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1. Introduction

Geometrical properties of subsets of digital pictures play

an important role in computer image analysis and recognition

[1]. In particular, there is a well-developed theory [2] of

"topological" properties such as connectedness for subsets of

two-dimensional arrays.
31 The analysis of three-dimensional arrays has become of in-
creasing interest with the rapid growth of computed tomography,

E in which discrete 3D representations of solid objects are re-

constructed from sets of projections. 3D arrays can also be
i; obtained from sets of cross-sections in microscopy; and time
i sequences of images can also be regarded as 3D arrays in which
the third dimension is time. Thus it has become desirable to
study the geometrical properties of subsets of 3D arrays.

Some early work on 3D digital geometry was done by Gray
[3; see also 4], and several theoretical papers on digital
topology also considered generalizations to higher dimensions
[5,6]; but the basic 3D theory has not yet been systematically
| presented. This paper is part of a planned series on 3D digital
, geometry; a report on 3D digital convexity has already been

issued [7]), and a paper on the theory of 3D digital surfaces is

FE R T - e A

in preparation. (It will deal with surfaces as "thin" objeéts,

+

0O !
! as opposed to (8], in which surfaces are composed of the "cracks" [ !

between objects.) The present paper deals with basic concepts

Ll

of 3D connectedness and with 3D digital arcs and curves.
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2. Connectedness and distance

Let Z be a 3D array of lattice .points, which we may assume
without loss of generality to be nxnxn, e.g. I={(i,j,k{lsi,j,ksn}.
Let S be a nonempty subset of I; we can regard S as specified
by a mapping from I into {0,1}, where the points of S are those
that map into 1, so that we can refer to points of S as 1's, and
to points of the complement S of S as 0's. The points of I are
sometimes [8] called "voxels" (short for "volume elements"; ana-
logous to "pixels" = "picture elements" in two dimensions).

Any (i,j,k)€l has three types of neighbors (some of which

‘may not exist if (i,j,k) is on the border of I):
a) Six "face neighbors": (i*l,j,k), (i,j*1,k), and (i,j,k*1)
b) Twelve "edge neighbors": (i*l,j*1,k), (i,j*l,k*l), and
(it1,3j,k*1l), where the two signs in each triple are
chosen independently
c) Eight "corner neighbors": (iX1,j*1,k*1), where all three
signs are chosen independently.
This nomenclature corresponds to regarding (i,j,k) as the center
of a unit cube; then the face (edge, corner) neighbors of (i,j,k)

are the centers of the unit cubes that share a face (edge,

corner) with (i,j,k)'s cube.




We will call the face neighbors "6-neighbors", and

all three kinds of neighbors "26-neighbors", and we will con-
sider only these two types of neighbors. If A,B are disjoint
subsets of I, we say that A and B are 6-adjacent if some point
of A is a 6-neighbor of some point of B; "26-adjacent" is
defined analogously.

A path 71 is a sequence Po’pl""’Pm of points (e.g., %1=
(ih,jh,kh)) such that P, is a neighbor of P._,, lsism. Note
that this is two definitions in one, depending on whether
"neighbor" means "6-neighbor" or "26-neighbor"; 7 can be a
"6-path" or a "26-path".’ o

Two points P,Q are said to be connected in § if there exists

a path P=P0,P1,...,Pm=Q from P to Q consisting entirely of
points of 8. Evidently, "connected" is an equivalence relation
(P is connected to P for any P&S; if P is connected to Q, then
Q is connected to P; if P is connected to Q and Q to R, then

P is connected to R). This relation partitions $ into equiva-
lence classes (=maximal sets of points each pair of which is

connected in S). These classes are called the connected com-

ponents of S. Here again we have two definitions, and can speak
of 6- or 26-connectedness and of 6- or 26~components.

