
AD-AQ91 015 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE--ETC F/S 9/2
A SEMANTICS OF SYNCHRONIZATION.(U)

.C SEP 80 C A SEAQUIST N00015-75-C0661
UNCLASSIFIED MIT/LCS/TM-176 NL



low 4b odb ow

OF

, A'D A

091015

2 1 J j 2 1

3 122

H. I

1111IL25 1.4

W N



LABORATORY FOR MASSACHUSETTS
INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

LEVL
NIT/WSAIM-176

A SEMW30~CS OF SYNilUMZfTIMt

DTIC
ELEOTEW-
OCT 30 198

Carl R. Seaquist j

Septet~e3.980

C..)1tds research was supported in part by the A&varmd ftsearch
Projects Agency of the Deparbut of Defense miztor-ed

LU b~y thle Office Of Naval Research under cotract N00014-75-C-0661
man ~ in part by the National Scl ondzation under

LA. grant VCS78-17698

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139



BEFORE COMPLETING FORM

Senantics of Synchronization __________________1980

/ Carl R. Seaquist06475C6

9. PERFRINGORNZTION AIEADTATESAMEEMENT. PROECT TASKtatetee nSek20 fdleillf~ eo

1S. SCOLNTARY OESNM N OfESj /Sc

1400KE Wils (oton evearde /i Ofce d Iden uti .y bUMBER OFiPAGES

q-MNRNecesary to M corint acessesl dft o w Ceoure.lTn e Off me wok amon SEUIYCASohc thist
=prdsatmethodfo pecifvyin cocrec noms sifematcbsso
sncronation mechoanim whic aviscetiCurrLAat caracteristics of

mits tiund eiis. yncholtoismiwdisbigtaaedbedrsuc

17 DITIUTO__AEET____abtat>neednWok2.I dfeenjrm eot

-3~~~~~S SUPPLEMEN1473NOTS P'O 1SOWEE ~ CASIIAINO NSPG te

19, ~~~ ~ ~ /O~ AE OD Cniu nrvresd tneosyadietf yboknrb



SSWvmYT CLAISPICAOW OP TIOG AGM DalW OWNS*e

?0.
guardian. A synchronization problem is defined as a predicate on event sequences.
The interaction of a guardian and the rest of the system is formalized in terms of a two
person game. This formalization results in precise definitions of guardian and
guardian behavior. The notion of a "good" or optimal solution is defined, and the
solutions to certain classes of synchronization problems are characterized. An abstract
description of the general actions of a guardian is given. This general description, with
sonic restrictions, forms the basis of a simple synchronization mechanism for actually
implementing solutions. itc mechanism is given a rigorous semantics based on the
definition of guardian. This facilitatcs the vcrification of correctness. Many examples
of the use of the mechanism are given and its advantages are discussed.
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Abstract

This paper presents a rigorous framework in which to discuss the synchronization
necessary to coordinate accesses to a resource. The framework, among other things,
provides a method for specifying concurrency and forms the semantic basis of a
synchronization mechanism which avoids certain unfortunate characteristics of
monitors and serializers. Synchronization is viewed as being managed by a resource
guardian. A synchronization problem is defined as a predicate on event sequences.
The interaction of a guardian and the rest of the system is formalized in terms of a two
person game. This formalization results in precise definitions of guardian and
guardian behavior. The notion of a "good" or optimal solution is defined, and the
solutions to certain classes of synchronization problems are characterized. An abstract
description of the general actions of a guardian is given. 'Ibis general description, with
some restrictions, forms the basis of a simple synchronization mechanism for actually
implementing solutions. The mechanism is given a rigorous semantics based on the
definition of guardian. Ibis facilitates the verilication of correctness. Many examples
of the use of the mechanism are given and its advantages are discussed.
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I. Introduction

The purpose of this paper is to give a rigorous framework in which to discuss

modular mechanisms of synchronization and, using this framework, to develop a

programming construct for implementing solutions to synchronization problems.

Attention is confined to guardian-type synchronization mechanisms [LAVE781 -- i.e.,

well-structured modular mechanisms which are resource protection envelopes capable

of realizing both exclusion and priority constraints. "11e behavior of synchronization

mechanisms is defined in terms of sets of possible sequences of events. The interaction
between the synchronization mechanism and its environment is made explicit in terms
of a two person game. The developed framework pcrmits the pursuit of the following

goals:

i) To design a versatile yet semantically simple synchronization
programming construct.

ii) 'ro address the qunestion ol accurate problem spccilication.

iii) To examine the semantics of synchronization mechanisms that are
currently described in the literature.

iv) To define a notation for abstractly describing the solutions to
synchronization problems.

Besides being of technical interest, the pursuit of the above objectives enhances

the understanding of the nature of synchronization problems and the semantics and

limitations of certain modular synchronization mechanisms. The programming

j construct which is introduced is demonstrated to be a uscful tool which aids in the

speedy implementation of elicient and corrct solltions to the synchronization

problems which arise ill a mull i-processing environment. o'o sumlarize, then, (he

main contributions of this paper are a method (or viewing synchronit.ation and a

franework which results in a versatile synchronization mechanism. In addition, the

firancwirk provides an approach to problem specilicalion and ite basis Inor verilicafion

It
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of solutions.

1.1 Related Work

Since the late 1960's much has been written on the synchroni ation and

coordination of processes. 'his research is particularly indebted to the work on

message passing b H-ewitt [HEWI77J, work onl specification and onl event semantics by

Grci [GR E1751, and to Dijkstra's Secretary metaphor [DIJ K71].

Works by Greif [GREI75], [GREI771 and by Laventhal [LAVE78] develop the

resource guardian model which they used to derive a method for precisely specifying

synchronization problems. In this paper the notion of resource guardian (i.e., an

envelope surrounding a resource) is combined with Dijkstra's Secretary metaphor

[DIJK71] in order to obtain a scheme which can be used to describe the important

aspects of synchronization. In each of IGR El 751, [GR E1771, and [I .A V E781, emphasis

is placed on specifying exclusion and priority constraints with little or no mention of

concuirrency constraints which specify that a certain amount ol'parallelismn is desired in

a solution. For example, consider a typical specification of one of the simplest versions

of the readers/writers problem, [GRE1771, [LAVE781, [131.00791. A guardian which

allo%%s only one read or write in the database at a time satisfies this specification.

Unfortunately this implementation violates our concept of a good solution to the

problem which is that reads should be able to proceed in parallel. In this paper a

method for writing specifications that exclude this unfortunate solution is presented.

The idea of applying game theory in order to make explicit certain situations

which arise in a multi-processing system has also appeared recently in other work. In

particular, Ladner [ILAI)N791 describes the interaction of a process and a system in

terIs of a game: The process wins if it can enter a state in which it is locked out (from,

say, a resource or a section of code) while the systcm wins il it can prevent the lockout.

Others, including l)evillers [)FV1771 and Reif and Peterson IRFIF801, have used

games to define other system properties. Reif and Peterson use a "gane-like-.Jf - -.
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semantics" to develop a paradigm for viewing general multi-processing problems.

The programming mechanism described in this paper has grown out of work

done on monitors [HOAR74] and serializers [HEWI79a], [HEWI79b]. It combines

many of the good points of each of these constructs while avoiding some of their

pitfalls. Monitor solutions are sometimes difficult to understand because the locus of

control is very unstructured. In addition, as will be shown later, both serializers and

monitors exhibit undesirable behavior in some situations because of the way they have

been designed. All these problems are avoided in the programming mechanism

presented here. Work by Bloom [B-00791 on ways- of evaluating synchronization

constructs is used as a guide in developing this particular programming mechanism.

Recent work by Hewitt [I IEWI79b] is very similar in spirit to the work described in this

paper but his construct seems to lack the irm semantic foundation of the construct

developed here. The dedication of a process to do conceptual polling in the

mechanism developed here seems to simplify control without necessarily sacrificing

efficiency. In a recent paper [HANS78], Brinch Hansen describes a synchronization

technique which also makes use of a dedicated process to accomplish synchronization.

* He does not, however, treat events as data objects and thus loses some of the

debugging advantages which are described in Chapter 4. In [LAVE78], Laventhal

describes a technique ft;.r the synthesis of synchronization code from problem

specifications. Unfortunately, because of limitations in his solution specification

language, his method cannot handle several important cases. It is shown that the

design o ot|r construct is general enough to permit handling ol" these cases.

1.2 Outline of Paper

The paper begins with an informal introduction which motivates our view of

synchronization. Then this view is made more formal to provide a base for careful

reasoning about synchronization. Finally a practical programming construct for

synchronizing activity is presented.

.. V.
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In the second chapter the notions of resource guardian, guardian lifetime, and

guardian behavior are introduced informally. Events and event sequences are defined,

making it possible to discuss predicates on event sequences and to introduce some

abbreviations for expressing commonly used predicates. Next a particular approach

for viewing resource guardians is presented. This results in the introduction of the

notions of general and simple polling guardians. The last section describes a notation

for abstractl defining simple polling guardians.

The third chapter describes the interaction between a resource guardian and the

rest of the system (i.e., the guardian's environment) in terns of a two person infinite

game with perfect information [GALE53]. A guardian is then foirmally defined as any

functional strategy for the second player. Also addressed in this chapter is the problem

of how to specify that a solution must permit concurrency whenever possible. In the

last two sections continuous and simple predicates are defined, and several theorems

are proved which help characterize solutions to synchronization problems. Thsese

chairactcrizations are usefil in verifying the correctness of solutions.

llie foulh chapter uses the results from the preceding two chapters and defines a

programming construct which represents a practical approach to implementing

solutions to synchronization problems. The chapter begins with a complete description

of the programming construct and goes on to consider many examples of classical

synchronization problems. The treatment of these problems is different from the usual

in that many solutions of diverse style and behavior are given to each of the more

interesting )roblems. An approach to vcrifying the correctness of implementations is

discussed, and several interesting examples are examined.

