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The Convergence Of The
State Probabilities In A Class Of
m-Dimensional Simple Epidemic Models

by
Herbert Lacayo and Naftali A. Langberg

ABSTRACT

A population of susceptible individuals exposed to m contagious diseases
is considered. The progress of this epidemic among individuals is modeled by
an m-dimensional stocha;tic progress. The components of this process represent
the number of infective individuals with the respective diseases at tine t.

A class of m-dimensional stochastic processes is constructed. These
processes describe the progress -of the epidemic models considered in the
sequel. Exact and approximate formulas for the joint and marginal state prob-
abilities of these models are obtained. It is shown that the approximate
formulas are very simple functions of time while, the derivation of the exact
formulas involve tedious computations.

Key-words: m-dimensiorgal simple epidemics and stochastic processes,

exponential and negative binomial random variables, convergence in distribution.
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1. Introcucticn and Sumi.ary.

In a simple epidemic situation we assume that a population of susceptible
individuals (susccotiblcs) is exposed only to one contagious disease (disease)
(Bailey (1975)]. However, frequently susceptibles are exposed simultaneously
to more than one disease, as is the case with different types of flu. In this
paper a population of susceptibles exposed to m diseases, m =1, 2, ..., is"

considered. We say that this population undergoes an m-dimensional simple

epidemic if the following six assumptions hold.
(1.1) At each poirt in tine 2t most one susceptible contracts a disease.
(1.2) Each susceptible contracts at most one disease.
(1.3) Once a susceptible contracts disease’r, r =1, ..., m, he remains conta-
gious for the duration of the epidemic.
(1.4) An infective individual (infcctive) with diszaserr =1, ..., m, can
~ transmit only that disease.
(1.5) All interactions betwesn a susceptible and an infective with a specified
disease are equally likely to result in an infection.
(1.6) Individuals reither join nor do they depart from the population.
For m = 1 the m-dimensional simple epidemic models reduce to the traditional
simple epidemics.
Let To denote the first time we have at least one infective with each of

the various diseases, and n the number of susseptibles at time To. The progress

of a m-dimensional simple epidemic among susceptibles is described by an m-dimen-

sional stochastic process X_(t) = [X_ ,(t),...,X _(t)], te[0,»). The components
-n n,l n,m
of §n(t) represent the nuiber of infectives with the respective diseases at

time t measured from To. In Section 2 a class of m-dimensional stochastic




processes is constructed. These processes describe the progress of the
epidemic models considered in the sequel.

The computation of state probabilities in epidemic models is of major
interest to researchers. In Section 3 we derive formulas for the joint and
marginal state probabilities: Pn,E(t) = P{§n(t)-§n(0)=l_t_}, and P_nM(t) =
P{xn,r(t)'xn,r(o)=k}’ where k = [kl""’km]’ k, Ky, oo kme{ 0,1,...},
r=1, ..., m, and te[0,»). -'rhese formulas are calculated without the tradi-
tional use of the differential equations associated with the state probabilities.
This is done by utilizing a formula for the distribution function (df)of a sum
of independent exponential random variables (rva's) given by Billard, Lacayo
and Langberg (BLL) (1980). .

The formulas for the state probabilities obtained in Section 3 are
rather complicated. To overcome this deficiency we derive very simple
approximations to the joint and marginal state probabilities when the initial

number of susceptibles: n, is sufficiently large. Let us denote Xn l,(0) by
»

br’ r=1, ..., m. In Section 4 it is proven that for all te(0,~), and

r=1, ..., n,

» |b +k_-1] -a_ b_t -a_t k

. - rTr TY T\ T

1.7) ﬂ Pn,_lg_(t) = rEI[ br-l ] (1-e ) ,
b_+k-1] -a b_t -a_t

. k

(1.8) ﬁ:.: Pn,k,r(t) = [ :r'l }e T e T )X
crt

(1.9) fri: Exn,r(t) = br(e -1), and that

] 2art art
(1.10) Lim Var{xn,r(t)} = br(e -e ).

o
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BLL (1979) consider a special class of m-dimensional simple epidemic
modals and name thenthe symmetric m-dimensional simple epidemics. These

models are a subclass of the ones considered by us, and are presented in

Section 2. BLL (1979) prove Statements (1.7) through (1.10) for the symmetric

models. The results proven in Section 4 generalize those obtained by BLL (1979).

