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ABSTRACT

e e

New closure theorems for shock models in reliability theory are presented.
If the number of shocks to failure and the times between the arrivals of

shocks have probability distributions of phase type, then so has the time to

= i AT T N

failure. PH-distributions are highly versatile and may be used to model
many qualitative features of practical interest. They are also well-suited
for algorithmic implementation. The computational aspects of our results are s

discussed in some detail.

KEY WORDS
Reliability theory, shock models, distributions of phase type, computational

probability.
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1. INTRODUCTION

Shock models which relate the life distribution H(*) of a device,
subject to failure by shocf;s occuring randomly in time, have received con~-
siderable attention in recent years. 1If Fk is the probability that the
device survives k > 0, shocks and N(t) 1is the random number of shocks
in (0,t], the survival probability H(*) = 1 -~ H(*), of such a device is

given by

z Pk P{N(t)=k} .

(6)) H(e) = 6““) - L

The most general shock models are those that correspond to (1), such that
{N(t): t > 0} 1is a general counting process and 1 > P, Z'Fl 2P, > ...
Interest in and published-resulos for shock models center,arqund proving . ..
that, subject to suitable assumptions on the point process N(t) of shocks,
various reliability characteristics of the shock resistance probabilities

Fk are inherited by the survival probability H(<) in continuous time.

The first systematic treatment of such shock models was given by Esary,
Marshall and Proschan (5], whan N(t) s a homogeneous Poisson process.
A-Hameed and Proschan considered the cases when N(t) is a non-homogeneous
Poisson Process [1] and a non-stationary pure birth process {2]. Block and
Savits [4] treated the case when the interarrival time between shocks is
NBUE (NBUE) or NBU(NWU) and Thall [8] derived interesting, but comparatively
weaker, results vhem N(t) 1is & clustered Poisson process.

In this paper, we obtain preservation theorems for the shock model (1)
when Fk is of phase-type and so is the distribution of the interarrival
time between shocks. N(t) 1is then a phase type renewal process (7]. The
relevance of phase type distributions (henceforth abbreviated as PH-distri-

butions) to the algorithmic analysis of the time dependent behavior of 3
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of stochastic models has been discussed by Neuts in a series of papers &
starting with [6]. A comprehensive treatment may be found in Chapter 2 of
{8]. PH-distributions provide an alternative point of departure in modelling
real life distributions without the classic memoryless property and with
possible proper unimodality or multimodality. PH~distributions include the
exponential, Erlang and hyper-exponential distributions as very special
cases. In addition, they have the desirable property of being closed under
both finite convolutions and mixtures, a feature possessed by none of the
well-known non-parametric classes of life distributions. r
In Section 2, the basic properties of PH-distributions, needed in the
sequel, are briefly reviewed. The main theoretical results are discussed

see o - « @ o . e - -

in Section 3. Algorithmic considerations are presented in Section 4.
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2. PH-DISTRIBUTIONS
A density {pk} on the nonnegative integers is of phase type if and only ' i
if there exigts a finite Markov chain with transition probability matrix P

of order r + 1 of the form

and initial probability vector | ﬁ'sr&l]' such that {pk} is the density
of the time till absorption in the state r + 1. The matrix I - S {is
nonsingular and the stochastic matrix S + (I-Bﬂl) -1§° *£ way be chosen to

be irreducibdle.

The density (pk} is given by Po = Bre1’ and p =8 gk-1 §°, for
k > 1. In this paper {pk} will be the density of the number of shocks to L

failure in a reliability shock model. We will assume throughout that




Buﬂ-l = 0 . We also clearly have that

Po= & p =85°e, for k>0 .

Kk aktl

The mean ui of {pk} is given by g(I-S)'l_q_.

A probability discribution F(*) omn [0,») 1is of phase type if and only

if there exists a finite Markov process with generator Q of the form

T.

o o

Q-

with initial probability vector [a,a uﬂ-ll’ such that F(°*) 1s the distri-~

bution of the time till absorption in the state m + 1. The matrix T 1is

nonsingular and the generator T + (l—um_l)-]’ T°+a may be chosen to be irre-

ducible. The distribution F(+) 1s given by

(2) F(x) =1 -aexp (IX) e , for x>0 .

We shall denote 1 - F(x) by F(x). The mean Ai of F(°) 1is given by

)\i = ~q ! e. The pairs (a,T) and (8,5) sare called the representations

of F(*) and {pk} respectively. Renewal processes in which the underlying f

distribution F(-) 4is of phase type were discussed in [7].

