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ABSTRACT

This paper deals with fitting two-dimensional stationary
random field (RF) models to images. We assume that the given
image is represented on a torus lattice, obeyinq an R.F. model
driven Dy uncorrelated noise. The stochastic model is caaracterized
by a set of unknown parameters. We describe two sets of exper-
imental results. First, by assigning values to parameters in
the stationary range, two-dimensional patterns are generated.
It appears that quite a variety of patterns can be generated.
Next we consider the problem of estimating the parameters,
given an arbitrary image. By assuming a Gaussian structure for
the noise, we given an iterative scheme to estimate the unknown
parameters. We also implement a decision rule to choose an
appropriate set of neighbors for the image. The theory is
illustrated by applying it to synthetic patterns.
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1. Introduction

Random field models have many applications in image pro-

cessing and analysis; for instance, they can be used for the

design of image enhancement or restoration algorithms [1-31,

for image coding [4-6], and for characterization of textures

[7-8]. Typically, an image is represented by two-dimensional

scalar data, the gray level variations defined over a square

grid. One of the important characteristics of such data is the

statistical dependence of the gray levels within a neighbor

set. For example, y(i,j), the scalar gray level at position

(i,j), might be statistically dependent on the gray levels over

a neighbor set that includes {(i-l,j),(i+l,j),(i,j-l),(i,j+l)}.

This is in contrast to the familiar time series models where

the dependence is strictly on the past observations.

Image models which include dependence in all directions

(referred to as neighbor set models in the sequel) have been

considered recently (3,6,7,8]. The neighbor set dependenge

might include the four nearest pixels (east, west, north, and

south neighbors), the eight nearest pixels [3,8], or all the

pixels inside a square window surrounding the pixel at (i,j)

[61. In these models, the observation y(i,j) is written as

a linear weighted sum of the observations over the corresponding

neighbor set and an uncorrelated noise sequence and *is charac-

terized by a set of coefficients and the variance of the noise

driving the model.



Prior to the use of these models, two problems have to be

tackled, namely the estimation of the unknown parameters and

the choice of an appropriate neighbor set for the given image.

The second problem has received some attention in the litera-

ture [8-11]. The parameter estimation is usually handled by

the maximum likelihood (ML) method. This involves imposing

a Gaussian structure on the noise and deriving an expression

for the likelihood of the observations. Unlike the cases of

one-dimensional time series models or two-dimensional causal

models, deriving an expression for the likelihood of the obser-

vations poses some difficulties for RF models. This is essen-

tially due to the fact that the Jacobian of the transformation

matrix from the noisy variates to the observations is not unity

and is difficult to evaluate. Whittle (12] developed an asymp-

totic approximation for the determinant term, and developed approxi-

mate expressions for the likelihood function. Using spectral

representation of the RF, likelihood functions in the transform

domain were considered in [9,111. The problem of evaluating

the determinant can be avoided by making assumptions about the

representation of the lattice. Specifically, by assuming repre-

sentation on a torus lattice [8,10] (where the image is assumed

to be folded over a torus), explicit expressions can be derived

for the determinant term, as the transformation matrix possesses

a block circulant structure whose eigenvalues can be written down

explicitly. We use this torus representation developed in 18,10]
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and write explicit expressions for the likelihood of the

observations. Since the likelihood function is nonquadratic

in the parameters, the estimates have to be determined by using

numerical optimization procedures such as Newton-Raphson, etc.

[13]. To save some computational effort, we suggest an itera-

tive scheme, defined by using a logarithmic approximation to

the determinant term. This method yields estimates that are

close to ML estimates.

The second problem considered in fitting RF models is the

choice of appropriate neighbors in images.. Fromi one-dimensional

time series analysis it is known that the use of an appropriate

model leads to good results in forecasting and similar applica-

tions. The problem of choice of appropriate neighbors has been

considered in the literature [9,11]. The derivation of asymp-

totically consistent decision rules for the above problem is

given in [11]; they are based on the corresponding decision

rules for discriminating between different autoregressive models

[14). We implement this decision rule for choosing between

different neighbor sets.

The usefulness of the estimation scheme and the decision

rule for the choice of neighbors is demonstrated by applying

them to synthetic patterns, the underlying true model of the

synthetic pattern being known. This leads us to the problem

of generating synthetic patterns. Computationally elegant



solutions using torus representations for generating synthetic

patterns have been developed in [10]. We use this scheme and

generate two-dimensional patterns. The patterns are quite

varied and display the role played by the neighbor sets consi-

dered and the values of the coefficients.

