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l/ ABSTRACT

This paper deals with fitting two-dimensional stationary
random field (RF) models to images. We assume that the given
image is represented on a torus lattice, obeying an R.F. model
driven py uncorrelated noise. The stochastic model is cinaracterized
by a set of unknown parameters. We describe two sets of exper-
imental results. First, by assigning values to parameters in
the stationary range, two-dimensional patterns are generated.
It appears that quite a variety of patterns can be generated.
Next we consider the problem of estimating the parameters,
given an arbitrary image. By assuming a Gaussian structure for
the noise, we given an iterative scheme to estimate the unknown
parameters. We also implement a decision rule to choose an
appropriate set of neighbors for the image. The theory is
illustrated by applying it to synthetic patterns.

The support of the U.S. Air Force Office of Scientific

Research under Grant AFOSR-77-3271 is gratefully acknowledged,
as is the help of Kathryn Riley in preparing this paper.

The author is indebted to Profs. R. L. Kashyap and A. Rosenfeld
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1. Introduction

Random field models have many applications in image pro-
cessing and analysis; for instance, they can be used for the
design of image enhancement or restoration algorithms [1-3],
for image coding (4-6]), and for characterization of textures
[7-8]. Typically, an image is represented by two-~-dimensional y
scalar data, the gray level variations defined over a square
grid. One of the important characteristics of such data is the

statistical dependence of the gray levels within a neighbor

- set., For example, y(i,j), the scalar gray level at position

(i,j), might be statistically dependent on the gray levels over
a neighbor set that includes {(i-1,j),(i+1,3),(i,j-1),(i,j+1)}.
This is in contrast to the familiar time series models where
the dependence is strictly on the past observations.

Image models which include dependence in all directions
(referred to as neighbor set models in the sequel) have been
considered recently [(3,6,7,8]. The neighbor set dependenge
might include the four nearest pixels (east, west, north, and
south neighbors), the eight nearest pixels [3,8], or all the
pixels inside a square window surrounding the pixel at (i,j)
[6]. In these models, the observation y(i,3j) is written as
a linear weighted sum of the observations over the corresponding
neighbor set and an uncorrelated noise sequence and is charac-

terized by a set of coefficients and the variance of the noise

driving the model.
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Prior to the use of these models, two problems have teo be
tackled, namely the estimation of the unknown parameters and

the choice of an appropriate neighbor set for the given image.
The second problem has received some attention in the litera-
ture [8-11]. The parameter estimation is usually handled by

the maximum likelihood (ML) method. This involves imposing

a Gaussian structure on the noise and deriving an expression

for the likelihood of the observations. Unlike the cases of
one-dimensional time series models or two-dimensional causal
models, deriving an expression for the likelihood of the obser-
vations poses some difficulties for RF models. This is essen-
tially due to the fact that the Jacobian of the transformation
matrix from the noisy variates to the observations is not unity
and is difficult to evaluate. Whittle [l12] developed an asymp-
totic approximation for the determinant term, and developed approxi-
mate expressions for the likelihood function. Using spectral
representation of the RF, likelihood functions in the transform
domain were considered in (9,11]. The problem of evaluating
the determinant can be avoided by making assumptions about the
representation of the lattice. Specifically, by assuming repre-
gsentation on a torus lattice [8,10) (where the image is assumed
to be folded over a torus), explicit expressions can be derived
for the determinant term, as the transformation matrix possesses

a block circulant structure whose eigenvalues can be written down

explicitly. We use this torus representation developed in (8,10]
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and write explicit expressions for the likelihood of the
observations. Since the likelihood function is nonquadratic

in the parameters, the estimates have to be determined by using
numerical optimization procedures such as Newton-Raphson, etc.
[13]). To save some computational effort, we suggest an itera-
tive scheme, defined by using a logarithmic approximation to
the determinant term. This method yields estimates that are
close to ML estimates.

The second problem considered in fitting RF models is the
choice of appropriate neighbors in images. Erom one-dimensional
time series analysis it is known that the use of an appropriate
model leads to good results in forecasting and similar applica-
tions. The problem of choice of appropriate neighbors has been
considered in the literature [9,11]). The derivation of asymp-
totically consistent decision rules for the above problem is
given in [11]; they are based on the corresponding decision
rules for discriminating between different autoregressive models
[14]. We implement this decision rule for choosing between
different neighbor sets.

