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1. INTRODUCTION

There is an extensive literature on measures of diversity

within populations and dissimilarity or similarity between pop-

ulations. They have been used in a wide variety of studies in

anthropology (Rao, 1948; Mahalanobis, Majumdar and Rao, 1949;

Majumdar.and Rao, 1958; Rao, 1971a,b, 1977), in genetics

(Cavalli-Sfroza, 1969; Karlin et al, 1979; Morton and Lalouel,

1973; Nei, 1978; Sanghvi, 1953; Sanghvi and Balakrishnan, 1972),

in economics (Gini, 1912; Sen, 1973) in sociology (Agresti and

Agresti, 1978) and in biology (Sokhal and Sneath, 1963, Pielou,

1975; Patil and Taille, 1979). A complete bibliography of

papers on measures of diversity and their applications is com-

piled by Dennis et al (1979).

Most of these measures are based on heuristic considera-

tions; some are derived from mathematically well postulated

axioms, while others are constructed using possible models for

genetic and environmental mechanisms causing differences between

individuals and populations. The object of this paper is to

review some of these measures and to provide some unified ap-

proaches for deriving them.

We consider a set of populations {ni} where the individuals

of each population are characterized by a set of measurements

X c (0,8), a measurable .space. The probability distribution

function of X in wi is denoted by Pi and the convex set

generated by {P is denoted by P. A diversity coefficient
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(DIVC) is a mapping from P into the real 'line, which reflects dif-

ferences between individuals (X's) within a population. We

denote the DIVC of wi by H i (the symbol H is used to indi-

cate heterogeneity). A dissimilarity coefficient (DISC) or a

similarity coefficient (SIMC) is a mapping from P X P into the

real line, which reflects the differences or similarities be-

tween populations. We denote a DISC between wi and 7j by

Dtj and a SIMC by Sij.

2. COEFFICIENTS BASED ON INTRINSIC

DIFFERENCES BETWEEN INDIVIDUALS

2.1 General Theory

We start first by choosing a non-negative symmetric func-

tion d(Xl,X 2 ) which is a measure of difference between two

individuals with X = X1 and X = X2 , without any reference

to the probability distributions of X1 and X2. The choice

of d(X 1 ,X2 ) naturally depends on the naturr of the practical
t2

problem under investigation. We define the DIVC (diversity co-

efficient) of ir as

Hi J d(XIX 2 ) Pi (dX1 ) Pi (dX 2 )

i.e., as the average difference between two randomly drawn in-

dividuals from w i" Suppose that one individual is drawn from

7i and another from w j. Then the average difference is 1

By

2 Distribution/
Availability Codes

jAvail and/or'
Dist S18

Lm



H = iJ d(XlX 2 ) Pi (dX1 ) PJ (dX2 ). (2.1.2)

We expect Hij to be larger than the average of Hi  and Hit

in which case the DISC (dissimilarity coefficient) between wi and

wj may be defined by what can be termed as the Jensen difference.

D. =H - (H + H (2.1.3)
13 i (H Hi)

The expression (2.1.3) will be non-negative for any i and j

iff d(Xl,X 2 ) is chosen such that the function H defined on

P as in (2.1.1) is concave. This can be easily verified by con-

sidering P 0 P where

Po X A . + (1-A)Pj, 0 < X < 1 (2.1.4)

and computing

Ho= J d(Xl'X 2 ) P0 (dXl) P0 (dX2)

A 2 Hi + (1)- )2 Hj +2 A (I - )Hij. (2.1.5)

Then

H - ( AHi + (1- A)Hj)

=2X(1 - X)(Hi - . H -  H )2X(1- A)Dij

(2.1.6)

The concavity of H ensures that D > 0 and vice-versa.

ij

2.2 Some Examples

(1) Let X c Rm , a real vector space of m dimensions
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furnished with an inner product (,gy) x'Ay , where A is a

positive definite matrix. Define

d(XlX 2 ) = (Xl-X 2, XI-X 2 ). (2.2.1)

Let X ~ (pi,Ei) in lri(i.e., X is distributed with mean vector

Pi and dispersion matrix E). Then

Hi = 2 tr A Zi

Hij tr A Ei + tr A E + 6ij A lij (2.2.2)

where tr stands for the trace of a matrix and ij Pi- Ij

Applying the formula (2.1.3)

Dij = 6ij A .ij (2.2.3)

If Ei = £ for all i and A = E-1 (2.2.3) becomes the

Mahalanobis D2 between irj and ir.

