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ABSTRACT

The electromagnetic hazards involved in using composite materials in

aircraft are considered. Attention is focused on the problems associated

with the lover conductivities of composites in comparison to those of metals.

The concept of a high conductivity composite is advanced as a solution to

the electromagnetic problems associated with presently available composites.

The electrical properties of available advanced composite materials,

primarily graphite/epoxy and boron/epoxy, are presented. Basic deterministic

models relating the electrical conductivities (D.C. to 50 MHz) of composites

to the fiber conductivity, the matrix conductivity and the volume fraction of

the fibers are developed. The electrical behavior of as-manufactured graphite

and boron fibers is also detailed.

The possibility of 'doping' fibers with suitable impurities to increase

conductivity without an associated decrease in specific strength is explored.

Boron fibers undergo a recrystallization when heated above 8000C and have, as

a consequence, significantly reduced strengths. Since thermal diffusion of

Impurities requires temperatures above 800
0 C, significant effort was devoted

to inhibiting this recrystallization. Diffusion of nickel impurities inhib-

ited this process and resulted in increased conductivities

To add impurities to boron while avoiding recrystall:a on, it is

'.J necessary to add the impurity species while boron fiber growth is underway.

A boron growth apparatus which produces fibers similar (under optical micro-

scopy) to commercial fibers was used to introduce impurities into the chemical

vapor deposition growth process in an attempt to increase the conductivity of

boron fibers. Parallel efforts involving graphite fibers were also carried

out. Results of these experiments are detailed.

,I Models of charge flow in composites are developed based upon effective

medium theory. Extensions to finite thickness samples are presented. Com-

parison between theory and experiment is shown to be excellent. The existence

of a 'thickness effect' was predicted theoretically and confirmed by experiment.

IAA;
[r
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1. MODELING AND MODIFICATION OF THE ELECTROMAGNETIC

PROPERTIES OF ADVANCED COMPOSITE MATERIALS

1.1 Introduction

As the use of fiber reinforced composite materials has increased in

aircraft, the assessment of the associated electromagnetic hazards has drawn

increasing attention. Immediate questions arise concerning the effects of

lightning upon composite structures, the shielding effectiveness of these

materials against electromagnetic interference (EMI) and electromagnetic

pulse effects (E4P), radar cross-section and power supply grounding. In

addition, the build-up of precipitation static on an aircraft is an area

of concern. At the present time, there is information available concerning

the electrical properties of the more widely used composites (graphite/epoxy,

boron/epoxy and Keviar/epoxy) and available experimental results indicate that

the issues raised above may involve some operational problems.

For example, an all composite aircraft would not be able to withstand

a direct lightning strike. Laboratory experiments have shown that charge

relaxation through the composite material is not sufficiently rapid and the

resultant local heating and stress cause delamination 1 1 . Other research has

shown that the shielding effectiveness of graphite/epoxy and boron/epoxy is

lover than that of the metals which are presently used in aircraft 1 - 2 . The

decrease in shielding is significant at low frequencies. Published data in-

dicates that graphite/epoxy shields more effectively than does boron/epoxy

although questions have been raised concerning the validity of the shielding

1-3experiments involving boron/epoxy

The introduction of these materials causes significant problems for

, Jo --. a m~~ 4 ..- __...._____
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individuals concerned with the electromagnetic compatibility and survivability

of defense systems1 -
'. A great amount of effort has been expended to predict

electromagnetic scattering and penetration for all metallic structures (with

and without openings) but the applicability of this research to composite

structures is not clear at the present time. If fundamental physical changes

in the composites can be made so that their electrical properties more closely

approach those of metals, all scattering and penetration algorithms can be

applied directly to composite systems. This is the ultimate goal of the re-

search described in this report.

The first goal is the development of suitable low-level (in the sense

of weight per-cent) doping techniques to allow significant increases in the

conductivity of graphite and boron fibers used in the fabrication of advanced

composites. The second goal is to develop suitable models based on the sta-

tistical theory of random media to allow the prediction of the overall electrical

conductivity of fiber reinforced materials based only upon a knowledge of

conductivities of the fibers and the matrix materials as well as the statistical

arrangement of the fibers in the matrix. As will be discussed later in

section 4, graphite/epoxy conductivities could only be modeled by including

the mechanism of electrical conduction between fibers in contact. The third

goal, which supports the first two, is to develop a suitable laboratory

facility to allow the production of reinforcing fibers of graphite and boron

under carefully controlled conditions in which electronic grade gases are

used to introduce impurities into the fibers. The purpose of this work was

to examine the most useful ways in which doping techniques could be carried

out on a production-line basis. The successful completion of this third

itask will insure the rapid dissemination of this new technology throughout

the production facilities presently manufacturing advanced composites. In

t ---)----- -- --

- - -- -- - - --
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addition, this in-house processing capability will allow the background

impurity contents of the fibers to be carefully controlled so that the

effects of intentionally added impurities are not masked by impurities

present as a result of earlier processing. This cannot be achieved by

using samples provided by manufacturers because, although the manufacturers

have been most cooperative in providing such samples, they are not willing,

for understandable reasons, to release proprietary information concerning

the precise conditions under which the fibers are manufactured. For ex-

ample, detailed information concerning growth rates, temperatures and

ambient gases is not available. Some information is available through

government supported research reports but this data does not necessarily

correspond to the conditions presently being used by various manufacturers

in their production facilities. For these reasons, it was felt that an

independent processing facility aimed at the production of graphite and

boron fibers under highly controlled conditions was of value.

The modeling and modification of the electrical conductivity of

graphite/epoxy and boron/epoxy is the focus of this research. No detailed

investigations of the permeability or permittivity of these materials was

carried out because earlier work in this laboratory1- 5 has shown that the

* relative permeability of these materials is essentially unity and there are

no readily apparent ways to increase this value without accompanying in-

creases in mass density and associated decreases in specific strength (i.e.,

strength/mass ratio). The permittivity of boron/epoxy is primarily related

to the permittivity of the epoxy resin and the details of its cure during the

4fabrication of the composite part. Although it is conceivable that th

permitivity could be increased and thus yield improvements in shielding,

such efforts are beyond the scope of the proposed research. The permittivity

. .
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of graphite/epoxy is indeterminant because these materials do not show

any capacitive effects even at frequencies as high as 50 MHz. Since this

work is aimed at low frequency improvements in the properties of advanced

c"-Vosites, there was no point in investigating permittivity modification

in graphite/epoxy.

Successful experiments were performed in which the conductivities of

manufactured graphite and boron fibers were increased by adding small amounts

(parts per million to parts per billion) of impurity atoms via high temperatures

diffusion. The initial boron experiments produced positive results but, when

samples were acquired from the Avco Corporation (the only company presently

manufacturing boron/epoxy composites), we encountered a surface defect situation

which prevented successful reheating of these samples to the temperatures re-

quired to allow impurity diffusion. A detailed investigation of this behavior

of boron fibers was carried out and is described in the body of the report.

Nickel diffusion was found to inhibit the surface defect nucleation and in-

crease conductivity of the boron fibers.

Successful models to predict the conductivity of advanced composite

materials based upon the conductivities of the fibers and matrix, the degree

of fiber-to-fiber contact and the volume fraction of fibers were formulated

by suitable extensions of effective medium theory.

Furnaces for the growth of boron and graphite fibers were designed and

fabricated. Boron and graphite fiber growth experiments were conducted and

several in-situ doping processes were investigated.

II.

_ _ _ _ _ _ _ ... _ _ _ _ _ _.,- .. _ .-.. . - ._•. ..
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1.2 Review of Previous Work

This section reviews earlier work conducted under the sponsorship of

the Rome Air Development Center at the University of Notre Dame and the re-

sults are essential to an understanding of the research results presented

in this report.

The materials of interest are inhomogeneous, consisting of arrays of

fibers (each fiber, in general, electrically anisotropic) dispersed in an

insulating (electrically isotropic for all materials presently under in-

vestigation) matrix. The theoretical situation is worsened by the lack of

spatial periodicity which precludes the use of translational invariance

symmetry as commonly applied in the theory of crystalline solids. in order

to develop some starting concepts about the nature of electrical current

in composites, it is necessary to use statistical theories of inhomogenous

materials which were developed primarily to examine problems of heat flow

in disordered media (for example, the thermal insulation problem). The

basic method is to determine upper and lower bounds of the transport co-

4efficients (thermal conductivity, electrical conductivity, ...) in terms of
the properties of the two phases and the volume fractions of each phase.

Although such models have been primarily for solids consisting of spheres

dispersed in a matrix, extensions 1 6 have been published for dispersions of

fibers. The published theoretical analysis does not assume any touching between

the fibers but rather assert that each fiber is surrounded by matrix material.

We begin by examining the applicability of these bounds to the case of

graphite fibers in an insulating matrix. It is most convenient to examine the

Ii
i ratio of the upper bound (a U  of the electrical conductivity to the loer

JU
[ __bound

141 

.
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The general expression takes the form 1 6

GU/GL - -l[1 + of - A]/[f + a(l-f) + B] (1-1)

with A - .5cf(l-f)/[f + 2G1(l-f)
2 - 2G2f

2 I

B = .25af(l-f)/[f2G2 - (1-f)2 Gl]2I
where a is the ratio of fiber to matrix conductivities, f the volume

fraction of the fibers and G1, G2 are empirical shape factors.

In writing equation (1-1), available experimental evidencel- 5 indicating

that fiber conductivities are several orders of magnitude greater than matrix

conductivities was invoked. As long as neither f nor 1-f closely approaches

zero (a condition which is satisfied in both typical graphite/epoxy and boron/

epoxy samples), the bounds ratio (aU/GL) simplifies further and numerical

1-7values for the shape factors may also be substituted

G G a 0.25

1 2

For a sample of graphitelepoxy representative of the materials used in

aircraft, the following approximate numerical values apply.

4
f 0.7, a1 - 10 mhos/meter, a2  10- 8 mhos/meter

The bounds may be evaluated directly as

S-4.41(1010

This value is significantly greater than the experimentally measured

values1 - 5 which yield a ratio

-200

OrP_ _



It follows that these bounds are not sufficiently tight to real-

istically predict the electrical properties of graphite/epoxy composites.

Although the bounds are valid, they are more than ten orders of magnitude

apart and are of little value in predicting the conductivities to be ex-

pected in a given composite system. These results Imply that the basic

divergence between theory and experiment is caused by the theoretical neglect

of fiber-to-fiber contact. This contact is a dominanL feature in configurations

In which current is directed orthogonal to the fiber axis (in single ply samples)

and cannot be ignored if useful bounds are to be derived theoretically.

A second approach to the analysis of the electrical properties of com-

posites rests upon deterministic models in which attempts are made to solve

for the precise distributions of currents in a sample excited by an externally

applied voltage and, in this way, determine an effective conductivity for the

material. Such models become intractable when large numbers of fibers must

be considered but insight can be obtained into the elctrical behavior of

composites by examining a few simple cases.

We begin our development of such models of electrical conductivity in

advanced composites by considering the unidirectional, single-ply system. If

care is taken to abrade any epoxy-rich regions from the upper and lower surfaces

of such a sample, experiments indicate that the conductivity may be characterized

by two quantities: L' the value associated with current along the fiber axis

and OT, the value associated with current orthogonal to the fiber axis (either

from top to bottom or in the sample plane at right angles to the fibers).

The symbol f denotes the volume fraction of fibers in the unidirectional

sample while al,a2 denote the fiber, epoxy conductivities respectively. For

current in the longitudinal direction (along the fibers), the total sample

conductance is simply the suation of the conductances of the individual fibers

! -

oIi_
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plus the conductance of the epoxy. Figure 1-1 shows the sample geometry.

This may be written as

olfA + a (1-f)A

G 2 2l-f+ (1-2)L L

from which it follows that the longitudinal conductivity may be written as

@1 " aif + a2(l-f) (1-3)

Although minor deviations from this result are observed in some uni-

directional samples as a result of breaks in fibers and skewing of fibers

from the longitudinal axis, it is in acceptable agreement with experimental

results. For unidirectional samples with a fiber volume fraction of 0.6,

the above equation predicts the longitudinal conductivity to be

0L = 2(10 4)(0.6) + a2(0.4) (1-4)

a 1.2(10 4) mhos/m.

The second term is, of course, negligible when the matrix is epoxy. This

value agrees with low frequency measurements - 5 (DC to 50 Mz), which have

been in the range of 1-2(10 ) mhos/m for unidirectional samples.

The calculation of the transverse conductivity aT is more difficult.

In order to develop insight into this problem, consider a simple composite

composed of two fibers with rectangular cross-sections, which touch eachI
other via a rectangular "neck".

Consider a slab (Ax thick, depth W and length L) of this sample as

4sketched in Figure 1-2. The conductance of this segment can be calculated

directly as

IOWL.
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AG -a 1 WAx/L for - + < x < -B

AG - q1o2Whx/(o1a+o2 (L-n)) for other values of x.

The quantities %,B are used to define the 'neck' connecting the two

fibers and are defined in Figure 1-2.

The total conductance may be found directly.

G-t/2 dG - --- [ 1: + 2(L.n)-

This result may be expressed in terms of a transverse conductivity,

aT, defined as

G- atW/L,

which implies that

- oi(1 - 210t) + a1 2 (26/t)
a 1 (a/L) + a2 (l - alL)

.he general expression for aT  is of interest because of the information

it contains about the situation in which the fibers do not touch. This is de-

scribed by the geometric condition 1 - t/2 and the equation for transverse

*1 conductivity reduces to
• '/a)

The existence of touching fibers in graphite/epoxy materials is dmonstrated

by experimental results. The transverse conductivity for graphite/epoxy has

* been measured 1  to have a value of 200 mhos/a., while the quantity V is

app~xiatey 210)a. The conductivity of the epoxy matrix is 10- shoo/a.

aprxmtly217
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and substitution of these values yields

- 1(lO-19)m.

Such a small separation is equivalent to contact between fibers and it

may be concluded that, in a transverse sample of graphite/epoxy, fiber-to-

fiber contact is essential to describe the conduction of charge in directions

orthogonal to the fiber axis.

It is important to note that such fiber contact does not occur in boron/

epoxy and, in these materials, the flow of charge across fibers is limited by

the conductivity of the epoxy matrix. In unidirectional samples of boron/

epxy3 30 mhos/m and aT - 2(10- ) mhos/m.

All of these results pertain to cases in which current is moving

between opposite faces of rectangular slabs of the material. Physical

situations of interest often display, of course, more complex geometries.

In the case of lightning attachments or precipitation static, the charge is

injected into a series of points along the surface and then distributes it-

self (via a relaxation process) through the three-dimensional aircraft fuselage.

Although detailed modeling of such processes is difficult, the above description.

will hold qualitatively. There will be significant differences as a result

of the geometric complexity but the basic conclusion that fiber contact dominates

the observed graphite/epoxy conductivity will hold.

The models developed above indicate that composite conductivities could

be increased in one of two ways: either increase the conductivity of the

fibers or increase the fiber contact. The second path is ruled out by

mechanical requirements. The resistance of composites to microbuckling do-

I creases as fiber contact increases. Attempts to increase conductivities by

F i _2.
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increasing such contact would lead to an unacceptable degradation in

mechanical behavior.

The only viable approach is to develop techniques for increasing the

conductivities without an accompanying decrease in specific strengths.

This implies that the basic mechanical strengths of the fibers must be

unchanged and, at the same time, their densities should not increase.

These requirements, in conjunction with processing difficulties, make

coating the fibers with metallic sheaths an unattractive approach.

To gain insight into possible methods for increasing fiber conductivity

the transport equations for the conductivity a of a solid provide a

starting point.

a q(p n + PhP)

where

q - 1.6(1019) coulombs,

Current Direction

'4

into
x tpaper

L2JI

F L

TRANSVERSE CONDuCTIVmf !(oDK

FIGUR 1-2

'I I
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Pe'u are the electron, hole mobilities and

n, p are the densities of "free" electrons,
holes per unit volume.

In the case of a metal, the hole concentration is, of course, zero.

The electron and hole mobilities essentially measure the ease with

which charged particles move through the material under the influence of an

external electric field. The mobilities depend primarily upon the atomic

species of which the solid is composed as well as the crystalline perfection.

In general, a higher degree of crystalline order implies a larger value of

mobility. While mobility increases could result from changes in the

structure of the fibers, decreases in specific strengths are quite likely.

Experimental efforts along these lines are not anticipated.

Increases in electron and hole densities can result in large increases

in conductivities and orders of magnitude increases result from relatively

small additions of the proper impurity atoms. In a typical semiconductor,

an addition of 0.1 parts per million of a donor impurity increases the con-

ductivity by over five orders of magnitude1
- 8

4Although future confirming experiments will be necessary, it seems
likely that such a small impurity addition to the fibers will not have a

major effect upon either the mechanical strength or the mass density. This

process of adding small amounts of electrically active impurity atoms (either

donors or acceptors) to semiconductors is known as "doping". It is widelyiused in fabricating solid state devices in silicon, germanium and compound
e semiconductors.

The next germane question is "Are graphite and boron fibers semiconduc-

tars?". Available evidence indicates that both materials are semiconductors
in their normal composite forms. Semiconductor behavior has been observed1.I

S.i -:,.; .- "___ "--° _-" "-_"_
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in polycrystalline specimens of both graphite -9 and boron- 1 0 .

