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ABSTRACT

The research that has been supported by Air Force Research Grant *-

AFOSR 75-2839 is described in the Final Scientific Report. This grant was

initiated on June t, 1975 and ended on May 31, 1980. This report provides a

comprehensive review of accomplishments and a chronological bibliography of

all publications resulting from the support provided by the grant.
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I. Objectives and Summary of the Research

In the proposal that led to this research grant, the objective of the

research was summarized in the following manner.

TL
"The proposed study will consider the general problem of optimal input

signal synthesis for dynamic systems. Different optimality criteria are to be

investigated and compared. The primary emphasis in the study shall be on the

development of feedback control policies for specific criteria. The improve-

ments possible through the use of suitably chosen input signals will be inves-

tigated.p

With these objectives, a large variety of investigations have been pur-

sued. Detailed presentations of much of this work is described in the papers

listed in Section 2 of this Final Report and shall not be repeated here. Let

us summarize the major characteristics of these studies.

1. Optimality criteria. A substantial portion of the effort during the

grant period was directed to the investigation of interrelationships between

different performance indices. Particular emphasis was placed on the Bhatta-

charyya distance and on different mappings of the Fisher information matrix.

The results of these studies are described in the doctoral dissertation by

Upodhyaya and in papers (1, 5, 8, 9) as listed in Section 3.

2. Feedback policies. The study of different performance criteria

included the comparison of open-loop and closed-loop control policies. These

studies initially produced surprising and disappointing results. In particu-

lar, little performance improvement was observed for feedback policies. It is



only recently that a better understanding of these results has been obtained.

These results are discussed in Section 2 of this report.

3. Interaction of input signals and identification algorithms. Numeri-

cal studies indicated #considerable interaction between the performance of

"optimal" input signals and the specific identification algorithm. These

interactions led to inconsistent results that maae general conclusions diffi-

cult to obtain. These inconsistencies led to the consideration of the problem

from a general perspective which has yielded important insights into the input

signal synthesis/system identification/stochastic control problem. These

results, which have become available during the last year of the grant, are

described in Section 2. This work appears to more than fulfill the objectives

of the results and will continue during the coming year.

4. Dual control considerations. It was observed in the original propo-

sal that the design of input signals can be regarded as a restricted version

of the stochastic control problem. That is, the control of a stochastic sys-

ten has two general features. Certainly, the control must achieve some

prescribed control objective for the system. But, also, it generally must

induce some "learning" about system parameters and variables. These features

have come to be known as "dual aspects" of stochastic control theory. Our

studies have concentrated on the learning aspect but some investigations of

the &,neral stochastic control problem were undertaken. These studies are

described in papers (2, 11, 12, 15, 18).

5. Numerical optimization methodology. The formulation of optimal input

signal synthesis problems leads to complex dynamic optimization problems which

must be solved numerically. This requirement led to some work involving

optimization procedures suitable for solving large-scale problems that have
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arisen in the course of this research. This work is described in the doctoral

dissertation by Koble and in papers (3, 4, 6, 7, 16).

2. A Unifying Approach to the Analysis of the Input Signal Synthesis Problem

Published results supported by this grant have been summarized in the

preceding paragraphs. This work leaves many unanswered questions. During the

final year of the grant period, attention has been directed to examining the

problem from a general perspective with the goal of obtaining insights into

these difficult questions. We feel that this objective has been achieved

although considerable work remains. This effort will be completed during the

coming year with the completion of the doctoral research of J. R. Miller and

the preparation of several papers summarizing the results. In this section we

shall present the basic approach and discuss important insights.

For this discussion, we shall restrict our attention to a scalar system.

The results generalize to multivariable systems but notational and technical

details tend to cloud the basic issues.