(2) Let X (X,,x where xi can take only a

finite number of values. For instance xi may stand for the

type of gene allele at a given locus i on a chromosome, In

such a case an appropriate measure of difference between two

vectors X. and X2  is

d(Xl,X 2 ) m - E 6 r (2.2.4)

where 8r - 1 if the r-th components of X and X2  agree

and zero otherwise. Let xr take kr different values with

probabilities

4



Pirl .... ' Pirk
r

in population vi. Define

k
j(r) = = 2 (2.2.5)i E(r) = Pirs

when XIX are independently drawn from w and2 1
k

(r) E(Sr Pirs Pjrs (2.2.6)

when X1  is drawn from i and X2  from w . Then

mj

r=1

= () = r(l-J) (2.2.7)

1
D H - (Hi + H.)ii ij 3

S 1  m r
mI (Pirs - Pjrs (2.2.8)

J r=1 s=l

The expression (2.2.8) without the factor m has been called

by Nei (1978) as "a minimum estimate of the net codon difference

per locus" and used by him and his colleagues (see the list of

references in Nei, 1978) as a measure of genetic distance in

phylogenetic studies.
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Note 1. When m = 1, we have a single multinomial and

the expression (2.2.8) reduces to the Gini-Simpson index

k 2

1- P (2.2.9)

where pl,...,pk are the cell probabilities. [This measure

was introduced by Gini (1912) and used by Simpson (1949) in

biological work]. The properties of (2.2.9) have been studied

by various authors (Bhargava and Doyle, 1974; Bhargava and

Uppuluri, 1975; Agresti and Agresti, 1978).

Note 2. It is seen that Hi as defined in (2.2.7) de-

pends only on the marginal distributions of xi, i= 1,...,im,

and is additive with respect to the characters examined.

These properties arise from the way the difference function

(2.2.4) is defined. The DISC (2.2.8) is specially useful in

evolutionary studies as suggested by Nei (1978).

Note 3. We may consider the joint distribution of

(xl,... xm ) as a combined multinomial with k-k 1 x...xk° m

classes and apply the formula (2.1.1) to measure diversity.

In such a case the difference between two individuals takes

the value 1 when all the components xi agree and the value

zero if at least one is different. This leads to an expression

different from (2.2.8) as the basic function for assessing the

differences between individuals is not the same. When

xl,...,x m  are independently distributedpan explicit expression

for the DIVC based on the combined multinomial reduces to

6
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H 1- [l-H(l)J ..I . l-H(m)] (2.2.10)

where H(r) is the DIVe based on Xr, the r-th character

only. It may be noted that the expression for DIVC given in

(2.2.7) is H = Z H(r) whether x. are independently dis-1

tributed or not.

2.3 Apportionment of DIV

With the DIVC as defined by (2.1.1) and using the con-

cavity property, the DIV in a mixture of populations can be

apportioned in a natural way as between and within populations.

If Pl,...,Pk are the distributions of X in w' ... rk and

Xl,..., k  are the apriori probabilities, then the distribu-

tion in the mixture i 0 is X P +...+Xk P It is easily

seen that

H E + E A. D.
0 = i H i ij

= H(w) + D(b) (2.3.1)

where Diji Hij -(Hi+Hi)/2 is the DISC between vi and j,

H(w), the DIV within populations, is the weighted average of

the DIV's within populations and D(b), the DIS between

populations, is the weighted average of the DISC's between

all pairs of populations. The ratio

G(b) = D(b) (2.3.2)
H0

is an index of diversity between populations.
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Different choices of the difference function d(XI,X 2) may

give different values to the ratio G(b). In Section 3, we

shall discuss this problem in a more general context.

