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The Convergence Of The
State Probabilities In A Class Of

m-Dimensional Simple Epidemic Models

by

Herbert Lacayo and Naftali A. Langberg

ABSTRACT

A population of susceptible individuals exposed to m contagious diseases

is considered. The progress of this epidemic among individuals is modeled by

an m-dimensional stochastic progress. The components of this process represent

the number of infective individuals with the respective diseases at ti t.

A class of m-dimensional stochastic processes is constructed. These

processes describe the progress of the epidemic models considered in the

sequel. Exact and approximate formulas for the joint and marginal state prob-

abilities of these models are obtained. It is shown that the approximate

formulas are very simple functions of time while, the derivation of the exact

formulas involve tedious computations.

Key-words: m-dimensional simple epidemics and stochastic processes,

exponential and negative binomial random variables, convergence in distribution.
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1. Introduction and Sumoary.

In a simple epidemic situation we assume that a population of susceptible

individuals (susc.otiblcs) is exposed only to one contagious disease (disease)

(Bailey (1975)3. However, frequently susceptibles are exposed simultaneously

to more than one disease, as is the case with different types of flu. In this

paper a population of susceptibles exposed to m diseases, m a 1, 2, ...' is

considered. We say that this population undergoes an m-dimensional simple

epidemic if the following six assumptions hold.

(1.1) At each point in time at most one susceptible contracts a disease.

(1.2) Each susceptible contracts at most one disease.

(1^.3) Once a suseptibfe contracts'disease'r, "r'= 1, ..., m, he remains conta-

gious for the duration of the epidemic.

(1.4) An infective individual (infective) with c -se r r = 1, ... , m, can

transmit only that disease.

(1.5) All interactions betwesn a susceptible and an infective with a specified

disease are equally likely to result in an infection.

(1.6) Individuals neither join nor do they depart from the population.

For m = 1 the m-dimensional simple epidemic models reduce to the traditional

simple epidemics.

Let T denote the first time we have at least one infective with each of

the various diseases, and n the number of susseptibles at time T0 . The progress

of a m-dimensional simple epidemic among susceptibles is described by an m-dimen-

sional stochastic process X (t) -( X nl(t),..,X n,m(t)], tce[O,-). The components

of X (t) represent the number of infectives with the respective diseases at

time t measured from T0 . In Section 2 a class of m-dimensional stochastic

_ _ _ _ _ A
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processes is constructed. These processes describe the progress of the

epidemic models considered in the sequel.

The computation of state probabilities in epidemic models is of major

interest to researchers. In Section 3 we derive formulas for the joint and

marginal state probabilities: Pnk(t) a P(X (t)-X (O)=k), and Pn kr(t) =

P(Xn,r (t)-Xn,r(0)=k), where k - l'""km' k, kl, ..., km 0,1,...),

r = 1, ... , m, and tE[O,-). These formulas are calculated without the tradi-

tional use of the differential equations associated with the state probabilities.

This is done by utilizing a formula for the distribution function (dC)of a sum

of independent exponential random variables (rva's) given by Billard, Lacayo

and Langberg (ELL) (1980).

The formulas for the state probabilities obtained in Section 3 are

rather complicated. To overcome this deficiency we derive very simple

approximations to the joint and marginal state probabilities when the initial

number of susceptibles: n, is sufficiently large. Let us denote X n,r(0) by

bri r = 1, ..., m. In Section 4 it is proven that for all te(O,-), and

r =,.0.., m,

= Mbr+k r-1 ear IeOt
(1.7) tim, ( ,kt)= ilL brrt(l-e •

U+ r r j

tim (t) brk1 "brt art k

a t
(1.9) tim EX (t) = b r(e -1), and that

n,r

(1.10) tim VarX (t) b art
n,r r

,. "-%- . -.-*
-

.- -
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BLL (1979) consider a special class of m-dimensional simple epidemic

nod-ls and name them the symmetric m-dimensional simple epidemics. These

models are a subclass of the ones considered by us, and are presented in

Section 2. ELL (1979) prove Statements (1.7) through (1.10) for the symmetric

models. The results proven in Section 4 generalize those obtained by BLL (1979).

Further, since the methods used by BLL do not apply to the more general case

considered by us a new way of attacking the problem is presented.

Finally we mention that the process X(t) can be used to describe various

competative situations other than the m-dimensional simple epidemic. Two such

competative situations are presented.

(I) In marketing, let X nr(0) represent the number of customers who

initially own brand r of a product. Let n be the number of customers who at

the time we start to observe do not possess the product. Then Xn r (t) can

represent the random number of customers who own brand r at time t.