An algorithm for labelling the 6-components of a given set
S is presented in [4]; it is analogous to the standard two-
dimensional algorithm,and makes use of a plane-by-plane, row-

by-row scan of L. The details are straightforward, and the

26-case is also analogous.
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The 26-neighbors of a given point P can be defined relative
to P by specifying, for each coordinate, whether it is incre-
mented by 1, unchanged, or decremented by 1. Thus each neighbor
is specified by a 3-digit ternary number ofy, where a,8,v€ 0,1,2
(or we can use -1 or 1' instead of 2, for brevity); here 000
repré%ents P itself, and the 6-neighbors are those triples in
which exactly one of a,8 and y is 1 or 1'. (Compare (9], which
suggests using 5-bit binary numbers, somewhat inefficiently,
to represent the 26-neighbors. Note that in the 2D case, it
.ig efficient to use 3-bit binary numbers for the 8 neighhors.of
a point, but one could also use 2-digit ternary numbers to
represent the neighbors as well as the point itself.)

The city block distance between two points (x,y,z) and

(u,v,w) is defined as |x-u|+|y-v|+|z-w|, and the chessboard
distance between them is defined as max[|x-ul,|y-v||z-w]|].
These are exactly analogous to the 2D definitions, and can be
immediately extended to digital arrays of any number of dimen-
sions. Readily, they are metrics on L.

Just as in the 2D case, it is easily shown that the city
block (chessboard) distance between two points is the length
of a shortest 6-path (26-~path) between the points. 1In parti-
cular, the points whose city block (chessboard) distance from
P is 1 are just the 6-neighbors (26~-neighbors) of P.

We can also define distance within a given connected set S

in terms of paths that lie in S, where the type of path (6- or

26-) corresponds to the type of connectedness used for S.
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Specifically, for any P,Q in S, we define the intrinsic
distance ds(P,Q) as the length of a shortest path in S from
P to Q. Readily, this too is a metric.

As an application of the concept of intrinsic distance,
we can prove, exactly as in the 2D case [2], that any connected
set S contains points whose deletion does not disconnect S.
(The proof given in [2] is incorrectly stated in terms of ordi-
nary, rather than intrinsic, distance; we give the correct ver-
sion here.)
Proof: Let P be any point of S, and let Q¢S be such that
d (P,Q) is a local maximum, ;.e., ds(P,Q')Sds(P,Q) for all
neighbors Q' of Q. We show that every point of S-{Q} is con-
nected to P, so that S-{Q} is connected. Let 7 be a path from
P to (say) R in S, and let Q' be the point just after the last
occurrence of Q on m (if there are no occurrences, we are done).
Let 7' be a shortest path in S from P to Q'; then Q cannot occur
on 7', since if it did, ' would be strictly longer than

ds(P,Q)st(P,Q'). Hence 7', together with the part of 7 from

Q' to R, is a path from P to R in S-{Q}.
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3. Cavities, surroundedness, and borders

We assume from now on that S does not meet the border of
£, i.e., that for all (i,j,k) €S we have 1<i,j,k<n), so that
the border of I consists entirely of 0's. Thus if we now de-
fine connectedness and components for the complement S of S,
exactly one of these components contains the border of .

This component will be called the background of S; all other
components of § (if any) will be called cavities in S.

In the 2D case, non-background components of S are called
holes. 1In 3D, we can also define "holes" (e.g., a ring has
a hole), but their definition is not so simple; it will be dis-
cussed in Sections 4 and 5. |

It turns out to be desirable to use opposite types of con-
nectedness for S and for S--i.e., if we use the 6-definitions
for S, then we use the 26-definitions for S, and vice versa.
(Analogously, in 2D, if we use 4-neighbor definitions for S,
then we use 8-neighbor definitions for S.) This convention
assures that various concepts to be introduced later, such as
borders and genus, are well-behaved.

Let A,B be subsets of I. We say that A surrounds B, or B
is surrounded by A, if any path from (a point of) B to (a point
of) the border of I must meet (i.e., contain a point of) A.
More generally, let A,B,C be subsets of I; we say that B

separates A from C if any path from A to C must meet B. Thus

A surrounds B iff. A separates B from the border of I.
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Proposition 1. Any S surrounds its cavities, and is surrounded

by its background.