Let us consider k populations as in example (1) of

Section 2.2 where in wi, the m-vector variable X - (Piz,)

and choose d(Xl,X 2 ) as the Mahalanobis D2 (formula (2.2.3)

with A = E-l). Further let wo be a mixture of ll,...,Wk

with apriori probabilities ' . Then using the ex-

pressions (2.2.2), the decomposition (2.3.1) becomes

H = H(w) + D(b)O

- 2 m + EE X X6 F 1j 6..

- 2 m(l+V) (2.3.3)

where 6.. = 1.- .. Thus the diversity within populations
13 1 3

is 2 m and the ratio G(b) of (2.3.2) is V which is the

weighted combination of Mahalanobis D 2's for all pairs of

populations. The author has suggested (see Mahalanobis,

Majumdar and Rao, 1949) the use of an estimate of V in the

selection of variables to maximize dissimilarity between

populations.

Let us consider example (2) of Section 2.2 and denote by

10, the mixture of ir1 ... r k with apriori probabilities

Xl,...,Xk' In this case (2.3.1) becomes, with JiJ as defined

in (2.2.7),

=M[ Ai (1- Ji) + E E XiXj(.fJii J - Jij (2.3.4)
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which is the decomposition obtained by Nei (1973) and

Chakravarthy (1974). The ratio G(b) defined in (2.3.2) is

1

G(b) =2• (2.3.5)
1 - EE J..i ij

The ratio (2.3.5) obtained by considering only the two popula-

tions w i and 7r. with equal prior probabilities

E) J + J 2 J-ij (2.3.6)
3 4-Jii- J .- 2 Jij

is the hybridity coefficient of Morton (1973) who used it as

a DISC between wi and nj in phylogenetic studies.

2.4 Decomposition of DIVC and DISC

In the method outlined in Section 2.1, the basic expression

which determines the DIVC and DISC is the difference function

d(Xl,X 2). Any decomposition of d(X 1 ,X2 ) such as

d(Xl,X 2 ) = dl(XlX 2 )+..+dc(Xl X2 ) (2.4.1)

provides us with a corresponding decomposition of the DIVC for

H. = H I)+...+H~c) (2.4.2)

1 1 1

where H s ) = E[d (Xl2) P , and of the DISC between

?i and ir

9



D1. DQ .. +D~?) (2.4.3)

where D~~~~~~s) ~is obtained from s)Hs adH )uinth
3j ij

formula (2.1.3).

Let X - (Pi,) in 7T. and denote the elgen values of Z

by 0l**> and the corresponding eigen vectors by L,..,L

If we choose

d(X1,X 2) (X 1 - x 2 ), (X1 - x 2 )

i.e., the simple Euclidean distance in R, then

d(X1,X2 -) = [L (XI- x2 )] 2+...+[L m(X 'X 2 )]2  (2.4.4)

gives the decomposition of DIVC for i

H. 2 tr E = 2 0 1+,,,+2 0m (2.4,5)

which is the familiar decomposition of total variability with

respect to m characters in terms of principal components

(Rao, 1964). The corresponding decomposition of DISC between

I and l7j is

Di aj 6 L 6) 2 +..+(L' 8i 2  (2.4.6)

where = j " - 11.the difference in the mean vectors for

Ir and 7ir J, However, if we choose

d(X1,X 2 ) =(X 1 -X2 )' -r(X 1 -X 2 )

10



i.e., the Mahalanobis distance between two individuals then

we have a different decomposition

D. = El 2 . *)2 (2.4.6)
D i3 1 ij+ ( m ij 

Note that the eigen vectors provide a transformation

of the original measurements into uncorrelated variables, in

which case the Mahalanobis distance can be written as the sum

of Mahalanobis distances due to different uncorrelated vari-

ables. We can choose any arbitrary set of vectors M1 ,...,M!m

such that M'TMj = 0 for if j and Mt M1 = 1, to obtain a

decomposition

D.. i 6. i = (MI Slj) 2 +. +(M )2

ij + " "+ (2.4.7)

By combining some of the D ij's on the right hand side of

(2.4.7), we obtain decompositions of Dij with a smaller number

of components.

