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ABSTRACT

/

In this report, we develop iterative algorithms for reconstructing

a minimum phase sequence from the phase or magnitude of its Fourier trans-

form. The iterative techniques result in two potentially important com-

putational algorithms. The first is a means of implementing the Hilbert

transform of the log-magnitude or phase of the Fourier transform of a

minimum phase sequence. This procedure avoids problems of phase unwrapping

and aliasing inherent in the direct discrete Fourier transform implementation

of the Hilbert transform. The second algorithm is a new method of computing

samples of the unwrapped phase. As compared with other available phase

unwrapping algorithms, this approach does not rely on addin 2w multiples

to samples of the principal value of the phase.
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1. INTRODUCTION

Under certain conditions a signal can be reconstructed from a partial

specification in the time domain, in the frequency domain, or in both

domains. A minimum or maximum phase signal, in particular, can be re-

covered from the phase or magnitude of its Fourier transform [1]. The

conventional reconstruction algorithm involves applying the Hilbert trans-

form to the log-magnitude or phase of the Fourier transform to obtain the

unknown component.

In this report, we take an alternative approach by developing iterative

algorithms for reconstructing a minimum (or maximum) phase signal from the

phase or magnitude of its Fourier transform. Specifically, we develop

algorithms which impose causality in the time domain and the given phase

or magnitude in the frequency domain, in an iterative fashion.

Iterative algorithms similar to those we discuss here have been useful

in a number of areas where partial information in the two domains is

available. In particular, the algorithms presented in this paper are

similar in style to the Gerchberg-Saxton algorithm [2], and an iterative

algorithm by Fienup [3] in alternately incorporating partial information in

the time and frequency domains. The Gerchberg-Saxton algorithm recovers a

two-dimensional complex signal by iteratively imposing the finite extent

of the signal in the space-domain and its magnitude in both the space and

frequency domains. Similarly, Fienup's algorithm recovers a real two-

dimensional signal by iteratively imposing the finite extent and positivity

of the signal in the space-domain and its magnitude in the frequency domain.

Another iteration in this same style recovers a finite length mixed phase

signal from the phase of its Fourier transform by imposing a finite length

constraint in the time domain and the known phase in the frequency domain [4,5].
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in this report, we begin in section 2 with a discussion of a number

of equivalent conditions for a sequence to be'minimum phase. In sections

III and IV, we use these conditions in developing two iterative reconstruc-

tion algorithms, one for reconstruction when the phase is known and the

other for reconstruction when the magnitude is known.

In section V, we discuss the discrete Fourier transform (DFT) reali-

zations of the algorithms and illustrate the reconstruction process with

examples.

In sections VI and VII, we describe two computational algorithms

which rely on the iterative procedures of sections III and IV. We first

investigate the use of the algorithms in implementing the Hilbert transform.

Of particular importance is reconstruction of the log-magnitude from phase

since the iterative approach requires only the principal value of the phase,

while the direct DFT implementation of the Hilbert transform requires the

unwrapped phase [6). The former technique, therefore, avoids the compli-

cations and problems of phase unwrapping which is often computationally

difficult [1,7]. In addition, the accuracy of the iterative process is not

limited by the finite length of the DFT as in the direct approach.

In the second computational procedure, the iterative technique of

section III is used as the basis for a new phase unwrapping algorithm.

This algorithm does not rely on adding 27 multiples to the principal value

of the phase as required by available unwrapping algorithm.

In section VIII, the main results of the report are summarized and

some future research is discussed.
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2. THE MINIMUM PHASE CONDITION

In general, a signal cannot be uniquely specified by only the phase

or magnitude of its Fourier transform. However, one condition under which

the magnitude and phase are related is the minimum phase condition and

under this condition a signal can be uniquely recovered from the magnitude

of its Fourier transform or, to within a scale factor, the phase of its

Fourier transform. In this section, we discuss a number of equivalent

conditions for a signal to be minimum phase. These conditions will be of

particular importance in section III in developing the iterative algorithms.

