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We present an example of the application of Lie algebraic

techniques to nonlinear estimation problems. The method relates

the computation of the (unnormalized) conditional density and

the computation of statistics vith finite dimensional estimators.

The general method is explained; for a particular example, the

structures of the Lie algebras associated with the urnormalized

conditional density equation and the finite dimensionally

computable conditional momcnt equations are analyzed in detail.

The relationship between these Lie algebras is studied, and the

implications of these results are discussed.
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1. INTRODUCIION.

This paper is concerned with the optimal recursive estimation

of the state x of a nonlinear stochastic system, given the past

observations z 1z5, 0 < s < t). Specifically, we consider systems

of the form

dxt - f(x t)dt + G(xt)dwt

t t t(i) dzt - h(xt)dt ' R~dvt

where w and v are independent unit variance vector Wiener processes,

f and h are vector-valued functions, G is a matrix-valued function,

and R > 0. The optimal (minimum-variance) estimate is of course the

conditional mean it a E[xtlz t] (also denoted R or Etxt]);

It satisfies the (Ito) stochastic differential equation [1] - [ 3]

(2) d~t = [f(xt) - (xthT-xthT)R-I(t)h]dt

+ (xht jhT)R-|(t)dz t

where ^ denotes conditional expectation given zt and h denotes h(xt).

Also, the conditional probability density p(t,x) of xt given zt

(we will assume that p(t,x) exists) satisfies the stochastic partial

differential equation (3], (4]

(3) dp(t,x) £p(t,x)dt + (h(x)-h(x)) R-(t)(dzt-h(x)dt)p(tx)

where

(4) (.) 2 (.(GT)i)

i-I I i I 1 2. 3

is the forward diffusion operator.

Notice .that the differential equation (2) is not recursive, and

indeed appears to involve an infinite dimensional computation in

general. Aside from the linear-Gaussian case in which the Kalman filter

is optimal, there are very few known cases in which the optimal estimator is fir,

dimensional (a number of these- are sumnarited in [ 5]). However, in ( 6]

- [8) we have shown that for certain classes of nonlinear stochastic



systems in continuous and discrete time, the conditional mean can be

computed with a recursive filter of fixed finite dimension. The typical

nonlinear system in these classes consists of a linear system with

linear measurements, which feeds forward into a nonlinear system

described by a certain type of Volterra series expansion or by a bilinear

system satisfying certain algebraic conditions. The major purpose of

this paper is to consider these estimation problems from a new petspective,

and to gain much deeper insight into their structure.

The new perspective, originally proposed by Brockett [9] (see

also [10], [111), takes the following approach to the general estimation

problem (1) (we assume for simplicity that z is a scalar). Instead of

studying the equation (3) for the conditional density, we consider

the Zakai equation for an unnormalized conditional density p(t,x)

[ 12]:

(5) dp(tx) - £p(t,x)dt + h(x)p(t,x)dzr

where p(t,x) is related to p(t,x) by the normalization

(6) p(t,x) - p(tx).(fp(t,x)dx)" .

The Zakai equation (5) is much simpler than (3); indeed, (5) is a

bilinear differential equation [ 13] in P, with z considered as the input.

This is the first clue that the Lie algebraic and differential geometric

techniques developed for finite dimensional systems of this type may be

brought to bear here. Suppose that some statistic of the conditional

distribution of xt given zt can be calculated with a finite dimensional

recursive estimator of the form
Accession For _

(7) dnt a a(n )dt + b(n )dz NTIS GRAH&
t t t DTIC TAB E

Unannounced 3
Justificatlo

(8) E[c(xt)Iz t] - Y(n

where n evolves on a finite dimcnsional manifold, and a and b are Codes

suitably smooth. Of course, this statistic can also be obtained from /o

p(t,x): by



!(9) 11c(x t ) zt] I f c(x)p(t,x)dx ($p(t,x)dx) - I

For Lie-algebraic calculations, it is more.convenient to write (5)

and (3) in Fisk-Stratonovich fors, (so that they obey the ordinary rules of

calculus)