The Iifih chapter summarizes the results of the paper and points to areas where

fiirther research might profitably be pursued.
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2. Guardians and Guardian Behavior

In this chapter the terms resource guardian, guardian behavior, behavior

equivalence, problem specification, and problem solution are defined informally. Events,

event sequences, and predicates on event sequences are defined. Then several

abbreviations are introduced which make the expression of many common predicates

quite simple. A framework for viewing resource guardians is proposed which results in

what will be called a polling guardian. The generality of this approach will be

demonstrated by describing solutions to certain well known synchronization problems

in terms of the polling guardian. These solutions will be shown to be behaviorally

equivalent to other well accepted solutions implemented in terms of the more common

synchronization mechanisms found in the literature. Next a simplified version of the

polling guardian is examined. Although there is certain behavior which such a

guardian cannot enforce, it will be argued that this simplified version is not only

adequate but desirable. Finally notation for abstractly specifying a solution is

described.

2.1 Resource Guardian

The term resource guardian (or simply guardian) is used to refer to

synchronization code which monitors resource activity and uses this infbrmation to

control access to the resource. To access the resource, a process must make a request to

the guardian. A request event is associated with the guardian's receipt of this request.

When the guardian decides that it is proper for the process to access the resource, the

guardian signals the process that it can enter (i.e., access) the resource. Associated with

the guardian's giving of this signal is an enter event. Finally when the process finishes

with the resource, it notilfes the guardian that it has exited from the resource. An exit

event is associated with the gtmardian's receipt of this notification. Three event types

are important in considering a guardian and its interaction with a parlicular access by a

process. 'Tliese are the request for service event, the enter or grant of service event, and

the exit or termination of service event.

II



Section 2.1 - 12 - Guardians

Notice that all events are occurrences as seen by the guardian. In particular, the

enter event is associated with the sending of the signal to the process, not with the

process's receipt of the signal. Also note that when a process makes a request of a

guardian, it will make no further requests of this guardian until it exits from the

resource. For an example of a resource guardian, consider a critical section of code

which is protected by a semaphore. The critical section of code corresponds to the

resource, and the P-instruction and tile V-instruction make tip the guardian. When a

process wants to enter the critical section. it begins to execute the P-instruction. ilhe

request event occurs at the start of execution of the P-instruction. Eventually it will be

decided which of the processes currently engaged in executing the P-instruction (i.e.,

"aiting) will he allowed to finish with the instruction and permitted to enter the critical

section. The enter event occurs when the guardian decides that the process has

finished executing the P-instruction. When the process executes the V-instruction, it

signals that it is exiting the critical section by decrementing the semaphore. 'lhus the

exit event occurs the instant that the decrementing of the semaphore is complete.

The events associated with a guardian are assumed to be totally ordered by their

time of occurrence. Practically, this means there must be some sort of arbiter which

serializes the guardian events which might otherwise appear to occur simultaneously.

The necessity of arbitration is no surprise since simultaneous requests must be

arbitrated in order to implement monitors or serializers. It is also assumed that the

events associated with a guardian form a sequence. This means, first, that between any

two events there are only finitely many events -- i.e., events are not "(lense"

[SCHW781 -- and, second, that there is a first event. With these assumptions

understood, the following inflormal definitions can be made. More formal definitions

of many of these terms can he found in 3.1.

I. This is different from the way in which Curl Hewitt IHFWI77] associates events in
message passing systems, where events are always associated with the receipt of the
nessage.

"JI - 5
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A /ifeline of a guardian is a sequence (finite or infinite) of events which might be

the result of the operation of the guardian. The behavior of a guardian G is the set of

all lifetimes of G, and is denoted by B(G). Note that many different lifetimes are

possible due to the different orderings of requests and exits which can occur. Two

guardians are equivalent if they have identical behaviors. A synchronization problem

speciflcafion is any predicate defined on sequences of guardian events. The behavior

set of a problem consists of all the sequences that satisfy the problem specification.

The behavior set of a predicate 1) also is denoted by P. This should cause no confusion.

A guardian satisfies a problem specification, or solves the problem, if and only if its

behavior is a subset of the problem's behavior set. A solution to a problem

specification is any guardian which satisfies the specification.

2.2 Event Sequences and Predicates

In this section events and event sequences are defined, and many examples are

given. Then predicates on event sequences are discussed. Several uselul abbreviations

for expressing common predicates are introduced.

2.2.1 Events and Event Sequences

A guardian event can be one of three types: request, enter, or exit. Associated
with each event is an operation which will be (or has been) performed on the resource

and, also, a process which will perform (or has performed) the operation. Thus each

event call be viewed as an ordered triple consisting of type, operation, and process

along with some sort of unique identification associated with a particular access

attempt. In this way it is possible to have two distinct request events by the same

process to perform the same operation. Two such requests are distinct because they

occur on different accesses.
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Request events are denoted by r either subscripted or primed. Subscripts and

primes are used to make explicit the uniqueness of access. Request event variables are

denoted by r, either subscripted or primed to distinguish among variables. A variable r

ranges over all possible requests. Often it is necessary to denote a request or request

variable with an explicit operation and/or process. This is done by writing the request

or request variable followed by the operation and/or process id enclosed in brackets.

To avoid ambiguity, numerals are used to denote process ids but never operations. A

variable r[op] would range over all requests with the operation op. The function o

(read "the opcration of") takes a request as an argument and returns the operation to

be performed. '1he function p (read "the process of") takes a request as an argument

and returns the identification of the process making the request. "Thle domain of both o

and p is the set of requests. See part A of figure 2.2.1.1 for examples of requests and

the finctions o and p.

In addition to a unique request, there is also associated with each access attempt a

unique enter event and a unique exit event. The enter event corresponding to a

request r is denoted by edr). Similarly the corresponding exit event is denoted by (r).

Specific enter events or exit events are often denoted by e and x respectively both of

which can be either primied or subscripted to denote a particular access. A variable

ranging over enter events or exit events is denoted by e or x subscripted or primed. It

is often convenient to talk about a null event which will be denoted by x. The

usefulness of the null event will become clear later. See part B of figure 2.2.1.1 for

exampies of enter and exit events.

An event sequence is a one-to-one function from the positive integers (or an

iniuial segment of the positive integers) into the set of events. Sequences will be

denoted by Greek letters. Occasionally it is useful to mention the empty sequence

which will be denoted by t. Note that e A. If a is a sequence, then 0, is (lie ith

member in the sequence. With somn abuse of tiotation, aCa is written if there exists an

i such thai a7-: a, where a is Some event. A sequence /I is an initial segment ofa if the

domain orf is a subset ofthe domain of. We write 8<,, if'p is a finite initial segment

41V
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Fig. 2.2./. 1. Examples of Events and Functions on Events

Part A: Requests
r1, r2lwrite,1I, r'[21, r3loP,11 Request events
r, ri[opl, rlread,41 Request event variables

r2lwritc,"l, r3[write,1] These requests represent two different
accesses to write by the samie process

or2[w ritejJ1) = write Operation fuinction
o~i'[ read]) = read

p(r12J1) = 2 Process fuinction
p(rjop,41) = 4

Part B: Enters and Exits
el, e2lwrite,1I Enter events
e, e'IopI Enter event variables

e(r1)=e1  Enter fuinction

x 1 , x~op,1JExit events

xAr'[op])=x'[op] Exit fuinction

of a. Note that if a is finite, then a<a.

In the examples above, the fuinctions o and p were defined on requests. 'Ihe

domains of these lFunctions are extended in the nlatuiral way to include enter and exit

events. For example oai) =write, if and only if ai = 1writejj for some event type t

and process id j. A new fuinction, i, (read "the type on' on events is 'l1o in( odLiced.

The Function hikes an event as an argument and returns its type. F-or example

(r) request. i((r)).: enter, and (xlop, I])= exit.
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The following definitions are useful for isolating certain sets of important events

in a particular sequence.

Definition 22.1: In a sequence a, a request r is active at a point a i if there exists a

ki with a k r, but there is not a k(i such that ak = x(r).

Definition 22.2: In a sequence a, a request r is outstanding at a point ai if there

exists a k<i with ak = r, but there is not a k<i such that ak = e(r).

Definition 2.2.3: In a sequence a, a request r is busy at a point ai if there exists a

k <i with ak t:dr), but there is not a kWi such that ak = x(r).

Note that if r is active in a at ai then it is either outstanding or busy at ai .

Only soIme event sequences are of interest: namely, those that might arise as

lifetimes of guardians. Such event sequences satisfy the following properties:

i) Every enter event must be preceded by its corresponding request event.

ii) Every exit event must be preceded by its corresponding enter event.

iii) No single process ever has two requests active at the same point.

Event sequences which satisfy the above constraints are referred to as legal

guardian event sequences or, when there is no possibility of confusion, simply as

sequences. Finite legal sequences are called histories. For some examples of event

sequences, both legal and illegal, see figure 2.2.1.2.

It will not be necessary to distinguish between two legal sequences such as these:

rl[w.lJ, r2[w,31, el1w,1l, xl[w,li

and

r21w,l1, r Iw,31, c2[w,11, x2 1w,I1.

'Ibis observation motkiates the following definition.
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Fig. 2.2.1.2. Sequence Notation and Examples of Event Sequences. Legal and Illegal

a = rill], ell1l, r2131, x 111 A legal event sequence.
a I = rl[11 Examples of sequence notation

3= r2131 applied to a.

xlJ[] E a

p = rl[l], r2[11, e2[1], x2[l1 Illegal sequence (Violates iii).

= x1, el , r1  Illegal sequence (Violates i & ii).

= r1, el , x1, r, Not an event sequence since it is

not one-to-one.

