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SUMMARY

A new method is presented for calculating the scattering of an arbitrary
electromagnetic wave by a bounded, perfectly conducting body of general shape.
The strategy is to replace the corresponding exterior boundary-value problem by
an approximate problem on the boundary of the scattering body. This involves
the introduction of a certain bilinear form and non-local boundary operator,
together with the use of a special class of known solutions of the reduced
Maxwell's equations satisfying the Sommerfeld radiatiom boundary conditioms at
infinity. Two computer programs implementing this method are described and
numerical results showing the successful application of this method to some
model problems are presented.
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1. INTRODUCTION

The numerical calculation of scattering by an arbitrarily shaped perfect

conductor or dielectric body has received much attention in recent years. The

- problem ig important in many areas including the design of waveguides and missile
fuzes, the assessment of damage by an electromagnetic pulse, and the study of the
biological effects of microwave radiation. Mathematically, the problem has the
form of an exterior boundary value problem for a system of elliptic partial
differential equations. The problem has particular difficulties arising from the
large number of unknowns, the unbounded domain, and the fact that the solution is
oscillatory for large values of frequency.

The principal techniques for the numerical solution of scattering problems
are the method of integral equations, and the finite difference or finite element
method. We discuss briefly these methods.

In the method of integral equations, one starts with a formulation of the
boundary value problem as an integral equation on the surface of the scattering
body; the unknown may, for example, be the current density on the surface. An
excellent survey of such formulations, in the case of the reduced wave equation,
is given in [1]. The integral equation is solved numerically, either by using a
quadrature formula or a Galerkin method to reduce the problem to a finite system
of linear equations. The principal advantage of the method is that the dimension
of the problem has been reduced; one must find a vector field on the two dimensional
surface of the scattering body, instead of in the three dimensional exterior
region. On the other hand, the system of linear equations has a full (non sparse)
coefficient matrix. Also, the integral equation contains a weakly singular
kernel that comes from the fundamental solution of the problem; the resulting
surface integrals may be difficult to evaluate with sufficient accuracy. Examples
of the integral equation approach are contained in [2,3].

Wich the second method, the boundary condition at infinity is replaced by a
boundary condition on the surface of a large sphere containing the scattering
body. This approach is used in [4]. The resulting boundary value problem is
discretized by means of a finite difference or finite element method. This
method has the advantage of producing a simple, sparse coefficient matrix.

On the other hand, the order of the matrix will be larger, because the
unknown is now a vector field in a three dimensional domain. A judicious use of

1. Kleinman, R. E. and Roach, G. F., "Boundary Integral Equations for the Three
Dimensional Helmholtz Equation," SIAM Rev., Vol. 16, pp. 214-236, 1974.

2. McDonald, B., Friedman, M., and Wexler, A., "Variational Solution of Integral
Equations, " IEEE Transactions on Microwave Theory and Technique, Vol. MIT-24, ‘
PP. 237-248, 1974. ;

3. Livesay, D. E. and Chen, K-M., "Electromagnetic Fields Induced Inside |
Arbitrarily Shaped Biological Bodies," Ibid., pp. 1273-1280.

* 4. Baylis, A., Gunzburger, M., and Turkel, E., "Boundary Conditions for the

Numerical Solution of Elliptic Equations in Exterior Regions," Report 80-1,
ICASE, NASA-Langley, Hampton, Va., 1980.
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graded meshes at a large distance from the scattering body will help alleviate
this problem [5). Examples of the use of finite differences or finite elements
are contained in [6,7,8]. The finite element method is especially appropriate for
the problem of penetration of electromagnetic fields into an inhomogeneous,
absorbing body. To treat such problems, one couples the finite element procedure
inside the body with an integral equation or other technique on the surface of the
absorbing body. For some work on this, see [9,10,11]. A particularly successful
coupling method has been developed by Waterman {12,13]. In Waterman's method, an
integral equation is used on the boundary, and the external fields are expanded in
a series of harmonic vector fields. This eliminates the singularity from the
kernel of the equation and gives a representation of the approximate solution in
terms of fields which already satisfy the differential equations of the problem.
It should be noted, however, that although the resulting integrands no longer
contain singularities, they contain oscillating terms, and care in their evaluation
is still required. Examples of further work along this line are contained in
{14,15,16].