If we choose

M = (a'£-i - (2.4.8)

in (2.4.7), where a is the vector of standard deviations of

the individual characters (i.e., square roots of diagonal

elements of E), then

11



(MI 6ij2 D s2 (2.4.9)

represents the component of Mahalanobis D2 between wi and

r. due to the size factor as defined by Rao (1962, 1971b).

Then

D.. = D2  + D2  (2.4.10)Di3 si + sh

where D2sh the residual after subtracting the D2 due to

size, represents the distance due to shape factors between

the two populations.

Penrose (1954) obtained a similar decomposition of Karl

Pearson's CRL (coefficient of racial likeness) in terms of

size and shape. The Penrose indices do not take into account

the correlations that may exist between characters. For further

details regarding the use of size and particular shape factors

reference may be made to Rao (1962, 1971b).

2.5 Similarity Coefficients (SIMC's)

Instead of a difference measure between two individuals,

it may be natural to consider a similarity function s(X1 ,X2 )

and define VSi and Sij by taking expectations analogous

to Hi, H and H j. Then the DIVC of wi may be defined by

a suitable decreasing function of Si, such as 1 - Si or

- log Si, specially when the range of Si is (0,1). The DISC

obtained by choosing Hi = 1-Si is

Di 1(Si + Sj) - Sii (2.5.1.)

12



and that by choosing H. f - log S. is

1
Dij (log S i + log S -log Sij

S..

= - log (2.5.2)

For instance, in the second example of Section 2.2, a natural

definition of s(XI,X 2 ) = (E 6r)/m, which lies in the range

(0,1). Then

S' S J3 3' ij i 1i (2.5.3)

where J are as defined in (2.2.7), and using (2.5.1) and

(2.5.2) we have the alternative forms

D 1 J + J) J (2.5.4)Dij 2 Jii Jjj -ij,

D.. - log Jij . (2.5.5)

The expression (2.5.4) is the same as the "minimum genetic

distance" (2.2.8) of Nei (1978), and (2.5.5) is what he calls

the "standard genetic distance".

Again, in the example (2), we may define the similarity

function as (61.. m)l/m instead of ( 1+...+S m)/m. The new

function has the value unity when the gene alleles coincide

at all the loci and zero otherwise. In such a case, when the

characters are independent,

13



..(I) .(m) = (j,(2
i Jii ii ii

=i () ()= (Jijm (2.5.6)

where j are as defined in (2.2.5) and (2.2.6).

Taking logarithms of (2.5.6), the corresponding DISC is

J!.
D = - log -3 (2.5.7)

which Nei calls the "maximum genetic distance".

2.6 A Functional Equation

Consider a multinomial distribution in k classes with

probabilities p = (pl,.,k and let H(p) be a DIVC.

The maximum DIV obtains when p = (k - 1 , ...,k- 1 ) = e, say

(for evenness), so that we may have the condition:

C1 : max H(p) = H(e). (2.6.1)

p

Using H(p) as a DIVC, we can construct a DISC between the

multinomials defined by p and e by using (2.1.3),

D -H + H (p) H e.(2.6.2)
pe2

The larger the value of H (p), the closer p is to e,

which suggests an alternative way of defining the DIS between

the populations defined by p and e as a quantity propor-

tional to

14



max H (p) - H (p) = H (e) - H (p). (2.6.3)
P

Equating (2.6.2) to a constant multiple of (2.6.3) we obtain

the functional equation

H(2 - [H(p)+H(e)]=c [H(e)-H(p)]

or
Hpe 1 H 264
H P (+c) H (e) + (-c) H (p). (2.6.4)

where c is a constant. There may be many solutions to (2.6.4)

subject to the condition C1. We shall impose some regularity

conditions on H (p) in order to restrict the solutions to a

smaller class:

C2 : H (p) is symmetric in pl,... Pk

C3 : H (p) admits first and second order partial

derivations with respect to pl,'..Pk-l and

the (k-l) X (k-l) matrix

H"(p) = (p) PJ

is continuous and not null at p f e.