(10) dn t - a(rtI)dt + b(nt)dzt

(11) dp(t,x) -[E - - h2(x)]p(tx)dt + h(x)h(t,x)dzt

w th 3b.
Ihere the i- component ai(n) - a (n) - b 1 W

J

(Beginning with (10), all equations will be in Fisk-Stratonovich form,

unless otherwise indicated). The' two systems (10), (8) and (11), (9)

are thus two representations of the same mapping from "input" functions

2 to "outputs"E[c(xt)Izt]: (), (9) via a bilinear infinite dimensional

state equation, and (10), (8) via a nonlinear finite dimensional state

equation. Generalizing the results of t 14), [ 15] to infinite dimensional

state equations, the major assertion of [9] is that, under appropriate

hypotheses, the Lie algebra F generated by a and b (under the commutator

a ,b] -L a - b) is a homomorphic image of the Lie algebra Lan T
generated by A° = - h2 (x) and So W h(x) (under the commutator

[A 0 ,B0 ] = A B o-B A ). Conversely, any homomorphism of L onto a Lie

algebra generated by two complete vector fields on a finite dimensional

manifold allows the computation of some information about the conditional

density with a finite dimensional estimator of the form (10).

In (9], this approach is explicitly carried out and analyzed for

the problem in which f, G and h (I) in are all linear. In that case,

the Lie algebra L of the Zakai equation is finite dimensional and

the unnormalized conditional density can in fact be computed with a

finite dimensional estimator , the Kalman filter. In this paper, we carry

out a similar analysis for the simplest example of the class considered

in 1 63 - [18]. For this example, all conditional moments of the state can be

computed with finite dimensional estimators; the Lie algebra L is infinite

dimensional but has nmny finite dimensional homomorphic images (the Lie

algebras of the finite dimensional estimators), thus yielding a very

interesting structure. The exampic to be considered has state equations



dxt -w dt
(12)

2
dyt xtdt

with observations

(13) dzt = xtdt + dv t

where v and w are unit variance Wiener processes, {xoYo ,V,w) are
independent, and x is Gaussian. The computation of Rt is of course

straightforward by means of the Kalman filter, but the computation

of 9t requires a nonlinear estimator.

2. THE LIE ALGEBRA OF THE UNNOPALIZED CONDITIONAL

DENSITY EQUATION.

For the system (12) - (13), the equation (5) in Fisk-Stratonovich

form is

(14) dp(t,x) - 2-x + a 12x--

(1)dptx)-(-x -3--+.zx )p(t,x)dt + xp(t,x)dzt,
3y 2_2 .ax3 -2

so the Lie algebra L is generated by A° --x r 1 2  and

DO " X.

The following theorem is straightforward to prove.

Structure theorem 1:

(i) The Lie algebra L generated by A and B has as basis the elements

A and Bi, Ci, Di, i - 0,1,2, ..., where

ayi - X i_- 0,1,2,...

C " . . i - 0,1,2,...

i -I i " 0,a,2,...



(ii) The commutation relations are given by

[A0 B i I Ci, V i

[A 0,C] -B i + 2B+, v i

[A ,D.] - [B.,D.] " [Ci.D.] 0, V ij

[BiC ] - -Di+j, V i,j

[Bi,B. j [Ci,C] - 0, V i ( 3

(iii) The center of Lis {Di, i = 0,1,2,...).

(iv) Every ideal of L has finite codimension; i.e., for any ideal I,

the quotient LA is finite dimensional.

(v) Let Ij be the ideal generated by B., with basis

(B.,Ci,D.; i > 3). Then 1I I ... and n 1 (0), so

that the canonical map v: A - 0 A/l. is injective.
. 3

(vi) L is the semidirect sum [18] of A and the nilpotent ideal
o

Io; hence L is solvable.

In light of the remarks in the previous section, it should be

expected that many statistics of the conditional distribution can be

computed with finite dimensional estimators, since there are an

infinite number of finite dimensional quotients(homomorphic images)

Li . By Ado's theorem, these can be realized by bilinear systems.

However, we will present a slightly different realization of the

sequence of quotients in (vi) above: L/I I is realized by the

Kalman filter for 2t ( LI I! is the oscillator algebra [9) - [1]),

and L/ I. (j ) 2) is realized by the estimator which computes It
1 it

and y A l, I i - 1,,... ,j-1). Of course, the dimension of
t t

LI I increases with j, so we will only present the estimator
equations for j - 4 in the next section. Other sequences of quotients

possessing the property (vi) can also be realized (e.g., those

generated by the (Cj)), but those realizations do not have as natural

an interpretation in terms of conditional moments.