Proof: Since the cavities and background are in different com-

ponents of S, a path from a cavity to the border (which is a

subset of the background) cannot consist entirely of points of

S, so must meet S. On the other hand, a path from S to the

border must meet the background, since the border is a subset

of the background. Note that "surrounds" in the first part of

this proposition must be understood in the sense of S's connected-

ness, i.e., if we use the 6- (26-) definitions for S, then we

must use 6- (26-) paths in defining "surrounds". - . 4,.3
Let C be a component of S and D a component of S. The

remainder of this section deals with adjacency and surrounded-

ness relations between such components. Note first that in

considering adjacency between components of S and components of

S, it does not matter whether we use 6- or 26-adjacency, by

virtue of

Proposition 2. If a component C of S and a component D of §

are 26-adjacent, they are also 6-adjacent.
Proof: Suppose, for example, that C is 6-connected, D is 26-
connected, and that (0,0,0)¢C and (1,1,1)e¢D. If (1,0,0) is

in §, it's in D (since it's 26-adjacent to (1,1,1)), and we're

done. If not, (1,0,0) is in S, hence in C, and (1,1,0) is
either in S, hence in C, or in S, hence in D, making C and D
6-adjacent in either case. The proofs in other cases are

analogous.




Let C be a component of S, and D a component of § that is

adjacent to C. The set of points of C that are adjacent to
points of D (in the sense of the connectedness of D) is called
the D-border of C. The C-border of D is defined analogously.

Proposition 3. The D-border of C is connected (in the C sense).

In 2D, this is proved by defining a border following
algorithm,proving that it visits the entire D-border of C,
and observing that the points it visits are all connected to
the starting point. The situation in 3D is more complicated,
- -since the border points cannot be visited in a simple sequence. ..
For a proof that borders are connected in three (or more) dimen-
sions, see [8].

Once we know that borders are connected, we have the follow-
ing results just as in the 2D case:

Corollary 4. Let Dy and D2 be distinct components of § that

are adjacent to C; then C separates D, from D,y.

Proof: If D, and D, were in the same component D of C, they
would both meet the D-border of C, which is impossible since
they are different components of S, and the D-borderis a
connected subset of S.

Corollary 5. The adjacency graph of S (i.e., the graph whose

nodes are the components of S and §, and where two nodes are
joined by an arc iff the corresponding components are adjacent)
is a tree.

Proof: Clearly this graph is connected, and by Corollary 4 it

can have no cycles.




Corollary 6. Let C,D be adjacent components of S,S, respec-

1

tively; then either C surrounds D or vice versa. Moreover, .
"

exactly one component of S surrounds any given component of %
6

§ (and vice versa, for nonbackground component of S).

Proof: By Corollary 4, two D's cannot be in the same component
of C; hence at most one can be in the background compohent, so
that all others are surrounded by C. The D0 that contains (e.g.)
the point to the right of a rightmost point of C cannot be sur-
rounded by C; and any path from C to the border of I, when it

: e e last leaves C, must enter a component of S that is not surrounded
by C, hence must enter Dy, so that D0 surrounds C.

Corollary 7. The adjacency tree of S can be regarded as a

directed tree, rooted at the background component of S, under

the relationship of surroundedness.
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4., Holes: the two-dimensional case

As pointed out at the beginning of Section 3, some 3D
objects have holes (in the sense that a ring has a hole);
these holes are not the same as cavities, which we defined
as non-background connected components of the object's comple-
ment. In the next section we will give a definition for the
class of objects that have (no) holes, in terms of the (non)-
existence of a closed curve in the object that is not equiva-
lent--in a sense to be defined below--to a degenerate closed
curve consisting of a single point. This definition is analo-
gous to the one used in ordinary topology. Before giving the
3D definition, we give an analogous 2D definition and prove
that it does in fact characterize 2D objects that have (no)
holes. We assume familiarity with the material in [2]. 1In

particular, a simple closed curve y is a connected set of

points each of which has exactly two neighbors in the set, so
that the points can be arranged in a cyclic sequence, and each

is adjacent to just its predecessor and successor in the sequence.