Definition 2.2.4: Two sequences a and / are equivalent if and only if for every

natural number i:

i) o(ai) =

ii) p(ai) =/.i )

iii) (ai) = t i).

2.2.2 Predicates on Event Sequences

A predicate on event sequences is any function from the legal sequences to the

set {true,ralsel. We will use the full power of second order logic to express predicates

on sequences. Some useful abbreviations are introduced below. Often predicates on

sequences are delined by specifying ordering constraints on the events. The most

fundamental of these is "precedes". There are several different ways to define

"precedes". For example, if a and b are events, then a precedes b is true of a if and

only if, when both a and b are in a then a comes before b, [GRHI77]. 1 We, however,

i. In 3.4 it is shown that this definition of precedes can lead to predicates with

undesirable characteristics.

j ______
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will define it as follows: a precedes b is true of a if and only if b E a implies that a E a

and that a comes before b. We denote this notion of precedes by . More formally

a =, b is true ofa ifand only if

vifb~ai] V 3i3j[(i<j)A(a = ai)A(b = aj)].
The abbreviation a -* b c is used to mean (a -- b) A (b = c). As an example of the

use of precedes, the three properties defining legal sequences can be rewritten as

follows:

i) r =>c(r)

ii) e(r) =.Af r)

iii) [(14r)=p(r')) A (r=:r')] - (x(r-)=r'). 1

In specifying synchronization problems it is often necessary to express that two

classes of requests cannot be serviced in the resource concurrently.2 The mutual

exclusion predicate, Mx(r,r'), is defined to be true of a sequence if and only if' the

requests r and r' are not serviced concurrently. More formally, Mx(r,r') is true of 0a if

and only if the following is true of a:

[((r) (r'))-.( ,(r)= ( r'))J A [(dr')=dr))--,(. (r')=(r))].

Thus the predicate Mx(rfwrite],r'[write]) means that simultaneous writes to the resource

are not allowed. Often the predicate Mx(r[opl],r'[op2j) is written as Mx(opl,op2).

It is also important to be able to express that outstanding requests must be

serviced according to some priority scheme. The predicate Pr(r,r') is introduced for

this purpose. The predicate Pr(rr') is true of a if whenever two requests r and r' are

both outstanding at the same point then r will be serviced before r'. More formally

Pr(r,r') is true for a if and only if the following is true of a:

1. The symbl , is used for ntalerial implication.
2. Two riquests r and r' which are serviced in an event sequience are serviced

concurCntly ill tllt Sequence if'and only il(i r) . (r')) A (ir')=,A(r)).

.i - ; " s*
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[r*i'*>tr) V r'=r)r=zr')] rI).

Often Pr(o,o') is written instead of Pr(r[olrfo'l).

As a brief example of problem specification, consider the readers/writers

problem with reader priority. (See 4.2 for a more complete discussion of the

readers/writers problem.) Briefly, there is a data base which can be accessed by either ;

reads or writes. Concurrent reads may occur: concurrent writes ca1o1 occur; and a

read and a write musM no occur concurrently. In addition, outstanding reads are given

priority over outstanding writes. The following predicate P captures these constraints:

P _ Mx(r[write],r') A Pr(read,write).

There are some additional useful predicates which are now defined. 'Ihe

predicate Fl FO(op) is true of a sequence if and only if all outstanding requests with the

operation op are serviced in a first in first out manner; i.e.,

Fl FO(op) -r[opj r'[opJ= d(r[opI) -, dr[op])= e(r'[op]).

The predicate Fr(r) is used to express that requests will not be starved as long as all the

requests which enter will eventually exit. More formally Fr(r) is true of a if and only if

the following is true of a:

vre(r)Ea-,x(r),Ea -, Vr[rEa-,e(r)Eaj.

Many of the predicates on event sequences can be put in one of the following

categories according to their use in defining a synchronization problem:

i) Exclusion Constraints -- Also called consistency constraints, these
predicates are used to guarantee consistency of the resource by
preventing certain outstanding requests from being serviced until some
condition is met. An example is Mx(r,r').

ii) lriority Constraints -- These predicates are used to specily the order in
which outstanding requests should be serviced. IXamples are Pr(o,o')

and FI FO(r).

,-- .~
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iii) Fairness Constraints -- These constraints are used to specify that tinder
certain conditions, a request ilnist eventu.ialy be serviced. An example is
Fr(r).

In section 3.2, optimality constraints are discussed. These constraints specify (iat

all requests must be serviced as soon as possible. Before discussing these predicates,

hom c er, the notion of polling guardian mIist be introduced.

2.3 (eneral Polling Guardian

The goal of this section is to define a framework in which to discuss all tie

important behavioral aspects of guardian synchronization. Such a framework will

permit us to describe easily solutions to synchronization problems in 2.6. Dijkstra's

Secretary jDIJK71 provides a suitable metaphor in which to discuss the framework.

The Secretary is imagined as managing the access to a group of Directors. As a person

comes into the waiting room to request an appointment with a Director, the Secretary

either allows the requester to enter the Director's office or, if the Director is busy, has

the requester wait. Presumably, as a person finishes with an appointment, lie will

notify the Secretary that he has exited the Director's office.

The Secretary's job can be described in terms of two tasks:

i) Consideration of any new requests or notifications of exit. Both of
which are considered one at a time on a first come first served basis.

Consideration of a new request consists, First, of allowing the requester
into the waiting room and, second, of modifying pertinent records.
Consideration of an exit notification consists of' simply updating the
records which reflect the status of'the Directors.

ii) Determination of which, if any, of the waiting requesters can be allowed
to proceed. One of these eligible requesters is then chosen and can have
access to a Director. Records are correspondingly updated.

. . ., * ;5,,-.
-
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ni Secretar) alternates between these two lasks, possibl performing one of the

tasks for quite some time before switching his attention to the other. 'File Secretary and

his actionrs can be formalized in terms of the procedure scheme in figure 2.3.3 which is

presented in an abbreviated syntax. "Te two tasks of the Secretary are represented by

the two repeat...until statements. The first of these removes the first request or exit

notification from the "to be considered" queue (i.e., in) and updates the history of the

II
past events (i.e., a) by concatenating 1 this new request or notification onto the end of

the history. We assume here that if in is empty then ain is equivalent to allA (i.e., to

a). New requests and notifications are repeatedly considered until e~entually the

predicate P(a) becomes true. Then control is passed to the second lask, that of

evaluating which of the waiting requests that have been considered can be allowed to

continue. By examining the past history (i.e., a), the Secretary chooses a waiting

requester via some strategy (i.e., G) and allows him to go on in to see a Director.

Record of this action is preserved by concatenating onto the history a corresponding

/n otification of entrance. In some cases no requester can correctly be allowed to see a

/ director. In such a case it is assumed that G(a) returns X, that a =a ic(), and that/

.7 allow(X) acts like a NOP. The actions of the second task are repeated until Q(,) is true;

at which point control is passed back to the first task. lhe predicates P and Q are

referred to as the input and output predicates respectively. The function G is called

Fig. 2.3.3. Scheme for a General Polling Guardian

whIile true do
repeal a al lin until P(a);
repeat {r G-(,),

a all(r),
allow(r)} uutil Q(a);

end while

1. The symbol II is used to denote concatenation.



Section 2.3 -22- Guardians

the synchronization strategy. Initially it will be assumed that P, Q, and G can each be

non-deterministic. By a non-deterministic function we mean a relation. If G is

non-deterministic then G(a) denotes an arbitrary element of the range of G which is

related by G to a [KAPU80.

When the scheme in figure 2.3.3 is seen as a resource guardian, it is important to

understand how guardian events are associated with its actions. A request event is

associated with the action of removing a request from the "to be considered" queue.

Similarly an exit event is identified with the action of removing a notification of exit

from the queue. An enter event is associated with the action of allowing a requester to

continue.

The scheme given in figure 2.3.3 is the form of what will be called the general [
polling guardian. By giving the definitions of P, Q, and G, an actual general polling

guardian can be obtained. As an example, consider the procedure M given in figure

2.3.4. Here P and Q are both defined deterministically as the constant true. This

Fig. 2.3.4. A Solution to Mx(r,r)

procedure M
while true do

repeat a *- allin until true;
repeat {r 4- [if (there is an enter event and

no corresponding exit event
in a) or (there are no out-
standing requests in a)

then return X
else choose non -deterministically

some outstanding request of a
and return it.],

a 4" aIlC(r),

allow(r)} ntlil true:
end while

end p ocedure

M
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means that each of the tasks will be performed once, and then control will be passed on

to the other task. The function G has been given a non-deterministic definition which

guarantees that no two requests will be serviced at the same time. Thus the procedure

M enforces mutual exclusive access to the resource by all requesters. More formally,

we could prove that

B(M) C Mx(r,r'). 1

In the next section the behavior of M is examined further; and another

procedure, M', is delined which is also a Solution to Mx(r,r') but which has very

different behavior.

2.4 Examples of General Polling Guardians

In this section the behavior of several solutions are examined and expressed as

polling guardians. In particular, several solutions to the mutual exclusion problem are

discussed. A monitor solution to the readers priority version of the readers/writers

problem is also discussed. Besides giving examples which will familiarize the reader

with general polling guardians, this section indicates the usefulness of the polling

guardian in examining and comparing behaviors of resource guardians.

Consider the simple program S in figure 2.4.5 which is a critical section protected

by the binary semaphore s. It is assumed that s is initialized to 1. Recall from 2.1 that a

request event is associated with the instant a process starts executing the P operation.

An enter event is associated with the instant a process finishes the P operation. And an

exit event is associated with the instant that a process finishes decrementing the

semaphore in the V operation. The bchavior of S can easily be described by adapting

Habermann's [HABE721 characterization of a semaphore in terms of events. The

rephrasing of his central theorem results in the following:

i. Recall that 1(M) is the bchavior of M.