The usefulness of the estimation scheme and the decision
rule for the choice of neighbors is demonstrated by applying
them to synthetic patterns, the underlying true model of the
synthetic pattern being known. This leads us to the problem

of generating synthetic patterns. Computationally elegant
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solutions using torus representations for generating synthetic
patterns have been developed in [10]. We use this scheme and
generate two-dimensional patterns. The patterns are quite
varied and display the role played by the neighbor sets consi-
dered and the values of the coefficients.

The organization of the paper is as follows: In Section 2,
we consider the estimation problem and develop an iterative
method. The implementation of the decision rule for the choice
of appropriate neighbors is also discussed. 1In Section 3, we
give the experimental results. Discussion is presented in

Section 4.
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2. Estimation of parameters in RF models

Assume that the observations y(i,j), (i,3j) €R, have zero
mean (which can be usually achieved by subtracting the sample
mean from the original observations) and that y(-) obeys the RF
model in (2.1), the neighbor set being denoted by N:

y(i,3) = (kﬁz)m K, Y (3, 3)+(k, L)) +/pw(i,j), (i,3)€R (2.1)

In (2.1), (9.p) are unknown parameters and w(+) is an i.i.d.
noise sequence with zero mean and unit variance. Typically,
the neighbor set N could include dependence on nearest neighbors
in the north, east, south, and west directions, denoted as
{(-1,0),(0,1),(1,0),(0,-1)}. To ensure stationarity, the
coefficients {ek,L' (k,£) N} must obey

(ka)GN X, Zzl 2| < 1 whenever |z | = lz,] =1 (2.2)

Since we are working with a finite image, for an arbitrary
neighbor set N, the neighbors of boundary pixels are not defined.
Hence the image is assumed to be folded into a torus so that
(2.3) is valid for all (i,j)eq:

yl(i,3)+(i,,3,)]) = yl(i+i;-1)mod M+l,(j+ji-l)mod M+1] (2.3)
The torus assumption ensures that all the relevant neighbors of
any y(s) belonging to the finite image are well defined.

Letting !T = (Y(l,l),..-,Y(l,M),...,Y(M,M)), (:)T = (w(l'l)'coo'

w(l,M),...,0(M,M)), (2.1) can be rewritten as
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B(8)y = vpuw (2.4)

where B(g) is a block circulant transformation matrix from the

e TP e . $WE. SR ruodos: R v 27

noisy variates to the observations with a typical structure
such as )
—B B B ]
1,1 1,2 *°° 1,M 5
Bi,m Bi,1 +c Bima 0
B(8) = (2.5) :
?
Bl,Z ceo cee Bl,l
. -

For instante when the neighbor set of dependence N is

3 {(-1,0),(0,1),(1,0),(0,-1)} we have

Vons i IRRARL I e

Bl,l = circulant (1,-60'1,0,...,-60'_1)
Bl,2 = c¢irculant (—91'0,0,...,0)

By m= circulant (-6_1'0,0,...,0)

S e T T, R

and

' By,y =0 i #1,2,M

e

| For notational convenience the sum over (i,j)€Q is sinply g
jé denoted by K.

Given an image, our interest is to estimate the parameters
characterizing the image. One of the popular methods of estima-
tion is the classical least squares method. This method yields

the es*timates defined below:
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§ = Arg min {Jl(O)} (2.6) %

) bew  ° T }
where g
ot

3,(0) = L(y(i,3) - 6Tz(i,3))2 (2.7) i

and z"(i,3) = {y[(i,3)+(, 8], (k,£)eN)

By performing the minimization in (2.6) we have

§ = [zz(i.j)zT(i.j>1’1(§z(i.j)y(i.j)) (2.8) :
~ Q" - ~ £
and 3
A_ 1 sy T a2 i
p == g(y(l.J)-g z(i,3)) (2.9) ,
M