11

This definition allows some degenerate cases, e.g., y=1,1l1, or 11’

if y is a 4-curve.
Let y=p1,,,.,pm and Y.=Pi""'Pﬁ be simple closed curves

(possibly degenerate) that are contained in a given set S. We

say that vy and y' are strongly equivalent in S if there exists

a point P, of y and a run of consecutive points P',...,P' of y'

h k

(or vice versa) such that
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a) Pi+1'-o-,Pm,P1'.¢¢ ,Pi_l=P;(+l'o-o,pr;,Pi’.on'Pl;_l"-i-e-' Y

with Pi deleted is the same as y' with Pﬁ,...,Pﬁ deleted

b) Pﬂ,...,k% are all adjacent to Pi
Here "adjacent" is to be understood in the sense opposite to
that in which y and y' are curves, i.e., if they are 4-curves,
it means 8-adjacent, and vice versa. The reflexive, transitive
closure of strong equivalence in S is called equivalence in S;
in other words, y and Y' are called equivalent in S if y=y',
or if there exists a sequence of curves y=yo,yl,...,yr=y', all
subsets of S, such that Yg is strongly equivalent to Yi-1*
1sisr. We assume in the following proposition that y and y' are
4-curves; the argument in the other case is similar.

Note first that P, in the definition of strong equivalence
has exactly two 4-neighbors, P, and P,

i-1 i+l’
and it has some 8-neighbors that lie inside y (if y is non-

that lie on y;
degenerate) and some that lie outside. Now P, , and P, .
break up the cyclic sequence of 8-neighbors of Pi into two
non-null runs (P, ; and P, 41 cannot be 4-adjacent), and since
these runs cannot cross y, one of them lies (on or) inside Yy
and the other outside. Moreover, one of these runs must be
Pﬁ,...,Pi, since these points are 8-neighbors of Pi' do not
occur in y, and join Pi-l to Pi+1‘

Proposition 8. If y and y' are strongly equivalent, any point

inside vy is on or inside y', and vice versa.

Gt il 1 xv o A
L -

—

an
AR ST 3 W 1Y T TR PR

b, it
it A AE e



T S W T St

Proof: This is not hard to see if y or y' is degenerate;

suppose both are nondegenerate. Let P be inside y but outside
Y', so that there is an 8-path 1 from P to the picture border
that does not meet y', but does meet y. Thus 71 must meet y at
Pi' and we can assume (shortening w if necessary) that it con-
tains Pi only once, so that the point preceding Pi on 7 is in-
side vy and the point following Pi is outside y. But these
points are 8-neighbors of Pi' hence belong to the two runs of
neighbors mentioned in the previous paragraph, so that one of
them belongs to the 4-arc Pﬁ,...,Pﬁ of y', contradiction.

Conversely, let P be inside y' but outside y. This means
there is an 8-path 7' from P to the picture border that meets
Y' but not y, so that ' meets the 4-arc Pﬁ,...,Pi, say at P%.
If this arc consists of the 8-neighbors of P that lie inside
Yy, m'cannot get from P5 to the picture border without crossing
Y, contradiction. Thus we may assume that the arc consists of
the 8-neighbors of N that lie outside y.

To conclude the proof, we first observe that in the case
we are now considering, P, lies inside y'. 1Indeed, suppose we
nad an 8-path p from Pi to the picture border (and not returning
to Pi) that did not meet y'; thus p leaves Pi via a neighbor
that lies inside y. But p cannot get from such a neighbor to
the picture border without crossing y, and whether it crosses

at P, or at another point (which thus lies on y'), we have a

contradiction. Now let P!

b

be the first point at which n'




-
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meets y'. As before, Pj has two 4-neighbors Pj-l'Pj+l that

lie on Y', and they divide its remaining 8-neighbors into two

runs, one consisting of points inside y', the other of points
outside y'. Since Pi is a neighbor of P% and lies inside Y°',

it belongs to the first run. Since Pi—l’Pi+l’Pﬁ""'Pﬁ are all
8-neighbors of P, and are all on Y', it is not hard to see

that this run must in fact consist solely of Pi' But the point
on n' just preceding P% is inside vy', and the only 8-neighbor
of P; that lies inside P; is Pi' so that 7' does meet y, con-

tradiction.

Corollary 9. Let y and y' be equivalent curves in S; then every

point of S inside y is also inside y' (and vice versa).
Proof: If y and Y' are strongly equivalent in S, this follows
from Proposition 8, since a point of S cannot be on Y' (or Yy).
The corollary now follows by induction from the definition of
equivalence.