5. Goldstein, C., "Numerical Methods for Helmholtz Type Equations in Unbounded
Domains," BNL-26543, Brookhaven Laboratory, Brookhaven, N.Y., 1979.

6. McDonald, B. H. and Wexler, A., "Finite Element Solution of Unbounded Field
Problems," IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-20,
PP. 841-847, 1972.

7. Bettes, P., "Infinite Elements," International J. for Numerical Methods in
Engineering, Vol. 11, pp. 53-64, 1977.

8. Kriegsmann, G. and Morawetz, C. S., "Numerical Solutions of Exterior Probleums
with the Reduced Wave Equation," Journal of Computational Physics, 28,
pp. 181-197, 1978.

9. Zienkiewicz, 0. C., Kelly, D. W., and Bettess, P., "The Coupling of the Finite
Element Method and Boundary Solution Procedures,”" International J.
for Numer. Methods in Engineering, Vol. 11, pp. 355-375, 1977.

10. Brezzi, F. and Johnson, C., "On the Coupling of Boundary Integral and Finite
Element Methods," Report 77.15R, Dept. of Computer Science, Chalmers
University of Technology, Gbteborg, Sweden, 1977.

11. Brezzi, F., Johnson, C., and Nedelec, J. C., "On the Coupling of Boundary
Integral and Finite Element Methods," Report 39, Centre de Mathematiques
Appliquees, Ecole Polytechnique, Paris, 1978.

12. Waterman, P. C., "Matrix Formulation of Electromagnetic Scattering,"

Proc. IEEE, Vol. 53, pp. 805-812, 1965.

13. Waterman, P. C., "New Formulation of Acoustic Scattering,” J. of the Acoustical

Soc., Vol. 45, pp. 1417-1429, 1969.

14. Barber, P. and Yeh, C., "Scattering of Electromagnetic Waves by Arbitrarily
Shaped Dielectric Bodies," Applied Optics, Vol. 14, pp. 2864-2872, 1975.

15. Barber, P., "Resonance Electromagnetic Absorption by Nonspherical Dielectric
Objects,”" IEEE Transactions on Microwave Theory and Technigues, Vol. MIT-25,
pp. 373-381, 1977,

16. Morgan, M. A. and Mei, K. K., "Finite Element Computation of Scattering by
Inhomogeneous Penetrable Bodies of Revolution," IEEE Transactions on Antennas
and Propagation, Vol. AP-27, pp. 202-214, 1979.
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The method proposed here has similarities with the method of Waterman, in
that we also use harmonic vector fields. Our starting point is different,
however, in that we view the problem as a system of differential equations coupled
with a complicated non-local boundary condition. (See [17] for a similar point of
view.) The method was first developed for the penetration problem [18] and was
described in a preliminary way in [19]) and [20].

2. MATHEMATICAL FORMULATION

Let Q be a bounded, perfectly conducting, three dimensional domain
with boundary T'. We allow the possibility that Q is a disconnected domain, in
which case T is a collection of disjoint closed surfaces. Let Qg be the set of
points not in Q. We are given an incident electromagnetic wave, EY, HY, of
frequency w. Thus, §9 and H” are vector fields defined in all space, which
satigfy the reduced Maxwell's equations

vx g2 =i, v x 80 = gl

If the wave is propagating in a vacuum, a = iwyg, B = -iweg, where gg =

8.8574 x 10-12 meters/farad, ug = 1.2566 x 10-6 meters/henry. In general,

a = 1ag, 8 = ~1By, where ag, Bg are positive real numbers. Let E, H be the
electvomagnetic wave resulting from the scattering of the incident wave by the
perfectly conducting body Q. Let g} =E-EO0, gl = H - H” be the scattered wave.
Then E(x), H(x) are defined for xeQq, and are determined by the following set of
equations:

(2.1a) VY xE=qH xeQ,
(2.1b) YxH=gE xeQ
(2.2) Exn=0, . xel
(2.38)  El, B =oc™h, o=
(2.3b) e xE - JEB/BO g = orl), e
(2.3c) e x g} + J§87;;.§} = o(r-l), o

17. MacCamy, R. C., "Variational Procedures for a Class of Exterior Interface
Problems," Report 79-9, Department of Mathematics, Carnegie-Mellon University,
Pittsburgh, Pa., 1979.