(II) Consider an election campaign. Let X n,r(0) denote the number of

electors who support party (or candidate) r at the beginning of the campaign;

and let n be the number of uncomitted voters at that time. Then X nrt) can

describe the random number of voters that support party (or candidate) r at

time t.

The various brand manufacturers (political parties or candidates) are competing

for customers (voters) as diseases are "competing" for susceptibles. Thus,

the results obtained in this paper are of interest not only to researchers in

Epidemiology but as well to those who deal with various compotitive real life

situations.
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2. Model Construction.

In this section we construct a class of rn-dimensional stochastic

processes. These processes describe the progress of rn-dimensional simple

epidemic models considered in the sequel.

Some notation- is needed. Let Xnt m X.Xr(t), be the total number
th

of infectives at time t measured from To, tc (0-) * and T the k- inter-

infection time defined as the time that elapses between the X (0)+k-l and the

X n (0)+k infection, k a 1, ... , n. Further, let gn k be a rva assuming values

in the set~l,...,m) designating the disease responsible for the X n (0)k in-

fection, kc - 1, ... , n. and let & 0= 0. Finally, let Sn = kT ben . 0 nk q-l n~q

the time measured from T0until the Xn (0)+k infection, k = 1, .... n. S -O 0,

Snn~l u ,and let I be the indicator function. In particular Sn is the

duration time ~of the in-dimensional simple epidemic.

For k =0, ... , n, r - 1, O.., in. and tc(0,-), the follow~ing event equality

holds.

(2.1) {Xn (t)-Xn (0)-k)=

*q( Sn q't'Sn,q+l1JI jmrn.

Thus, to construct the process X n t) it suffices to determine the df of the

random vector (rre) [F , ,qsl,...,n3. Before determining the df of this
n,q tn,q

rye we introduce some more notation. Let J be the index set of all in-
C~~ k 4 ()Il( r

fectives with disease T at time a0Sk.l aX let quO nur

be the number of infectives with disease r at time T7 t.
0 n,k-l'k

r m ,..,i. Further, let T be a rye that describes the time measured

from the Xn (0)+k-l infection until the iA- contagious individual causes the

........................
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X n(O)+k infection, i -1..,Xn (O)+k-1, k -1, .. ,n, and let C(.-

Throughout we assume that

(2.2) The conditional rva's (Tnik 'tnO'***'tnk..1j' i is1 ... , IX, (0).k-1,

k = 1, ... , n, are independent exponentially distributed, and that

(2.3) E(T niklcnOP *n,k-IlI- nEr (n-kl)J- for icE n,k,r-' k = 1, ... $,n
r = 1, .0P M.

We are ready to determine the df of the rye ET n, I ,q=1,...,n]. The

following two lemas are needed.

Lemma 2.1. Assume Conditions (2.2), (2.3) hold. Then for r 1 , M.,rn

and k w 1, ... I n

(2.4) '(k r , ., -nk n,O1 n,k-l

a r C n,r=lLCnkt*'-

Proof. Let k, r, be fixed. Then the event { enku=r) is equal to
m

(minCr :ic J.1 minrr iEU J 1

O~r

Consequently Statement (2.4) follows by Conditions (2.2), (2.3) and some

simple integral evaluations. j

Lettst..,L (lp... sm), and t 0= 0. Then

(2.5) d Pl..,n
n~q q'
n

q:,l(nq tq1,jtjJ I..p-)

Thus, Statement (2.4) determines the df of the rye CC 1..F .n,19 n,n
Leimma 2.2. Assume Conditions (2.2), (2.3) hold. Then the conditional

7 77;111111
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rva's Tn n  .  l , q = 1, ... , n, are independent exponentially

distributed with means respectively equal to E(n-q+l)( m crCn )n -l]l
Ir=l rn,q,r

Proof. Note that Tn= n min [T niq: i, ...,X n(0).k, q = 1, ..., n.

Consequently the result of the lemma follows by Conditions (2.2), (2.3), and

some simple properties of exponential rva's. II
Clearly Lemmas 2.1, 2.2 together determine the df of the rye

[Tn,q 'n~q'qMl"...*,h.

Although the transition rates of the various diseases are not used

explicitly they are presented for the sake of completeness.

Definition 2.3. The transition rate of disease r at tim t, r = 1, ... , m,

te[o,-), is given by . ..

tim h-1 P(Xn r (t+h)-Xn r (t)=1IX (t)),
h+O+

and is denoted by R(Xn(t),r).