Further, since the methods used by BLL do not apply to the more general case

S ST T M 1 T R, PO R e

considered by us a new way of attacking the problem is presented.

/

Finally we mention that the process gn(t) can be used to describe various

competative situations other than the m-dimensional simple epidemic.

Two such
competative situations are presented.

PR A L G

(I) In marketing, let Xn r(O) represent the number of customers who
3
initially own brand r of a product. Let n be the number of customers who at
the time we start %o observe do not possess the product. Then xn r(t) can
»

represent the random number of customers who own brand r at time t.

I e ey PP T T RIS ¥ s )

(I1) Consider an election campaign. Let xn r(0) denote the number of
»

electors who support party (or candidate) r at the beginning of the campaign;

T

and let n be the number of uncomnitted voters at that time. Then xn’r(t) can
describe the random number of voters that support party (or candidate) r at
time t.

The various brand manufacturers (political parties or candidates) are competing
for customers (voters) as diseases are "competing" for susceptibles. Thus,

the results obtained in this paper are of interest not only to researchers in

Epidemiology but as well to those who deal with various compotitive real life

situations.




2. Model Construction,

In this section we construct a class of m-dimensional stochastic
processes. These processes describe the progress of m-dimensional simple
epidemic models considered in the sequel.

. m
Some notation- is needed. Let X n(t:) = )al xn,r(t) , be the total number

of infectives at time t measured from To, te{0,»), and T X the kt—:l-‘- inter- .
Ty -
infection time defined as the time that elapses between the Xn (0)+k-1 and the

X_(0)+k infection, k = 1, ..., n. Further, let be a rva assuming values
n n,k

in the set{l,...,m} designating the disease responsible for the X (0)+k in- '

fection, k =1, ..., n, and let £
n,0

the time measured from To until the xn(0)+k infection, k=1, ..., n, Sn 0

= », and let I be the indicator function. In particular S is the
n,n+l = n,n

duration time of the m-dimensional simple epidemic.

_ . - vk
= 0, Finally, let Sn X X =1Tn,'q be

=0.

FPork=0, ..., n, =1, ..., m, and te(0,»), the follouing event equality

holds.

(2.1) {xn’r(t)-xn'r(o)*} =

Thus, to construct the process §n(t) it suffices to determine the df of the

random vector (rve) [‘l'n »&. ,q=1,...,n). Before determining the df of this

Q@ B,q
rve we introduce some more notation. Let J X be the index set of all in-
n,k,r ‘1
fectives with disease r at time TyeS,  \, and let C , . = Xn(0)¢xq’ol Ep,q")

be the number of infectives with disease r at time To’sn k-1° k=1,...,n,
. »

r=1, ..., m. Further, let <t l iK be a rva that describes the time measured
Spd,X
from the xn(0)+k-1 infection until the 19'- contagious individual causes the

-— - o ‘ 4 — T
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Xn(0)+k infection, i = 1, ..., xn(0)+k-1, k=1, ..., n, and let al,...,ume(o,-).

Throughout we assume that
T} [ ] =
(2.2) The conditional rva's {‘n,i,k|£n,o""'gn,k-l}' i=1,..,X (0)+k-1,
k=1, ..., n, are independent exponentially distributed, and that
-1 . _
(2.3) E{tn’i.klen’o,...,En.k_l}axz[ar(n-k+l)] for 1€Jn,k,r’ k=1, ..., n,
T=1, ..., M.

We are ready to determine the df of the rve [Tn =1,...,n]. The
]

q*%n,q’
following two lemmas are needed.