- !' .*1
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Fig. 2.4.5. A Semaphore Solution to Mx(r,,)

procedure S
P(s);

Critical Section

V(s);
end procedure

A sequence a E B(S) if and only if for every finite initial segment f of a which

does not end immediately before an enter event, the following equality holds
#P enter = min(#frequest, I+ #Pexit), where # t is the number of

events of type t in fl.

Note that the restriction on 8, "which does not end immediately before an enter

event," is required because Habermann considers the P and V instructions to be

indivisible relative to the theorem; i.e., the theorem is guaranteed to hold only when

one of these instructions is not in progress. Since immediately prior to an enter event a

process must be in the middle of executing one of these two instructions, naturally then

the equation does not hold. In all other cases, however, the equation must hold.

Recall the general polling guardian M of figure 2.3.4. With the above formal

characterization of B(S), it is straightforward but somewhat tedious to prove that

B(S) 13(M). Thus it is possible to describe the semantics of mutual exclusion

accomplished by standard semaphores simply by giving the equivalent polling

guardian. Above we have described the behavior of the procedure S when semaphores

are interpreted as in [HABE721. "llere is not, however, a consensus of opinion on the

semantics of semaphores. Occasionally when semaphores are discussed, it is assumed

that the process which has been waiting the longest is always removed first. For

example, Hoare in [II OAR741 defines the semantics of monitors in tenns of

semaphores which lie must have assumed were FIFO in behavior. Assuming s in

figure 2.4.5 were such a FIFO scmaphore, then S would be equivalent to M (in figure

-. "
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2.3.4) if the non-deterministic choice among the outstanding requests were replaced by

the purely deterministic choice of the first outstanding request.

In [HABE76] and [STAR8O], the difference between strong and weak

semaphores is pointed out. Since there has been sonic confusion in the literature

between these two versions of the semaphore (see [PRES75], [K EI..76], and

[HANS781), it would be interesting to look at tie general polling guardian whose

behavior is identical to the behavior of S (in figure 2.4.5) when s is interpreted as a

weak semaphore. In figure 2.4.6 such a polling guardian, M', is given. Notice that the

only difference between M' (in figure 2.4.6) and M (in figure 2.3.4) is the definition of

the input predicate which determines when to quit the first task and to continue with

the second task. In M' after an exit occurs, a request can occur before anl enter occurs.

In particular, the same process which has just exited can return to make a new request

Fig. 2.4.6. Weak Semaphore Solution to AMx(ri)

procedure M'

while true do
repeat a '- anin until [if(last event of a is

not an exit) then true

else choose non-deterininistically
either true or false]

repeat {r - [if (there is anl enter event and
no corresponding exit event
in a) or (there are no out-

standing requests in a)
then return A
clse choose non-deternlinistically

sonic outstanding request of a

and return it.],
a alle(r),
allow(r)I until true;

end while
end procedure

....... . . . .. .
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and possibly be chosen to enter again the data base before any other waiting process is

allowed to enter. Notice that it is implicitly assumed that after an exit the input

predicate will eventually, after an arbitrary but unbounded length of time, become

true. In a sense the semantics of a weak semaphore makes use of a mechanism of

unbounded non-determinacy [DIJK761.1

The next example examines the behavior of a monitor solution to the

readers/writers problem with readers priority. Stich a solution, taken from [BL.00791,

is given in figure 2.4.7.2 The solution is typical of monitor and serializer solutions to

the readers/writers problem in that if a number of readers arc waiting when a write

finishes, all the readers will be allowed into the data base beilbre possession of the

monitor is released to a new requester or to a process wishing to exit. This is reflected

in the equivalent polling guardian solution given in figure 2.4.8 by the fact that control

does not leave the second task until all the waiting requests that can continue have

been allowed to continue.

I. In a slightly dil'crent Context IKWON79 this is similar it) the finite delay properly
4ol'a .cduler.
2. The solution is presented in CI.U syntax [I.ISK79I.

.. ~, . **- ~ ,,t,- ~ ' 4
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F ig. 2.4.7. Alon itorSo/utdon to Readers Priority Versioni of Readers/ Wriiwrs Problem

readers-.priority = monitor is crcate,startrcad,cndread,startw ritcecidwrite
rep= reconlIrcadercourt: ittbusy:bool,

readers, writecrs: coiidit ion]

create =proc() returns(cvt)
ret iirn( repS I rcadecrCOUnt:O,busy~falsc,

readc rs~w ritecrs: coud ition$c rcatcO)I)
end create

silrtread =proc(rn:cvt)
if inhbusy theci ondifion~wait(an.rcaders) end
rn.readcrcou nt: =in.rcadcrcount + 1
comtll ion $signal(m. readers)
cud martread

k-ndread =proc(rn.Ct)
in.rcadercount: = m.rcadercount-1
if in.ieadcrcount =0

thent condition~signal(rn.writcrs)
end %if

end cndrcad

startwritc = proc(nicvt);
if (rn.rcadcrcomru>O)Im.busy

thenu coudition$wait(m.writcrs)
end %if

m.busy: = true
end startwritc

cndwritc = proe(m:cvt)
in.husy: = false
if cond it ion$q tct c(n. readers)

then coaditiondsignal(m.rcadcrs)
clse condiuion$signaali.writers)
end %if

end endwritc
end rcadcrs-priority

.......
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Fig. 2.4.8. A Solution Equivalent to the Monitor Solution

procedure R
while true do

repeat a <- allin until true;
repeat I r [- if (there is an outstanding read request

in a and there are no writes
Currently active in a)

then return (the first outstanding read request in a)
else if (there is an outstanding write request in a

and there are no currently active accesses in a)
then return (the first outstanding write request)
else return \I,

a 4-afle(r),

allow(r)} until (r= A);
end while

end procedure

2.5 Simple Polling Guardian

In the previous section several examples of the general polling guardian which

exhibited a variety of behaviors were examined. In this section some of the generality

of the general polling guardian is restricted in order to obtain a simpler class of polling

guardians which will be referred to as simple polling guardians. Simple polling

guardians do not have as diverse a variety of behavior as general polling guardians;

however, besides being simpler and easier to reason about, they are able to express

most of the useful solutions to many of the synchronization problems.

A simple polling guardian is any general polling guardian which satisfies the

olIlowing restrictions:
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i) The synchronization strategy must be a deterministic function of the

past history of the guardian.

ii) The input predicate must be tile constant true.

iii) The Output predicate must also be the constant true.

Figure 2.5.9 gives the abbreviated syntax of a simple polling guardian. Below, each of

the restrictions is discussed and motivated in turn.

Non-determinism arises naturally in discussions of synchronization because the

length of arbitrary delays is often unpredictable and these independent delays can

cause radically different results which are unpredictable and therefore

non-deterministic in nature. In particular, the precise ordering of request and exit

events for a guardian is largely non-deterministic. It is believed that non-determinism

should be confined to the ordering of request and exit events and that the guardian's

response to any particular ordering should be functional. By so restraining the polling

guardians we greatly simplify reasoning about guardian behavior and avoid, at the local

level at least, complicated issues of the semantics of non-determinism. In addition by

avoiding non-determinism, it is possible in chapter 4 to define a programming

construct based on the polling guardian which can be practically debugged.

Fig. 2.5.9. Scheme for Simple Polling Guardian

while true do
a " attin;

r 4-G(a)

a 4- llel')

allow(r);
end while

MOM
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Besides being required to be deterministic, the simple polling guardian is also

required to have the input predicate be the constant true. This requirement stems from

the desire that in the absence of any other processes a synchronization mechanism

should delay For as little as possible a request for service. In other words, when a new

request is made, the situation should be immediately checked to see if the process can

be allowed to continue with minimum delay. When a notification of exit is considered,

again there is a possibility that there are requests which have been waiting and which

can now be allowed to continue, consequently the mechanism should immediately start

on the second task. Finally by setting the input predicate to true, the possibility of

excluding the performance of the second task is avoided in a very simple and

straightforward manner.

Now the restriction that the output predicate should also be the constant true is

examined. The purpose of this restriction is to prevent the avoidance of the first task

for arbitrary lengths of time. Returning regularly to the first task makes possible the

timely consideration of new requests and exit notifications.

It is interesting that many synchronization mechanisms, notably monitors and

serializers, typically define solutions which can result in the avoidance of the first task

For arbitrary lengths of time. For instance, recall the monitor solution (see figure 2.4.7)

to the readers/writers problem. The solution is described in terms of a general polling

guardian in figure 2.4.8. Here the output predicate is not simply true but rather (r =x)

where r is the result of the last evaluation of the strategy finction. thus the second

task is perlormed until the strategy function returns a null event. A close examination

reveals that in certain cases this output predicate results in undesirable consequences.

I[or example, suppose a writer takes a relatively long time in the data base and that

during this time many readers arrive. In the monitor solution, when the write linally

exits from the data base. the First read request on the condition queue is awakened.

'Ibis request enters the data base and awakens the next reader on the queue, and so on

until all the reads have entered the data base. An. awakened process on the condition

queue has absolute priority over all other processes which are trying to gain control of

.' 1
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the monitor. Thus from the time of the awakening of the first reader on the condition

queue until the last reader on the queue has entered the data base, no new requests are

considered and no processes in the data base can leave it. 'Ilie ignoring of new

requests, some of which might be of very high priority, in order to service the requests

which are currently outstanding is not good. Similarly, the ignoring of exit

notifications, which results in the holding of processes in the resource, seems wrong. It

is seen that solutions that can be described as having an Outl)Ut predicate which is not

the constant true can result in undesirable behavior. Therelbre all solutions which will

be considered from now on will have an output predicate of true.