Consider the following stochastic system with scalar state x(t) and

scalar measurement z(t) described by

x(t + 1) = ax(t) + u(t) + w(t) (1)

z(t) = XCt) + v(t), t = 1, 2, " " " (2)

The input signal u(t) can be regarded as a function of time or as a feedback

signal generated from the measurements IZ(i), z(2), ... , s(t) . The initial

state x(1) is Gaussian with mean x(). and variance -P(1). The sequences
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v(t) I, Iv(t) are stationary Gaussian white noise with zero mean and vari-

ances Q, R, respectively. The noise sequences are assumed to be mutually

independent and independent of the initial state x(1).

Suppose that the transition variable a is a Gaussian random variable with

mean a, and variance 1(1). Further, a and x(I) are assumed to be independent.

The system (1 )-(2) can be regarded as a prototypical model of a system

that is identifiable, controllable, and observable. Our discussion general-

izes naturally to multivariable systems having these properties.

The combined system identification/state estimation problem for the sys-

tem (1)-(2) is easily stated. From the measurements I z(1), z(2), ... ,

z(tf = I and know-ledge of the inputs Iu(i), u(2), ... , u(t - I)1 ut_1

we want to estimate the state x(t), and to identify the transition parameter

a. Basically, this is a nonlinear estimation problem since a and x(t) appear

multiplicatively in (I). As a result, there is no closed-form for the estima-

tor of [a, x(t)]. Instead, estimators have been proposed which are motivated

by reasonable arguments and ad hoc approximations. For example, the extended

Kalman filter has been used for this problem with varying success. Ljung

recently proposed a modification of the EKF for which he claims to prove con-

vergence. The output of any estimator/identifier is regarded as numbers

represented as

a (It, ut '  t)

-t "- '
;A.t



The input signal synthesis problem arises by determining the input

sequence ut-I in a manner designed to enhance the quality of the estimates at,

xt . For example, the input sequence might be defined as "best" if it causes

the estimates at, xt to achieve the smallest error variance.

Generally, it is stated that it is not possible to determine the mean-

square estimation error. Consequently, other performance measures have been

introduced as reasonable substitutes. The Cramer-Rao lower bound as given by

the inverse of the Fisher information matrix, can be computed. As a result

some scalar mapping of this matrix is often used as a measure of optimality.

From the experience in this effort, these approaches have produced many

results having questionable utility. Furthermore, the quality of the results

that are obtained for these and other performance measures has been found to

depend in a nontrivial fashion upon the specific form of the

estimation/identification algorithm.

The choice of the optimality criteria and the choice of the

estimation/identification algorithm are necessarily made in a somewhat arbi-

trary manner. This arbitrariness has haunted the investigation and led to

considerable frustration in many respects. As a result, the effort during the

pest year has been directed toward an analysis of the general problem from a

viewpoint that permits avoidance of these arbitrary choices. This analysis is

made possible by adopting the Bayesian approach described in the remainder of

this section.

bt
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The random variables in 0 )-(2) have been assumed to be Gaussian. How-

ever, the plant nonlinearity ax~t) causes x~t + 1) to be nonGaussian. Using

Bayes' rule, we can obtain the a posteriori density for a, xct) given the

t_1 tinput u anid output z In particular, it can be shown that the general

forma of Bayes' rule has the following general recursive description.

Filtering Density

f~axft I zu'1)= x(t)) f (a, X(t) u

where

f( Ht) at- , uti f fv (z('t) Ix(t)) f (a, x(t) I z , tldx (t)

At t -1, we must define

We use the following convention for a n-dimensional Gaussian random vector x

with mean Vand covariance and matrix Z.

EX~X -)(2w)-n/2 (det Z)-1/2 SIP {.. )T E ; 1 (

............................... .,x. -. ..
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Prediction Desty

f (a, x(t+1 I it, it) f fW(x(t + 1 -ax(t)

These densities assume a more specific form when the Gaussian assumptions

regarding the initial state x01), the transition parameter a, and the noise

t t
sequences w , are introduced. We shall state the results and discuss the

information that is provided by their examination during the remaining para-

graphs of this section.