Finally it is shown that the transition rates of an m-dimensional simple

epidemic that satisfies Condition (2.2),as expected, determine uniquely the

epidemic. We need the following lemma.

Lemma 2.4. Assume Conditions (2.2), (2.3) hold. Then for r = 1, ... , m,

and tce[O,m)

(2.6) O(~(t),r) = n'lar Xn~r(t) (n-Xn(t)+Xn(O)).

Proof. The results of the lemma clearly follow by the memoryless property

of exponential rva's [Barlow, Proschan (1975), p. 56J, Equation (2.1) and

Conditions (2.2), (2.3). II
Consequently we obtain for iJn,k,r, k = 1, ... , n, and r 1 1, ... , ma, that
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(2.7) EITn,i,k 'n,O.'*,n,k-1I =

= Cn,k,rR (Cn,k, I " C~akmr)m -I

Thus, m-dimensional simple epidemic models that satisfy Condition (2.2) are

uniquely determined by their transition rates.

BLL(1979) define a class of m-dimensional simple epidemic models and

name them the symmetric m-dimensional simple epidemics. Specifically a

population of susceptibles exposed to a diseases undergoes a symmetric

m-dimensional simple epidemic if Assumptions (1.1) through (1.6) hold, Condi-

tion (2.2) is satisfied, and the transition rate of disease r at time t,

r = 1, ... , m, te[o,-), is given by
(2.8) R(Xn (t),r) = an 1 X n'r(t)(n-Xn (t)+Xn (0)), where ae(O,-).

The transition rates given by Equation (2.6) reduce to those of Equation (2.8)

by selecting a = a ama a. Thus, the symmetric m-dimensional simple

epidemic models are a particular case of the ones constructed in this section.

For the symmetric m-dimensional simple epidemic we obtain from Lemma 2.2 that

the interinfection times: T -... Tn, are independent exponential rva's.n~nl'
independent of the infection causes: nl' "-- n,n" This special structure

does not hold in general for m-dimensional simple epidemic models. BLL (1979)

use this special structure to prove Statements (1.7) through (1.10) for the

case of symetric a-dimensional simple epidemic models. Their method of proof

does not apply to the models considered by us. To prove Statements (1.7)

through (1.10), for the models constructed in this section, a new way of

attacking the problem is needed. One such way is presented in Section 4.



3. Formulas for the State Probabilities.

This section contains formulas for the joint and marginal state

probabilities: Pn,k(t) andPn,kr(t), r = MR ... , m, te(O,). These

formulas are calculated without the traditional use of the differential

equations associated with the state probabilities. Rather, we utilize an

available formula for the distribution function of a sum of independent ex-

ponential rva's. For the sake of completeness this formula is presented.

We need some notation. Let 8l, 02' ... , be positive real numbers, and

U1 , U2, ... , be iid exponential rva's with mean equal to one.

Theorem 3.1. [BLL(1980), Theorem 2). Let M be a positive integer,
1 Mm jq+1

AMQI) = (-1)M- W m and AM(j) = (-1) m  , j =1 1, q=1 q' l+ . ..+ jm = j q=l

N1 - 2, .... Then

(3.1) P{ q=leqlUq~t } =

~~(j -A(J) -t) (.,o)

To aid in computing the joint and marginal state probabilities some more

notation is introduced. Let tlI, 2, ... , be a sequence of positive integers

assuming values in the set (it...,m, - 0, and let s(k) = Mik Fur
asuig0 ' ralkr Futher,

let B(kD" (El,...,Y5(ki: QI(t •r)•kr,r~l...,m} , and A(rpj,k) a

(I,...,Zjh I(t -r)=kJ for j u k, k + I, ... , r = a, .... , m, and1 3 qaO q

k a 0, 1, .... By Equation (2.1) we obtain for t(O,,) and r a I, ... , m, that

(3.2) Pn,k(t).