One caveat is essential at this point. As impurity atoms are intro-

duced into a host solid, their degree of electrical activity depends upon

the crystalline perfection of the host medium. Given the high degree of

atomic disorder present in the fibers used in advanced composite materials,

it is highly probable that the doping process will not be as efficient as

it is in, for example, single crystal silicon. This inefficiency will lead

to limits upon the amounts of conductivity enhancement attainable in both

graphite and boron fibers.

The most natural method of adding impurities to fibers utilizes the

thermal diffusion of impurity atoms under the influence of a concentration

gradient 111 . This is the method used in the research described in this

report. This process is well characterized theoretically and has been

widely used. For these reasons, high temperature diffusion has been chosen

as the method to add selected impurities to graphite and boron fibers.

In the next sections, the physical and electrical properties of as-grown

fibers are examined. In addition, techniques used to make repeatable, elec-

trical contacts to both graphite and boron fibers are discussed in detail.

1.3 Properties of As-Grown Fibers

1.3.1 Graphite

Preliminary investigation revealed that fibers produced by various com-

panies had different conductivities. To simplify the following discussions,

the work reported involved only one fiber type-Thornel T300 as used in

Narmco 5208 pre-preg tapes.

Individual graphite fibers have radii on the order of a few micrometers

and are difficult to handle. In general, it was convenient to .mere a sag-

fment of graphite tow in methanol and use teflon coated tweezers to separate
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individual fibers from the bundle. The fibers, in lengths from two to

four centimeters, were mounted on pre-cleaned glass microscope slides.

This was accomplished by applying electrically conductive silver paint

to the ends of the fibers. When dry, this paint holds the fiber to the

glass slide and provides an ohmic electrical contact.

The fibers measured had an average DC conductivity of 20,000 mhos/m

with a range of 14,000 to 30,000 mhos/m. All of the fibers displayed linear

electrical responses up to maximum electric fields of approximately 4000

volts/r. Thirty percent of the samples broke at electric fields below this

value.

1.3.2 Boron Fibers

Boron fibers were supplied by Avco in different diameters: 4, 5.6

and 8 mils (0.01, 0.14 and 0.02 cm). These fibers are produced by chemically

depositing boron on a heated tungsten wire of 0.0018 cm. diameter in an atmos-

phere of H2 + BC13. A reduction reaction occurs.

2 3.:
3H2 + 2BC13  - 2B + 6HC1

The boron is deposited on the heated tungsten wire and complete reaction

of the tungsten occurs. The remaining core consists of a mixture of WS4 and

W2 B5 . The core diameter is unchanged and is essentially coated with pure

1-12
boron

Electroplated nickel was used to make ohmic electrical contact to the
i: ' ;; ' boron fibers. These contacts proved quite satisfactory from both mechanical

and electrical viewpoints. Although formal tests of the mechanical adhe-

sion of the electroplated nickel to the boron were not conducted, no separation

boo ies hs otcspoe ut aifcoyfo ohmcaia

i t~ _ _ _ _ _ _ _ _ _ _ _ _ ,
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during routine laboratory handling of the fibers was observed. In addi-

tion, the current-voltage characteristics of the boron fibers, with and

without electrical isolation of the tungsten boride core, have been linear.

The geometry used in the current-voltage measurements is shown in

Figure 1-3. In order to relate the measured conductance to the boron

conductivity, the conductive core was isolated from the nickel plating

using a suitable wax. To model current flow in the fibers, it is assumed

initially that the core conductance is large compared to that associated

with the boron and voltage drops along the boride core are neglected.

Further, the contacts are circularly symmetric and this implies a circularly

symmetric electrostatic potential1-13

The following results were obtained for boron sheath and core con-

duct ivities.

aBORON m 0.25 mhos/m

aCORE m 3(105) mhos/m

An overall effective conductivity for the fiber may also be determined.

a eff = 2.3(103) mhos/m.

,I j
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CHAPTER II

INTRINSIC PROPERTIES OF BORON FIBERS

2.1 Major Characteristics of Boron Fibers

Boron fibers have generally been produced by the method of Chemical

Vapor Deposition (CVD). The nature of the CVD process requires a heated

substrate such as Ta, W, Mo or SiO2 in an evacuated chamber where hydro-

gen reduction of a reactant gas such as BC1 3, BBr 3 or BI3 is accomplished.

The deposition of boron in this method follows the general equation

2BX + 3H 2B + 6HX ()
3 2

where X is Cl, Br or I (1].

Commercially available boron fibers are generally produced by depo-

siting boron from a Boron Trichloride source on a heated tungsten wire

of 0.018 cm diameter, in. the manner described by equation 1 (1,21.

Complete reaction of the tungsten with boron occurs and a highly con-

ductive region of tungsten-rich material, a mixture of W B and W,
2 5 4'

4forms the inner core []. Figure 2.1 shows this core region to be

roughly 20um in diameter.

, Bulk boron from the core region up to the surface of the fiber is

understood to be essentially amorphous. This is based on the interpre-

tation of x-ray patterns that consist of four broad diffuse halos at

4.3, 2.5, 1.5 and 1.4 A []. However, there is considerable controversy

in the current literature about the structure of the boron in the fibers.

In the next section, the amorphous character of boron in the fiber con-

| Ifiguration is discussed in more detail.

11 19N _ __ _ _ __ _ __ _ _
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g Fig. 2.1 -Tungsten rich inner core region
of a typical boron fiber. (SEX micro-
graph, 2000X, 81* angle)

off
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Boron grows on the top of the tungsten wire in the form of cones.

These cones terminate at the surface giving rise to the "orange peel"

(nodules) appearance of the fibers. These nodules are only found on the

surface and although they vary in diameter they are well ordered.

Figure 2.2 shows a split fiber where the orange-peel appearance of the

surface of the fiber, the transverse side of cones and the absence of

nodules inside the bulk region can be easily identified. The inclination

of the cones may be due to the tungsten wire being constantly pulled out

of the reaction chamber where the residence time for boron growth is

only a few minutes. As the boron fiber leaves the reaction chamber, it

cools rapidly due to its small thermal mass. This, together with the

constant pulling, may be the cause of the circular orientation of the

nodules as shown in Figures 2.3a and 2.3b. The basic outline of the

major physical characteristics of the fibers is shown in Figure 2.4.

These fibers are made commercially by AVCO in diameters of 4, 5.6, and

8 mils (102, 142 and 2 03um).

2.2 The Crystalline Structure of CVD Boron

The wealth of literature on the crystalline structure of boron makes

a synthesis of relevant information difficult. One such synthesis is

accomplished in a paper by Board and Hughes (31. Information from overf .1

I '250 references covering roughly 150 polymorphs of boron is presented.

This section attempts to focus on the proper classification of the cry*-

talline structure of boron fibers. Three possibilities for the crystall-

ine structure of CVD boron are discussed: heavily faulted polycrystalline,

microcrystalline and massive amorphous.

... .. .. .. ...
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Fig. 2.2 M icrograph of transverse aide of an
8 mi.l diameter boron fiber showing
cones and surface nbdules. (5001,

1 0* angle)
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(b)

Pig. 2.3 -(a) Micrograph showing the circular orientation
of surface nodules (2001, 69' angle); (b)

* Same as (a) at higher magnification (20001.

69* angle).
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Surface nodules

Suk b oron

'!~ VN12BS and, 4 C 20Cum)

FIG. 2.4

SCUEMATIC DIAGRAM OF A BORON FIBER
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The growth temperature of the CVD boron is an important parameter

for initial classification. According to Hoard and Hughes (3], at

preparative temperatures below about 1000C the a-rhombohedral is the

only crystalline form of boron. Below 800C the product is amorphous,

and above 1500C only 0-rhombohedral is formed.

In the temperature range of most CVD processes - between 100C to

1200C - a variety of powder diffraction patterns appears throughout the

literature. Wawner [1] uses the term "amorphous" and "microcrystalline"

interchangeably based on the interpretation of the diffused maxima of the

x-ray patterns quoted in the last section. The values of the d-spacings

found in Wawner's paper are similar to those found in the paper by Otte

and Lipsitt [4] were CVD grown on tungsten of 12urm diameter. The boron

source is not revealed in their paper.

Otte and Lipsitt report diffuse maxima at d-spacings of 4.4, 2.5,
0

1.75 and 1.4A. Spot patterns were also observed but were attributed to

the tungsten borides of the inner core. Both relrod extension and diffuse

rings were used as evidence of a heavily faulted structure and the

'4 material was understood to be "amorphous".

Otte and Lipsitt (4] also reported that the "amorphous" structure

remained even after the sample was heat treated in vacuum up to 1000C

over extended periods. In the range between 1000C - 1200C, rapid

transformation to the 0-rhombohedral structure was also reported. The

deposited "amorphous" boron was modeled as a heavily faulted f.c.c.

structure. When heated, the structure "recrystallizes" to the S-rhbobo-

hedral-form. This result does not agree with the thermodynamical consid-

Serations discussed by Hoard and Hughes (3].

Ii
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Linquist, Hammond and Bragg (5] dispute several results reported by

Otte and Lipsitt [4]. One of the conclusions of (5] is to characterize

CYD boron as a collection of small crystallites of the 3-rhombohedral

form ranging from 10 to 10000 A (average size 30 A). Boron samples used

in (5] were grown on a tungsten substrate as in (4], but in several

different temperatures ranging from 6700 to 12600. Also, the substrate

speed was varied from 2/3 to 6 ft/sec. It was found that there were no

differences in the locations or intensities of the x-ray diffraction rings.

Finally, [5] concludes that the presence of B-rhombohedral in boron fibers

is highly doubtful because this form is only thermodynamically stable

above 1500*C. Gillespie [6], however, confirms the findings of [4] on

the existence of B-rhombohedral boron in the range of 1000* - 1200"C.

A comparison of the data of both groups (4] and [5] is found in (7] where

the disagreements are resolved.

The massive amorphous or glassy form of boron is described by Talley

(8]. This material displays special mechanical properties such as5 2
extreme hardness, high tensile strength (3 x 105 lb/in ) and high

Young's modules (n64 x 106 lb/in2). Also, it is extremely flexible

material. The CVD process was slightly changed to produce this kind of

boron. Growth temperatures were maintained in the range 800 - 1200*C.

By maintaining a sufficiently high deposition rate of boron; crystalli-

zation of boron could be prevented below 12000C. X-ray diffraction

yielded only two diffuse rings corresponding to d-spacings of 2.5 andSI
4.3 A. The presence of the low temperature a-rhombohedral form was

detected in very small quantities (12 by weight) embedded in the amorphous

material.. With these properties plus a lack of ductility, this material

-: ' .appeared to be a well formed glass. Theme properties of the amorphous

:4[
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boron are common features of what is understood as a "fiber".

We now come to a point where it is necessary to distinguish between

a "boron fiber" and CVD boron grown without specific interest in having

a material with the mechanical properties of a boron fiber. The x-ray

data available in the literature is of many different types of CVD boron,

and that is why there is so much controversy regarding the proper classi-

fication of the crystal structure of CVD boron. Because the material is

not the same for different processes of fabrication, the x-ray data is

not conclusive and cannot be applied to all boron samples grown by vapor

deposition. The "boron fiber" is a type of CVD boron which is probably

grown in a manner similar to the "Talley-boron". In the present work,

the AVCO boron fiber is assumed to be similar to the "Taley boron". Wheth-

er the AVCO fibers are truly "amorphous" is questionable because x-ray

data of the AVCO fibers is not available and deviation from Mott's law

(cf. Chapter III) indicates a possible polycrystalline structure. A fine

line exists between what is considered amorphous and what is considered

polycrystalline. One way to solve this dilesma is to accept the micro-

crystalline idea proposed by Linquist et al., but this conflicts with

I Talley's report. X-ray analysis should be done with the AVCO fibers to

clarify these issues. There is only the possibility of analogy with the

"Talley boron" based on the idea that the massive amorphous quality is

responsible for the mechanical qualities observed by Talley and comonSI
to AVCO fibers.

iA
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CHAPTER III

ELECTRICAL CONDUCTIVITY

3.1 Nickel Ohmic Contacts

Linear electrical contact to boron fibers was accomplished by electro-

plating nickel on the surface of the fiber. The electroplating solution

and process characterization are described in Appendix A.

Electroplated nickel adheres strongly to the surface of boron and

to the tungsten inner core. All three materials have similar work

potentials ( 4.5 volts [9]). Boron and nickel form several compounds

at temperatures above 1000*C and there is some evidence of low tempera-

ture (from room temperature to 500*C) nickel borides - probably Ni2 B or

Ni3B (10]. Another advantage of the plating process is that the geometry

of the contact area could be controlled by changing the lengths of the

cathodes in the solution. The thickness of the nickel sheath was con-

tro-led by the plating time and plating current. Scanning electron

microscope measurements of the nickel sheaths gave an average thickness

4 of 12um for 6 minutes of plating time at 6 ma plating current. The

standards for solution temperature, acidity(pE), plating current and

- -sample preparation described in Appendix A. (These standards were main-

' tained throughout this work to assure proper characterization of the pro-

cess and repeatable results).

It is difficult to make ohmic contact to boron fibers. Earlier

work [1] using 99.999% pure molten indium yielded non-satisfactory con-

tact from both electrical and mechanical points of view. Severe non-

'I . linearities of the voltage-current relationship were observed along with

instabilities and hysteresis.

28
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Another important factor for repeatable and reliable measurements of

conductivity, especially in the electroplating technique, is a clean boron

surface. When the surface of the fiber was covered with foreign parti-

cles, measurements were not reproducible and the nickel sheath did not

adhere strongly to the fiber. Surface preparation is described in Appendix

A and a more detailed study of the chemical etching of boron fibers is

included in Chapter IV. Hot sulfuric acid in the temperature range of

80* - 110*C was used as the standard cleaning procedure for all samples

unless otherwise stated. Dipping samples of boron fibers in the H 2so4

bath for 10 minutes removed 2-3pm of the surface. Also, the sulfuric

acid bath is appropriate to remove boron oxides that may have developed

after exposure of the fibers to air and humidity. This technique removed

uncertainties from the electrical measurements and proved vital to the

repeatability of results.

3.2 Conductivity Model

In order to relate the measured conductance to the conductivity of

boron, the conductive core was isolated from the nickel plating using

Apiezon-W wax in the way shown in Fig. 3.1a. A first order model of

current flow in the fibers, assumes initially that the core conductance

is large compared to that associated with the boron and voltage drops

along the boride core are neglected. Figure 3.1b shows the geometry used-I
to develop this model [1,11]. The contacts are circularly symmetric and

this implies similar symmetry in the electrostatic potential. For the

geometry shown in Figure 3.1b the potential is written as

#(r) B ln(a/r)

_7-7
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BOron

Nickel sheaih

FIG. 3.1(A)

ISOLATION OF THE TtJNGSTEN-BORIDE CORE

2 FIG. 3.1 (B)

* 'TI GEOHETRY OF CONTACTS
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where a is the radius of the core, and

B is a constant fixed by the boundary conditions.

By symetry, a voltage drop of V/2 will appear across each nickel

coated boron segment when a voltage V is applied across the entire

fiber. Using this fact, the constant B in the above equation can be

evaluated. The total potential takes the form:

V tn(a/r) (2)
*(r) - 2 Ln(a/R)

where R is the outer radius of the boron fiber.

The current (I) is related to the current density (J) in this geo-

metry by the equation

I - -2wrLJ (3)

where L is the length of one of the nickel sheaths. (The minus sign

is needed on the right hand side since positive J implies current

flowing out).

The electric field is related to the static potential by the equation:

E (4)

ii Iassuming only radial variation we can write

E - ~()- v/2 1
3r n C-) (5)

relating this to the current density by using

ii J = oE (6)

we can get the following expression for the current

I=-2wr1.; -tn(all) (7)'!
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and finally arrive at the expression for the conductivity of the boron:

S() Ln(R/a) (8)

3.3 Characterization of Fiber Conductivity at 300K

Measurements of current-voltage characteristics allows calculation

of the conductivity of AVCO fibers with diameters 4, 5.6 and 8 mils.

The samples were contacted using the procedure described above and mount-

ed on glass slides. Silver conductive paint was used to contact the
A

nickel sheath. Fibers that were contacted without the use of silver

paint yielded the same results. Probes for contacting were regular alum-

inum or copper clips; although point contacts were used sporadically to

check the quality of the clip contact. A Tektronix curve tracer (type

576) was used to determine the current-voltage characteristics.

The first measurements were made on samples with 8 mils diameter

and standard 9 cm length. The plated length (L), also standard in these

nearly d.c. (400Hz) conductivity characterization measurements, was 1 cm.

The results of these measurements are shown below.

Table 3.3.1

Sample Number Conductivity
(mhos/m)

MA-6 .0837

AA-7 .0814

AA-8 .0814
AA-9 .0814

AA-10 .0814

AA-11 .0814

AA-12 .0814

,% ej 1
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In cases, the current-voltage curve was linear for both polarities

of applied voltage and displayed no evidence of any rectifying behavior

at the nickel-boron interface. The average value for the conductivity of

the 8 mil diameter boron fibers is then

a - 0.0817 mhos/m

stAndard deviation of the data: s - 8.69(10-4)

For 5.6 mil fibers, the values shown in the table below were measured.

