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\V ABSTRACT.

We present an example of the application of Lie algebraic

techniques to nonlinear estimation problems. The method relates

the computation of the (unnormalized) conditicnal density and

the computation of statistics with finite dimensional estimators.
The general method is explained; for a particular example, the
structures oi the Lie algebras'associatéd with the unnorgalized
conditional density equaticn and the finite dimensionally
computable conditional moment equations are analyzed in detail.
The relationship between these Lie algebras is studied, and the

implications of these results are discussed.
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1. INTRODUCTION.

This paper is concerned with the optimal recursive estimation
of the state x_ of a nonlinear stochastic system, given the past

observations z” = {z_, 0 < s < t}. Specifically, we consider systems
of the form

dxt ] f(xt)dt + G(xt)dwt

) }
dzt = h(xt)dt + Rt

dvt
where w and v are independent unit variance vector Wiener processes,
f and h are vector-valued functions, G is a matrix-valued function,
and R > 0, The optimal (minimum-variance) estimate is of course the
conditional mean it = E[xtlzt] (also denoted it ¢ °F Et[xt]);
ﬁt satisfies the (Ito) stochastic differential equation [1] - [ 3)

‘ - R Y NS
(2) dﬁt = [f(xt) - (xth -ith JR "(t)hlde

’ﬂ& 2T, =1
+ (xth -§th )R (t)dzt
y
vwhere ~ denotes conditional expectation given z% and h denotes h(xt).
Also, the conditional probability density p(t,x) of X, given 2t
(we will assume that p(t,x) exists) satisfies the stochastic partial
differential equation [ 3], (4]

(3)  dp(t,x) = £p(t,x)dt + (h(x)-ﬁ(xn'rn"(:)(dzt-ﬂ(x)d:)p(z.x)

vhere
(4) £(.) = - : Y ,_% 5 1 3. cchij)
i=] 3xi i=1 j=1 Bxiaxj

is the forward diffusion operator.
Notice that the differential equation (2) is not recursive, and
indeed appears to involve an infinite dimensional computation in
general. Aside from the linear-Gaussian case in which the Kalman filter
is optimal, there arc very few known cases in which the optimal estimatoris fin

dimensional (a number of these- are summariced in [5)). However, in [ 6]

~ [ 8) we have shown that for certaiun classes of nonlinear stochastic




systems in continuous and discrete time, the conditional mean can be
computed with a recursive filter of fixed finite dimension. The typical
nonlinear system in these classes consists of a linear system with
linear measurements, which feeds forward into a nonlinear system
described by a certain type of Volterra series expansion or by a bilinear
system satisfying certain algebraic conditions. The major purpose of
this paper is to consider these estimation problems from a new perspective,
and to gain much deeper insight into their structure,

The new perspective, originally proposed by Brockett [ 9] (see
also [ 10], [ 11]), takes the following approach to the general estimation
problem (1) (we assume for simplicity that i is a scalar). Instead of
studying the equation (3) for the conditional density, we consider

the Zakai equation for an unnormalized conditional density p(t,x)
(12):

(5) dp(t,x) = £p(t,x)dt + h(x)p(t.x)dzt

where p(t,x) is related to p(t,x) by the normalization
6) p(t,x) = p(e,x). Uolt,x)dn)™.

The Zakai equation (5) is much simpler than (3); indeed, (5) is a
bilinear differential equation {13) in p, with z corisidered as the input.
This is the first clue that the Lie algebraic and differential geometric
techniques developed for finite dimensional systems of this type may be
brought to bear here. Suppose that some statistic of the conditional
distribution of X, given z% can be calculated with a finite dimensional

recursive estimator of the form

Accession For

_ NTIS GRARI
a(n )dt + b(n )dz, DTIC TAB

Unannounced
Justification - _____

) | dn

(8) Elc(x) 2] = v(n)