' ~The organization of the paper is as follows: In Section 2,

we consider the estimation problem and develop an iterative

method. The implementation of the decision rule for the choice

of appropriate neighbors is also discussed. In Section 3, we

give the .experimental results. Discussion is presented in

Section 4.
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2. Estimation of parameters in RF models

Assume that the observations y(i,j), (i,j)W, have zero

mean (which can be usually achieved by subtracting the sample

mean from the original observations) and that y(.) obeys the RF

model in (2.1), the neighbor set being denoted by N:

y(i,j) = 6 k ty((i,j)+(k,L)) +/p(i,j), (i,j)P (2.1)(k,t) EN I

In (2.1), (8:p) are unknown parameters and w(.) is an i.i.d.

noise sequence with zero mean and unit variance. Typically,

the neighbor set N could include dependence on nearest neighbors

in the north, east, south, and west directions, denoted as

{ (-I,0), (0,),(i,0),(,-)}. To ensure stationarity, the

coefficients 10k,t' (k,t)EN} must obey

i 8k ' Z z2 ' . 1 whenever 1zli = 1z21 = 1 (2.2)
(k, t) (N 12

Since we are working with a finite image, for an arbitrary

neighbor set N, the neighbors of boundary pixels are not defined.

Hence the image is assumed to be folded into a torus so that

(2.3) is valid for all (i,j)Ef:

y[(i,j)+(iljl)] = y[(i+il-l)mod M+I,(j+jl-l)mod M+1] (2.3)

The torus assumption ensures that all the relevant neighbors of

any y(s) belonging to the finite image are well defined.

Lettingy = (y(l,l),...,y(l,M),...,y(M,M)), =

W(l,M),...,W(MM)), (2.1) can be rewritten as

1'i
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B(e)y = /-w (2.4)

where B(O) is a block circulant transformation matrix from the

noisy variates to the observations with a typical structure

such as

B I B 1 2 . . B I 'B1,4 1,2 "' 1,M

BI M  B1  .. B

B(e) = (2.5)
. .. ... ... ...

B1,2 ... ... B1 1

For instance when the neighbor set of dependence N is

{(-l,0),(0,l),(l,0),(0,-l)} we have

Bi 1 = circulant (1,-60,1,0,...,-80l,_)

B1, 2 = circulant (-01,010,...,0)

B ; = circulant (-6_1,0'0 '... '0)

and

B = 0 j # 1,2,M

For notational convenience the sum over (i,j)EQ is simply

denoted by Q.

Given an image, our interest is to estimate the parameters

characterizing the image. One of the popular methods of estima-

tion is the classical least squares method. This method yields

the estimates defined below:

I



= Arg min {J 1 (0)} (2.6)
0 tM

where

J1 (0) = E(y(i,j) - T zlij))2 (2.7)

T a
and z (i,j) = {y[(i,j)+(kj)], (k,t)ENJ

By performing the minimization in (2.6) we have

= [z(i,j)zT(i,j)]-l(Ez(i,j)y(i,j)) (2.8)

and

A 1T -T j 2
p = E i (y(i,j)-_ z(i,j))2(2.9)

One of the drawbacks of this method is that in general

is not always consistent [12,15]. Another popular method of

estimation is the maximum likelihood (ML) method which yields

asymptotically consistent and efficient estimates. To obtain

an expression for the log likelihood function, we impose a

Gaussian structure on the noise sequence w(-). Using the

Gaussian assumption, the likelihood of the observations can

be written as

Lnp(yle,p) = tn det B(O)-(M 2/2)tn 2wp - 1 E(y(ij)_TZ(ij)) 2

(2.10)

From [10], due to the block circulant structure of B(O), we

have

det B(e) = n(-8 T .) (2.11)

where

!ij {X 0 k(i-l)+t(j-l) (kt)EN

Tij ={ o k,(k,)-A.



and

A0 - exp{,/:2T/M}

Using (2.11), we get

1n p(yI2,p) = Etn(l-eT0 )-(M2/2)tn 2rp - - E(y(i,j)_Tz(i,j))2
-) 2P~

(2.12)

To avoid computations involving complex quantities in (2.12),

we use the following lemma.