In the following discussion, we restrict the z-transform of the

sequence h(n) to be a rational function which we express in the form

S(- lkz H° (1-bkZ)

k-l k=l

H(z) " An °  (1)
P Po
n I (1_C k Z- J (1-d kZ)

k-l k-l

where akj., Ibk, IckI and Idki are less than or equal to unity, zn0 is a

linear phase factor, and A is a scale factor. When, in addition, h(n) is

stable, i.e., Zjh(n)I < , IckI and IdkI are strictly less than one.
n

A complex function H(z) of a complex variable z is defined to be

minimum phase if it and its reciprocal H-1(z) are both analytic for

jzj > 1. A minimum phase sequence is then defined as a sequence whose

z-transform is minimum phase. For H(z) rational, as in (2), the minimum

phase condition excludes poles or zeros on or outside the unit circle in

the z-plane or at infinity. As a consequence, the factors of the form

(1-bkz) corresponding to zeros on or outside the unit circle and the

factors of the form (1-dkZ) corresponding to poles on or outside the unit

circle will not be present. Furthermore, in (2), no-O to exclude poles
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or zeros at infinity. Thus for H(z) minimum phase, (1) reduces to

M
i (l-akz-

k-l
H(z) - A (2)

fi (l-ckz- )
k-i

where Jakj and IckI are both strictly less than unity.

From (2) other conditions can be formulated for a signal to be

minimum phase. Two in particular which we discuss below are par-

ticularly useful in the context oL the iterative algorithms to be

discussed in section III and IV.

Minimum Phase Condition A: Consider h(n) stable and H(z) rational in the

form of (1) with no zeros on the unit circle. A necessary and sufficient

condition for h(n) to be minimum phase is that h(n) be causal, i.e.,

h(n)=O n < 0, and n in (1) be zero.

From (2), it follows that these conditions are necessary. To show

that they are sufficient, we want to show that they force (1) to reduce to

(2). Clearly, factors of the form (1-dkz) IdkI < 1 in the denominator

introduce poles outside the unit circle which would violate the causality

condition. With n-0 in (1), factors of the form (l-bkz) would introduce

positive powers of z in the Laurent expansion of H(z), requiring h(n) to

have some non-zero values for negative values of n, thereby again violating

the causality condition. Therefore, these factors cannot be present and

with n0-, (1) reduces to (2). Finally, because our condition assumes h(n)

is stable and that H(z) has no zeros on the unit circle, h(n) is minimum

phase.
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The above minimum phase conditions require that h(n) be causal and

that the unwrapped phase function have no linear phase component. Another

slightly different set of necessary and sufficient conditions for a signal

to be minimum phase can be stated as follows:

Hinimum Phase Condition B: Consider h(n) stable and H(z) rational in the

form of (1) with no zeros on the unit circle. A necessary and sufficient

condition for h(n) to be minimum phase is that h(n)=O n < 0 and h(O)-A

where A is the scale factor in (1).

Again, from (2) it follows that these conditions are necessary since

(2) has no poles or zeros outside the unit circle or at infinity, guaranteeing

causality, and from the Initial Value Theorem h(O)=lim H(z)-A. To demon-
z-XO

strate that these conditions are sufficient we note that again causality

of h(n) will eliminate factors of the form (l-dkz) in the denominator of

(1). Furthermore, since the conditions require that h(n) be causal, the

Initial Value Theorem can be applied with the result that

H
n o

h(0)- lim H(z)-lim A z 0 H (1-bkZ) (3)
z4W z) k- 1

Since h(0)-A,

Mn o

lim z H (l-bkZ)-l (4)
zN- k-l
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and since lbki < 1 this requires that no0=0 and the bk'S be equal to zero.

Thus, again (1) reduces to (2).

Another condition which can be shown to be equivalent to minimum phase

condition A or B or our original definition of a minimum phase sequence is

that the log-magnitude and unwrapped phase of H(oz) are related through the

Hilbert transform [1]. The Hilbert transform relation guarantees that a

minimum phase sequence can be uniquely specified from the Fourier transform

phase and, to within a scale factor, from the Fourier transform magnitude.

Consequently, this unique characterization can be made when minimum phase

condition A or B holds, and the Fourier transform phase or magnitude is given.

One technique for minimum phase signal reconstruction from phase or

magnitude relies on a DFT implementation of the Hilbert transform [6].

Two drawbacks to this algorithm are the requirement of samples of the un-

wrapped phase and inaccuracies due to. aliasing. In the next two sections,

we develop iterative algorithms for reconstructing a minimum phase sequence

h(n) from the phase or magnitude of its Fourier transform which bypass these

problems. Motivated by the minimum phase condition A, when the phase is

given we impose, in an iterative fashion, causality in the time domain and

the known phase (which has no linear phase component) in the frequency

domain. When the resulting sequence satisfies minimum phase condition A

and has the given phase, it must equal h(n) to within a scale factor.