———————————

00dgl

where n evolves on a finite dimensional manifold, and a2 and b are sor

suitably smooth. Of course, this statistic can also be obtained from

p(t,x): by




e

9 Elex)]2") = J c(p(e,0dx Up(e,x)dn)!

For Lie-algebraic calculations, it is more .convenient to write (5)
and (3) in Fisk-Stratonovich form (so that they obey the ordinary rules of
calculus) '

(10)  dn, = F(n)de + b(n,)dz,

U1 dpCe,0 [t - 3 K@ 1o, 0dt + h(x)o(t,x)dz,
th n abi
where the i— component a{(n) =a.(n) -4 Lb. (= ()
i F jolon,

(Beginning with (10), all equations will te in Fisk-Stratonovich form,
unless otherwise indicated). The two systems (10), (8) and (11), (9)
are thus two representations of the same mapping from "imput" functions
z to "outputs"E[c(xt)]zt]: an, (9 via a bilinear infinite dimensional.
state equation, and (10), (8) via a nonlinear finite dimensional state
equation. Generalizing the results of { 14], [ 15) to infinite dimensional
state equations, the major assertion of [ 9) is that, under appropriate
hypotheses, fhe Lie algebra F generated by a and b (under the commutator
[:,b] = %% a- %% b) is a homomorphic image of the Lie algebra L
generated by Ao = £ -} hz(x) and Bo = h(x) (under the commutator
le’Bo] = AOBO-BOAO). Conversely, any homomorphism of L onto a Lie
algebra generated by two complete vector fields on a finite dimensional
manifold allows the computation of some information about the conditional
density with a finite dimensional estimator of the form (10).

In {9], this approach is explicitly carried out and analyzed for
the problem in which f..G and h (1) in are all linear. In that case,
the Lie algebra L of the Zakai equation is finite dimensional and
the unnormalized conditional density can in fact be computed with a
finite dimensional estimator , the Kalman filter. In this paper, we carry

out a similar analysis for the simplest example of the class considered

in[6) - [8). For this example, all conditional moments of the state can be

computed with finite dimensional estimators; the Lie algebra L is infinite
dimensional but has many finite dimensional homomorphic images (the Lie

algebras of the finite dimensional estimators), thus yiclding a very

interesting structure. The examplc to be considered has state equations




dx, = dw

t t
(12)
dy, = xzdt
Ye = *¢
with observations
(13) | dzt = xtdt + dvt

where v and w are unit variance Wiener processes, {xo,yo,v,w} are
independent, and X, is Gaussian. The computation of ﬁt is of course
straightforward by means of the Kalman filter, but the computation

of 9t requires a nonlinear estimator.

2. THE LIE ALGEBRA OF THE UNNORMALIZED CONDITIONAL
DENSITY EQUATION.

For the system (12) - (13), the equation (5) in Fisk-Stratonovich
form is

| 2
(1) dp(e,x) = (-x"3- -}-2;7 - 2Do(e,0dt + xo(e,)dz,,

- 23 132 12
so the Lie algebra L is generated by Ao x5y + 7-;;5 - 3% and
Bo = x.

The following theorem is straightforward to prove.
Structure theorem 1:

(i) The Lie algebra L generated by Ao and Bo has as basis the elements
Ao snd Bi’ Ci. Di' i=0,1,2, ..., where

ai
Bl -X"'—{ i-o’l’z’.-o
dy
2 o
Ci -'rx'a_y_i l-O.I.Z....'
i
Di B camep i-0,|,2....

ay1




(ii) The commutation relations are given by

[Ao.Bil = C, Vi

[Ao.ci] B, + 2B, ., vi

[AO.Dj] [Bi.Dj] = [ci,Dj] = 0, \ 4 i.j

[ni,cj] =-D..., Vi,j
lni.nj] = [ci.cj] « 0, Vidj

(iii) The center of L is (Di’ i=0,1,2,...}.

(iv) Every ideal of 1. has finite codimension; i.e., for any ideal I,
the quotient L/l is finite dimensional.