One of the drawbacks of this me?@qq'is‘tpat in ggnefal.g‘
is not always consistent [12,15]. Another popular method of
estimation is the maximum likelihood (ML) method which yields
asymptotically consistent and efficient estimates. To obtain

an expression for the log likelihood function, we impose a

T T TR TS DRI ~ W G . BT i o7

Gaussian structure on the noise sequence w(-:). Using the
Gaussian assumption, the likelihood of the observations can

be written as

i N YT NRRSYPRY € T 2L

Znp(y|06,p) = £&n det B(O)-(M2/2)£n 21p - f% Z(Y(i,j)-eTz(i.j))2
AL d a ~ <
(2.10)

From [10]), due to the block circulant structure of B(g), we

have
det B(6) = N(1-6Ty,.) (2.11)
bt q ~ ~ij
where
“1)42 (53—
¥y = {Aok(i LDHG-D oy pyen )
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and

A, = exp{/=-12n/M}

0
Using (2.11), we get

2

Ln p(y|0,p) = Zen(1-0TY¥, .)-(M%/2)&n 2mp - X I(y(i,3)-0T2(i,5))
~ '~ Q ~ ~17 2pg ~
(2.12)
To avoid computations involving complex quantities in (2.12),

we use the following lemma.

Lemma 1:
Ltn(1- 8%¥;5) = 0.5 Ltn(1- 207c; j+679; 50) (2.13)
where
ciy = leoslhg ((i-1k+(3-10 1)1, (K, £) en)
s1; = (sinlAy(E-Dk+ (-1 D)1, (k, L) &N)
and
Q.. =C..Cl. +8. .S, (2.14)

~1] ~ij<ij ~13j~1)

Using Lemma 1, the likelihood function can be written as

n ply|8,p) = 0.5 z&n(1-207c 540 To. .9)
~ '~ Q ~ J lJ~

- (M2/2) £n2mp - 53 E((y(i,§)-6T2¢i,9))2  (2.15)
Q 8z
The ML estimates 6* and p* are obtained by maximizing (2.15)

with respect to 9 and p and are given below:

= T
9* = Arg mén {-0.5 gln(l 29 g ij + 6 gijg)
+4/2)2n L(y(i,3)-8 T2(i,3))2 (2.16)
and
p* = 3 3(y(i.j)-e*Tz(i,j>)2 (2.17)
" .




Since the log likelihood function is non-quadratic in 6,
the estimation involves the use of numerical optimization
methods such as Newton-Rophson [13] which are computationally
expensive. We given an iterative method which yields estimates
close to the ML estimates with a faster convergence rate. The
estimation scheme is given by
Theorem 1: Let the observations y(i,j),(i,j)e? obey the R.F.
model in (2.1) characterized by 9,p. The estimates §,3 are

given by the following iterative scheme:

o _lzm-l,, _ 1
a1 = Be = 575) 7 (V - =0y) (2.18)
t t
and
5= Lig,g) - 5zi,§))2 (2.19)
g4l T LT WY T Degg 20D :
with
-1
8 =S Uy
Bo = SLl¥(i,3) - Tpz(i,3))?
M%Q ~0~
s = ég(i,j)gT(i,j) (2.20)
U= Iy(i,3)z(i,3) (2.21)
%=1 z
v = 0.5(2(3 - 2 ¢, ) (2.22)
~ a; . 2 "3ij
ij  ajy
= 2 _ 1 - 2 T
R = 0.5{2(3% - 570035 - -5 C;5%4} (2.23)
ij aft. a; .
ij ij
a,. = 0.5{[1-267C,. +3°Q..5.1} (2.24)
i3 26513 Y949i4% :
and
gij and gij are as in Lemma 1.




The proof of Theorem 1 is given in the appendix.

Comments: (1) The iterative scheme is obtained by approximating

FURP——

the determinant term up to quadratic terms using a logarithmic
approximation.

(2) Without losing much accuracy, further savings in compu-
tation can be achieved by letting aij =a., 1<i,j=sM

where a_ = {—%-Ea..}. When this approximation is made, the
t M2 g 13

-

vector V in (2.22) is identically equal to 0 (due to a property

of sums of exponentials) and the following computational scheame

results: = -1
S 1
9t+1 = =(R_- E—) (= 91) (2.25)
t Pe
Buy = SIly(i,g) - 8, ,.2(i,3))2 (2.26)
t+1 ;4'2' Y ] ‘e+1% ] .
where
2 1 2 T
R=0.5{(— - —=-=)ILQ.. - ——— ILC..C.. 2.27
R (e 2 )10, 4 2 16,535} (2.27)

and S is as in (2.20).