Likewise, motivated by the minimum phase condition B, when the magnitude

is given we impose, in an iterative fashion, causality and the initial

value h(O) in the time domain, and the known magnitude in the frequency

domain. When the algorithm results in a sequence which satisfies minimum

phase condition B and has the given magnitude, it must equal h(n).

6



3. AN ITERATIVE ALGORITHM FOR SIGNAL RECONSTRUCTION FROM PHASE

The iterative algorithm for reconstructing a minimum phase signal

from its phase function is shown in Figure 1. The functions hk(n), ek(o)

and Mk'() represent the signal and its phase and magnitude estimates on the

kth iteration. The function 6k(o() is the known phase and tk+I(n) - hk(n)u(n),

where u(n) is the unit step function.

The algorithm begins with an initial guess M0 (w) of the desired Fourier

transform magnitude and the inverse Fourier transform of Mo(w)exp[JOh(w)] is

taken. This step yields h0 (n), the initial estimate of h(n). Next,

causality is imposed so that h0 (n) is set to zero for n< 0 to obtain

hI(n). The phase of the Fourier transform of h 1(n) is then replaced by the

given phase and the procedure is repeated.

We now show that the mean squared error between h(n) and hk(n) or

equivalently between 11(w) and H.k(w) is non-increasing on successive

iterations. The mean squared error on the kth iteration from Parseval's

Theorem can be written as

T

E f I -w Hk(W)1 2 d

-IT

= j h(n) - 2kn[

n

Z Ih(n) - k(n) 2 + E Ih(n) - hk(n)[ 2  (5)

n < 0 n>O
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3 MF 0 (w) exp [j h(w)]

F-1

h.k(n)

Impose Causality

1 hk+l (n) h.k[n]u[n]

F

h W) k+l (w)

Fig. 1. Iterative algorithm to
recover h(n) from its phase.



Since bk+l~n I .~~~)

jh(n) - hk(n)I = Ih(n) - hk+l(n)l n>0 (6)

and

jh(n) - hk(n)l > Ih(n) - hk+l(n)I = 0 , n < 0 (7)

Summing (6) and (7) over all n, we obtain

Ek E I h(n) - hk(n) 12

n

> ) Ih(n) 12 (8)
n l

Next, from Parseval's Theorem, we write (8) as

7r

E_>-'- f JH(w) - (w)2 dw (9)
k- 2 Jv Hk+l~)

IM()exp[jO(w)] - Mk+(w)exp[JOl(W))1 2dw
21r f k+

With the triangle inequality for vector differences, we have at each

frequency w:

I 1(w)exp[J0(w)] - 1+l(w)exp[i~k+l(w)l

> jM(w)exp[JO(w)Ij - Ik+1(w)exp[j~k+1(w)II

_> IM(W) - k+l(W)I (10)
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Theefoefrom (9C and (10), and the identity Ix~O')I21

E > 27r f Hc)-

Tr

2. f IM(w)exp[iO(w)I - Mk~l(w)exciew]Id

-- J

21r1

- k+1

Since Ek is, therefore, non-increasing and has a lower bound of zero, E k
must converge to a unique limit f81. The non-increasing nature of Eks
ho, r, is not sufficient to guarantee that the iterates hk (n) converge.

Neve. ieless, if a converging solution with a rational z-transform exists,

we can show that

hi hk(n) = cth(n) (12)

where a is a positive constant.
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To see this, note from (6), (7) and (10) that the equality in (11) holds

if and only if hk(n) - hk+l (n) - 0 for n <O, and Oh(w) - elhOk+l(.

Therefore, since Oh(w) contains no linear phase component (i.e., n -0), if

hk(n) converges to a sequence whose z-transform is of the form in (1), the

converging solution must satisfy the minimum phase condition A. Consequently,

the converging solution is minimum phase with phase 6h(w), and (12) must hold.*

When h(n) is of finite duration (i.e., H(z) has no poles), we can impose

not only causality, but also a finite duration constraint within the itera-

tion. Under these particular constraints, the DFT realization of our

iterative procedure (see section V) converges to a limit of the form in

(12) [9].