Lemma 2.1. Assume Conditions (2.2), (2.3) hold. Then for r = 1, ..., n,
and k=1, ..., n

(2.4) IR .P{En,ksr'gn,O""’En,k-l} =
-1
= °rpn,k,r[2?=l°tpn,k,L] :

Proof. Let k, r, be fixed. Then the event {En k=r} is equal to
»
n
{mln[rn’i’k:1eJn’k’r]<m1n[rn’i’k:ie;;lJn,k,zl}.
Lir
Consequently Statement (2.4) follows by Conditions (2.2), (2.3) and some
simple integral evaluations. ||

Let ll,...,ln e{1,...,m}, and LO = 0., Then

(2.5) P{En’q=£q,q=1,...,n} =
n
= qglp{‘n,q’lqlen,j"j'j'°"'°'q‘l}'
Thus, Statement (2.4) determines the df of the rve [En l""’En n]. E
» [ ] j

Lemma 2.2. Assume Conditions (2.2), (2.3) hold. Then the conditional
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rva's {Tn,qlgn,O""’En,q-l}’ qQ=1, ..., n, are independent exponentially

distributed with means respectively equal to [(n-q+1)({?_larcn a r)n'll'l
= "™

Proof. Note that Tn,q‘ nin [tn’i’q: i=1,...,xn(0)+k]. q=1, ..., n.

Consequently the result of the lemma follows by Conditions (2.2}, (2.3), and
some simple properties of exponential rva's. ||

Clearly Lemmas 2.1, 2.2 together determine the df of the rve
[Tn.qjcn.qpqal’ oo 'n]-

Although the transition rates of the various diseases are not used

explicitly they are presented for the sake of completeness.

Definition 2.3, The transition rate of disease r at time t, r =1, ..., m,
telo,=), is given by i e e e e e

s - =lpey =
tin 1 PIX, p(t+h)-X (&)=1]X (B)},

and is denoted by R(!n(t),r).

Finally it is shown that the transition rates of an m-dimensional simple
epidemic that satisfies Condition (2.2),as expected, determine uniquely the
epidemic. We need the following lemma.

Lemma 2.4. Assume Conditions (2.2), (2.3) hold. Then forr =1, ..., m,
and tel0,»)

1

(2.6) RQ(_n(t) ,f) = n a_ X_ _(t) (n-xn(t)+xn(0)).

T 'n,r

Proof. The results of the lenma clearly follow by the memoryless property
of exponential rva's [Barlow, Proschan (1975), p. 561, Equation (2.1) and
Conditions (2.2), (2.3). ||

Consequently we obtain for ieJ

n.k.r’ k=1, ..., n,andr =1, ,.,, m, that
v

s Y ST - BRI PR o 4 e o
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(207) B{Tn,i,k'gn,o....’En’k-l} =
= -1
C ke, 2R UG,y 10eeesCy y p 1)L,

Thus, m-dimensional simple epidemic models that satisfy Condition (2.2) are 4
uniquely determined by their transition rates.
BLL(1979) define a class of m-dimensional simple epidemic models and

name them the symmetric m-dimensional simple epidemics. Specifically a

¥ R Pl

population of susceptibles exposed to m diseases undergoes a symmetric

m-dimensional simple epidemic if Assumptions (1.1) through (1.6) hold, Condi-

tion (2.2) is satisfied, and the transition rate of disease r at time t,
r=1, ..., m, te[0,=), is given by

-1
(2.8) R(§n(t),r) = an xn,r(t)(n-xn(t)+xn(0)), where ac(0,«).
The transition rates given by Equation (2.6) reduce to those of Equation (2.8)
by selecting 8, =Gy ee. =0 = a. Thus, the symmetric m-dimensional simple 3

epidemic models are a particular case of the ones constructed in this section.

ol P,

tika icasdi FORN o .
T o PRIy T Ty e R U ML N AT Y b AR I R, -4 A,
a

For the symmetric m~dimensional simple epidemic we obtain from Lemma 2.2 that

the interinfection times: Th 12 oo Tn p® re independent exponential rva's.
» ]

. independent of the infection causes: §,.1» **+» &y 4 This special structure
» »

does not hold in general for m-dimensional simple epidemic models. BLL (1979)

use this special structure to prove Statements (1.7) through (1.10) for the
case of symaetric m-dimensional simple epidemic models. Their method of proof
does not apply to the models considered by us. To prove Statements (1.7)