The properties (iv) and (v) of the structure theorem are useful

for an "estimation algebra" to possems, in the following sense:

they basically say that L has enough finite dimensional quotient,



that it is determined by their direct sum. Translating this into

an estimation context via the reasoning of the previous section,

if we can realize all the quotients with finite dimensionally

computable statistics, then these properties give us hope of being

able to approximate the conditional density (or conditional

characteristic function) with a convergent series of functiors of

these statistics, even if the conditional density cannot be

computed exactly by a finite dimensional estimator.

3. IE LIE ALGEBRA OF THE FINITE DIMENSIONAL

ESTIMATOR.

The method of [6] for computing the finite dimensional estimator

for 9 t systematically uses the estimation equation (2) and the fact

that the conditional density of x. given z. is Gaussian to express

higher order moments in terms of lower. This procedure can also be

applied to obtain equations for higher order conditional moments

of y for the estimation problem (12) - (13). The first three

conditional moments of yt, together with xt and the necessary

auxiliary filter states are computed recursively by the finite

dimensional estimator (in Fisk-Stratonovich form, with explicit

time-dependent notation omitted):

1 -RP

x 10I-.P121 -C P
9 Sj2 -2HC. + P - PP 12

§ if p2.13 ) * EP(1.-p12) _ 0P-

2R 2 9 + 29P , P. + 2-PP 42 .P- 8PP - 29PP - a2-2 dt

(UP) 1 i(P1 3-P 1 4 ) + EP(?12-r13) + O(P-Pr 12) .wp

y y + 3y P + 24 x 9 P + 48 6 P + 24 + P1+ 243 P" , 3 ? PPP -12PP3P" P 6 2

12P?3 - yP 12 - 48ta 2 - 13 9? -221. 24PP114

-6Rfy 
2 P - 20R690 - 48%;P

t I
a



P ftO 1k2o zo]
P1 2  to 0

2tP 90 it y
0

04EjP + 84§-P y 28~ 3l

0 tobE Y

where the nonrandom conditional eovariance equations are

;'1:,"p t - vp lv1

3 -0

I2 - vv2 vPl)1(16) 1-' 2PP12 - PP'1 - (P+1)PI3

6 P + 269P + -8j (1.

P(O) - covlxo) ii 0; PI210) - P13(0) * PI4 10) - 0

x with auxiliary states , 9, and *; then the Kaluan filter for the linear

system with states [ x, .O,$] and observations z computes [ ,,,] In

addition, [PP2P3P4 is the first row of the Kalman filter error

covariance matrix; (16) is obtained by selecting the corresponding

components of the Riccatj. equation. Then 9, y , and y are seen, after
tedious calculations, to be computed by the given equations (some of the

calculations are presented in the Appendix, in order to illustrate the

method). The filter state is augmented with t in order to make (15)

time-invariant thus facilitating the use of Lie algebraic techniques.
The filter (15) can be viewed as a cascade of liear filters [191:

[IF ,Tht] satisfies a linear equation; some of these states then feed

forward and can be viewed as parameters in t linear equation for 9; the
ststeswi ,s9,t then feed forad as parameters into a linear equation

tfor y , etc. This structure is typical of the class of finlte dimensional

estimators der sved in rd - k8(.

-time..-inain thus... faiittn t"he use .... Lie alebai techniques.



In order to study the structure of the estimation problem as

discussed in section 1, we must analyze the Lie algebra Fgenerated

by a and b0 in .(15). The structure of the class of problems of (6]

is analyzed from a different point of view in[2l].