The constant a in (12) is constrained to be positive since a negative value

introduces an additive factor of iT into the phase function.
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4. AN ITERATIVE ALGORITHM FOR SIGNAL RECONSTRUCTION FROM MAGNITUDE

In this section we present an iterative algorithm for reconstruction

of a minimum phase signal from the magnitude of its Fourier transform. The

algorithm is shown in Figure 2. The functions h,(n), ekN ) and Mk (a)

represent the signal, phase, and magnitude estimates, respectively on the

kth iteration and k+l(n) is defined by

hk(n), n>0

hk+l(n) = h(), n = 0 (13)

0 , n< 0

The algorithm begins with an initial guess 00(w) of the desired phase,

and the inverse transform of M(w)exp[je0 (w)] is taken where M(w) = IH(w)I is

the given magnitude. This step yields h0(n), the initial estimate of h(n).

Next, on the basis of the minimum phase condition B, causality and the

known value of h(O) are imposed so that h0(n) is set to zero for n < 0

and set to h(O) for n=O, to obtain hl(n). The magnitude of the Fourier

transform of hI(n) is then replaced by the given magnitude and the pro-

cedure is repeated.

It has not been possible to show that the mean squared error, as

considered in section III, is non-increasing for this algorithm. However,

an error function that is non-increasing is the mean squared difference

between the known magnitude and the estimate Mk(w) on each iteration; i.e.,

Ek f I M (W) _ M, (*3)I1 dw (14)Ek 27r

-IT
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H(w)exp[J6 0 (w)]

Shk(n)

Impose Causality andh(O)

h k (n) n>O0

hk+l(n) = h(0) n- 0

0 n<0

F

_ _ tk+l (w) exp [j 
0k+l () ]

M(W) -k+l(w)

M(w)exp [J k+l (w)

Fig. 2. Iterative algorithm to
recover h(n) from its magnitude.
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To show that Ek is non-increasing, we first use the identity iexp[Je1()]12=l

to express Ek as

Ek = *2-- IM(1) - ()2le[e()]2,

E2 f IM(W) exp[Jek()] -Mk(.) exp(k () 1 2 d
-T

IT
27T f IHM(w) - Htc k( ) 2d - (15)

-iT

where Hk(w) and Htk(W) are the Fourier transforms of h k(n) and hk(n),
respectively. From Parseval's Theorem equation (15) is given in the time

domain by

Ek = n Ihk(n) -
( n ) 12 (16).
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From (13), it follows that

Ihk(n) - (n)1 > I.(n) - h+l(n)I " 0, ,,, 0 (1.7)

and

hk (n)-" - k(ft)1 -k (n) - k 1(n)1 n <0 (O18)

Summing (17) and (18) over all n, we obtain

= . Ihk(n) h k(n) _ -. n hk(n) - hk+l(n)1 2  (19)

Next, we apply the triangle inequality for vector differences, to yield

I k 1 - Rk+., I ( ?) .I'(W1 - I'k+l(w)I (20)

Therefore, we have from Parseval's Theorem, and (19) and (20)

EE k Jhk(n) - h+1(n1

7T

~. -~ j IH()- Hk+l )1dw

2wf IM(w) -Mk+l(w)Id

-k+l
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Since E is non-increasing and has a lower bound of zero, it must converge tok
a limit point [8].

As with the algorithm in section III, although we have shown that the

error Ek is non-increasing, we have not shown that the iterates hk(n) con-

verge. However, if the iterates converge to a sequence whose z-transform

is rational with no zeros on the unit circle and which is causal with initial

value h(O), from the minimum phase condition B, the converging solution must

be minimum phase. Consequently, if In addition the magnitude of the Fourier

transform of the converging solution equals IH(j), the solution is the

unique minimum phase sequence associated with JH()J, i.e., h(n).

The convergence of hk(n) has yet to be rigorously proven even when a

finite length constraint is imposed within the iteration [9]. Empirically,

however, we have found the DFT realization of the algorithm to always con-

verge. In the next section, we shall illustrate the convergence of hk(n)

to h(n) with an example.

16



5. REALIZATIONS OF THE ITERATIVE ALGORITHMS USING THE DFT

Since the iterative algorithms will be implemented on a digital computer,

we can compute a Fourier transform at only a finite number of points. In

particular, we shall use the DFT.

One consequence of the DFT realization is that our desired sequence h(n)

must be of finite duration. Imposing a finite duration constraint within the

iterations, however, does not change the non-increasing nature of the error

functions, as can be seen from (8) and (19).

