AD-A091 073 CENTER FOR NAVAL ANALYSES ALEXANORIA VA OPERATIONS EV-EETC F/G $1 / 3$ A REPRINT OF A METHOD OF ESTIMATING PLANE VULNERABILITY BASED -GETC(U) JUL 80 A WALD
UNCLASSIFIED CRC-432

011

∞ 0 0 0 0 8 8

 A Reprint OF

 A Reprint OF "A METHOD OF ESTIMATING PLANE VULNERABILITY BASED ON DAMAGE OF SURVIVORS" BY ABRAHAM WALD

U CI

 \approx ANALY 009E

Director
Operations Evaluation Group

Subj; Center for Naval Analyses Research Contribution 432
DISTRIBUTION LIST
Department of the Navy
SNDL

A2A	CNR
B3	National Defense University (NDU)
B3	Armed Forces Staff College (AFSC)

SNDL Part II:

E3A	NRL
FF38	USNA, Nimitz Library
FF44	NAVWARCOL
FKA1A	COMNAVAIRSYSCOMHQ
FKR3C	NAVAIRTESTCEN
FT73	NAVPGSCOL

OpNav: Op-09BH, Op-96, Op-05, Op-50W
Other:
Defense Technical Information Center (DTIC) (12 Copies)
Department of the Air Force (SAMI)
Air University
Air Proving Ground Center, Eglin AFB
Institute for Defense Analysis (IDA)
Mathematics Research Center
The Mitre Corporation
The Rand Corporation
University of Rochester (10)
Navy Tactical Support Activity

A REPRINT OF

A METHOD OF ESTIMATING PLANE VULNERABILITY BASED ON DAMAGE OF SURVIVORS'.

Abraham Wald

CENTER FOR NAVAL ANALYSES

PART I

AN EQUATION SATISFIED BY THE PROBABILITIES THAT A PLANE WILL BE DOWNED BY i HITS ${ }^{1}$

INTRODUCTION

Denote by $P_{i}(i=1,2, \ldots$. ad inf.) the probability that a plane will be downed by i hits. Denote by p_{i} the conditional probability that a plane will be downed by the i-th hit knowing that the first i - 1 hits did not down the plane. Let $Q_{i}=1-P_{i}$ and $q_{i}=1-p_{i}(i=1,2, \ldots$ ad inf.). It is clear that

$$
\begin{equation*}
Q_{i}=q_{1} q_{2} \ldots q_{i} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{i}=1-q_{1} q_{2} \cdots q_{i} \tag{2}
\end{equation*}
$$

Suppose that p_{i} and $p_{i}(i=1,2, \ldots)$ are unknown and our information consists only of the following data concerning planes participating in combat:

- The total number N of planes participating in combat.
- For any integer i ($i=0,1,2, \ldots$) the number A_{i} of planes that received exactly i hits but have not been downed, i.e., have returned from combat.

Denote the ratio $\frac{A_{i}}{N}$ by $a_{i}(i=0,1,2, \ldots)$ and let L be the proportion of planes lost. Then we have

$$
\begin{equation*}
\sum_{i=0}^{\infty} a_{i}=1-L \tag{3}
\end{equation*}
$$

[^0]The purpose of this memorandum is to draw inferences concerning the unknown probabilities P_{i} and P_{i} on the basis of the known quantities $a_{0}, a_{1}, a_{2}, \ldots$ etc.

To simplify the discussion, we shall neglect sampling errors, i.e., we shall assume that N is infinity. Furthermore, we shall assume that

$$
\begin{equation*}
0<p_{i}<1 \quad(i=1,2, \ldots, \text { ad inf.) } \tag{4}
\end{equation*}
$$

From equation 4 it follows that

$$
\begin{equation*}
0<P_{i}<1 \quad(i=1,2, \ldots, \text { ad inf.). } \tag{5}
\end{equation*}
$$

We shall assume that there exists a non-negative integer n such that $a_{n}>0$ but $a_{i}=0$ for $i>n$.

We shall also assume that there exists a positive inteqer m such that the probability is zero that the number of hits received by a plane is greater than or equal to m. Let m^{\prime} be the smallest inteqer with the property that the probability is zero that the number of hits received by a plane is greater than or equal to m^{\prime}. Then the probability that the plane receives exactly $m^{\prime}-1$ hits is positive. We shall prove that $m^{\prime}=n+1$. Since $a_{n}>0$, it is clear that m' must be greater than n. To show that m' cannot be greater than $n+1$, let y be the proportion of planes that received exactly m^{\prime} - 1 hits. Then $y>0$ and $y\left(1-p_{m} \prime^{\prime}\right)=a_{m^{\prime}-1}$. Since $y>0$ and $1-p_{m} y^{\prime}>0$, we have $a_{m^{\prime}-1}>0$. Since $a_{i}=0$ for $i>n$, we see that $m^{\prime}-1 \leq n$, i.e.. $m^{\prime} \leq n+1$. Hence, $m^{\prime}=n+1$ must hold.

Denote by $x_{i}(i=1,2, \ldots)$ the ratio of the number of planes downed by the $i-t h$ hit to the total number of planes participating in combat. Since $m^{\prime}=n+1$, we obviously have $x_{i}=0$ for $i>n$. It is clear that

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}=L=1-a_{0}-a_{1}-\cdots-a_{n} \tag{6}
\end{equation*}
$$

CALCULATION OF x_{i} IN TERMS OF $a_{0}, a_{1} \ldots, a_{n}, p_{1} \ldots, p_{n}$
Since the proportion of planes that received at least one hit is equal to $1-a_{0}$, we have

$$
\begin{equation*}
x_{1}=p_{1}\left(1-a_{0}\right) \tag{7}
\end{equation*}
$$

' 'he proportion of planes that received at least two hits and the first hit did not down the plane is obviously equal to $1-a_{0}-a_{1}-x_{1}$. Hence,

$$
\begin{equation*}
x_{2}=p_{2}\left(1-a_{0}-a_{1}-x_{1}\right) \tag{8}
\end{equation*}
$$

In general, we obtain

$$
\begin{array}{r}
x_{i}=p_{i}\left(1-a_{0}-a_{1}-\ldots-a_{i-1}-x_{1}-x_{2}-\ldots-x_{i-1}\right) \\
(i=2,3, \ldots, n) \quad(9) \tag{9}
\end{array}
$$

Putting

$$
\begin{equation*}
c_{i}=1-a_{0}-a_{1}-\ldots-a_{i-1} \tag{10}
\end{equation*}
$$

equation 9 can be writton

$$
\begin{equation*}
x_{i}+p_{i}\left(x_{1}+\ldots+x_{i-1}\right)=p_{i} c_{i}(i=2,3, \ldots, n) \tag{11}
\end{equation*}
$$

Substituting i - 1 for i, we obtain from equation 11

$$
x_{i-1}+p_{i-1}\left(x_{1}+\ldots+x_{i-2}\right)-p_{i-1}^{c_{i-1}} \underset{(i=3,4, \ldots, n)}{ }
$$

Dividing by F_{1-1}, we obtain

$$
\begin{equation*}
\frac{x_{i-1}}{\rho_{i-1}}+\left(x_{1}+\ldots+x_{i-2}\right)=c_{i-1}(i=3,4, \ldots, n) \tag{13}
\end{equation*}
$$

Adding $x_{i-1}\left(1-\frac{1}{p_{i-1}}\right)=\frac{-q_{i-1}}{p_{i-1}} x_{i-1}$ to both sides of equation 13, we obtain

$$
\begin{equation*}
x_{1}+\ldots+x_{i-1}=c_{i-1}-\frac{q_{i-1}}{p_{i-1}} x_{i-1} \tag{14}
\end{equation*}
$$

From equations 11 and 14, we obtain

$$
\begin{equation*}
x_{i}+p_{i}\left(c_{i-1}-\frac{q_{i-1}}{p_{i-1}} x_{i-1}\right)=p_{i} c_{i} \tag{15}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
x_{i}=p_{i}\left(c_{i}-c_{i-1}\right)+\frac{p_{i} q_{i-1}}{p_{i-1}} x_{i-1}(i=3,4, \ldots, n) \tag{16}
\end{equation*}
$$

Let

$$
\begin{equation*}
d_{i}=p_{i}\left(c_{i}-c_{i-1}\right)=-p_{i} a_{i-1} \quad(i=3,4, \ldots, n) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{i}=\frac{p_{i} q_{i-1}}{p_{i-1}} \quad(i=3,4, \ldots, n) \tag{18}
\end{equation*}
$$

Then equation 16 can be written as

$$
\begin{equation*}
x_{i}=d_{i}+t_{i} x_{i-1} \quad(i=3,4, \ldots, n) \tag{19}
\end{equation*}
$$

Denote $p_{1}\left(1-a_{0}\right)$ by $d_{1},-p_{2} a_{1}$ by d_{2}, and $\frac{p_{2} q_{1}}{p_{1}}$ by t_{2}; then we have

$$
\begin{equation*}
x_{1}=d_{1} \text { and } x_{2}=t_{2} x_{1}+d_{2} \tag{20}
\end{equation*}
$$

From equations 19 and 20, we obtain

$$
\left\{\begin{array}{l}
x_{1}=d_{1} \tag{21}\\
x_{i}=\sum_{j=1}^{i-1} d_{j} t_{j+1} t_{j+2} \cdots t_{i}+d_{i} \quad(i=2,3, \ldots, n)
\end{array}\right.
$$

EQUATION SATISEIED BY $q_{1} \ldots, q_{n}$
To derive an equation satisfied by $q_{1} \ldots \ldots q_{n}$, we shall express $\sum_{i=1}^{n} x_{i}$ in terms of the quantities t_{i} and $d_{i}(i=1, \ldots, n)$.

Substituting i for i - 1 in equation 14, we obtain

$$
\begin{equation*}
x_{i}=\sum_{j=1}^{i} x_{j}=c_{i}-\frac{q_{i}}{p_{i}} x_{i}=c_{i}-\frac{q_{i}}{p_{i}}\left[\sum_{j=1}^{i-1}\left(d_{j} t_{j+1} \ldots t_{i}\right)+d_{i}\right] \tag{22}
\end{equation*}
$$

Hence, in particular

$$
\begin{equation*}
x_{n}=\sum_{j=1}^{n} x_{j}=c_{n}-\frac{q_{n}}{p_{n}}\left[\sum_{j=1}^{n-1}\left(d_{j} t_{j+1} \cdots t_{n}\right)+d_{n}\right]=L \tag{23}
\end{equation*}
$$

Since $c_{n}-L=a_{n}$, and since $t_{j+1} \ldots t_{n}=\frac{p_{n}}{p_{j}} q_{j} \ldots q_{n-1}$, we obtain from equation 23

$$
\begin{equation*}
a_{n}-\left(\sum_{j=1}^{n-1} \frac{d_{j}}{p_{j}} \quad q_{j} \cdots q_{n}\right)+q_{n} a_{n-1}=0 \tag{24}
\end{equation*}
$$

Dividing by $q_{1} \ldots q_{n}$ and substituting $-p_{j} a_{j-1}$ for d_{j}, we obtain

$$
\begin{align*}
& \frac{a_{n}}{q_{1} \cdots q_{n}}+\frac{a_{n-1}}{q_{1} \cdots q_{n-1}}-\sum_{j=1}^{n-1} \frac{d_{j}}{p_{j} q_{1} \cdots q_{j-1}} \\
&= \frac{a_{n}}{q_{1} \cdots q_{n}}+\frac{a_{n-1}}{q_{1} \cdots q_{n-1}} \\
&+\sum_{j=2}^{n-1} \frac{a_{j-1}}{q_{1} \cdots q_{j-1}}-\frac{d_{1}}{p_{1}} \tag{25}\\
&= \sum_{j=1}^{n} \frac{a_{j}}{q_{1} \cdots q_{j}}-\left(1-a_{0}\right)=0
\end{align*}
$$

or

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{a_{j}}{q_{1} \cdots q_{j}}=1-a_{o} \tag{26}
\end{equation*}
$$

If it is known a priori that $q_{1}=\ldots=q_{n}$, then our problem is completely solved. The common value of $q_{1} \ldots \ldots q_{n}$ is the root (between 0 and 1) of the equation

$$
\sum_{j=1}^{n} \frac{a_{j}}{q^{j}}=1-a_{o}
$$

It is easy to see that there exists exactly one root between zero and one. We can certainly assume that $q_{1} \geq \tau_{2} \geq \cdots \geq q_{n}$. We shall investigate the implications of these inequalities and equation 26 later.

ALTERNATIVE DERIVATION OF EQUATION 26
Let b_{i} be the hypothetical proportion of planes that would have been hit exactly i times if dummy bullets would have been used. Clearly $b_{i} \geq a_{i}$. Denote $b_{i}-a_{i}$ by $y_{i}(i=0,1,2, \ldots, n)$. of course, $b_{0}=a_{0}$, i.e.. $y_{0}=0$. We have $\sum_{j=0}^{n} b_{i}=1$. clearly

$$
\begin{equation*}
y_{i}=p_{i} b_{i}=p_{i}\left(a_{i}+y_{1}\right) \quad(i=1,2, \ldots, n) . \tag{27}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
y_{i}=\frac{p_{i}}{Q_{i}} \quad a_{i}=\frac{1-q_{1} \cdots q_{i}}{q_{1} \cdots q_{i}} a_{i}=\frac{a_{i}}{q_{1} \cdots q_{i}}-a_{i} \tag{28}
\end{equation*}
$$

Since $\sum_{i=1}^{n} y_{i}=L$, we obtain from equation 28

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{a_{i}}{q_{1} \cdots q_{i}}=L+\sum_{i=1}^{n} a_{i}=1-a_{0} \tag{29}
\end{equation*}
$$

This equation is the same as equation 26. This is a simpler derivation than the derivation of equation 26 given vetore. However, equations 21 and 22 (on which the derivation of equation 26 was based) will be needed later for other purposes.

As menticned before, equation 29 leads to a solution of our problem ii it is known that $q_{1}=\ldots=q_{n}$. in the next memorandum (part II) we shall investigate the implications of equation $2 y$ under the condition that $q_{1} \geq q_{2} \geq \cdots \geq q_{n}$.

ijumbrical cxamples

N is the number of planes participating in combat. A_{0}, A_{1}, A_{2},, A_{n} are the number returning with no hits, one nit, two hits,n hits, respectively. Then

$$
a_{i}=\frac{A_{i}}{N} \quad(i=0,1,2, \ldots, n)
$$

i.e., a_{i} is the proportion of planes returning with i hits. The computations below were performed under the following two assumptions:

- The bombing mission is representative so that there is no sampling error.
- The probability that a plane will be shot down does not depend on the number of previous non-destructive hits.

Example 1: Let $\mathrm{N}=400$ and $A_{0}=320$
$A_{1}=32$
$A_{2}=20$
then $a_{0}=.80$
$a_{1}=.08$
$a_{2}=.05$
$A_{3}=4$
$a_{3}=.01$
$A_{4}=2$
$a_{4}=.005$
$A_{5}=2$
$a_{5}=.005$

We assume $q_{1}=q_{2}=\ldots=q_{5}=q_{i}$, where q_{i} is the probability of a plane surviving the i-th hit, knowing that the first i - l hits did not down the plane.

Then equation 26,

$$
\sum_{j=1}^{n} \frac{a_{j}}{q_{1} \cdots q_{j}}=1-a_{0} .
$$

reduces to

$$
\sum_{j=1}^{n} \frac{a_{j}}{q^{j}}=1-a_{0}
$$

Substituting values of \mathbf{a}_{i}

$$
\frac{.08}{q}+\frac{.05}{q^{2}}+\frac{.01}{q^{3}}+\frac{.005}{q^{4}}+\frac{.005}{q^{5}}=.20
$$

or

$$
.200 q^{5}-.080 q^{4}-.050 q^{3}-.010 q^{2}-.005 q-.005=0
$$

The Birge-Vieta method of finding roots described in Marchant Method No. 225 is used to solve this equation (table 1). We find $q=q_{i}=.851, p_{i}=.149$ where p_{i} is the probability of a plane being downed by the i-th hit, knowing that the first i - l hits did not down the plane.
x_{i} equals the ratio of the number of planes downed by the i-th nit to the total number of planes participating in combat. Using equation 9

$$
\begin{array}{r}
x_{i}=y_{i}\left(1-a_{0}-a_{1}-\ldots-a_{i-1}-x_{1}-x_{2}-\ldots-x_{i-1}\right) \\
(i=2,3, \ldots, n)
\end{array}
$$

for $n=5$, we obtain
$x_{1}=P_{1}\left(1-a_{0}\right)=.030$
$x_{2}=L_{2}\left(1-a_{0}-a_{1}-x_{1}\right)=.013$
$x_{3}=\mu_{3}\left(1-a_{0}-a_{1}-a_{2}-x_{1}-x_{2}\right)=.004$
$x_{4}=p_{4}\left(1-a_{0}-a_{1}-a_{2}-a_{3}-x_{1}-x_{2}-x_{3}\right)=.002$
$x_{5}=\varphi_{5}\left(1-a_{0}-a_{1}-a_{2}-a_{3}-a_{4}-x_{1}-x_{2}-x_{3}-x_{4}\right)=.001$

Example 2: Let $a_{0}=.3, a_{1}=.2, a_{2}=.1, a_{3}=.1, a_{4}=.05$, and $a_{5}=.05$. Then the following results are obtained: $y=. \varepsilon 7$, $y=1-4=.13, x_{1}=.09, x_{2}=.05, x_{3}=.03, x_{4}=.02$, and $x_{5}=.01$.

The value of q in the second example is nearly equal to the value in the first example in spite of the fact that the values a_{i}
(i $=0,1, \ldots, 5$) differ considerably. The difference in the values a_{i} in these two examples is mainly due to the fact that the probability that a plane will reccive a hit is much smaller in the first example than in the secona example. The probability that a plane will receive a hit has, of course, no relation to the probability that a plane will be downed if it receives a hit.

TAULE 1

1. Nesume $q-1=y_{1}$

.200	-.080	-.050	-.010	-.005	-.005	
	+.200	+.120	+.070	+.060	+.055	
	+.120	+.070	+.060	+.055	+.050	-1

2. Assume $q=.9010=Y_{2}$

3. Assume $q=.858887=y_{3}$

| .200000 | +.080000 | -.050000 | -.010000 | +.005000 | $=.005000$ |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| | +.171777 | +.078826 | +.024758 | +.012675 | +.006592 |

4. Assume $q=.851255=Y_{4}$

| .2000000 | +.020000 | -.050000 | -.010000 | -.005000 | -.005000 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | +.170251 | +.076827 | +.022837 | +.010928 | +.005046 |

$$
y_{s}=y_{4}-\frac{D_{0}}{D_{1}}=.051255=.000234=.051021
$$

maximum value of the probability that a plane will be downed by a given number of hits ${ }^{1}$

The symbols defined and the results obtained in part I will be used here without further explanation. The purpose of this memorandum is to derive the least upper bound of $x_{i}=\sum_{j=1}^{i} x_{j}$ and that of $p_{i}(i=1, \ldots, n)$ under the restriction that $q_{1} \geq \varphi_{2} \geq \ldots \geq \geq q_{n}$.

First, we shall show that X_{i} is a strictly increasing function of p_{j} for $j \leq i$. Let us replace p_{j} by $p_{j}+\Delta(\Delta>0)$ and let us study the effect of this change on x_{1}, \ldots, x_{i}. Denote the changes in x_{1}, \ldots, x_{i} by $\Delta_{1}, \ldots, \Delta_{i}$, respectively. Clearly, $\Delta_{1}=\ldots=\Delta_{j-1}=0$. It follows easily from equation 9 that $\Delta_{j}>0$ and

$$
\Delta_{j+1}=-p_{j+1} \Delta_{j}
$$

Hence,

$$
\Delta_{j}+\Delta_{j+1}=\left(1-p_{j+1}\right) \Delta_{j}>0
$$

Similarly, we obtain from equation 9

$$
\Delta_{j+2}=-p_{j+2}\left(\Delta_{j}+\Delta_{j+1}\right)=-p_{j+2}\left(1-p_{j+1}\right) \Delta_{j}
$$

Hence,

$$
\Delta_{j}+\Delta_{j+1}+\Delta_{j+2}=\left(1-p_{j+2}\right)\left(1-p_{j+1}\right) \Delta_{j}>0
$$

In general

$$
\begin{array}{r}
\Delta_{j}+\Delta_{j+1}+\ldots+\Delta_{j+k}=\left(1-p_{j+1}\right) \ldots\left(1-p_{j+k}\right) \Delta_{j}>0 \\
(k=1, \ldots, i-j)
\end{array}
$$

Hence, we have proved that X_{i} is a strictly increasing function of $p_{j}(j=1, \ldots, i)$.

[^1]On the basis of the inequalities $P_{i} \geq P_{i-1}$, we shall derive the least upper bound of X_{i}. For the purpose of this derivation we shall admit 0 and 1 as possible values of $p_{i}(i=1, \ldots, n)$, thus makiny the domain of all possible points $\left(p_{1}, \ldots, p_{n}\right)$ to be a closed and bounded subset of the $n-d i m e n s i o n a l$ Cartesian space. Since X_{i} is a continuous function of the probabilities $\mathrm{P}_{1} \cdot \mathrm{~F}_{2}$ 。 etc. (X is a polynomial in $p_{1} \ldots \ldots p_{i}$), the maximum of X_{i} exists and coincides, of course, with the least upper bound. Hence, our problem is to determine the maximum of X_{i}.

