FlJM4: ( YI)-YC

2 c nN TT N t IF
0t 11 -1= -. 5)'' I ( I J -Vy I C Y I V G
f)IIM=C(1S ( flM)
yV(j) =Vyi\.fjm* ( YC-VN)
Gr) TO 4

3 CnNr~T I F

V I J ) =VYX +I)OfM* (YVD-Y X
4 COn\T I NLF

IFl(JSVM.MF.* 1) V (1) =V( )
WnP IT IF (6, 1000
On 5 J=1,JM
WP ITF (6,1001) J,VT (J) ,Y (J)

ci CnNTlINUE
C***PLANFflRM E011ATIrlN XA (J ),XF ( J

on 6 j1,ljm
Vj=y( J)
XA( J)0O.
XF (J)=1.
IF(J.LF.JC) GO TO 6
XA (J ) =3.531767* (YJ-VC)
XF ( J)= j.+XA (J)
IF(J.LE.Jr)) GO TO 6
XA(J)=XA(J-1)
XF (J )=XF (J-1)

6 CnNTTNIJF
XA (1)=XA (2)
XF( 1)=XF(2)
WR I TF (6, 1002)
nn 7 J=19JM
WRTTF(6,1001) JXA(J) ,XF-J)

7 CONrT INUE
X I 1=-1.-~X I

XI T=XI I+flXI
XI (I )=x1I

s cnNTTN(JF
1=0



REFERENCES

1. Isom, M. P.: Unsteady Subsonic and Transonic Potential Flow Over Helicop-
ter Rotor Blades. NASA CR-2463, 1974.

2. Murman, E. M.; and Cole, J. D.: Calculation of Plane Steady Transonic
Flows. AIAA J., vol. 9, 1971, pp. 114-121.

3. Murman, E. M., Analysis of Embedded Shock Waves Calculated by Relaxation
Methods. Proceedings of AIAA Computational Fluid Dynamics Conference,
Palm Springs, California, July 1973, pp. 27-40.

4. Caradonna, F. X.; and Philippe, J. J.: The Flow Over a Helicopter Blade
Tip in the Transonic Regime. Vertica, 1978, vol. 2, pp. 43-60.

5. Caradonna, F. X.; and Steger, J. L.: Implicit Potential Methods for the
Solution of Transonic Rotor Flows. Presented at the 1980 Army
Numerical Analysis and Computers Conference, Feb. 20-21, 1980,

Moffett Field, California.

6. Philippe, J. J.; and Armand, C.: Rotorcraft Design. AGARD CP-233, pre-
sented at the Proceedings of the Flight Mechanics Panel Symposium,
Moffett Field, Calif., May 16-19, 1977.

19

_J



".O

MT = 0.86

V =0
M - 13.7

NACA = 0012

BLADES I I
*I.

00

COMPUTATIONJ SECTION NO. J 66

* Figure 1.- Simulations of three-dimensional steady (hover) flows for: A -a
rectangular blade; B - a swept-tip blade; and C - a combination of swept-
and parabolic-tip blade.
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SLADE A SLADE A

V 0.949
y =0.9745

p -C.

-Cp

o 01

0-.55
0 .5 11

x x

(a) Station J =11. (b) Station J =16.

BLADE A BLADE 8

'5 Y ~ I -y 
= 0 .9 4 9

-CP 0.5 -cp.

-C P

-.5 0

(c) Station J 21.-.

0 .5 1

(d) Swept tip, station J =11.

Figure 2.- Pressure distribution computations; tip in hover.
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BLADE B BLADE B

V=0.9745 Y1j

.5 0

00 .5
0 I x

(e) Swept tip, station J =16. (f) Swept tip, station J -21.

Figure 2.- Continued.
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BLADE C BLADE C

-.5

0 .5 10.

(g) Swept tip, station J =1.(h) Swept tip, station J =16.

BLADE C

y= 1

.0

()Swept tip, station J -21.

Figure 2.- Concluded.
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w 0.45,.0.50, and 0.55

AR 7 M = 0.6
=0

RECTANGULAR BLADE

COMPUTATION SECTION NO. 1

EXPERIMENTAL DATA SECTION NO. 99

Figure 3.- Three-dimensional unsteady problem for forward flight.
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0 EXPERIMENT 0 EXPERIMENT
-THEORY -THEORY

1.0 1

, = 60
y = 0.9 6

Cp* - .45 y = 0.95

0 00 p. P = 0.45

00

*50 .

00

-. 5.

0 .5 1 .5
x

(a) Station 11. (b) Station 16.

0 EXPERIMENT1 -THEORY

Y=1
p 0.45 P 120'

.55

-. 5

-. 5

0.5 1 0 .5

x x

(c) Station 21. (d) Station 11.

Figure 4.- Pressure distribution computations. Symbols denote data from
reference 4.
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0 EXPERIMENT
-HEORY

1 = 120

120 =0.45

cp- 0.4 5  .5 C p
.5-

0 -c P

.4 0

-.5 0.

0 .51

(e) Station 16. (f) Station 21.

0 EXPERIMENT 0 EXPERIMENT
-THEORY - THEORY

00 V =0.9 Y =0.95

cp. Pu=0.50 =05

.5 ..
0 0

-cp -cP

0 C

-.5 -.5

0 .5 10 .5
x x

(g) Station 11. (h) Station 16.

Figure 4.- Continued.
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0EXPERIMENT
.5- -p 6 THEORY

y= 1
U A 0 .5 0 

c .1 0

0 y=0.9
-c.5 u= 0.50

-cp0

-. 5

0 .5 1
x

(i) Station 21.
0 .5

x

(j) Station 11.

0 EXPERIMENT
THEORY

.5-
ik -120- cp. .=120

- 0.95 Y~l

U= 0.50 =0.50

.5- cp. * 0

-cp 0 0

-.5 (1 Staton-21

0 .5

xN

(k) Station 16.

Figure 4.- Continued.
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0 EXPER~IMENT 0 EXPERIMENT
- UNSTEADY CALCULATION - UNSTEADY CALCULATION
- UASI-STEADY CALCULATION - -- QUASI-STEADY CALCULATION

= 60, 1 =600

0~~-V - 0.9 y=0.95

0 0 ~ ~ 0.55 =0.55

.5- p5

0 .5

_Cp 
-Cp

0 05

0 .5
x

(in) Station 11. (n) Station 16.

O UASI-STEADY CALCULATION
-UNSTEADY CALCULATION

1.

.1IA 0.55

-C- p

CI

(o) Station 21.

Figure 4.- Continued.
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0 EXPERIMENT 0 EXPERIMENT
-UNSTEADY CALCULATION - UNSTEADY CALCULATION
--- QUASI-STEADY CALCULATION - -QUASI- STEADY CALCULATION

=120

=120' 0.95
y = 0.9 =0.56

0 M= 
0 5 5

, CP N,

0

0 .5 1

(p) Station 11. (q) Station 16.

- UASI-STEADY CALCULATION
-UNSTEADY CALCULATION

0.55

Cx

(r) Station 21.

Figure 4.- Concluded.
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