Of course H'(p) = 0 at p = e in view of the condition C 1

and the condition C3  ensures that the diversity measure is

locally sensitive when p deviates from e.

We shall show that under the conditions C1 , C2  and C3 2

the function H(p) satisfying the equation (2.6.4) is of the

form

H(p) = a (1- E p2) + b (2.6.5)

15
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where a5O and b are constants, i.e., H (p) is essentially

the Gini-Simpson index.

(i) Using the condition C3 , we obtain on taking the

first and second derivaties of both sides of (2.6.5)

with respect to Pl ,'''Pk-1,

= ( - c) H' (p) (2.6.6)

H# --~e c) H"(p(267

where H' is a k-i vector and H" is a (k-1)X(k-1)

matrix. Putting p=e in (2.6.7)

1
H" (e) = (-f- c) H" (e) (2.6.8)

which implies that c 1/4, using the condition H"(e)7f0

(ii) The equation (2.6.7) becomes

H" = H"(p). (.2.6.9)

Repeated use of (2.6.9) gives

H"I(p) =fiH" [2 -n (p-e)+el H"I(e) (2.6.10)

The equation (2.6.10) implies that H(p) is quadratic

in Pl'''''Pk-1, which may be written, using the

condition of symmetry,

16



H(p) x E P P EEPip+ x

2 2Ef P P. + X2 (l-,Pk + 3 (P+ X X (2.6,11)

p 2  k 3 Pk)+X4(2

where all the summations are taken from 1 to k-i. The

condition C2  demands symmetry with respect to p1 ,.. .pk'

in which case (2.6.11) assumes the form

H(p) = k 2  (2.6.12)

Using the condition C1, we find that p1<0 in which

case H(p) is of the form

a( p- p2) + b (2.6.13)

where a>O, which is required to be proved.

3. ENTROPY AND INFORMATION

3.1 Measures of Entropy

A wide variety of DIVC's have been introduced through

the concept of entropy and information. The general approach

in these cases is basically different from that of Section 2.1,

where a function d (Xl,X 2 ) measuring the difference between

Lndividuals X and X is chosen first and probability distri-

butions of XI and X2  are used only to find the average of

d (X1 ,X2 ). In practice, d (XI,X 2 ) would be chosen to reflect

some intrinsic dissimilarity between individuals relevant to a

particular investigation. On the other hand, a measure of en-

17



tropy is directly conceived of as a function defined on the

space of distribution functions, satisfying some postulates.

Some of the postulates are that it is non-negative, attains

the maximum for the uniform distribution and has the minimum

when the distribution is degenerate. Thus a measure of en-

tropy is an index of similarity of a distribution function

with the uniform distribution, and hence a measure of DIV.

We shall consider the space of all multinomial distri-

butions for simplicity of presentation of results, observing

that the formulae for the continuous case can be obtained by

replacing the summation by the integral sign. We represent

the probabilities in the k cells of a general multinomial

by Pl,...Pk and for a particular population wi by

pil,...,Pik. Mathai and Rathie (1975) consider three general

forms for entropy:

Il a+3 .- 1 OH (1- )- log (Epr r /£p ) (3.1.1)
r

[(Ipc+ Br- /pr ) - 11 (2 1-a-l) (3.1.2)

r r

H =- Pr log p /Epr (3.1.3)r r r

where all the summations are taken from 1 to k. When

8 - 1 for all r we have the familiar expressions intro-r

duced by Renyi (1961), Havrda and Charvat (1967) and Shannon

(1948).

18



All the functions (3.1.1) - (3.1.3) are non-negative,

attain the maximum when pi are equal (maximum diversity)

and are zero when pi = 1, pj = 0, j t i (minimum diversity).