through (1.10), for the models constructed in this section, a new way of

attacking the problem is needed. One such way is presented in Section 4. ;-
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3. Formulas for the State Probabilities. !
This section contains formulas for the joint and marginal state _
probabilities: Pn,Eﬁt) and'Pn’k’r(t), r=1, ..., m, te(0,»). These g
formulas are calculated without the traditional use of the differential %
equations associated with the state probabilities. Rather, we utilize an ]
!‘n
available formula for the distribution function of a sum of independent ex- g
ponential rva's., For the sake of completeness this formula is presented. ?
We need some notation. Let 9 Bys cees be positive real numbers, and ;
H
i
U,, Uy, ..., be iid exponential rva's with mean equal to one. %
Theorem 3.1. [BLL(1930), Theorem 2]. Let M be a positive integer, i
M-1 8 m Jg*l ¢
A0 = (-1) q.andAMu)=(n I me? ,j=Mu+1, ]
q=1 Jyreeotip=i =1 1
M+ 2, ... . Then

(3.1) P{Z(Fle qut} = ;
S NPT ]
= BauUD 7RG Ct), e, ;
To aid in computing the joint and marginal state probabilities some more E
notation is introduced. Let £,, £,, ..., be a sequence of positive integers ;
—e t

assuming values in the set {1,...,m}, fg.- 0, and let s(k) = Zz_lki. Further, -

s(k) B

let B(_) = 1,...,_5(-) quo I(L =r)-k »r=1,...,m}, and A(r,j,k) = 2

{[zl’”"L 1 thp-ola =r)=k} for j =k, k+1, ..., r= 1, ..., m, and ' ‘

k=0, 1, ... . By Equation (2.1) we obtain for tc(0,*) and r = 1, ..., m, that -
3.2 =
3.2) P ()

) uf.....z,(y:["sn-scg“‘sn 21l g0 4002 ) -

{En q'tq,Q'o,....S(D) I ([ll....,ls.(y]eB(Q].




- S AR bt s,

(3-3) Pn,k,r(t) =

n e .
) z. z LP{Sn’JSt<Sn’j*1|gn,q=Lq.q=0,---,J} )
j=k Cll,...,Lj]
e P = 20,..0,) I A j ,k .
{6 28qe970s - 3Ly, 0. 25 1eA(r,5,K)) ]

(t) it suffices to evaluate P{E n,q Lq,q-o,...,k}

,q30,...,k} for k =0, ..., n. Let u, = 1, and

Thus, to compute P k(t:) and Pn,k,r

and P{S_ n,kSt<Sy k+1|€nq q

Yq * zr=l°r[br ):g,ol(lj r)l, q=1, 2, ... . For simplicity in notation the

dependence of uq on £.,..., Lq-l’ qQ=1, 2, ..., is suppressed. First

P{¢g n,q=£q,q=0,. ..,k} is evaluated.

--..Lemma 3.2. .Let ke{0,1,..}, and d_ = anol(l =1).
Then

(3.4) P{En,q=£q,q=0,...,k} =

“m d b +d -1l k
ndte - T HlERu 13,
r=1 * r q=0 a
k
Proof. Note that P{En.q=f-q,q=0.....k} = ql:lP{;n,qdntn.jdj.J=0.....q-1}.

Consequently Statement (3.4) follows by Equation (2.4). ||

Next P{S St<sn l.(+l|€n q‘l’q »q=0,...,k} is computed. Let fq(el"“’eq’t) be

the density function of the rva stlej o= 1,2, ... . Thenfork=0,1, ...,

and te(0,~).

BRI, 6 P e o

)
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v

k -1 k+1 1
. P 8~ 'l st<
(3.5) {Z =l'q q Zq 17q q

-1
k+l fk+1 (91 sees ’ek*l ,t).

Thus, by Lemma 2.2 and Theorem 3.1 for k = 0, 1, ..., and te(0,=)

(3.6) p{sn,ksusn,h1 |en’q=£q,q=o, ceo k) =

4

-u t

e 1 . k=20

-1.j ; n j+l _ I :
° o ogoden™ Ionpd sen™anTe iy ken
L Jyteetig=i o= q=1
. s k+l j +1

-1 k+l+j_j-1... - q

N G b G-y, Y 1sk<n
k+l4j=k+2 ;14-... Jk+1+J q=1 q

k+l . e e e .
21 k-1

Lt (k) Ny

‘ k+1 g=1 &

The formulas for the joint and marginal state probabilities are obtained from
Equations (3.2) and (3.3) by subtitution. Note that, as expected, the exact

\
1
|
1
formulas for the joint and marginal state probabilities are rather complicated. . {

o i i SN A L i,
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4. Asymptotic Approximations.