18, Aziz, A. K. and Kellogg, R. B., "Finite Element Analysis of a
Scattering Problem," Report BN-917, Inst. for Phys. Sci. and Tech., Univ. of
Md., College Park, Md., 1979,

19. Aziz, A. K. and Kellogg, R. B., "A Scattering Problem for the Helmholtz
Equation," in Advances in Computer Methods for Partial Differential Equations-
1II, R. Vichnevetsky, editor, IMACS, 1979.

20. Kellogg, R. B., "A Scattering Problem for Maxwell's Equations," Ibid.
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Here n denotes the outward pointing unit normal to T, r = |x|, and e, denotes
the unit vector in the radial direction.

The system (2.la,b) comprises a system of six partial differential equations
in the six unknowns consisting of the components of E and H. The equations (2.1),
(2.2), (2.3) form an exterior boundary value problem for this system; (2.2) is the
boundary condition on ', and (2.3) are the boundary conditions at infinity. This
problem has been treated, for example, in 21 where it is shown that, for
reasonable surfaces T and incident waves EY, the problem has a unique solution.

It is convenient to discuss the boundary value problem in terms of the
scattered wave. For this, let f be a tangential vector field on T', and consider
the boundary value problem defined by

1 1

(2.4a) VY xE =al, ero,
(2.46)  Txm =gE,  xeq,
(2.5) n x g} = f, xeT,

and (2.3). From [21], it is known that this problem has a unique solution. If
f=-nx EP, then the solution El Hl of (2.4), (2.5), (2.3) gives the scattered
wave for the original problem. Thus, it suffices to solve (2.4), (2.5), (2.3).

Let f be a tangential vector field on I'. We define another tangential field,
Kf, as follows. Let E!, H! be the solution of (2.4), (2.5), (2.3), and let
KE =n xH Hl. The operator K maps tangential vector fields into tangential vector
fields. We also define a bilinear form, B, on tangential vector fields. If f and
g are two tangential vector fields on T, we define

thy-fatxx@r-
T

The operator K and the bilinear form B are used in the formulation of our
numerical method. We prove that the bilinear form is symmetric.

Lemma 1. B(f, g) = B(g, £).
2 .2

Proof. Let E!, B! be the solution of (2.4), (2.5), (2.3), and let E2, HZ be
the solution of (2. 4), (2.5), (2.3) with f replaced by g. Let B, be a ball of
radius r with boundary S,.. Let r be chosen so large that Qc:Br, and let Qg , =
Q0 NBy. We have

BE'-EZ - ol

21. Muller, C., Foundations of the Mathematical Theory of Electromagnetic Waves,
Springer-Verlag, New York, 1969.
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Integrating this over QO > Ve obtain

]
-; neH' x E2dr + f e -g* x EXar = j (eel-E? - an'-n?)dx.
r s 2

The first term on the left side is

fa-gz x Hdr = f neg x KEdT
r r
= B(g, ).

Using (2.3), we find that the second term on the left side is

2.1
§§2°gr x gldr= ~/B 7%, f e2eldr + s(o),

Se Sy

where 6(r) + 0 as r + =, Since B(g, f) is independent of r, it follows that the
expression -

f (8E"-E? - aB'-H?)ax + VB Ta, } E'-e%ar

QO,r sr

has a finite limit as r + », and that

(2.6)  B(g, £) = lim [ (BE"-E? - o’ -H?)dx + VB To { gl-g2ar
=™ 1a s
0,r r

Since the right side of (2.6) is unchanged 1f g}, g} and g?, g? are interchanged,

the left side of (2.6) is unchanged if f and g are interchanged, and the lemma is
proved. ]

We now show that the bilinear form is definite. This will be used in the
next section to show that the finite system of equations which our method
produces always has a solution. To state the result, we let.z denote the complex
conjugate of a complex number z.

Lemma 2, If B(f, £) = 0, then £ = 0.
Proof. Set g = f in (2.6), and note that a and 8 are imaginary. Then
(2.7)  ReB(f, D= (80/60)%11m§ |e|2ar.

T
)
r

In particular, we find that the limit on the right side of (2.7) exists. Suppose
B(f, £) = 0. Then
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1im § |§1|24r = 0.
Yoo S
r

1

It follows from a theorem of Rellich [21, Theorem 15] that E 0. Hence f = 0.