In figure 2.5.10 a simple polling guardian R' is given which solves the

readers/writers problem with readers priority. It is interesting to compare the behavior

of R' with that of the general polling guardian solution R given in figure 2.4.8. In fact

it is easy to convince oneself that
B (R) C_ B (R').

Fig. 25. /0. Simple Polling Guardian Soluion to Reader.VWriters Problem

procedure R'
while true do

a allin;
r [if (there is an outstanding read request

in a and there are no writes
currently active in a)

then return (the first outstanding read request in a)
else if (there is an outstanding write request in a

and there are no currently active accesses in a)
then return (the first outstanding write request)
else return Xi;

allow(r);
end while

end procedtre

'. p;
*1 - i
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Thus in a sense the simple guardian R' is the more general solution. The simple

polling guardian provides the basis for all further discussion of resource guardians.

From this point on whenever a polling guardian is mentioned, a simple polling

guardian is meant unless specifically stated to the contrary.

2.6 Expression of Solutions as Simple Guardians

This section introduces a notation for describing solutions to synchronization

problems. Recall from section 2.1 that a solution of a problem spccification is a

guardian which satislies the specification. In section 2.4 the general polling guardian

was introduced, and it was informally demonstrated how this scheme could be used to

emulate the behavior of many diverse solutions. The general polling guardian is

completely defined by giving descriptions of the input predicate, the output predicate,

and the synchronization strategy. Thus a method for defining non-deterministic

predicates and finctions on histories would provide a simple solution specification

language. In the previous section, however, it was argued that the simple polling

guardian could provide most of the interesting solutions that might arise. Since a

simple polling guardian is completely defined by the description of its functional

synchronization strategy, it is sufficient to present a method for defining simple

functions on histories. Below, some conventions are given for defining synchronization

strategies.

Given a history a, it is often necessary to be able to talk about the outstanding

requests of a and also the busy requests of a-- i.e., those which have entered the

resource but have not yet exited. The set of outstanding requests of a (i.e., the waiting

requests) is denoted by W(a), and the set of busy requests of a is denoted by B(a).

Sonmetimes it is desirable to distinguish among the waiting or busy requests which will

perl)rin or are pcrifom ing a particular operation. Thus the set of requests waiting to

pIru ,6i'i all operation o1p is denoted by W(,1,op). Similarly II(ap,) denotes the set of

Nits> rcqluests which are performing operation o). Occasionally it is useflul to dcline

other sets which are subsets of the requests of a sequence a. 'liese are usually denoted

go"a
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by a capital letter followed by the sequence name in parenthesis. Figure 2.6.11 gives

some examples.

Given a set of requests, S(a), it is often necessary to choose a particular element ,.

of the set based on the contents of S(a) and on the information implicit in the ordering

defined by a. Such a choice will be called a choice function. A choice finction takes

two arguments. The first argument is a sequence a, while the second is a set of' requests

S(a) which appear in t. A choice function always returns either a request which is a

member of its second argument or A, the null event. Thus if the second argulient is

the empty set, a choice function musr return A.

A useful choice finction is iin which returns the first request of its second

argument. In other words for every sequence a and set of requests S(1),

inin(a,S(a)) = r where rES(a) and if r'ES(a), r~r' then r=*r'.

Since the first argument of a choice function is usually obvious from context, it is often

omitted. 'Ih us min(S(a)) is written instead of min(a,S(a)).

Fig. 2.6.11. Subsets of Requests

a = rl[write,21, el[write,21, r2 [read,l, r3 [write,6]

U(a) W(a) U B(a)
S() I ,rEaIp(r)= 11

W(a) = r2 , r3l

W(a,write) -r 31

13(a) = Irl}
I1(o,write) {rl}
I(a,read) = { }

U(n) = {r2, r3, r,|

s(ON) {r21

i tl . - _ "- .. ..... . . ..| ' tj
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To assist in defining choice functions the if...tlen...elseif function is introduced.

It is evaluated in a manner similar to the evaluation of the COND construct of LISP.

An example will make this clear. Consider the choice function c on S(a) defined using

two other choice functions c1 and c2, and the predicates P and Q:

c(S(a)) = if P(S(a)) then cl(S(a))

elscif Q(S((,)) "ll5o c2(S(a))

otherwise x.

Now c(S(a)) is cl(S(a)) whenever P(S(u)) is true, and is c2(S(a)) if P(S(,)) is false but

Q(S(a)) is true. If both P(S(a)) and Q(S6Y)) are false, then c(S(a)) is A, the null event.

A synchronization strategy G applied to a always returns a member of" W(a), the

set of outstanding requests ofa. Thus a synchronization strategy can be thought of as a

choice function where, when the first argument is a, the second argument is always

W(a). lherefore the methods for defining choice ftmnctions are also applicable for

defining synchronizatioti strategies. Figure 2.6.12 is ihe definition of a synchronization

strategy which defines a solution to the readers/writers problem with readers priority.

''his is just a rewriting of the solution, R', given in figure 2.5.10.

'his section has presented a brief introduction to a way in which synchronization

strategies might be described. Although we will not do so, it is possible to extend the

techniques presented here to include more involved methods (e.g., recursion) for

defining synchronization strategies.

Fig. 26.12 Specification ]Y'a Solulion io Reader.vWritcrs Problem

G = if (Wa,read) * 0)A(B(a,write) = 0) then min(W(aY,read))
elseif (11(a) 0) heni min(W(a,write))
otherwise A.

SS*~ ~ -~ ~. . - ,
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3. Guardian/Environment Game

This chapter gives a formal definition of guardian and many of the other terns

which were introduced informally in 2.1. The formalization presented here stems fiom

viewing guardian interaction with its environment as a two person game. A guardian is

defined fbrmally as a Iinctional strategy for the second player. Once a guiardian is

defined lbrmally, it is possible to address the issue of conicurrency ill a problem

specification. 'ie notion of optimal solution is defined in order to capture ihe

intuition of what constitutes a good solution. Several examples are given showing how

concurrency can be specified by requiring that the solutions to a problem be optimal.

In the third section a certain subset of well-behaved problem specifications is delined

as conltinoLIOts. A theoren is then proved which characterizes the solutions to all

continuous specifications. In the last section simple predicates are defined. Every

simple predicate is continuous, and it is easy to determine whether or not a solution is

optimal for simple predicates.

3.1 Definiions

The interaction of a resource guardian and the rest of the system -- i.e., the

guardian's environment -- can be viewed as a game between two players which will be

identified as players I and II. Player I is associated with the environment while player

II is associated with the guardian. The two players alternate moves building a legal

event sequence. Player I moves by concatenating either a request or exit event onto the

sequence being built while player II plays only enter events. On each move, (he player

moving has complete knowledge or the sequence constructed thus far. A predicate P

determines the winner of the game. 'Thus a different game arises lioin each problem

specification P -- i.e., fron each predicate on event sequlences. Player II wins an

instance of a game defined by a predicate P if the sequence built by the game satisfies

P. If the sequence built does not satisfy P, then player I wins.
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Play starts with player I concatenating an event onto the empty sequence. A legal

move by player I is any request or exit event which when concatenated onto the game

sequence -- i.e., the sequence being built -- results in a legal event sequence. A legal

move by player II is any enter event which when concatenated onto the game sequence

results in a legal event sequence. If either player cannot make a move, he must pass.

This is accomplished by playing the null event. Note that a player can also pass even

when lie has a legal move. When both players pass on consecutive moves, this

particular instance of the game is over and the sequence built is finite. Otherwise the

game continves forever and an infinite sequence is built. Figure 3.1.1 gives an example

of an instance of the game defined by the predicate Mx(o,o). Player I wins this

instance since the sequence a does not satisfy the predicate.

A strategy for player I, the environment, is any function E from H (the set of

histories) into the set of non-enter type events such that if aCH then anE(a)EH. A
strategy for player II, the guardian, is any function G from H into the set of enter

events along with the null event such that if ,EH then alIG(a)EH. Now a formal

delinition of a simple guardian can be given:

Fig. 3. 1.. An Instance of Guardian/En ironment Game Definied by P= Ax(o. o)

Player I Player iI

1. rl[o] el[oi
2. r2Iol A

3. r3[oi C31o
4. X C21o
5. X 110oJ
6. x2[o1 A
7. x1[oj
8. 

A.

- r1iol, elll, r21oj, r310I, e310, C210J, l [0, x210, x3jol

.. .. . .
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Definition 3. /. : A simple guardian is any functional strategy for player I!.

I1" player I adopts a strategy E and player II adopts a strategy G, the sequence built in

playing the game is completely determined and is denoted by [E,G]. Note that either

[E,GJ is infinite or G([E,G]) =X and E(IE,G]) =X.

Definition 3.1.2: A lifetimeof a simple guardian G is any sequence a for which

there exists an environment strategy E such that a =[E,G].

Definition 3.1.3: The behavior of a guardian G, denoted by B(G), is the set of all

lifetimes of G.

Definilion 3.1.4: A guardian strategy G is a winning strategy for the game

defined by a predicate P if and only if for every environment strategy F, P([F,GI) is

always true.

Definition 3.1.5: When G is a winning guardian strategy for a game P, then it is

said that G is a solution to the problem specification P.

To summarize, a game has been described which views a resource guardian as

trying to enforce a particular type of behavior while the possibly malicious

environment tries to defeat the guardian's efforts. From this definition of a game,

formal definitions of simple guardian, lifetime, behavior, and solution have emerged.