Lemma 1:

Itn(l-OTTij) = 0.5 Etn(I-2eTcij+TQij) (2.13)

where

co[A 0 (i-1 )k+(j-l)Z)I,(,)N

S {sin[ 0 ((i-1)k+(j-1)Z)], (k,t)EN}

and

+ s..sT. (2.14)9ij ~isl 13 1 ~]

Using Lemma 1, the likelihood function can be written as

tn p(yl2,p) = 0.5 Etn(I-20TC ij+OT i0)
Q 1 - -iJ-)

(2/22)n27rp - ((y(i,j)_OTz(i,j))2 (2.15)

The ML estimates 0* and p* are obtained by maximizing (2.15)

with respect to 0 and p and are given below:

0* = Arg min {-0.5 Ztn(l-28Tc ij + 8TQ.ij8)

+(N/2)Ln E(y(i,j)-sTi 2 (2.16)

and

= 1 Z(y(i,j)_O*Tz(i,j))2 (2.17)
P* =

a - I-



Since the log likelihood function is non-quadratic in 0,

the estimation involves the use of numerical optimization

methods such as Newton-Rophson [131 which are computationally

expensive. we given an iterative method which yields estimates

close to the ML estimates with a faster convergence rate. The

estimation scheme is given by

Theorem 1: Let the observations y(i,j),(i,j)QQ obey the R.F.

model in (2.1) characterized by 6,p. The estimates epare

given by the following iterative scheme:

1 1- -l( 1et~l _ = 1)(2.18)
t-t- -4 pT..

and
- 1T 20tP JE-(y(i,j) - et+1z(i,j)) (2.19)

with

=T 
2

PO E(y(i,j) - -T 2~~)

Ez(i,j)z T (j)(2.20)

U=Ey i, J) z i,j) (2.21)

V = 0.5((-4 - - )C.) (2.22)

2 1j 2 Ti

R = a..Z-I - 1 )Q 2 C. .C. . (2.23)
ij a1.j a~ i

ai 0 .5{[1-2-T - a +Q.t1} (2.24)

and
C. and Q.are as in Lemma 1.
Z1) -1)



The proof of Theorem 1 is given in the appendix.

Comments: (1) The iterative scheme is abtained by approximating

the determinant term up to quadratic terms using a logarithmic

approximation.

(2) Without losing much accuracy, further savings in compu-

tation can be achieved by letting aij at , 1i,j.%4

where at = 1 Ea.. }. When this approximation is made, the2 i
vector V in (2.22) is identically equal to 0 (due to a property

of sums of exponentials) and the following computational scheme

results: -1

(R - ) (2.25)
Pt Pt

--+ = 1,--(2.26)

P (y(i j) - 8t+iz(i,j))2

where

R= 0.5{( t - Qi-. (2.27)

and S is as in (2.20).

We give a brief discussion regarding the decision rule for

the choice of appropriate neighbor sets. Suppose we had three

sets Nl , N2, and N3 of neighbors containing mi, m2, and m3

neighbors, respectively. Corresponding to each Ni, we write the

RF model as



y(i,j) Xk£ 0I.. y[(ij)+(k,t)] + poqw(ij)(k , ) N (2.,2'8 )'

q

0qpkt 1 0 (kt)E NqI q = 1,2,3

Then [8,10,11] the decision rule for the choice of appropriate

neighbors is: choose the neighbor set Nk* if

k* = arg min{Ck} where
k T

T Tij 2 2Ck = (-E1n(l-28Cij +0 TQij.) + M2Znp + Mktn M2 } (2.29)

Suppose that we wish to also include unilateral or causal

RF models; then the decision statistic Ck reduces to

Ck = M2np + Mktn M2  (2.30)

This follows from the fact that the Jacobian of the transforma-

tion matrix B(6) from noisy variates to observations is unity

[9,11]. Hence the model selection procedure consists of comput-

ing Ck for different models, depending on whether the under-

lying models are causal or noncausal, and choosing the one corre-

sponding to the lowest Ck.



3. Experimental results

We describe the results of some experiments regarding the

generation of two-dimensional patterns and estimation schemes

developed in the previous section.

Experiment 1: Synthetic generation of two-dimensional patterns.