3. THE APPROXIMATION SCHEME

We describe our numerical method in terms of the scattered wave g}. Let g be
any tangential vector field on I. Then since n x El = —n x EY on I, we have

Integrating this over I', and letting f denote the tangential projection of the
restriction of E} to I', we obtain

B(f, g) = -§ _l}_'_E_o x Kgdr.
Iy

This equation is the basis for our numerical method. We pick a finite dimensional
collection S of tangential vector fields on I', and we define our approximate
solution fe$S by

(3.1) B(f, g) = -; Epr x Kgdl', geS.
r

The system (3.1) gives rise to a finite system of linear equations whose solution
determines the vector field feS. This approximation scheme seems to suffer from
two defects. It is not clear how to obtain the approximate scattered field in Qo
from f, and it is not clear how to evaluate the operator K which appears in (3.1).
These defects are overcome by a judicious choice of subspace, which we now describe.

Let x*c( be given, and let (r,8,¢) be a system of spherical coordinates with
the origin at x*. 1In Stratton [22, p. 416], there are constructed a family of
vector fields,

(3.2) B,

mn

Be ,mno’l’--s’n’nnl’z’ooo'
o o

mn

which satisfy the following properties.
(1) The fields are regular for x ¥ x*, and hence are regular in Qo.
(11) The fields satisfy

v xm

= Y98 Be
[o] (o)

22. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, 1941.

10
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o o

(111) The fields satisfy (2.3).

Note that we must take the Hankel functions z,(p) = h%(o) in Stratton's formulas
to satisfy (iii).

We fix an integer N > 0, and let Cy denote the collection of vector fields
(3.2) for 0 Sm X n, 1 2n £N. Let Sy denote the collection of tangential vector
fields on T which are of the form n x (U|;), where UeCy. There are 2N(N+2) linearly
independent fields in SN. If g;SN, using (ii), we may easily calculate Kg. If
£cSy is the solution of (3.1), then f comes from a vector field U im Cy; the field
U is the desired approximate scattered field, and may be easily evaluated at points
of Qp. We have therefore shown how to overcome the defects of using (3.1).

We now discuss the system of equations arising from the use of (3.1). We
arrange the fields (3.2) of CN in a definite order and denote them by F,
1 2uiMe=2N(N2)., We let £, =n x (Fy|r). Thus, the £, 1 2 u S M, are
tangential vector fields on I' which form a basis for Sy. Writing the desired
solution f of (3.1) as f = Ic,f,, we obtain the linear system

M
B - . 0 < <
(3.3) E e B, £) fg E xREAT, LSS
v=] T

We set auv = B(;ﬂ, jv), and we let A = [auv] denote the coefficient matrix. We

have the following

Theorem. The complex matrix A is symmetric, nonsingular, has nonsingular
principal minors, and admits a Cholesky factorization A = LT,

Proof. The symmetry of A follows from Lemma 1. The nonsingularity of A&, and
of the principal minors of A, follows from Lemma 2. The existence of the
Cholesky decomposition then follows from the arguments of [23, Thm. 3.1]. (Note,
however, that A is complex and symmetric, not Hermitian.)

Remark 1. The right side of (3.1) could be written in terms of the bilinear form.
However, an application of Lemma 1 would not enable us to express the right side
in terms of the incident magnetic field. This is because KE’ # HO, since the
incident field does not satisfy (2.3). To avoid this possible confusion, we have
chosen to express the right side of (3.1) as we have done.

Remark 2. An error analysis for the method proposed here will appear in a forth-
coming paper.

23, Stewart, G. W., Introduction to Matrix Computations, Academic Press, New York,
1973,

11
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4, COMPUTER IMPLEMENTATION

Two computer programs, PCISH (Perfect Conduction In Spherical Harmonics) and
PSYM (an axisymmetric version of PCISH), have been developed to implement the
numerical scheme described in §3. PCISH is the more general of the two since it
is capable of computing the electric (or magnetic) field resulting from the
scattering of an arbitrary electromagnetic wave gP by a simply-connected,
infinitely conducting body & of arbitrary shape. PSYM is an off-shcot of PCISH
which is designed to handle the specific class of problems in which the boundary
of Q is a surface of revolution and the incident wave gP is a plane wave propagat-
ing along the axis of symmetry.