Below we establish the connection bctween the simple guardian as defined above and

the simple polling guardian as defined in 2.5. ILet G' bc a functional strategy for player

II. Recall the scheme given for the simple polling guardian in ligure 2.5.9. Consider

the simple polling guardian which results from using G' as the synchronization

strategy. Now the behavior, as described in 2.1, of this simple polling guardian is the

identical set of sequcncC3 as I?(G') defined by 3.1.3. ''his is true because the scheme

for simple polling guardian enforces the alternation of moves by the environment and

the finctional strategy. Thus a legal game sequence will always result fiom the simplc

polling guardian.
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It is often useful to speak of the domain and results of a strategy for player II.
Informally, the domain of a strategy G for player II is the set of sequences that might

arise in which it is player II's move, and the results of a strategy G are the set of

sequences that can arisc after a move by player I!. More formally:

flefinition 3.1.6: The domain of G, denoted by dom(G), is defined inductively

below.

i) F(e)Edorn(G), for all strategies, F, for player 1.

ii) aEdom(G) aIG(a)iiF(,adG(a))Edom(G),

where a =a'llF(a'), for all strategies, E, for player I.

Definition 3.1.7: The results of a strategy G for a player II, denoted by res(G), is

defined as follows:

nEres(G) if and only if 3fi, flEdom(G) A a =fliiG(p).

Occasionally it is useful to record all the moves of each player, including the

passes. This results in an e.vlanded game sequence. Notice that there is no new

information contained in an expanded sequence. This is because the players alternate

moves and because they both follow functional strategies. Because they follow

functional strategies, two null events cannot appear in a row except at the end of the

sequence. There is a one-to-one correspondence between the game sequences and the

expanded game sequences. See figure 3.1.2 for examples. Also note that null events

played by player I are differentiated from those played by player II. Again this adds no

new information. The usefulness of the expanded representation of a sequence will be

seen in the next section.

3.2 Specification of Concurrency

This section returns to the issue ofl ploblem specification. In particular, attention

is focused on how to specify that a certain amount of concurrency is to be require([ in a

solution. The discussion is centered around an example; namely, the rcaders/writers

problem with readers priority which was introduced in Chapter 2.
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Fig. 3. 1. 2. Sequences and Their Corresponding Expanded Versions

a r1Iol, elloH, r2[ol, r3lol, e310J, e2Io], X11oJ, x21ol, x3Iol
a r1 loI, e1[o], r2[ol, x 11, r3 ol, C3Io1, X1, e2[ol, x 1 o, A1 i' x2 o, 11' x31, o I '

J3 - r1, e1, r2,. x1, C2 , x2r' rl, e1, r2,  lI x  1,eL2,x2,hi  I

Sr1, e, r2, r3, e2, e3, x1,r4, x2, x3, e4, x4
f'=rl' el r2, X11 r3 e2, '\I e3, Xl' "ll' r4, "ill, x2, "ill' x3, e4, x4, Nil'\hI

Recall that the following predicate defines the readers priority version of the

readers/writers problem:

R - M x(r[write],r')A Pr(read,write).

Notice that a solution which allows only one process at a time satisfies the specification.

Thus the guardian 0, spccified in figure 3.2.3, is a solution to R. It would be useful to

be able to modify R so as to rule out solutions such as this one which excludes the

possibility of concurrent reads. 1

Fig. 3.2.3. One at a Time Soltion to Readers/Writers Problem

O(a) 0- [if 3(B(=) )A(W(.,rcad) * 0) then min(W(aread))
elscif B(a) = 0 then Inin(W(a))
otherwise A1

1. Another pathological solution, 0', is the one which simply prevents writes but
allows all reads to proceed unimpeded.
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First recall from 2.2.2 what it means for two requests r and r' to be serviced

concurrently: If %jr) and e(r') are both in a sequence a, then

e(r)-(r') A e(r')=4r).

With this in mind, one approach to specifying concurrency would be to say that

whenever two read requests are both outstanding at the same time, they should be

serviced concurrently; i.e.,

Q a [rjreadl=- r'lreadl=- er)v r'readl= rlreadl=* e.r')l --

e(r)= x(r') A e(r')=A (r).

Now the predicate R can be modified to obtain RAQ. Note that the guardian 0

defined in figure 3.2.3 is not a solution fir RAQ. 1 'flns il would sein that this

approach solves the problem. In fact this is essentially the approach to specifying

conctrrency taken by Hewitt and Atkinson [H EWI79a]. In their paper they go on to

prove that a scrializer can easily be used to guarantee concurrency because processes

which are in the "waiting room" are given absolute priority for gaining access to the

serializer over the processes trying to access the serializer from any other locations.2

As was seen in section 2.5, this approach can lead to the undesirablc situation of

ignoring new requests and new notifications of exit. In fact it is this ignoring of new

exits tiuiil all the reads have entered that makes it possible for a scrializer to satisfy

RAQ. If exits were allowed to occur freely, the first read on the condition queue might

enter and exit before the last read were able to enter. '[his would violate Q. "1thus in

order to satisfy Q, a solution must prevent exits until all the outstanding reads are

allowed to enter. Surely specifying that a solution must be able to Serve reads

concurrently should not imply that the solution must also at some time prevent exits

from occurring. The above approach to specifying concurrency is therefore discarded.

1. lhe solution O' described in the previous footnote is not, however, ruled out by this
new predicate.
2. A similar claim can he made about monitors [HOAR741 since processes waiting on

conldiion queues are given absolute priority over others which are trying to gain
control of the monitor (see 2.4, 2.5).
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In order to develop another method for specifying concurrency, we return to the

discussion of winning strategies for guardians.

A winning strategy is greedy if it passes only when it must in order to win. More

formally:

Definition 3.2.1: A winning strategy G is greedy if and only if for every

aCdom(G) such that G(a)=,\ there exists no other winning strategy G' with

aCdom(G') so that G'(a)*,\.

'A winning strategy is lazy if it always passes unless it must not in order to win. More

formally:

Definifion 3.2.2: A winning strategy G is lazy if and only if for every aEdom(G)

such that G(a),\ there exists no other winning strategy G' with aEdoin(G') so that

G'(a = X.

"ihe existence of a winning strategy does not guarantee the existence of a lazy strategy

(e.g., Fr(r)). 1 To see that this example is correct, note that if a lazy strategy existed, it

would put off servicing a request for as long as possible. Since on any particular move,

a lazy strategy would not need to service any request, it would procrastinate forever

and would not be fair as required. Similarly, the existence of a winning strategy does

not guarantee the existence of a greedy strategy (e.g., -'Fr(r)).

Consider for a moment, as examples of greedy and lazy strategies, the two

solutions M and M' to Mx(r,r') which are specified in figure 3.2.4. The solution M is

greedy while the solution M' is lazy. In most cases when a person writes tile

specification of a problem, he has in mind only the greedy solutions. One way to

1. Recall from 2.2.2 that Fr(r) states that if every enter is eventually followed by a
corresponding exit, then every request will eventually be followed by a corresponding
enter.
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Fig. 3.2.4. Greedy and Lazy Solutions Io Mx(rr'

M(a) = i" FB(a)= 0 then min(W(a))
otherwise A

M'(a)= A

eliminate the lazy solutions is to deline a predicate Q such that if G is a winning
solution for PAQ, then G is a greedy winning solution for P. This is precisely what

needs to be done to eliminate the pathological solutions to the readers/writers

problem. Ihis observation inspires the following definition.

Definition 3.2.3: Given a predicate P, the predicate Q is the oplimality constraint

for P if the set of solutions of PAQ is the set orgreedy winning strategies for P.

Note that greedy winning strategies allow as much concurrency as possible. LIus given

a predicate P, the conjunction of P and the optimality constraint for P can be viewed as

specifying that as much concurrency as possible be present in all solutions.

It turns out that if one uses the expanded representation of the sequences, it is

easy to express the oplimality constraint for R, the specification of the readers/writers

problem discussed above. What is required is that whenever the guardian passes there

must either be a write that is currently busy in which case no new requests can be

allowed, or there must be no outstanding requests at all; i.e.,

Q a VXI {Iirwritel[(r)=-, I=x(r)i V

vrlr xI- - (,')= , 1}.
We say that a sequence satisfies such a predicate if its expanded representation satisfies

the predicate. The predicate PAQ is now an accurate specification of what is usually

meant by the readers/writers problem with readers priority. Notice that not only has

the solution 0 given in figure 3.2.3 been eliminated: so has the solution 0' alluded to

in the footnote. The guardian G described in figure 2.6.12 in the previous chapter is,

A;
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however, a solution.

It is interesting to look at the optinality constraint for mutual exclision as well.

Here the guardian must pass only if there is either a request which is busy or no

request waiting. In other words:

Q V V I 3rl r)= I =(r)] V
V Ilr=Xl~--,c ,)= A ll}

In this section two approaches fbr differentiating between proper and

pathological solutions have been discussed. This lead to a discussion of maximally

concurrent solutions, which our intuition tells us are the bcst (i.e., optimal) solutions.

In an attempt to capture the notion of a maximall) concurrent solution the following

definition is given:

Definition 3.Z: A guardian G is an optimal solution to the problem

specification P if and only if G is a greedy winning strategy for player 11 in tie game

defined by P.

3.3 Coninuity of Specifica(ions

In the previous sections several varieties of problen specifications were

discussed. In this section continuity of a specification is defined. Several examples to

illtstrate continuity are given. Then a theorem which characterizes the solutions to a

continuous predicate is proved. This theorem forms the basis for many of the

correctness proofs in Chapter 4.

Definition 3.3.1: A problem specification P (i.e., a predicate on sequences) is

conlinuous precisely when P(c) is true and when a sequence satisfies P if and only if

all lInite initial segnens of a satisfy I) .

Most of (he specilications dealt with in [his paper, Will a few important exceptions

(e.g., Fr(r)), are continuous as the following theorems ascertain.
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Theorem 3.3.1: If the specifications P and Q are both continuous, then PAQ is

continuous.

Theorem 3.3.2: The following predicates are continuous:

i) a=*b

ii) Mx(r,r')

iii) Pr(r,r')

iv) FI FO(r)

'Ilie proofs of these theorems are straightforward and of no special interest; therefore,

they are omitted.