Mathai and Rathie (1975) discuss the various additional math-

ematical postulates which lead to these functions. Patil and

Taille (1979) and Pielou (1975) provide interpretations of

some of these functions in the context of ecological studies.

The functions (3.1.1) - (3.1.3) are all concave and the

method of Section 2.1 can be used to construct a DISC between

Wi and w. For instance, choosing (3.1.3) with $r = 1 as a

DIVC, and a mixture n of populations ni and wj with apriori

probabilities X1 and X2, we have

k
Hi = - r Pir log Pir

k

HO I(Xr log 1A +r A r (3.1.4)°=-r=l1 (1 Ptr + 2 Pjr ) 1o ( Pir + 2 Pjr )  314

Dij Ho - 1 Hi- A 2 Hj

I Pr l+ 2 E log rlPtr 2PJr PTr XPir+ 2pjr

(3.1.5)

which is the information radius defined by SIibson and Jardine

(1971) from other considerations.

Similarly, the DISC between w. and wj obtained by

choosing (3.1.2) with Br = 1 is

1



Dij [E(X1 Pir + X2 Pjr)a- _ X2 E P r] -(2--1) (3.1.6)

which, when a = 2, reduced to the Euclidean distance, apart

from a constant multiplier,

22 A 1A2 - (Pir -Pjr) (3.1.7)

The DISC obtained by choosing (3.1.1) with Br = 1

is

.( AlPir+A.2P 4 )a

Di log U 1 a + 2  (3.1.8)
(ir) (jr)

The formulae (3.1.5)-(3.1.8) involve explicitly the prior

probabilities A1 ,PA2 . In many practical applications, it is

appropriate to choose X1 = X2 = 1/2 to define a DISC between

two populations.

3.2 Apportionment of Diversity

By considering a mixture w of populations m1 " r

with prior probabilities A '' we can obtain a decomposi-

tion of DIV in wo' based on any choice of the H functions

(3.1.1)-(3.1.3),

HO X r Hr + (H 0- Ar Hr)

f H (w) + D (b) (.3.2.1)

as DIV within and DIS between populations. It may be noted

that D (b) cannot in general be obtained as a weighted combin-

20



ation of DISC's between all pairs of populations as in (2.3.1)

for the choice of DIVC's derived by the method of Section 2.1.

(It is, however, true when H is chosen as in (3.1.2) with

= 1 and a = 2, in which case it also belongs to the class

of DIVC's derived in Section 2.1). The ratio G(b) = D(b)/H o

has been used by geneticists as an index of diversity between

populations compared to wi.thin. However, as observed in Section

2.3, its value depends on the H function chosen. In their

studies on diversity with respect to blood groups and biochem-

ical markers, Lewontin (1972) used the H function (3.1.3)

with r = 1, and Nei (1973) and Chakravarthy (1974) used (3.1.2)

with a =2 and 8r = 1. This raises the question as to what is

the optimum choice of a DIVC in a given class {H} to study

the apportionment of DIV as between and within populations.

A natural choice appears to be one which maximizes the ratio

G(b) = D(b)/H or minimizes the ratio H(w)/H . Such-a choice

will depend on populations under study and the prior probabilities.

To examine the extent to which the optimum choice depends

on the population distributions, the following computations

were made in the simple case of two binomial populations with

equal prior probabilities. The class of H functions considered

is a subclass of (3.1.2) and (3.1.3),

H(a)= -a 1)

where for a = 1, the function is defined by the limiting value
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= - P1 log P1 - P2 log P2.

Table 1 gives the values of D(b)/H 0  for different combinations

of the proportions for the two binomials. For each combination,

the first entry corresponds to the value of G(b) for a = 1,

the second for c = 2, the third for a = 2.5, the fourth for the

optimum a, and the fifth entry within brackets gives a* the

optimum value of a. The blanks for certain combinations indi-

cate that the values are the same as for the combination with

the complimentary values of (pl,ql), the binomial proportions of

the two populations. It is seen that the optimum value a* of

depends on the values of pl,ql, although it is stable for a wide

range of values. If p1 and q, are both small or both large a*

is small and tends to zero as p1 and q, approach zero or unity.