(v) Let Ij be the ideal generated by Bj’ with basis

(ni.ci,n.; i > j}. Then I,>1

i 1

that the canonical map 7: A+ @® A/I. is injective.

D ... and an = {0}, so

(vi) L is the semidirect sum [18]) o% A and the nilpotent ideal
Io; hence L is solvable. _

~ In light of the remarks in the previous section, it should be
expected that many statistics of the conditional distribution can be
computed with finite dimensional estimators, since there are an
infinite number of finite dimensional quotients(homomorphic images)
L/ . By Ado's theorem, these can be realized by bilinear systems. ;.
However, we will present a sl'ightly different realization of the ;
sequence of quotients in (vi) above: L/ I, is realized by the 3
Kalman filter for ﬁt (L/ I, is the oscillator algebra [9) - [11)), "
and L,{.lj (j._{ 2) is realized by the estimator which computes it
and y‘t- E(ytlzt] (1 =1,2,...,j-1). Of course, the dimension of
L/ Ij increases with j, so we will only present the estimator

equations for j = 4 in the next section. Other sequences of quotients
possessing the property (vi) can also be realized (c.g., those
generated by the {Cj)). but those realizations do not have as natural
an interpretation in terms of conditional soments.

The properties (iv) and (v) of the structure theorem are useful

for an "estimation algebra" to possess, in the following sense:

they basically say that L has enough finite dimensional quotients




that it is determined by their direct sum. Translating this into
an estimation context via the reasoning of the previous sectiom,
if we can realize all the quotients with finite dimensionally
computable statistics, then these properties give us hope of being
able to approximate the conditional density (or conditional
characteristic function) with a convergent series of functioms of
these statistics, even if the conditional density cannot be

computed exactly by a finite dimensional estimator.

3. THE LIE ALGEBRA OF THE FINITE DIMENSIONAL
. ESTIMATOR.

The method of [6) for computing the finite dimensional estimator
for 9: systematically uses the estimation equation (2) and the fact
that the conditional density -of x  given z is Gaussian to express
higher order moments in terms of lower. This procedure can also be
applied to obtain equations for higher'order conditional moments
of y for the estimation problem (12) - (13). The first three
conditional moments of Yer togethét with it and the necessary
auxiliary filter states are computed recursively by the finite
dimensional estimator (in Fisk-Stratonovich form, with explicit

time-dependent notation omitted):

L 4
3

2 -RP
g | |ro-p,p B¢
g | |8 -228psp-rpp,
- -1
% R(P,,~P,3) * EP(1-P,,) - OF
dly?l=| 25% + 299 + 83fp + 2pp), - 4REFP - 80P - 297PP, ,- at‘:z?z—awl 3
~ -~ ~ -'
(15} ¢ %(P 4=2),) + EP(P =P ) ¢ 8¢r-vp,) -oF
’3 2? - 02
2| | 38%7% + 3y%p + 2uslyp + 48sBp + 208%¢ + 69ep),
3 2 a2, 2
+ 20P?4 = WOPP, - 48887° - 12§PP, 5 ~ 125°99° - 24PP,
- 6%fyZp - 20305p - 48%PP

dt

t 1 .
L.J. ~_ — / o

Ty
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P R, E &o]
PIZ Eo 0 -
28p Zo Hy,)

G
13 ez ;|2 = ]o
4EgP + 80P y2 Hy2)
P16 0o E: 3]
- 3 y

jsﬁﬁp + 2409P + 48P yz °

| ()}

- o = \,tOJ ol =

h0

where the nonrandom conditional covariance equations are

P=1- P
s -1
P,=P- (p+P )P, |
. 2 -1
16) Pl3 - 21’1"22 - PP, (P+P .)r”
s 2 -1
PM - 2PP'3 + PP P4 (p+pP )Pl,.