Table 3.3.2

Sample Number (mhos/m)

BB-1 0.1

BB-2 0.155

BB-3 0.097

BB-4 0.1

a - 0.113 mhou/m (s 2.80 x 10-2)

Although there is more scatter in these values than the corresponding

8 mil diameter fiber values, the cluster is good and yields a comparable

value for the average conductivity of the boron sheath.

For boron fibers of 4 mils diameter, the results of conductivity

measurements are summarized below. (For the data shown o-0.1412mhos/m

(s-0.0) Table 3.3.3

Sample Number a(mhos/m)

CC-1 0.1412

CC-2 0.1412

CC-3 0.1412

CC-4 0.1412
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3.4 Circuit Analogs

'The above set of experiments provided initial electrical characteri-

zation of boron fibers. In order to more fully understand the mechanism

of current flow in these fibers, a series of electrical measurements were

made on fibers in which nickel contacts were plated directly to the tung-

sten boride core as well as the boron sheath. The plated length was var-

ied as well as, the total length of the fibers. However, only 8 mil dia-

meter fibers were used in this series of experiments. Figure 3.2a shows

the different geometries of these samples and Figure 3.2b indicates elec-

trical d.c. circuit analogs. From these, circuit equations were derived.

The results of the electrical measurements are summarized below:

Table 3.4.1

DC
Sample Total length(cm) L(cm) Contact with Resistance

the core (ohms)

(1) 9.0 1.0 No 800

(2) 9.0 1.0 Yes 300

(3) 16.0 1.0 No 1120

4(4). 16.0 1.0 Yes 500

(5) 2.8 1.0 No 714

The equations derived from the circuits of Fig. 3.2b are shown in

Table 3.4.2. Table 3.4.2

Sample Expressions for total Resistance

(1) 8 + 2RB

(2) 9R

(3) 15RW + 2R

(4) 6R W

(5) 1.8%W + 2RB

where is the tungsten core resistance per unit length.

i . ... .... .. - * *.. .. .
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The quantity % (resistance of the boron sheath) does not appear

in the expressions for samples (2) and (4) because the resistance of the

boron sheath is shorted by the direct contact between the nickel sheath

and the core.

Using these five expressions and the measured values of resistance,

values for RW and RB can be obtained. The measured values of resis-

tance for samples (2) and (4) lead directly to the results shown in

Table 3.4.3.

Table 3.4.3

Sample Resistance RW

(2)-(9cm.) 33.3 ohms/cm

(4)-(16cm.) 31.3 ohms/cm

The average value of the core resistance obtained for all of the samples

measured during this research was 32 ohms/cm. Using this average value,

the quantity % may be calculated using the experimental results from

samples (1), (3) and (5). These calculations are shown below

Sample (1) (9 cm.) R 800- (7)(32) . 288 ohmsRB 2

Sample (3) (16 cm.) R - 1120 - (14)(32) - 336 ohmsRB 2

Sample (5) (2.8 cm.) 714 - (0.8)(32) - 344 ohms.sB - 2

There are, of course, variations in this value caused by differences

in the "as grown" fibers as well as uncontrollable variations in the total

length of the plated electrodes. The averaging of all available data
I

yields a value of 300 ohms for

4 This result allows a more accurate calculation of the boron conduc-

Stivity than was possible earlier when the resistance of the tungsten

L4~~*7'I-
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boride core was assumed to be zero. The value obtained for the boron

conductivity when the finite conductance of the core is also included is

aBORON - 0.25 mhos/m.

In order to assess the contact resistance involved in the nickel

plating procedure, a series of samples of various lengths were prepared

and their ends nickel plated so that contact was made to the core. A

"least squares" analysis of the data results in the following expression

for the sample resistance R and the total sample length t (including

the nickel sheaths)

R - 31.31 + 1.13 (9)

where R is in ohms and t is in cm. This indicates that the contact

resistance is approximately 3% of the total measured resistance for a

sample of 1 cm. length and decreases for samples of greater length.

Contact resistance may thus be safely neglected.

The value for boron conductivity derived above is two to three orders

* : of magnitude greater than that reported by other investigators for pure,

single crystal boron. This discrepancy is not alarming in view of the

large differences between the fibers and the materials used by other in-

vestigators. In particular, the boron of which the fibers are made is

not single crystal and the impurity content is not known.

For a fiber of 0.01 cm. diameter, it is possible to define an effec-

tive conductivity a O f for current along the fiber. The fiber conduc-

tance G is written

G L (10)

SI,
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where A is the fiber cross-sectional area and L is the fiber length.

This conductance is the sum of the conductances of the core GW and the

boron layer GB

GGw + G ()

aWAW "B AB (2
L L (

where AW and AB denote the core cross sectional area and the boron

sheath cross sectional area respectively.

The effective fiber conductivity can be written as

4aeff " W(AW/A) + OB(ASIA) (13) i

where A - + + AB  is the total cross sectional area of the fiber.

All three areas and oB are known. The core conductivity can be

readily calculated from the known value of resistance/length, i.e.,

R- 1/o or - 1/RWA (14)

The core diameter is *v0.0018 cm, % - 32 obms/cm and the core conduc-

tivity is calculated as

aw= 3(105)mhos/m.

The effective fiber conductivity is then determined.

aef 2.3(103) mhos/M.

.!3.5 Temperature Dependence of the Conductivity of Boron Fibers

CVD boron is a material with a highly disordered lattice as indica-

ted by the x-ray diffraction data described in the last chapter. A

t. disordered lattice does not display ideal long-range order. In the case

I
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of an amorphous solid, distortion of the lattice appears when the geometric

arrangement of the atoms is statistically disturbed.

In order to examine electrical conductivity in disordered lattices,

the usual initial approach is to look at the different conduction mechan-

isms involved for "extended states" and "localized states" [12]. An ex-

tended state is defined in analogy to the well-known Kronig-Penney model

for the linear chain of potential energy "impulses". The extended state

appears in this model when the absolute value of the wave function becomes

periodic with lattice constant a . This of course happens only when all

lattice potentials Vi are equal and have the same separation constant

a , and when the electron energy E lies within the allowed bands given

by the model. Localized states appear when the potential barriers are

statistically distributed and/or their heights are not uniform. This

leads to wave functions that either diverge or approach zero. All phys-

ically allowed (nondiverging) wave functions for the one-dimensional

chain with statistically distributed potential barriers represent

"localized states". In simple semiconductor theory, extended states

determine the basic shape of the energy band diagram. Localized states

are usually observed in crystalline semiconductors in conjunction with

impurity levels in the band structure of the material. In heavily doped

* semiconductors these localized states are responsible for trapping mech-

The energy band structure of amorphous semiconductors is made up of

extended states as well as localized states. Fig. 3.3 shows a possible

, simple configuration of an energy band diaam for a highly disordered

j material.
i

In the light of what was discussed above, it is possible to separate

40 '- ° . .. . ...
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I FIG. 3. 3
IHOPPING ENERGY OF LOCALIZED LEVELS WITHIN THE BAND GAP
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the different contributions to the conductivity of the material and relate

these theoretical results to the experimental data found for boron fibers.

In crystalline materials with a small amount of impurities, it is

possible to relate the conductivity to the temperature in the intrinsic

region by the simple formula

a(T) - Ke-Eg/2kBT (15)

where K is a constant, E. - E - Ev  (the energy gap of the extended

states), kB is Boltzmann's constant and T is the temperature.

This simple model does not describe amorphous or heavily doped semi-

conductors. It may be argued that, at moderately high temperatures, the

contributions to the conductivity of the material is dominated by the

extended states. The Fermi level (E.) then lines up between the conduc-

tion band and the valence band in a manner analogous to intrinsic conduc-

tion. This is certainly true for moderately doped semiconductors and

even polycrystalline materials. In the amorphous semiconductor and the

heavily doped semiconductor case, although the experimental data may lead

to graphs of similar functional behavior (e.g., Ina vs. I/T), the use of

this formula for all temperature ranges may be misleading.

Specifically, conductivity in impurity bands and in amorphous semi-

* :conductor receive four major contributions from different mechanisms.

Therefore, the conductivity a is the sum a1 + a2 + a3 + a4 of all

possible C(T) dependencies. These contributions appear in the experi-

mental data by slight modifications of the functional form of O(T) for

different temperatures. These contributions are as follows (121:

(1) The contribution due to extended states, E. -V << E~ C-

* -.
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01 (T) C exp(-(EC Ep)/K BT] (16)

where EC  is the bottom of the conduction band and a is the conduc-

tivity of electrons in the bottom of the band (exactly at Ec). Also,
is taken as the reference level, where i is the top of the valence

band.

(2) The contribution due to localized states near the conduction

band (EC E >> Er). This conductivity results from hopping processes

between the conduction band and localized states within a fixed distance

from Ec This is called "fixed range hopping" and it is theoretically

possible to define a mean hopping energy (W). This contribution has the

functional form

a 2(T) - a0 2 exp(-(Ei - EF + W)/kIB] (17)

where aO2  is a proportionality constant.

(3) For localized states near the Fermi energy at high temperature

(fixed range hopping) we have the contribution

a 3 (T) - 003 exp(-:W'/k T) (18)

where a0 3  is a proportionality constant.

(4) Localized states near the Fermi energy at low temperature
• '.{ ] .(variable hopping) contribute

a j . a4(T) - ao4 exp[-(To/T) 1/ 4] (19)

where a04  is a proportionality constant and TO  is a constant for

different materials [12]. The last equation is known as the Mott's

law and describes conduction in amorphous semiconductors in the low temp-

4 Ierature range.

i . . . . " -;.. ". '; : .. - . . • --- - - 2 " _ - " . ..._. .. .-_.. . . .
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In the literature of amorphous materials, plots of 
ln I vs. T

-1

and lnO4 vs. T
-1/4 are used to classify the amorphous nature (T "1/4

-plots) and to find the gap between extended states. The former refers

to the activated conductivity of extended states and the latter refers

to hopping in the localized states near E. at low temperatures.

The theory described in the discussion above is helpful in under-

standing the conductivity data as a function of temperature for the

boron fibers.

To clarify the use of resistance rather than conductivity in the

graphs of Figures 3.4 and 3.5 recall that these curves have the same

slope and therefore within a constant, the same basic functional form.

That is, if R is the resistance, then

alnR W -3 lno (20)
3(1/T) a(l/T)

for the high temperature range and

a ln(R) -a lno (21). -1/ -1/(4)
3(T-1 4 ) a (T 14 )

for the low temperature range.

I. Figure 3.4 is a plot of lnR vs. T 1 for the activated conductivity

of the extended states (aI(T)). While Figure 3.5 plots the T-1 /4

I- law.

Figure 3.5 clearly shows that the conductivity temperature data does

not fit Mott's law. Therefore, we look for evidence of other types of

contributions.

The graph shown in Figure 3.4 can be reproduced by two terms with

different activation energies. For the intrinsic conduction region we

assume that EmEF and E/ 2  9~E and use the fact that

- .. - . .
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in R -a In aI(T) (22)
(l/T) m a (l/T)

to arrive at a thermal gap E. - 0.22eV for boron in the fiber configur-
S

ation.

Since boron fibers grown on tungsten wires have borides near the

core which are n-type, it is reasonable to assume that the second contri-

bution to the conductivity arises from localized states near the conduc-

tion bandt E . Therefore, the slope of the graph shown in Figure 3.5

may be related to

Ei - F + (23)

where E C > Ei >> EF  and we may write

E i -EF +W 2E + W (24)

Assuming that Ei  is at the center of the thermal gap, we write

Ei - E /2 and the mean value of the hopping energy (W) may be found to
be 0.142eV.

Of course, this is a very rough estimate and there is no sure way

to quantitatively describe the current mechanisms in this material.

A final comment can be made in the light of Berezin's paper [13]

which Mott's law is used to justify the "amorphous concept" of 0-rhombo-

followed by boron fibers, it may be said that the polycrystalline struc-

ture does not have the 0-rhombohedral form. This is in agreement with

Otte and Lipsitt's paper (4].

fi l i__ _ _ _ _



CHAPTER IV

ETCHING STUDIES OF 8 MILS DIAMETERFIBERS

4.1 Importance of Surface Etching

As it will be seen later in Chapter V, the strength of boron fibers

decreases rapidly if the material is subjected to temperatures above

8500C. This phenomena is primarily due to surface recrystallization and

makes high temperature doping of boron fibers (cf. Chapter VI) a very

difficult task. The deterioration of the mechanical properties that

make boron fibers attractive is a negative aspect for the potential use

of these fibers in advanced composite materials. For this reason, it is

important to find methods of increasing the fiber tensile strength before

and after heat treatment. One way of increasing the fiber tensile

strength is the chemical etching of the surface of the fiber. This method

has been used [14,15] to show an increase in the fiber tensile strength

before and after heat treatment.

Wawner (14] used early boron fiber samples that were formed by

vapor deposition of massive amorphous boron of the Talley type (8].

Those early fibers had tensile strengths and Young's modulus as shown

in Chapter II. Smith [15], used AVCO boron fibers which have a much

higher tensile strength due to better control of the growth process

parameters. The average tensile strength of AVCO boron fibers is bet-

ween 500 and 550 ksi. This high tensile strength however, has a coeff-

icient of variation of 15%. Smith showed that this large coefficient of

variation of tensile strength can be reduced to 5% if an 8 ml diameter

fiber is etched down to 6.5 ails diameter. This result is explained in

terms of etching effects on surface flaws and the residual stress pattern

47
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of as received fibers. Since no readily observable surface flaws appear

on an as received boron fiber, Wawner concluded that the boundaries of

the nodules ("orange-peel") are these flaws. These are boundaries of

areas of preferred growth on the surface of the filament. The influence

of these flaws is not noticeable until '0.5 ml of the surface is removed.

Thus, the tensile strength increases with radial reduction. After etch-

ing, the surface of the fiber no longer has the "orange-peel" appearance

of as received fibers but is shiny and uniform.

The need for near ideal surface in contacting boron fibers was dis-

cussed in Chapter III. The same need occurs for heat treatment and

diffusion experiments. The effects of etching and radial reduction on

fiber conduction are useful for an overall understanding of the material.

It should be noted that surface flaws are not solely responsible for the

strength of the fibers. After surface flaws have been essentially elim-

inated, the core flaws were observed to be the source of fiber fracture

[16].

In this chapter, two types of etchants are studied. The focus is

on the sample preparation rather than improvement of mechanical quali-

ties. As will be seen in Chapter VI, etching did not play a significant

role in strengthening the fiber so that it would retain its mechanical

properties during heat treatment.

* 4.2 Sulfuric Acid Etching

Sulfuric acid is a very slow etchant of boron but is useful because

* it leaves effectively no oxide layers for low etching temperatures (80*-

90C) and it "polishes" the surface of boron.

NW
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For higher etching temperatures around 300°C, R2so4 leaves thin

oxide layers of different thicknesses [17]. Fibers etched this way for

10 minutes no longer displayed surface nodules. This indicates that

those fibers were etched more than 0.5 mils. In our experiments, the

fibers were "cleaned" in hot H2So4 (cf. Appendix A). The etchant temp-

erature was between 95* - 105*C, and the etching time was kept at 10

minutes so that 3-5um were removed. Nodules were clearly seen under the

optical microscope after etching but foreign particles were absent.

H SO also removes boron oxides which are easily grown on the surface of
2 4

the boron fiber due to environmental conditions. This makes H2So4 ideal

for sample preparation for conductivity measurements.

The difference in conductance between a fiber that has been "cleaned"

in H 2SO4 and an "as received" fiber is that the latter exhibit non-linear

v-i characteristics. Unless specified otherwise, all samples were "cleaned"

in 98% H 2So4 in the manner described in Appendix A.

4.3 Nitric Acid Etching

Nitric acid is a vigczous etchant of boron and has not been studied

in detail [2,14,17].

Because the "attack" on boron by ENO3 is very rapid and vigorous,

the surface of the fiber is non-uniformly etched [17] resulting in a

rough, irregular appearance. This characteristic is inherent because

jetching only occurs after the nitric acid starts to boil (changing into

a reddish color). So that reduction in the etching temperature is not

possible. A significant increase in the resistance and, in some instances

non-linear effects, were observed for the ENO3 etched samples. To assure

4that oxides were not created that in turn caused this effect, some samples

LAI
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were cleaned in H 2SO4 after HO 3 etching and no change in their resis-

tances occurred.

Figure 4.1 shows the etching apparatus which allowed agitation of

the solution and batch processing. Usually, seven fibers etched at a

time. The temperature was kept between 93* - 96"C and the solution was

HNO and water (2:1).
3

The results of three different runs are shown below:

Table 4.3.1

Run No. 1

Sample No. Etching time (min.) Diameter (a)

NE2-4 10 166.67

NE2-5 15 156.19

NE2-6 20 145.24

NE2-7 25 134.29

NE2-8 30 123.81

NE2-9 35 114.29

NE2-10 40 104.76

Initial diameter of an average as received fiber for this batch: 202.38um

M4 ails).
Table 4.3.2

Ij Run No. 2

Sample No. Etching time (min.) Diameter (lm)

NE2-11 3 180.95

NE2-12 5 176.19
NE2-13 7 171.43

NE2-14 10 161.90

* NE2-15 20 128.57

NE2-16 30 95.24

NE2-17 40 78.57

4A'A
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Initial diameter of an average as received fiber in this batch: 190.48ya

68 ails)

Table 4.3.3

Run No. 3

Sample No. Etching time (min.) Diameter (um)

NE2-18 2 190.48

NE2-19 6 176.19

NE2-20 10 154.76

NE2-21 14 142.85

NE2-22 18 140.48

NE2-23 22 121.43
NE_2-24 70 47.62

Initial diameter of an average as received fiber in this batch: 190.48,m

(%,8 mils)

The microscope used to measure the diameter of the etched fiber was

a Leitz-Wetzlar (2OX objective, lOX eye piece). The measurement error

for the diameter was found to be +30m. Figure 4.2 shows a graph of

diameter vs. time of etching for all four runs. The etching rate calcu-

4 lated from the slope of this graph is 2m/min.