'llie property of continuity is very powerful. Besides encompassing a large

number of practically uscftil specifications, it also gives rise to the following theorem

which will prove helpfil in verifying implementations.

Theorem 3.3.3: If P is a continuous predicate and G is a guardian, then the

following two statements are true:

i) (aEdom(G)AP(a))- P(aIG(a))

ii) (aEres(G)AP(a)) -. P(ailE(a)) for any environment strategy E

ifand only if

G is a solution for P.

This theorem rule looks more complicated than it is. It says that if P is continuous, one

can always tell whether G, a guardian, is a solution for P simply by verifying the

following statement:

If P is truc of a sequence ,, then for any environment strategy F, the
sequence rcstilfing after the next move (be it either the guardian's move
or environment's move) will katisfy P.

Bel)w we give a prool'of theorem 3.3.3.

7 ~ m a
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Proof: First assume that G is a solution for P. Denote by a a sequence
such that aEdomn(G) and P(a). Now there exists a sequence PCB(G) ri
with (aUG(a))<. Since G is a solution to P, we know that P(O) holds;
but P is continuous, hence, P(aIG(a)) is true. 'hlitis i) holds. "lat ii)
holds may be shown in a similar manner.

Now we assuming that both i) and ii) hold, we show that G is a solution
for P. We proceed by contradiction supposing that G is not a solution

-- i.e., that there exists a sequence / in B(G) such that P(p/) is ialse.
Since P is continuous, there must be some Finite initial segment ofp for

*. which P also does not hold. Let a be a shortest such segment. Now a is
not c since 11(c); so there is a non-null event, a, suclh that a = a' a. From
the way that a has been chosen, we know that P(a') is true. If a is a
request or exit event, then at'res(G) and ii) is contradicted. But if a is
an enter event, then a'Edom(G) and i) is contradicted. [herefore G
must be a solution for P.

lhere are important predicates which are not continuous but which have

solutions. F-or such predicates the theorem is not applicable. [he most striking

example is Fr(r). For instance

a - r1, r2, tirl), % rj), r3, (r2), x(r 2), r4....r. e(ri-), %ri.j ),....

satisfies Fr(r) but Fr(r) is not true for all of' the finite initial segments or" a. Ilie

guardian

G(a) = if W(,t)* 0 then min(W(a))

is, however, a solution for Fr(r).

Thie following lemna will be useful in the next chapter.

Lemma 3.3.4: If G is a solution to a continuous predicate P and aEdom(G), then

13(a) is true.

1. Recall from 2.2.1 that fi<a if and only ifp is a finite initial segment ofa.
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Proof: Suppose. l)y way of contradiction, that uEdom(G) but -'P(().
Now since P is continuous, there must be a finite initial segnent of a for
which P does not hold. Let a' be a shortest such initial segment. Since P
is continuous, 13(t) must hold. Thus there must exist an event a*,\ so
that plla=a'. Now since G is a solution to P and P is continuous, we
know from theorem 3.3.3 that fbr every i and Ibr every environment E

ii) (#%Eres(G)AP(av)) -- P(IF:(t)).
Now if" a is an enter event then a' 1?l(i(li) anl ,) above is violated.
Similarly if a is a request or exil, ii) is violated. *lhereoIbre we have a
contradiction. We conctlude that vEdom((G) implies P(I).

3.4 Simple Predicates

In this section a subset of the continuous predicates (i.e.,the simple predicalcs) is

defined. First it is shown that all of' the contitLiois predicates discussed so Iar are

simple. Then two theorems are presented. The First characeCri/Cs sol.tnt0Ions to0 siInplk

predicates, and the second characterizes optimal solutions to simple prcdicates.

Another Ihcorem states that ivery simple predicate has an optimal soltilion.

I)cfinilion 3../: A predicate 1) is simple if'and only if

i) I is contintious, al(d

ii) For every event a, l(,)A((a)* ent.er)--l(,fIla).

'The next two theorems follow directly From the definition of simple.

"ITcor'm 3.4.1: II'P and Q are both simple then IPAQ is simple.

T heorm, 3.4.2: IThe Illowing pi(licatcs arC simple:

i) a=*b

ii) Mx(r,r')

iii) Pr(r,r')
iv) I"I FO(r)
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An interesting example of a predicate which is continuous but not simple arises

from an alternate definition of precedes which was mentioned previously (see 2.2.2).

Let , denote the alternate form for precedes which is defined as follows: For two

events a and b, a-b is true of a if and only if, when a and b are both in a then a conies

before b. Now we can define an alternate version of the mutual exclusion predicate

based on the above precedes as follows:

M A [(d(r')<e(r))-,(x(r')<e(r))].

The predicate Mx'(r,r') can be shown to be continl)otls: however, the following

example shows that it is not simple. Consider the sequence

a = r,r',e(r),4r')

Now Mx'(r,r') is true of a but is not true or alx(r).

The following theorem characterizes the solutions to simple predicates. It is

actually just a corollary to Theorem 3.3.3.

Theorem 3.4.3: Ir P is a simple predicate and G is a guardian, then

(aEdoin(G)AIl(a)) - P(aiIG(a))

if and only if

G is a solution for P.

hle next theorem provides more useful information about solutions to simple

predicates. Recall from 2.2.1 that #<(a means that/f is a finite initial segment of a.

Theoremn 3.4.4: If P is a simple predicate such that P(a)-Vfijf<a Q(fi)j and G

is a guardian, then

(aEdom(G)AQ(a)) --* Q(aIIG(a))

ifand only if

6 is a solution fbr P.
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Proof: First we assume that Ibr all a, aEdom(G)AQ(a)-Q(aIG(a)). To
prove that G is a solution to P, we first prove that
a(dom(G)AP(a)-P(auIG(a)), then we apply theorem 3.4.3. Assume
a(dom(G)AP(a). Now since P(a)-Vjfl<a - Q(p)J, we know that
a~dom(G)AP(a)AQ(a) is true. But aEdorn(G)AQ(a)-*Q(aIIG(a)).
ilierefore P(a)AQ(a1tG(a)) is true. Again from P(a)=Vf#[f[<a - Q(#)],
we cal conclude that P(alG(a)) is true. "rhuIs

aEdom(G)AP(a)--P(anIG(,)) is true- and from theorem 3.4.3, G is a
solution to P.

Next we assume that G is a solution to P and that aEdoni(G)AQ(a). We
must show that Q(taG(a)). Now by lemma 3.3.4 P(a) is true. Since G is
a olution to P. We Can use theorem 3.4.3 to conclude that P(aIIG(,)) is
true, which neians that Q(a11(a)) is true.

Note that in the above theorem, Q does not have to be simple or even

continuous. Also note that Q can be substantially weaker than P. In general we are

interested in the weakest such Q. As will be seen in 4.6, this theoremn is quite useful in

the verilication of solutions. The next theorem characterizes the optimal solutions of

simple predicates.

Theorem 3.4.5: If G is a solution to a simple predicate P, then for all aEdom(G)
(G(a) = \)= V ,'IRE W(,)---, P(alUe(r))]

if and only if

C is optimal.

Proof: Assume G is optimal. Since G is a solution to P, a simple
predicate, we know that vrlrCW()-'(ntldr))-,(G(,) : ) forom
theorem 3.4.3. Now, by way of contradiction, stppose there is a
/fCdom(G) such that G(11) A but there is an rEW(fi) with P(alI(r))
holding. eline the strategy G' as rIllows:

'() = G(,) if *
%r) ifa::ft.

Now since C is a solution of P, theoren 3.4.3 and the definition of G'
imply that for any aEdom(G'), I'(a)-P(aCll'(a)). 'llus by theorem 3.4.3
G' is a solution to P. This implies G is not optimal which is a
contradiction. 'Therefore ror all aC(dom(G)
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Next assume that for every aEdom(G)
(G(.)-= A)-vrrC W(,)---P(,,,k~r))J.

Also assume that aEcdom(G) and G(a) =A. Let O' be any other solution
to P with aEdom(G'). Since aEdorm(G), and since G is a solution to P, a
simple predicate, we know From lemma 3.3.4 that P(a) is true. But G' is
also a solution to P. So by theorem 3.4.3, if G'(,)= (r) A. then
P(atiiir)) holds which contradicts ((,) X)=vrjr( W(,)---l'(,,ndr))J.
Thus G'(t) must be x. Therefore, from tie definition oflgrccdy. C must
be optimal.

Often it is useful to know whether or not a predicate has a solution and, if it does

have a solution, whether or not it has an optimal solution. ]1'"e Ibllowing theorem

addresses this issue for simple predicates.

Theorem 3.4.6: If P is a simple predicate, then P has an optiml solution.

Proof: We will prove the theorem by defining an optimal solution for P.
Given a history ,, define S(,), a subset of W(a), as follows:

S(O) :{ rEW(,,)lP(alkc r))}.
Deline the strategy G as follows:

G(a) = if S(a)*0 heni min(S(a))
otherwise X.

From the definition of G, we know that if P(a) then P(,IIG(a)). "lits by
theorem 3.4.3, G is a solution to P. Also from the definitions of G and
S(a), we know that

(G(a) = A)--- v r[rE W (a)--' --, Paiue(r))].

Since G is a solution to P, this means that

Therelbre from theorem 3.4.5 this means G is optimal.

Note that if a simple predicate P is decidable, this optimal solution will be computable;

i.e., there will exist a program which can actually implement the finctional strategy.

'lo see that this is so, consider that the solution need only proceed as Ibllows: For a

given (V, test l(ii~r)) for each rCW(,V). If br some IcW(,,), l'(,II(r)) is true, thei

return r; otherwise, if libr all rEW(a), -l(,d')), then return A.

