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ABSTRACT

New closure theorem for shock models in reliability theory are presented.

If the number of shocks to failure and the times between the arrivals of

shocks have probability distributions of phase type, then so has the time to

failure. PH-distributions are highly versatile and may be used to model

many qualitative features of practical interest. They are also well-suited

for algorithmic implementation. The computational aspects of our results are

discussed in some detail.
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1. INTRODUCTION

Shock models which relate the life distribution H(.) of a device,

subject to failure by shocks occuring randomly in time, have received con-

siderable attention in recent years. If is the probability that the

device survives k > 0, shocks and N(t) is the random number of shocks

in (0,t], the survival probability (.) - 1 - H(.), of such a device is

given by

-- - Z k P(N(t)=k)

(() N(t) k-O k

The most general shock models are those that correspond to (1), such that

(1(t): t > 0) is a genral counting process and 1 > P-- >P2

Interest in and publiehed-resulso for shock models center.arund proving

that, subject to suitable assumptions on the point process N(t) of shocks,

various reliability characteristics of the shock resistance probabilities

Pk are inherited by the survival probability H(.) in continuous time.

The first systematic treatment of such shock models was given by Esary,

Marshall and Proschan (51, when N(t) is a homogeneous Poisson process.

A-Ilameed and Proschan considered the cases when N(t) is a non-homogeneous

Poisson Process [1] and a non-stationary pure birth process (2]. Block and

Savits (4] treated the case when the interarrival time between shocks is

NBUE (NBUE) or NBU(NWU) and Thall (8] derived interesting, but comparatively

weaker, results when e(t) is a clustered Poisson process.

In this paper, we obtain preservation theorems for the shock model (1)

when P is of phase-type and so is the distribution of the interarrivalk
time between shocks. 1(t) is then a phase type renewal process (7]. The

relevance of phase type distributions (henceforth abbreviated as PH-distri-

J butions) to the algorittmic analysis of the time dependent behavior of

NONE
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of stochastic models has been discussed by Neuts in a series of papers

starting with (6]. A comprehensive treatment may be found in Chapter 2 of

[81. PH-distributions provide an alternative point of departure in modelling

real life distributions without the classic memoryless property and with

possible proper unimodality or multimodality. PH-distributions include the

exponential, Erlang and hyper-exponential distributions as very special

cases. In addition, they have the desirable property of being closed under

both finite convolutions and mixtures, a feature possessed by none of the

well-know non-parametric classes of life distributions.

In Section 2, the basic properties of PH-distributions, needed in the

sequel, are briefly reviewed. The main theoretical results are discussed

in Section 3. Algorithmic considerations are presented in Section 4.

2. PU-DISTRIBUTIONS

A density (Pk) on the nonnegative integers is of phae tye if and only

if there exists a finite Markov chain with transition probability matrix P

of order r + 1 of the form

P m I

0 1

and initial probability vector [1,Ytll, such that (pk1  is the density

of the time till absorption in the state r + 1. The matrix I - S Is

nonsingular and the stochastic matrix S + (1-0r+i) " S'j. may be chosen to

be irreducible.

The density {pk1  is given by p0 " *rl' and Pk " - Sk-l so. for

k 3- 1. In this paper (pk } will be the density of the number of shocks to

failure in a reliability shock model. We will assume throughout that
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Ba. 1 = 0 . We also clearly have that

P" E PkihiSk e'  for k > 0.
v-k+l

The mean u of {pk} is given by I(I-S)_l .

A probability distribution F(.) on [0,-) is of phase type if and only

if there exists a finite Markov process with generator Q of the form

IT To

00

with initial probability vector [a~l], such that F(e) is the distri-

bution of the time till absorption in the state a + 1. The matrix T is

nonsingular and the generator T + (1-au +)-1 T*. may be chosen to be irre-

ducible. The distribution F(.) is given by

(2) F(x) - 1 -aexp (Tx) , for x >0

We shall denote 1 - F(x) by F(x). The mean Al of F() is given by

A - a T-1 e. The pairs (_,T) and (_,S) are called the representations

of F(.) and (Pk } respectively. Renewal processes in which the underlying

distribution F(.) is of phase type were discussed In (71.