The changes in the conductance are summarized below:

Table 4.3.4

Sample No. Radius (P m) G(mhos)

-6
NE2-12 88.10 342.46 (10 )

-6
NE2-27 75.0 363.63 (10 )
NE2-22 69.05 466.48 (10 - 6 )

NE2-28 57.15 600 (10 3 )

NE2-16 47.52 1.39 (10" )4 NE2-13 85.71 600 (10-6)

NE2-20 77.38 NON LINEAR

NE2-17 39.28 666.67 (106)
L
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Table 4.3.4 (cont.)

Sample No. Radius (un) G(mhos)

NE2-22 60.71 NON LINEAR

NE2-15 64.28 NON LINEAR

In the data shown above, hysterisis and rectification were the main

types of non-linearities. The conductance of the fibers etched in HNO3

is 70% less than that of samples cleaned in H SO (samples with the same

diameter). Another set of samples was etched for 10 minutes to an aver-

age diameter, of 166.6 7um. Then one sample was etched in H2So4 to see

if this would remove possible oxides and surface roughness that would

have developed during the ENO 3 etching. The average conductance measured

was 520 x 10-6 mhos. Comparison with a sample of 198.48m diameter

cleaned" in H2SO4 (G 1.25 x 10- 3 mhos) shows a difference of about

40%.

T



CHAPTER V

RECRYSTALLIZATION AND NICKEL ALLOYING OF BORON

5.1 Introduction

This chapter describes changes produced on boron fibers by heat

treatments under reduced pressures. Some heat treated fibers were later

electroplated and electrical measurements taken. Other samples were

nickel plated and then heat treated with the nickel sheath on the fiber.

Variations of these two main techniques were used to confirm trends in

the development of this study.

Two mechanisms affect the conductivity of heat treated fibers. The

first is the surface recrystallization of the fibers as observed by sev-

eral researchers (particularly Gillepsie (6]), which accounts for deter-

ioration of mechanical properties. Second, boron fibers covered with

nickel displayed several alloying processes that resulted in an increase

in fiber conductivity.

Scanning Electron Microscope analysis accompanied by conductivity

measurements afforded step-by-step tracking of the recrystallization and

alloying mechanisms mentioned above. These techniques allowed an under-

standing of the irreversible conversion of amorphous or microcrystalline

boron into one of its two rhombohedral forms. (a or 0-rhombohedral).

No attempt was made to determine the crystal structure of the recrystall-

ized boron. Most researchers report only the presence of the a-rhombo-

hedral form if either the preparation temperature or the temperature of

heat treating "as grown" fibers is below ll00°C [3,4,8]. This is based

on experimental data or by arguments such as those given by [31 on the

thermodynamical stability of this polymorph below the 1100"C range.

54
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Gillepsie [8] reports conversion to the 8-rhombohedral modification after

heat treatments at temperatures below 11000C. The boron samples used by

Gillepsie were grown in a hydrogen trichloride atmosphere on. a tungsten

substrate (similar in process to AVCO's fibers). These samples showed

areas of dendritic crystal growth after 15 seconds of heat treatment at

a temperature of l050*C and 6.5 x 10-6 torr pressure. After longer

periods of heat treatment, complete conversion of the surface to the

B-rhombohedral form was observed. This result is in partial agreement

with our experimental data. Although we did not attempt to classify

the crystalline form, recrystallization of boron in the same range of

pressures and temperatures given by Gillepsie was observed. The evidence

in Gillepsie's work that recrystallization is mainly at the surface was

that x-ray diffraction showed the presence of amorphous material although

the "orange-peel" surface associated with amorphous boron disappeared

after heat treatment. In our SW analysis below, results agree with this

claim at least partially.

Changes in the conductivity enabled us to follow the extent of

surface recrystallization for a standard run of heat treated fibers.

This indicated recrystallization below 9500C which conflicts withI
Gillepsie's result that no surface recrystallization occurs at tempera-

tures around 900*C. This discrepancy may be explained by the duration

of our heat treatment process around that temperature being six times

that of Gillepsie's cycle.

Nickel-boron alloying and recrystallization of nickel-boron systems

is discussed later in this chapter. Complete descriptions of experi-

mental apparatus and techniques is included in Appendix B. All samples

were 8 mils in diameter and 6 cm in length. The nickel plated length

.40
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was maintained at 1 cm on each end of the fiber and the tungsten core

was isolated from the nickel by the method described in Chapter III.

Electrical measurements were taken before and after the heat cycle in

the manner described in Appendix B. The temperature range used in this

work was from 558*C to 1112*C and the durations of all heat treatments

were 6 hours.

5.2 Reat Treatment at 558*C

Fibers exposed to temperatures in this range showed no apparent

change of surface characteristics. The "orange-peel" aspect of the

surface of the fiber was maintained. The interaction of the fiber with

the nickel sheath in the absence of dramatic boron recrystallization is

of interest. In other words, the fiber maintains its strength and the

most important changes are the thermal expansion of the nickel sheath

and the reaction of the nickel with the boron.

66

The coefficient of thermal expansion of nickel is 13.3 x 106 cm/cm-

"C and that of boron is 8.3 x 106 cm/cm-*C [18). The nickel sheath that
was electroplated on the boron fiber expands more than the boron fibers

as the temperature is increased. As the SE4 micrograph shows, the nickel

sheath moves away from the surface of the fiber leaving evidence of

strong interaction between the two materials where they were in contact.

Figure 5.1 shows this unfolding of the nickel sheath after heat treatment

at 558*C under the average pressure of 1.5 x 10- torrs for 6 hours.

Higher magnification (Fig. 5.2) reveals areas where the nickel

sheath was contacting the boron and then moved away after heat treatment

Ii (Region B in the picture). It is also clearly seen that the "orange-

, ' peel" aspect of the boron surface remains the same as that of "as rec-
ILI
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Fig. 5.1 - Nickel sheath moving away from the surface of the
V fiber after heat creating at 558"C for 6 hrs. at

1.5 x 10-5 torrs. (200X, 61" angle).

4t

i !,A"L



57

Fig. 5.2 -Region A shows the uncontacted fiber retaining its
surface characteristics. Region B shows places where
the nickel originally contacted the fiber. Region C
is magnified and showed in Fig. 5.3. (500X, 57* angle)
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eived" fibers. There is no evidence of apparent recrystallization of the

boron at this temperature (558*C) and pressure (1.5 x 10- torrs).

It should be noted here that the average value for the pressure for

all experiments is 1.4 x 10- 5 torrs. Exact measurements showed pressures.

as low as 8 x 107 6 torrs but over the six hour period of heat treatment
starting at pressures N4 x 10 -5 torts the average value of the pressure

was -2.0 x 10- 5 for the first three hours and N9 x 10- 6 for the second

three hours.

Figure 5.2 also shows that the entire nickel sheath appears to be

* "floating" on the surface of the fiber. Region C of Fig. 5.2 is shown

in Fig. 5.3 with increased magnification (5000X). It clearly shows this

"floating" effect of the nickel sheath. The surface of the boron (Region

A of Fig. 5.3) no longer displays the "orange peel" appearance familiar

to the boron fiber. Clearly strong reactions with the nickel occurred

on the surface of the massive amorphous boron. The roughness of the

surface at these reaction sites may be indicative of small crystallite

; growth of nickel-boron compounds.

That the nickel sheath is no longer in intimate contact with the

boron surface shows up in the electrical measurements. Although there

is still a linear voltage-current characteristic, the measured value off $ r the conductance is about 1/2 lower than that of an "as grown" fiber.

This may be explained because fewer places underneath the nickel sheath

are actually making contact with the boron surface. The experimental

-4
value of the conductance for these samples is 6.896 x 10 mhos.

5.3 Heat Treatment at 6876C

4The mechanisms of nickel expansion and nickel-boron reaction des-

. .
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Fig. 5.3 -Region C of Fig. 5.2 magnified to 5000X (57 angle).
The nickel sheath "floats" on the surface of the

fiber. Reaction of nickel with boron is seen by

1 the absence of nodules on the surface of the fiber.
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cribed above are significantly more dramatic if the temperature is raised

by 129*C. Figure 5.4 shows four regions of different behavior. Region

A shows part of the nickel sheath moved up away from the surface of the

fiber. This region appears to retain the original qualities of the

plated nickel. It is shining and smooth without traces of crystallites.

Region C is quite the contrary; the nickel sheath is not moved away from

the surface of the boron fiber but the sheath here is quite different.

There is a roughness due to small crystallites on the surface. The

boundary between regions A and C is significant. The boundary (Region B),

starts right where the nickel sheath begins to make intimate contact

with the boron surface. This could indicate that region C is no longer

just pure nickel but some form of nickel-boron borides. As we move away

from the interface and go deep into region C, the size of these crystals

diminish as it is shown in Figure 5.6 which has the same magnification

as picture 5.5a.

Places that were covered with nickel that broke away and fell off

the surface of the fiber are shown in regions D-1 and D-2 of Fig. 5.4.

Here, as it was discussed before, reaction of the nickel with the boron

occurred but the nickel sheath "fell-off" the surface of the fiber.

Figures 5.7a and 5.7b show these reaction sites. Figures 5.7b shows

aspects of this "attack" on the surface of the fiber. This particular

site is the region D-2 of Figure 5.4. Figure 5.7a shows region D-1.

Both regions appear to have the same characteristics.

Another phenomena that occurs at this temperature is shown in

Fig. 5.8. In certain places the nickel erupts and creeps up. This part

of the nickel sheath clearly is not as much in contact with the boron

4, as in other areas. The areas where the nickel is touching the surface

p4
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7

Fig. 5.4 -Four distinct regions can be identified where

different phenomena occurred in the nickel-

*boron system at 6780C. (200X, 65 0 angle).
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rig. 5.5(a) -shows the interface (region B of Fig. 5.4)
betwetn pure nickel (on the left) and large
nickel rich nickel-boride crystals (2000K, 63*
angle).
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Fig. 5.6 - ReinCof Fig. 5.4 showing crystallites
od
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Fig. 5.7(a) -shows region fl-1 of Fig. (2000X,
650 angle).

IRIM

1 Fig. 5.7(b) -region D-2 (2000X, 65* angle).

off
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Fig. 5.8 -Creeping up nickel rich crystallites on
places where the nickel sheath is not directly
contacting the boron surface. (1001, 65* angle).
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of the fiber appear as those shown before in Fig. 5.6. Here, crystall-

ites of Ni-B compounds are clearly detected.

This compound formation of certain areas of the nickel sheath (where

nickel is in intimate contact with the boron surface) shows up in the

electrical measurements. The nickel sheath is no longer "floating" on

the sukface of the fiber as in the 558*C case. Significant increase in

the conductance of these fibers occurred. The measured average value of

-3
conductance in this case is 2.1 x 10 mhos or 68% larger than the 558*C

case. It is also 40% larger than the conductance of "as grown" fibers.

I 5.4 Beat Treatment at 738*C

The effects of nickel reaction with the boron surface were investi-

gated this time with a thinner nickel sheath of approximately 6um of

thickness. This was accomplished by plating the boron fiber for only

3 minutes and keeping all other parameters of the plating process the

same as before. With a thinner nickel sheath, it was expected that the

effects of thermal expansions would be less. Therefore, the nickel

would stay in contact with the boron surface. It was further expected

that the boron fiber would still maintain its original surface character-

istics in places where it was not nickel plated. Since this temperature

is still below the temperature of surface recrystallization of boron,

'"i the fiber would not completely lose its mechanical properties. Figure

5.9a shows that these expectations are for the most part fulfilled. The

} thinner pure nickel sheath is almost completely converted to nickel-

boron compounds. It is also shown that the surface of the boron was

7 j severely "attacked" and in some places the boron "caved in". Figure 5.9b

It shows region A of Figure 5.9a at a higher magnification. There is no

IANEW
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Pig. 5.9(a) -shows complete conversion of the chin (6um)
nickel sheath (200X, 68* angle).

jtFig. 5.9(b) -Raglan A of 5.9(a) magnified to 2000X (68*

angle).
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longer a smooth nickel sheath. it is now a rough boron-nickel surface

made up of small crystallites though not nickel rich enough to grow

as large as those shown before in Figure 5.5b. Figure 5.10 shows a

reaction site where some of the nickel was converted but did not com-

pletely flash away as in the case of Figure 5.9b. Nodules are also

present where the fiber was not plated.

This complete conversion of nickel and severe transformation of the

boron surface influenced the conductance of the sample. Here, the effect

of a completely spread-out nickel-boron sheath is intimate contact. The

measured conductance was 5.88 x 107 3 mhos. This is an increase of 470%

over the value measured for "as grown" fibers. It is also 853% higher

than the conduction of the 5380C case where the nickel expanded and

moved away from the surface of the fiber reducing the areas of contact

to the surface. Surface recrystallization of boron did not occur during

this low time-temperature cycle.

5.5 Heat Treatment at 8040C

We now return to the thicker nickel sheath (,121jm for 6 min. plating).

Here, as in all experiments that will follow, the thickness of the nickel

i, sheath is triple that of the 738*C case. Complete conversion is not

* Ieasily attained. As the fiber heats up, the nickel sheath expands and

moves away from the surface of the boron in a more dramatic manner.

Figure 5.11a shows the pure nickel sheath "floating" on the surface of

the fiber. Region A is magnified and shoved in Figure 5.1lb. Here, the

nickel stayed on the surface of the boron. Compound formation occurred

but, due to the large concentration of nickel, there are large crystals

of the nickel-rich type described above. Notice on the right side of the

*.........
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Fig. 5.10 -Reaction site with higher concen-
tration of the nickel. (500K, 300 angle)
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picture that the nickel sheath is not completely converted. These are

probably places where the nickel has moved up away from the surface of

the boron.

As could be expected, these samples have higher conductance than

those that were heat treated at 6780C. However, due to incomplete con-

version and "floating" effects of the nickel sheath, the conductance of

these samples is less than that of the 738*C case. The average conduc-

tance of these samples is 3.876 x 10- mhos.

Figure 5.11c shows a higher magnification of Region B of Figure 5.11a.

Large crystallites of the nickel-rich, nickel-boron compound are visible.

Notice that, under the nickel sheath, the aspect of the surface is that

of Figure 5.7a and 5.7b. These are reaction sites that did not have

enough nickel to "cave-in". That is, the boron surface is as encountered

in Figure 5.10, where the concentration of nickel was just enough to create

compounds but not high enough to grow the large crystals common to the

nickel-rich compound. It is also clearly seen that the nickel expansion

before compound formation was more severe. In this particular case, the

,4, nickel "floats" 15-20um away from the surface.

5.6 Heat Treatment at 914C

At temperatures above 9000C, recrystallization of the pure boron on

the surface of the fiber becomes more evident. This mechanism has sev-

eral important side-effects. The deterioration of the mechanical prop-

,1 erties of the fiber is immediate. The material becomes brittle and

7 easily shattered with handling in the laboratory. Figures 5.12a and

5.12b shows complete formation of compounds and only a nickel-boron

sheath appears with an evev distribution of small crystallites.

''0;
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I Fig. 5.11(c) -Region B of Fig. 5.9a at 100OX magnifi-
cation (same angle of view: 11*)
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Fig. 5.12(a) - Nickel-boro. sheath,(SOOX, 670).

Fig 5.2(b -Larger magnification of (a) showing aspects
of the even distribution of crystallites
(20002C, 67* angle).
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Along the unplated length of the fiber, two families of pure boron

crystals grow evenly spread out all over the fiber surface. Figure 5.13a

shows this phenomena and Figure 5.13b shows region A of Figure 5.11a at

a higher magnification where the two types of crystallites are easily

distinguishable. Notice, however that nodules are still present where

the fiber was not plated.

Figures 5.12a and 5.12b showed the nickel-boron sheath where

only one form of crystallite is found evenly spread over the fiber. As

expected, this complete conversion of the nickel plus the recrystallization

of boron further increased the conductance of the fiber. The average

values of the conductance of these samples is 6.536 x 10- mhos. This

is the largest value measured. This is an increase of 523% over the

conductance of "as grown" fibers.

5.7 Heat Treatment at 10110C and 11120C

What was a region of an even distribution of small crystallites of

nickel-boron compounds is now a region of crystal growth. These highly

geometrical shaped crystals are very different from the so-called "nickel-

J rich" crystals shown in Fig. 5.5b. They are not as symmetrical and

smooth. There is a clear hint here that the recrystallization of the

boron surface created a new species of boron-nickel compound which is

richer in boron then the compound shown in Figure 5.5b. Figure 5.14a

shows this distribution of crystallites in samples heat treated at 1011*C.