First, we show that the value of X_{i} is below the maximum if $P_{n}>P_{i}$. Assume that $p_{n}>P_{i}$ and let k be the smallest positive inteyer for which $p_{k}>\mathrm{F}_{\mathrm{i}}$. Obviously $k>$ i. Let $\mathrm{p}_{\mathrm{j}}^{\prime}=\mathrm{V}_{\mathrm{j}}(\mathrm{l}+\varepsilon)$ for $j=1, \ldots, k-1$, and $p_{j}^{\prime}=p_{j}(1-n)$ for $j=k, k+1, \ldots, n$, where $\varepsilon>0$ and η is a function $\eta(\varepsilon)$ of ε determined so that $\sum_{j=1}^{n} x_{j}^{i}=L\left(x_{j}^{!}\right.$is the proportion of planes that would have been brought down with the j-th hit if $p_{1}^{\prime} \ldots . . p_{n}^{\prime}$ were the true probabilities). Since $X_{r}(r=1, \ldots, n)$ is a strictly monotonic function of $\mu_{1} \ldots \ldots \mu_{r}$, it is clear that for sufficiently small such a function $n(\varepsilon)$ exists. It is also clear that for suificiently small ε the condition $p_{1}^{\prime} \leq p_{2}^{\prime} \leq \ldots \leq v_{n}^{\prime}$ is iulfilled. Since $p_{j}^{\prime}>P_{j}(J=1, \ldots . i)$, we see that $X_{i}>X_{i}\left(X_{i}\right.$ does not depend on p_{r}^{\prime} for $\left.r>i\right)$. Hence, we have proved that if $p_{1} \ldots . . \mu_{n}$ is a point at which X_{i} becomes a maximum, we must have $p_{i}=P_{i+1}=\cdots=P_{n}$.

How we shall show that if x_{i} is a maximum then $\mu_{1}=\mu_{2}=\ldots=\mu_{i}$. for this purpose assume that $p_{i}>p_{1}$ and we shall derive a contradiction. Let j be the greatest integer for which $p_{j}=P_{1}$. Since $p_{i}>\mu_{1}$, we must have $]<i$. Let $p_{r}^{\prime}=\mu_{r}(1+\varepsilon)$ for $r=1, \ldots, j$ and $p_{r}^{\prime}=p_{r}(1-n)$ for $r=j+1, \ldots, i$, where $\varepsilon>0$ and n is determined so that $\sum_{k=1}^{i} x_{k}^{\prime}=\sum_{k=1}^{i} x_{k}$. Fhen lor the probatilities $p_{1}^{\prime} \ldots .\left.\right|_{i}, p_{i+1} \ldots . \mathrm{P}_{n}$ the proportion of lost
planes is not changed, i.e.. it is equal to L. Now let $p_{r}^{\prime}=p_{i}^{\prime}$ for $r>i$. Then the proportion L^{\prime} of lost planes corresponding to $p_{1} \ldots . . p_{n}^{\prime}$ is less than L. Hence, there exists a positive Δ so that the proportion $L^{\prime \prime}$ of lost planes corresponding to the probabilities $p_{r}^{\prime \prime}=P_{r}^{\prime}(1+\Delta)$ is equal to L. But, since $P_{r}^{\prime \prime}>P_{r}^{\prime}$ $(r=1, \ldots, i)$ we must have $\sum_{j=1}^{i} x_{j}^{n}>\sum_{j=1}^{i} x_{j}^{\prime}=\sum_{j=1}^{i} x_{j}$. Hence, we arrived at a contradiction and our statement that $p_{1}=p_{2}=\ldots=$ p_{i} is proved. Thus, we see that the maximum of X_{i} is reached when $p_{1}=p_{2}=\ldots=p_{n}$.

LEAST UPPER BOUND OF $\mathrm{P}_{\mathbf{i}}$
Now we shall calculate the least upper bound of P_{i}. Admitting the values 0 and 1 for p_{j}, the maximum of p_{i} exists and is equal to the least upper bound of p_{i}. Since $p_{i}=1-q_{1} \ldots q_{i}$, maximizing p_{i} is the same as minimizing $q_{1} \ldots q_{i}$. We know that q_{1}, \ldots, q_{n} are subject to the restriction

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{a_{j}}{q_{1} \cdots q_{j}}=1-a_{0} \tag{30}
\end{equation*}
$$

Let $q_{1}^{0}, \ldots, q_{n}^{o}$ be a set of values of q_{1}, \ldots, q_{n} (satisfying equation 30) for which $q_{1} \ldots q_{j}$ becomes a minimum. First, we show that $q_{i}^{0}=q_{i+1}^{0}=\ldots=q_{n}^{0}$. Suppose that $q_{n}^{0}<q_{i}^{0}$. Consider the set of probabilities $q_{r}^{\prime}=q_{r}^{o}$ for $r \leq 1$ and $q_{r}^{\prime}=q_{i}^{o}$ for $r>i$. Then

$$
\sum_{j=1}^{n} \frac{a_{j}}{q_{1} \cdots q_{j}^{1}}<1-a_{o}
$$

Hence, there exists a positive factor $\lambda<1$ so that

$$
\sum_{j=1}^{n} \frac{a_{j}}{q_{1}^{n} \cdots q_{j}^{\#}}=1-a_{0} .
$$

where $q_{i}^{n}=\lambda q_{i}^{\prime}(i=1, \ldots, n)$. Then

$$
q_{1}^{n} q_{2}^{n} \ldots q_{1}^{n}<q_{1}^{o} q_{2}^{o} \cdots q_{i}^{o}
$$

in contradiction to our assumption that $q_{1}^{0} \ldots q_{i}^{O}$ is a minimum. Hence, we have proved that $q_{i}^{0}=\ldots=q_{n}^{0}$.

Now we show that there exists at most one value j such that $1>q_{j}^{o}>q_{i}^{o}$. Suppose there are two integers j and k such that $1>q_{j}^{o} \geq q_{k}^{o}>q_{i}^{o}$. Let j^{\prime} be the smallest integer for which $q_{j}^{O}=q_{j}^{o}$ and let k^{\prime} be the largest integer for which $q_{k}^{O}=q_{k}^{O}$. Let $\bar{q}_{j},=(1+\varepsilon) \varphi_{j}^{O}, \bar{q}_{k},=\frac{1}{1+\varepsilon} q_{k}^{O},(\varepsilon>0)$, and $\bar{q}_{r}=q_{r}^{o}$ for $\mathbf{x} \neq \mathrm{j}^{\prime}, \neq \mathrm{k}^{\prime}$. Then

$$
\bar{q}_{1} \ldots \bar{q}_{i}=q_{1}^{o} \ldots q_{i}^{o} \text { and } \sum_{r=1}^{n} \frac{a_{r}}{\bar{q}_{1} \ldots \bar{q}_{r}}<1-a_{o} .
$$

Hence, there exists a positive factor $\lambda<1$ such that

$$
\sum_{r=1}^{n} \frac{a_{r}}{q_{1}^{*} \cdots q_{r}^{\star}}=1-a_{0}
$$

where $q_{r}^{*}=\lambda \bar{q}_{\mathbf{r}}$. But $q_{1}^{*} \ldots q_{i}^{*}<\bar{q}_{1} \ldots \bar{q}_{i}=q_{1}^{0} \ldots q_{i}^{o}$, which contradicts the assumption that $\mathrm{q}_{1}^{0} \ldots \mathrm{q}_{\mathrm{i}}^{0}$ is a minimum. This proves our statement.

It follows from our results that the minimum of q_{1} is the root of the equation

$$
\begin{equation*}
\sum_{r=1}^{n} \frac{a_{r}}{y^{r}}=1-a_{0} \tag{32}
\end{equation*}
$$

Now we shall calculate the minimum of $q_{1} q_{2}$. First, we know that $q_{i}=q_{2}(i \geq 2)$ if $q_{1} q_{2}$ be a minimum. Hence, we have to minimize $q_{1} q_{2}$ under the restriction

$$
\begin{equation*}
\frac{1}{q_{1}}\left(a_{1}+\frac{a_{2}}{q_{2}}+\frac{a_{3}}{q_{2}^{2}}+\ldots+\frac{a_{n}}{q_{2}^{n-1}}\right)=1-a_{0} \tag{33}
\end{equation*}
$$

Using the Lagrange multiplier method we obtain the equations

$$
\begin{align*}
& q_{2}-\frac{\lambda}{q_{1}^{2}}\left(a_{1}+\frac{a_{2}}{q_{2}}+\frac{a_{3}}{q_{2}^{2}}+\ldots+\frac{a_{n}}{q_{2}^{n-1}}\right)=0 \tag{34}\\
& \quad \text { (Lagrange multiplier }=\lambda) \\
& q_{1}-\frac{\lambda}{q_{1}}\left(\frac{a_{2}}{q_{2}^{2}}+\frac{2 a_{3}}{q_{2}^{3}}+\ldots+\frac{(n-1) a_{n}}{q_{2}^{n}}\right)=0 \tag{35}
\end{align*}
$$

Because of equation 33 , we can write equation 34 as follows:

$$
q_{2}-\frac{\lambda}{q_{1}}\left(1-a_{0}\right)=0 ; \lambda=\frac{q_{1} q_{2}}{1-a_{0}} .
$$

Substituting for λ in equation 35 , we obtain

$$
\begin{equation*}
q_{1}-\frac{1}{1-a_{0}}\left(\frac{a_{2}}{q_{2}}+\frac{2 a_{3}}{q_{2}^{2}}+\frac{3 a_{4}}{q_{2}^{3}}+\ldots+\frac{(n-1) a_{n}}{q_{2}^{n-1}}\right)=0 \tag{36}
\end{equation*}
$$

or

$$
\begin{equation*}
q_{1}=\frac{1}{1-a_{0}}\left(\frac{a_{2}}{q_{2}}+\frac{2 a_{3}}{q_{2}^{2}}+\ldots+\frac{(n-1) a_{n}}{q_{2}^{n-1}}\right) \tag{37}
\end{equation*}
$$

On the other hand, from equation 33 we obtain

$$
\begin{equation*}
q_{1}=\frac{1}{1-a_{0}}\left(a_{1}+\frac{a_{2}}{q_{2}}+\frac{a_{3}}{q_{2}^{2}}+\ldots+\frac{a_{n}}{q_{2}^{n-1}}\right) \tag{38}
\end{equation*}
$$

Equating the right-hand sides of equations 37 and 38 , we obtain

$$
\begin{equation*}
\frac{a_{3}}{q_{2}^{2}}+\frac{2 a_{4}}{q_{2}^{3}}+\frac{3 a_{5}}{q_{2}^{4}}+\ldots+\frac{(n-2) a_{n}}{q_{2}^{n-1}}-a_{1}=0 \tag{39}
\end{equation*}
$$

It is clear that equation 39 has exactly one positive root. The root is less than or equal to 1 if and only if

$$
\begin{equation*}
a_{3}+2 a_{4}+3 a_{5}+\ldots+(n-2) a_{n} \leq a_{1} \tag{40}
\end{equation*}
$$

Equations 38 and 39 have exactly one positive root in q_{1} and q_{2}. We shall show that if the roots satisfy the inequalities $1 \geq q_{1} \geq q_{2}^{\prime \prime}$ then for these roots $q_{1} q_{2}$ becomes a minimum. We can assume that $2<n$, since the derivation of the minimum value of $q_{1} \ldots y_{n}$ will be given later in this memorandum. It is clear that for any value $q_{1}>\frac{a_{1}}{1-a_{0}}$ equation 38 has exactly one positive root in q_{2}. Denote this root by $\Phi\left(q_{1}\right)$. Hence, $\phi\left(q_{1}\right)$ is defined for
all values $q_{1}>\frac{a_{1}}{1-a_{0}}$. It is easy to see that

$$
\lim _{q_{1}-\frac{1}{I-a_{0}}} \phi\left(q_{1}\right)=+\infty
$$

Hence (assuming $a_{1}>0$)

$$
\lim \psi\left(q_{1}\right)=+\infty
$$

$$
q_{1} \cdot \frac{a_{1}}{1-a_{0}}
$$

where $\psi\left(q_{1}\right)=q_{1} \phi\left(q_{1}\right)$.
It is clear that $\lim _{\mathrm{q}_{1} \rightarrow \infty} \phi\left(\mathrm{q}_{1}\right)=0$. Since $a_{n}>0$, it follows from equation 38 that $q_{1}\left[\phi\left(q_{1}\right)\right]^{n-1}$ has a positive lower bound when $\mathrm{q}_{1} \rightarrow \infty$. But then, since $n>2, \lim _{\mathrm{g}_{1} \rightarrow \infty} \mathrm{q}_{1} \phi\left(\mathrm{q}_{1}\right)=+\infty$. From the relations $\lim _{\mathrm{q}_{1}+\frac{a_{1}}{1-\dot{s}_{0}}} \psi\left(\mathrm{q}_{1}\right)=\lim _{\mathrm{q}_{1} \rightarrow \infty} \psi\left(\mathrm{q}_{1}\right)=+\infty \quad$ it follows that the absolute minimum value of $\psi\left(q_{1}\right)$ is reached for some positive value q_{1}. Since equations 38 and 39 have exactly one positive root in q_{1} and q_{2}, the absolute minimum value of $\psi\left(q_{1}\right)$ must be reached for this root. This proves our statement that if the roots of equations 38 and 39 satisfy the inequalities $1 \geq q_{1} \geq q_{2}$, then for these roots $q_{1} q_{2}$ becomes a minimum consistent with our restrictions on q_{1} and q_{2}. If $1 \geq q_{1} \geq q_{2}$ is not satisfied by the roots of equations 38 and 39 , then q_{1} is equal either to 1 or to q_{2} and the minimum value of $q_{1} q_{2}$ is either $\phi(1)$ or q^{2}, where q is the root of the equation

$$
\sum_{r=1}^{n} \frac{a_{r}}{q^{r}}=1-a_{0}
$$

How we shall determine the minimum of $q_{1} \ldots q_{i}(2<i<n)$. First, we determine the minimum $M_{i l}$ of $q_{1} \ldots q_{i}$ under the restriction that $q_{2}=q_{i}$. Thus, we have to minimize $q_{1} q_{2}^{i-1}$ under the restriction that

$$
\begin{equation*}
\frac{a_{1}}{q_{1}}+\frac{a_{2}}{q_{1} q_{2}}+\frac{a_{3}}{q_{1} q_{2}^{2}}+\ldots+\frac{u_{n}}{q_{1} q_{2}^{n-1}}=1-a_{0} . \tag{40a}
\end{equation*}
$$

Using the Lagrange multiplier method, we obtain

$$
q_{2}^{i-1}-\frac{\lambda}{q_{1}}\left(\frac{a_{1}}{q_{1}}+\ldots+\frac{a_{n}}{q_{1} q_{2}^{n-1}}\right)=q_{2}^{i-1}-\frac{\lambda}{q_{1}}\left(1-a_{0}\right)=
$$

and

$$
(i-1) q_{1} q_{2}^{i-2}-\frac{\lambda}{q_{1}}\left(\frac{a_{2}}{q_{2}^{2}}+\frac{2 a_{3}}{q_{2}^{3}}+\ldots+\frac{(n-1) a_{n}}{q_{2}^{n}}\right)=0
$$

Substituting $\frac{q_{1} q_{2}^{i-1}}{1-a_{0}}$ for λ (the value of λ obtained from equation 41), we obtain

$$
(i-1) q_{1}-\frac{1}{1-a_{0}}\left(\frac{a_{2}}{q_{2}}+\frac{2 a_{3}}{q_{2}^{2}}+\ldots+\frac{(n-1) a_{n}}{q_{2}^{n-1}}\right)=0
$$

From equation 40a

$$
\begin{equation*}
(i-1) q_{1}-\frac{1-1}{1-a_{0}}\left(a_{1}+\frac{a_{2}}{q_{2}}+\ldots+\frac{a_{n}}{q_{2}^{n-1}}\right)=0 \tag{43}
\end{equation*}
$$

From equations 42 and 43 , we obtain

$$
(i-1) a_{1}+\frac{(i-2) a_{2}}{q_{2}}+\frac{(i-3) a_{3}}{q_{2}^{2}}+\ldots+\frac{(i-n) a_{n}}{q_{2}^{n-1}}=0
$$

From Descartes' sign rule it follows that equation 44 has exactly one positive root.

Let $q_{1}=q_{1}^{0}$ and $q_{2}=q_{2}^{0}$ be the roots of the equations 43 and 44. If $1 \geq q_{1}^{0} \geq q_{2}^{0}$, then $M_{i 1}=q_{1}^{0}\left(q_{2}^{0}\right)^{i-1}$. If $1 \geq q_{1}^{0} \geq q_{2}^{0}$ does not hold, then $M_{i l}$ is either $\left(q^{\prime}\right)^{i}$ or $\left(q^{\prime \prime}\right)^{i-1}$, where q^{\prime} is the root of the equation

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{a_{j}}{\left(q^{\prime}\right)^{j}}=1-a_{0} \tag{45}
\end{equation*}
$$

and $q^{\prime \prime}$ is the root of the equation

$$
\begin{equation*}
a_{1}+\frac{a_{2}}{q^{\prime \prime}}+\frac{a_{3}}{\left(q^{\prime \prime}\right)^{2}}+\ldots+\frac{a_{n}}{\left(q^{\prime \prime}\right)^{n-1}}=1-a_{0} \tag{46}
\end{equation*}
$$

Let $M_{i r}(r=2, \ldots, i-1)$ be the minimum of $q_{1} \ldots q_{i}$ under the restriction that $q_{1}=\ldots=q_{r-1}=1$ and $q_{r+1}=q_{i}$. Then $M_{i r}$ can be calculated in the same way as $M_{i l}$; we have merely to make the substitutions

$$
\begin{aligned}
& n^{*}=n-r+1 \\
& a_{0}^{*}=a_{0}+a_{1}+\ldots+a_{r-1} \\
& a_{j}^{*}=a_{j+r-1} \\
& q_{j}^{*}=q_{j+r-1} \\
& i_{i}^{*}=i-r+1,
\end{aligned} \quad\left(j=1, \ldots, n^{*}\right)
$$

and we have to calculate the minimum of $q_{1}^{*} \ldots q_{i}^{*}$. Thus, wo have to solve the equations corresponding to equations 43 and 44 , i.e., the equations

$$
\begin{equation*}
\left(i^{*}-1\right) q_{1}^{*}-\frac{i^{*}-1}{1-a_{0}^{*}}\left(a_{1}^{*}+\frac{a_{2}^{*}}{q_{2}^{*}}+\frac{a_{3}^{*}}{\left(q_{2}^{*}\right)^{2}}+\ldots+\frac{a_{n^{*}}^{*}}{\left(q_{2}^{*}\right)^{n^{*}-1}}\right)=0 \tag{*}
\end{equation*}
$$

and

$$
\left(i^{*}-1\right) a_{1}^{*}+\frac{\left(i^{*}-2\right) a_{2}^{*}}{q_{2}^{*}}+\frac{\left(i^{*}-3\right) a_{3}^{*}}{\left(q_{2}^{*}\right)^{2}}+\ldots+\frac{\left(i^{*}-n^{*}\right) a_{n}^{*}}{\left(q_{2}^{*}\right)^{n^{*}-1}}=0
$$

Let ${ }_{G_{1}}^{*}=v_{1}$ and $q_{2}^{*}=v_{2}$ be the positive roots of the equations 43* and 44*. If $1 \geq v_{1} \geq v_{2}$, then $M_{i r}=v_{1} v_{2}^{i}{ }^{*}-1$. If $1 \geq v_{1} \geq v_{2}$ does not hold, then $M_{i r}$ is equal to cither ($\left.v^{\prime}\right)^{i}$ * or $\left(v^{\prime \prime}\right)^{i^{*}}{ }_{*}^{-1} \underset{\star}{\text { where }} v^{\prime}$ is the positive root of the equation

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{a_{j}^{*}}{\left(v^{\prime}\right)^{j}}=1-a_{0}^{*} \tag{*}
\end{equation*}
$$

and $v^{\prime \prime}$ is the positive root of the equation

$$
\begin{equation*}
a_{1}^{*}+\frac{a_{2}^{*}}{v^{n}}+\frac{a_{3}^{*}}{\left(v^{n}\right)^{2}}+\ldots+\frac{a_{n^{*}}^{*}}{\left(v^{n}\right)^{n^{*}-1}}=1-a_{0}^{*} . \tag{46*}
\end{equation*}
$$

The minimum N_{i} of $q_{1} \ldots q_{i}(i=2,3, \ldots, n-1)$ is equal to the smallest of the $i-1$ values $M_{i 1} \ldots \ldots, M_{i, i-1}$.

How we shall determine the minimum of $q_{1} \ldots q_{n}$. We show that the minimum is reached when $q_{1}=\ldots=q_{n-1}=1$. Suppose that this is not true and we shall derive a contradiction. Let j be the smallest integer for which $q_{j}<1(j<n)$. Let $\bar{q}_{j}=(1+\varepsilon) \underline{q}_{j}$ $(\varepsilon>0), \bar{q}_{n}=\frac{q_{n}}{1+\varepsilon}$, and $\bar{q}_{r}=q_{r}$ for all $r \neq j, \neq n$.