IN(PS nsDSt-CS U~~ +1 t #q0 .*. ,s (k)
[ n,s) n,sCk).l (nqq

* P(~~ = q q O . . ,s* I ((L 1,... ,ts(q.)J]BQ(_)],".
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(3.3) Pnrt =

I X 'P{S .:tcSn j t ,q=qO,...,9j}
j-k Ctl1 ....LJ nt q

*PUF t q-O,...,j)I([ts.. at- keAr,j k))]1.
n,q ql'';

Thus, to compute P nk~t) and Pn ~(t) it suffices to evaluate P{En =tq q=0,...,kl

and PISSt<Sn. J -t ,q-0,...,k) for k z: 0, ... , n. Let 110 = 1, and

mj X aCb +jq-1t0  r q a 1, 2, For simplicity in notation t;1e

dependence of v q on t0 p,...,# t q_. q m Is 2, .. ,is suppressed. First

P(C n t q q=o,...,k) is evaluated.

n~q q

Then

(3.4) PIC nqt qq=O,...,k)

Sdr r dr!z[kO~~
d~ r qa

Proof. Note that PIE a ,q=,...,k) 1P~ = ~.t,=,.,-)
n,q q1 qPl n,q tqln,j3 3

Consequently Statement (3.4) follows by Equation (2.4). J
Next P(S %,kt<Sn k't~ - qO.0.k) is computed. Let f q e 01qt be

the density function of the rva !Il8-1 Uj. q -1, 2$ . Then for k a0, 1,

and tECO,-).
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Iquiq q q-1 q q

Thus. by Lemmna 2.2 and Theorem 3.1 for k - 0, 1, .. ,and tc(O,oe)

(3.6) Pis :gt<S p~. q=O,...,k)
n ,k n k+ll n,q q

i -)n ~ pq q IInI(n)'t Pq kC n
jn j1 +..+jn -j ql q=1

-Ik+l.Jj j1 kel j +1
Ie ~e L~Alyjl+...,jklj q

-1 k (k kelliii

*Iik~t~k.)q=lq

The formulas for the joint and marginal state probabilities are obtained from

Equations (3.3) and (3.3) by subtitution. Note that, as expected, the, exact

formulas for the joint and marginal state probabilities are rather complicated.
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4. Asymptotic. Approximations.

In this section we present the asymptotic approximations of the joint and

marginal state probabilities and some related moments. All limits are calcu-

lated as n .

First it is shown that the joint and marginal state probabilities satisfy

Statements (1.7) and (1.8). Three lemmas are needed. Throughout these lemmas

let v = IM- ar I(L.-r), and as in Section 3 let u = 1. and P. - v *1m .L bq rulrJ=0 J q r=l " r'
q = 1, 2# ... . For simplicity we suppress the dependence of vq and vq on tb-

sequcnce t1 , .2 ..

Lemma 4.1. Let ke(0,1,...}, and d r  I(tq-r)r .r 1. Then

(4.1) tim P(i n,q=tqq=O,...,k} =

_[m drfbr~d-=/n d b -1 ki _ 1

rr l  tr -lq=
:r~ldr!a r rbr-1E J3~=

Proof. The desired result follows clearly from Lemma 3.2. II
Lemma 4.2. Let k{1,2...}. Then the conditional rva's

(Sn k1Cn,q=t ,q=O,...,k-l} converge in distribution to the rva Ek -1U .nq- q q

Proof. To prove the desired result it suffices, by the Cramer-Wold device

[Billingsley (1968), p. 49), to show that the conditional rye's

({T ,...,Tn k)1n= ,q=O,...,k-I) converge in distribution to the rye

W, lul, ... , ,Suk . The preceding statement follows by Lemma 2.2. II

To prove the result of the next lemma we need [Renyi (1970), p. 203J,

the following
-A

dPq N=.X,'u <s) Y1. £N I...,XN N = q e-q

(4.2) -qPN q q N 4-= N q

'4

. .
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N N
where AV... P Nx are distinct positive real numbers and C (q) L [ A ] (A.-A )- ( x

jN N jul j q

q = 1 ... , N.

Lemma 4.3. Let kip ... , k e(Ol,,...}, k - kP...,k m, and H(t)=
m.. .t s(9+

( 11 k !a r) T X'SL i+e -Jts(I ]-1
Rl k r _ r +" e R (vi-v ) ,tc[O,-). Then

r=1 B(h) i=
ii',

m -art k r(4.3) R1(t) = -e (-e r r

r=l

Proof. The proof is by an induction argument on k.

First note that Statement (4.3) holds for k = 1. Assume Statement (4.3) holds

for k - I (I=>r). Let Yq M a I(Lq r), q a 2, 3, ... , and B(r,_) =

(Er,t 2' ..... , ] BQk)}. Now by the induction assumption

(4.4) d . |)

dt
a -art k_-l m k. -y.t s(k)+l

e k (k r- ).% i k C& z k i -
r= r r i=l i i B(r,k) I 2 i=2 3

iOr -i~j

-a t . a t m -a tk m -art k
.= Ikr ar (l-e r e r (1 r = d (IT (1-e r }

rul dt ral

~~1N A1 N -1 -Aq
By Equation (4.2) Pq lq qst} Aq=AqlC(q)e - qt . Since u1  " are

distinct, we conclude by (4.2) that H(O) - 0. Consequently Statement (4.3) for

k follows by integrating both sides of Equation (4.4). (I

We are now ready to prove Statement (1.7).