P(0) = cov(xo) ¢ 0; Plz(O) = Pl3(0) - Pl‘(O) =0

The estimator (15) is obtained by first augmenting the state
x with auxiliary states §, O, and ¢; then the Kalman filter for the linear
system with states [ x,£,0,4] and observations z computes [i.E.é.sl. In
addition, [P’PIZ'P|3'P14] is the first row of the Xalman filter error
covariance matrix; (16) is obtained by selecting the corresponding
components of the Riccati equation, Then §, y°, and y” are seen, after
tedious calculations, to be computed by the given equations (some of the
calculations are presented in the Appendix, in order to illustrate the
method). The filter state is augmented with t in order to make (15)
-time~invariant thus facilitating the use of Lie algebraic techniques.
The filter (15) can be viewed as a cascade of linear filters [ 19):
li,E.é,s.t] satisfies a linear equation; some of these states then feed
forward and can be viewed as parameters in a linear equation fer §; the
states a.t.é.y.: then feed forward as parameters intd 4 linear equation
for y“; etc. This structure is typical of the class of finite dimensional
estimators derived in (6] -~ [8]).

H
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In order to study the structure of the estimation problem as

discussed in section ], we must analyze the Lie algebra F generated
by a and b in .(15). The structure of the class of problems of [ 6]
is analyzed from a different point of view in[ 21].
Structure theorem 2: ‘
(i) F has as basis the elements a,: bi’ ;s i.- 0,1,2,3; di’ i=1,2,3,
where a  and b are given in (15) and
4 ]1 -0 - po -
0 1 P!
0 2% 0
0 P2 , 0
c, =l o}, b, = |4x5 +8Er , ¢ =l0 |,
Y Pl;z 0
0 + ZAEyP + 480p 0
Lo - Lo - Lo ’-
K s [0 0 ] o
0 0 10 0
0 0 0 0
) P-, 0 0 4
by lex v ©2%lo [* ®3%|o [* 3]0 ;
P -1
12 0 ! P
2455 + 4851’ 0 48% 0
- i
LO o _0 .J .0 - hO 4 ; i
0 ] KN [0 ]
0 0 0 ;
' ! 0 ) ‘
i d| = 0 ’ dz - 0 ’ d3 - 0 4
29 | 0
0/3 0 0
3y 39 1
0 LOJ 0




(ii) The commutation relatioms are given by

[ao,bi] =c, , 1=0,1,2,3
[ajc;l=b, =b.  , i=0,1,2
[éo.c3] = b,
-Zdi+j i+3s=s1
[bi,cj] =L 8y i+im2
—48di+j i+j=3
o othervise
[ao,d.] = [bi,d.] = [t:i.d.] =0, Vvi,j
(iii) Let i‘. be the ideal in Lwith basis B, i’ C Di’ i>4 and

D . Then F is isomorphic to I/? H hencc, F is also salvable.
(iv) The isomorphism ¢between L and F/'i' is given by:
0(A )= a ¢(B ) = -P? b,

o) = t-hle, i =0,1,2,3; ‘“Di) = G0l i= 1,2,3
¢E) =0, E€Y,

(v) Fis the semidirect sum of a, and the nilpotent ideal generated
by bo'

Remarks:

(i) The estimator (15) is not quite a realization of ], / I since
D_is also in the kernel of the homomorphism (i.e., the ideal
fa) However, a finite dimensional estimator realizing 1/ I,
(or L/IJ’ for any;) is easily obtained by augmenting (15) with
the equation for the normalization factor a, for p(t,x) (the

denominator of (6)) which satisfies (in Ito form)

dat - ﬁt at dzt
or (in Fisk-Stratonoviqh form)

w o deg? '
an dut 2(Rt*Pt)atdt + gtutdt




If (17) is augmented at the end of (15), the Lie algebra
generated by a, and bo has the same commutation relations

as in (ii) above, except that

0

[bo.co] -

LI B W
[ § J
Q.