From (2.4) we have, for the observation set y obeying an

RF model,

B(M)y = (3.1)

The synthetic generation is then done by assigning some arbi-

trary values in the stationary region to 0 and p and using a

pseudorandom number generator to form the vector w. Since the

matrix B(O) has a block circulant structure, Fourier computa-

tions can be used for solving y in (3.1) [10]. Before proceed-

ing further, we need to define the following quantities: denote

the M2 Fourier vectors fij' i~i,jfM by

f. =column(tj, X . M-1t
I]) -J 1-) 1. 2 3M-I

tj =column(l,.j, 2
1 ...,A. ), M-vector

X. = exp[/AT 27(i-l)/M]
1

The synthetic generation scheme then is as follows:

y = E(fixi./pi) + al (3.2)

where
x P Zf..xij = 7 Q ~i3~

and

T(1-e iT), 1si,jij i



We generate the vector w from pseudorandom numbers,

generate its Fourier sequence {x ij} by a two-dimensional FFT,

and finally use (3.2). 16 such 64x64 images were generated

using RF models with different neighbor sets and parameters.

The gray scale values of the images were corrected to lie in

the range 0-63. The details of the models are given in Table 1

and the corresponding images are shown in Fig. 1. It can be

seen that the patterns generated are quite varied and some of

them look similar to real textures. Contrary to the existing [16]

belief that autoregressive RF models are incapable of exhibit-

ing the local pattern replication attribute considered an essen-

tial ingredient of texture, some of the windows do exhibit

repetitive patterns.

We use matrix notation in referring to windows of images.

The (1,1) image illustrates the idea that causal models are

also capable of accounting for some periodic patterns. The

parabolic neighbor set seems to induce vertically oriented

patterns in the (1,2) image. The (1,3) and (1,4) windows have

identical parameter values but correspond to neighbor sets that

are related (nearly a mirror reflection) and result in similar

diagonal patterns but oriented differently.

Diagonal neighbors seem to induce diagonal patterns as in

the (2,2), (3,4), (4,1), (4,3), and (4,4) windows. The windows

in Fig. 1 are only typical examples and more interesting patterns

could be generated by varying the neighbor sets and parameters.



Experiment 2: The role of parameter values in the structure

of patterns.

To illustrate the role played by the coefficients in

generating the two-dimensional patterns, we consider the pattern

corresponding to the RF model N =

= 30.000, p = 1.1111 and 0_i = 01, = -.14 and 0 = 1,1 l-l "1,1,-

= .28. The values of the parameters tried are given in Table 2

and the corresponding pictures in Fig. 2. Note that as the

parameters are varied the basic pattern is still retained but

the "busyness" of the pattern is varied. Also note that by

changing the sign of the diagonal weights, diagonal patterns

of opposite orientation are produced. All the patterns considered

thus far were generated using the same pseudorandom number

generator. The role played by using different sets of pseudo-

random numbers is illustrated later.

Experiment 3: To test the usefulness of the estimation scheme

and the choice of appropriate neighbor sets, experiments were

done with two synthetic patterns. The true model corresponding

to the first pattern is defined as follows: the values of a and

p are 30 and 1.1111 respectively, the neighbor set N ={(-,0),

(-1,1),(,), (1,0), (l,-1),(-i,-l1}, and 6- = 01,0 = .12,

61 , .28, e1,1 = 0_ = -.14. Using the model, the

synthetic image (1,1) in Fig. 3 was generated. But for correct

inference purposes regarding the estimation schemes, the original

t__ -
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window (values not scaled for display purposes) was used.

For estimation of the parameters, the sample mean of the

window was subtracted and the iterative scheme developed in

(2.25-2.27) was used for different RF models. The test statis-

tic Ck defined in (2.29) or (2.30) was also computed. The

actual values of the estimates corresponding to different

neighbor sets are given in Table 3 and the corresponding re-

constructed images are given in Fig. 3.

Table 3 shows that the estimated values corresponding to

the true neighbor set are close to the true values. The so-

called least square estimates corresponding to the true neigh-

bor set are inefficient compared to the estimates obtained by

the scheme developed here. Note that when extra neighbors

are added, the corresponding parameter values are very small.

The decision statistics corresponding to the models considered

are tabulated in Table 4 and the decision rule picks up the

true model.

Fig. 3 shows the pictures corresponding to the different

neighbor sets using an identical array of noise variables in

Table 3. The (1,2) window corresponding to the least square

estimate of the true model is a poor reproduction of the original

in (1,1). On the other hand, the (1,3) window corresponding

to the approximate ML estimates developed here is very close

4 * A - -'- 'I'



to the original. The reproductions corresponding to neighbor

sets {(-1,0),(1,0),(0,-l)} and {(-1,0)0(0,l),(1,0),(0,-1)} are

very poor. The windows (2,4), (3,1), and (3,2) look close to

the originals as the corresponding models include the original

neighbor set. But the decision rule suggested here correctly

eliminates these models.