Then $\bar{q}_{1} \ldots \bar{q}_{n} \ldots=q_{1} \ldots q_{n}$ and

$$
\sum_{r=1}^{n} \frac{a_{r}}{\bar{q}_{1} \ldots \bar{q}_{r}}<1-a_{0}
$$

Hence, there exists a positive $\lambda<1$ such that

$$
\sum_{r=1}^{n} \frac{a_{r}}{q_{1} \cdots q_{r}^{n}}=1-a_{o}
$$

where

$$
\mathbf{q}_{\mathbf{r}}^{*}=\lambda \overline{\mathbf{q}}_{\mathbf{r}}
$$

But then $q_{1}^{*} \ldots q_{n}^{*}<\bar{q}_{1} \ldots \bar{q}_{n}=q_{1} \ldots q_{n}$ in contradiction to the assumption that $q_{1} \ldots q_{n}$ is a minimum. Hence, we must have $q_{1}=\ldots=q_{n-1}=1$. Then, from equation 26 it follows that the minimum value of $q_{1} \ldots q_{n}$ is given by

$$
\frac{a_{n}}{1-a_{0}-a_{1}-\ldots-a_{n-1}}
$$

If $i>1$ but < n, the computation of the minimum value of $q_{1} \ldots q_{i}$ is involved, since a large number of algebraic equations have to be solved. In the next part we shall discuss some approximation methods by means of which the amount of computational work can be considerably reduced.

PART III
APPROXIMATE DETERMINATION OF THE MAXIMUM VALUE OF THE PROBABILITY THAT A PLANE WILL BE DOWNED BY A GIVEN NUMBER OF HITS

The symbols defined in parts I and II will be used here without further explanations. We have seen in part II that the exact determination of the maximum value of $P_{i}(i<n)$ involves a con-
siderable amount of computational work, since a large number of algebraic equations have to be solved. The purpose of this memorandum is to derive some approximations to the maximum of P_{i} which can be computed much more easily than the exact values.

Let us denote the maximum of P_{i} by P_{i}^{O} and let $Q_{i}^{O}=1-P_{i}^{O}$. Thus, Q_{i}^{o} is the minimum value of Q_{i}. Before we derive approximate values of P_{i}^{O} (or Q_{i}^{O}) we shall discuss some simplifications that can be made in calculating the exact value P_{i}^{o} (or Q_{i}^{O}) assuming $1<i<n$. We have seen in part $I I$ that Q_{i}^{0} is equal to the smallest of the $i-1$ values $M_{i l} \ldots M_{i, i-1}$. We shall make some simplifications in calculating $\operatorname{Mir}_{\text {ir }}(r=1, \ldots, i-1)$.

For this purpose consider the equation

$$
\begin{equation*}
\frac{a_{r}}{u}+\frac{a_{r+1}}{u v}+\ldots+\frac{a_{n}}{u v^{n-r}}=1-a_{0}-a_{1}-\ldots-a_{r-1} \tag{47}
\end{equation*}
$$

It is clear that for any value $u>\frac{a_{r}}{1-a_{0}-\cdots-a_{r-1}}$, equation
47 has exactly one positive root in v. Denote this root by $\phi_{r}(u)$. Thus, $\phi_{r}(u)$ is defined for all values $u>\frac{a_{r}}{1-a_{0} \mu_{0}-a_{r-1}}$ In all that follows we shall assume that $a_{i}>0(i=1, \ldots, n)$. We shall prove that

$$
\begin{equation*}
\left.\frac{\lim _{u \cdot}\left(u \left[a_{0}=\cdots-a_{r-1}\right.\right.}{}\left(\Phi_{r}(u)\right] i-r\right)=+\infty \tag{48}
\end{equation*}
$$

[^2]and
\[

$$
\begin{equation*}
\lim _{u \rightarrow \infty}\left(u\left[\phi_{c}(u)\right] i-r\right)=+\infty \tag{49}
\end{equation*}
$$

\]

It follows easily from equation 47 that if $u \rightarrow \frac{u_{r}}{1-a_{0}-\cdots-a_{r-1}}$, then $\phi_{r}(u) \rightarrow+\infty$. Since $i>r$, we see that equation 48 must hold. It follows easily from equation 47 that $\lim _{u=+\infty} \phi_{r}(u)=0$. Wie also see from equation 47 that if $u \rightarrow \infty$, the product $u\left[\phi_{r}(u)\right]^{n-r}$ must have a positive lower bound. Equation 49 follows from this and the fact that $\lim _{u \rightarrow \infty} \phi_{r}(u)=0$.

We have seen in part II that equations 43^{*} and 44* have exactly one positive root in the unknowns, q_{1}^{*} and q_{2}^{*}. Let the root in q_{1}^{*} be $u_{i r}^{\circ}$. Then the root in q_{2}^{*} is equal to $\phi_{r}\left(u_{i r}^{\circ}\right)$. From equations 48 and 49 it follows that $u\left[\phi_{a_{r}}(u)\right]^{i-r}$ is strictly decreasing in the interval $\frac{a_{r}}{1-a_{0}-\ldots-a_{r-1}}<u<u_{i r}{ }^{\prime}$, and is strictly increasing in the interval $u_{i r}^{0}<u<+\infty$. Denote by u_{r}^{\prime} the positive root of the equation

$$
\begin{equation*}
\frac{a_{r}}{u}+\frac{a_{r+1}}{u^{2}}+\ldots+\frac{a_{n}}{u^{n-r+1}}=1-a_{0}-\ldots-a_{r-1} . \tag{50}
\end{equation*}
$$

It is clear that $u_{r}^{\prime}<1$ and $\phi_{r}\left(u_{r}^{\prime}\right)=u_{r}^{\prime}$. The value $M_{i r}$ is equal to the smallest of the three values

$$
u_{r}^{\prime}\left[\phi_{r}\left(u_{r}^{\prime}\right)\right]^{i-r}, \quad\left[\phi_{r}(1)\right]^{i-r}, \text { and } u_{i r}^{o}\left[\phi_{r}\left(u_{i r}^{o}\right)\right]^{i-r} .
$$

A simplification in the calculation of $M_{i r}$ can be achieved by the fact that in some areas $M_{i r}$ can be determined without calculating the value $u_{i r}^{0}$. We consider three cases.

Case A:

$$
u_{r}^{\prime}\left[\phi_{r}\left(u_{r}^{\prime}\right)\right]^{i-r}<\left[\phi_{r}(l)\right]^{i-r} .
$$

In this case,

$$
M_{i r}=u_{r}^{\prime}\left[\phi_{r}\left(u_{r}^{\prime}\right)\right]^{i-r} \text { if } \frac{d}{d u} u\left[\phi_{r}(u)\right]^{i-r} \geq 0 \text { for } u=u_{r}^{\prime}
$$

and

$$
M_{i r}=u_{i r}^{o}\left[\phi_{r}\left(u_{i r}^{0}\right)\right]^{i-r} \text { if } \frac{d}{d u} u\left[\phi_{r}(u)^{i-r}<0 \text { for } u=u_{r}^{\prime}\right.
$$

Case B: $\quad u_{r}^{\prime}\left[\phi_{r}\left(u_{r}^{\prime}\right)\right]^{i-r}>\left[\phi_{r}(1)\right]^{i-r}$.
In this case,

$$
M_{i r}=\left[\phi_{r}(1)\right]^{i-r} \text { if } \frac{d}{d u} u\left[\phi_{r}(u)\right]^{i-r} \leq 0 \text { for } u=1
$$

and

$$
M_{i r}=u_{i r}^{o}\left[\phi_{r}\left(u_{i r}^{o}\right)\right]^{i-r} \text { if } \frac{d}{d u} u\left[\phi_{r}(u)^{i-r}>0 \text { for } u=1\right.
$$

Case C: $\quad u_{r}^{\prime}\left[\phi_{\left(u_{r}^{\prime}\right)}\right]^{i-r}=[\phi(1)] i-r \quad$.
In this case,

$$
M_{i r}=u_{i r}^{o}\left[\phi\left(u_{i r}^{o}\right)\right]^{i-r}
$$

We can easily calculate the value of $\frac{d}{d u} u\left[\phi_{r}(u)\right]^{i-r}$ for $u=u_{r}$ and $u=1$. In fact, we have
$\frac{d}{d u}\left[\phi_{r}(u)\right]^{i-r}=\left[\phi_{r}(u)\right]^{i-r}+(i-r) u\left[\phi_{r}(u)\right]^{i-r-1} \frac{d \phi_{r}(u)}{d u}(51)$
and $\frac{d \phi_{r}(u)}{d u}=\frac{d v}{d u}$ can be obtained from equation 47 as follows.

Denote $\frac{a_{r}}{u}+\frac{a_{r+1}}{u v}+\ldots+\frac{a_{n}}{u v^{n-r}}$ by $G(u, v)$. Then

$$
\frac{d \Phi_{r}(u)}{d u}=\frac{d v}{d u}=-\frac{\frac{\partial}{\partial u} G(u, v)}{\frac{\partial}{\partial v} G(u, v)}
$$

$$
\begin{align*}
& =\frac{-\frac{1}{u}\left(\frac{a_{r}}{u}+\frac{a_{r+1}}{u v}+\ldots+\frac{a_{n}}{u v^{n-r}}\right)}{\frac{1}{u}\left(\frac{a_{r+1}}{v^{2}}+\frac{2 a_{r+2}}{v^{3}}+\ldots+\frac{(n-r) a_{n}}{v^{n-r+1}}\right)} \tag{52}\\
& =\left(\frac{-\left(1-a_{0}-a_{1}-\ldots-a_{r-1}\right)}{\left(\frac{a_{r+1}}{v^{2}}+\frac{2 a_{r+2}}{v^{3}}+\ldots+\frac{(n-r) a_{n}}{v^{n-r+1}}\right)} \quad\left(v=\Phi_{r}(u)\right) .\right.
\end{align*}
$$

On the vasis of equations 51 and 52 , we can easily obtain the value of $\frac{d}{d u} u\left[\phi_{r}(u)\right]^{i-r}$ for $u=u_{r}^{\prime}$ and $u=1$ if u_{r}^{\prime} and $\phi_{r}(1)$ have been calculated. If $u=u_{r}^{\prime}$, then $\phi_{r}(u)=v=u_{r}^{\prime} ;$ if $u=1$, then $v=\phi_{r}(1)$.

Since $\Phi_{r}(1)$ is equal to the root of the equation in v

$$
a_{r}+\frac{a_{r+1}}{v}+\ldots+\frac{a_{n}}{v^{n-r}}=1-a_{0}-a_{1}-\ldots-a_{r-1}
$$

it follows from equation 50 that

$$
\begin{equation*}
\phi_{r}(1)=u_{r+1}^{\prime} \tag{53}
\end{equation*}
$$

Thus, for carrying out the investigations of cases A, B, and C for $r=1, \ldots, i-1$, we merely have to calculate $u_{1}^{\prime}, \ldots, u_{i}^{\prime}$.

If we want to calculate Q_{i}^{O} for all values $i<n$, then it scems best to compute first the n quantities $u_{1}^{\prime}, \ldots, u_{n}^{\prime}$.

Since $u_{r}^{\prime}=\phi_{r}\left(u_{r}^{\prime}\right)$ and $\phi_{r}(1)=u_{r+1}^{\prime}$, we can say that $M_{i r}$ is the smallest of the three values

$$
\left(u_{r}^{\prime}\right)^{i-r+1},\left(u_{r+1}^{\prime}\right)^{i-r}, \text { and } u_{i r}^{0}\left[\phi_{r}\left(u_{i r}^{0}\right)\right]^{i-r}
$$

Since Q_{i}^{O} is equal to the minimum of the $i-1$ values, $M_{i 1}, \ldots M_{i, i-1}$, we see that

$$
\begin{equation*}
Q^{0} \leq t_{i} \tag{54}
\end{equation*}
$$

where

$$
\begin{equation*}
t_{i}=\operatorname{Min}\left[\left(u_{i}^{\prime}\right)^{i},\left(u_{2}^{\prime}\right)^{i-1}, \ldots,\left(u_{i-1}^{\prime}\right)^{2}, u_{i}^{\prime}\right] \tag{55}
\end{equation*}
$$

If n is large, it can be expected that Q_{i}^{O} will be nearly cqual to t_{i}. Thus, t_{i} can be used as an approximation to Q_{i}^{0}. In order to see how good this approximation is, we shall derive a lower bound z_{i} for Q_{i}^{O}. If the difference $t_{i}-z_{i}$ is small, we are certain to have a satisfactory approximation to Q_{i}^{O}. If $t_{i}-z_{i}$ is large, then t_{i} still may be a good approximation to Q_{i}^{O}, since it may be that z_{i} is considerably below Q_{i}^{O}.

To obtain a lower bound z_{i} of Q_{i}^{O}, denote by $y_{j}(j=0,1, \ldots, i-1)$ the proportion of planes (number of planes divided by the total number of planes participating in combat) that would be downed out of the returning planes with j hits if they were subject to i - j additional hits. Then

$$
\begin{equation*}
P_{i}=y_{0}+y_{1}+\ldots+y_{i-1}+x_{1}+x_{2}+\ldots+x_{i} \tag{56}
\end{equation*}
$$

It is clear that $a_{j} P_{i}>y_{j}(j=0,1, \ldots, i-1)$ and consequently

$$
\left(a_{0}+a_{1}+\ldots+a_{i-1}\right) p_{i}>y_{0}+y_{1}+\ldots+y_{i-1}
$$

Hence,

$$
\begin{equation*}
\frac{y_{0}+y_{1}+\ldots+y_{i-1}}{a_{0}+a_{1}+\cdots+a_{i-1}}<p_{i} \tag{57}
\end{equation*}
$$

Equation 56 can be written

$$
\begin{align*}
p_{i}= & \left(a_{0}+\ldots+a_{i-1}\right) \frac{y_{0}+y_{1}+\ldots+y_{i-1}}{a_{0}+\ldots+a_{i-1}} \tag{58}\\
& +\left(1-a_{0}-\ldots-a_{i-1}\right) \frac{x_{1}+\ldots+x_{i}}{1-a_{0}-\ldots-a_{i-1}}
\end{align*}
$$

Hence, p_{i} is a weighted average of $\frac{y_{0}+\ldots+y_{i-1}}{a_{0}+\ldots+a_{i-1}}$ and $\frac{x_{i}+\ldots+x_{i}}{1-a_{0}-\ldots-a_{i-1}}$. Then, from equation 57 it follows that

$$
\begin{equation*}
P_{i}<\frac{x_{1}+\ldots+x_{i}}{1-a_{0}-a_{1}-\cdots-a_{i-1}} \tag{59}
\end{equation*}
$$

Since $y_{j}>0$, we obtain from equations 56 and 59

$$
\begin{equation*}
x_{1}+\ldots+x_{i}<p_{i}<\frac{x_{1}+\ldots+x_{i}}{1-a_{0}-\cdots-a_{i-1}} \tag{60}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
1-\frac{x_{1}+\ldots+x_{i}}{1-a_{0}-\ldots-a_{i-1}}<0_{i}<1-\left(x_{1}+\ldots+x_{i}\right) \tag{61}
\end{equation*}
$$

In part II we have calculated the maximum value of $x_{1}+\ldots+x_{i}$. Denote this maximum value by A_{i}. Then a lower bound of Q_{i}^{O} is given by

$$
\begin{equation*}
z_{i}=1-\frac{A_{i}}{1-a_{0}-\cdots-a_{i-1}}<Q_{i}^{0} \tag{62}
\end{equation*}
$$

NUMERICAL EXAMPLE
The same notation will be used as in the numerical examples for part I. q_{i} is the probability of a plane surviving the i-th hit. knowing that the first i - 1 hits did not down the plane. Then the probability that a plane will survive i hits is given by

$$
\mathbf{Q}_{i}=q_{1} q_{2} \ldots q_{i}
$$

In part I it was assumed that

$$
q_{1}=q_{2}=\ldots=q_{i}=q_{0} \quad(\text { say })
$$

which is equivalent to the assumption that the probability that a plane will be shot down does not depend on the number of previous non-destructive hits. Under this assumption

$$
Q_{i}=q_{0}^{i}
$$

The example below is based on the assumption that

$$
q_{1} \geq q_{2} \geq \cdots \geq q_{n}
$$

i.e., the probability of surviving the $i+1$ hit is less than or equal to the probability of surviving the i-th hit. In this case, it is not possible to find an explicit formula for Q_{i}, but a lower bound can be obtained. That is, a value of Q_{i} can be found such that the actual value of Q_{i} must lie above it. The greatest lower bound is denoted by Q_{i}°. Hence, we have

$$
Q_{i}^{0} \leq Q_{i}
$$

If

$$
P_{i}^{0}=1-Q_{i}^{0}
$$

p_{i}^{0} is the least upper bound of P_{i}; that is, the probability of being downed by i bullets cannot be greater than P_{i}^{0}.

Since the computation of the exact value of Q_{i}^{O} is relatively complex, an approximate formula has been developed. This approximation is called t_{i} and $t_{i} \geq Q_{i}^{O}$. Another approximation $\left(z_{i}\right)$ is available such that $z_{i} \leq Q_{i}^{O}$. However, z_{i} is not as accurate as t_{i}. Whenever the full computation is to be omitted, it is recommended that t_{i} be used.

The observed data of example 1, part 1 , will be used. Thus,

$$
a_{0}=.80, a_{1}=.08, a_{2}=.05, a_{3}=.01, a_{4}=.005, a_{5}=.005
$$

The calculations are in three sections:

- The calculation of $t_{i} \geq Q_{i}^{O}$.
- The calculation of $z_{i} \leq Q_{i}^{O}$.
- The exact value of Q_{i}^{O}.

1. Calculation of $t_{i}\left(t_{i} \geq Q_{i}^{0}\right)$
(1) Calculate u_{r}^{\prime}, the positive root of equation 50:

$$
\frac{a_{r}}{u}+\frac{a_{r+1}}{u^{2}}+\ldots+\frac{a_{n}}{u^{n-r+1}}=1-a_{0}-\ldots-a_{r-1} .
$$

For $x=1$, we obtain

$$
\frac{a_{1}}{u}+\frac{a_{2}}{u^{2}}+\frac{a_{3}}{u^{3}}+\frac{a_{4}}{u^{4}}+\frac{a_{5}}{u^{5}}=1-a_{0}
$$

which reduces to

$$
\begin{aligned}
& .20 u^{5}-.08 u^{4}-.05 u^{3}-.01 u^{2}-.005 u-.005=0 \\
& u_{i}^{\prime}=.851 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { For } r=2, \\
& \qquad \frac{a_{2}}{u}+\frac{a_{3}}{u^{2}}+\frac{a_{4}}{u^{3}}+\frac{a_{5}}{u^{4}}=1-a_{0}-a_{1}
\end{aligned}
$$

which reduces to

$$
\begin{aligned}
& .12 u^{4}-.05 u^{3}-.01 u^{2}-.005 u=0 \\
& u_{2}^{\prime}=.722 .
\end{aligned}
$$

For $r=3$,

$$
\frac{a_{3}}{u}+\frac{a_{4}}{u^{2}}+\frac{a_{5}}{u^{3}}=1-a_{0}-a_{1}-a_{2}
$$

which reduces to

$$
\begin{aligned}
& .07 u^{3}-.01 u^{2}-.005 u-.005=0 \\
& u_{3}^{\prime}=.531 .
\end{aligned}
$$

For $r=4$,

$$
\frac{a_{4}}{u}+\frac{a_{5}}{u^{2}}=1-a_{0}-a_{1}-a_{2}-a_{3}
$$

which reduces to

$$
\begin{aligned}
& .06 u^{2}-.005 u-.005=0 \\
& u_{4}^{\prime}=.333 .
\end{aligned}
$$

(2) t_{1}, \ldots, t_{5} are given by equation 54 :

$$
t_{i}=\operatorname{Min}\left[\left(u_{i}\right)^{1},\left(u_{i}^{\prime}\right)^{i-1}, \ldots,\left(u_{i-1}^{\prime}\right)^{2},\left(u_{i}^{\prime}\right)\right] .
$$

We have

$$
u_{1}^{\prime}=.851, u_{2}^{\prime}=.722, u_{3}^{\prime}=.531, u_{4}^{\prime}=.333 .
$$

Hence,

$$
\begin{aligned}
t_{1} & =\operatorname{Min}\left[\left(u_{1}\right)\right]=u_{1}^{\prime} \\
& =.851 \\
t_{2} & =\operatorname{Min}\left[\left(u_{1}\right)^{2},\left(u_{2}^{\prime}\right)\right] \\
& =\operatorname{Min}[.724, .722] \\
& =.722 \\
t_{3} & =\operatorname{Min}\left[\left(u_{1}\right)^{3},\left(u_{2}^{\prime}\right)^{2},\left(u_{3}^{\prime}\right)\right] \\
& =\operatorname{Min}[.616, .521, .531] \\
& =.521 \\
t_{4} & =\operatorname{Min}\left[\left(u_{1}\right)^{4},\left(u_{2}^{\prime}\right)^{3},\left(u_{3}^{\prime}\right)^{2},\left(u_{i}^{\prime}\right)\right] \\
& =\operatorname{Min}[.524, .376, .282, .333] \\
& =.282
\end{aligned}
$$

t_{5} is not calculated since the exact value of Q_{5}° can be
2. Calculation of $z_{i}\left(z_{i} \leq Q_{i}^{O}\right)$

The following values must be obtained:

$$
q_{0} \text {, the root of equation } 26 \mathrm{~A}
$$

$$
\frac{a_{1}}{q}+\frac{a_{2}}{q^{2}}+\frac{a_{3}}{q^{3}}+\frac{a_{4}}{q^{4}}+\frac{a_{5}}{q^{5}}=1-a_{0}
$$