In PCISH, it is assumed that the boundary of Q@ can be suitably approximated
by a closed surface which is the union of a number of quadrilaterals. The vertices
of the quadrilaterals and information giving the assignments of vertices to
quadrilaterals comprise a major portion of the input. Other input parameters are
the frequency, orientation, and shape of the incident wave, the center and maximum
order N of the subspace CN, the quadrature order, and the coordinates of the
points in space at which the scattered field is to be calculated. The input to
PSYM is similar (except for specifying the incident wave) but is much simpler
since the user need only supply a suitable number of points lying on a curve T
which generates the boundary of §i by rotation about an axis of symmetry. The
actual rotation of T is carried out implicitly by the program.

Most of the computations performed by PCISH and PSYM center around the evalua-
tion of the coefficient matrix and the right-hand side of the linear system (3.3).
In view of the Theorem, both PCISH and PSYM use Gauss elimination without pivoting
to solve the matrix equation.

As for the evaluation of the coefficient matrix and right-hand side, PCISH
performs a two dimensional quadrature (based on the trapezoidal rule) over each
quadrilateral of the surface representing the boundary of Q. PSYM, on the other
hand, performs only a one-dimensional quadrature (also based on the trapezoidal
rule) over a piecewise linear arc approximating I', which is formed by joining the
given input points on I by line segments. The reason that only a one dimensional
quadrature is necessary is that in the case in which 30 is a surface of revolution,
the quadrature in the ¢ direction has been carried out exactly by hand (requiring
only the integration of some trigonometric polynomials) and the corresponding
formulas placed in the program. In both PCISH and PSYM, the quadrature order is
an input parameter.

The assumption that the boundary of Q is a surface of revolution has another
large advantage in that, due to certain symmetries which exist in this case, many
of the matrix entries are zero. Moreover, if the incident wave gP is assumed to
be a plane wave propagating along the axis of symmetry, certain of the right-hand
side entries also become zero, and the originally 2N(N+2)-dimensional system
reduces to a 2N-dimensional system where N is again the maximum order of the
subspace CN. Instead of using all of the vector fields (3.2), we may take
subspaces generated only by the vector fields

Botn’ Berns D7Li2see N

The advantage of such a reduction is obvious, especially for large values of N.

12
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In order to evaluate the integrand in the bilinear form at each quadrature
point, one needs to be able to calculate the Hankel functions h% and the
associated Legendre polynomials Pg used in the definition of the fields of (3.2).
The routines used by PCISH and PSYM are as follows.

The Hankel functicm« h% = ju + iy, are computed at a given point p > 0 using
a backward recursion formula to calculate j,, the nth order cpherical Bessel
function of the first kind, and a forward recursion formula to calculate y,, the
nth order spherical Bessel function of the second kind. Starting with ¥y-1 = 1
and xM = 0 for M sufficiently large, we recursively compute x,, n = 0,1,¢** M=-2
by
X+l

X, = (2n + 3) T T Xn2 -

We then set
- 8inp
3, ox. %
0
1 1 1
As for the Y,» We set yo(p) - - ;cosp, yl(p) = - S5cosp - Esino and compute

7.0 =By ) -y, -

We then set h%(p) =3 (p) + iyn(p). One also needs certain derivatives of the
h% and for these, we employ the following useful formula (see 10.1.21 of [24])

1,.1._.1 _n,l v d
p(phn) hn—l o hn ( dp’ °

To calculate the associated Legendre polynomials P: of degree n, order m, at
a given point n,- 1 £ n £ 1 we first observe that using the Rodriguez formula for
Ph= Pg, we have

m
34" (n)
m def 2,2
Pn(n) = (1-1n7) —Lm'—
dn
m
2.2 & 1 48 2 n
Q-9 B [Z“n! P (n 1) ]
o
2,2 ,mn
s f1-n)"d (n2 _ l)n .

n mn

2 n! dn

24. Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functionms,
U.S. Government Printing Office, 1964.

13
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Therefore,
B
o Q-19%2d" 2 .n
Pm(n) = = o (n" -1
2 m! dn
]
.- n®2em
2"m!
n-1
- Gneh) ZEDIL . 2y N
(m-l)'

= (2m-1) V1 - nz P:i(n) .