Since in real world applications the procedure of using

identical noise variables for the reconstructed pictures as for

the originals is unrealistic, the natural question is how sensi-

tive are these patterns to different sequences of noise varia-

bles. To answer this question synthetic generation of patterns

were done using different random number sequences and the true

model as in Expt. 3, but with estimated parameters. The result-

ing patterns are shown in Fig. 4. Note that the variations in

the patterns are noticeable if one taks a close look, but the

basic patterns are retained in all the windows. (Window (1,3)

corresponds to the random numbers used in Fig. 3 and consequently

is identical to window (1,3) of Fig. 3.)

Table 5 and Fig. 5 correspond to experiments with the syn-

thetic pattern generated by the causal model {(-1,0),(0,-l),

(-l,-l)} with a = 30.8870, p = 0.1087, 0 = 9704, 01_1,0 ' 0,1

.9735 and 1_1 = -.9686. The estimates corresponding to

different RF models are given in Table 5. While estimating the

parameters for causal models the least square estimates them-

selves were treated as the approximate ML estimates, though the



underlying patterns were produced using a torus structure. (The

error in approximation due to the torus representation used

for the causal models is negligible.) Note that the decision

rule (see Table 6 for the test statistics) picks up correctly

the causal model compared to other noncausal models. This shows

that it is not true that noncausal models are always superior to

causal models.

Fig. 5 shows the windows constructed using the models in

Table 5. The quality of reproduction using the causal model

is markedly superior to that using the semicausal model

{(l,4),(2,l)} or noncausal model (2,2). (In fact, the noncausal

model {(-l,0),(0,l),(lO),(O,-l)} yielded estimates in the

nonstationary range.) Since the extra neighbors used in the

models corresponding to (1,4) and (2,1) have very small values

these patterns look very similar. As more and more noncausal

members are added (windows (3,1) and (3,2)) the reproduction is

somewhat better. Windows (2,3) and (2,4) correspond to causal

neighbor sets that include the original model and hence the

quality of reconstruction is good.

The variations produced in the pattern corresponding to

different random number sequences (considered in Fig. 4) are

shown in Fig. 6. Note that the basic patterns are retained.

I-



4. Discussion

We have considered the problem of estimating the unknown

parameters of an RF model and the choice of appropriate neigh-

bors. The iterative estimation scheme yields estimates that

are close to the ML estimates. The problem of statistical

inference of stationary RF models has been previously considered

by Whittle (12] and Larimore [9]. Since in [12] representation

on a square lattice was used, the evaluation of the determinant

of the transformation matrix is difficult, and approximate

methods using power series expansion of the spectral density

were used. The computation of the determinant can be conveni-

ently done in the transform domain as in [9], but the method

involves the assumption that the Fourier transforms of y(-)

are uncorrelated, which is true only for an infinite image.

By using the torus representation for finite images, as done in

this paper, the determinant can be explicitly evaluated and the

exact likelihood function can be written down. This leads to

computations in the spatial domain as against the transform

domain.

The iterative scheme suggested here yields estimates that

are close to the true parameters, with less computational effort

compared to numerical optimization methods such as Newton-Raphson,

etc.



We have also implemented a decision rule for the choice of

neighbors which correctly picks up the true model against many

competing models.

To illustrate that RF models are indeed capable of generat-

ing a wide variety of patterns, examples of synthetic genera-

tion results have been presented. Most of the patterns possess

the local pattern replication property which is considered to

be an essential ingredient of textures.

We have illustrated the theory using synthetic patterns.

Currently, work is under progress in testing the estimation

scheme with real textures.
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Appendix

Proof of Lemma 1:

From (2.11),

tn det B(e) = EZn(l-T IFij )  (1)

Using the definition of Tij

(,OT TC(161T(2
(I-T. ~i) = (I-0~c '. . - /TeoTsij) 2

(10 - (2

where
CT
and 1 {co s  (i-1)k+(j-1)4 , (k,Z) tNj

and
T

S.. = {sin A0[(i-l)k+(j-l)t ] , (k,t)tN}

From (2),
ij 2 -i € -e TiZn(l-sT~ij) = Zn[(1-0Tcij2 + (OTsij2 + tan -I )1 3

. .. .. . l_6T ij~

Since Etn(1-0T. T is real

Zn det B(O) = Etn(1-6 TT ij )
= ~ CT .T-2T j

= 0.5[EZn(l+0T (C .C. . + S.sT.)2 TC) (4)( ij ~ i ~i ~3~3

Defining

9ij = ij i + i

proves Lemma 1.