Prediction Density/Gaussian a priori

where

xt+1 It ,a xtlt + u~t)

P(t+lIjt) a P(tI 10 + Q

Filtering Density/Gaussian a priori

f (a. x(t) ,zu-)=f(aLt, t) NtIt (;it P(tI 10)6

e __



where

Itlt = 1tgt. I * x(t) £z (t) -xtt]

, P(ti t) -- P(tl t- 1) - K(t) P(t it 1 )

f I , u t) = f(a Iz, u -1 )

C ct N(0, w(tl -)f (alz t l  u -I  (7)

where

IA

it = z(t) - ;tlt_1

v(tI t-13 = P(tj t-1 + R

1/ t = J N(O, if(t I t-1 ))f(a I t _t) da

Initial Conditions:

f (a I, !L) f f¢a) = NA(al, z(1))

f (a, x~) f !(a) f(x(1)I

I: f(x(1)) = NJ (;( I, poi

-7............ .....
. . .. . . .. ."
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Equations (5), (6), and (7) provide a general basis for the study of the

state estimation/system identification/input signal synthesis problem. Let us

summarize some important observations regarding these equations.

() We have made no assumptions regarding the form of the estimation and

identification algorithms. As discussed below, the development does sug-

gest a natural and intuitively appealing structure for an estimation

algorithm.

(2) No assumptions regarding the source of the input sequence have been made

other than to assume u(t) is a known function of time (i.e. an open-loop

policy) or a known function of the output sequence z t (i.e. a closed-loop

policy).

(3) The Kalman filter provides a natural basis for updating the parameters of

the conditional densities Nt+I It and Ntlt in (5) and (6). Note that no

modification of the state estimator is suggested by the relations (5) and

(6) in distinction with Ljung's approach in modifying the EKF.

To expand upon this point, consider the maximum a posteriori estimator of

x(t) and a as obtained by considering (5)-(7). These estimators must satisfy

the condition

3f(a. x(t) Iz t , ut) =0

ax(t)

3f(a, (t) I zt ut) =

Da

The first condition is seen to be satisfied by choosing
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MAP(tI t) ;t t (.XP(tI t))

XMAp(tI ttI)=i t t- I ( MAP( It))

Thus, the Kalman filter provides the MAP estimator of the state. Note, how-

ever, that it must be evaluated with the MAP estimator of a. This estimator

is not readily obtained in a closed-form from (5)-(7). We shall discuss this

problem below.

(4) The determination of the MAP estimator of a using (5)-(7) leads to com-

plicated algebraic equations that must be solved since a enters

f(a' x(t) I Ztut) through f(aI zt,ut), through xtI t , and through P(t I t).

For the purposes of this analysis, it is important to recognize that

is more useful to defer the question of obtaining a suitable estimator.

Instead, we want to examine the characteristics of the density function

itself. Thus, we shall consider the numerical evaluation of (5)-(7) for

a range of parameter values. Some representative results are presented

below that illustrate the insights that can be gained.

(5) The input signal enters the densities only through the updating-relation

for ;t+ I It in (5). But it alters both xt+l and xt+l It in precisely the

same manner. Thus, the input only shifts Nt+ It but does not otherwise

alter the density function as it involves the state. But this is a man-

ifestation of the well known Separation Theorem for linear, Gaussian sys-

tems and quadratic performance indices.
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(6) The input signal can have a profound effect upon the nature of the den-

sity function relative to the transition parameter a. However, it enters

in a subtle fashion. The input affet-ts the propagation of the state

which is then reflected through the measurement and, more significantly,

through the innovation sequence it .

To describe the behavior of the density function and to illustrate the

influence of the input signal, it is useful to consider numerical examples.

These examples are representative of more extensive studies and demonstrate

the utility of the general approach.

For this discussion, assume that the plant and measurement noise vari-

ances, Q and R, are equal to 4. The a priori mean and variance for the tran-

sition parameter a will be taken to be 0.4 and 0.16, respectively. The ini-

tial state has mean zero and variance 100. This completes the definition of

the parameters of the problem.