0
L(l

.
and do commutes with all the other elements. Thus a
realization of L/ I4 is an easy modification of (15), so we
will concentrate on (15).

(ii) The property (v) is typical of a cascade of linear systems.

(iii) One of the conditions in [9) for the existence of a Lie algebra
homomorphism from L to the Lie algebra of a finite dimensional
estimator is that the estimator be a "minimal" realization
in a certain sense. If we consider the output of (15) to be
y~ and consider this realization of the input=-output map from
z toAy » then it can be verified by the methods of [ 15] that
the realization is locally weakly controllable and locally
weakly observable. This implies that there is no other
realization with lower dimension; it is in this sense thas\the
statistics E, 6, $ are necessary for the computation of y3.

Images of L under homomorphisms with successively larger kernels
can be realized by using only certain of the equations in the

finite dimensional estimator (15); that is, some subset of the

equations (15) will generate a Lie algebra isomorphic to L/ I. Let

T denote the ideal with bas1s D and B.. C., D., 12> j; we will

also use the notation that, e. g.. Y ® D denotes the ideal with basis

the above clements and D (which is 1n the center of L). Realizations

of some of the many possible quoticnts are summarized in the following

table, which givcs the quotient along with the set of states of a

finite dimensional estimator which realizes it (the filter states

gatisfy the corresponding equations in (IS)) For example, L/x 3

is realized by (15) with the equations for ¢ and y~ omitted, with

all the other filter states rutained,
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w1, R £ 90 0y 6 y0s e
L/(I 8Dy : %, 6, 5,0,y 6, ¢t
L/(Ia D, 8 D.) %, & g. 9, ¢, ¢
L/(I D 0D, 0 D3) X, 5, O’-¢’/§
L/ 13 %, 5’99 i Yy, t
L/(I ® D)) X, §,'z, 0, t
1./(1 oD, 0 02) %, §. o, t
L/ X, Ev ¥, t
L/(I 8 Dl) %, E, t
L/ Y % t

Table 1. Realization of some quotients.

The results of Table | follow from two cbservations: first, 3
that if I and J are ideals of L such that I < -J , then J/I
is an ideal of L/I and (L/1) / (J/I) is naturally isomorphic
to L/J[16,p.8) (e.g., I = ? and J = I ) Also, it is clear that
if one defines hOmomorphxsms from L/? to the quotients in Table 1| by
the canonical map, then the image can be realized by (15) with certain
equationsomitted. For example, it is clear that §snding d3 + 0 can

be accomplxshed by elzmxnat1ng the equation fot y3

; each d thus
represents, in some sense, y . Notice, in particular, that A/Y
is realized by the Kalman filter for X.

Other interesting quotients are obtained by homomorphisms which |
send other elements of the center of L/?A’ say jhst d,» to zero.
However, such a quotient is more difficult to realize by an
estimator, since the realization is not obtained by merely
eliminating certain equations. For these quotients, the following
result leads to a reali-zation.

Proposition 1: Let F be the Lie algebra gencrated by two n-dimensional

3
vector fields a and b. Assume that there is an element d in the g
center of F and a constant n-vector B such that B8'd = | (prime

denotes transpose). Then the mapping ¢ with ¢(a) = a - (B'a)d and

¢(b) = b - (3'b)d extends to a Lie algebra homomorphism with
O(f) = £ ~ (B'f)d for all £ € F, ¢(d) = 0, and ¢(F) isomorphic to
F/{d}. )
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Proof: We must show that, for f,g € F,

o0 £,8D) = [£,8) = (B'L£,g]d = [4(), ¢(a))-
Now, since B'f and B'g are functit;ns (not constants),

[o(£), ¢(2)) = [£~(B'£)d,g~(B'g)d] ‘
= [£,g) - [ (B'£)d,g) - [£,(B'g)d] + [ (B'£)d,(8'g)d]
= [f,g) - {(B'ONd,g) - g(B'E)d}
- {(B'g) [£,d]) + £(8'g)d)
+ ((B'H)(B'g)d ,d ) + (B')A(B'g)d - (B'g)d(B'£)d)

Notice that, for any f € F, B'[ £,d) = 0 and 3(B'd)/3x = 0 imply that

d(B'f) = ig‘l)d = ﬂ%‘ﬂ £=0,

Thus

[6C6),6(g)] = [£,8) - {-gB'f) + £(B'g)}d

={£,8) -~ (B'[£,g))d.