Larger magnification (Figure 5.14b) clearly shows the amount of transfor-

mation on the nickel-boron surface. Deep dips of about l.Spm clearly

I ft show severe attacks on the fiber surface which are necessary for the

44
' Ia
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Fig. 5.13(a) - Spares distribution of two families of
recrystallized pure boron (200X, 3* angle).

Fig. 5.13(b) -Region A of 5.5(a) showing members of these
I two families (20004, 3 anglo).
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Fig. 5.14(a) - Nickel-boron crystallites grown on the
surface of the fiber with high degree
synetry after heat treatment at 1011C
(50OX, 3* angle).

.' Wss"

K

Fig. 5.14(b) -Dips and crystallites of the nickel-boronI; sheath (2000X, 61* angle).

4
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effect was observed before at lower temperatures but to a much lesser

degree. There is clearly a "loss" of boron from the surface of the

fiber.

What happens to the unplated part of the sample is shown for a

slightly higher temperature (1112*C) in Figures 5.15a and 5.15b. These

pictures are to be compared with Figures 5.16a and 5.16b. In the first

set of pictures we see crystallites of pure boron recrystallized on the

surface of the fiber. The crystallites are nickel borides grown due to

the nickel-boron reaction as discussed above. Clearly surface recrystall-

ization helped to form compounds richer in both nickel and boron than

before.

Figure 5.12a shows the bulk of the fiber untouched by any kind of

crystal growth. In Figure 5.17, the cross-section of one of the three

fibers shows vigorous crystal growth of the pure boron type. The fiber

shown in Figure 5.12a was cut in order to expose the bulk boron. The

fiber in Figure 5.17 shows surface recrystallization on the cross section

exposed during the heat treatment. These two pictures agree with the

*early assumption that recrystallization is a surface phenomena. Figure

5.17 also reveals that surface nodules are not necessary for the recrys-

tallization mechanism since nodules do not appear on the cross section

of the fiber.

Figure 5.18a and 5.18b shows other interesting phenomena. Cracks on

the nickel-boron sheath reveal dips which are evidence of boron diffusion

from the original surface. Crystal growth across two different fibers

is evident.

Because of the fragility of the samples heat treated above 1000C,

electrical conductivity data are not available.

.. . . ..... - . -." .-'T --- -... ..7
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Fig. 5.16(a) -Nickel-boron sheath showing large crystall-
ices of different form from- the pure boronI crystals shown in Fig. 5.l4a. (200K, 41 angle).

4i;
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Fig. 5.17 -Boron recrystallization on the cross-section
of one of the three fibers shown. (200X, 75'

angle)
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Fig. 5.18(a) -Cracks in the nickel-boron sheath and
sintering from one fiber to another
(200X, 41 angle).

IVN

Pig. 5.18(b) - Doep into the cracks of the Ni-B sheath
we can see the surface of the fiber with dips

~ due to diffusion of boron (2000X, 41' angle).
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5.8 Summary of Electrical Measurements Data

The conductance of the samples discussed above are summarized below:

Table 5.8.1

Temperature(*C) time of heat treatment(hrs) G(mhos)

558* 6 6.896 x 10-

678* 6 2.100 x 10 - 3

738'(*) 6 5.88 x 10 - 3

8040 6 3.508 x 10-

9140 6 6.536 x 10-

Different thickness of nickel was plated (6vm). All other
samples have a thickness of 12um.

For those samples where complete conversion of the nickel sheath

occurred and a nickel-boron sheath appeared instead, it is sensible to

find the conductivity of this transformed boron fiber. These calculated

values are shown below:

Table 5.8.2

4 Temperature a(mhos/m)

804*C 0.257

914C 0.479V

I [ 5.9 Coments on the Results

The data thus far examined clearly show the irreversible process of

.'surface recrystallization of massive amorphous boron. This phenomena

I ! accounts for significant reduction of the strength of boron fibers.

Fibers heated above 850 - 900% were so brittle that slight tension

1 W i .-4 . * * .. - - - - --"_.__ _.. .. . .. . ..__ _ _ _ _• i " - ..... ... . .. - 1 .. . . .. . . . . .



...... ----

82

would destroy the sample. Fibers heated above 1000C were sometimes

shattered inside the evacuated chamber without direct application of

stress. Attempts were made to measure the conductivity of the recrystall-

ized boron fibers. Fibers without a nickel sheath were heat treated and

plated for electrical measurements. Several difficulties on plating

were encountered for the heat treated fibers. The results were incon-

sistent and inconclusive.

Examination of the nickel-boron phase diagram indicated a nickel-

boron eutectic at 1050*C. The SEA and electrical measurement analysis

included here show formation of compounds well below 1050*C. It is not

clear if a new nickel-boron eutectic was found. To check its existence

would require further study and is beyond the scope of this thesis.

The conduction of the samples was measured first as the samples

came out of the furnace and later after they were replated with extra

nickel. The results in both cases were the same. Some samples were

also dipped in a 1:1 solution of HF and HNO3 to remove excess nickel

* iafter heat treatment. Later, these samples were replated and remeasured

and the results were the same as before. The results presented here
detail the recrystallization mechanism aqd its relation to fiber deter-

ioration. The migration of nickel into boron and vice-versa and the

creation of compounds are useful to show that there is still much to be

Vunderstood about the nickel-boron system. As far as the possibility of

conductivity modification while maintaining original mechanical properties,

the experiments in the 700C - 750*C temperature range suggest the

K .[ possibility of improvement of fiber conductivity with small concentration

of plated nickel and shorter time of heat treatment.



CHAPTER VI

EXPERIMENTS ON CARBON DIFFUSION IN BORON FIBERS

6.1 Introduction

Doping of polycrystalline boron with carbon at temperatures around

2300*C was reported by Hagenlocker [191 using samples grown on a tantalum

substrate from boron tribromide. After removal of the Ta filament, the

material was heat treated by a floating zone technique and impurities

such as C, Si and Be were introduced in the melt. Samples doped with

carbon showed a change in conductivity up to nearly three orders of mag-

nitude (at 300K). The impurity concentration for samples doped with

carbon was 0.1%. The temperature of the molten zone during the intro-

duction of the impurities was 2300*C.

Those results were encouraging for the prospect of doping boron

fibers with carbon to increase its conductivity. A series of experiments

were performed for carbon diffusion in boron fibers. Before we discuss

the results of these experiments, let us compare Hagenlocker samples

with our boron fibers. The samples grown by Hagenlocker were 400 - 500um

in diameter. They did not have the inner core filament (Ta). After the

floating-zone process, the material was polycrystalline with crystallitesij f between 0.2 - 2.0 mm in size. The material, although of cylindrical

geometry was 24 times larger in diameter than a boron fiber (203urn

diameter). The conductivity at room temperature (300K) was very low

compared to the boron fiber conductivity ("2.5 x 10 mhos/cm compared

to 8.17 x 10-4 mhos/cm for the 8 mils diameter boron fiber). The energy

gap calculated from the Hall constant data was found to be 1.6eV, while

the thermal energy gap for the fibers was much smaller (.19V) as shown

83'
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in'Chapter III. These differences plus the different methods employed

for diffusion will be used later in this chapter to explain our results.

6.2 Experimental Section

The temperatures for the diffusion experiments with carbon was

limited within the range where the fiber still maintained its mechanical

properties. This was necessary because the intent of this work was to

increase the conductivity of the fiber without changing the properties

of the fiber. Also, the deterioration of the mechanical properties would

make it difficult to do electrical measurements.

Two different types of carbon sources were used. Some samples were

covered by a mixture of powdered graphite and water (then the samples

were dried to remove the water). Other samples were coated with PELCO's

colloidal graphite (aqueous base), #1603-15.

After the heat treatment, the fibers were cleaned in an ultrasonic

cleaner and nickel plated. There was no difference in the electrical

measurements between fibers that were coated with different carbon sources.

As explained in Chapter V, fibers that were heat treated then nickel

plated, gave inconsistent and inconclusive values for the measurements of

electrical conductivity. We can use these values here to compare with

* the fibers that were coated with graphite and undergone heat treatment.

Although, as it will be shown below, the scatter of the data is large, it

is still the only basis for comparison since it may be argued that plating

after heat treatment is not a good technique and obscures any informa-

tion that could be gathered from the diffusion experiments.

IT The resistance measurements for 8 mils diameter, 8 cm long fibers

with a plated length of I cm per end of the sample is summarized below

mambo w----
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(all fibers with isolated tungsten core)

Table 6.2.1

Temperature(*C) Condition R(ohms)

800 uncoated, just 2083.33
heat treated

800 coated with 1660.0
graphite

850 uncoated, just 1000.0
heat treated

850 coated with 1785.0
graphite

900 uncoated, just 2000.0

STrheat treated

900 coated with 1923
graphite

950 uncoated, just 1162.8
heat treated

950 coated with 1315.8
graphite

4 The heat treatment time was 24 hours for all samples. Fibers that

Swere cleaned with H2 so4 after heat treatment (all samples were cleaned

before heat treatment with the standard techniques described in Appendix

1A) showed a small increase in the resistance. The standard resistance

measured for 8 mils samples of as received fibers was 892.85 ohms which

agrees to the values used to calculate the conductivities described in

Chapter VII.

The data are inconclusive. After several experiments, this tech-

nique was replaced by the nickel doping described in Chapter V. On the

• basis of the results above, and the inconsistent measurements of heated-

ANN W
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then-plated fibers, the conductivity modification due to carbon diffusion

may not be explained.

The trend of the heat treatment was to double the resistance of a

fiber whether it was coated or not with graphite. This doubling the

resistance trend was also noticed in samples that were etched by HNO3

without heat treatment.

In conclusion, carbon diffusion in boron fibers was not successful

at this temperature range. In comparison with the Hagenlocher experiments,

the difference in temperatures used was nearly 1400*C. Even at high

temperatures, Ragenlocher samples showed very small solute concentration.

Our data could not be fully analyzed because the "Just heated" samples

used for comparison with "coated samples" had inconsistencies in their

electrical measurements. Also, as described in Chapter V, recrystalli-

zation mechanisms on the surface could have influenced the plating after

heat treatment. Because of the need for high temperatures for carbon

diffusion, the intrinsic properties of the fiber prevent successful

conductivity modification while maintaining the original mechanical prop-

I erties.I
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7. MODELING OF THE ELECTRICAL CONDUCTIVITY OF ADVANCED
COMPOSITE MATERIALS

7.1 Unidirectional Plies - Infinitely Thick Case

A goal of this research is to derive the functional relationship

between the electrical conductivity of a fiber reinforced composite with

highly conductive fibers and an insulating matrix, and the fiber volume

fraction, fiber conductivity, and the contact resistance between the

fibers. A sound model for the composite as well as a clear understanding

of the relevant phenomena are a prerequisite to the successful completion

of such a task. Such a relationship will be useful for the correlation of

electrical conductivity data and would eliminate the necessity of expensive

experimental measurements. Also, a reliable model may allow us to relate

electrical conductivity to interfacial contact areas and to the presence

of fiber to fiber contact paths across the individual unidirectional com-

posite plies and these properties in turn may effect the mechanical properties

of the composite.

A very simple model of the single unidirectional ply of a fiber re-

inforced composite was suggested by Adams and Tsai 7 ' 2. In their square

i Ilattice model, Figure 7-1, the circular fiber cross sections are packed
one into each square element of a Cartesian two-dimensional space. To

introduce randomness, fibers are removed from the perfect square packing

according to a random procedure that satisfies a fixed-fiber square fraction

x.

Since the fibers must touch as they do in Figure 7-la, the fiber

volume fraction xf and fiber square fraction x are related by

' 86
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Xf - wx/4 (7-1)

for the square lattice. The only non-physical restriction of this

model is to confine the fibers to rows or columns. Adams and Tsai7 2

assert that this constraint is secondary to the importance of the in-

troduction of randomness.

One improvement is suggested by the examination of photomicrographs.

in which fiber cross sections appear to be nearly close packed circles.

Figures 7-2 and 7-3 introduce two types of two dimensional close packed

structures - the simple close packed and honeycomb close packed models.

Again, the randomness characteristic of the real physical system is in-

troduced by removing the fibers by a random number procedure to satisfy

a certain fiber hexagon fraction x . Note that x is the fraction

of fibers compared to the total that complete packing can accommodate

and is related to the fiber volume fraction by

x - x (7-2)

'i for the simple close packed structure and

xf - x (7-3)

11 f for the honeycomb close packed structure. The resistance wires of Figure

7-3 form a honeycomb for the fully packed honeycomb structure and the

[, network can accommodate one-third less fibers than the simple close

packed structure.

The electrical conductivity of a single ply of unidirectional com-

posite where the fiber is highly conductive and the matrix in Insulating

is dominated by the passing of electrical current through the small contact

•
,
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points between the fibers. The conductance g between two adjacent

fibers will be substantially less than the fiber conductivity. Both

ideal contact conductance and surface roughness conductance contribute

significantly to go and the experimental contact conductance g is

a measure of both conductances in series. Hence, drawn in on Figure 7-1,

7-2, and 7-3, between any two circles in contact is a conductance g

and the problem becomes one of the conductivity of a network of conductances

go with sites (all the conductances go about a single junction set to

zero) or fiber cross sections removed at random.

The random conductivity of an infinite lattice of resistors with

sites removed at random may be obtained from the effective medium theory

of random lattices as introduced by Kirkpatrick 7 3 and extended by Watson

and Leath 7- 4. In effective medium theory, the conducting and non-conducting

sites are introduced as perturbations in a lattice of effective resistances.

The method is attractive both for its simplicity and the apparent accuracy

of its results when compared with simulations 7 3'7 4 . A complete outline

of the theory is presented in several of the attached publications.

Watson and Leath 7-4 calculated with effective medium theory, the

conductivity of the random site square lattice of conductances gof a

model for a unidirectional single ply of composite, in terms of the fiber

volume fraction xf

1.- o - + j x2] (7-4)

They compared this equation to the simulation of a random site square

lattice of conductances by removing, at random, wire crossing sites from

a conducting screen and obtained excellent agreement. When the fibers

are highly conductive and the matrix is an insulator, lattice conductivity
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must depend on paths across the slab (see Figures 7-1, 7-2, and 7-3)

made up of contacting fiber cross sections. At lower fiber concentrations

due to the random fiber placement such paths will not exist, only isolated

small clusters or groups of fibers will be found, and the conductivity

will remain zero even though xf is finite. Eventually, at a critical

fiber fraction xfc , when a sufficient number of fiber cross sections are

present, such paths will appear in significant numbers and the lattice will

conduct. This critical phenomena is called percolation. Equation (7-4)

reflects this in the sense that

a <0 for x f 0.47 (7-5)

or, in other words, percolation occurs at the critical fiber fraction

xfc = 0.47 (7-6)

We have derived the effective medium equations of several improved

models of the ply cross section of a unidirectional composite. In the

close packed or triangular lattice7- 7 we present (in the attached publications)

the solution for the electrical potential of a perfect infinite triangular

network of resistors with a point current source. This result is used

with effective medium theory to obtain a lattice conductivity for a simple

close packed random fiber lattice. Figure 7-2

a -go [1 6w 72 xf2

g r 72 - w+ 6 f] (7-7)

which percolates at 
a(xfc) 0

Sfc - 0.48 (7-8)

7-8 I h
An additional model for a composite of close packed fibers is the

honeycomb lattice and our results of this case (in the attached preprints) are
O-ti i teatcedpepns
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g0  54 2(
a -- X2 (7-9)

which percolates at

Xfc - 0.43 (7-10)

Yuge7- 9 has presented another approach of the effective medium

theory based on the concept of an average bond. Yuge's calculations are.

less rigorous than those which led to equations (7-5 to 7-10). In fact,

Yuge used random bonds to calculate the conductivity of a random site

lattice and 7-7, we point out, is one of the enclosed preprints that his

final results are in error. Yuge's conductivity is

9 2/3 -_ 1 (7-11)

which percolates at

Xfc - 0.30 (7-12)

All four theories are compared in Figure 7-4 with available conductivity
daa7-10

data The constants go obtained with a least squares fit of the data

(see Appendix 7-1) are listed in Table 7-1 along with the conductivity values

} j for the fiber and epoxy matrix. If we consider only xf - 0.6 and 0.7,

the square and triangular lattice gives best fits. For the three largest

points xf - 0.5, 0.6, and 0.7, the honeycomb lattice gives the best fit.

I For all four parts, Yuges' "average" bond theory gives the best overall fit,

but it is based on the poorest theory.

Table 7-1
Fiber to Fiber Contact Conductives

Lattice Conductivity
(mhos/m)

Triangular 465
Square 299

, Honeycomb 201
Tuge 2094
Epoxy 10-
Graphite Fibers 104

2 F
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Hertzian 7 7-6 ideal contact resistances, i.e. the resistance to

conduction of two perfectly smooth cylinders in contact, account for about

half of the conductivity reductions from the fiber value observed in the

fiber to fiber contact conductances of Table 7-1. The rest of the reduction

is due to a number of factors, not the least of which is surface roughness

which requires an experimental parameter to describe the surface geometry.

As a result, the contact resistance depends upon the details of fiber

preparation.