Structure theorem 2:

i) F has as basis the elements a0; bi, ci, i - 0,1,2,3; di, i = 1,2,3.

where a0 and b are given in (15) and

0

0o 1 P"1

0 2R 0

0 P12 0

C 0 , b 4- + , c1 = 0

o 0
0 6 y + 24e9P + 480p 0

0 0 0 0"

J0

0 0 0 0
0 0 0 0

I -I

P 0 0
2 2 0 3 0 3 0

1I2 0 1 IP-I
2429 + 48CP 0 482 0

- 0 0 0

0 0
d 0d, d 0

2 3

3y 39 I

0 0 0
"*2*-



.1,

(ii) The commutation relations are given by

[a0,bi] ci  , i - 0,1,2,3

(a 0,c] = b. - bi , i - 0,1,2

[a 0 ,c 3] b 3

-2di+ j  i + j a I
[b i 'c ] = -8d i+j  i + j - 2

-48d.. i + j - 3

0 x otherwise

(a ,d.J [bi,d. ] I [.i,djI - 0, V i,j

(iii) Let 14 be the ideal in Lwith basis Ai, Cip D, i > 4 and

D . Then F is isomorphic to lk4 ; hence, F is also solvable.

(iv) The isomorphism * between L and F / 14 is given by:

) - ao; *(B i ) (-1)ib,
O(c d t-)ic. i - 0,1,2,3; O(D) - (-I)(i!)di; i = 1,2,3;

O(E) - 0, E E 4.

(v) F is the semidirect sum of a and the nilpotent ideal generated

by b0.

Remarks:

(i) The estimator (15) is not quite a realization ofL/ 14, since

D is also in the kernel of the homomorphism (i.e., the ideal
'p
S4). However, a finite dimensional estimator realizing 1/ 14

(or L/Ij; for any;) is easily obtained by augmenting (15) with

the equation for the normalization factor ot for p(t,x) (the

denominator of (6)) which satisfies (in Ito form)

t - dzt

or (n Fisk-Stratonovich form)

(17) doa
t t t t t't



If (17) is augmented at the end of (15), the Lie algebra

generated by a and b has the same commutation relations
o 0

as in (ii) above, except that

sI A

00
and d coniutes with all the other elements. Thus a

realization of Vl 14 is an easy modification of (15), so we

will concentrate on (15).

(ii) The property (v) is typical of a cascade of linear systems.

(iii) One of the conditions in [9] for the existence of a Lie algebra

homomorphism from L to the Lie algebra of a finite dimensional

estimator is that the estimator be a "minimal" realization

in a certain sense. If we consider the output of (15) to be

y and consider this realization of the input-output map fromI
z to y , then it can be verified by the methods of (15] that

the realization is locally weakly controllable and locally

weakly observable. This implies that there is no other

realization with lower dimension; it is in this sense that the

- 3statistics , 0, 0 are necessary for the computation of y
Images of L under homomorphisms with successively larger kernels

can be realized by using only certain of the equations in the

finite dimensional estimator (15); that is, some subset of the

equations (15) will generate a Lie algebra isomorphic to L/I • Let

denote the ideal with basis D and B., Ci, Di, i > j; we will
J 0 3. 2. 2

also use the notation that, e.g., S D I denotes the ideal with basis

the above elements and D (which is in the center of L). Realizations

of some of the many possible quotients are summarized in the following

table, which gives the quotient along with the set of states of a

finite dimensional estimator which realizes it (the filter states

satisfy the corresponding equations in (15)). For example, 1/' 3

is realized by (15) with the equations for $ and y omitted, with

all the other filter states retained.



QUOTIENT REALIZATION

2 3L/ 1 t , E o 0y 9, y, t
L/1 4 0 D) • " o, , t

LM(14 . D 8 Da) , , , 0 t

LAI 9 D I 0 D2 0 D3  R, t, of 09 t
L/ 1 , 9 ,9, 0, y , *,L/d 4 D,.

LAI 0 D2  , ', 0, tf%13  2
LAI 3  D1e D2) t, , a

L/ 12  2, Z, 9, t
L/('I2 . D ) t

L/, t

Table 1. Realization of some quotients.

The results of Table I follow from two dbservations: first,

that if I and J are ideals of L such that I C J , then J/I

is an ideal of L/I and (L/I) / (J/I) is naturally iscnorphic

to L/J [16 ,p.81 (e.g., 1 - and J =13). Also, it is clear that

if one defines homomorphisms from L/14 to the quotients in Table I by

the canonical map, then the image can be realized by (15) with certain

equations omitted. For example, it is clear that sending d3  0 can

be accomplished by eliminating the equation for y ; each d. thus
represents, in some sense, y1. Notice, in particular, that A/I!

is realized by the Kalman filter for R.