This has already been obtained as u_{i}. Thus $q_{0}=.851$. The values of x_{1}, \ldots, x_{5} have been calculated in part I :

$$
\begin{aligned}
& x_{1}=.030, x_{2}=.013, x_{3}=.004, x_{4}=.002, x_{5}=.001 \\
& A_{i}=x_{1}+x_{2}+\ldots+x_{i} .
\end{aligned}
$$

$$
\begin{aligned}
& A_{1}=x_{1}=.030 \\
& A_{2}=x_{1}+x_{2}=.043 \\
& A_{3}=x_{1}+x_{2}+x_{3}=.047 \\
& A_{4}=x_{1}+x_{2}+x_{3}+x_{4}=.049 \\
& A_{5}=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=.050 .
\end{aligned}
$$

From equation 62 the lower bounds z_{i} are calculated:

$$
z_{i}=1-\frac{A_{i}}{1-a_{o}-\cdots-a_{i-1}}<Q_{i}^{0}
$$

Then

$$
\begin{aligned}
& z_{1}=1-\frac{A_{1}}{1-a_{0}}=1-\frac{.030}{.20}=.850 \\
& z_{2}=1-\frac{A_{2}}{1-a_{0}-a_{1}}=1-\frac{.043}{.12}=.642 \\
& z_{3}=1-\frac{A_{3}}{1-a_{0}-a_{1}-a_{2}}=1-\frac{.047}{.07}=.329 \\
& z_{4}=1-\frac{A_{4}}{1-a_{0}-a_{1}-a_{2}-a_{3}}=1-\frac{.049}{.06}=.183
\end{aligned}
$$

z_{5} is not calculated since Q_{5}^{O} can be obtained directly.
3. The Exact Value of Q_{i}^{O}

We have calculated t_{i} and z_{i} such that

$$
z_{i} \leq Q_{i}^{0} \leq t_{i} \quad(i=1,2, \ldots, 5)
$$

The exact value of Q_{i}^{O} is obtained as follows:

$$
M_{i r}=\operatorname{Min}\left\{\left(u_{r}\right)^{i-r+1},\left(u_{r+1}^{\prime}\right)^{i-r}, u_{i r}^{o}\left[\Phi_{r}\left(u_{i r}^{o}\right)\right]^{i-r}\right\}
$$

where $u_{i r}^{o}$ and $\phi_{r}\left(u_{i r}^{\circ}\right)$ will be defined below.

$$
Q_{i}^{O}=\operatorname{Min}\left[M_{i 1}, \ldots, M_{i, i-1}\right]
$$

or combining these equations with the definition of t_{i} we obtain

$$
\begin{aligned}
Q_{1}^{O} & =\operatorname{Min}\left\{t_{1}\right\}=.85 l \\
Q_{2}^{O} & =\operatorname{Min}\left\{t_{2}, u_{21}^{O}\left[\phi_{1}\left(u_{21}^{O}\right)\right]\right\} \\
Q_{3}^{O} & =\operatorname{Min}\left\{t_{3}, u_{31}^{O}\left[\phi_{1}\left(u_{31}^{O}\right)\right]^{2}, u_{32}^{O}\left[\phi_{2}\left(u_{32}^{O}\right)\right]\right\} \\
\mathcal{Q}_{4}^{O} & =\operatorname{Min}\left\{t_{4}, u_{41}^{O}\left[\phi_{1}\left(u_{41}^{O}\right)\right]^{3}, u_{42}^{O}\left[\phi_{2}\left(u_{42}^{O}\right)\right]^{2}, u_{43}^{\circ}\left[\phi_{3}\left(u_{43}^{O}\right)\right]\right\}
\end{aligned}
$$

If $u_{i r}^{o}>1,\left[\phi_{r}\left(u_{i r}^{o}\right)\right]>1$, or $u_{i r}^{o}<\phi_{r}\left(u_{i r}^{o}\right)$, then $u_{i r}^{o}\left[\phi_{r}\left(u_{i r}^{o}\right)\right]^{i-r}$ is neglected in the equations above.

$$
Q_{5}^{0}=\frac{1}{1-a_{0}-a_{1}-a_{2}-a_{3}-a_{4}}=\frac{.005}{.055}=.091
$$

In the equation of Q_{i}^{O} the additional quantities we have to compute are

u_{21}^{o}	$\phi_{1}\left(u_{21}{ }^{\circ}\right.$)
u_{31}^{o}	$\phi_{1}\left(u_{31}^{\circ}\right)$
u_{32}^{o}	$\phi_{2}\left(u_{32}\right)$
0_{41}^{0}	$\phi_{1}\left(u_{41}^{\circ}\right)$
u_{42}^{0}	$\phi_{2}\left(u_{42}^{\circ}\right)$
u_{43}^{0}	$\phi_{3}\left(u_{43}^{0}\right)$

The following equations have exactly one positive root in q_{1}^{*}, q_{2}^{*}. The root in q_{1}^{*} is $u_{i r}^{o}$; the root in q_{2}^{*} is $\phi_{r}\left(u_{i r}^{o}\right)$.

$$
a_{1}^{*}+\frac{a_{2}^{*}}{q_{2}^{*}}+\frac{a_{3}^{*}}{\left(q_{2}^{*}\right)^{2}}+\cdots+\frac{a_{n}^{*}}{\left(q_{2}^{*}\right)^{n^{\star}-1}}=\left(1-a_{o}^{*}\right) q_{1}^{*}
$$

where q_{2}^{*} satisfies

$$
\left(i^{*}-1\right) a_{1}^{*}+\frac{\left(i^{*}-2\right) a_{2}^{*}}{q_{2}^{*}}+\frac{\left(i^{*}-3\right) a_{3}^{*}}{\left(q_{2}^{*}\right)^{2}}+\ldots+\frac{\left(i^{*}-n^{*}\right) a_{n^{*}}^{*}}{\left(q_{2}^{*}\right)^{n^{*}-1}}=0
$$

where

$$
\begin{aligned}
& n^{*}=n-r+1 \\
& a_{0}^{*}=a_{0}+a_{1}+\ldots+a_{r-1} \\
& a_{j}^{*}=a_{j+r-1} \quad\left(j=1,2, \ldots, n^{*}\right) \\
& i^{*}=i-r+1 .
\end{aligned}
$$

The details of the computation are given in tables 2 and 3.

TABLE 2

${ }_{\text {u }}^{\text {ir }}$ O	i	r	n*	${ }^{\text {i }}$	${ }^{\text {a }}$	${ }^{\text {a }}$	a_{2}^{*}	a_{3}^{*}	a_{4}^{*}	$\mathrm{a}_{5}^{\text {* }}$
$\mathrm{u}_{21}^{\mathrm{o}}$	2	1	5	2	. 80	. 08	. 05	. 01	. 005	. 005
$\mathrm{u}_{31}^{\mathrm{o}}$	3	1	5	3	. 80	. 08	. 05	. 01	. 005	. 005
u_{32}	3	2	4	2	. 88	. 05	. 01	. 005	. 005	
u_{41}	4	1	5	4	. 80	. 08	. 05	. 01	. 005	. 005
u_{42}^{o}	4	2	4	3	. 88	. 05	. 01	. 005	. 005	
u_{43}^{0}	4	3	3	2	. 93	. 01	. 005	. 005		

where
$a_{0}=.80, a_{1}=.08, a_{2}=.05, a_{3}=.01, a_{4}=.005, a_{5}=.005$

i

Squation

$$
\begin{aligned}
& \begin{array}{c}
\frac{\text { muearical Equation }}{.08}+\frac{.05}{.290}+\frac{.01}{(.290)^{2}}+\frac{.005}{(.290)^{3}}+\frac{.005}{(.290)^{4}}=.20 q_{i} \\
.0\left(q_{2}^{*}\right)^{3}+.01\left(q_{2}^{\circ}\right)^{2}-.005=0 \\
.05+\frac{.01}{.338}+\frac{.005}{(.338)^{2}}+\frac{.005}{(.338)^{3}}=.12 q_{i} \\
.01\left(q_{2}^{*}\right)^{2}-.005=0 \\
.01+\frac{.005}{.707}+\frac{.005}{1.707)^{2}}=.07 q_{i}
\end{array} \\
& \text { (рanutavos) e grarlas }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
c_{2.108}>1 \therefore 0_{42}^{0}\left(\theta_{2}\left(u_{42}^{0}\right)\right]^{2} \text { is not wecd. } \\
\left.4.307<\theta_{3}\left(u_{43}^{0}\right) \therefore u_{43}^{0} 1 \theta_{3}\left(u_{43}^{0}\right)\right] \text { is not uned. }
\end{array}
\end{aligned}
$$

Substituting the values from table 3 in equation A and neglecting several terms as explained in table 3, we have

$$
\begin{aligned}
& \mathbb{Q}_{1}^{O}=.851 \\
& Q_{2}^{O}=\operatorname{Min}\{.722, .721\}=.721 \\
& Q_{3}^{O}=\operatorname{Min}\{.521, .517\}=.517 \\
& Q_{4}^{O}=.282 \\
& Q_{5}^{O}=.091
\end{aligned}
$$

The results obtained are shown in table 4.

TABLE 4

i	z_{i}	Q_{i}^{0}	t_{i}	q_{0}^{i}
1	.851	.851	.851	.851
2	.642	.721	.722	.724
3	.329	.517	.521	.616
4	.183	.282	.282	.524
5	--	.091	--	.446

Thus, with the observed data, this example, if all the information available about the $q_{i}{ }^{\prime} s$ is that

$$
q_{1} \geq q_{2} \geq \cdots \geq q_{5}
$$

all we can say about the Q_{i} is that

$$
Q_{1} \geq .85, Q_{2} \geq .72, Q_{3} \geq .52, Q_{4} \geq .28, Q_{5}=.09 .
$$

Note that

$$
z_{1}=Q_{1}^{0}=t_{1}=q_{0}
$$

This is always true.

It is interesting to compare Q_{i}^{O} with the values of Q_{i} obtained under the assumption that all the $q_{i}{ }^{\prime} s$ are equal and have the value q_{0}. Under this assumption,

$$
Q_{i}=q_{0}^{i} \quad(i=1,2, \ldots, 5)
$$

In table $4, Q_{1}^{O}=q_{0}$ and Q_{2}^{O} is very close to $q_{o}^{2} \cdot Q_{3}^{0}$ and Q_{o}^{3} differ by approximately . 1 and the agreement between Q_{i}^{0} and q_{o}^{i} gets progressively worse. It will usually be true that y_{o}^{i} and Q_{i}^{O} are approximately equal for small values of i; but will differ widely as i increases.

MINIMUM AND MAXIMUM VALUE OF THE PROBABILITY THAT A PLANE WILL BE DOWNED BY A GIVEN NUMBER OF HITS CALCULATED UNDER SOME FURTHER RESTRICTIONS ON THE

PROBABILITIES $q_{1}, \ldots, q_{n}{ }^{1}$
In parts I, II, and III we merely assumed that $q_{1} \geq q_{2} \geq \ldots \geq q_{n}$ In many cases we may have some further a priori knowledge concerning the values $q_{1} \ldots \ldots, q_{n}$. We shall consider here the case when it is known a priori that $\lambda_{1} q_{j} \leq q_{j+1} \leq \lambda_{2} q_{j}$ $(j=1, \ldots, n-1)$, where λ_{1} and $\lambda_{2}\left(\lambda_{1}<\lambda_{2}<1\right)$ are known positive constants.

We shall also assume that

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{a_{j}}{\frac{j(j-1)}{\lambda_{1}}}<1-a_{0} \tag{63}
\end{equation*}
$$

Since $a_{1}+a_{2}+\ldots+a_{n}<1-a_{0}$, the inequality in equation 63 is certainly fulfilled if λ_{1} is sufficiently near 1 . It follows immediately from equations 63 and 26 that $q_{1}<1$.

CALCULATION OF THE MINIMUM VALUE OF $\mathbf{Q}_{\mathbf{i}}=1-\mathbf{P}_{\mathbf{i}}(\mathbf{i}<n)$
Let $q_{1}^{0} \ldots, q_{n}^{o}$ be the values of q_{1}, \ldots, q_{n} for which Q_{i} becomes a minimum. We shall prove the following.

Lemma 1: The relations

$$
\begin{equation*}
q_{j+1}^{0}=\lambda_{2} q_{j}^{0} \quad(j=i, \ldots, n-1) \tag{64}
\end{equation*}
$$

must hold.
Proof: Suppose that the relation in equation 64 does not hold for at least one value $j \geq i$ and we shall derive a contradiction.

[^3]Let $q_{r}^{\prime}=q_{r}^{0}$ for $r=1, \ldots, i$ and $q_{j+1}^{\prime}=\lambda_{2} q_{j}^{\prime}$ for $j=i, \ldots, n-1$. Then we have

$$
\begin{equation*}
q_{1}^{\prime} \ldots q_{i}^{\prime}=q_{1}^{o} \ldots q_{i}^{0} \text { and } \sum_{j=1}^{n} \frac{a_{j}}{q_{1}^{\prime} \ldots q_{j}^{\prime}}<1-a_{0} \tag{65}
\end{equation*}
$$

Hence, there exists a positive value $\Delta<1$ such that

$$
\sum_{j=1}^{n} \frac{a_{j}}{q_{1}^{N} \cdots q_{j}^{N}}=1-a_{o}
$$

where $q_{j}^{n}=\Delta q_{j}^{\prime}(j=1, \ldots, n)$. But then

$$
q_{1}^{n} \ldots q_{i}^{n}<q_{i}^{0} \ldots q_{1}^{1} q_{1}^{o} \ldots q_{i}^{o}
$$

in contradiction to our assumption that $q_{l}^{0} \ldots q_{i}^{0}$ is a minimum. Hence, Lemma 1 is proved.

Lemma 2: If j is the smallest integer such that $q_{k+1}^{0}=\lambda_{2} q_{k}^{o}$ for all $k \geq j$, then $q_{r}^{0}=\lambda_{1} q_{r-1}^{0}$ for $r=2,3, \ldots, j-1$.

Proof: Assume that Lemma 2 does not hold and we shall derive a contradiction. Let u be the smallest integer greater than one such that $q_{u}^{0}>\lambda_{1} q_{u-1}^{0}$. It follows from the definition of the integer u that if $u>2$, then $q_{u-1}^{0}=\lambda_{1} q_{u-2}^{0}$. From assumption 63 it follows that $q_{1}^{0}<1$. Hence, if we replace q_{u-1}^{0} by $q_{u-1}^{\prime}=(1+\varepsilon) q_{u-1}^{0}(\varepsilon>0)$, then for sufficiently small ε the inequalities $\lambda_{1} q_{r} \leq q_{r+1} \leq \lambda_{2} q_{r}(r=1, \ldots, n-1)$ will not be disturbed. Let v be the smallest integer greater than or equal to u such that $q_{v+1}^{0}<\lambda_{2} q_{v}^{0}$. Since by assumption j is the smallest integer such that $q_{k+1}^{0}=\lambda_{2} q_{k}^{o}$ for all $k \geq j$, we must have $q_{j}<\lambda_{2} q_{j-1}$. Hence, $v \leq j-1$. It is clear that replacing q_{v}^{0} by $q_{v}^{\prime}=\frac{q_{v}^{o}}{1+\varepsilon}$ we shall not disturb the inequalities $\lambda_{1} q_{r} \leq q_{r+1} \leq \lambda_{2} q_{r}(r=1, \ldots, n-1)$. Hence, if

$$
q_{u-1}^{\prime}=(1+\varepsilon) q_{u-1}^{0}, q_{v}^{\prime}=\frac{q_{v}^{0}}{1+\varepsilon} \text {, and } q_{r}^{\prime}=q_{r}^{0}
$$

for $r \neq u, \neq v$, then $\lambda_{1} q_{k}^{\prime} \leq q_{k+1}^{\prime} \leq \lambda_{2} q_{k}^{\prime}(k=1, \ldots, n-1)$ is furlfilled. Furthermore, we have

$$
q_{1}^{\prime} \ldots q_{i}^{\prime}=q_{1}^{o} \ldots q_{i}^{o} \text { and } \sum_{j=1}^{n} \frac{a_{j}}{q_{i}^{\prime} \ldots q_{j}^{\prime}}<1-a_{0} .
$$

Hence, there exists a positive $\Delta<1$ such that

$$
\sum_{j=1}^{n} \frac{a_{j}}{q_{1}^{\pi} \cdots q_{j}^{\pi}}=1-a_{0}
$$

and $q_{j}^{n}=\Delta q_{j}^{\prime}(j=1, \ldots, n)$. But then

$$
q_{1}^{n} \ldots q_{i}^{\prime \prime}<q_{i}^{\prime} \ldots q_{i}^{\prime}=q_{1}^{o} \ldots q_{i}^{o}
$$

in contradiction to the assumption that $q_{1}^{0} \ldots q_{i}^{o}$ is a minimum. Hence, Lemma 2 is proved.

Let $E_{i r}(r=1, \ldots, i-1)$ be the minimum value of Q_{i} under the restriction that $q_{j+1}=\lambda_{2} q_{j}$ for $j=r+1, \ldots, n-1$ and $q_{j+1}=\lambda_{1} q_{j}$ for $j=1, \ldots, r-1$. From Lemma 1 and 2 it follows that the minimum of Q_{i} is equal to the smallest of the i - 1 values $E_{i l} \ldots \ldots E_{i, i-1}$. The computation of the exact value of $E_{i r}$ can be carried out in a way similar to the computation of $M_{i r}$ described in part II. Since these computations are involved if n is large, we shall discuss here an approximation method.

Let $L_{i r}^{*}(r=1, \ldots, i-1)$ be the value of Q_{i} if $q_{j+1}=\lambda_{2} q_{j}$ for $j=r+1, \ldots, n-1$ and $q_{j+1}=\lambda_{1} q_{j}$ for $j=1, \ldots, r$. Furthermore, let $E_{i o}^{\star}$ be the value of Q_{i} if $q_{j+1}=\lambda_{2} q_{j}(j=1, \ldots, n-1)$. Then, if n is large, the minimum of $E_{i, r-1}^{*}$ and $E_{i r}^{*}$ will be nearly equal to $E_{i r}$. Hence, we obtain an approximation to the minimum of Q_{i} by taking the minimum of the i numbers $\left.E_{i o}^{*} E_{i}^{*}\right]^{\prime} \ldots, E_{i, i-1}^{*}$ The quantity $E_{i r}$ can be computed as follows. Let g_{r} be the positive root in q of the equation

$$
\begin{gather*}
\sum_{j=1}^{r+1} \frac{a_{j}}{\frac{j(j-1)}{\lambda_{1}} q^{j}}+\sum_{j=1}^{n-r-1} \frac{a_{r+1+j}}{\frac{r(r+1)}{\lambda_{1}}+r j \frac{j(j+1)}{\lambda_{2}} q^{r+1+j}}=1-a_{0} \tag{66}\\
\quad(r=0,1, \ldots, i-1) .
\end{gather*}
$$

Then

$$
\begin{equation*}
E_{i r}^{*}=\lambda_{1}^{\frac{r(r+1)}{2}+r(i-r-1)} \quad \lambda_{2}^{\frac{(i-r)(i-r-1)}{2}} g_{r}^{i} . \tag{67}
\end{equation*}
$$

MINIMUM OF Q_{n}
Let $q_{1}^{0}, \ldots, q_{n}^{\circ}$ be values of q_{1}, \ldots, q_{n} for which Q_{n} becomes a minimum. We shall prove that $q_{j+1}^{0}=\lambda_{1} q_{j}^{o}(j=1, \ldots, n-1)$. Assume that there exists a value $j<n$ such that $q_{j+1}^{0}>\lambda_{1} q_{j}^{o}$
and we shall derive a contradiction. Let u be the smallest integer such that $q_{u+1}^{0}>\lambda_{1} q_{u}^{0}$ and let v be the largest integer such that $q_{v+1}^{o}>\lambda_{1} q_{v}^{o}$. Let $q_{u}^{\prime}=(1+\varepsilon) q_{u}^{o}(\varepsilon>0), q_{v+1}^{0}={\frac{q_{v+1}^{0}}{1+\varepsilon}}_{1}^{o}$ and $q_{j}^{\prime}=q_{j}^{0}$ for $j \neq u, \neq v+1$. Then for sufficiently small ε we shall have $\lambda_{1} q_{r}^{\prime} \leq q_{r+1}^{\prime} \leq \lambda_{2} q_{r}^{\prime}(r=1, \ldots, n-1)$.
Furthermore, we have

$$
q_{1} \ldots q_{n}^{\prime}=q_{1}^{o} \ldots q_{n}^{o} \text { and } \sum_{j=1}^{n} \frac{a_{j}}{q_{1}^{\prime} \cdots q_{j}^{\prime}}<1-a_{o} .
$$

Hence, there exists a positive $\Delta<1$ such that $q_{j}^{n}=q_{j}^{\prime}$ ($j=1, \ldots, n$) and

$$
\sum_{j=1}^{n} \frac{a_{j}}{q_{1}^{n} \cdots q_{j}^{n}}=1-a_{0}
$$

But then $q_{1}^{n} \ldots q_{n}^{n}<q_{1}^{0} \ldots q_{n}^{o}$ in contradiction to the assumption that $q_{1}^{0} \ldots q_{n}^{o}$ is a minimum. Hence, our statement is proved.
If q is the root of the equation

$$
\sum_{j=1}^{n} \frac{a_{j}}{\frac{j(j-1)}{\lambda_{1}{ }^{2}} q^{j}}=1-a_{0}
$$

then the minimum of Q_{n} is equal to $\lambda_{1} \frac{n(n-1)}{2} q^{n}$.
MAXIMUM OF $Q_{i}(i<n)$
Let $q_{1}^{*} \ldots \ldots q_{n}^{*}$ be values of $q_{1} \ldots, q_{n}$ for which Q_{i} becomes a maximum. We shall prove the following:
Lemma 3: The relations

$$
\begin{equation*}
q_{j+1}^{*}=\lambda_{1} q_{j}^{*} \quad\{j=i, \ldots, n-1\} \tag{68}
\end{equation*}
$$

must hold.
Proof: Assume that there exists an integer $j \geq i$ such that $q_{j+1}^{*}>\lambda_{1} q_{j}^{*}$, and we shall derive a contradiction. Let $q_{r}^{\prime}=q_{r}^{*}$ for $r=1, \ldots, i$ and let $q_{j+1}^{j}=\lambda_{1} q_{j}^{\prime}(j=i, \ldots, n-1)$. Then

$$
q_{i}^{\prime} \ldots q_{i}^{\prime}=q_{1}^{*} \ldots q_{i}^{*} \text { and } \sum_{j=1}^{n} \frac{a_{j}}{q_{i}^{\prime} \cdots q_{j}^{\prime}}>1-a_{o} .
$$

Hence, there exists a value $\Delta>1$ such that

$$
\sum_{j=1}^{n} \frac{a_{j}}{q_{1}^{n} \cdots q_{j}^{n}}=1-a_{0}
$$

where $q_{j}^{n}=\Delta q_{j}^{\prime}(j=1, \ldots, n)$. But then $q_{1}^{n} \ldots q_{i}^{n}>q_{1}^{*} \ldots q_{i}^{*}$ in contradiction to the assumption that $q_{1}^{*} \ldots q_{i}^{*}$ is a maximum. Hence, Lemma 3 is proved.