For values of pl,ql near the boundary determined by the points

(.005,.7),(.01,.6), (.05,.5), (.1,.4), (.2,.3), a* is close to

unity which corresponds to the Shannon DIVC. For other ranges of

(plq1). is nearly 2.5, although a = 2, which corresponds to

the Gini-Simpson index is a close competitor.

The values of the ratio G(b) for the heptoglobin diversity

in 25 Caucasian populations considered by Lewontin (1972) for dif-

ferent values of a are as follows:

a: 1.0 2.0 2.5

G(b): .0209 .0249 .0251

The frequency of the heptoglobin allele in these cases varied

between 21% and 45% except in one case it was 12%. The optimum

a in such cases is about 2.5.
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Table 2 gives the values of H and G(b) for 9 blood0

group and 7 protein loci in the case of Makiritare Indians

from 7 different villages. These were computed using the data

kindly supplied by Chakravarthy (1974), assuming equal popula-

tion sizes for the villages. It is seen from Table 2 that for

the blood group loci, where p values are in the interval

(30%, 70%), the optimum a is 2.5; and for the biochemical mark-

ers, where p values are in the interval (5%, 20%), the opti-

mum a is 1, although the differences in G values are not

large. The value of a = 2.5 comes out better on the criterion

suggested for the choice of a DIVC. However, the value of

a - 2.0 is a close competitor and has other desirable proper-

ties (see Burbea and Rao, 1980).

4. DISCRIMINATION INDEX

A general method of constructing DISC's is through the

concept of discrimination between populations, i.e., the prob-

ability with which a given individual can be identified as a

member of one of two populations to which he possibly belongs.

4.1 Overlap Distance (Rao, 1948, 1977; Wald, 1950)

Let X be a set of measurements which has the probability

density pi(-) in ni and pj(*) in wi. The best decision rule

based on an observed value x of X, for discriminating between

7i and rt with prior probabilities in the ratio 1:1 is to

assign x to
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TABLE 2

Gene DIV of Makiritare Indians in Seven Villages

and Index of DIS Between Villages

Locus Ave =a = 2 a =2.5
p H G(b) H G(b) H G(b)

Serological

Diego .196 .7139 .1743 .6303 .1711 .6240 .1693

Kidd .336 .9209 .0250 .8924 .0320 .8899 .0325

Rh(C) .418 .9805 .0401 .9731 .0542 .9724 .0554

P .434 .9874 .0172 .9826 .0232 .9821 .0237

Lewis .466 .9967 .0791 .9954 .1044 .9952 .1191

Ss .470 .9974 .0575 .9964 .0770 .9963 .0786

Rh(E) .563 .9885 .0058 .9841 .0079 .9837 .0081

MN .714 .8635 .0263 .8168 .0291 .8128 .0292

Duffy .736 .8327 .0122 .7772 .0142 .7726 .0166

Average .9202 .0415 .8943 .0448 .8921 .0436

Biochemical

Ap .0557 .3101 .0647 .2104 .0238 .2054 .0213

Hp .424 .9833 .0650 .9769 .0866 .9763 .0884

Gc .820 .6801 .0431 .5904 .0432 .5837 .0427

PGM1  .848 .6148 .0592 .5156 .0504 .5086 C488

Lp .876 .5407 .0084 .4345 .0052 .4275 .0047

Alb .9857 .1081 .1293 .0564 .1719 .0547 .1444

6PGD .991 .0741 .2503 .0357 .0678 .0346 .0934

Average .4730 .0561 .4028 .0521 .3987 .0r22
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population Wi if Pi(X)>Pj(x)

population if p (x)<pj(x) (4.1.1)

and to decide by tossing an unbiased coin when pi(x)= pj(x).