Note finally that ¢(d) =d - (B'd)d =d - d = 0,

This result can be applied, for example, to F -L/'f,. and dl’
since d]. is in the center and the ‘thitd component of dl equals 1
(thus 8 = {0 0 1 0 ... 0]'). The proposition implies that if we .
implement (15) with a ,'bo replaced by a, - (B'Jio)(lI and b - (B'bo)d‘,
respectively, then the resulting estimator (call it (15')) will
generate a Lie algebra isomorphic to LI(?A e D?. Notice that this
transformatior}\(due to the form of d|) eliminates the § equation,
modifies the yz and y~ equations, and does not affect the others.
From another point of view, the right-hand side of (15) is transformed
from aodt + bodzt to

sy ade + b dz - d[(8'a)dt + (B'b )dz,]

- aodt . bodzt - d,dyt




Denotigg the catlstxcs in this estimator which replace y2 and
_ y~ by y  and y3, respectively, we see from (18) and the form of dl
# B . that
~ A : ~
2 .2 & = dul o 2, : |

thus this estxmator computes the conditional second central

~

woment H (y Y t:) /z ], rather than the second moment Ver However,

~ N ”~
3 3 2,
dyt = dyt - 3y dyc

t

+ 24PP, . - 48E0P?

(24x€yP+ 48x0P+ 24521’2 + 6yl’P|2 PP,

- 125PP , - 126 2592 - 24PP, - 243J0P - 48R$PIAC
+ (2469P+1.85P)dzt

which is not the equation for any eésily recognized statistic of the
conditional distribution of Ye given 2%, On the ofhet hand, the results
of [17) - [ 18] imply that, since there is a Lie algebra homomorphism
from the Lie algebra F of (15) to that of (I5') and the isotropy
subalgebra of F is {0} at every point, then there it (at least locally)
an analytic map A that carries solutions of (15) into those of (15').
We have alteady seen that A takes the components &, E, 0 ¢, t into
themselves, )‘(y ) = | (y'- Iz ], and ).(y ) = 0. The image X(;}) is
“difficult to compute alghpugh a method is given in[17]); to fxrst

order for small t, Ye ¥

y: - 3yo(?c-9°), but more complete calcularions
are very involved.

4. CONCLUSIONS,

We have presented one example of the method proposed in [9) for
using Lie algebraic techniques to study nonlinear estimation problems
(a similar analysis can of course be done for other problems in the
class discussed in [6] -~ [8]). This method clarifies the relatiomship
between the computation of the (unnormalized) conditional density and
the finite dimensional computation of certain statiscics of the conditional
distribution (in this casc, the conditional moments). Although momerts
of any order can be computed by a finite dimensional estimator in this
example, it is unresolved whether the same is true of the conditional
density. That is, the Lie algebras of the Zakai equation (5) is

4
i
i
1
|
A
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infinite dimensional, but that certainly does not preclude its
being isomorphic to a Lie algebra generated by two vector fields

on a finite dimensional manifold (which would be the case if it
could be computed in terms of finite dimensionally computable
sufficient statistics). However, since moments of all orders can be
calculated, it may be possible (modulo questions such as moment
determinacy) to approximate the conditional density to any desired
degree of accuracy by means of a series in the finite dimensionally
computable statistics, '

bn the other hand, the Lie algebra of the Zakai equation may

have very few ideals, in which case there may be no statistics
which are "more easily" computable than the unnormalized conditional
density. Examples of both types and further analysis along these
lines will be presented in [ 22). Finally, we should warn that Lie
algebraic conditions do not always present the whole picture; as
discussed in [ 20], one must eséentially be able to "integrate"

the abstract Lie algebra representations obtained in order to
actually construct the estimator, and this is not always possible
(see [ 23] for one*further class of systems for which this is
possible).
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APPENDIX,
DERIVATION OF FINITE DIMENSIONAL ESTIMATOR.