7.2 Unidirectional Plies - Slabs of Finite Thickness

The experimental conductivities of Figure 7-2 are measured transversely

across a single ply slab of graphite/epoxy. Deviations of theory from

experiment in Figure 7-4 are most probably due in large part to the finite

thickness of the single ply slab. We have shown from square lattice studies
7 -11

that a slab must be about 150 fiber diameters thick before it can be re-

garded as infinitely thick. Commercial pre-preg tapes were only ab6ut 20

fiber diameters thick, the transverse conductivity through the ply is

that of a finite slab. The theoretical analysis of the conductivity of

! a finite ply divides itself into two parts: the lattice statistics ofi
percolation, i.e. the probability of path formation across in a very wide

slab of finite thickness, and the computer solution of Kirchoffs equation

in a ply cross section of infinite width and finite thickness.

' .We have begun our studies othefcsoffinite thickness on the

onset of percolation with the random square lattice problem. When fibers

' are placed at random in a square lattice, clusters of fibers of varying

sizes form. Not until a critical fiber fraction xf is reached are there

significant numbers of fiber clusters of sufficient size that equal or ex-
'I ceed the ply thickness. Hence, for composites of conducting fibers and

4. insulating matrix, electrical conduction begins only a critical fiber fraction

1x_ ' fc.



96

By counting fiber to fiber contact paths across a computer simulation

of a single ply, we were able to determine values of the critical fiber

fraction xfc for various single ply thicknesses X, expressed as

integer multiple- o: the fiber diameter. The critical fiber fraction for

a ply of X - 20 fiber diameters is

Xfc (X - 20) = 0.34

and is shifted to the left compared to the value for percolation in an

infinite slab;

x (X = o) -0.46

From our numerical results in the random square lattice, we can

sketch the conductivity curve for a X = 20 fiber diameter sample and it is

shown as the dashed line in Figure 7-4. From our lattice statistics cal-
7-10

culations we can conjecture that the points of the random square lattice

curve of Figure 7-4 at higher xf, i.e., 0.6 and 0.7, will not be strongly

affected by the finite thickness. Furthermore, points at lower fiber fractions

xf will shift to the left and, for the square lattice, will percolate at

* ,0.34. Using these facts, we propose that the square lattice curve will

probably look like the dashed line of Figure 7-2 and should agree very well

the experimental data. Only the square lattice Xfc has been done, calculationsTI
of the critical fiber fraction of a simple close packed lattice, Figure 7-2,

are presently underway.

More accurate curves will require an iterative computer solution of

Kirchoffs equations in the square and simple close packed lattices, part

of our present efforts. From the infinite lattice equations (7-4 to 7-12),

we can already place approximate upper and lower limits on the results of

___L_ -'__-__ 
. I
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Xf. These limits are given in Table 7-2.

Table 7-2

Limit on Conductivity Variation with Thickness

Random Random Close
Square Lattice Packed Lattice a /g

Xf a X/g 0XaM/g Lmit

Lower Limit Lower Limit

0.7 0.677 0.437 .891

0.6 0.346 0.217 .764

0.5 0.066 0.031 .637

0.4 0 0 .509

Percolation certainly effects the electrical and thermal conductivi-

ties of important fiber reinforced composites e.g., graphite/epoxy. But

-I percolation guarantees that clusters of fibers will run completely across

41 the ply and may also affect mechanical properties. Such percolationA j related phenomena may not be easy to include in model calculations of

mechanical properties but may arise in mechanical experiments on composite

materials at these critical fiber fractions. Lattice statistics and cal-

11 culations of critical fiber fractions for percolation, and their variation

with ply thickness, are important to the general area of composite materials

and not just to the understanding and modeling of electrical conduction.

MM-! , 'I "f I ....v ..... ... . .....L
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Abstact. An effective medium theory, which includes the overlap of adjacent removed sites.
is formulated foe a percolatin& two-dimensional mangular lati e. The critical coaceutra-tiu. ft"5-31 is compared with Yuge's value x. - 0333. and tbe esc vaue x. .- 0"00

The effective medium theory of a random lattice of resistors has received considerable
attention in the recent literature (Kirkpatrick 1973. Watson and Leath 1974, Butcher
1975) largely because of its simplicity and the fact that it exhibits conductive percolation.
Watson and Lcath (1974) and Watson (1975) have developed the effective medium
theory equations for the site model of a percolating, random, two-dimensional square
lattice of resistors. In their percolating site model. a fraction 1 - x of the nodes (sites)
were selected at random from an infinite lattice of conductances g,, and the entire
cluster of conductances about each site were changed to zero. As Butcher (1975) points
out. these clusters must overlap, so that the fraction of insulating lusters is given by
I - b - I - x2 and the fraction of conducting clusters by the bond probability b

b . x 2. (1)
The close packed structure is common in certain experimental materials such as granular
packed beds or fibre reinforced composites, and the corresponding lattice structure in
two dimensions is triangular. There is some interest in exploring the form ofthe effective
medium equations for the site model of a simple triangular lattice.

We proceed to apply simple effective medium theory to the site percolation problem
in a triangular lattice (figure 1) and observe that for effective medium theory:

(i) The net effect of the random conductances is represented by a houmnes
effective medium with equal conductances g, connecting aU the nearest-neigbbour sites

- of the triangular lattice.
(i') The average field inside the medium is equal to the externally applied field, which

increases by a constant amount V. per each row of nodes. and:
(iii) Local fluctuations in the voltage AV induced when g, is replaced by go or by a

vanishing conductance should average to zero.
!. Consider the site S selected at random in the lattice (figure 1(e)) and c ep tmhe

. " 7 cluster of conductances about S from g. to go (or zero), The uniform solution V. Wh to

0022-3719/78/I)021.9867 SO 1.000 1978 The Institute of Physics L87
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For a single current source i. injected at the centre (0. 0) of an infinite triangular lattice

#(xy) - #0a0) - 2-- - I d4(1 - u2)" 2 (2+ 2u)-" " -Il

x (T(u)[(3 - u)(2 + 2u)- 12 - 1113(u)]21,111 - 1), ()

where

1(u) - [(3 - u)(2 + 2ur)1]" - I

and

x ,(u) M cos(x cos-I u).

Lattice site coordinates are defined by the possible pairs (x, y) from

x.O,±1,±2...y 0.,+, ±.1 3 .. (6)

or from the possible pairs (x, y) of

- ±s3/ ±343/2....
The difference in potential between F and D for the infinite effective lattice of figure l(a)
is obtained by superposition of the potential differences from each current i.; the con-
ductance .eis determined to be

"M. . =Y - ?,/3/s) g.. (8)
The extra voltage AV across FS of figure l(b) due to the presence of the conductances

g. from equations (2), (3) (4) ind (8) is written

AV - V,(g, - go)/[go - g. + 2(1 - 2%/3/x)' g,. (9)

But it follows from condition (iii) for an effective medium that the average <AV> fromthe conducting and non-conducting clusters must vanish,

(AV> - (1 - b) V.1[2(1 - 2V3/ 1x)- - 1] + bV.(g. - g0o)1g 0 - g.

+ 24 - 2%/3/X)-,g -o. 0)

Butcher (1975) has presented an alternative derivation to the effective medium equa-
tion of a random lattice. Though his discussions are restricted to square lattices, they
can be easily generalised to the triangular case, and equations (9) and (10) are of the same
form as Butcher's equations (1g (4a and (4b). In this Letter, we have identified the
constant ,A that Butcher discusses, for a perclating triangular lattice to be

Saddio we aact - 431i.
In1 addition we mu.S.inclucde a factor of 2 in the net conductivity

e-K k ia D j,64 (12)

for ou rtriangular lattice, since there are tw w stha r crerathertn oeI 'lii .s in Botcher's square lattice.
| " !I] Solving for 0,, from (1%) substituting into 12), and relating the bond probabt'it b

p. .&
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iK
19,

IpIN

ip 1. SinJ~k ste S of a tranuisar lattice. Conductanom g, around S witin an effectve

network of ooducum Conducta gn and g,. can be iSnored.

satisfycurrent conservation at sites A, C, D and F; the magnitude of the current 1,

introduced or extracted at A, C, F and D, is chosen to correct for this

-V.(#g - go:, (2)
The external potential is applied vertically, furthermore the lattice and the site currents
1o are symmetric with respect to the line EB. This symmetry is sufficient to suppress any
transverse currents in gas and g., and these conductances may be ignored.

A second symmetry of the lattice and the site currents io about the line PP' of figure
1(a), implies that current cannot flow across any point on this line. Then we can regard
the equivalent problem of a semi-infinite lattice insulated along the line PP' (see figure
1(b)). The extra voltage AV across FS can be calculated, if we know the conductance
G6 between the points F and D on the semi-infinite lattice when g, is absent,

AV -A/(go + 2%o (3)
The conductance G6 can be obtained directly from the conductance G., between

F and D in the uniform semi-infinite effective medium, i.e., figure 1(b) with go replaced
* , by the effective value g.

-i G i"- g. + G6. (4)

The current to potential difference ratio G., acroin FL is then calculated fiom the
equivalent problem of four symmetric currents introduced into the elhctive infinite
lattice, i.e. figure 1(a) with go w g.. The electrical potential #(x. y) at the aramis site.
of the infinite triangular lattice have been derived through a straiShtforward though

* tedious extension of Van Der Pol and Bremmer's calculations (195M) on a square lattice.

U A i *!
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7 to the site fraction x by (1). we obtain the variation of the random lattice conductivity

with site fraction

C6 ra - 0.61(1 - X,)9e (13)

Percolation occurs when the conductivity vanishes [a(x,) - 0],

x. ( 6 3 ,(14)

or

-0531. (15)
It is known that the greatest inaccuracies of the effective medium theory occur near
percolation. From exact lattice calculations (Sykes and Essam 1964) percolation in a
triangular, random site lattice is observed at x.= -1 at percolation equation (13) is in an
error by only 6%. On the other hand Yuge (1977) has proposed a modified effective
medium theory based on 'average bonds,' which would predict

a gox(x - (1
and percolate at x, in error by 33

The authors wish to thank the Air Force Office of Scientific Research who provided the
financial support for the research under grant number AFOSR 77-3453.
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ABISTRACT
A unidirectional composite is modeled as a two.dimensional cartesian

square lattice of infinite width and finite thickness. Circular fiber cross
sections, each contained completely within a lattice square and touching

4 r on aD four sides, are placed at random within the lattice according to the
fiber volume fraction. Percolation, in this system, is shown to be very

sensitive to the lattice thickness. To be regarded as infinitely thick a lattice
must be at least 150 fiber diameters across, and for a typical ply thickness
of 20 fiber diameters the critical fiber fraction for percolation is shifted by
26% from the infinite lattice value of 0.46 to a smaller value of 0.34.

SCOPE

A DAMS AND TSAI [1,21 have suggested the random lattice model as an appro.
* - I priate physical model for the effective transport properties of a unidirectional

composite material. In their square lattice model each square element of a Cartesian
lattice (Figure 1) is assigned either a complete fiber cross section or only matrix
material according to a random number procedure and the fiber volume fraction.
The fiber fraction xf must be distinguished from the fraction x of fiber squares. If

Reprinted from Journal of COMPOSITE MATERIALS, Vol. 13 (January, 1979)
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j

IJq YB ,I

I~sure 1. Random square lattice model six fiber
daimeter thick. Aiber to fiber conductance
ao is indicated on the current paths shown.

Thickness A is measured In fiber diameters.

the fibers touch as they do in Figure 1 the fiber fraction and fiber square fraction
are related by

x = 0.785x (1)

for a square lattice. The only unphysical restriction of this model is to confine the
fibers to rows or columns. Adams and Tsai [21 have pointed out that this con-
straint is secondary to the importance of the introduction of randomness.

V Many papers 12-61 and reviews 17-91 have discussed the probabilities and
statistical properties of an infinite random square lattice, largely because the in-
finite, random square lattice problem relates directly to the [sing model of statis-
tical physics. The size of clusters of fibers and the duster probabilities have been
calculated, but the central and most physically relevant result of these studies is. the
prediction of a lattice phase condensation or the formation of infinite fiber clusters
at a certain minimum critical fiber fraction xfc. Infinite dusters do not occur
within the infinite square lattice until a certain critical fiber block fraction (41

xc =0.59 . (2)

Percolation will occur in unidirectional composites with a very highly conductive
fiber phase and an insulating matrix phase. The prediction of the effective electrical
(thermal) conductivity of such a medium, one of the more difficult problems of
random media theory, can be modeled from the random lattice, if we insist that the
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,# v
!
.---------



1. 104

Thomas Joy and WUliam Strieder

fibers touch, and represent the conduction between two adjacent fiber ceaters
(Figure 1) by a conductivity v%. The matrix center to matrix center of matrix
center to fiber center links have zero conductivity, present no path for the current,
and can be onitted from Figure 1. Then the square lattice model predicts that, due
to the absence of infinite clusters of fibers, the conductivity of a thick unidirec-
tional composte slab (or infinite lattice) of higly conducting fibers in m insulating
matrix will vanish below the critical fiber concentration and this phenomena is
called percolation. The composite conductivity will vanish below the percolation
concentration [4]

xf. = 0.59 X 0.785 = 0.46 (3)

(the fiber square fraction times the fiber fraction per block).
A major difficulty with using the literature values for percolation of single ply

unidirectional composites is that previous theory is addressed to the infinite limit.
Results only apply to a single ply very large in both width and thickness, whereas in
many cases the single ply is only a few fiber diameters thick. The conductivity of a
single ply slab of composite will depend on the existence of unbroken paths that
travel completely across the slab. To pose the question of existence of percolation
in a thin ply, and to determine how the critical percolation concentration xe
changes with ply thicimess (in fiber diameters), we define the probability P(x)J)
that a block on the edge of the ply will contain a fiber and connect with one or
more paths across the composite. The variation of this probability with thickness
will give some idea of when a slab is statistically thick, and its vanishing will provide
a test for percolation.

CONCLUSIONS AND SIGNIFICANCE

'- From this study, the following conclusions can be drawn:

I . For fiber square fractions above 0.59 a significant number of paths exist
acroms even an infinitely thick ply; below this critical concentration the con-

" I ductivity of the infinitely thick ply must vanish.
2. A ply may be regarded as infinite if it is at least 150 fiber diameters thick.

I 3. For a typical single ply thickness of X = 20 fiber diameters, the sab is not
infinite, and the critical fiber square fraction at percolation is decreased from

the infinite ply value of 0.59 to 0.43. The infinite medium result is in error
by 27%. The corresponding critical fiber volume fraction is

x =0.785 X 0.43 0.34 (4)

at , -20 fiber diameters.
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SUPPLEMENTARY INFORMATION

The calculations of the probability P(x,X) that an edge site at y = 0 will contain
a fiber (Figure 1) which connects to an unbroken conduction path across the
thickness of ply were performed on an IBM 370/158 computer. The composite was
modeled as a two-dimensional cartesian lattice of infinite width and finite thick-
ness, X fiber diameters. The random fiber lattice was generated by placing circular
fiber cross sections, all of the same diameter d, by a modular multiplication random
number routine onto the squares (Figure 1) of the lattice with the additional
constraint that on the average the fibers satisfy the fiber square fraction x (or fiber
volume fraction xf = .785x). For conductive percolation the fibers must be very .
good conductors and the matrix must be an insulator. The necessary conduction
paths are simulated from fiber to fiber by insisting that each fiber, contained
completely within the lattice square, touch the square edges on all four sides. The
random structure occurs from the absence of fibers or clusters of fibers within the
lattice.

To count the paths across the ply we addressed each square at the edge of the
lattice. Algorithms to mark a conductance path starting from the edge square, to
properly backtrack when the path was blocked, and avoid closed loops, located
those cases where a path from the edge square completely crossed the slab. The
ratio of edge squares that began such a path to the total number of edge squares
considered gave us the probabilities P(x,X).

To assure statistical stability the probabilities calculated were calculated for a
very wide slab but finite slab thickness, A fiber diameters. Samples were taken 700
elements wide with specified thickness A. On each side of the sample 100 edge

squares were deleted from the path counting procedure to avoid end effect errors.
Then 25 such samples were run. The cumulative sample average of P(x,X) was stable
enough to provide sufficient accuracy for Figures 2 and 3.

Figure 2 contains the calculated path probabilities P(x,)) versus the ply thick-. ness, X fiber diameters, for various fiber square fractions x. The curves are clearly
asymptotic at non zero values for x > 0.59, hence significant numbers of paths are

found even at infinite thickness. Asymptotes form on the X-axis for x < 0.58, we
expect no conduction across an infinite slab for x below 0.58. For the infinitely
thick lattice, asymptotic values of P(x.X) when divided by the fiber fraction always
lie below the percolation probability [3-51 and either probability can be used to

W.V indicate percolation, however, the calculation of P(x,X) requires less computer time.
From Figure 2, asymptotes are most rapidly, formed at high and low x. Asymp-

totes form at Xa = 6 for x = 0.7; and at X, = 14 for x = 0.4. Asymptotes do not
readily form near percolation, the x = 0.58 curve is not yet completely asymptotic
at A = ISO. While these curves regard the problem from the point of view of the
path probability, this model suggests that slab conductivity will increase with de-
creasing ply thickness in a thin ply of fiber reinforced composite, and that this
effect will be most important near the percolation concentrations.

4 75



106

Thomas Joy and William Strieder

0.8 I-~ / .OAO
0.7 Q 70

0.2 
.6

P(X,)

0.4

0.3 0 .60,

0.2 "'--.=59

0 0 20 40 60 00 t00 120 140150

Figure 2. Path probability P(x.k) of a random square lattice of conducting
fibers plotted versus the ply thickness x in fiber diameters for vriousfiber block fractions.
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FIgum 3. Critical fiber volume fraction xfc for percolation versus the ply
thickness X in fiber diameters fora random square lattice of conducting fibers.