Consider the system identification/state estimation problem when there

are no inputs (i.e. u(t) m 0 for all t). By computing the a posteriori den-

sity f(a, x(t) j zt , ut-i) we can consider several questions. For this illus-

tration, we shall present results regarding the following questions.

1. How is the a posteriori density affected by the true value of the transi-

tion parameter a?

2. Hfow does the extended Kalman filter perform as an estimator of a and

x(t)?

______ ______ t.Nor



- 13-

3. Does the a posteriori density converge to a Gaussian-like distribution?

4. Do different noise realizations affect the maximum of the distribution or

the spread of the distribution?

5. How accurate an estimator of the a and x(t) is provided by the maxima of

the a posteriori density?

These questions merely scratch the surface regarding the types of inves-

tigation that are made possible through the evaluation of the a posteriori

density relation (5)-(7). We know of no other approach that permits us to

investigate even these questions in the general and insightful manner that our

results provide.

Let us consider results that speak to the preceding questions. We shall

provide printer plots that provide graphical descriptions of the results.

Case 1:

aTRUE - 0.4

XTRUE(O) = - •

In Figure 1, a two-dimensional plot of f(a,x(1) E&1) is provided for

specific values of a and x(1). The transition parameter a is discretized

(horizontal axis) in units of 0.1 whereas the state (vertical axis) is discre-

tized in units of 1. The number in each cell represents the value of the den-

sity function at the grid point except for the appropriate normalization con-

stant (approximately 1000 in this instance). For this plot, a single measure-

ment z(1) has been processed. As is seen by inspecting equation (5), this

measurement provides information only regarding x(1) and not a. Thus, the

marginal density f(x(1)I z(1)) displayed in the right hand column is no longer
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the a priori Gaussian whereas the marginal density displayed in the upper row

is given as f(alz(0) =

We repeat this type of plot for 500, 1000, and 1500 samples in Figures 2,

3, 4 and can use these plots to discuss some of the earlier questions.

1. Observe that the densities retain their unimodality. In fact, they

remain reasonably symmetric and Gaussian-like. Further analysis indi-

cates that a Gaussian distribution is a good approximation for the margi-

nal densities except for small (i.e. less than 50 samples) sample sizes.

2. The true value of the transition parameter a is 0.4. The true value of

the state changes at each sample time and is indicated on the plots.

Note that the peak of the density function provides a reasonable estimate

of a and x(t) but is certainly not error-free. The distribution retains

considerable "spread" (i.e. nontrivial variance) even after processing

aA

1500 samples. The error in aMAp, xMAp(t) is consistent with the variance

of the density function.

3. The observation that the density function exhibits a substantial variance

after 1500 samples implies slow convergence for any identification algo-

rithm. It is useful to consider the behavior of the marginal density

f(a I 1 t). This density is plotted in Figure 5. These densities change

very slowly and the results suggest that convergence in any practical

situation (finite sample sizes) is not to be expected. The standard

deviation for these densities is shown on the Figure. When one notices

that the magnitude of the state lies generally within the range of the
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measurement noise (i.e. 4W - 2), it should not be surprising that the

measurements provide little information about the transition parameter a.

Case 2:

aTRUE 0.9

XTRUE(1) = - 5

Consider now the effect of a larger value for the transition parameter a.

Instead of the overdamped system in Case 1, the system is assumed to be under-

damped with a transition parameter value that is near to the stability boun-

dary. In investigating the convergence of many identification algorithms,

considerable attention is given to cases in which a is near-one. Our analysis

indicates that one should expect better performance from a suitable algorithm

as the stability boundary is neared. This observation is illustrated in the

two dimensional plots of f(a,x(t) I&t) provided in Figure 6 and confirmed in

Figure 7 with plots of the marginal density f(a Izt). We note that the margi-

nal density appears to be converging to a Gaussian distribution with a dimin-

ishing variance. The maximum of the density function provides an accurate

estimate of a. Also, the EKY estimate is well-behaved and reasonable.