Other interesting quotients are obtained by homomorphisms which

send other elements of the center of L/14, say just d,, to zero.

However, such a quotient is more difficult to realize by an

estimator, since the realization is not obtained by merely

eliminating certain equations. For these quotients, the following

result leads to a realiiation.

Proposition I: Let F be the Lie algebra generated by two n-dimensional

vector fields a and b. Assume that there is an element d in the

center of F and a constant n-vector B such that O'd I 1 (prime

denotes transpose). Then the mapping * with 0(a) - a - ($'a)d and

0(b) - b - (3'b)d extends to a Lie algebra homomorphism with

O(f) - - ( ')d for all f C F, 4.(d) .0, and (F) isomorphic to

F/(d}.



Proof: We must show that, for f,g E F,

*f,g]) I [f,g) -(O'E f,gJ)d - E (f), 4(g)]-.

Now, since O'f and O'g are functions (not constants),

[W(), *(g)] - [f-(O'f)d,g-(B'g)dJ

M [f,g] -[ (B'f)d,g] - [f,(B'g)d] + C (B'f)d,(S'g)dJ

- [f~g] - (O'f)ld,g] -(lfd

-{(B'g. if,d] +. f(O'g)d}

* (8'f)(0'g)[d ,d I + (8'f)d(S'g)d -(S'g)d(O'f)d)

Notice that, for any f E F, $'[f,dl - 0 and a(B'd)Iax -0 imply that

d(B'f) - (Bd - 0.')axxax

Thus

I (),~g)I [f~g] - (--dB'f) + f (O'g))d

[ If~g] - WBE f~g])d.

Note finally that *(d) - d - (0'd)d - d - d - 0.

This result can be applied, for example, to F L/4and d

since d is in the center and the third component of d equals I

(thus 0 [ 0 0 1 0 ... 0]'). The proposition implies that if we
implement (15) with a. brpaced by ao - W~a )d and b - (01b )dI

respectively, then the resulting estimator (call it (15')) will

generate a Lie algebra isomorphic to L/(14 * D?. Notice that this

transformation (due to the form of d I) eliminates the 9 equation,
modifies the y and y equations, and does not affect the others.

From another point of'view, the right-hand side of (15) is transformed

from aedt + bodzt to
0 O

a dt + b dz - d [(O'a )dt + (01b )dz
(a) 0 t 1 0 0 t

aodt +' b 0dzt - dit



FA

D enot in the statistics in this estimator which replace y2 and
"32

y by y and y , respectively, we see from (18) and the form of dI

that

A

dy = dy 29td9t dYt_ d( t) 2 ;

thus this estimator computes the conditional second central
21t

moment I[ IZ 1, rather than the second moment yt. However,

3 3 2dyt dyt 3 d9t

- (24i9P+ 48ROP+ 24 2P2 + 69PPI 2 + 24PP 3 - 48- P2

- 129PP1 3 - 12 P2 - 24PPj4 - 24"6P - 48QIP)dt

+ (2409P+484P)dz t

which is not the equation for any easily recognized statistic of the
t

conditional distribution of yt given z . On the other hand, the results

of [17] - (18] imply that, since there is a Lie algebra homomorphis.2

from the Lie algebra F of (15) to that of (15') and the isotropy

subalgebra of F is {O) at every point, then there is (at least locally)

an analytic map A that carries solutions of (15) into those of (15').

We have already seen that X takes the components 2, , 0, *, t into

themselves, X(y ) - (y-t ) /zt], and X(-t) 0 0. The image (y ) is
t t Yt t

difficult to compute, although a method is given in 1171; to first

order for small t, _ y  3y (Y-9 ), but more complete calculations

are very involved.