For a finite lattice we can extrapolate out the critical fiber square concentrations
for percolation from a vertical line in Figure 2 drawn through the various P(x,X)
curves at constant A. These* values are converted to fiber volume fractions upon
multiplication by .785 and plotted versus the ply thickness in Figure 3. For a'. typical single ply thickness A = 20 fiber diameters we find the slab is not infinite at
percolation, and the fiber square fraction at percolation is decreased from the
infinite medium result of 0.59, to 0A3. The infinite medium result is in error by
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27%. The critical fiber fraction is

xf,(X = 20)= 0.785 X 0.43 = 034 (5)

This same slab appears to be sufficiently thick to be considered infinite at higher
values of x, and conductivity will probably deviate from infinite medium results
S11 only as it moves towards percolation.

Since thinness tends to shift conduction versus fiber fraction curves to the left,
we can regard the formation of the asymptote in Figure 3 as a measure of the limit
of infinite ply thickness for conduction processes. Ply thickness X above

A -150 (6)

may be regarded as infinite for the random fiber square lattice model. Above X.

the xf, values are asymptotic, very slowly varying, and lie within 4% of the infinite
limit 0.46.

Computer calculations of the conductivity of a two-dimensional square random
lattice would be of both theoretical and practical interest. Computational diffi-
culties in two-dimensions arising from the slow convergence of the iteration of
Kirchofrs equations in a large lattice have been discussed by several authors [10,
121, and the problem has not yet been successfully done on a computer. We feel
that computing in a thin slab and studying the thickness curves may simplify the
calculations at least at large x where the X asymptote is readily formed. Research on
both the computational and the corresponding experimental problem of singe ply
conductivity variation with thickness are presently underway. Adam and Tsai [21
point out that a random close packed lattice gives even better results than the
square lattice, this more difficult problem is also under consideration.
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Abtract. The effective-medium theory for the random-site model of a percolating honey-
comb lattice is formulated. The value of the critical site concentration obtained, x. - 0-707,
is compared with the series value x. - 0.70 ±+ 0.01 and the Monte Carlo value x, - 0-688 -
0.015.

In this paper, we present the effective-medium calculation (Kirkpatrick 1973, Watson
and Leath 1974, Watson 1975) of the conductivity for the percolating, iandom-site, honey-
comb lattice. To generate our model, a fraction (1 - x) of the nodes (sites) of the lattice is
selected at random from an infinite honeycomb lattice of conductances go and the entire
cluster of three conductances about each selected site is changed from go to zero. These
clusters will overlap, and as Butcher (1975) has pointed out, the fraction of insulating
cluster sites is given not by (1 - x) but by one minus the fraction p of bonds present:

i-p 21-x2 . (1)

-e For effective-medium theory, the potential at the sites of the random conductance
network across which a vertical voltage has been applied, is the sum of an 'external field'
and a fluctuating 'local field.' The average of the local field over a sufficiently large region
of the lattice must vanish. The random lattice of conductances go and zero is regarded as
an effective medium of equal conductances g,, defined such that the average field inside
the lattice is equal to the external field. To perform the calculations, all the conductances
about certain randomly selected sites in the effective medium are changed from g.
to go (or zero) and as a criterion to fix g,, we require that the extra voltages induced to
maintain the external field must average to zero.

In figure 1(a), a honeycomb lattice is placed on its side and a vertical voltage is applied
to obtain the lattice longitudinal conductivity a. The external, average effective-medium
potential increases by a constant amount V, for each row of nodes. Suppose a site S
is selected at random in the effective-medium lattice and the cluster of conductances

:i fabout S are changed from g. to go. The uniform solution V. fails to satisfy current con-
servation at sites A and C. The magnitude of the current in introduced at A and extracted

* at C in figure l(a) is chosen to correct for this:

2 7 - V(g - g0 o). (2)
4 10022-3719/79/070279 + 03 OD1.000 1979 The Institute of Physics L279
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A

to

Ia) (Ib)

Figure I. Single site S of a honeycomb lattice for the calculation of the longitudinal conduc-
tivity. The cluster of three conductances go around S are located within an effective network

of conductances g. From symmetry the conductanc gs, can be ignored.

The external voltage applied vertically will produce no potential difference between
S and B and furthermore, the site currents io are symmetric about SB. This symmetry
is sufficient to suppress any currents in gsB and this conductance may be left out of
figure 1(a). The extra voltage AVc induced between A and C can be calculated from the
equivalent circuit of figure 1(b) if we know the conductance Gc of the network between
points A and C when the go conductances are absent (figure lb):

AC = i('g190 + G'C). (3)

Calculation of the conductance GAC between A and C in a uniform effective medium
provides the conductance Gc from the equality

A. A 2o =G' + 1g. (4)

We seek the current distribution for the circuit of figure 1(a) for the special case go -
g,,. These currents can be expressed as the superposition of two contributions, a current
io introduced at A and extracted at very large distances in all directions and an equal
current introduced at infinity and extracted at C. Unlike the square or triangular lattice
(Joy and Strieder 1978), both the current distribution for a single source in an infinite
effective-medium honeycomb lattice and G c can be obtained without recourse to an
infinite set of simultaneous equations, i.e. KirchofFs law for all the sites. The current
io introduced at A flows through three equivalent bonds and hence each bond carries1 3 0. At the sites immediately adjacent to A, by symmetry gain, the current must split
to follow two equal paths and each of these currents is 1i o. This determines that the volt-

age developed across the sites A and C will be io(2g )- I for the current in at A and for the
superposition of the current injected at A and extracted a# C

GAC = (5)
or

GAC 29 ,. (6)

From equations (2), (3) and (6) we obtain for A Vc

AVc =2 V.(g. - go)/(g. + go). (7)
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Note that there are two kinds of clusters in the honeycomb lattice. The horizontal mem-
ber in figure 1(a) can go either to the right or to the left, but from arguments the same as
those above, we can show that the same A Vc applies to both cases. There is no need to
differentiate between them.

It follows from the condition for an effective medium that the average <AV> from
the conducting and non-conducting clusters must vanish, ie.

<AV> = (1 - p)2V. + p2Vjg. - g)/(g. + go) 0 0. (8)

The effective-medium conductivity is found to be

g. = go(2p - 1). (9)

The net longitudinal conductivity a of the honeycomb lattice in terms of g. can be ob-
tained by geometrical arguments from the effective-medium lattice:

S= /./j/3 (10)
and for the longitudinal conductivity in terms of the site fraction x:

a = (2go/I3)x 2 - 2) (11)

from equations (1), (9) and (10). The transverse conductivity, figure 1(a) rotated by 900,
is also given by equation (11).

Percolation occurs when the conductivity vanishes, i.e. o(x) 0 and effective-
medium theory for the honeycomb lattice predicts

x. = 1/ 2 = 0-707. (12)

The greatest inaccuracies of the effective-medium theory occur near percolation,
hence percolation provides a good test for equation (11. For exact lattice calculations,
percolation in a random-site honeycomb lattice was observed at 0-70 ± 001 by Sykes
and Essam (1964), but equation (12) predicts percolation within these bounds, above
the median by 1.0%. Furthermore, from Monte Carlo calculations, Dean (1963) pro-
posed the value 0-688 + 0-015. Effective-medium theory predicts percolation at a site
fraction about 28% higher the median. The effective-medium result is again almost
within the range of error.
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ABSTRACT

A single ply of unidirectional composite is modeled as a two-

dimensional close packed lattice of circular fiber cross sections of

infinite width and finite thickness. To introduce randomness fibers are

removed at random from the lattice, leaving vacant lattice sites of

matrix material, until a certain fiber volume fraction is reached. The

effect of lattice thickness on the critical fiber fraction for percolation

is calculated for this random, close packed fiber model. For a typical

ply thickness of 24 fiber diameters, the critical fiber fraction for

percolation is reduced by 20Z from the infinite lattice value of 0.45 to

a smaller value of 0.36. The percolation versus thickness results of the

random square lattice of fibers are compared with those of the random

close packed fiber model. Experimental measurements of the increase in

electrical conductivity of a single ply of graphite/epoxy composite with

decrease in ply thickness predicted by the random close packed fiber model,

are presented.
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SCOPE

Adams, Sprinter, and Tsai [1,2] have suggested both the random square

and random close packed arrangements of circular fiber cross sections as

appropriate physical models for the calculation of effective transport

properties across a ply of unidirectional composite material. In a previous

publication [3], numerical studies of the percolation of a random square

lattice of contacting fibers were presented. In this paper we will investi-

gate the lattice statistics of a random, close packed fiber model of a

thin ply of unidirectional composite to determine the existence of percolatioa,

the effect of ply thickness on percolation, and the asymptotic ply thickness

beyond which the statistical properties of the ply no longer depend an

ply thickness. We will compare the square lattice results of percolation

in a thin single ply with those for the random close packed fiber lattice.

In addition, the increase of electrical conductivity for thinner plies,

predicted from our calculations of lattice statistics, will be presented

herein'in the form of experimental data points.

In the random, close packed fiber lattice (Figure 1), fiber cross-

sections are removed by a random number procedure from a perfect close

packed lattice of identical circles. What results is circular fibers placed

at random in a triangular lattice of all possible fiber sites. Any fiber

Ssite in the-triangular lattice is either vacant or occupied by a circular

fiber cross-section. A fiber will directly contact only those fibers occupying

one of its six nearest neighbor fiber sites. The fiber volume fraction Xf

must be distinguished from the fraction x of occupied fiber sites,

Xf - (ir/23)x - 0.907x (1)

I



The only unphysical restriction of this model is to confine the fibers

to rows or columns. Adams and Tsai [2] have pointed out that this constraint

is secondary to the introduction of randomness. Also, fibers in fact

tend to close pack in the actual composite.

Suppose that almost all of the fiber sites are vacant and fibers

occupy only a few randomly selected sites of the close packed

lattice of sites. At this lower volume fraction, the fibers will appear

isolated, but as the number of fibers is increased pairs in contact will

form. Ultimately, as the fiber fraction is further increased groups or

clusters of fibers will form. The statistics of an infinite close packed

fiber lattice, for example, the maximum cluster size and cluster probabilities

[4-9] for any fiber fraction, have been calculated. The central and most

physically relevant result is the prediction of a lattice phase condensation

or the formation of infinite fiber clusters at a certain minimum critical

fiber fraction Xfc . Infinite clusters do not occur within the infinite

close packed lattice of fibers until a certain critical fraction [4,5] of

. the fiber sites are occupied

x - 0.500 (2)

Percolation, the vanishing of the conductivity below a certain critical

fiber fraction, will occur in a unidirectional composite with a very highly

conductive fiber phase and an insulating matrix phase. The prediction of

'" I the effective electrical conductivity of such a medium can be modeled from

the random, close packed fiber lattice. Fibers occupying adjacent sites in

a random close packed fiber lattice will contact at a point (Figure 1). and

we represent the coducviy between two adjacent fiber centers by ao

Current can pass only from a fiber center to an adjacent fiber center. An

.........
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unoccupied fiber site is filled with matrix material of zero conductivity.

The current flow between a fiber center and an unoccupied neighboring

fiber site or between two adjacent unoccupied fiber sites is zero and their

conductivity can be omitted from Figure 1. A random, close packed fiber

lattice completely filled with fibers, i.e., x-1 , forms a triangular

lattice of conductances vo . If a fiber is remove# all six conductances

to the unoccupied fiber site will vanish as the matrix is insulating. Sites

are filled or unoccupied at random; the lattice of conductances is sometimes

*called [10] the random site triangular lattice. The random, close packed

fiber model predicts, due to the absence of infinite clusters, that the

conductivity [10] of a thick unidirectional composite slab (or infinite

lattice) of highly conductive fibers in an insulating matrix will vanish

below the critical fiber site concentration Siven by (2) and this phenomenon

is called percolation. The composite conductivity for an infinitely thick

ply of random, close packed fibers.will vanish below the percolation

concentration [4,5]

I 1fc - 0.500 x 0.907 - 0.454 (3)

I. A major difficulty with comparing random lattice literature values

- [4-101 for the percolation or conductivity with those of a single ply of

unidirectional composite is that the previous theory is addressed solely to

V Junderstanding the infinite lattice. The previous literature results for

the random close packed fiber lattice only apply to a single ply vary large

~ I in both width and thickness, whereas in practical applications the single
i I

• ply is sometimes only a few fiber dismeters thick. The conductivity of a

single ply of composite will depend on the existence of unbroken paths of

[ conductance that travel completely across the slab. In a recent publication

.j I
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[3], to pose for a random square lattice of fibers, the question of the exis-

tence of percolation in a thin ply, we formulated the probability P(x,)) that

a block on the edge of the ply will contain a fiber and connect with one

or more unbroken resistor paths across the composite. In this paper we

will calculate P(x, X) for the random, close packed fiber model and determine

how the critical percolation fiber volume fraction x f changes with ply

thickness X (in fiber diameters). The variation of P(x,X) with thickness

for the random close packed fiber model will give some idea of when a ply

is statistically thick, and its vanishing will provide a test for percolation.$ The variation of the critical percolation concentration xfe with ply

thickness X found for the close packed model will be compared with that

of the square lattice.

Both the Px, ) curves [3] for the square lattice of fibers model

and for the random, close packed fiber model discussed in this paper,

predict that the conductivity of a thin slab will decrease with thickness.

When the path probability is plotted versus the ply thickness-the number of

A iconductance paths across the ply decreases rapidly with increasing thickness

to either a positive, non zero, asymptote for xf > Zf, or for x < xfc

I:i I to an asymptotic value at zero path probability on the abcissa. Beyond

these asymptotic thicknesses predicted from the P(X,X) curves, the lattice

is effectively infinite i.e., the lattice is statistically thick, and the

composite model properties no longer depend on X. Experimental conductivities

' 'of graphite/epoxy fiber reinforced composites measured for plies of thick-

ness currently used in aircraft fabrication, and presented in the last section

4 of this paper, show this same decrease with thickness.
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CONCLUSIONS AND SIGNIFICANCE

From this study, the following conclusions can be drawn:

1. If more than 50% of the fiber sites of the closed packed random

fiber model are filled a significant number of paths exist across

even an infinitely thick ply; below this critical cancentration

the conductivity of the infinitely thick ply must vanish.

2. The close packed random fiber model of a unidirectional composites

material is infinitely thick if it is at least 150 fiber diameters

thick.

3. For a typical single ply thickness of X-24 fiber diameters, the

random close packed fiber model of a ply is not infinite, and the

critical fiber site fraction at percolation is decreased from the

infinitely thick ply value of 0.50 to 0.40. The infinite medium

result is in error by 20%. The corresponding critical fiber fraction

* is:

• fc (X-2 4) - 0.907 x 0.40 - 0.36 (3)

.:I ] 4. A comparison of the curves of percolating fiber fractions versus X

for the random square lattice of fibers model and the random close

; I packed fiber mod.-l shows the difference in x for the two lattices

to be small, for example, the critical fiber fractions for percolation

differ by only 3Z for a thickness of 24 fiber diameters. However,

due to the asymptotic nature of the curves of the two models, the

U critical thickness for percolation for a given fiber fraction (below

Xfc. ) can differ significantly near the asymptotic limits. For eample,

4j the square lattice Percolates beyond 33 fiber diameters whereas the

-~ - -'77
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random, close packed fiber lattice does not percolate until 40 fiber

diameters for a fiber volume fraction of 39Z.

5. Both the random square lattice of fibers and the random, close packed

fiber models suggest that the electrical conductivity of a thin ply

of unidirectional composite should increase with decrease in thick-

ness. Experimental conductivities of graphiteiepoxy fiber reinforced

composite measured for plies of thicknesses currently used in aircraft

fabrication and presented in the last section of this paper do exhibit

the predicted increase.

EFFECTS OF PLY THICKNESS ON THE PATH PROBABILITIES AND PERCOLATION FOR

THE RANDOM, CLOSE PACKED FIBER MODEL

The calculations of the probability P(x,X) that an edge site at

Y-0 will contain a fiber (Figure 1) which connects to an unbroken fiber

path across the thickness of the ply were performed on an IBM 370/168

computer. The composite was modeled as a two-dimensional lattice of close

packed circular fiber cross sections all of the same fiber diameter d.

The lattice is of infinite width but of finite thickness, X fiber diameters.

Because of the lateral displacement of adjacent rows of circles (Figure 1)

a lattice containing N rows of fibers has a thickness

, -d + d(N-1)rW1 (4)

The random close packed fiber lattice was generated by removing fiber cross

sections from the lattice (Figure 1) with a modular multiplication randm

number routine and the additional constraint that on the average the fibers

I
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satisfy an occupied fiber site fraction x (or fiber volume fraction

xf = 0.907 ). The random structure occurs from the absence of fibers or

clusters of fibers within the close packed lattice.

For conductive percolation the fibers must be very good conductors

and the matrix must be an insulator. The necessary conduction paths across

the ply are simulated from fiber to fiber contacts between nearest neigh-

bors. In a close packed lattice, each fiber has at most six nearest "

neighbors (Figure 1). If a fiber's nearest neighbor site is occupied then

the two fibers touch and the sites of the two fiber centers are connected

by a conductance a , but if a nearest neighbor fiber has been removed,0

no contact occurs and no conductance is drawn in. If both adjacent fiber

sites are unoccupied, the conductance is also omitted.