Case 3:

a -0.1
TRUE

I M -

nUt
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The results presented above relate to a single realization of the plant

and measurement noise sequences. Let us examine the influence that different

noise realizations can have on the densities. As noted above, the behavior

becomes more erratic as I a approaches zero. To emphasize the possible

influence of the noise realization, we shall assume that the true value of the

transition parameter is 0.1. The marginal density after 500 samples is

presented in Figures 8 for three different noise realizations. Except for the

noise realization, the parameters of the runs are identical.

The noise realization is seen to have a substantial influence on the

location of the peak of the density. The variance is not affected to as great

an extent and the Gaussian-like character of the density is not changed, at

least not through any cursory examination. The behavior of the EKF is very

sensitive to the realization.

This completes our illustration of the system identification/state esti-

mation problem in the absence of any input signal. As a minimum, one should

realize that system identification in this context is very difficult, particu-

larly for overdamped systems which are driven by unobservable white noise. In

fact, convergence of an identifier may be illusory in the sense that the vari-

ance of the parameter estimate tend to zero very slowly (if at 411).

The identification is made difficult because we have be.n considering a

stable, system. The state in the absence of plant noise vanishes exponen-

tially. With plant noise the behavior of the state tends to white noise as

the transition parameter a tends to zero. Thus, it becomes increasingly dif-

ficult to extract information about a and about x(t) from the noisy informa-

tion.
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The system identification problem becomes more tractable when the system

is driven by known inputs. This point is illustrated by considering our exam-

ple with a variety of input signals having the same energy. The noise reali-

zations are the same in each case as are all parameters of the problem. We

saw earlier that aTRUE = 0.4 led to a difficult identification problem and we

shall reconsider this case.

The effect of known input signal is compared with the zero input case.

Four types of input signals are considered.

1. Impulse every ten samples.

U ) 4N 1r " t = 10i +  1, 1 -- O, 1, 2,

r u(t)

0 all other t

2. Pseudo random sequence

n(t) 4 sgn(n(t))

where n(t) is a sample chosen from a uniformly-distributed white noise

generator.

3. White noise

u(t) = v(t)

where v(t) is sample from a Gaussian white noise sequence with zero mean

and variance 4.

4. Sinusoidal input

u(t) - - s in(t/5)

-Mj
. ..... .i ll . .. .... . -I -- .
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The energy in the input signal for a 10 sample interval is the same

11

E u2(i) = 160
i= 1

and is equal to four times the average energy in the plant noise and in

the measurement noise.

The joint and marginal densities for the zero input and for the four

input signals are shown in Figures 9, 10 and 11 after processing 500

measurement samples. Some interesting conclusions are apparent.

1. The input signals force the state to assume values that are generally

larger than the noise signals (i.e. the output signal-to-noise ratio is

increased). Consequently, the marginal censity f(a -) has a much

smaller variance. This is apparent by considering the variances

displayed on Figures 10 and 11. The variance is reduced approximately by

one-third through the introduction of input signals.

2. The greatest reduction in variance comes from the use of a sinusoidal

signal. This conforms with analytical results published in earlier stu-

dies conducted under the auspices of this grant. However, the results

are not very sensitive to the form of the input signal. The primary

influence is the input signal energy.

Mii
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3. The extended Kalman filter performs satisfactorily. In fact, it serves

as a reasonable approximation of a maximum a posteriori estimator. This

improvement in behavior reflects our earlier comments regarding the

apparent coupling between the identification algorith and the input sig-

nal.

4. The insensitivity of the density behavior to the form of the input signal

provides insight into the earlier comments regarding the unsatisfactory

behavior of feedback signals. Although no feedback signals are con-

sidered in these results, it has become apparent that the identification

is enhanced primarily by increasing the signal-to-noise ratio. On the

average this is accomplished as well by open-loop signals as by feedback

signals.

Let us summarize the preceding discussion. By taking a Bayesian

approach, the a posteriori joint density for the system parameters and for the

state given the input and output signals can be determined. This density pro-

vides a sufficient statistic for the problem and permits a foundation for con-

sidering the performance of system identification/state estimation algorithms

and for assessing the input of prescribed input signals. This fundamental

approach has been lacking in previous analyses. It certainly provides a per-

spective on the earlier work 'produced during this grant and much of the pub-

lished literature. Papers describing these recent results will be forthcoming

during the next few months.