We give a brief discussion regarding the decision rule for
the choice of appropriate neighbor sets. Suppose we had three
sets Nl' N2, and N3 of neighbors containing ml, m2, and m3
neighbors, respectively. Corresponding to each Ni' we write the

RF model as




y(i,j) = % 0
(k,l)LNq q.

k, e YL 3+ &, O] +/p w(i,]) (2.28)

6gk, e ? 0 (DN,  q=1,2,3

Then [8,10,11]) the decision rule for the choice of appropriate

neighbors is: choose the neighbor set Nk* if
k* = arg min{Ck} where
k
T =T = 2 2
C = {-éln(l-zggij +6 gijg) + M%%np + M, {n M } (2.29)

Suppose that we wish to also include unilateral or causal

RF models; then the decision statistic Ck reduces to
2

C, = M2enp + M en M (2.30)

This follows from the fact that the Jacobian of the transforma-

tion matrix B(6) from noisy variates to observations is unity

[9,11]. Hence the model selection procedure consists of comput-

ing Ck for different models, depending on whether the under-

lying models are causal or noncausal, and choosing the one corre-

sponding to the lowest ¢.
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3. Experimental results

We describe the results of some experiments regarding the
generation of two-dimensional patterns and estimation schemes
developed in the previous section,

Experiment l: Synthetic generation of two-dimensional patterns.

From (2.4) we have, for the observation set Y obeying an
RF model,

B(8)y = vpouw (3.1)
The synthetic generation is then done by assigning some arbi-
trary values in the stationary region to g and p and using a
pseudorandom number generator to form the vector w. Since the
matrix B(g) has a block circulant structure, Fourier computa-
tions can be used for solving Y in (3.1) [10]. Before proceed-
ing further, we need to define the following quantities: denote

the Mz Fourier vectors fij' isi,jsMm by

_ M-1
sij = column(gj, Agsj,...,xi Ej)
M—
Ej = column(l,Aj,Aj,...,Aj l), M-vector
A = exp[v-1 2w (i-1)/M]

The synthetic generation scheme then is as follows:

y = g(gijfij/“ij) + a} (3.2)
where
/B o o*T

xij=;2'gfij9

(l'g'r!ij) ’ ].-‘il j‘M

T e
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We generate the vector w from pseudorandom numbers,

generate its Fourier sequence {xij} by a two-dimensional FFT,
and finally use (3.2). 16 such 64x64 images were generated
using RF models with different neighbor sets and parameters.
The gray scale values of the images were corrected to lie in
the range 0-63. The details of the models are given in Table 1
and the corresponding images are shown in Fig. 1. It can be
seen that the patterns generated are quite varied and some of
them look similar to real textures. Contrary to the existing [16]
belief that autoregressive RF models are incapable of exhibit-
ing the local pattern replication attribute considered an essen-
tial ingredient of texture, some of the windows do exhibit
repetitive patterns.

We use matrix notation in referring to windows of images.
The (1,1) image illustrates the idea that causal models are
also caéable of accounting for some periodic patterns. The
parabolic neighbor set seems to induce vertically oriented
patterns in the (1,2) image. The (1,3) and (1,4) windows have
identical parameter values but correspond to neighbor sets that
are related (nearly a mirror reflection) and result in similar
diagonal patterns but oriented differently.

Diagonal neighbors seem to induce diagonal patterns as in
the (2,2), (3,4), (4,1), (4,3), and (4,4) windows. The windows
in Fig. 1 are only typical examples and more interesting patterns

could be generated by varying the neighbor sets and parameters.
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Experiment 2: The role of parameter values in the structure

of patterns.
To illustrate the role played by the coefficients in
generating the two-dimensional patterns, we consider the pattern
corresponding to the RF model N = {(-1,1),(1,1),(1,-1),(-1,-1)},
a = 30.000, p = 1.1111 and 6

= -.14 and 6 0

1,1 = 9,0 1,1 = 81,41
= ,28. The values of the parameters tried are given in Table 2
and the corresponding pictures in Fig. 2. Note that as the
parameters are varied the basic pattern is still retained but

the "busyness" of the pattern is varied. Also note that by
changing the sign of the diagonal weights, diagonal patterns

of opposite orientation are produced. All the patterns considered
thus far were generated using the same pseudorandom number
generator. The role played by using different sets of pseudo-
random numbers is illustrated later.