Lemma 4: If for some $j<i$ we have $q_{j+1}^{*}>\lambda_{1} q_{j}^{*}$, then $q_{k+1}^{*}=\lambda_{2} G_{k}^{*}$ for $k=1, \ldots, j-1$.

Proof: Assume that $q_{j+1}^{*}>\lambda_{1} q_{j}^{*}$ for some $j<i$ and that there exists an integer $k \leq j-1$ such that $q_{k+1}^{*}<\lambda_{2} q_{k}^{*}$. We shall derive a contradiction from this assumption. Let u be the smallest integer such that $q_{u+1}^{*}<\lambda_{2} q_{u}^{*}$. Furthermore, let v be the smallest integer greater than or equal to $u+l$ such that $q_{v+1}^{*}>\lambda_{1} q_{v}^{*}$. It is clear that $v \leq j$. Let $q_{u}^{\prime}=\frac{q_{u}^{*}}{1+\varepsilon}(\varepsilon>0)$, $q_{v}^{\prime}=(1+\varepsilon) q_{v}^{*}$, and $q_{r}^{\prime}=q_{r}^{*}$ for $r \neq u, \neq v$. Then for suficiently small ε we have

$$
\lambda_{1} q_{j}^{\prime} \leq q_{j+1}^{\prime} \leq \lambda_{2} q_{j}^{\prime} \quad(j=1, \ldots, n-1) .
$$

Furthermore, we have

$$
q_{i}^{\prime} \ldots q_{i}^{\prime}=q_{1}^{*} \ldots q_{i}^{*} \text { and } \sum_{j=1}^{n} \frac{a_{j}}{q_{1}^{\prime} \cdots q_{j}^{\prime}}>1-a_{o} .
$$

Hence, there exists a value $\Delta>1$ such that

$$
\sum_{j=1}^{n} \frac{a_{j}}{q_{1}^{W} \cdots q_{j}^{W}}=1-a_{o},
$$

where $q_{j}^{n}=\Delta q_{j}^{\prime}(j=i, \ldots, n)$. But then $q_{1}^{\prime \prime} \ldots q_{i}^{n}>q_{1}^{*} \ldots q_{i}^{n}$ in contradiction to the assumption that $q_{1}^{*} \ldots q_{\dot{i}}^{*}$ is a maximum.

Let $D_{i r}(r=1, \ldots, i-1)$ be the maximum of Q_{i} under the restrictimon that $q_{j+1}=\lambda_{1} q_{j}$ for $j=r+1, \ldots, n-1$ and $q_{j+1}=\lambda_{2} q_{j}$ for $j=1, \ldots, r-1$. From Lemma 3 and 4 it follows that the maximum of Q_{i} is equal to the maximum of the i - 1 values $D_{i 1} \ldots \ldots, D_{i, i-1}$ The computation of the exact value of $D_{i r}$ can be carried out in a way similar to the computation of $M_{i r}$ in part II. Since these computations are involved if n is large, we shall discuss here only an approximation method.

Let $D_{i r}^{*}(x=1, \ldots, i-1)$ be the value of Q_{i} if $q_{j+1}=\lambda_{1} q_{j}$ for $j=r+1, \ldots, n-1$ and $q_{j+1}=\lambda_{2} q_{j}$ for $j=1, \ldots, r$. Furthermore, let $D_{i o}^{*}$ be the value of Q_{i} if $q_{j+1}=\lambda_{1} q_{j}(j=1, \ldots, n-1)$. Then, if λ_{1} is not much below one, the maximum of $D_{i r}^{*}$ and $D_{i}^{*}, r-1$ ($r=1, \ldots, i-1$) will be nearly equal to $D_{i r}$. Hence, we obtain an approximation to the maximum value of Q_{i} by taking the largest of the i values $D_{i o}^{*}, \ldots, D_{i, i-1}^{*}$.

The value of $D_{i r}^{*}$ can be determined as follows. Let g_{r} be the root in q of the equation

$$
\sum_{j=1}^{r+1} \frac{a_{j}}{\frac{j(j-1)}{2} \cdot q^{j}}+\sum_{j=1}^{n-r-1} \frac{a_{r+1+j}}{\frac{r(r+1)}{\lambda_{2}}+j r \frac{j(j+1)}{\lambda_{1}}}=1-a_{0}
$$

Then

$$
D_{i r}^{*}=\frac{\frac{r(r+1)}{2}+(i-r-1)}{\lambda_{2}} \frac{(i-r-1)(i-r)}{\lambda_{1}} g_{r}^{i}
$$

MAXIMUM OF Ω_{n}
We shall prove that the maximum of Q_{n} is reached when $q_{j+1}=\lambda_{2} q_{j}$ $(j=1, \ldots, n-1)$. Denote by $q_{1}^{*} \ldots q_{n}^{*}$ the values of $q_{1} \ldots q_{n}$ for which Q_{n} becomes a maximum. We shall assume that there exists a value $j<n$ such that $q_{j+1}^{*}<\lambda_{2} q_{j}^{*}$ and we shall derive a contradiction from this assumption. Let u be the smallest and v be the largest integer such that $q_{u+1}^{*}<\lambda_{2} q_{u}^{*}$ and $q_{v+1}^{*}<\lambda_{2} q_{v}^{*}$.
Let $q_{u}^{\prime}=\frac{q_{u}^{*}}{1+\varepsilon}(\varepsilon>0), q_{v+1}^{\prime}=(1+\varepsilon) q_{v+1}^{*}$, and $q_{r}^{\prime}=q_{r}^{*}$ for $r \neq u, \neq v+1$. Then for sufficiently small ε we shall have $\lambda_{1} q_{r}^{\prime} \leq q_{r+1}^{\prime} \leq \lambda_{2} q_{r}^{\prime}(r=1, \ldots, n-1)$.

Furthermore, we have

$$
q_{1}^{\prime} \ldots q_{n}^{\prime}=q_{1}^{*} \ldots q_{n}^{\star} \text { and } \sum_{j=1}^{n} \frac{q_{j}}{q_{1}^{\prime} \cdots q_{j}^{\prime}}>1-a_{o}
$$

Hence, there exists a value $\Delta>1$ such that $q_{j}^{\prime \prime}=\Delta q_{j}^{\prime}$ $(j=1, \ldots, n)$ and

$$
\sum_{j=1}^{n} \frac{a_{j}}{q_{1}^{n} \cdots q_{j}^{n}}=1-a_{o}
$$

But then $q_{1}^{\prime \prime} \ldots q_{n}^{\prime \prime}>q_{1}^{*} \ldots q_{n}^{*}$ in contradiction to the assumption that $q_{1}^{*} \ldots q_{n}^{*}$ is a maximum. Hence, our statement is proved.

The maximum of Q_{n} is equal to

$$
\frac{n(n-1)}{\lambda_{2}} q^{n}
$$

where q is the root of the equation

$$
\sum_{j=1}^{n} \frac{a_{j}}{\frac{j(j-1)}{\lambda_{2}} q^{j}}=1-a_{o}
$$

NUMERICAL EXAMPLE

The same notation will be used as in the previous numerical examples. The assumption of no sampling error, which is common to all the previous examples, is retained. In part I it was assumed that the q_{i}, the probability of a plane surviving the i-th hit, knowing that the first $i-1$ hits did not down the plane, were equal for all $i\left(q_{1}=q_{2}=\ldots=q_{n}=q_{o}(s a y)\right)$. Under this assumption, the exact value of the probability of a plane surviving i hits is given by

$$
Q_{i}=q_{o}^{i} .
$$

In part $I I I$ it was assumed that $q_{1} \geq q_{2} \geq \cdots \geq q_{n}$. Since no lower limit is assumed in the decrease from q_{i} to q_{i+1}, only a
lower bound to the Q_{i} could be obtained. The assumption here is that the decrease from q_{i} to q_{i+1} lies between definite limits. Therefore, both an upper and lower bound for the Q_{i} can be obtained.

We assume that

$$
\lambda_{1} q_{i} \leq q_{i+1} \leq \lambda_{2} q_{i}
$$

where $\lambda_{1}<\lambda_{2}<1$ and such that the expression

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{a_{j}}{\frac{j(j-1)}{\lambda_{1}}}<1-a_{0} \tag{A}
\end{equation*}
$$

is satisfied.

The exact solution is tedious but close approximations to the upper and lower bounds to the Q_{i} for $i<n$ can be obtained by the following procedure. The set of hypothetical data used is

$$
\begin{array}{ll}
a_{0}=.780 & a_{3}=.010 \\
a_{1}=.070 & a_{4}=.005 \\
a_{2}=.040 & a_{5}=.005 \\
\lambda_{1}=.80 & \lambda_{2}=.90
\end{array}
$$

Condition A is satisfied, since by substitution

$$
.07+\frac{.04}{.8}+\frac{.01}{(.8)^{3}}+\frac{.005}{(.8)^{6}}+\frac{.005}{(.8)^{10}}=.20529
$$

which is less than

$$
1-a_{0}=.22
$$

THE LOWER LIMIT OF Q_{i}
The first step is to solve equation 66. This involves the solution of the following four equations for positive roots g_{0} 。 g_{1}, g_{2}, g_{3}.

$$
\begin{align*}
& \frac{a_{1}}{q}+\frac{a_{2}}{\lambda_{2} q^{2}}+\frac{a_{3}}{\lambda_{2}^{3} q^{3}}+\frac{a_{4}}{\lambda_{2}^{6} q^{4}}+\frac{a_{5}}{\lambda_{2}^{10} q^{5}}=1-a_{0}=.22 \\
& \frac{.07}{q}+\frac{.04}{.9 q^{2}}+\frac{.01}{.729 q^{3}}+\frac{.005}{.531441 q^{4}}+\frac{.005}{.348678 q^{5}}=.22 \\
& .22 q^{5}-.07 q^{4}-.044444 q^{3}-.013717 q^{2}-.009408 q-.014340=0 \\
& g_{0}=.844 . \\
& \frac{a_{1}}{q}+\frac{a_{2}}{\lambda_{1} q^{2}}+\frac{a_{3}}{\lambda_{1}^{2} \lambda_{2} q^{3}}+\frac{a_{4}}{\lambda_{1}^{3} \lambda_{2}^{3} q^{4}}+\frac{a_{5}}{\lambda_{1}^{4} \lambda_{2}^{6} q^{5}}=1-a_{0} \tag{C}\\
& \frac{.07}{q}+\frac{.04}{.0 q^{2}}+\frac{.01}{(.64)(.9) q^{3}}+\frac{.005}{(.512)(.729) q^{4}}+\frac{.005}{(.4096)(.531441) q^{5}}=.22 \\
& .22 q^{5}-.07 q^{4}-.05 q^{3}-.017361 q^{2}-.013396 q-.022970=0 \\
& g_{1}=.904 . \\
& \frac{a_{1}}{q}+\frac{a_{2}}{\lambda_{1} q^{2}}+\frac{a_{3}}{\lambda_{1}^{3} q^{3}}+\frac{a_{4}}{\lambda_{1}^{5} \lambda_{2} q^{4}}+\frac{a_{5}}{\lambda_{1}^{7} \lambda_{2}^{3} q^{5}}=1-a_{0} \tag{D}\\
& \frac{.07}{q}+\frac{.04}{.8 q^{2}}+\frac{.01}{.512 q^{3}}+\frac{.005}{(.32768)(.9) q^{4}}+\frac{.005}{(.209715)(.729) q^{5}}=.22 \\
& .22 q^{5}-.07 q^{4}-.05 q^{3}-.019531 q^{2}-.016954 q-.032705=0 \\
& g_{2}=.941 .
\end{align*}
$$

$$
\begin{aligned}
& \frac{a_{1}}{q}+\frac{a_{2}}{\lambda_{1} q^{2}}+\frac{a_{3}}{\lambda_{1}^{3} q^{3}}+\frac{a_{4}}{\lambda_{1}^{6} q^{4}}+\frac{a_{5}}{\lambda_{1}^{9} \lambda_{2} q^{5}}=1-a_{0} \\
& \frac{.07}{q}+\frac{.04}{.8 q^{2}}+\frac{.01}{.512 q^{3}}+\frac{.005}{.262144 q^{4}}+\frac{.005}{(.134218)(.9) q^{5}}=.22 \\
& .22 q^{5}-.07 q^{4}-.05 q^{3}-.019531 q^{2}-.019073 q-.041392=0 \\
& g_{3}=.964
\end{aligned}
$$

Next, calculate the i numbers defined by

$$
E_{i r}^{*}=\lambda_{1}^{a(i, r)} \lambda_{2}^{b(i, r)} g_{r}^{i} \quad(r=0,1, \ldots, i-1),
$$

where

$$
\begin{aligned}
& a(i, r)=\frac{r(r+1)}{2}+r(i-r-1) \\
& b(i, r)=\frac{(i-r)(i-r-1)}{2} \\
& g_{0}=.844 \\
& g_{1}=.904 \\
& g_{2}=.941 \\
& g_{3}=.964
\end{aligned}
$$

The minimum of the $E_{i r}^{*}(r=0, \ldots, i-1)$ will be the lower limit of Q_{i}. The computations are given in table 5.

TABLE 5
COMPUTATION OF LOWER LIMIT OF Q_{i}

$\operatorname{Min}\left[\mathrm{E}_{20^{\star}} \mathrm{E}_{21}^{\star}\right]=.641$

Q_{3}	3	0	0	3	.844	.601	.438
	3	1	2	1	.904	.739	.426
	3	2	3	0	.941	.833	.427

$\operatorname{Min}\left[\mathrm{E}_{30}^{*}, \mathrm{E}_{31}^{*}, \mathrm{E}_{32}^{*}\right]=.426$

Q_{4}	4	0	0	6	.844	.507	.270
	4	1	3	3	.904	.668	.249
	4	2	5	1	.941	.784	.231
	4	3	6	0	.964	.864	.226

$\operatorname{Min}\left[E_{40}^{*}, E_{41}^{*}, E_{42}^{*}, E_{43}^{*}\right]=.226$

The lower limit of Q_{5} can be obtained directly. The lower limit Of

$$
Q_{5}=\lambda_{1}^{10} q^{5}
$$

where q is the positive root of

$$
\begin{gathered}
\frac{a_{1}}{q}+\frac{a_{2}}{\lambda_{1} q^{2}}+\frac{a_{3}}{\lambda_{1}^{3} q^{3}}+\frac{a_{4}}{\lambda_{1}^{6} q^{4}}+\frac{a_{5}}{\lambda_{1}^{10} q^{5}}=1-a_{0} \\
\frac{.07}{q}+\frac{.04}{.8 q^{2}}+\frac{.01}{.512 q^{3}}+\frac{.005}{.262144 q^{4}}+\frac{.005}{.107374 q^{5}}=.22 \\
q=.974
\end{gathered}
$$

The lower limit of

$$
Q_{5}=(.8)^{10}(.974)^{5}=.094
$$

THE UPPER LIMIT OF Q_{i}
The computations for the upper limit of Q_{1} are entirely analogous to the computations of the lower limit. First, we solve the equations of part IV, which for this example are the following:

$$
\begin{gathered}
\frac{a_{1}}{q}+\frac{a_{2}}{\lambda_{1} q^{2}}+\frac{a_{3}}{\lambda_{1}^{3} q^{3}}+\frac{a_{4}}{\lambda_{1}^{6} q^{4}}+\frac{a_{5}}{\lambda_{1}^{10} q^{5}}=1-a_{0} \\
\frac{.07}{q}+\frac{.04}{.8 q^{2}}+\frac{.01}{.512 q^{3}}+\frac{.005}{.262144 q^{4}}+\frac{.005}{.107374 q^{5}}=.22 \\
.22 q^{5}-.07 q^{4}-.05 q^{3}-.019531 q^{2}-.019073 q-.046566=0 \\
g_{0}^{*}=.974
\end{gathered}
$$

$$
\begin{aligned}
& \frac{a_{1}}{q}+\frac{a_{2}}{\lambda_{2} q^{2}}+\frac{a_{3}}{\lambda_{2}^{2} \lambda_{1} q^{3}}+\frac{a_{4}}{\lambda_{2}^{3} \lambda_{1}^{3} q^{4}}+\frac{a_{5}}{\lambda_{2}^{4} \lambda_{1}^{6} q^{5}}=1-a_{0} \\
& \frac{.07}{q}+\frac{.04}{.9 q^{2}}+\frac{.01}{(.81)(.8) q^{3}}+\frac{.005}{(.729)(.512) q^{4}}+\frac{.005}{(.6561)(.262144) q^{5}}=.22 \\
& .22 q^{5}-.07 q^{4}-.044444 q^{3}-.015432 q^{2}-.013396 q-.029071=0 \\
& g_{1}^{*}=.905 \\
& \frac{a_{1}}{q}+\frac{a_{2}}{\lambda_{2} q^{2}}+\frac{a_{3}}{\lambda_{2}^{3} q^{3}}+\frac{a_{4}}{\lambda_{2}^{5} \lambda_{1} q^{4}}+\frac{a_{5}}{\lambda_{2}^{3} \lambda_{1}^{7} q^{5}}=1-a_{0} \\
& \frac{.07}{q}+\frac{.04}{.9 q^{2}}+\frac{.01}{.729 q^{3}}+\frac{.005}{(.59049)(.8) q^{4}}+\frac{.005}{(.512)(.478297) q^{5}}=.22 \\
& .22 q^{5}-.07 q^{4}-.044444 q^{3}-.013717 q^{2}-.010584 q-.020417=0 \\
& g_{2}^{*}=.869 \\
& \frac{a_{1}}{q}+\frac{a_{2}}{\lambda_{2} q^{2}}+\frac{a_{3}}{\lambda_{2}^{3} q^{3}}+\frac{a_{4}}{\lambda_{2}^{6} q^{4}}+\frac{a_{5}}{\lambda_{2}^{9} \lambda_{1} q^{5}}=1-a_{0} \\
& \frac{.07}{q}+\frac{.04}{.9 q^{2}}+\frac{.01}{.729 q^{3}}+\frac{.005}{.531441 q^{4}}+\frac{.005}{(.387420)(.8) q^{5}}=.22 \\
& .22 q^{5}-.07 q^{4}-.044444 q^{3}-.013717 q^{2}-.009408 q-.016132=0 \\
& 9_{3}^{*}=.851
\end{aligned}
$$

Next, calculate the i numbers defined by

$$
D_{i r}^{*}=\lambda_{2}^{a(i, r)} \lambda_{1}^{b(i, r)} g_{r}^{* i} \quad(r=0,1, \ldots, i-1),
$$

where

$$
\begin{aligned}
& a(i, r)=\frac{r(r+1)}{2}+r(i-r-1) \\
& b(i, r)=\frac{(i-r)(i-r-1)}{2} \\
& g_{0}^{\star}=.974 \\
& g_{1}^{\star}=.905 \\
& g_{2}^{\star}=.869 \\
& g_{3}^{\star}=.851
\end{aligned}
$$

The maximum of the $D_{i r}^{*}(r=0, \ldots, i-1)$ will be the upper limit of Q_{i}. The computations are given in table 6.