4. CONCLUSIONS.

We have presented one example of the method proposed in [9] for

using Lie algebraic techniques to study nonlinear estimation problems

(a similar analysis can of course be done for other problems in the

class discussed in [6) - [81). This method clarifies the relationship

between the computation of the (unnormalized) conditional density and

the finite dimensional computation of certain statistics of the conditional

distribution (in this case, the conditional moments). Although momrts

of any order can be computed by a finite dimensional estimator in this

example, it is unresolved whether the same is true of the conditional

density. That is, the Lie algebra of the Zakai equation (5) is.



infinite dimensional, but that certainly does not preclude its

being isomorphic to a Lie algebra generated by two vector fields

on a finite dimensional manifold (which would be the case if it

could be computed in terms of finite dimensionally computable

sufficient statistics). However, since moments of all orders can be

calculated, it may be possible (modulo questions such as moment

determinacy) to approximate the conditional density to any desired

degree of accuracy by means of a series in the finite dimensionally

computable statistics.

On the other hand, the Lie algebra of the Zakai equation may

have very few ideals, in which case there may be no statistics

which are "more easily" computable than the unnormalized conditional

density. Examples of both types and further analysis along these

lines will be presented in [22]. Finally, we should warn that Lie

algebraic conditions do not always present the whole picture; as

discussed in [20], one must essentially be able to "integrate"

the abstract Lie algebra representations obtained in order to

actually construct the estimator, and this is not always possible

(see [ 23] for one'further class of systems for which this is

possible).
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APPENDIX.

DERIVATION OF FINITE DIMENSIONAL ESTIMATOR.

First we note [6, Appendix B] that if x - [x, ... X is
1k

a Gaussian random vector with mean m and covariance P, then

kXl "' t ."'" x.k- 1  + Pk a z I .0 2-

(A.1) Mn *.k .. m
(cc1 Cg2 ) 0102 03 '

+ P P m .. m +..
(01Cla2'a3,a4) 12 P34 '5  k

where each set fai, i - 1,...,k} is a permutation of (I,...,k)

and the sums in (A.I) are over all possible combinations of paita of

the (ai). Now, x in the problem (12) - (13) is conditionally Gaussian

with conditional cross-covariance defined by (for aI, 02 < t)

P(O 2 ,t) - E(x -At)(xC-i )l t )

Itwhere orjt " E[xC z J; using the results of [6, section 2] it can be shown
that

(A.2) dP '2

(A.3) P(a,t,t) - K(t,o)Pt

(A.4) d K(tI) K(t,o) K(a,o) Idt-Pt

wher. Pt = P(t,t,t) is the solution of the Riccati equation (16).

The conditional mean 9t satisfies equation (2) in Ito form:

(A.5) d9t * X2)dt + ( t Y xt]. - 9 1 Xdzt- tdt]



But Etc x] R2 + Pt, and using (AJI), (A.3),, and (A.4),t .t

Et yt xt d 9t R- E[X Ettx 8 t )ds

0 5
t
f 2P( s,t, t) Isds
0

where t satisfies

Thus the Kalman filter for the system with states x ,C and

observations z computes R, , and 9 is computed according to (A.5),
thus yielding the first three equat .ions in (15) and P, P 12 in (16)

(once they have been converted to Fisk-Stratonovich form).

Furthermore, since dyt2 2y dyt 2y x 2dt, equation (2)
yields

(A.6) dy~ - 2Etly tx t dt + (E Y txJ -j y22 R1(dz -2 dt).

Using (A. 1),

2 t 2 2E~yt tI E t x Ids
0

K~t+ tP+ 4g~t 2 PP12.

Also, (A.1) -(A.4) imply that

E y xtj ,y

t t 2
-4 f 1 PKs,t,0)E' x x T]dsdyt

0 0
t t2

-41 f P(s,t,tXt 2sIE%' x I) + 2p(sT~t)2 T tdsdT
0 0
* tt t
W f( IP(s,t, t)% ids)9~ + 2Eft P(-S't't)( P(sr,t)x dr)dsJ)

0st t 0 0T

4(t 9 P 20,L )



where 0G satisfies

;t P2 x + E(P-PP12 )- P 1 O(; 0. -

The Kalman-Bucy filter for the state equations of x, ~,and e with
observation z computes it Etp~ Ot. and y2 is computed according to

(A.6). After correction terms are added, these result in the first

five equations in (15), and the first three in (16). The third

uoaenc-y (and higher moments) are computed in a similar manner.
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