Proposition 10. Let C be a simply connected component of S,

and let 8 be the (outer) border of C, so that C-g is the interior
of C. Let C;,...,C, be the components of C-g (in the S sense), and for
1sisk, let Bi be the set of points of B that are adjacent to ¢,

(in the S sense). Then each B; is a curve in the S sense.

Proof: If we start at a p§int of C; and move along any path

(in the sense ofca's connectedness), the point at which we leave

Ci cannot be in another Cj' since ci and Cj-are different

NREar g L o Stane e
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components, and it cannot be outside C, since we cannot leave
C without crossing its border; hence this point must be in 8,
and thus in Bi' so that Bi surrounds Ci' Since Ci is connected,
and disjoint from Bi' it is a component of the complement of Bi,
and is not the background component. If Ei had another compo-
nent, it would be adjacent to Bi' hence adjacent to 8. But
since B is the border of C, the only points adjacent to points
of B are in C, C, or B. A point of C adjacent to B; is in C;
by definition; and a point ofB-Bi adjacent to By is in the
background component of Ei' since it is adjacent to C, while
a point of C adjacent to By is certainly in the background com-
ponent of gi’ Thus Ei has exactly two.components, and every
point of it is adjacent to both components (to C; by definition
of Bi' and to the background component since every point of
B;<B is adjacent to C). By the converse to the Jordan Curve
Theorém {2), this proves that Bi is a curve.

Note that if an outer border is a curve, its interior is
connected, by the Jordan Curve Theorem; but if the interior
of an outer border is connected, the border may not be a curve;
even though there is only one Cy. still 81 may not be all of g
(example: C is xxiiz).

XXX

Corollary 1l1l. If C has a hole, there is a simple closed curve

in C that surrounds the hole.

Proof: A hole H cannot meet the border 8 of C. Temporarily

£fill all holes in C; the interior of the resulting C* is

nonempty, since H is in it. By Proposition 10, any

connected component Ci of the interior of C*

O

e o~ D e

g e

T Y

LV AR PSS ol S




PP

g VRO OISO T

o0 R 3

has a border Bics that is a simple closed curve. Since holes
cannot meet B, these Bis are subsets of C, and H must be a sub-
set of one of the'cis (H cannot meet two of them, since it is
connected and cannot meet the border of either). Thus Bi sur-
rounds H.

A curve in C will be called reducible in C if it is equiva-
lent in C to a deéenerate curve consisting of a single point of
C.

Corollary 1l2. If C has a hole, it contains a nonreducible curve.

Proof: By Corollary 11, it contains a curve that surrounds
the hole; by Corollary 9, any equivalent curve must also surround

the hole.

Proposition 13. If C has no holes (i.e., is simply connected),
every curve in C is reducible.

Proof: The inside of any curve y is surrounded by Yy, hence by
C, and since C surrounds no 0's, the inside of y consists en-
tirely of 1's. Now readily the inside of any curve y is simply
connected. By [21, a simply connected set of 1's that has two
or more points has ends (points with just one neighbor 1), e.g.
1l 1) or corners (e.g. % i). Since the other neighbors are not

1's, but are adjacent to the 1's, they must be points of v, e.q.

ccc ccec
cllorcll. Thus at any end or corner we can construct a
ccec cT1

strongly equivalent curve y', using the underlined 1, e.gq.

ccC ccC

¢'l or cc'l. The inside of this y' has fewer points than
cc cll
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that of vy, and is still simply connected. Repeating this

argument, we can reduce the inside of y to a single point, e.g.
ccec

clc, and this curve is strongly equivalent to the one-point
ccec

curve c¢', so that the original y is reducible.