............................
.~~ ... . ... . . . . . . . . . . .
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3. Publications and Reports Supported y the Grant

The research that has been supported partially or wholly by this grant

has led to the publication of several reports and papers. We list these docu-

ments below. The Principal Investigator has completed a book, listed below,

that is to be published in the near future. While not a specific activity of

this research program, the Principal Investigator wants to acknowledge his

appreciation for the support provided by AFOSR for his research activities

during the past several years. This support has contributed substantially to

the author's development and, at least indirectly, to the completion of the

book. His appreciation has been acknowledged specifically in the Preface.

Book

H. V. Sorenson, Parameter Estimation: Principles and Problems, Marcel Dekker

Publishing Company, New York, 1980.

Ph.D. Dissertations

1. B. R. Upadhyaya, "Synthesis of Input Signals in Parameter Estimation

Problems," University of California, San Diego, December 1975.

2. H. M. Koble, "The Problem Manipulation/Solution Strategy Concept and Its

Application to Large-scale Deterministic Optimal Control Problems,"

University of California, San Diego, September 1980.

_ .. ... . ., . ..... . ,,. ..... .. , i . . ..l
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Papers
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Nonlinear Estimation Theory, San Diego, 1975, pp. 249-253.

2. H. W. Sorenson, "An Overview of Filtering and Stochastic Control in
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pp. 1-63.

3. H. W. Sorenson, "An Introduction to Nonlinear Programming - Part I:

Necessary and Sufficient Conditions," Computers and Electrical Engineer-

ing, 3, 1976, pp. 1-32.

4. H. W. Sorenson, "An Introduction to Nonlinear Programming - Part 1I: The

Linear Programming Problem," Computers and Electrical Engineering, 3,

1976, pp. 127-157.

5. H. W. Sorenson, B. R. Upadhyaya, "Bayesian Discriminant Approach to Input
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12, 1977, pp. 60-91.

6. H. V. Sorenson, "An Introduction to Nonlinear Programming - Part III:

Search Procedures for Unconstrained Minimization," Computers and Electri-

cal Engineering, 3, 1976, pp. 239-269.

7. H. V. Sorenson, H. M. Koble, "An Introduction to Nonlinear Programming -

Part IV: Numerical Methods for Constrained Minimization," Computers and

2 ectrical Ensineering, 3, 1976, pp. 347-386.
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8. H. W. Sorenson, B. R. Upadhyaya, "Synthesis of Linear Stochastic Signals

in Identification Problems," Proceedings of the 1976 IEEE Conference on

Decision and Control, Clearwater Beach, Florida, December 1976, pp. 941-

946.

9. B. R. Upadhyaya, H. W. Sorenson, "Synthesis of Linear Stochastic Signals

in Identification Problems," Automatics, 13, 1977, pp. 615-622.

10. H. W. Sorenson, "Approximate Solutions of the Nonlinear Filtering Prob-

lem," Proceedings of the 1977 Conference on Decision and Control, New

Orleans, Louisiana, December 1977.

11. H. W. Sorenson, V. S. Samant, "A Computational Method for Stochastic

Optimization," Proceedings of the 1977 Conference on Decision and Con-

trol, New Orleans, Louisiana, December 1977.

12. V. S. Samant, H. W. Sorenson, "Stochastic Optimal Control Via Stochastic

Programming," Proceedings of the Sixth Annual Pittsburgh Conference on

Modelling and Simulation, April 1975.

13. A. V. Sebald, A. Haddad, "State Estimation for Singularly Perturbed Sys-

tems with Uncertain Perturbation Parameters," IEEE Transactions on

Automatic Control, AC23, No. 3, June 1978.

14. A. V. Sebald, "State Estimation in Systems Driven by Poisson Processes
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