Mmy derivatives related to PR-distributions involve the Kronecker

product L S M of two matrices L and M. This is the matrix made up of

the blocks {LijM}. Provided the matrix products are defined, we have that

(3) (LO) (KH) - LK S .

This property is repeatedly used in the sequel.



4

3. CLOSURE THEORDIS

We first consider the Esary-Harshall-Proschan (E.M.P.) shock model

[3,5] in which {N(t)} is a Poisson counting process of rate X.

Theorem 1

If the umber of shocks to failure has a discrete PH-density {Pk,k > 01

with representation (B,S), then the time to failure in the E.M.P. model has

a continuous PH-distribution H(.) with representation [B,X(S-I)].

Proof

Since Pk "-Se, for k > 0, ve.obtain

iXt) = e•t k tkB e _ B exp [A(S-I)t] e , for t > 0
k-O

This proves the stated result.

A nuer of Interesting quantities may now be expressed in computationally

convenient forms. The J-th noncentral moment of H(-) is given by

(4) ul -J I-JB(I-S) " e , for j ! 1.

The density h(t) - H'(t), is given by

(5) h(t) - A Pexp [A(S-I)t] S" for t > 0

-1
and the failure rate r(t) - h(t) I (t) , equals

_ep (Xts)s"
(6) r(t) - A _xp(.ts)e ' for t > 0

Theorem 1 is a particular case of a more general result in which the

arrivals of shocks occur according to a PH-renewal process [7]. This result

is proved next.

Let the interarrival time distribution F(.) be of phase type with

irreducible representation (a,T) of order m. When a 1  - a e, is

positive, a geometrically distributed number of shocks occur simultaneously

___________________________ /



5

at each shock epoch. As in (7], we introduce the matrices P(k,t), k > 0,

t > 0, which satisfy the system of differential equations

P'(O,t) - P(0,t)T
(7) k 1P.(k,t) - P(k,t)T + E k a. P(k-vt)171 k > 1

for t > 0, with initial conditions P(k,O) - 60k I, for k > 0

The element Pij(kt) is the conditional probability that the Markov pro-

cess with generator Q* - T + (1-%m+l)-I T-S, is in the state J at time

t and that k shocks have occurred in (O,t], given that it started in

the state I at time 0.

The Markov process Q* may be started according to any initial pro-

bability vector" Y. With - '(l-au l)-l a , .the ?H-rnewal process is41s

started immediately after a renewal epoch. With I -X' 1 ciT', where

Ai - -a T-1 e is the mean time between shocks, we obtain the stationary

version of the PR-renewal process.

Theorem 2

If the shocks occur according to a PH-renewal process with underlying

representation (1,T) and the process Q* Is started according to the pro-

bability vector t and if the probability density {pk } is of phase type

with representation (U,S) of order r, then the distribution H(.) is of

phase type with the representation

-- .

K- T 0 1 +TQ 0 (I-az.S) S,

of order ra

-.- - - --- ---- ------- --- , --- - .- .!
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Proof

By the law of total probability, we have

(9) 1(t) -I E P(k,t)e.B Ske
k-0

- (p8) E P(k,t) 0 sk (ee)
k-O

= () z(t) (_ee), for t > 0

The mtrix Z(t) satisfies

z'(t) = . P'(kt)e r P(k,t) T e sk

kk-0

Z k v-
+-1 P(k-v,t) T a . sk ....

k-l v 
M1

- Z(t) (TO) + E P(k,t) T 0 0 Sk+ l (I- M+lS) - 1

k-0

- Z(t) [Tel + Tom 0 (I- M+lS)- 1 S]

and clearly Z(O) - I 0 I

This implies that Z(t) - exp(Kt), for t > 0. Upon substitution into

(9), the proof is complete.