Since P (n) 1, we may recursively calculate Pm(n) for any m. To obtain P:(n)
for m f n, we observe that P®(n) = 0 for n < m and apply the recursion formula
(see 8.5.3 of [24])

m m
(n m+1)Pn+1(n) (2041)nP (n) - (ntm)P _,(n) .
We also need the derivatives %; P:. Using the fact that %; Pg(n) = 0 for all m,
we apply the formula (see 8.5.4 of [24])
ar”

2 n m m
@-n g (n+m)P__, - nnP_
forn21l, m2 0.

Once the linear system has been solved by Gauss elimination, the approximate
scattered field g} is assembled and may be evaluated at any given point X in
space. The relevant quantity for many applications is the radar cross-section
(RCS) defined by

4wR2 1 x 2

4.1) o(x) =
1% (x) |2

where EP is the incident wave and R is the distance of the point x from the body
§. To calculate the scattered field at infinity (i.e. the farfield) one takes

the 1imit of (4.1) as R+~. Computationally, this is achieved by using an asymptotic
form of the Hankel functions when the scattered field E}is assembled from the
solution of the linear system.

5. NUMERICAL RESULTS
Both PCISH and PSYM have been developed and executed on the CDC 6500

computer located at NSWC/White Oak. These programs have been applied to a
number of relatively simple model problems in order to test the program

14
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capabilities and to compare computed results with results found in the literature.
Since all of the problems attempted to date have been axially symmetric, the more
specialized program PSYM was used to obtain the numerical results presented below.

As mentioned in §4, the maximum order N and center x* of the subspace Cy and
- the quadrature order are input parameters. In order to verify our results for a
given body Q, we manipulate these quantities in the following way. We first
determine the proper value for N by successively increasing this parameter until
the RCS stabilizes to some pre~determined number of significant digits. However,
since an increase in N causes an increase in the oscillation of the associated
Legendre polynomials used in their definition, we must simultaneously increase
the quadrature order to insure an accurate evaluation of the matrix system (3.3).
For a given value of N, the quadrature order is increased until the RCS again
stabilizes to a pre-determined tolerance. Once these quantities have been
determined, we perform a consistency check by varying the subspace center x*.
Since this should in theory have no effect on the farfield profile, this seems to
be a fairly rigorous test of the computed values. Obviously, for each new body
Q this process involves a fair number of program rumns, but it is hoped that a
further investigation of our method will lead to a better understanding of the
interplay among these various quantities and their relationship to the other ]
relevant parameters of the problem. ;

In the case in which @ is an infinitely conducting sphere, an exact solution
is known and can be found in many classical texts on electromagnetic theory
(see e.g. [22]). PSYM produced extremely good farfield backscattering results
in this case, even well into the resonance region, as can be seen by comparing
Fig. 1 with a similar plot obtained from the exact solutiom on p. 148 of [25]. 1

The case in which R is a right circular cone is also studied in the litera-
ture [25]. For our tests, we used a right circular cone circumscribed about a i
1 m. sphere with a 15° half-angle at the vertex. The plane wave E” was incident
upon the vertex and propagated along the axis of symmetry. Fig. 2 shows the
farfield backscattering results produced by PSYM in the Rayleigh region and
extending a short way into the resonance region. These results seem to agree
with other computed and experimental results reported in [25] (in particular,
see the figure on p. 392 of [25]).

. For some applications, it is desired to calculate the scattered field close
to the body Q. This presents no difficulties for PSYM, and Fig. 3 displays some
partial results in this direction for the same conical scatterer as described
above. For each of the frequencies 1MHz, 10MHz, and 50MHz {corresponding to

2rs .027, .273, and 1.365 respectively in Fig. 2), the scattered field was

eBaluated on circles of radii 4m., 10m., and 50m. lying in the plane parallel to
EY which contains the axis of symmetry of the cone. In order to obtain a farfield
. profile, calculations were also made on a fourth circle, concentric with the other

25. Ruck, G. T., editor, Radar Cross Section Handbook, Vol. 1, Plenum Press,
New York, 1970.
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three circles, which had an effectively infinite radius. The frequency 1 MHz is
in the Rayleigh region and yields a constant RCS in the farfield. The frequency
50 MHz is in the resonance region, and the frequency 10 MHz is on the border
between the Rayleigh and resonance regions (see [26]).

26. Crispin, J. W., Jr., and Maffett, A. L., "Radar Cross-Section Estimation for
Simple Shapes," Proc. IEEE, Vol. 53, 833-847, 1965.
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