A seco-d consequence of the DFT realization is that only uniformly

spaced samples of the phase and magnitude functions are available. Neverthe-

less, it is again possible to show that the non-increasing nature of Ek is

not altered when we use samples of the magnitudes and Fourier transforms in

the expressions for Ek in (5) and (14) [4,10].

Finally, questions of convergence need to be addressed. Consider first

minimum phase reconstruction from phase samples. When H(z) is constrained

to have no conjugate reciprocal zero pairs and no zeros on the unit circle,

a unique sequence h(n) of length M (to within a scale factor) is guaranteed

when given M-1 or more phase samples of Oh(w) in the open frequency interval

(0,n) [4]. A minimum phase sequence, in particular, satisfies these con-

straints. Therefore, the DFT realization of the iterative algorithm to

reconstruct a minimum phase sequence from its phase samples can be implemented

with a DFT of length N> 2M. Furthermore, this iteration will converge to

ah(n) for 0< n < N-1, where a is positive [9].

Consider next the dual problem of developing a DFT realization of the

iterative algorithm to recover a minimum phase sequence of length M from a

magnitude function. In this case, there exists only one M-point sequence,

i.e., the minimum phase sequence h(n), when h(0) is specified along with M

or more uniformly spaced samples of the magnitude in the half open frequency

interval [0,7r) [10]. Therefore, a DFT realization of the iteration can be

implemented with DFT length N> 2M-1. If the algorithm converges to a causal

17



sequence of length M with initial value h(O) and the known magnitude samples,

the converging solution must equal h(n) for 0 < n <N-1.

We now consider two examples where the DFT length is 512 points which

is twice the length of h(n). In the first example, the initial magnitude

guess is unity, and in the second example the initial phase guess is zero.

Example 5.1: Signal Reconstruction From Phase

Consider a 256-point minimum phase signal h(n) illustrated in Figure 3.

The phase is known and we wish to reconstruct h(n). The functions hk(n)

and log[M(w)] are depicted in Figures 3 and 4 along with the originals for

k equal to 1, 5 and 45. The signal hk(n) (to within a multiplicative constant)

and the spectrum log[Mk(w)] (to within an additive constant) are indistintuish-

able from the originals after 45 iterations.

Example 5.2: Signal Reconstruction From Magnitude

In this example, we consider the sequence of example 5.1, but where

the Fourier transform magnitude is given. The functions hk(n) and ek(W)
are depicted in Figure 5 and 6 with the originals for k equal to 1, 5 and

25. The functions h,(n) and O(w) are indistinguishable from the originals

after 25 iterations.

18
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Fig. 3. Convergence of hk(n) in example 5.1.
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The Fig. 3.* Continued.

Tsequences in Figures 3c and 3d have been scaled by a factor of two.
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6. IMPLEMENTATION OF THE HILBERT TRANSFORM

In this section and the next, we investigate two computational algorithms

based on the iterative procedures of sections III and IV: (i) a new means

of implementing the Hilbert transform, and (ii) the use of this implementation

as the basis for a new phase unwrapping algorithm.

For a minimum phase signal, the log-magnitude and phase of the Fourier

transform are related through the Hilbert transform and the direct imple-

mentation of the Hilbert transform using the DFT has been extensively investi-

gated [6]. One disadvantage of this implementation is that in computing tFe

log-magnitude from the phase, samples of the unwrapped phase are required

and are often difficult to compute. A second drawback is that aliasing

occurs in the inverse discrete Fourier transform of samples of the log-

magnitude and unwrapped phase due to a finite DFT length, limiting the

accuracy of the computed samples of the unknown component.

An alternative to the direct implementation of the Hilbert transform

exploits the iterative algorithms of sections III and IV. When the phase

is given, through the use of the algorithm in section III, ch(n) is first

obtained from the phase and, in particular, does not require samples of the

unwrapped phase. From ah(n) the log-magnitude of ah(oi), representing the

Hilbert transform of the phase to within an additive factor is then computed.

Furthermore, by increasing the number of iterations we can come arbitrarily

close to samples of the log-magnitude so that accuracy is not limited by a fixed

DFT length as in the direct approach.