In this section we present the asymptotic approximations of the joint and
marginal state probabilities and some related moments. All limits are calcu-
lated as n + @,

First it is shown that the joint and marginal state probabilities satisfy

Statements (1.7) and (1.8). Three lemmas are needed. Throughout these lemmas

= = 3~ 3 = - m
let 23. z:-larzg-OI(Lj r), and as ix Section 3 let ¥y 1, and "q vq+ r=1°rbr’
1

» 2, «.. o For simplicity we suppress the dependence of vq and uq on the
sequence £, 12, cee o

k
Lemma 4.1. Let ke{0,1,...}, and d_ = Xq=01(£q=r), r=1, ..., m. Then

4.1) £im P{En q-lq,q 0,...,k} =

m d_1b_+d_-1 k
n d !c r ; : [Ou ]
r=1 q=0 4

Proof. The desired result follows clearly from Lemma 3.2, ||
Lemma 4.2. Let ke{1,2,...}. Then the conditional rva's

. s . k -1
{Sn,k|:n’q=£q,q=o,...,k-l} converge in distribution to the rva anluq U.-

Proof. To prove the desired result it suffices, by the Cramer-Vold device
[Billingsley (1968), p. 49], to show that the conditional rve's

{[Tn 1,...,'l‘n leE ’q=£q ,a=0,...,k-1} converge in distribution to the rve

[vl 1,....u Uk]' The preceding statement follows by Lemma 2.2. ||
To prove the result of the next lemma we need [Rényi (1970), p. 203],

the following

-2t

cy@e T,

dP{[ a1 qs‘r} = £ (A, enat) =

(4.2)

qsl qsl

% AT e

Ry




12

N N
where Al’ "’)‘N' aro distinct positive real numbers and C (q) s [0 a2 )]
ng J jsl J q
itn

q‘ 1. ..l‘ N.

Lemma 4.3. Let kl, ceey k e{0,1,...}, k = [kl,...,km], and H(t) =

n X s(_)+1
(mKk_! ) ()1, ] cn v,)T, tef0,=). Th
i j
n ~atk
(4.3) H(t) = nl(x-e Ty T, telo,=).
r=

Proof. The proof is by an induction argument on k.

First note that Statement (4.3) holds for k = 1. Assume Statement (4.3) holds

for k - 1 (k>1). Let Yq * n §=2 Zr-l rx(t =r), q=2,3, ..., and B(r,k) =

{[r,lz. vee ,Lk]: [Zl yeoe ’Zk JeB(k)}. Now by the induction assumption

(4.4)

dH(e) |

i dt g
' k. -lm K. ~y.t s(k)+l ]
- g k+l 'j -1
i "2 kn[(k 1).0:r nkclz Z= (n (y,-v.)) " = g
% r=1° jug 1 1 B(r,k) i=2 i=2 i)
T itr i) i
| ¢
L5 -a_t atmn -a_t k m -a_t k i
i -1 r T\T r, r
3 g (e ") e H(-e T)T=d{np-e "))
r 1 r’r r=1 t r=1
N ,-1 At
By Equation (4.2) P{anlk U st} = I-qul).q CN(q)e . Since Up» Mgy oo, are {
: . distinct, we conclude by (4.2) that H(0) = 0. Consequently Statement (4.3) for 3 §
;;.

k follows by integrating both sides of Equation (4.4). ||

P e AL

We are now ready to prove Statement (1.7).