| ]
First we note { 6, Appendix B) that if x = [xl xk] is

a Gaussian random vector with mean m and covariance P, then

k
Hx, ... %] =HxJ{x, ... 4+ TP Elx eve X )]
Pt % i Ste bRy O3 a1 0 0 CH
(A.1) =m ... + I P m ...m
: ! " (a;,a,) G182 93 *
+ I P P m ...m + L,
(0)05,04,0,) @10y G50, Qg oy

where each set {ai, i=1,...,k} is a permutation of {1,...,k}

and the sums in (A.1) are over all possible combinations of pairs of
the {ai}. Now, x in the problem (12) - (13) is conditionally Gaussian
with conditional cross-covariance defined by (for O)» Oy < t)

P(3,,0,,t) = El(x; -% )25,

-%
c
1

x
||‘)( AL
where *oit = E[iolzt]; using the results of [ 6, section 2) it can be shown
that

(A.2) —g? P(Ol,oz,t) - -P(O‘,t,t)l’(az.t,t)
(A.3) P(o,t,t) = K(t.o)Pt
(A.4) %E K(t,0) = -P:'K(t.a) ; K(o,0) = 1

vhe:. Pt = P(t,t,t) is the solution of the Riccati equation (16).

The conditional mean 9t satisfies equation (2) in Ito form:

(A.5) g, = EY x:]dc + (eY ytxt]' - 9t%tl( d:t-itdt]




2

2 -
But Etf xt] = _xt

+ Pt’ and using (A.1), (A.3), and (A.4),

t
EY ytxt] b S i (EY xixt] - EY xi]it)ds
o
= [ 2P(s,t,t)R ds
o s

-"-
LN

vwhere § satisfies

-1
Se "% " EP, WEy =0,

Thus the Kalman filter for the system with states x,£ and
observations z computes X, E, and § is computed according to (A.S5),

thus yielding the first three equations in (15) and P, P, in (16)

) 12
(once they have been converted to Fisk-Stratonovich form).

Furthermore, since dyi = Zytdyt = 2ytx§dt, ei]uation (2)
yields »
i ' % t. .2 2 )
f (A.6) dy, = 2Ty xcJde + {ETypx ) - yi® Wz, R d0).
Using (A.1),
t
2 2.2
Ty x) ! E'T x;x2)ds
«8%9 +§5 P+4RE P 2pp
slt t t t’t 12°

Also, (A.1) - (A.4) imply that

2 %
.Bt[ YeXed = Ve,
: t t
. =4 f [ P(s,t, t)l-:'( x.x:]dsdt
o o0
Y X R |.ETx2) + 2p(s,1,0)R_),)
- P(s,t,t Elx) + 2p(s,T,t dsdt
o o s|v ' % |t

: t t t
= 4{(C S !’(s.t,t)i‘t»ltds);’t . 28‘[! p(s,t, ) /[ p(s.'r,t)xtd'()ds))
o o o

= a(Etytr + 25'_1’)

e g 2T R € IR NN 7 YL
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- wvhere Gt satisfies

-1
O, = P1o%. * E(P-PP )~ P 'O 6, =0

The Kalman-Bucy filter for the state equations of x, g, and O with

observation z computes it. Et’ @ , and y: is computed according to

t
(A.6). After correction terms are added, these result in the first

five equations in (15), and the first three in (16). The third

moment-y~ (and higher moments) are computed in a similar mauner.
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