The probability of correct classifications for the optimum

decision rule is

C = Pi(x)dx + J pj(x)dx (4.1.2)

R1 R2

where R is the region Pi(x)>pj(x) and R the region

pj(x)< pi(x). The minimum value of (4.2) is 1/2 which is

attained when pi( ) = pj(-), and the maximum is unity when the

supports of pi ( .) and pj(.) are disjoint. The more dissimilar

the populations are, the greater would be the probability of

correct classifications. Then we may define the DISC between

wi and wj as .11

Dij =C 1 (4.1.3)
ij ij 2~

1

which is in the range (0, ). It is seen that

11 Ipx)- pj(x) Jdx (4.1.4)Cij- f P x -

which is a multiple of Kolmogorov's variational distance or city

block distance, which is a special case of the Minkowski distance

I Pi(X) - pj(x)I t dx 1/t, t>l. (4.1.5)
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In the development of decision theory, Wald (1950)

introduced the distance function between in and 7r

D.. = max [p.(x)-pj(x)] dx (4.1.6)
13 j 1 3f

R

where R represents any arbitrary region. The expression (4.1.6)

is identifiable as

D. i 1 - f min[pi(x), p.(x)] dx (4.1.7)

= J [pi(x) - pj(x)] dx (4.1.8)
R 1

where R is the region pi(x)> pj(x) as in (4.1.2). The

expression (4.1.8) is the difference between the proportions of

correct and wrong classifications by using the optimum decision

rule (4.1.1). The expression (4.1.7) may be interpreted as the

proportion of mismatched individuals in the two populations.

4.2 Quadratic Differential Metric (Rao, 1948)

Let us consider a family of probability densities p(x,O),

0 e 0, a k-vector parameter space. The Fisher information

matrix at e is M = rmij (O)] where

mij(0) = p !&- dx. (4.2.1)

We endow the space 0 with the quadratic differential metric
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EE mij(e) 6 0i e. (4.2.2)

and define the distance between two points e1 and 02 as the

geodesic distance determined by (4.2.2). The expression (4.2.2)

is a measure of difference between two probability distributions

close to each other and the distance defined by it may be useful

in evolutionary studies where gradual changes take place in a

population in moving from state 01 to state 02. In a recent

paper Atkinson and Mitchell (1980) have derived the expressions

for geodesic distances based on (4.2.2) for well known families

of distributions.

4.3 Invariants of Jeffreys

Jeffreys (1948) defined what are called invariants between

two distributions

. = J I [pi(x)]l/m- [Pj(x)]l/m Im dx, m>O

i pi(x)

o = P() - pj(x) log p dx (4.3.1)

where the second expression is the sum of Kullback-Leibler

information numbers

I Pi(X) p.I(x)Iij= pi(x) log - x dx, Ij= P (X) log p(x dx. (4.3.2)

f P31XT Jiifi )

When m = 1,

1= i pi(x) - pj(x)I dx (4.3.3)
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which is Kolmogorov's variational distance (overlap distance of

Rao, 1948). When m = 2

22 = j [ [ ) - /p x)] dx

= 2 (1 - J /P(Xc) p(x) dx) (4.3.4)

which is extensively used by Matusita (1957) in inference problems.

The expression (4.3.4) is a function of the Hellinger distance

cos 1 f /pi(x) pj(x) dx. (4.3.5)

Rao and Varadarajan (1963) have defined the Hellinger DISC to

be

- loge I /pi(x) p.(x) dx. (4.3.6)

The measure (4.3.5) was proposed by Bhattacharya (1946) as a

DISC between populations ffi and w j and has been used in some

genetic studies. The alternative expression (4.3.6) has an

advantage over (4.3.5) in the sense that it is additive with

respect to characteristics independently distributed in the

populations.

It is seen that there are various approaches for measuring

DIV and DIS and some of the controversies on the choice of

these measures in practical investigations (see Li, 1978; Nei,

1978; Morton, 1973; and Smith, 1977) may be resolved through the

concepts developed in the present paper. Some further work in

this direction, which is in progress. will be reported elsewhere.
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