Theorem 4.4. Let te(0,»). Then

m {b +k -1} -a b t -a_tk .
Lim P k(t) = 1 [ ; : ]e r
R, r=l| “r”
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Proof. By Equation (3.2) and Lemmas 4.1, 4.2 we obtain that

: o s(k)+1 -1, , ,

(¢.5) CLR NG [%1 £ ) cp{zq,l wlu < t<zq_f> ug'ug)
poresy s

L B LELE ]} s _)
., ,

L4 RO ¢ 3 N 1 {n
1r=1 ror t b -1

L % ML), .. o8 JeBK)) ]
q'

By Equations (3.5) and (4.2)
b_+k_-1} -a_ b t
(4.6) Lin Py 4 (8) = { 1[ b f }e T }H(t).
r=s

Consequently the desired result follows by Lemma 4.3. ||
For the sake of completeness we present the following
Definition 4.5. We say that W is a negative binomial rva with parameters

2¢{1,2,...} and pe(0,1), and write WWNB(a,p) if P{W=k) .[uk 1]

P (I‘P) » k=0 1,-.- o
Next Statement (1.8) is proven. Let X(t]) = [X (t),...,x (t)], te[0,=) be a

collection of rve's with independent components such that X (0) = b and

-at
xr(t)NNB(br,e ), r=1, ..., n, te(0,»). Since En(t) and X(t) are discrete
rve's we obtain by Theorem 4.4 and a well known result {Billingsley (1968), p. 161,

that

Cor~Viarv A .6, Let te(0,»). Then the rve'’s !n(t) converge in distribution
to the rve X(t).

By the Cramer-%Wold device and Corollary 4.6 we conclude

Corollary 4.7. Let te(0,»}) and r =1, ..., m. Then x“(t) and )('l r(t)
»
converge in distribution to X:glxr(t) and xr(t). respectively.
By Corollary 4.7 we conclude that Statement (1.8) holds.

Theorem 4.3. let te(0,») and r =1, ..., m. Then
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b_+k-1| -a b t -a_t
_ir TT r .k
Lim Pn,k,r(t) = [ br-l ]e (1-e ).

To obtain Statements (1.9) and (1.10) the following two lemmas are needed.

Lemma 4.9. Let k, ae{1,2,...} and [o ] be the

a+k-1,1""’°a0k-1,a+k-1

order statistic of a sample of size a + k - 1 taken from the population U, -

Then zzgl[a+q-1)'luq and °a+k-1,k are identically distributed.

Proof. The spacings 0.,y 1 17 %4k.1,2 ~ %ask-1,1" *°** %ask-1,k ~ %aek-1,k-1’

are independent exponential rva's with means respectively equal to (a+k-l)'l,
(ask-2)"1, ..., b~!, [Barlow-Proschan (1975), p. 591. iience Z:sl(a+q-1)'luq

k
and zqal (°a+k-1 ,k-q+1-°a+k-1 9k'q

Consequently the desired result follows. ||

) are equal in distribution, (°a+k-1,0'°)’

Lemma 4.10. Let t, Be(0,»), and r = 1, ..., m. Then &im E[Xn(t)}8 =
E(X(£))® and fim BIX__(£)® = EX(e))P.
»
Proof. By Corollary 4.7 to prove the results of the theorem it suffices,

[Chung(1974), p. 951, to show that Sup E(X_ ()}**!, and sup E(x_(£)}**! are
n ’ n

finite. Since, 0sX . (t)sX (t), it is enough to show that Sup E{Xn(t)}3'1<-.
’ n

Next we prove the preceding statement. Let b = g , and a = z:=1°r’

r=1 r
Then by Lemmas 2.2 and 4.9 for all ne{1,2,...}, P{xn(t)-btk} < P{Zk_lq'luqsabt} -

= (l-e‘at)k’ k = o, l, vee o Further fol' .11 n‘{l.z’oo.), E{xn(t))8+l =

= (8+41)f"(z+b)® P{X_(t)-b>z}dz < (B+1)X-§.o(q+b¢l)8(l-erabt)q < =, Consequently
o -

the desired results follow. ||

Clearly from Lemma 4.10 we obtain Statements (1.9) and (1.10).

CEN NV SO R T T T

Theorem 4.11. Let te(0,»), and r = 1, ..., m. Then (i) {fim sxn r(t) s
crt . 2¢rt art ’
» br(° -1), and (ii) Zlim Var(xn.r(t)} =Db_(e - ).

Finally from Corollary 4.7 and Lemma 4.10 we obtain for te(0,») that




-
;!
15
' .t )
(4.7) fim EX (t) = Z:albr(e -1), and that
’ 2a.t a_t p
. _ r _r r
(4.8) Zim Var{Xn(t)} = Leoibp(e -e ).

T
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(1)

2)

(3)

(4)
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