To count the unbroken conductance paths across the ply, we addressed

each fiber at the edge of the lattice, i.e., y-0. Algorithms to mark the

conductance path started from the edge fiber, and moved across on occupied

sites of the close packed lattice, from site to adjacent site terminating

at the opposite side. At each site along the path, the program examined the

nearest neighbor sites in a set order, beginning the search at five O'clock

and moving clockwise. The search for a path moved to the first nearest

neighbor site that was found to be occupied. Each new site on the path was

marked with the direction to the previous site from which the path came for

backtracking. Each new site was also marked with the starting edge square

number to avoid closed loops and paths already essayed. The ratio of edge

fibers that begin such a path to the total number of occupied or unoccupied

4.-edge sites considered gives the path probability P(x,)

'i
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To assure statistical stability the probabilities calculated were

calculated for a very wide slab but finite slab thickness, - fiber diameters.

Samples were taken 900 elements wide with specified thickness X. On each

side of the sample 200 edge squares were deleted from the path counting

procedure to avoid end effect errors. Then 25 such samples were run. The

ciuulative sample average of P(x, ) was stable enough to provide sufficient

accuracy for Figures 2 and 3.

Figure 2 contains the calculated path probabilities P(x, A) versus the

ply thickness, A fiber diameters, for various filled fiber site fractions

x of a random, close packed fiber lattice. The curves are clearly asymptotic

at non zero values for all A > 0.50. Significant numbers of paths across

the ply are formed even at infinite thickness, and we can speak of a non

vanishing effective conductivity of an infinite lattice that does not depend

on A, but does depend on x . Asymptotes form on the A axis for x < 0.48

and we expect no conduction across an infinite lattice for x below 0.48.

For the infinitely thick lattice, asymptotic values of PkX,X) when divided

by the fiber fraction always lie below the percolation probability (4-6] and

either probability can be used to indicate percolation, however, the calculation

j Iof P(x,X) requires less computer time.

From Figure 2 asymptotes are most rapidly formed at low and high x . The

asymptote forms on the A-axis at roughly 11 fiber diameters, the maximum

fiber cluster size across the lattice for a filled fiber site fraction of

0.30. All, but a few small clusters, of the fibers occupying the first rows

of fiber sites in the random close packed fiber lattice belong to an infinite

cluster for a filled fiber site fraction of 0.60 and the asymptote is already

•I I formed at about 11 fiber diameters. On the other hand, near the fiber site

* lfraction 0.50, the maximum cluster size becomes quite large, approaching
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infinity at 0.50, and asymptotes do not readily form. Indeed those of the

x - 0.48 and x - 0.49 curves have yet to form on the A-axis at X - 130

fiber diameters.

The P(x,X) curves of Figure 2 for the random, close packed fiber lattice

show the same general trends as those of the random square lattice 13].

The only major exception is that the critical percolation fiber site fraction

in the infinite square lattice of fibers [4,5], the P(%,X) curve that splits

the zero from the positive asymptotes, occurs at a fiber site fraction of

0.59, whereas in Figure 2 the percolation in an infinitely thick, random.

close packed lattice 6f fibers occurs at a filled fiber site fraction of

0.50.

For a finite lattice we can extrapolate out the critical fiber site con-

centrations for percolation from a vertical line in Figure 2 drawn through

the various P(x,X) curves at constant A. These values are converted to

fiber volume fractions upon multiplication by 0.907 and plotted versus the

ply thickness as the lower curve in Figure 3. For a typical single ply

thickness A - 24 fiber diameters we find the fiber square fraction at percola-

4 tion is decreased from the infinite medium result of 0.50 to 0.40. The infinite

medium result is in error by 20Z. The critical fiber fraction is

(fU( - 24)-0.907 x 0.40 - 0.36 (5)

This same slab appears to be sufficiently thick to be considered infinite at

higher values of x , and conductivity will probably deviate from infinite

medium results [10) only as it moves towards percolation.

Since thinness tends to shift conduction versus fiber fraction curves

to the left, we can regard the formation of the asymptote in Figure 3 as a

measure of the limit of infinite ply thickness for conduction processes. Ply

be
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thickness X above

-150 (6)

may be regarded as infinite for the random fiber square lattice model.

Above ). the xfc values are asymptotic, very slowly varying, and lie

within 5.8% of the infinite limit 0.45.

We note from Figure 3 that the critical fiber fraction x curves

for the square lattice (upper curve) and close packed fibers (lower curve)

are rather close. At W-24 the square lattice gives a critical fiber

volume fraction of 0.37, only 3% higher than the random close packed fiber

lattice value stated previously. If we determine instead the thickness

at which the two lattices percolate for a given fiber volume fraction, the

square lattice percolates at 33 fiber diameters whereas the close packed

lattice percolates at a larger thickness of 40 fiber diameters for a fiber

volume fraction of 392. This difference can of course become larger near

the asymptotes.

EFFECTS OF PLY THICKNESS ON THE TRANSVERSE ELECTRICAL CONDUCTIVITY

The curves of the path probability P(n,X) versus thickness in Figure 2

suggest that the effective electrical conductivity of a thin ply of uni-

directional composite should significantly increase with decreasing thickness

* due to the additional conduction paths. Furthermore, the model suggests

that the increase will not begin until a certain asymptotic thicknes, and

that this thickness is of the order of a comercial single ply thickness.

Experimental measurements of electrical conductivity at several thicknesses

were carried out on T-300/Narmco 5208 cured unidirectional, single ply

graphite/epoxy composite material to test the validity of these predictions.

j i - -- -- -
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Single ply samples of four different thicknesses were prepared. The

four specimens were cut from the same strip of single ply material and lapped

to the varying thicknesses. Each sample was lapped on both sides to ensure

good electrical contacts. The specimen was then bound on both sides to

copper plates with the help of silver conducting epoxy. The silver conducting

epoxy was cured at 150C for 30 minutes in air and is known to form a good

contact with the graphite/epoxy conducting material [14].

The resistance measurements on these samples were carried out on a

General Radio Impedance Bridge type 1608-A at lkHz test frequency. A sample

was connected to the impedance bridge with the help of copper strips held

firmly to the top and the bottom copper plates of the sample by a lightly

loaded insulating spring clip. Measured values of the resistance are given

in Table 1. The thickness of the single ply samples was measured optically

under a microscope. While care was taken to keep the sample uniform, some

slight scatter in sample thickness was observed and both the thickness and

scatter are listed in Table 1. Also listed in Table 1 are the fiber volume

fractions, and the areas to which the flux is perpendicular, necessary for

the conductivity calculations.

Table 1. PHYSICAL PROPERTIES OF THE SAMPLES

Thickness Area Fiber Volume Resistance Conductivity
mm ca2 Fraction obms mho/m

I 0.1616+.0065 0.5146+1% 0.404 9.511 24.7 0.330+.017
S0.1313+_. 0095 0. 8835+_12 0. 385 4. 475 20.1I 0. 332+. 027

0 . 0955+. 0095 0. 7046+1% 0.390 3.235 14.6 0. 408+.045

0.0516+. 0071 0.5695+1% 0.383 1. 417 7.9 0.639+. 094

' Ii
'I [
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Finally, the conductivity values and the uncertainty that arises from

its direct proportionality to the thickness are given. The conductivity is

plotted versus fiber thickness in Figure 4.

The electrical conductivity values in Figure 4 deamonstrate for

graphite/epoxy composite systems currently in use that the electrical

conductivity of the single ply varies with ply thickness. Further, we find

that the expected increase in electrical conductivity with decreasing

thickness is significant. The average fiber volume fraction of the four

samples from Table 1 is 39%. This value is less than the critical percolation

fiber volume fraction for the infinitely thick ply of 45%. Therefore, the

models predict that the electrical conductivity will eventually vanish with

increasing ply thickness. We have already determined the thickness for

percolation at a fiber fraction of 392 from Figure 3 to be 33 and 40 fiber

diameters for the random square lattice and random close-packed lattice,

respectively. Multiplying both results by the average fiber diameter 6.540m

we find the random square lattice predicts percolation at 0.216mm whereas

the random, close packed fiber model predicts the conductivity will vanish

at 0.262m.

Experimental samples, approximately 700 fiber diameters wide, are Infinitely

wide in the sense that they do not suffer end effects. However, some statistical

fluctuation in the conductivity value from the randomness of the fiber

distribution can occur from sample to sample. If we include also the experi-

mental uncertainties (Table 1) in the ordinate and abcissa from the thickness

variations, it is not difficult to construct a curve that includes the

tour experimental points as well as the predicted percolation point. The

• I predicted percolation thicknesses do not appear on Figure 4, nor do they

influence the very rough curve that we have drawn, for they are not ezpersiental
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points but depend on the model simulation that we have performed.

On the other hand, for fiber volume fractions Just below percolation

(Figure 2) it is very difficult to predict the critical percolation thick-

nesses exactly for they are very sensitive to small changes in fiber volume

fraction xf * Predictions from the random close packed fiber model should

be more successful at higher fiber volume fractions vhere the fibers close

pack, than near percolation. Lattice models will probably tend to under-

estimate the conductivity near percolation and make the critical percolation

thickness at any xf too small. The real distribution of fibers is not

restricted to a lattice and can find more ways to form paths. Suppose we

return to Figure 2 calculated for a close packed lattice, and for the

moment accept the general shape of the curves for the real composite system,

but suppose the infinite lattice would percolate at 0.47 rather than 0.50.

This in effect would decrease each fiber site fraction listed on Figure 2 by

0.03. The conductivity data from Figure 4 taken at a fiber volume fraction

xf of 0.39 by Equation (1)

Ii n~/O.907 - 0.39/0.907 - 0.43

corresponds to a site fraction of 0.43. The rather small decrease in

percolation of the infinite lattice by Jsut 0.03 would shift our consideration

from the 0.43 curve of Figure 2 to the 0.46 curve and this would increae

our critical percolation thickness by a factor of about 2-1/2. The effect

of a fiber crossing from site to site as it moves down the depth of the

composite ply, in addition, while probably a small factor at ordinary con-

centrations, may also delay percolation and increase the experimental percolation

thickness somewhat.

I l.
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1 .
Even with these difficulties, the percolation thickness predicted by

the model are of the correct order of magnitude. At these critical thick-

nesses we do find experimental curves of the shape predicted by the lattice

models.

While the path probability curves give insight into the physical

processes within a single ply, they may not give the precise shape of the

corresponding conductivity curves. For example, in the infinite square

[4,13] and random close packed fiber [4,10] lattices the percolation

probability and conductivity curves versus fiber volume fraction are quite

different in shape. Computer calculations of lattice conductivity [11,12)

for both the random square and random close packed fiber models, as well

as additional single ply conductivity measurements presently underway

will give some idea of the shape of the conductivity versus thickness curve

and how the asymptote is formed. However, the experimental data points

presented here do verify qualitatively the essential features of the ply

conductivity as suggested by the random lattice models.
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LIST OF CAPTIONS

Figure 1 Random, close packed fiber lattice 4.46 fiber diameters thick.

Fiber to fiber conductance a is indicated on the current: 0

paths shown. Thickness X is measured in fiber diameters.

Figure 2 Path probability P(x,X) of a random close packed fiber lattice

versus the ply thickness X in fiber diameters for various

fiber block fractions.

Figure 3 Critical fiber volume fraction xfc for percolation versus

the ply thickness in fiber diameters. The lover curve

represents critical fiber fractions for the random, close

packed fiber lattice and the upper curve is the corresponding

result for a random square lattice of conducting fibers from

reference [3].

Figure 4 Electrical conductivity v of single plies of graphite/epoxy

composite vith fiber volume fraction of 39Z, average fiber

" diameter of 6.54um and various thicknesses. The conductivity

.[ is measured across the thickness of the ply, perpendicular to

the central axis of the fibers.

ILM
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APPENDIX A

PLATING SOLUTION AND SAMPLE PREPARATION

I
A.1 Introduction

This appendix briefly describes the technique of nickel plating as

it was used to electrically contact boron fibers.

In Section A-2 the nickel plating bath used in this particular case

is described. Section A-3 summarizes the cleaning and plating procedures

and, in the conclusion, the success of this technique is described.

A.2 The Nickel Plating Bath

The nickel plating solution used in this particular experiment is

a Watts Bath. The main constituents of this bath are nickel chloride,

nickel sulfate and boric acid. Nickel sulfate is the principal source

of nickel ion in the Watts Bath. The concentration of the nickel sul-

fate determines the limiting current density and the plating rate. Con-

sequently, this determines how much current can flow through the cathode

(i.e., the boron fiber). Nickel chloride improves anode (i.e., nickel

metal) corrosion and conductivity. Increasing conductivity is of prac-

tical importance in order to reduce the voltage necessary to produce the

desired current density. Boric acid is the solution buffer and helps toI
produce smoother and more ductile deposits of nickel.

Sound deposition of nickel depends on other parameters besides the

chemicals in the solution. Temperature, agitation, controlling of the

1 pH level, anti-pitting reagents, optimal anode-cathode current densities

4) and low contamination are all of importance.

134
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The bath that is used in our particular case has the following

composition and operation conditions:

Constituent Quantity

Nickel Sulfate 300 g/l
(NiSO4.6H20)

Nickel Chloride 60 g/l
(NiCl2.6H20)

Boric Acid 42 g/l
(H3BO3)

4% Sodium Hydroxide Solution 42 g/l
(NaOH)

30% Hydrogen Peroxide 2.5 ml/l diluted in 200 ml

of H 0
2

Activated Charcoal 2.4 g/l

Operating Conditions Range Preferred

Temperature 490 to 660C 600C

J pH 3.5 to 5.0 4.5

Current density of anode - 100 amp/m2

.. Current density of cathode 530 amp/m2

I The following steps are typical in the preparation of 500 ml of solution:

Day 1: 1. Fill a clean beaker with 500 ml of distilled water.

Beat it up to 660C.

2. Add 150S nickel sulfate and 30g of nickel chloride.

*1 3. Add 42 sodium hydroxide until the pH is approximately

[|
I|
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I.
5.2; agitate vigorously.

4. Add 30% hydrogen peroxide - 1.25 ml diluted in 100 ml of

R20. Stir.

5. Add 1.2g of activated carbon, stir for 2 hours and allow

solution to settle overnight.

Day 2: 6. Filter all the carbon out.

- 7. Add 21g of boric acid (stirring continuously).

8. Adjust pH to 4 with dilute CP graded sulfuric acid.

Finally, for the first plating job using this solution, it is better

to use a dummy cathode (e.g. copper wire). Nothing has been said so

far about the anode and specific characteristics are given in Section I.

For our case, a 100% pure nickel anode is not necessary which makes the

technique economically attractive.

A.3 Cleaning and Plating Procedures

In order to attain consistent results for every plating of boron

[fibers, cleaning of the fiber is of vital importance. Considering the

small diameter of these fibers (e.g., 4 to 8 mils) any particle of

j foreign material at the surface of the fiber will be covered with nickel

and give v-i measurements inconsistent with similar samples of boron

fiber. In order to avoid this the following procedure is used:

(1) Vapor degrease the sample with trichlorethylene for at

least 5 minutes.

(2) Run the fiber through acetone, methanol and distilled water.

* (3) Drop fiber in sulfuric acid for 5 minutes.

, -
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(4) Run through distilled water.

(5) Blow dry with prepurified nitrogen. (Do not use any

paper cleaning).

Before plating, the current densities were calculated using the

following relationship:

JASA - ics c - I (A.3.1)

where iA = current density of the anode

SA = surface area of the anode

is B current density of cathode

SB M surface area of cathode

I = plating currentP

Assuming jA .01A/cm2 (preferred value for best results) and

iC  .054A/cm the relation becomes S A  5.38 S . This immediately
C C

7 determines the ideal minimum size of the nickel metal anode.

For our case, in the range of different diameters of fibers and up

I to 20 cm long samples, the anode is immersed 3-4 cm. and the plating

current is set to 6 ma.

i By setting the temperature at 60* + 2*C, the ph at 4.5, 1 6ma
p

and lightly agitating, best results are attained.

I A.4 Conclusions

The technique thus far described has proven to be a reliable method

of contacting boron fibers. It is also an easy and economic way of dep-

ositing uniform sheets of nickel on the boron fibers. Further, controlled

4Mm
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thickness and amount of plating area make it convenient to measure v-i

characteristics and verify current flowing predictions on the basis of

the sample's geometry.

I
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APPENDIX B

FURNACE AND VACUUM SYSTEM

Boron fibers were heat treated in the high temperature Lindberg

furnace shown in Figure B.1 (arrow B). The furnace tube has a two

- inches diameter. The temperature range is 500* - 1600°C. The quartz

tube was evacuated by means of the mercury diffusion pump (arrow A in

Figure B.1). The pressure of the diffusion pump was as low as 7 x 10
- 6

torr. The initial vacuum was attained by means of a mechanical pump in

series with the diffusion pump. Pressures were measured by means of

two thermocouple gauges and an ion gauge. The entire system is as shown

in Figure B.1.

The samples were slid inside the evacuated chamber when the furnace

had attained the desired temperature. A quartz boat was used, and

because of vitrification of quartz above 12000C, this was the maximum

operating temperature of the system.
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