Experiment 3: To test the usefulness of the estimation scheme
and the choice of appropriate neighbor sets, experiments were

done with two synthetic patterns. The true model corresponding

to the first pattern is defined as follows: the values of a and

p are 30 and 1.1111 respectively, the neighbor set N = {(-1,0),
("lrl)l(lrl)'(1'0):(10"1)1("11“1)}, and 9_1’0 = 61'0 = ,12,
0_1'1 =61'_1 = ,28, 01'1 = 6_1’_1 = =-,14. Using the model, the

synthetic image (1,1) in Fig. 3 was generated. But for correct

inference purposes regarding the estimation schemes, the original

O CRPP RPN VI: (L N




window (values not scaled for display purposes) was used.

For estimation of the parameters, the sample mean of the
window was subtracted and the iterative scheme developed in
(2.25-2.27) was used for different RF models. The test statis-
tic Ck defined in (2.29) or (2.30) was also computed. The
actual values of the estimates corresponding to different
neighbor sets are given in Table 3 and the corresponding re-
constructed images are given in Fig. 3.

Table 3 shows that the estimated values corresponding to
the true neighbor set are close to the true values. The so-
called least square estimates corresponding to the true neigh-
bor set are inefficient compared to the estimates obtained by
the scheme developed here. Note that when extra neighbors
are added, the corresponding parameter values are very small.
The decision statistics corresponding to the models considered
are tabulated in Table 4 and the decision rule picks up the
true model.

Fig. 3 shows the pictures corresponding to the different
neighbor sets using an identical array of noise variables in
Table 3. The (1,2) window corresponding to the least square
estimate of the true model is a poor reproduction of the original
in (1,1). On the other hand, the (1,3) window corresponding

to the approximate ML estimates developed here is very close
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to the original. The reproductions corresponding to neighbor
sets {(~1,0),(1,0),(0,~1)} and {(-1,0),(0,1),(1,0),(0,-1)} are
very poor. The windows (2,4), (3,1), and (3,2) look close to
the originals as the corresponding models include the original
neighbor set. But the decision rule suggested here correctly
eliminates these models.

Since in real world applications the procedure of using
identical noise variables for the reconstructed pictures as for
the originals is unrealistic, the natural question is how sensi-
tive are these patterns to different sequences of noise varia-
bles. To answer this gquestion synthetic generation of patterns
were done using different random number sequences and the true
model as in Expt. 3, but with estimated parameters. The result-
ing patterns are shown in Fig. 4. Note that the variations in
the patterns are noticeable if one taks a close look, but the
basic patterns are retained in all the windows. (Window (1,3)
corresponds to the random numbers used in Fig. 3 and consequently
is identical to window (1,3) of Fig. 3.)

Table 5 and Fig. 5 correspond to experiments with the syn-
thetic pattern generated by the causal model {(-1,0),(0,-1),
(-1,-1)} with a = 30.8870, p = 0.1087, 6_1'0 = .9704, eO,—l =

.9735 and © -.9686. The estimates corresponding to

-1'-1 =
different RF models are given in Table 5. While estimating the
parameters for causal models the least square estimates them-

selves were treated as the approximate ML estimates, though the

e R T PN e P 0 ay

PR~

Bl L Dtk 6 L e 1D - .-




underlying patterns were produced using a torus structure. (The

error in approximation due to the torus representation used
for the causal models is negligible.) Note that the decision
rule (see Table 6 for the test statistics) picks up correctly
the causal model compared to other noncausal models. This shows
that it is not true that noncausal models are always superior to
causal models.

Fig. 5 shows the windows constructed using the models in
Table 5. The quality of reproduction using the causal model
is markedly superior to that using the semicausal model
{(1,4),(2,1)} or noncausal model (2,2). (In fact, the noncausal
model {(-1,0),(0,1),(1,0),(0,-1)} yielded estimates in the
nonstationary range.) Since the extra neighbors used in the
models corresponding to (1,4) and (2,1) have very small values
these patterns look very similar. As more and more noncausal
members are added (windows (3,1) and (3,2)) the reproduction is
somewhat better. Windows (2,3) and (2,4) correspond to causal
neighbor sets that include the original model and hence the
quality of reconstruction is good.