The upper limit of Q_{5} can be obtained directly. The limit of

$$
Q_{5}=\lambda_{2}^{10} q^{* 5}
$$

where q^{*} is the positive root of

$$
\begin{aligned}
& \frac{a_{1}}{q}+\frac{a_{2}}{\lambda_{2} q^{2}}+\frac{a_{3}}{\lambda_{2}^{3} q^{3}}+\frac{a_{4}}{\lambda_{2}^{6} q^{4}}+\frac{a_{5}}{\lambda_{2}^{10} q^{5}}=1-a_{0} \\
& \frac{.07}{q}+\frac{.04}{.9 q^{2}}+\frac{.01}{.729 q^{3}}+\frac{.005}{.531441 q^{4}}+\frac{.005}{.348678 q^{5}}=.22 \\
& q^{*}=.844 .
\end{aligned}
$$

TABLE 6
COMPUTATION OF UPPER LIMIT OF Q_{i}

Q_{i}	i	r	$a(i, r)$	$b(i, r)$	g_{r}^{*}	q_{r}^{*}	$D_{i r}^{*}$
Q_{1}	1	0	0	0	.974	.974	.974

$\operatorname{Max}\left[D_{10}^{*}\right]=.974$

Q_{2}	2	0	0	1	.974	.949	.759
	2	1	1	0	.905	.819	.737

$\operatorname{Max}\left[\mathrm{D}_{20}^{*} \mathrm{O}_{2}^{*} \mathrm{D}_{21}^{*}\right]=.759$

Q_{3}	3	0	0	3	.974	.924	.473
	3	1	2	1	.905	.741	.480
	3	2	3	0	.869	.656	.478

$\operatorname{Max}\left[D_{30}^{*}, D_{31}^{*}, D_{32}^{*}\right]=.480$

Q_{4}	4	0	0	6	.974	.890	.236
	4	1	3	3	.905	.671	.250
	4	2	5	1	.869	.570	.269
4	3	6	0	.851	.524	.279	

$\operatorname{Max}\left[D_{40}^{*}, D_{41}^{*}, D_{42}^{*} D_{43}^{*}\right]=.279$

The upper limit of

$$
Q_{5}=(.9)^{10}(.844)^{5}=.149
$$

Sumarizing the results, the upper and lower limits of the probability of a plane surviving i hits are given by
$.844<Q_{1}<.974$
$.641<Q_{2}<.759$
$.426<Q_{3}<.480$
$.226<Q_{4}<.279$
$.094<Q_{5}<.149$

SUBDIVISION OF THE PLANE INTO SEVERAL EQUI-VULNERABILITY AREASl

In parts I through IV we have considered the probability that a plane will be downed by a hit without any reference to the part of the plane that receives the hit. Undoubtedly, the probability of downing a plane by a hit will depend considerably upon the part that receives the hit. The purpose of this memorandum is to extend the previous results to the more general case where the probability of downing a plane by a hit depends on the part of the plane sustaining the hit. To carry out this generalization of the theory, we shall subdivide the plane into k equivulnerability areas $A_{1} \ldots \ldots A_{k}$. For any set of non-negative integers i_{1}, \ldots, i_{k} let $P\left(i_{1}, \ldots, i_{k}\right)$ be the probability that a plane will be downed if the area A_{1} receives i_{1} hits, the area A_{2} receives i_{2} hits, and the area A_{k} receives i_{k} hits. Let $Q\left(i_{1}, \ldots, i_{k}\right)=1-P\left(i_{1} \ldots \ldots, i_{k}\right)$. Then $Q\left(i_{1} \ldots \ldots, i_{k}\right)$ is the probability that the plane will not be downed if the areas A_{1}, \ldots, A_{k} receive i_{1}, \ldots, i_{k} hits, respectively. We shall assume that $Q\left(i_{1} \ldots \ldots i_{k}\right)$ is a symmetric function of the arguments $i_{1} \ldots \ldots, i_{k}$.

To estimate the value of $Q\left(i_{1} \ldots \ldots i_{k}\right)$ from the damage to returning planes, we need to know the probability distribution of hits over the k areas $A_{1} \ldots . . A_{k}$ knowing merely the total number of hits received. In other words, for any positive integer i we need to know the conditional probability $\gamma_{l}\left(i_{1} \ldots \ldots i_{k}\right)$ that the areas $A_{1} \ldots . . A_{k}$ will receive $i_{1} \ldots . . i_{k}$ hits, respectively, knowing that the total number of hits is i. Of course, $\gamma_{i}\left(i_{1} \ldots \ldots, i_{k}\right)$ is defined only for values i_{1}, \ldots, i_{k} for which $i_{1}+\ldots+i_{k}=i$. To avoid confusion, it should be emphasized that the probability $\gamma_{i}\left(i_{1} \ldots \ldots, i_{k}\right)$ is determined under the

[^4]assumption that dummy bullets are used. It can easily be shown that it is impossible to estimate both $\gamma_{i}\left(i_{1} \ldots \ldots, i_{k}\right)$ and $Q\left(i_{1} \ldots . . i_{k}\right)$ from the damage to returning planes only. To see this, assume that k is equal to 2 and all hits on the returning planes were located in the area A_{1}. This fact could be explained in two different ways. One explanation could be that
$Y_{i}\left(i_{1}, i_{2}\right)=0$ for $i_{2}>0$. The other possible explanation would be that $Q\left(i_{1}, i_{2}\right)=0$ for $i_{2}>0$. Hence, it is impossible to estimate both $Y_{i}\left(i_{1}, i_{2}\right)$ and $Q\left(i_{1}, i_{2}\right)$. Fortunately, $Y_{i}\left(i_{1}, \ldots, i_{k}\right)$ can be assumed to be known a priori (on the basis of the dispersion of the guns), or can be established experimentally by firing with dummy bullets and recording the hits scored. Thus, in what follows we shall assume that $\gamma_{i}\left(i_{1} \ldots \ldots i_{k}\right)$ is known for any set of integers $i_{1} \ldots \ldots i_{k}$.

Clearly, the probability that i hits will not down the plane is given by

$$
\begin{equation*}
Q_{i}=\sum_{i_{k}} \ldots \sum_{i_{1}} \gamma_{i}\left(i_{1} \ldots \ldots, i_{k}\right) Q\left(i_{1} \ldots, i_{k}\right) \tag{69}
\end{equation*}
$$

where the summation is to be taken over all non-negative integers $i_{1} \ldots \ldots i_{k}$ for which $i_{1}+\ldots+i_{k}=i$.

Let $\delta_{i}\left(i_{1} \ldots \ldots i_{k}\right)$ be the conditional probability that the areas $A_{1} \ldots . ., A_{k}$ received $i_{1} \ldots \ldots i_{k}$ hits, respectively, knowing that the plane received i hits and that the plane was not downed. Then we have

$$
\begin{equation*}
\delta_{i}\left(i_{1} \ldots \ldots i_{k}\right)=\frac{\gamma_{i}\left(i_{1} \ldots \ldots i_{k}\right) Q\left(i_{1} \ldots \ldots i_{k}\right)}{Q_{i}} \tag{70}
\end{equation*}
$$

Of course, $\delta_{i}\left(i_{1} \ldots \ldots, i_{k}\right)$ is defined only for non-negative integers $i_{1} \ldots \ldots i_{k}$ for which $i_{1}+\ldots+i_{k}=i$.

The probability $\delta_{i}\left(i_{1}, \ldots, i_{k}\right)$ can be determined from the distribution of hits on returning planes. In fact, let $a\left(i_{1}, \ldots . i_{k}\right)$ be the proportion of planes (out of the total number of planes participating in combat) that returned with i_{1} hits on area A_{1}. i_{2} hits on area A_{2}, \ldots, and i_{k} hits on area A_{k}. Then we obviously have

$$
\begin{equation*}
\delta_{i}\left(i_{1}, \ldots, i_{k}\right)=\frac{a\left(i_{1}, \ldots, i_{k}\right)}{a_{i}} \tag{71}
\end{equation*}
$$

From equations 70 and 71, we obtain

$$
\begin{equation*}
Q\left(i_{1}, \ldots, i_{k}\right)=\frac{Q_{i} a\left(i_{1}, \ldots, i_{k}\right)}{a_{i} \gamma_{i}\left(i_{1} \ldots, i_{k}\right)} \quad\left(i=i_{1}+\ldots+i_{k}\right) \tag{72}
\end{equation*}
$$

Since Q_{i} can be estimated by methods described in parts I through IV, estimates of $Q\left(i_{1}, \ldots, i_{k}\right)$ can be obtained from equation 72 .

According to equation 29, the probabilities $Q_{1} \ldots, Q_{n}$ satisfy the equation

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{a_{j}}{Q_{j}}=1-a_{o} \tag{73}
\end{equation*}
$$

We have assumed that $q_{1} \geq q_{2} \geq \cdots \geq q_{n}$. This is equivalent to stating that

$$
\begin{equation*}
\frac{Q_{i+1}}{Q_{i}} \leq \frac{Q_{j+1}}{Q_{j}} \quad \text { for } j \leq i \tag{74}
\end{equation*}
$$

A similar assumption can be made with respect to the probabilities $Q\left(i_{1}, \ldots, i_{k}\right)$. In fact, the conditional probability that an additional hit on the area A_{r} will not down the plane knowing that the areas A_{1}, \ldots, A_{k} have already sustained $i_{1} \ldots . . i_{k}$ hits, respectively, is given by

$$
\begin{equation*}
\frac{Q\left(i_{1}, \ldots, i_{r-1}, i_{r}+1, i_{r+1}, \ldots, i_{k}\right)}{Q\left(i_{1} \ldots, i_{r-1}{ }^{i_{r}}{ }^{i_{r+1}, \ldots, i_{k}}\right)} \tag{75}
\end{equation*}
$$

Obviously, we can assume that if

$$
j_{1} \leq i_{1}, j_{2} \leq i_{2} \cdots j_{k} \leq i_{k}
$$

then
for $r=1,2, \ldots, k$.

Hence, the possible values of Q_{1}, \ldots, Q_{n} are restricted to those for which equation 73 is fulfilled and for which the quantities $Q\left(i_{1} \ldots . ., i_{k}\right)$ computed from equation 72 are less than or equal to one and satisfy the inequalities of equation 76. It should be remarked that the inequalities of equation 76 do not follow from the inequalities of equation 74. From equation 72 and the inequality $Q\left(i_{1}, \ldots, i_{k}\right) \leq 1$, it follows that

$$
\begin{equation*}
Q_{i} \leq \frac{a_{i} \gamma_{i}\left(i_{1} \ldots, i_{k}\right)}{a\left(i_{1} \ldots i_{k}\right)} \tag{77}
\end{equation*}
$$

If the right-hand side expression in equation 77 happens to be less than one, then equation 77 imposes a restriction on Q_{i}. Since

$$
\sum_{i_{k}} \ldots \sum_{i_{1}} \frac{a\left(i_{1}, \ldots, i_{k}\right)}{a_{i}}=\sum_{i_{k}} \ldots \sum_{i_{1}} r_{i}\left(i_{1} \ldots, i_{k}\right)=1
$$

(the summation is taken over all values i_{1}, \ldots, i_{k} for which $\left.i_{1}+\ldots+i_{k}=i\right)$, we must have either

$$
\frac{a_{i} \gamma_{i}\left(i_{1}, \ldots, i_{k}\right)}{a\left(i_{1} \ldots, i_{k}\right)}=1
$$

for all values $i_{1} \ldots \ldots i_{k}$ for which $i_{1}+\ldots+i_{k}=i$, or

$$
\frac{a_{i} \gamma_{i}\left(i_{1}, \ldots, i_{k}\right)}{a\left(i_{1}, \ldots, i_{k}\right)}<1
$$

at least for one set of values i_{1}, \ldots, i_{k} satisfying the condition $i_{1}+\ldots+i_{k}=i$. Hence, equation 77 gives an upper bound for Q_{i} whenever there exists a set of integers $i_{1} \ldots, i_{k}$ such that $i_{1}+\ldots+i_{k}=i$ and

$$
\frac{a\left(i_{1} \ldots, i_{k}\right)}{a_{i}} \neq \gamma_{i}\left(i_{1}, \ldots, i_{k}\right)
$$

It is of interest to investigate the case of independence, i.e., the case when the probability that an additional hit will not down the plane does not depend on the number and distribution of hits already received. Denote by $q(i)$ the probability that a single hit on the area A_{i} will not down the plane. Then under the assumption of independence we have

$$
\begin{equation*}
Q\left(i_{1}, \ldots, i_{k}\right)=[q(1)]^{i_{1}}[q(2)]^{i_{2}} \ldots[q(k)]^{i_{k}} . \tag{78}
\end{equation*}
$$

Hence, the only unknown probabilities are $q(1), \ldots, q(k)$.
Let $\gamma(i)$ be the conditional probability that the area A_{i} is hit knowing that the plane received exactly one hit. Obviously

$$
\begin{equation*}
\gamma_{i}\left(i_{1}, \ldots, i_{k}\right)=\frac{i!}{i_{1} l \ldots i_{k}}[\gamma(1)]^{i_{1}} \ldots[\gamma(k)]^{i_{k}} . \tag{79}
\end{equation*}
$$

Similarly, let $\delta(i)$ be the conditional probability that the area A_{i} is hit knowing that the plane received exactly one hit and this hit did not down the plane. Because of the assumption of independence, we have

$$
\begin{equation*}
\delta_{i}\left(i_{1}, \ldots, i_{k}\right)=\frac{i!}{i_{1}!\ldots i_{k}!}[\delta(1)]^{i} \ldots \ldots[\delta(k)]^{i_{k}} \tag{80}
\end{equation*}
$$

Furthermore, we have

$$
\delta(i)=\frac{\gamma(i) q(i)}{\sum_{i=1}^{k} \gamma(i) q(i)}
$$

Since the probability q that a single hit does not down the plane is equal to $\sum_{i=1}^{k} \gamma(i) q(i)$, we obtain from equation 81

$$
\begin{equation*}
q(i)=\frac{\delta(i)}{\gamma(i)} q \tag{82}
\end{equation*}
$$

Because of the assumption of independence, we see that $\delta(i)$ is equal to the ratio of the total number of hits in the area A_{i} of the returning planes to the total number of hits recein by the returning planes. That is

$$
\begin{equation*}
\delta(i)=\frac{\sum_{j_{k}} \cdots \sum_{j_{1}} j_{i} a\left(j_{1}, \ldots, j_{k}\right)}{\sum_{j_{k}} \cdots \sum_{j_{1}}\left(j_{1}+\ldots+j_{k}\right) a\left(j_{1} \ldots \cdots, j_{k}\right)} \tag{83}
\end{equation*}
$$

Since $\gamma(i)$ is assumed to be known and since $\delta(i)$ can be computed from equation 83, we see from equation 82 that $g(i)$ can be determined as soon as the value of g is known. The value of q can be obtained by solving the equation

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{a_{j}}{q^{j}}=1-a_{0} \tag{84}
\end{equation*}
$$

NUMERICAL EXAMPLE

In the examples for parts I, III, and IV we have estimated the probability that a plane will be downed without reference to the part of the plane that receives the hit. However, the vulnerability of a particular part (say the motors) may be of interest and this example illustrates the methods of estimating part vulnerabilities under the following assumptions:

- The number of planes participating in combat is large so that sampling errors can be neglected.
- The probability that a hit will down the plane does not depend on the number of previous non-destructive hits. That is, $q_{1}=q_{2}=\ldots=q_{n}=q_{o}$.
- Given that a shot has hit the plane, the probability that it hit a particular part is assumed to be known. In this example it is put equal to the ratio of the area of this part to the total surface area of the plane. ${ }^{1}$

The division of the plane into several parts is representative of all the planes of the mission. If the types of planes are radically different so that no representative division is possible, we may consider the different classes of planes separately.

Consider the following example. Of 400 planes on a bombing mission, 359 return. Of these, 240 were not hit, 68 had one hit, 29 had two hits, 12 had three hits, and 10 had four hits. Following the example in part I we have

$$
N=400
$$

whence

$A_{0}=240$	$a_{0}=.600$
$A_{1}=68$	$a_{1}=.170$
$A_{2}=29$	$a_{2}=.072$
$A_{3}=12$	$a_{3}=.030$
$A_{4}=10$	$a_{4}=.025$

[^5]As before, the probability that a single hit will not down the plane is given by the root of

$$
\frac{a_{1}}{q_{0}}+\frac{a_{2}}{q_{0}^{2}}+\frac{a_{3}}{q_{0}^{3}}+\frac{a_{4}}{q_{0}^{4}}=1-a_{0}
$$

which reduces to

$$
.4 q_{o}^{4}-.170 q_{o}^{3}-.072 q_{o}^{2}-.030 q_{o}-.025=0
$$

and

$$
q_{0}=.850
$$

Suppose that we are interested in estimating the vulnerability of the engines, the fuselage, and the fuel system. Assume that the following data is representative of all the planes of the mission:

Part number	Description	Area of part	Ratio of area of part to total area (Y(i))
1	2 engines	$35 \mathrm{sq} . \mathrm{ft}$.	$\underline{-135}=.269$
2	Fuselage	$45 \mathrm{sq} . \mathrm{ft}$.	$\frac{45}{130}=.346$
3	Fuel system	$20 \mathrm{sq} . \mathrm{ft}$.	$\frac{20}{130}=.154$
4	All other parts	30 sq. ft.	$\frac{30}{130}=.231$
	Total area	$130 \mathrm{sq}$. ft.	

The ratio of the area of the i-th part to the total area is designated $Y(i)$. Given that the plane is hit, by the third assumption, $\gamma(i)$ is the probability that this hit occurred on part i. Thus

$$
\begin{aligned}
& \gamma(1)=.269 \\
& \gamma(2)=.346 \\
& \gamma(3)=.154 \\
& \gamma(4)=.231
\end{aligned}
$$

The only additional information we require is the number of hits on each part. Let the observed number of hits be 202. In general, the total number of hits (on returning planes) must be equal to

$$
A_{i}+2 A_{2}+3 A_{3}+\cdots+n A_{n}
$$

and in this example

$$
A_{1}+2 A_{2}+3 A_{3}+4 A_{4}=68+2(29)+3(12)+4(10)=202
$$

The hits on the returning planes were distributed as follows:
Ratio of number of hits observed on part to total number of observed hits ($\delta(i)$)

Part number
Number of hits observed on part

1	39	.193
2	78	.386
3	31	.154
4	54	.267

Total number of hits 202

The ratio of the number of hits on part i to the total number of hits on surviving planes is designated $\delta(i)$. Then $q(i)$, the probability that a hit on the i-th part does not down the plane, is given by

$$
q(i)=\frac{\delta(i)}{\gamma(i)} q_{0}
$$

whence

$$
\begin{aligned}
& q(1)=\frac{\delta(1)}{\gamma(1)} q_{0}=\frac{.193}{.269}(.850)=.61 \\
& q(2)=\frac{\delta(2)}{\gamma(2)} q_{0}=\frac{.386}{.346}(.850)=.95 \\
& q(3)=\frac{\delta(3)}{\gamma(3)} q_{0}=\frac{.154}{.154}(.850)=.85 \\
& q(4)=\frac{\delta(4)}{\gamma(4)} q_{0}=\frac{.267}{.231}(.850)=.98
\end{aligned}
$$

The results may be summarized as follows:

	Probability of surviving a single hit (g(i))	Probability of being downed by a single hit (1 -g(i))
Entire plane	.85	.15
Engines	.61	.39
Fuselage	.95	.05
Fuel system	.85	.15
Other parts	.98	.02

Thus, for the observed data of this hypothetical example, the engine area is the most vulnerable in the sense that a hit there is most likely to down the plane. The fuselage has a relatively low vulnerability.

PART VI

SAMPLING ERRORS ${ }^{1}$

In parts I through V we have assumed that the total number of planes participating in combat is so large that sampling errors can be neglected altogether. However, in practice N is not excessively large and therefore it is desirable to take sampling errors into account. We shall deal here with the case when $q_{1}=q_{2} \ldots=q_{n}=q$ (say) and we shall derive confidence limits tor the unknown probability q.

If there were no sampling errors, then we would have

$$
\begin{array}{r}
x_{i}=p\left(1-a_{0}-a_{1}-\ldots-a_{i-1}-x_{1}-x_{2}-\ldots-x_{i-1}\right) \\
(i=2,3, \ldots),
\end{array}
$$

where $p=1$ - q . However, because of sampling errors we shall have the equation

$$
\begin{equation*}
x_{i}=\bar{p}_{i}\left(1-a_{0}-\ldots-a_{i-1}-x_{1}-\ldots-x_{i-1}\right), \tag{i,6}
\end{equation*}
$$

where \vec{p}_{i} is distributed like the success ratio in a sequence of ${ }^{H_{i}}=H\left(1-a_{0}-a_{1}-\ldots-a_{i-1}-x_{1}-\ldots-x_{i-1}\right)$ independent trials, the probability of success in a single trial being eçual to p .

Let $\bar{q}_{i}=1-\bar{p}_{i}$. Then, according to equation 26 we have

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{a_{j}}{\bar{q}_{1} \ldots \overline{\mathrm{q}}_{j}}=1-a_{o} \tag{0,7}
\end{equation*}
$$

[^6]provided that $x_{i}=0$ for $i>n$. In part I we have shown that $x_{i}=0$ for $i>n$ if there are no sampling errors. This is not necessarily true if sampling errors are taken into account. However, in the case of independence, i.e., when $q_{i}=q(i=1,2, \ldots), x_{i}$
is very small for $i>n$ so that $\sum_{i=n+1}^{\infty} x_{i}$ can be neglected.
In fact, if the number of planes that received more than n nits were not negligibly small, it follows from the assumption of independence that the probability is very high that at least some of these planes would return. Since no plane returned with more than n hits, for practical purposes we may assume that $\sum_{i=n+1}^{\infty} x_{i}=0$. In what follows we shall make this assumption.

Each of the quantities $\bar{q}_{1}, \ldots, \bar{q}_{n}$ can be considered as a sample estimate of the unknown probability q. However, the quantities $\bar{q}_{1}, \ldots, \bar{q}_{n}$ are unknown. It is merely known that they satisfy the relation in equation 87. Confidence limits for q may be derived on the basis of equation 87. However, we shall use another more direct approach.