Particular Cases

1. If the number of shocks to failure Is geometrically distributed, i.e.

k k , Vfor k> 0, then
kk 0

(10) 1(t) - . E P(k,t)e ke - 1 ep {(T+(l-e%+ 1 )-a _9't) a.
k-O

for t > 0

2. In the uaxlimm shock model, failure occurs if and only if a shock occurs

whose magnitude exceeds a critical randomized threshold Y with distribution

-p. -. >,, .-- - -
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G(-). If the magnitudes of successive shocks are Independent with common

distribution F(-), then

(11) ~Fk(x) dG(x) , for k > 0

It follows from (10) that

(12) H(t) - 1 exp Q(T + (1--am P(x))_lF(x)T*E]t} e dG(x)

for t > 0, so that H(-) is a mixture of P11-distributions. if G(-) is

a discrete distribution with finite support, then H(-) itself is of phase

type.

3. In the cumulative damage model, the damages are additive. With the same

distributions F(-) and G(-) as in the preceding model, we obtain

(13) ~ k f (x) dG(x) , for k > 0

0

If the distribution G(-) is of phase type with representation (6,L), then

'E.J (x) dPF)x EG(x1 + . + x.)

0

-E 6 exp (L(x 1 +*. + xk)I 6 A e

where A -f exp (Lx) dF(x). It is readily seen that A is a substochastic

matrix of spectral radius less than one. The density {Pk' is therefore of

phase type. If the shocks occur according to a PR-renewal process, Theorem

2 may be applied to evaluate Hi(t). The matrix A is obtained by numerical

Integration for general distributions F(o). If PC-) itself is of phase

* type with representation (OR), then
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(14) A- Jexp (Lx)a exp(Rx)ldx - (IGS) f exp(Lx)Oexp( x) dx (IOR)

0 0

- -(Ift) [LOI + IOR] - 1 (IOR)

The eigenvalues of L and R all lie in the open left half-plane. The

same then holds true for the Kronecker sum LOb + 18R, so that the inverse

exists.

The nonnegative rectangular matrix V - -(LOb + ISR)- 1 (IOR), may

easily be computed by solving the system

(Let + ISR)V - ZeRO

by block Gauss-Seidel iteration.

4. ALGORITHMIC ASPECTS

We shall discuss the computation of the function W(t), which is given

by Theorem 2. It readily follows from (1) that the mean hi of H(-) is

given by Xial , where a! and u a are the means of { and F(*) re-

spectively, whenever the PH-renewal process of arrivals is started at a

renewal epoch. With general initial conditions, the mean h' is given by

i + - X£,where 1  T_ e

Knowledge of the mean hi of H(-) is useful in determining the

Interval over which we wish to evaluate i(t). We may e .g. wish to choose

the mean as a convenient unit of time. This is accomplished by replacing

K by h'K. A different rescaling may be chosen if the elements of h'K

are very large or if a different time scale is desirable for the practical

problem at hand.

We now assume that the matrix K has been appropriately rescaled. The

function i(t) is computed by numerical integration of the system of linear
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differential equations

v'(t) - v(t) K, for t > 0
(15)

v_(o) 1 - _

and setting H(t) - v(t)e, for t > 0

It is convenient to partition the vector v(t) as [vl(t), ... , m(t)],

where the vectors ij(t) are r-vectors. We also set M - (I-aM+tS) -S.

The system (15) may then be rewritten as

(16) VI(t) - E. v~ ) j (t) T CL _vt

+ o .. . -.. .... ..............

ration procedure, such as Runge-Kutta. We see that the vector

V_ (t) T]M does not depend on j and needs to be evaluated only once

in each computation of the right hand sides of (16).

In many PH-distributions of practical interest, such as e.g. finite mix-

tures of Erlang distributions, the order m of T may be large, but T,

T* and a_ have very few nonzero entries. It is then advantageous to write

a special purpose subroutine to evaluate the right hand side of (16). By

so exploiting the sparsity of T, To and a, it is possible to reduce the

computation time greatly. The mean h, or in general the scaling factor

used in selecting the time unit, may also be utilized to choose the step size

h in the numerical integration of the system (16). In similar problems, we

have usually made two runs at least, one with 1/50 of the time unit and

one with 1/100 of the time unit. If the results at corresponding time

points are not sufficiently close, further runs with smaller steps are made.