The variations produced in the pattern corresponding to

different random number sequences (considered in Fig. 4) are

shown in Fig. 6. Note that the basic patterns are retained.
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4. Discussion

We have considered the problem of estimating the unknown
parameters of an RF model and the choice of appropriate neigh-
bors. The iterative estimation scheme yields estimates that
are close to the ML estimates. The problem of statistical
inference of stationary RF models has been previocusly considered
by Whittle {12] and Larimore [9]. Since in [12] representation
on a square lattice was used, the evaluation of the determinant
of the transformation matrix is difficult, and approximate
methods using power series expansion of the spectral density
were used. The computation of the determinant can be conveni-
ently done in the transform domain as in {9], but the method
involves the assumption that the Fourier transforms of y(.)
are uncorrelated, which is true only for an infinite image.
By using the torus representation for finite images, as done in
this paper, the determinant can be explicitly evaluated and the
exact likelihood function can be written down. This leads to
computations in the spatial domain as against the transform
domain.

The iterative scheme suggested here yields estimates that
are close to the true parameters, with less computational effort

compared to numerical optimization methods such as Newton-Raohson,

etc.
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We have also implemented a decision rule for the choice of

neighbors which correctly picks up the true model against many

competing models.

To illustrate that RF models are indeed capable of generat-
ing a wide variety of patterns, examples of synthetic genera-
J tion results have been presented. Most of the patterns possess
the local pattern replication property which is considered to
be an essential ingredient of textures.

We have illustrated the theory using synthetic patterns.
Currently, work is under progress in testing the estimation

f scheme with real textures.
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Proof of Lemma 1l:

From (2.11),

Ln det B(8) = ILn(1-6TY,.) (1)
~ Q ~ ~lj
Using the definition of V¥
T = _ T Y T
(1-87¥;5) = (A-87¢c;y - /=16%s, ) (2)
where
Ciy = {cos Aj[(i-1)k+(3-1)4, (k,&) )
and
ST. = {sin A, [(i-1)k+(35-1)£], (k,£) &N}
~1ij 0
From (2),
. L oy —8Ts .
En(1-0°¥,.) = 7 £nl(1-8Tc, )% + (8Ts, )% + tan~t (=1,
~ ~1] 2 i3 ~ ~1] 1-67¢c, .
~ ~1J

Since Ztn(l—eT?..) is real
Q ~ ~1d

tn det B(8) = Ifn(1-8"Y, )

Q
- T T
= o. 5[Z£n(l+6 (C;4C14 + 5;4815)-207¢; ) (@)
Defining
9y = glJClJ * §13813

proves Lemma 1.

(3)
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Proof of Theorem l: Prior to proving Theorem 1 we need the

following lemma which is proved subsequently.

Lemma 2:

Zen(1-8"¥; ) = K(a;)-vTo + 67RO

i ~ -~ ~=

where the vector V and the matrix R are as in (2.22)

and

K(aij) = 0.5{Z4n a,.+(1-a..)/

2
ij ij (l—aij)/Zai.}

a. .
13 ]

From (2.15) and Lemma 2,
_ T T 2
Lnp(y|6,p) = K(aij) - V' + 6°RO -(M“/2)&n2mp
- 5 Iy (i, 3) - 8Tz(i,3))2
P Q ~ ~
Differentiating w.r.t. 6 and p and equating to zero,
= . 1 .. . T,. .\ %
=V + RO + Z Iz (i,j)(y(i,j)-2z"(i,3)8) =0
~ ~~ e ol <
and
_ _T
=% (y(i,i) - Bz(i,30)2
M f -
Solving (7), and defining
S = zz(i,3)zT(4i,3) ,
-~ Q~ ~

U,= 2z(i,j)y(i,3)
~1 g~

-

7

) lw - 2
o

From (11) and (13) we obtain the following iterative

8= (R - 1)

L)

of |k
X701}

(5)

and (2.23)

(6)

(7)

(8)

(9)
(10)