To derive confidence limits for the unknown probability 9 we stall consider the hypothetical proportion b_{i} of planes that would have been hit exactly i times if dummy bullets would have been used. We shall treat the quantities $b_{1} \ldots, b_{k}$ as fixed (but unknown) constants. This assumption does not involve any loss of generality, since the confidence limits for q obtained on the vasis of this assumption remain valid also when b_{1}, \ldots, b_{k} are random variables. Clearly, the probability distribution of Na_{i} ($\mathrm{i}=1, \ldots, \mathrm{n}$) is the same as the distribution of the number of successes in a sequence of Nb_{i} independent trials, the probability of success in a single trial being q^{i}. Hence

$$
\begin{align*}
& E\left(N a_{i}\right)=q^{i} N_{i} \tag{Eも}\\
& \sigma^{2}\left(N a_{i}\right)=N b_{i} q^{i}\left(1-q^{i}\right) . \tag{89}
\end{align*}
$$

From equations 88 and 89 we obtain

$$
\begin{align*}
& E\left(\frac{a_{i}}{q^{i}}\right)=b_{i} \tag{90}\\
& \sigma^{2}\left(\frac{a_{i}}{q^{i}}\right)=\frac{b_{i}\left(1-q^{i}\right)}{N q^{i}} \tag{91}
\end{align*}
$$

Since the variates $\frac{a_{1}}{q}, \frac{a_{2}}{q^{2}}, \ldots, \frac{a_{n}}{q^{n}}$ are independently distributed, and since a_{i} is nearly normally distributed if N is not small, we can assume with very good approximation that the sum

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{a_{i}}{q^{i}} \tag{92}
\end{equation*}
$$

is normally distributed. We obtain from equations 90 and 91

$$
\begin{align*}
& E\left(\sum_{i=1}^{n} \frac{a_{i}}{q^{i}}\right)=\sum_{i=1}^{n} b_{i}=1-a_{0} \tag{93}\\
& \sigma^{2}\left(\sum_{i=1}^{n} \frac{a_{i}}{q^{i}}\right)=\sum_{i=1}^{n} \frac{b_{i}\left(1-q^{i}\right)}{N q^{i}} \tag{94}
\end{align*}
$$

For any positive $\alpha<1$ let λ_{α} be the value for which

$$
\int_{-\lambda_{\alpha}}^{\lambda_{\alpha}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}} d t=\alpha
$$

The set of all values q for which the inequality
$1-a_{0}-\lambda_{a} \sqrt{\sum_{i=1}^{n} \frac{b_{i}\left(1-q^{i}\right)}{N q^{2}}} \leq \sum_{i=1}^{n} \frac{a_{j}}{q^{2}} \leq 1-a_{0}+\lambda_{a} \sqrt{\sum_{i=1}^{n} \frac{b_{i}\left(1-q^{2}\right)}{H q^{2}}}(95)$
is fulfilled forms a confidence set for the unknown probability q with confidence coefficient α. However, formula 95 cannot be used, since it involves the unknown quantities $b_{, ~, ~}^{b_{n}}$. Since $\frac{a_{i}}{q^{i}}$ converges stochastically to b_{i} as $N \rightarrow \infty$, we change the standard deviation of $\sum \frac{a^{i}}{y^{i}}$ only by a quantity of order less than $\frac{1}{\sqrt{1 N}}$ if we replace b_{i} by $\frac{{ }_{i}}{{ }_{i}}$. Thus, the set of values q that satisfy the ineyualities

$$
\begin{equation*}
1-a_{0}-\lambda_{a} \sqrt{\sum_{i=1}^{n} \frac{a_{i}\left(1-q_{i}^{i}\right)}{\left.-i_{i}\right)}} \leq \sum_{i=1}^{n} \frac{a_{i}}{q^{i}} \leq 1-a_{0}+\lambda_{a} \sqrt{\sum_{i=1}^{n} \frac{a_{i}\left(1-q^{i}\right)}{1 a_{i}^{2 i}}} \tag{96}
\end{equation*}
$$

is an approximation to confidence set with confidence cocfficient α.

Denote by y_{0} the root of the equation in q

$$
\sum_{i}^{n} \frac{a_{j}}{c_{j}^{j}}=1-a_{0} .
$$

Then q_{0} converges stochastically to q as $N \rightarrow \infty$. A considerable simplification can be achieved in the computation of the coniidence set by substituting q_{0} for q in the expression of the standard deviation of $\sum \frac{a_{i}}{q^{i}}$. The error introduced by this substitution $1: s$ small if H is large. Naking this substitution, the illequalitres detining the confidence set are given by

$$
\begin{equation*}
1-a_{0}-\lambda_{a} \sqrt{\sum_{i=1}^{n} \frac{a_{1}^{(1}\left(1-q_{0}^{1}\right)}{N_{1}^{2}}}=\sum_{i=1}^{n} \frac{a_{i}}{q^{I}} \leq 1-a_{0}+\lambda_{a} \sqrt{\sum_{i=1}^{n} \frac{a_{i}\left(1-q_{0}^{1}\right)}{N_{0}^{2 L}}} \tag{97}
\end{equation*}
$$

Hence, the confidence set is an interval. The upper end point of the confidence interval is the root of the equation

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{a_{i}}{q^{i}}=1-a_{o}-\lambda_{\alpha} \sqrt{\sum_{i=1}^{n} \frac{a_{i}\left(1-q_{o}^{i}\right)}{N G_{o}^{2 i}}} \tag{96}
\end{equation*}
$$

and the lower end point of the confidence interval is the root of the equation

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{a_{i}}{q^{i}}=1-a_{o}+\lambda_{\alpha} \sqrt{\sum_{i=1}^{n} \frac{a_{i}\left(1-\left(q_{o}^{i}\right)\right.}{N q_{o}^{2 i}}} \tag{99}
\end{equation*}
$$

NUMERICAL EXAMPLE

In all previous examples it was assumed that A_{i} (the number of Flanes returning with i hit: was complled from such a large number of observations that they were not subject to sampliny errors. If it is further assumed that the probability q that a hit will down a plane does not depend on the number of previous non-destructive hits, it is possible to obtain an exact solution tor the probability that a hit will down a plane. here we introduce the possibility that the $A_{o} \ldots . . \wedge_{n}$ are subject to sampling errors but retain the assumption of independence. Under these less restrictive assumptions we cannot obtaln the cxact solution for q, but for any positive number $\alpha<1$ we can construct two functions of the data, called confidence limits, such that the statement that q lies between the confidence limits will be true 100α percent of the time in the long run. 'ithe confidence linits are calculated for $\alpha=.95$ and .99 .

Under the assumptions of part I, it was proved that no planes received more hits than the greatest number of hits observed on a returning plane. This is not necessarily true when the possibility of sampling error is introduced, but it is retained as an assumption, since the error involved is small.

If the a_{i} are subject to sampling error, and q is the true parameter.

$$
\begin{equation*}
\sum_{1}^{n} \frac{a_{i}}{q^{i}} \tag{A}
\end{equation*}
$$

will be approximately normally distributed with mean value 1 - a_{o}. In outlining the steps necessary to calculate the confidence limits, the following hypothetical set of data will be used. Given

$$
\begin{aligned}
& N=500 \quad a_{i}=\frac{A_{i}}{N} \\
& A_{0}=400 \quad a_{0}=.80 \\
& A_{1}=40 \quad a_{1}=.08 \\
& A_{2}=25 \quad a_{2}=.05 \\
& A_{3}=5 \quad a_{3}=.01 \\
& A_{4}=.3 \quad a_{4}=.006 \\
& A_{5}=2 \quad a_{5}=.004 \\
& 475
\end{aligned}
$$

The first step is to find the value q_{0}, for which expression A is equal to its mean value, by finding the positive root of

$$
\frac{a_{1}}{i_{i}}+\frac{a_{2}}{q^{2}}+\frac{a_{3}}{q^{3}}+\frac{a_{4}}{q^{4}}+\frac{a_{5}}{q^{5}}=1-a_{0}
$$

We obtain

$$
\begin{aligned}
& .20 q^{5}-.08 q^{4}-.05 q^{3}-.01 q^{2}-.006 q-.004=0 \\
& q_{0}=.850 .
\end{aligned}
$$

The next step is to calculate the standard deviation of expression A. This can be shown to be approximately equal to

$$
\begin{aligned}
\sigma & =\sqrt{\sum_{i=1}^{n} \frac{a_{i}\left(1-q_{o}^{i}\right)}{N q_{0}^{2 i}}} \\
& =\sqrt{\frac{a_{1}\left(1-q_{0}^{1}\right)}{N q_{0}^{2}}+\frac{a_{2}\left(1-q_{0}^{2}\right)}{N q_{0}^{4}}+\frac{a_{3}\left(1-q_{o}^{3}\right)}{N q_{0}^{6}}+\frac{a_{4}\left(1-q_{o}^{4}\right)}{N q_{0}^{8}}+\frac{a_{5}\left(1-q_{o}^{5}\right)}{N q_{o}^{10}}} \\
& =.01226 .
\end{aligned}
$$

Knowing that $\sum_{i=1}^{n} \frac{a_{i}}{q^{i}}$ is approximately normally distributed with mean value $1-a_{0}$ and the standard deviation σ, we can determine the range in which $\sum \frac{a_{i}}{q^{i}}$ can be expected to be 100α percent of the time (say 95 and 99 percent) by determining $\lambda .95$ and $\lambda .99$ such that

$$
\begin{aligned}
& \frac{1}{\sqrt{2 \pi}} \int_{-\lambda}^{\lambda} .45 \quad \exp \left(-\frac{t^{2}}{2}\right) d t=.95 \\
& \frac{1}{\sqrt{2 \pi}} \int_{-\lambda}^{\lambda} .99 \quad \exp \left(-\frac{t^{2}}{2}\right) d t=.99 .
\end{aligned}
$$

From the table or the areas of a normal curve, it is found that

$$
\begin{aligned}
& \lambda .95=1.959964 \\
& \lambda .99=2.575829
\end{aligned}
$$

We can now calculate the confidence limits for each value of α by finding the two values of q for which the equality sign of the following expression holds:

$$
\left|\sum_{i=1}^{n} \frac{a_{i}}{q^{i}}-\left(1-a_{o}\right)\right| \leq \lambda_{\alpha}^{\sigma}
$$

It follows that for each α, the confidence limits are the positive roots of the equation

$$
\sum_{i=1}^{n} \frac{a_{i}}{q^{i}}=l-a_{0} \pm \lambda_{\alpha}^{\sigma}
$$

$$
\begin{array}{ccccc}
\frac{\alpha}{.95} & \frac{\lambda_{\alpha}}{1.959964} & \frac{.0122678 \lambda_{\alpha}}{.024044} & \frac{1-a_{o}-\lambda_{\alpha}^{\sigma}}{.175956} & \frac{1-\alpha_{o}+\lambda_{\alpha} \sigma}{.224044} \\
.99 & 2.575829 & .031600 & .168400 & .231600
\end{array}
$$

For $\alpha=.95$ the confidence limits of q_{0} are the positive rocts ol oquatior.

$$
\frac{a_{1}}{\ddots}+\frac{a_{2}}{c^{2}}+\frac{a_{3}}{q^{3}}+\frac{a_{4}}{4_{4}^{4}}+\frac{a_{5}}{4^{5}}=.175956
$$

winch reduces to

$$
\begin{aligned}
& .175956 q^{5}-.084^{4}-.05 q^{3}-.01 q^{2}-.006 q-.004=0 \\
& y=.912
\end{aligned}
$$

and equation

$$
\frac{a_{1}}{q}+\frac{a_{2}}{q_{1}^{2}}+\frac{d_{3}}{q^{3}}+\frac{a^{4}}{q^{4}}+\frac{a^{5}}{q^{5}}=.224044,
$$

which reduces to

$$
\begin{aligned}
& .224044 q^{5}-.08 q^{4}-.05 q^{3}-.01 q^{2}-.006 q-.004=0 \\
& q=.801 .
\end{aligned}
$$

similarly, for $\alpha=.99$ we have

$$
\begin{aligned}
& .168400 q^{5}-.08 q^{4}-.05 q^{3}-.01 q^{2}-.006 q-.004=0 \\
& q=.935 \\
& .231600 q^{5}-.08 q^{4}-.05 q^{3}-.01 q^{2}-.006 q-.004=0 \\
& q=.787 .
\end{aligned}
$$

Summarizing the results we find that the 95 -percent confidence limits of q are . 801 and . 912 , and that the 99 -percent confidence limits are . 787 and .935.

MISCELLANEOUS REMARKS ${ }^{1}$

1. Factors that may vary from combat to combat but influence the probability of surviving a hit. The factors that influence the probability of surviving a hit may be classified into two groups. The first group contains those factors that do not vary from combat to combat. This does not necessarily mean that the factor in question has a fixed value of all combats; the factor may be a random variable whose probability distribution does not vary from combat to combat. The second group comprises those factors whose probability distribution cannot be assumed to be the same for all combats. To make predictions as to the proportions of planes that will be downed in future combats, it is necessary to study the dependence of the probability q of surviving a hit on the factors in the second group. In part V we have already taken into account such a factor. In part V we have considered a subdivision of the plane into several equi-vulnerability areas $A_{1} \ldots . . A_{k}$ and we expressed the probability of survival as a function of the part of the plane that received the hit. Since the probability of hitting a certain part of the plane depends on the angle of attack, this probability may vary from combat to combat. Thus, it is desirable to study the dependence of the probability of survival on the part of the plane that received the hit. In addition to the factors represented by the different parts of the plane, there may also be other factors, such as the type of gun used by the enemy, etc., which belong to the second group. There are no theoretical difficulties whatsoever in extending the theory in part V to any number and type of factors. To illustrate this, let us assume that the factors to be taken into account are the different farts A_{1}, \ldots, A_{k} of the plane and the different guns $g_{1} \ldots . . g_{m}$ used by the enemy. Let $q(i, j)$ be the probability of surviving a hit on part A_{1} knowing that the bullet has been fired by gun g_{j}. We may order the $k m$ pairs (i,j) in a sequence. We shall denote $q(i, j)$ by $q(u)$ if the pair (i,j) is the u-th element in the ordered sequence of pairs. The problem of determining the unknown probabilities $q(u)(u=1, \ldots, k m)$ can be treated in exactly the same way as the problem discussed in

[^7]part V assuming that the plane consists of km parts. Any hit on part A_{i} by a bullet from gun g_{j} can be considered as a hit on part A_{u} in the problem discussed in part V where (i,j) is the u-th element in the ordered sequence of pairs.
2. Non-probabilistic interpretation of the results. It is interesting to note that a purely arithmetic interpretation of the results of parts I through V can be given. Instead of defining G_{i} as the probability of surviving the i-th hit knowing that the previous $i-l$ hits did not down the plane, we deifinc 4_{i} as follows: Let M_{i} be the number of planes that received at least i hits and the i-th hit did not down the plane, and let H_{i} we the total number of planes that received at least i hits. whon $u_{i}=\frac{M_{i}}{{ }_{l}}$. Thus, q_{i} is defined in terms of what actually happened in the particular combat under consideration. ro distinguish this definition of q_{i} from the probabilistic definition, we shall denote the ratio $\frac{M_{i}}{N_{i}}$ by $\bar{ल}_{i}$. 'ihe quantity $\overline{c_{j}}$ is unkrown, since we do not know the distribution of hits on the planes that dici not return. However, it follows from the results of part 1 that these quantities must satisfy equation 26 . If we can assunie that in the particular combat under consideration we have $\bar{q}_{i}=\ldots=\bar{q}_{n}$ then the common value \bar{q} of these quantities is the root of the equation
$$
\sum \frac{a_{j}}{\bar{q} j}=1-a_{o}
$$

Assuming that $\bar{q}_{1} \geq \bar{q}_{2} \geq \ldots \geq \bar{q}_{n}$, the minimum value ρ_{i}^{0} of ρ_{i} derived in parts III and IV can be interpreted as the minimu.l. value of $\bar{Q}_{i}=\bar{q}_{1} \ldots \bar{q}_{i}$.

The minimum and maximum values of Q_{i} derived in part $I V$ can also be interpreted as minimum and maximum valucs of $\bar{Q}_{i}=\bar{q}_{1} \ldots{\overline{\varphi_{i}}}_{i}$ if we assume that the inequalities $\lambda_{1} \bar{q}_{j} \leq \bar{q}_{j+1} \leq \lambda_{2} \bar{q}_{j}(j=1, \ldots, n-1)$ are fulfilled. Similarly, a pure arithmetic interpretation of the results of part V can be given.
3. The case when $\gamma(i)$ is unknown. In part V we have assumed that the probabilities $\gamma(1), \ldots, \gamma(k)$ are known. Since the exposed areas of the different parts A_{1}, \ldots, A_{k} depend on the angle of attack, and since this angle may vary during the combat, it may sometimes be difficult to estimate the probabilities $\gamma(1), \ldots, \gamma(k)$. Thus, it may be of interest to investigate the question whether any inference as to the probabilities $q(1), \ldots, q^{\prime}(k)$ can be drawn when $\gamma(1), \ldots, \gamma(k)$ are entirely unknown. We shall see that frequently a useful lower bound for $q(i)$ can still be obtained. In fact, the value $q^{*}(i)$ of $q(i)$, calculated under the assumption that the parts $A_{j}(j \neq i)$ are not vulnerable $(q(j)=1)$, is certainly a lower bound of the true value $q(i)$. Considering only the hits on part A_{i}, a lower bound of $q^{*}(i)$, and therefore aiso of $q(i)$, is given by the root of the equation

$$
\begin{equation*}
\sum_{r=1}^{n} \frac{a_{r}^{*}}{q^{r}}=1-a_{o}^{*} \tag{100}
\end{equation*}
$$

where $a_{r}^{*}(r=0,1, \ldots, n)$ is the ratio of the number of planes returned with exactly r hits on part A_{i} to the total number of flanes participating in combat.

The lower limit obtained from equation 100 will be a useful one if it is not near zero. The root of equation 100 will be considerably above zero if $\sum_{r=1}^{n} a_{r}^{*}$ is not very small as compared with 1 - a_{o}^{*}. This can be expected to happen whenever both $\mathrm{Y}(\mathrm{i})$ and $q(i)$ are considerably above zero.

VULNERABILITY OF A PLANE TO DIFFERENT TYPES OF GUNS ${ }^{1}$

In part V we discussed the case where the plane is subdivided into several equi-vulnerability areas (parts) and we dealt with the problem of determining the vulnerability of each of these parts. It was pointed out in part VII that the method described in part V can be applied to the more general problem of estimating the probability $q(i, j)$ that a plane will survive a hit on part i caused by a bullet fired from gun j. However, this method is based on the assumption that the value of $\gamma(i, j)$ is known where $\gamma(i, j)$ is the conditional probability that part i is hit by gun j knowing that a hit has been scored. In practice it may be difficult to determine the value of $\gamma(i, j)$ since the proportions in which the different guns are used by the enemy may be unknown. On the other hand, it seems likely that frequently we shall be able to estimate the conditional probability $\gamma(i / j)$ that part i is hit knowing that a hit has been scored by gun j. The purpose of this memorandum is to investigate the question whether $q(i, j)$ can be estimated from the data assuming that merely the quantities $\gamma(i \mid j)$ are known a priori. In what follows we shall restrict ourselves to the case of independence, i.e., it will be assumed that the probability of surviving a hit does not depend on the non-destructive hits already received.

Let $\delta(i, j)$ be the conditional probability that part is hit by gun j knowing that a hit has been scored and the plane survived the hit. Furthermore, let q be the probability that the plane survives a hit (not knowing which part was hit and which gun scored the hit). Then, similar to equation 82, we shall have

$$
\begin{equation*}
q(i, j)=\frac{\delta(i, j)}{\gamma(i, j)} q \tag{101}
\end{equation*}
$$

Let $q(j)$ be the probability that the plane will survive a hit by gun j (not knowing the part hit). Then obviously

$$
\begin{equation*}
q(j)=\sum_{1} \gamma(i \mid j) q(i, j) \tag{102}
\end{equation*}
$$

Let $\delta(i \mid j)$ be the conditional probability that part i is hit by gun j knowing that a hit has been scored by gun j and the plane survived the hit. Clearly

[^8]\[

$$
\begin{equation*}
\delta(i \mid j)=\frac{\gamma(i \mid j) q(i, j)}{\sum_{i} \gamma(i \mid j) q(i, j)}=\frac{\gamma(i \mid j) q(i, j)}{q(j)} . \tag{103}
\end{equation*}
$$

\]

From equation 103, we obtain

$$
\begin{equation*}
q(i, j)=\frac{\delta(i \mid j)}{\gamma(i \mid j)} q(j) . \tag{104}
\end{equation*}
$$

The quantity $\delta(i \mid j)$ can be estimated on the basis of the observed hits on the returning planes. The best sample estimate of $\delta(i \mid j)$ is the ratio of the number of hits scored by gun j on part i of the returning planes to the total number of hits scored by gun j on the returning planes. Thus, on the basis of equation 104, the probability $q(i, j)$ can be determined if $q(j)$ is known.