Corollary 12 and Proposition 13 give us

Theorem 1l4. C has no holes iff every curve in C is reducible.
In the next section, we will use the 3D analog of Theorem

14 as a definition of sets that have no holes, in terms of

every curve being reducible. Analogously, one might define 3D

sets that have no cavities in terms of the reducibility of

simple closed surfaces, and prove that this is equivalent to

the definition in terms of components of the complement; but we

will not define simple closed surfaces in this paper.
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5. Arcs, curves, holes, and genus

A simple arc is a path that does not cross or touch itself,
i.e. P; is a neighbor of Pj iff |i-j|=1 (from which it follows
that Pi#Pj unless i=j). [Here and in what follows, we have two
definitions, depending on whether we use the prefix 6- or 26-
for the terms "arc", "curve", "path", "neighbor", "connected",
etc.] Equivalently, we can define an arc as a connected set a
of points each of which has exactly two neighbors in a, witﬁ two
exceptions, called the endpoints, that have only one neighbor
each. The proof that these definitions are equivalent is
exactly as in the 2D case [2]. (Note that in the second defini-
tion, we must also allow a single point to be an arc.)

A simple closed curve is an arc whose endpoints are adjacent,
i.e. a path such that P; is a neighbor of Pj iff |i=j|=1 (modulo
n+l), where n is the path length. Equivalently, we can define

a curve as a connected set y of points each of which has exactly

two neighbors in y. (The proof of equivalence is again analogous
to that in [2].) Here there are a number of degenerate cases
that satisfy the definition, e.q. y=i i in the 6-connected case,

or 1 or 11 in either case.

e N e ey e

Proposition 16. No curve is both a 6-curve and a 26-curve. An

ol

g arc is both a 6-arc and a 26-arc iff it is a straight line seg-

ment parallel to one of the coordinate axes.

vilews e .

Proof: 1If o is both 6- and 26-, the neighbors of any P¢a must 3

ek

be opposite 6-neighbors, since otherwise they would be
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26-neighbors of each other; hence a can only extend in one
principal direction. 1In particular, there can be no such y,
since its points could only get farther apart, so it could
never close.

Using this definition of curve, we can now define (strong)
equivalence of curves, and reducible curves, just as we did
for the 2D case in Section 4. We can then define a set C to

have no holes iff every curve in C is reducible.

Proposition 17. An arc has no holes.
Proof: It is easily seen that an arc a can only contain de-
generate curves, which are all reducible.

Proposition 18. A nondegenerate curve has a hole.

Proof: It is easily seen that the only nondegenerate curve
contained in a curve vy is y itself, and that y is not reducible
in vy.

Proposition 19. An arc or curve has no cavities.

Proof: It is not hard to see that for any P,Q in a (or Y),
and any path 7 from P to Q, we can divert m to go around a,
if necessary, so that a has only one component.

In 2D, the genus of a set S is the number of its components
minus the number of its holes (or, equivalently, the number of
components of S, minus the number of components of S, plus 1).
The genus can be coﬁputed by counting various types of local
patterns in I (1,2,3); in fact, it can be shown ([10] that the
only topological properties of S that can be computed in this

way are functions of the genus.
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Extensions of these ideas to 3D were introduced in [3].
In this case the genus can be regarded as the number of compo-
nents minus the number of holes plus the number of cavities.
Here again, it can be computed by counting various types of
local patterns; for example, if we use 6-connectedness for S

and 26-connectedness for S, we have

Proposition 20. The genus.is equal to nl-n2+n4-n8, where
ny is the number of 1's

n, is the number of 1x1x2 blocks of 1's (in all
orientations)
n, is the number of 1x2x2 blocks of 1's (in all
orientations)
ng is the number of 2x2x2 blocks of 1's
For a detailed discussion of this result see [4]. Since the
genus is not a very useful property, further details on its
computation will not be given here; see [3]. Note, however,
that if we apply this formula to a single connected set C all
of whose cavities have been filled, we can use it as a basis

for defining the number of holes in C.




6. Concluding remarks

This paper has introduced some of the basic concepts of
digital topology for 3D arrays, involving connectedness,
cavities, holes, arcs, and curves. The much more difficult
task of defining digital surfaces will be treated in a subse-
quent paper. As in the 2D case, these concepts are needed in
order to properly define various algorithms for processing 3D
arrays. We need to understand connectedness in order to define
algorithms for counting objects; and we need to understand arcs
and surfaces in order to define connectedness-preserving thinning
algorithms, since the result of thinning a rod-like object should
be a set of arcs, and the result of thinning a plate-like object

should be a set of surfaces. 3D thinning algorithms will also

be the subject of a forthcoming report.
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