Theorem 4.4. Let tc(O,m). Then

m fb rkr-11 -abrt -at kr
U I

'i nk()-rlrk~ le~

C'--!~a
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Proof. By Equation (3.2) and Lemmas 4.1, 4.2 we obtain that

r rQ 1

r , r I I 1 P

By Equations (3.5) and (4.2)

M r fb..k -l -abrtjHt)
(4.6) tim P n k~ M lr 1b;1 _ bt11t

Consequently the desired result follows by Lemma 4.3. II

For the sake of completeness we present the following

Definition 4.5. We say that It is a negative binomial rva with parameters

a+k-1 a k
ae(3,2,.... and pc(O,l), and write WNB(a,p) if P(W=k) a k I k ....

Next Statement (1.8) is proven. Let X(t) = CXl(t),...,XM(t)], td[O,') be a

collection of rye's with independent components such that Xr (0) - br, and
-0 t

X r (t)"uNB(bt.,e r ), r = 1, ... , a, tc(O,-). Since L (t) and X(t) are discrete

rye's we obtain by Theorem 4.4 and a well known result [Billingsley (1968), p. 16:,

that

Cor-11*rv A.6. Let t(O,-). Then the rye's X (t) converge in distribution

to the rye X(t).

By the Cramer-Wold device and Corollary 4.6 we conclude

Corollary 4.7. Let tc(O,-) and r - 1, ... , M. Then X1(t) and Xnr(t)

convergin distrbuton to rMlxt) and Xr(t), respectively.

By Corollary 4.7 we conclude that Statement (1.8) holds.

Theorem 4.8. Let te(Om) and r 1 , ..., a. Then

o..-, 7 - -',.4
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~~~ Ct [rk-lJ-tbrt (l- T

n,,r b - -

To obtain Statements (l.9)) and (1.10) the following two lemmas are needed.

Lemma 4.9. Let k, ae{l,2,...) and [oa+k ll,.***,a~kl,a+k-I I be the

order statistic of a sample of size a . k - I taken from the population U1 .

Then lk (a+q-l)-I U and 0a.k-lk are identically distributed.
qul q k-k

Proof. The spacings a~k-ll' aek-l,2 " a ak-l,l" " la~k-lk - fa~k-lk-l'

are independent exponential rva's with means respectively equal to (aek-l)-1

(a~k-2)- , ... , b-1, [Barlow-Proschan (197S), p. 59]. Hence qk(a~q-1)-lu

and ql(a~ klk. q l- a~klk) are equal in distribution, (aakl,0 0).

Consequently the desired result follows.

Lemma 4.10. Let t, (0.a), and r = 1, ... , -n. Then im E(Xn (t))1 -

E(X(t))o and im E(Xn,r(t)) a E{X(t))}.

Proof. By Corollary 4.7 to prove the results of the theorem it suffices,

fChung(1974), p. 95), to show that Sup E(X n,r(t)}0 1 , and Sup E{Xn(t))}*l are
n n 8.1

finite. Since, OX n,r(t)Xn (t), it is enough to show that Sup E(Xn(t)}l-.
n

Next we prove the preceding statement. Let b = r br and r= r

Then by Lemas 2.2 and 4.9 for all ne{l,2,...j, P{Xn(t)-bJ} P(Ik1qRq 1bt)
k n  (t)-bk s qP qs

-obt k +
U (l-e -  

, k = 0, 1, . Further for all ne{l,2,...), E(X (t))

a (B+l)t(z+b)B PXn (t)-b>zldz : (0+l) o(q+bl)O(l-8 @bt)q c -. Consequently
~0

the desired results follow. fl

Clearly from Leama 4.10 we obtain Statements (1.9) and (1.10).

Theorem 4.11. Let tc(O,-), and r a , ... , .. Then (i) tim EXn  (t) •ea, 2at art n,r

• br (e -), and (ii) tin Var(X n,r(t)) - b r(e -e )

Finally from Corollary 4.7 and Lemma 4.10 we obtain for te(O.-) that

It



(4.7) tim EX n(t) = r ibr(eort-1), and that

2art a t
(4.8) tim Var{X (t) = i (e -e k

n r~l
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