A similar procedure can, of course, be applied through the use of the

iterative algorithm in section IV to implement the Hilbert transform of a

given logmagnitude function. As before, for a fixed DFT length, we can come

arbitrarily close to samples of the phase by increasing the number of itera-

tions. If h(O) is not known a priori (recall (13)), it can be obtained

(at least in theory) from the magnitude, although in practice h(O) can be

computed only approximately [1]. However, it was found empirically that the

iterates always converge to h(n) when only causality is imposed in the time

domain (i.e., h(O) is assumed unknown) and the initial phase 00 (w) is set to zero.
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7. A NEW PHASE UNWRAPPING ALGORITHM

There are a variety of applications in which it is desired to obtain an

unwrapped phase. Current algorithms rely on adding- multiples of 21T to

samples of the principal value of the phase [1,71. In this section, we

present a phase unwrapping algorithm which avoids such considerations and

which relies primarily on the iterative algorithm of section III.

We assume either that there is no linear phase component in H(z) as
n

given in (2), or that we can separately determine z O. Let 6(w) denote the

desired unwrapped phase function and p (w) its value modulo 271. The proposed

phase unwrapping algorithm proceeds as follows:

(i) Remove the linear phase component to obtain
the principal value of the phase of H(w)exp[-Jn W],
denoted by 0 p(w).

(ii) Apply the iterative algorithm of section III

With a causality constraint and with phase
0 p(w) to obtain a minimum phase sequence h p(n).

(iii) Compute logH mp(w)I where H MP(w) is the Fourier

transform of h MP(n).

(iv) Apply the Hilbert transform to logjH (w)I to
MP

obtain the unwrapped phase function 0(w)-n w.

(v) Add back the linear phase component to obtain
the desired unwrapped phase.

Of particular interest is step (ii) which yields the same minimum phase

sequence h (n) that would be obtained by a Hilbert transform of the un-

wrapped phase but bypasses the need for phase unwrapping.
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There are two major considerations in the use of this algorithm. First,

the minimum phase sequence h MP(n) derived from the iteration is of infinite

extent regardless of whether the original sequence h(n) is of finite duration

[101. Therefore, a possible problem with aliasing arises. The DFT length

must be sufficiently large so that the minimum phase sequence h (n) decays
MP

effectively to zero. In particular, when h MP(n)-0 for n >M the DFT length,

from our discussion in section V, should be at least 2M.

The second consideration is the linear phase factor of H(z). The

presence of this term represents a potential drawback to the algorithm since

a priori knowledge of such a factor is sometimes difficult to obtain.
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8. SUMMARY AND CONCLUSIONS

In this report, we have developed iterative algorithms for recon-

structing a minimum phase sequence from either the phase or magnitude of

its Fourier transform. When the phase is known, the mean squared error

between the desired Fourier transform and its estimate was shown to be non-

increasing on successive iterations. Likewise, when the magnitude is

given, on successive iterations, the mean squared error between the known

magnitude and its estimate is non-increasing. In addition, we noted that

convergence of the iteration with known phase samples (i.e., the DFT

realization) has been demonstrated, but convergence of the iteration with

magnitude samples has been shown only empirically.

Finally, we developed two computational algorithms based on the

iterative procedures: (i) a new means of implementing the Hilbert transform

which doesn't require an unwrapped phase and potentially provides greater

accuracy than the direct approach, and (ii) a new phase unwrapping

algorithm which doesn't require adding multiples of 27 to the principal

value of the phase.

The iterative algorithms, as presented, rely on exact knowledge of

the magnitude, phase, and the initial value of the desired signal. Sensi-

tivity to the inexactness of these quantities, to quantization noise, and

other forms of degradation is not understood and is a significant area

of future research.

In practice, we have found that the iterative algorithm converge

sometimes slowly (e.g., after several hundred iterations) and sometimes

quickly (e.g., after a few iterations). Consequently, determining rates of

convergence in terms of characteristics of the minimum phase signal and

initial magnitude or phase estimates, and methods of speeding up convergence

should be explored.

Another area being considered is the interchange of the signal re-

construction problems. In particular, we have found empirically that

30



when IH(w)l and 0h(w) are effectively interchanged through jtogH(w), a

slightly modified version of the iterative algorithm of section III,

requiring a phase function, will recover h(n) from its magnitude. Likewise,

when the phase is known, h(n) is recovered by a procedure similar to the

iteration in section IV which requires a magnitude function. These results

have led to some interesting theoretical speculations about the duality

of the reconstruction problems and their iterative solutions.
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