(11)

scheme:
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!
i
) _ Y -1 _ 1 ;
b Oper = (R - 2= Up) 7V - = Uy) (12) “
;. Dt pt
: and g
B4y = 5 L(,3) - B1,,2(1,3))° (13)
M2 q
with
IS |
%0=5 U (14)
and
A s
Pp = 3 Lly(i,3) - 632(1.3))2 (15)
M Q ~0~

Proof of Lemma 2: Using the expansion,

Zn x = &n a + 553 - —lf (x-a)2

ceny Q<g$2a
2a

we have

T -
Zn(1+9 Je 29 ~13) £n aij +

+ +6Tg .0 -207c, .
(1=ay; Ql]~ 22°C15)/345

s T o ool 12,,.2
(1 aij+9 9139 26 gij) /2aij +eeo (16)

Taking the sum,

T -207T = - - (1- 2,,.2
Lén(1+6 Qijg 20 gij) in a; 5 * (1 aijvaij (1-a, 4) /2aij
T 4 2
- L (—— - —=—)C. .
~ @y 2 '"Jij
Q “ij aij
1 2 T
+ 97 (g‘a'f " T 2%57 7 €15%i5)8
ij ij ij




Defining
4 2
vV = 0¢52 (__ - '_)C- .
~ Q aij a?. <ij
and 1)
2 1 2 T z
R = 0.50[ (== - )Q.. - —=— C,.C:.] k
~ Q @33 a2, tii L2 Fijcid fi
1] 1] i

we arrive at Lemma 2.
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; NUMBER | 0, 4 =03, 1,-1 - %11 j

(1,1) .28 -.14 3

(1,2) .28 -.10

(113) 028 -006 ‘:

(1,4) .30 -.10 L

(2,1) .32 -.10 N

(2,2) .34 -.10 ]

(2,3) .36 -.10 ?

(2,4) .38 -.10

(3,1) -.14 .28

(3,2) -.10 .28

(3'4) -.10 030 '

(4,1) -.10 .32 .
(4,2) -.10 .34
: j
(4,3) -.10 .36 :
(4,4) -.10 .38
H

Table 2. Values of parameters used to illustrate the role
played by them in synthesizing patterns.
a = 30-00, p =1.1111, N = {(-lrl)l(lpl)l(lo-l)'("1,-1)}
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{
;
!
;
NUMBER TEST STATISTIC ;
(1,3) 1852.052 « True model ;
é (1,4) 2196.110 i
‘ (2,1) 5397.05 §
(2,2) 3893.3 ;
(2,3) 5440.82 ]
(2,4) 2221.6 )
(3,1) 1874.0
(3,2) 1939.7

Table 4. Test statistics corresponding to the models
in Table 2.
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LAE
NUMBER | TEST STATISTIC f
(1,2) ~8900.0 13

(1,3) 3883.16

(1,4) -8663.66
(2,1) -8657.67 ,
(2,2) (non-;;ationary) %
| (2,3) -8892.0 %
é (2,4) -8884.6 '
| (3,1) -6102.58 %
(3,2) -6866.006 %

Table 6. Test statistics corresponding to the
models in Figure 3.
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Figure 1. Examples of synthetic generation of images
using RF models (see Table 1).
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Figure 2, Patterns produced by models with the same neighbor 3
set N={(-1,1),(1,1),(1,-1)(~1,-D}, o=30.034, p=1.1240 é
but with different sets of values for the coefficients i
(see Table 2). }
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Figure 3. Reconstruction of images corresponding to the true f
model N={ (-1,0),(-1,1),(1,1),(1,0),(1,-1),(-1,-1) }. ;;

See Table 3 for details. §
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Figure 4. Patterns produced using different sequences of random
numbers and the model N={(-1,0),(-1,1),(1,1),(1,0),

(1,-1),(~1,-1)} with a=30.034, p=1.1240 and 6_1 0=81 0
=,1119, 61 1=61 l=.2785, ) 8 ==,1577. ' ’
=L, =

1,17 °-1,-1




Figure 5. Reconstruction of images corresponding to the true
model N={(-1,0),(0,-1),{(-1,-1)}. See Table 5 for
details.

Figure 6. Patterns produced using different sequences of random
numbers and the model N={(-1,0),(0,-1)(-1,-1)1},
«=31.096, p=0.1136, ¢ =.9772, © =.9798,
- -llo 01_1
8.1 -1="+9790.
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