Many derivatives related to PH-distributions involve the Kronecker

This is the matrix made up of

product L & M of two matrices L and M.

the blocks {L,6,M}. Provided the matrix products are defined, we have that

1]

3) (L) (KéH) = LK & MH .

This property is repeatedly used in the sequel.
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3. CLOSURE THEOREMS
We first consider the Esary-Marshall-Proschan (E.M.P.) shock model

{3,5) in which {N(t)} is a Poisson counting process of rate A.

Theorem 1

If the number of shocks to failure has a discrete PH-density {pk,k > 0}

with representation (8,S), then the time to failure in the E.M.P. model has

T TR 1 o A N K AP TR VX, NS R

a continuous PH-distribution H(*) with representation [B8,A(S-I)].

Proof

Since Fk =8 Skg, for k > 0, we obtain ' !

® k
He) = £ et SA—:!LQ sk e=Bexp [A(S-I)t] e, for £t >0 .
k=0

< T D

This proves the stated result.

A number of interesting quantities may now be expressed in computationally O

convenient forms. The j-th noncentral moment of H(+) is given by

e, W TP

) wp =302 ga-m e, for 321 .

The density h(t) = H'(t), is given by

(5) h(t) = 2 8 exp [A(S-I)t] §° , for ¢t >0,

-1
and the failure rate r(t) = h(t) H (t) , equals

Bexp (AtS)S*®

6) r(t) -Am, for t >0

Theorem 1 is a particular case of a more general result in which the
arrivals of shocks occur according to s PH-renewal process [7]. This result
is proved next.

Let the interarrival time distribution F(°) be of phase type with

irreducible representation (a,T) of order m. When a atl © l-ae, is

positive, a geometrically distributed number of shocks occur simultaneously
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at each shock epoch. As in (7], we introduce the matrices P(k,t), k >0,

t > 0, which satisfy the system of differential equations

P'(0,t) = P(0,t)T ,

¢))
* v-1
P'(k,t) = P(k,t)T + L a .y P(k-v,t)T%a , k>1,
v=l

for t > 0, with initial conditions P(k,0) = So I» for k>0 .
The element l’1 j (k,t) 1is the conditional probability that the Markov pro-
cess with generator Q* = T + (l-um_l)-l T°a, 1s in the state j at time
t and that k shocks have occurred in (0,t], given that it started in
the state i at time 0.

The Markov process Q* may be started according to amy initial pro-
bability vector''y.” With - y-= él-am-_l)‘-l. a , .the PH-renewal process is

started immediately after a renewal epoch. With y = -11 g'r-l. where

le

-

Ai =-a T is the mean time between shocks, we obtain the stationary
version of the PH-renewal process.
Theorem_ 2

If the shocks occur according to a PH~renewal process with underlying
representation (a,T) and the process Q* is started according to the pro-
bability vector y and if the probability density {pk} is of phase type
with representation (8,S) of order r, then the distribution H(:) is of

phase type with the representation

(& k=xo08,

KeTOI+T'a0 (a3,

of order ™ .
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Proof

By the law of total probability, we have

9) H(t) = Y I P(k,t)e * 8 sk e
k=0

= (188) E P(k,t) ® S (ede)
k=0

= (y98) Z(t) (efe), for £t >0 .

The matrix 2Z(t) satisfies

2'(t) = £ P'(k,t) @ 5= I P(k,t) T ® S
k=0 k=0
- k
# L L allPlev,r) Tw @S et
k=1 v=]l
= 2(t) (TOD) + £ B(k,®) I°g 8 S*1 (1, )7

k=0
= 2(t) [T0I + T°a @ (I-a_, 9 1s] ,

and clearly Z(0) =1061.
This implies that 2Z(t) = exp(Kt), for t > 0. Upon substitution into

(9), the proof is complete.

Particular Cases

1. If the number of shocks to failure is geometrically distributed, i.e.

P, - ¢, for k>0, then

(100  H(t) =y -z P(k,t)6% = y exp ((T+(1-0a_, ) %0 T°ale} o,

for t >0,
2. In the maximum shock model, failure occurs if and only if a shock occurs

whose msgnitude exceeds a critical randomized threshold Y with distribution




G(+). If the magnitudes of successive shocks are independent with common

distribution F(-), then

Q1) Fk - [ Fk(x) d6(x) , for k> 0.
0
It followa from (10) that

(12) H(t) = J y exp {(T + (1-a er(x))‘lﬂx)yg]c} e dG(x) ,
0

for t >0, so that H(*) is a mixture of PH-distributions. If G(-) is

a discrete distribution with finite support, then H(+) itself is of phase

type.