Proof of Theorem 1: Prior to proving Theorem 1 we need the

following lemma which is proved subsequently.

Lemma 2:

Etn(l-Tij) = K(a )_VTO + eTRO6 (5)

where the vector V and the matrix R are as in (2.22) and (2.23)

and

K(aij) = 0.5{7En a. +(l-a )/aij - (1-a. )/2a2j}

From (2.15) and Lemma 2,

tnp(yl6,p) = K(a.j) - VT + eT R -(M 2/2)tn27p

_ 1. (y(i,j) - eTz(ij))2 (6)2p~ -q~

Differentiating w.r.t. e and p and equating to zero,

-V + -e + I z(i,j) (y(ij)-zT(ij)8) 0 (7)

and

T 2

;-l (y(i,j) - 6z(i,j)) (8)

Solving (7), and defining

= z(i,j)zT (ij) , (9)

U = .zZ (i, j) y (i, j) (10)

we have

W= (R--S (V - U1 ) (11)

From (11) and (13) we obtain the following iterative scheme:

t



Pt Pt

and

P 1E(y (i, j) - Trz~~) 2 (13)

with
- -1l
=80 (14)

and
A 1 2 (5

-P 6(~ j -Tz(ii)) (5
0= M2 E(( 0

Proof of Lemma 2: Using the expansion,

Z x na x-a 12
tn ~ 2 n (x-a). .., -~x s2a

2a
we have

T Ttn(1+0 Q. .0 -20 C.. = n a. +

+(1.-a.+ 0 T Q.0 -20 T. ...... i

-(1-a..*6 TQ..6-oTC . 2 /2a2. +... (16)

Taking the sum,

Etn(1+OT Q. .- 20T C.. Etn a. + (1-a. .)/a. . (1-a. 22

) c j

R a a..i a..j



Def ining

y = 0.5~(~

and 3 ai

R . 5E I j - -- c. .i :'

we arrive at Lemma 2.
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NUMBER 0 =0 0 =0

.28-,-1- -1 1

(1,2) .28 -.14

(1,3) .28 -. 06

(1,4) .30 -.10

(2,1) .32 -.10

(2,2) .34 -.10

(2,3) .36 -.10

(2,4) .38 -.10

(3,1) -.14 .28

(3,2) -.10 .28

(3,3) -.06 .28

(3,4) -.10 .30

(4,1) -.10 .32

(4,2) -.10 .34

(4,3) -.10 .36

(4,4) .10 .38

Table 2. Values of parameters used to illustrate the role
played by them in synthesizing patterns.
a - 30.00, p =1.1111, N
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NUMBER TEST STATISTIC

(1,3) 1852.052 True model

(1,4) 2196.110

(2,1) 5397.05

(2,2) 3893.3

(2,3) 5440.82

(2,4) 2221.6

(3,1) 1874.0

(3,2) 1939.7

Table 4. Test statistics corresponding to the models
in Table 2.

iI
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NUMBER TEST STATISTIC

(1,2) -8900.0

(1,3) 3883.16

(1,4) -8663.66

(2,1) -8657.67

(2,2) (non-stationary)

(2,3) -8892.0

(2,4) -8884.6

(3,1) -6102.58

(3,2) -6866.006

Table 6. Test statistics corresponding to the
models in Figure 3.



Figure 1. Examples of synthetic generation of images
using RF models (see Table 1).

I.

Figure 2. Patterns produced by models with the same neighbor
set N={ (-1,1), (ii), (i,-i) (-1,-i 1, c=30.034, p=1.1240
but with different sets of values for the coefficients
(see Table 2).



Figure 3. Reconstruction of images corresponding to the true
modelN{(l0,- l) 11)( O) ll (- -).
See Table 3 for details.

Figure 4. Patterns produced using different sequences of random
numbers and the modelN=(lO,- l) ll) l0)

(,l,-,l}with a=30.034, p=1.1 24 0 and 6_0 ' =e0
-.1119, 075 =0 =.2 =a- 1..577 .0 ,



Figure 5. Reconstruction of images corresponding to the true
model N=(lOO-)(l-). See Table 5 for
details.

Figure 6. Patterns produced using different sequences of random
numbers and the model N{(lOO-)(1-)I
a=31.096, p=0.1136, 0 o= 9772, 0 -1 .9798,
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