The computation times of such runs increase rapidly and efficient programing

- . . .
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is desirable. Other methods with a variable step size and error control

may also be implemented. These classical topics in the numerical integration

of ordinary differential equations need not be belabored here. In all cases,

the use of the particular structure of the matrix K is fully worthy of the

additional programuaing effort.

REFERENCES

[] A-HAMEED, M. S. and PROSCHAN, F. (1973)
Non-stationary Shock Models
Stoch. Proc. and Appl., 1, 383-404.

[2] A-HAMEED, M. S. and PROSCHAN, F. (1975)
Shock Models with Underlying Birth Process
J. Appl. Prob., 12, 18-28.

[3] BARLOW, R. E. and PROSCHAN, F. (1975)
Statistical Theory of Reliability Probability Models
Holt, Rinehart and Winston, New York, NY.

[4] BLOCK, H. W. and SAVITS, T. H. (1978)
Shock Models with NBUE Survival
J. Appl. Prob., 15, 621-628.

[5] ESARY, J. D., MARSHALL, A. W. and PROSCHAN, F. (1973)
Shock Models and Wear Processes
Ann. Prob., 1, 627-649.

[61 NEUTS, M. F. (1975)
Probability Distributions of Phase Type
in Liber Amicorum Professor Emeritus H. Florin,
Dept. of Math., Univ. of Louvain, Belgium, 173-206.

[7] NEUTS, M. F. (1978)
Reneval Processes of Phase Type
Nev. Res. Logist. Quart., 25, 445-454.

(81 NEUTS, M. 7. (1981)
Matrix-aeometric Solutions in Stochastic Models - An A1aorithu Approach
The Johns Hopkins University Press, Baltimore, MD, to appear.

[9] THALL, P. F. (1979)
Cluster Shock Models
Tech. Rpt. No. 47, University of Texas at Dallas,
Dallas, TX.



UJNCLASSIFIED PG WenDt ~trd
SECURI'Y FICATION OF THIS PAGE (When DatsFniored),

PORT DOCUMENTATIO PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

P O R
T 

l  
,1," '2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER(4 AFOS TjmR- 80-, 99 9_____

4. TITLE (nd Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Kj aK NELS WITH PHASE TYPE -URVIVAL AND

-. - 6. 'PERFORMING 01G. REPORT NUMBER

7. AUTH_-RWA_ 9 -. CONTRACT OR GRANT NUMBER(s)

;*% /: Marcel F./Neuts /: 2
Manish C./Bhattacharjee VAFOSR-77-3236

S. PERFORMIN ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT. TASK~~A REA"IORK UNIT NUMBEFU ..

University of Delaware
Applied Mathematics Institute
Newark, DE 19711 611021 - t A5
11. CONTROLLING OFFICE NAME AND ADDRESS REPORT DATE

Air Force Office of Scientific Research/NM fl--- -WE / / PAGES

Boiling AFB, Washington, DC 20332 . ROPAGSI

14. MONITORING AGENCY NAME & ADDRESS(if different irom Controlling Office) IS. SECURITY CLASS. (of th ftort)

UNCLASSIFIED
Is.. DECLASSIFICATIONW DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

* 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. if different from Report)

le. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse xIde it necessary andidentify by block number)

Reliability theory, shock models, distributions of phase type, computationalprobability

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

New closure theorems for shock models in reliability theory are presented. If
the number of shocks to failure and the times between the arrivals of shocks
have probability distributions of phase type, then so has the time to failure.
PH-distributions are highly versatile and may be used to model many qualitative
features of practical interest. They are also well-suited for algorithmic im-
plementation. The computational aspects of our results are discussed in some
detail.

DD JAN".. 1473 EDITION OF I NOV 65 IS OBSOLTE UNCLASSIFIED