3. In the cumulative damage model, the damages are additive. With the same

distributions F(¢) and G(+) as in the preceding model, we obtain
Y (k)
(13) Pk = | F*'l(x) dG(x) , for k>0,
0
If the distribution G(+) 1s of phase type with representation (§,L), then

Fk = IE(x) F® (x) =~ £ E(xl oot x)

0
=E § exp [L(x1+...+xk)]g-£Akg,

where A = [ exp (Lx) dF(x). It is readily seen that A 1is a substochastic
matrix of sgectral radius less than one. The density {pk} is therefore of

phase type. If the shocks occur according to a PH-renewal process, Theorem

2 may be applied to evaluate i(t). The matrix A 1is obtained by numerical

integration for gemeral distributions F(+). If F(°) 1itself i{s of phase

type with representation (g,R), then
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(14) A = j exp (Lx)g exp(Rx)R°dx = (I80) J exp(Lx)@exp (Rx) dx (I8R°)
0 0
. = -(180) (LI + I6R]™' (16R°®) .

The eigenvalues of L and R all lie in the open left half-plane. The
same then holds true for the Kronecker sum LOI + I®R, so that the inverse
exists.

The nonnegative rectangular matrix V = -(LOI + IOR)-]' (I6R°), may

easily be computed by solving the system
(LeI + I8R)V = - I6R®
by block Gauss-Seidel iteration.

4. ALGORITHMIC ASPECTS

We shall discuss the computation of the function i(t), vhich is given
by Theorem 2. It readily follows from (1) that the mean hi of H(e) 1is
given by Aiui, where li and ui are the means of {pk} and F(°) re-
spectively, whenever the PH-renewal process of arrivals is started at a

renewal epoch. With general initial conditions, the mean h! 1is given by

1
0, 'y < 2! Y - - -1
xlul + Al )‘1’ where Al 1T " e.
Knowledge of the mean h! of H(+) is useful in determining the

1
interval over which we wish to evaluate i(t) . We may e.g. wish to choose
the mean as a convenient unit of time. This is accomplished by replacing
L}
lx
are very large or if a different time scale is desirable for the practical

K by hil(. A different rescaling may be chosen if the elements of h

problem at hand.

We now assume that the matrix K has been appropriately rescaled. The

function H(t) {is computed by numerical integration of the system of linear

‘;»'
¥
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differential equations

v'(t) = v(t) K, for t>0,
(15)
v()=yeg,
and setting H(t) = v(t)e, for t >0 .
It 18 convenient to partition the vector v(t) as lgi(t), cees v (0],

where the vectors xi(t) are r-vectors. We also set M = (I-a S)-ls.

m+l
The system (15) may then be rewritten as

m m
(16) _\Lj(t) - vfl \_rv(t) ij + a.j [-)-:1 xv(t) Til M,

for 1 < j <m. This system may be conveniently solved by a classical inte-

. - * e . . . RN . - - .

gration procedure, such as Runge-Kutta. We see that the vector
[_nfll v, (t) T; M does not depend on j and needs to be evaluated only once
it\: each computation of the right hand sides of (16).

In many PH-distributions of practical interest, such as e.g. finite mix-
tures of Erlang distributions, the order m of T may be large, but T,
I° and a have very few nonzero entries. It is then advantageous to write
a special purpose subroutine to evaluate the right hand side of (16). By
so exploiting the sparsity of T, T° and a, it is possible to reduce the
computation time greatly. The mean hi, or in general the scaling factor
used in selecting the time unit, may also be utilized to choose the step size
h in the numerical integration of the system (16). In similar problems, we
have usually made two runs at least, one with 1/50 of the time unit and

one with 1/100 of the time unit. If the results at corresponding time

points are not sufficiently close, further runs with smaller steps are made.

The computation times of such runs increase rapidly and efficient programming




10

is desirable. Other methods Wwith a variable step size and error control

may also be implemented. These classical topics in the numerical integration

of ordinary differential equations need not be belabored here. 1In all cases,

the use of the particular structure of the matrix K is fully worthy of the

additional programming effort.

(1]

(2]

(3]

[4]

[5]

(61

(7

(8]

{9]
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