Now we shall investigate the question whether $q(j)$ can be estimated. First, we shall consider the case when it is known a priori that a certain part of the plane, say part 1 , is not vulnerable. Then $g(i, j)=1$ and we obtain from equation 104

$$
\begin{equation*}
1=\frac{\delta(1 \mid j)}{Y(1 \mid j)} q(j) \tag{105}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
q(j)=\frac{\gamma(1 \mid j)}{\delta(l \mid j)} \tag{106}
\end{equation*}
$$

Thus, in this case our problem is solved. If no part of the plane can be assumed to be invulnerable, then we can still obtain upper limits for $q(j)$. In fact, since $q(i, j) \leq l$, we obtain from equation 104

$$
\begin{equation*}
q(j) \leq \frac{\gamma(i \mid j)}{\delta(i \mid j)} . \tag{107}
\end{equation*}
$$

Denote by $\rho(j)$ the minimum of $\frac{\gamma(i \mid j)}{\delta(i \mid j)}$ with respect to 1 . Then we have

$$
\begin{equation*}
q(j) \leq \rho(j) \tag{108}
\end{equation*}
$$

If there is a part of the airplane that is only slightly vulnerable (this is usually the case), then $q(j)$ will not be much below $\rho(j)$. Let the part i_{j} be the part of the plane least
vulnerable to gun j. If $q\left(i_{j}, j\right)$ has the same value for any gun j, then $q(j)$ is proportional to $\rho(j)$. Thus, the error is perhaps not serious if we assume that $q(j)$ is proportional to $\rho(j)$, i.e.,

$$
\begin{equation*}
q(j)=\lambda \rho(j) \tag{109}
\end{equation*}
$$

The proportionality factor λ can be determined as follows. From equations 101 and 104 we obtain

$$
\begin{equation*}
\frac{\delta(i, j)}{\gamma(i, j)} q=\lambda \rho(j) \frac{\delta(i \mid j)}{\gamma(i \mid j)} \tag{110}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\lambda Y(i, j)=q \frac{\delta(i, j) \gamma(i \mid j)}{\delta(i \mid j) \rho(j)} \tag{111}
\end{equation*}
$$

Denote $\sum_{i} \delta(i, j)$ by $\delta(j)$. Then,

$$
\begin{equation*}
\delta(i \mid j)=\frac{\delta(i, j)}{\delta(j)} \tag{112}
\end{equation*}
$$

From equations 111 and 112 we obtain

$$
\begin{equation*}
\lambda \gamma(i, j)=q \frac{\delta(j) \gamma(i \mid j)}{\rho(j)} \tag{113}
\end{equation*}
$$

Since

$$
\sum_{i} \gamma(i \mid j)=1
$$

we obtain from equatión 113

$$
\begin{equation*}
\lambda \sum_{j} \sum_{i} r(i, j)=q \sum_{j} \frac{\delta(j)}{\rho(j)} \tag{114}
\end{equation*}
$$

But

$$
\sum_{j} \sum_{i} Y(i, j)=1 .
$$

Hence,

$$
\begin{equation*}
\lambda=q \sum_{j} \frac{\delta(j)}{\rho(j)} \tag{115}
\end{equation*}
$$

Since $\delta(j)$ and $\rho(j)$ are known quantities, the proportionality factor λ can be obtained from equation 115. The probability g is the root of the equation

$$
\sum_{j=1}^{n} \frac{a_{j}}{q^{j}}=1-a_{0}
$$

where a_{j} denotes the ratio of the number of planes returned with exactly j hits to the total number of planes participating in combat.

NUMERICAL EXAMPLE
In part V, the case of a plane subdivided into several equivulnerability areas was discussed, and the vulnerability of each part was estimated. The same method can be extended to solve the more general problem of estimating the probability that a plane will survive a hit on part i caused by a bullet fired from gun j, if assumptions corresponding to those of part V are made. The first three of the four assumptions that must be made to apply the method of part V directly are identical with those made in part V. They are:

- The number of planes participating in combat is large so that sampling errors can be neglected.
- The probability that a hit will not down the plane does not depend on the number of previous non-destructive hits. That is, $q_{1}=q_{2}=\ldots=q_{0}$ (say), where q_{i} is the conditional probability that the i-th hit will not down the plane, knowing that the plane is hit.
- The division of the plane into several parts is representative of all planes of the mission.

The fourth assumption necessary to apply the method of part V directly usually cannot be fulfilled in practice. It is:

- Given that a shot has hit the plane, the probability that it hit a particular part, and was fired from a particular type of gun, is known.

These probabilities depend upon the proportions in which different guns are used by the enemy. To overcome this difficulty a method that does not depend on these proportions is developed in part VIII. The assumptions necessary for the method of part VIII differ from those of part V only in that the fourth assumption is replaced by:

- Given that a shot has hit the plane, and given that it was fired by a particular type of gun, the probability that it hit a particular part is known.

The information necessary to satisfy this assumption is more readily available, and in the numerical example that follows a simplified method is suggested for estimating these probabilities.

The Data

The numerical example will be an analysis of a set of hypothetical data, which is based on an assumed record of damage of surviving planes of a mission of 1,000 planes dispatched to attack an enemy objective. Of the 1,000 planes dispatched, 634 (N) actually attacked the objective. Thirty-two planes were lost ($L=32$) in combat and the number of hits on returning planes was:
$A_{i}=$ number of planes returning with i hits

$$
\begin{align*}
& A_{0}=386 \\
& A_{1}=120 \tag{A}\\
& A_{2}=47 \\
& A_{3}=22 \\
& A_{4}=16 \\
& A_{5}=11
\end{align*}
$$

The total number of hits on all returning planes is

$$
\begin{align*}
& A_{1}+2 A_{2}+3 A_{3}+4 A_{4}+5 A_{5}= \tag{B}\\
& 120+2 \times 47+3 \times 22+4 \times 16+5 \times 11=399
\end{align*}
$$

These 399 hits were made by three types of enemy ammunition:

B_{1}	Flak
B_{2}	20-mm aircraft cannon
B_{3}	$7.9-\mathrm{mm}$ aircraft machine gun

and the hits by these different types of ammunition were also recorded by part of airplane hit:

C_{1}	Forward fuselage
C_{2}	Engine

$\mathrm{C}_{3} \quad$ Full system
C_{4}
Remainder

The necessary information from the record of damage is given in table 7 .

TABLE 7
NUMBER OF HITS OF VARIOUS TYPES BY PARTS

	Forward fuselage, C_{1}	$\begin{gathered} \text { Engine, } \\ \mathrm{C}_{2} \end{gathered}$	$\begin{gathered} \text { Fuel } \\ \text { system, } \\ \mathrm{C}_{3} \\ \hline \end{gathered}$	Remainder, C_{4}	Total all parts
Flak, B_{1}	17	25	50	202	294
$\begin{aligned} & 20-m m \\ & \text { cannon, } B_{2} \end{aligned}$	8	7	17	18	50
$\begin{aligned} & \text { 7.9-mm } \\ & \text { machine } \\ & \text { gun, } B_{3} \end{aligned}$	7	13	17	18	55
Total all types	32	45	84	238	399

A Method of Estimating the Probability of Hitting a Particular Part Given That a Shot of a Particular Ammunition Has Hit the Plane ${ }^{1}$

The conditional probability that a plane will be hit on the i-th area, knowing that the hit is of the j-th type, must be determined from other sources of information than the record of

[^9]damage. Although a simplified method is used in this example, more accurate estimates can be made if more technical data is at hand. The first step is to make definite boundaries for the areas $C_{1}, C_{2}, C_{3}, C_{4}$. Next, assume that each type of enemy fire B_{1}, B_{2}, B_{3} has an average angle of fire $\theta_{1}, \theta_{2}, \theta_{3}$, Finally, assume that the probability of hitting a part of the plane from a given angle is equal to the ratio of the exposed area of that part from the given angle to the total area exposed from that angle.

In this example it is assumed that flak (B_{1}) has the average angle of attack of 45 degrees in front of and below the plane, whereas $20-\mathrm{mm}$ cannon and $7.9-\mathrm{mm}$ machine gun fire both hit the plane head-on on the average. The area C_{1} is so bounded that it includes areas which, if hit, will endanger the pilot and co-pilot. Area C_{2} includes the engine area and area C_{3} consists essentially of the area covering the fuel tanks. The results of computations, based on the above assumptions, are assumed to be as follows, where $\gamma\left(C_{i} \mid B_{j}\right)^{1}$ represents the probability that a hit is on part C_{i} knowing it is of type B_{j} (as estimated by determining the ratio of the area of C_{i} to the total area as viewed from the angle θ_{j} associated with ammunition B_{j}).
(C)

$$
\begin{aligned}
& \gamma\left(C_{1} \mid B_{1}\right)=.058 \\
& \gamma\left(C_{2} \mid B_{1}\right)=.092 \\
& \gamma\left(C_{3} \mid B_{1}\right)=.174 \\
& \gamma\left(C_{4} \mid B_{1}\right)=.676
\end{aligned}
$$

$$
\begin{aligned}
& \gamma\left(C_{1} \mid B_{2}\right)=.143 \\
& \gamma\left(C_{2} \mid B_{2}\right)=.248 \\
& \gamma\left(C_{3} \mid B_{2}\right)=.303 \\
& \gamma\left(C_{4} \mid B_{2}\right)=.306
\end{aligned}
$$

$$
\begin{aligned}
& \gamma\left(C_{1} \mid B_{3}\right)=.143 \\
& \gamma\left(C_{2} \mid B_{3}\right)=.248 \\
& \gamma\left(C_{3} \mid B_{3}\right)=.303 \\
& \gamma\left(C_{4} \mid B_{3}\right)=.306
\end{aligned}
$$

[^10]
Computations for Method of Part VIII

Let $q\left(C_{i}, B_{j}\right)$ be the probability of surviving a hit on part C_{i} by gun B_{j}. By equation 104, we have

$$
\begin{equation*}
q\left(C_{i}, B_{j}\right)=\frac{\delta\left(C_{i} \mid B_{j}\right)}{\gamma\left(C_{i} \mid B_{j}\right)} q\left(B_{j}\right) \tag{D}
\end{equation*}
$$

where $\delta\left(C_{i} \mid B_{j}\right)$ is the probability of being hit on part C_{i}, knowing that the hit was scored by a bullet from gun B_{j} and that the plane survived; $\gamma\left(C_{i} \mid B_{j}\right)$ is the probability of being hit on part C_{i}, knowing that the hit was scored by a bullet of type B_{j}; and $q\left(B_{j}\right)$ is the probability that a plane will survive a hit of type B_{j}. knowing that the plane is hit. This can be estimated by taking the ratio of the number of hits of type B_{j} on part C_{i} to the total number of hits of type B_{j} on returning planes. Applying this method to the table we obtain
(E)

$\delta\left(C_{1} \mid B_{1}\right)=.058$	$\delta\left(C_{1} \mid B_{2}\right)=.160$	$\delta\left(C_{1} \mid B_{3}\right)=.127$
$\delta\left(C_{2} \mid B_{1}\right)=.085$	$\delta\left(C_{2} \mid B_{2}\right)=.140$	$\delta\left(C_{2} \mid B_{3}\right)=.236$
$\delta\left(C_{3} \mid B_{1}\right)=.170$	$\delta\left(C_{3} \mid B_{2}\right)=.340$	$\delta\left(C_{3} \mid B_{3}\right)=.309$
$\delta\left(C_{4} \mid B_{1}\right)=.687$	$\delta\left(C_{4} \mid B_{2}\right)=.360$	$\delta\left(C_{4} \mid B_{3}\right)=.327$

The final quantity required to calculate $q\left(C_{i}, B_{j}\right)$ by equation D is $q\left(B_{j}\right)$. By equation 109, we have

$$
\begin{equation*}
q\left(B_{j}\right)=\lambda \rho\left(B_{j}\right) \tag{F}
\end{equation*}
$$

where $\rho\left(B_{j}\right)$ is the minimum of $\frac{\gamma\left(C_{i} \mid B_{j}\right)}{\left(C_{i} \mid B_{j}\right)}$ with respect to i.

$$
\begin{align*}
\rho\left(B_{j}\right) & =\min \left\{\frac{\gamma\left(C_{1} \mid B_{j}\right)}{\delta\left(C_{1} \mid B_{j}\right)}, \frac{\gamma\left(C_{2} \mid B_{j}\right)}{\delta\left(C_{2} \mid B_{j}\right)}, \frac{\gamma\left(C_{3} \mid B_{j}\right)}{\delta\left(C_{3} \mid B_{j}\right)}, \frac{\gamma\left(C_{4} \mid B_{j}\right)}{\delta\left(C_{4} \mid B_{j}\right)}\right\} \\
\mu\left(B_{1}\right) & =\min \left\{\frac{.058}{.058}, \frac{.092}{.085}, \frac{.174}{.170}, \frac{.676}{.687}\right\} \\
& =\min \{1,>1,>1, .984\} \\
& =.984 \tag{G}\\
\rho\left(B_{2}\right) & =\min \left\{\frac{.143}{.160}, \frac{.248}{.140}, \frac{.303}{.340}, \frac{.306}{.360}\right\} \\
& =\min \{.894,>1, .891, .850\} \\
& =.850 \\
\rho\left(B_{3}\right) & =\min \left\{\frac{.143}{.127}, \frac{.248}{.236}, \frac{.303}{.309}, \frac{.306}{.327}\right\} \\
& =\min \{>1,>1, .981, .936\} \\
& =.936
\end{align*}
$$

The constant multiplier λ is defined by equation 115

$$
\begin{equation*}
\lambda=q \sum \frac{\delta\left(B_{j}\right)}{\rho\left(B_{j}\right)} \tag{H}
\end{equation*}
$$

where $\delta\left(B_{j}\right)$ is the conditional probability that a hit is of type B_{j}.

The determination of q is identical with the procedure of part VII. From equation 26

$$
\sum \frac{A_{j}}{q^{j}}=N-A_{0}
$$

we substitute the values of equation A :

$$
\begin{equation*}
248 q^{5}-120 q^{4}-47 q^{3}-22 q^{2}-16 q-11=0 \tag{I}
\end{equation*}
$$

The root is . $930\left(=q_{0}\right.$, say).
The values $\delta\left(B_{j}\right)$ are obtained directly from table 7 by taking the ratio of hits of type B_{j} on returning planes to the total number of hits on returning planes.

$$
\begin{align*}
& \delta\left(\dot{B}_{1}\right)=\frac{294}{399}=.737 \\
& \delta\left(B_{2}\right)=\frac{50}{399}=.125 \tag{J}\\
& \delta\left(B_{3}\right)=\frac{55}{399}=.138
\end{align*}
$$

Substituting the results of equations G, I, and J in equation H, we obtain:

$$
\begin{aligned}
\lambda & =q_{o} \sum \frac{\delta\left(B_{j}\right)}{\rho\left(B_{j}\right)} \\
& =.930\left\{\frac{.737}{.984}+\frac{.125}{.850}+\frac{.138}{.936}\right\} \\
& =.930(1.0433) \\
& =.9703
\end{aligned}
$$

Substituting in equation F

$$
\begin{align*}
& q\left(B_{1}\right)=(.9703)(.984)=.955 \\
& q\left(B_{2}\right)=(.9703)(.850)=.825 \tag{K}\\
& q\left(B_{3}\right)=(.9703)(.936)=.908
\end{align*}
$$

The probabilities $q\left(C_{i}, B_{j}\right)$ can now be determined from equation D by using the values given in equations C, E, and K.

$$
q\left(C_{i}, B_{j}\right)=\frac{\delta\left(C_{i} \mid B_{j}\right)}{\gamma\left(C_{i} \mid B_{j}\right)} q\left(B_{j}\right)
$$

$$
\begin{align*}
& q\left(C_{1}, B_{1}\right)=(.058)(.955) / .058=.955 \\
& q\left(C_{2}, B_{1}\right)=(.085)(.955) / .092=.882 \\
& q\left(C_{3}, B_{1}\right)=(.170)(.955) / .174=.933 \\
& q\left(C_{4}, B_{1}\right)=(.687)(.955) / .676=.971 \\
& q\left(C_{1}, B_{2}\right)=(.160)(.825) / .143=.923 \\
& q\left(C_{2}, B_{2}\right)=(.140)(.825) / .248=.466 \\
& q\left(C_{3}, B_{2}\right)=(.340)(.825) / .303=.926 \tag{L}\\
& q\left(C_{4}, B_{2}\right)=(.360)(.825) / .306=.971 \\
& \\
& q\left(C_{1}, B_{3}\right)=(.127)(.908) / .143=.806 \\
& q\left(C_{2}, B_{3}\right)=(.236)(.908) / .248=.864 \\
& q\left(C_{3}, B_{3}\right)=(.309)(.908) / .303=.926 \\
& q\left(C_{4}, B_{3}\right)=(.327)(.908) / .306=.970
\end{align*}
$$

Comments on Results

The vulnerability of a plane to a hit of type B_{j} on part C_{i} is the probability that a plane will be destroyed if it receives a hit of type B_{j} on part C_{i}. Let $P\left(C_{i}, B_{j}\right)$ represent this vulnerability. The numerical value of $P\left(C_{i}, B_{j}\right)$ is obtained from the set L and the relationship

$$
\begin{equation*}
P\left(C_{i}, B_{j}\right)=1-q\left(C_{i}, B_{j}\right) \tag{M}
\end{equation*}
$$

The vulnerability of a plane to a hit to type B_{j} on part C_{i} is given in table 8.

This analysis of the hypothetical data would lead to the conclusion that the plane is most vulnerable tu a hit on the engine area if the type of bullet is not specified, and is most vulnerable to a hit by a $20-\mathrm{mm}$ cannon shell if the part hit is not specified. The greatest probability of being destroyed is . 534, and occurs when a plane is hit by a $20-\mathrm{mm}$ cannon shell

```
AD-A091 073 CENTER FOR NAVAL ANALYSES ALEXANDRIA VA OPERATIONS EV--ETC F/6 1/3
    A REPRINT OF 'A METHOO OF ESTIMATING PLANE VULNERABILITY BASED --ETC(U)
    JUL 80 A WALD
UNCLASSIFIED
CRC-432
```

\qquad

``` CRC-432

the engine 7.9-mm machin conclusions thi derived by the guides for loc: prediction of 1

VULNERAB:

Flak, \(B_{1}\)
20-mm cannon, \(\mathrm{B}_{2}\)
\(7.9-\mathrm{mm}\) machine
gun, \(B_{3}\)
Vulnerability to hit on specified area when type of hit is unspecified \({ }^{\text {a }}\)
athese vulneral part \(V\), and as \(C_{i}\) is hit, kno
\[
r\left(C_{i}\right)=.
\]
bThis is the \(p\) hit, when neit specified.
on the engine area. The next most vulnerable event is a hit by a 7.9-men machine gun bullet on the cockpit. These, and other conclusions that can be made from the table of vulnerabilities derived by the method of analysis of part VIII, can be used as guides for locating protective armor and can be used to make a prediction of the estimated loss of a future mission.

TABLE 8
vulnerability of a plane to a hit of a specified type ON A SPECIFIED PART
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Forward fuselage & Engine & Fuel system & Remainder & hit when area is unspecified \\
\hline Flak, \(\mathbf{B}_{1}\) & . 045 & . 118 & . 067 & . 029 & . 045 \\
\hline \[
\underset{\text { cannon, } \mathrm{B}_{2}}{20-\mathrm{mm}}
\] & . 077 & . 534 & . 074 & . 029 & . 175 \\
\hline 7.9-mm machine gun, \(B_{3}\) & . 194 & . 136 & . 074 & . 030 & . 092 \\
\hline Vulnerability to hit on specified area when type of hit is un- & & & & & \\
\hline specified \({ }^{\text {a }}\) & . 114 & . 179 & . 074 & . 038 & . \(070{ }^{\text {b }}\) \\
\hline
\end{tabular}

\footnotetext{
aThese vulnerabilities are calculated using the method of part \(V\), and assuming that the \(\gamma\left(C_{i}\right)\), the probability that part \(C_{i}\) is hit, knowing that the plane is hit, are as follows:
\[
\gamma\left(C_{i}\right)=.084 \quad \gamma\left(C_{2}\right)=.128 \quad \gamma\left(C_{3}\right)=.212 \quad \gamma\left(C_{4}\right)=.576 \quad .
\]
bThis is the probability that a plane will be destroyed by a hit, when neither the part hit nor the type of bullet is specified.
}

Vulnerability to specified type of hit when area is unspecified .045 .175 .092 \(.070^{b}\)```


[^0]:    ${ }^{1}$ This part of "A Method of Estimating Plane Vulnerability Based on Damage of Survivors" was published as SRG memo 85 and AMP memo 76.1.

[^1]:    IThis part of "A Method of Estimating Plane Vulnerability Based on Damage of Survivors" was published as SRG memo 87 and AMP memo 76.2.

[^2]:    1This part of "A Method of Estimating Plane Vulnerability Based on Damage of Survivors" was published as SRG memo 88 and AMP memo 76.3.

[^3]:    lohis part of "A Method of Estimating plane Vulnerability Based on Damage of Survivors" was published as SRG memo 89 and AMP memo 76.4.

[^4]:    $1_{\text {This }}$ part of "A Method of Estimating Plane Vulnerability Based on Damage of Survivors" was published as SRG memo 96 and AMP memo 76.5.

[^5]:    ${ }^{1}$ By area is meant here the component of the area perpendicular to the direction of the enemy attack. If this direction varies during the combat, some proper average direction may be taken.

[^6]:    $1_{\text {This }}$ part of "A Method of Estimating Plane Vulnerability Based on Damage of Survivors" was published as SRG meno 103 and AMP memo 76.6.

[^7]:    l'his part of "A Method of Estimating Plane Vulnerability Based on Damage of Survivors" was published as SRG memo 109 and AMP memo 76.7.

[^8]:    1This part of "A Method of Estimating Plane Vulnerability Based on Damage of Survivors" was published as SRG memo 126 and AMP memo 76.8.

[^9]:    $\overline{1_{\text {Necessary }}}$ for fourth assumption.

[^10]:    lohis notation differs from the previous notation of part $^{\text {The }}$ VIII. In the first part of part VIII, $Y(i \| j)$ is used with the understanding that the first subscript refers to the part hit and the second subscript refers to the type of bullet. In the numerical example, the relationship is made explicit by letting $C_{i}$ stand for the $i-t h$ part (or component) and $B_{j}$ for the $j-t h$ type of bullet. The same device is used throughout this example.