*1v
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4. A Synchronization Mechanism

In this chapter the simple polling guardian developed previously is used as the

semantic basis for a synchronization mechanism for coordinating the execution of

procedures in a multi-processing environment. A procedure is said to be protected by

the mechanism if every process which invokes the procedure must be granted

permission b) the niechanisln before it can execute the procedure. 'he invocation of a

protected procedure by a process results inl the process being suspended and causes the
creation of a request signal which is sent to the mechanism. The return of a process

from a protected procedure causes an exit signal to be sent to the mechanism. A

process dedicated to the mechanism examines the signals sent to it and decides which

of the suspended invocations, if any, may proceed. It is this process which actually

implements the synchronization strategy used tbr coordinating the protected

procedures. If a process can proceed, it is activated and allowed to enter the procedure.

The first section of this chapter describes the synchronization mechanism in

further detail and includes a complete description of both the semantics and a possible

syntax. A simple example is given and some implementation issues are also

mentioned. lhe next four sections provide more detailed examples of the construct.

The synchronization problems discussed include the readers/writers problem, the

dining plhilosophers problem, and the disk scheduler problem. The next to the last

section presents an approach Ibr verifying the correctness of implementations. Several

interusting examples are examined. Tlie last section evaluates the construct and

provides some concluding remarks.
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4.1 'Fle Synchronization Nechanlism

This section defines a synchronization mechanism which is based on the simple

polling guardian described in 2.5. First an overview is given. Then a more detailed

description and a simple example are presented. The last subsection discusses briefly

some of" the implementation issues.

4.1.1 Overview

The synchronization mechanism defined here is based on the description of" the

simple polling guardian presented in 2.5. The mechanism will be defincd in such a

way as to make possible the coordination of the execution of procedures. To

understand how a polling guardian might be used in order to accomplish

synchronization, consider the following scenario.

Suppose that it is necessary to limit execution of a procedure nmed

critical-section so that only one process at a time can be in critical-section. This can be

done as follows. First create a procedure like the one presented in Figure 4.1.1.1, and

then dedicate a process to executing this procedure. Next all invocations to

criticalsection are modified. The invocations are changed so that instead of simply

calling critical-section, a process will first create a message or signal, stating that it

wishes to execute criticalsection. Next the process puts this message 2 on the queue in

of the procedure protector. 3 Then the process deactivates itself. Immediately after the

deactivate command is a jump to critical-section. At the return point from

critical-section, code is inserted so that the process will build another message. This

message states that the process has finished executing critical-section. The process puts

it on the queue in of protector which will interpret it as an exit. Figure 4.1.1.2

1. Now Ichat Ihis proccdurc has the same 6nl .1 as ile simple polling guardial given in
figure 2.5.9.
2. The message will hc interpreted by protector as a request.
3. Olpcralion~s on (lie (ItfcC arc considered to be atomic (see 4.1.3).
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Iig. I.i.1.1. Simple 1'ol' ,(uardian Procedlure Solving Al x(r, )

procedure pr(

"Ile true (10
(T n" llill;

r - il B(,)- 0 then min(W(a))
oflierivise x

a 4- all,(r);

aillow(r);
end while

summarizes the diffIerences between an invocation or critical-section bel'ore

modification and after modification.

From the above it call be sect) that when a Iocess goes to invoke critical-section,

it first passes a request message to protector and deactivates itsell 'lhe protector takes

the rCLuICst off ill and Concatlnates it to the history olrpast messages. Fvenattlly, \when

there are nio processes btusi ill critical-sectioi, the request will he chosen by the

synch roniatior stratcgy. The history is updated to reflect (his change and iallow is

execlted. The execution ol rallow reactivates the sleeping process. On being awakened,

the process enters criticalsection. On retlurning trom criticalsection, the process

Fig. 4. /..2. I)ifej'renices in a Stanthrd and Modified In vocation

Standard Modified

('rafle Request

Put Requ'iv on ill

( all C"ritwaIsectioni ('all C riiaL.I'rction

r r'turn: (C'r,'e I, it

h ,. t'%it ''u in

I
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passes an exit message to protector in order to notify protector that it has finished.

'hen the process continues executing as normal.

In a general situation, to accomplish synchronization using the approach outlined

by the above scenario, it is only necessary to specify:

i) The procedures which are to be protected by a particular guardian, and

ii) The synchronization strategy which the protecting guardian will use.

Presumably the procedures to be protected by a particular guardian would be

specified at compilation time so that the modification to the pertinent invocations

could be easily made.1 Also, presumably, a procedure could be protected by at most
one guardian.

The specification of the synchronization strategy could be expressed as a function

of the entire sequence of past events in a manner sinilar to that described in 2.6. Note

that a synchronization strategy almost never uses all the information contained in the

complete history of past events. Thus optimization is possible if the relevant

infbrmation of the history can be encoded and if the synchronization strategy can be

defined as a finction of this encoding. For this reason, the definition of a strategy

function will take on the following character.

First the data structure which will encode the past history is defined. The data

structure must contain the following operations:

1. Note that the modifications could be made at (he entry and exit code for the
proceduirc raher than at the poiilts or invocafion.

L '4
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i) A create operation which will build an "empty" structure for use in
maintaining the information about the history.

ii) A puLrequest operation which will take a new request and update the
data structure to reflect the fact that a new request has occurred.

iii) A puLtexit operation which will take a new exit notification and update
the data structure to reflect the fact that an exit has occurred.

iv) A puLtenter operation which will update the data structtue to reflect the
I'act that an enter has occurred.

After the data structure has been defined, the synchronization strategy must be

deined on the data structure. Notice that when the strategy finction returns a request

that will be allowed to continue, an enter event occurs- and there must be a call to

putlenter. Since put-enter and the synchronization strategy are so closely linked, they

will always be combined into a single operation on the data structure. Thus the

strategy function not only determines which outstanding request will be allowed to

continue next, it also updates the data structure to reflect the fact that the request has

been allowed to contineic -- i.e., that an enter has occurred. Thcrefore puLenter as a

separate operation is not needed since the strategy function will be responsible for

updating the data structure when an enter event occurs. 'T'he strategy function is

thought of as an operation on the data structure.

'To summarize, recall figure 4.1.1.1. A synchronization strategy can be specified

by defining a data structure which will be used to encode the past history, a. 'lie

operations put-request and puLtexit take the place of the concatenation of in onto the

history (, while the operation strategy takes the place of both the synchronization

strategy defined on a and the concatenating of the enter events onto the history .
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This subsection has provided an overview of how synchronization might be

accomplished using the simple polling guardian as a paradigm. The next subsection

presents a more concrete description of this approach.

4.1.2 Definition of tie Synchronization Mechanism

The synchronization mechanism will be called a protector. To reiterate, the

purpose of a protector is to coordinate procedure calls of a program running in a

multi-processing environment. The protector is defined here in terms of a parlicular

programming language for definiteness. The language used is CLU [LISK79] because

of its ability to handle data abstractions conveniently.

A new declaration statement, the prolector-creale declaration, is added to CLU.

This declaration describes which procedures are to be protected -- i.e., have their

invocations synchronized -- and indicates the cluster which implements the data

structure (i.e., data type) that defines the synchronization strategy. The declaration

creates a protector (i.e., a guardian-like procedure) and modifies all the invocations to

the protected procedures.

The syntax of the protector-create declaration is given below:

create protector for procedures: idn.... using idn'

The identifiers idn.... are the names of the procedures whose invocations will be

controlled by the protector. The procedures might be either operations defined in a

cluster module or actual procedures defined in a procedure module. Thie

protector-create declaration would appear in the module where these procedures are

defined. The identifier idn' is a mutable data type (i.e., cluster name) which will be

used to encode the past history of events and to implement the synchronizalion

strategy.



Section 4.1.2 -56- Plrtcctors

'"lhe set of basic types of CLU is also augmented to include a new type. An

object of the new type can be thought of as; being a message with a very specific

purpose. This purpose is to provide a means for a process executing a protected

procedure to communicate with the protector which is protecting the procedure. For

reasons which will become clear, this type will be named event. 'here are

fundamentally two kinds of events: request and exit. A request event is a signal that is

sent by a process which would like to execute a protected procedure. An exit event is a

message sent to the protector when the process returns from a protected procedure.

Events are created and manipulated only in the context of synch ronization brought

about by protectors. It is possibly confusing that within the data type event there is no

subclass of messages called enter events. The reason for this absence is that a protector

need not send any special message back to the process waiting to be allowed to

continue execution. The protector need only activate the process. Thus no explicit

mention of an enter event as a data object is ever necessary. An event can be thought

of as a message containing three components: The processor id associated with the

event, the type of event (either request or exit), and the procedure invocation

associated with the event. Since events arise only in the context of synchroniLation,

every event is also implicitly associated with a particular protector. The operations on

events permit examination of these components. Below a brief description of each

operation is given:

typeof: proelype(event) returns(string)
RetUrns "request" or "exit" if the argument is a request event or

an exit event respectively.

procid: proctype(evenl) returns(int)
Returns the unique integer which is the id of the process which
caused the event.

1. Rccal I[hill it has bCCn assu iened (hal a prtoccdiiic can be prolecled by only a single

I)roI[cltr.
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op: procdype(event) returns(int)
If the procedure associated with this event is the ith procedure
listed in the protector-create declaration, then the operation
returns i.

get-arg: proctype(event,int) returns(any)
Let i be the second argument of get-arg. Then get-arg returns

the it" argument of the procedure call associated with this event.

'lie data type which encodes the past history of events (idn above) is often called

a synchronization type. A synchronization type, S, is a mutable data type which has the

following operations:

create: procO returns(S)
lliis operation creates an object of type S and initializes it.
This object can then be used to encode relevant information
about the past history of events.

put-request: proc(e:event,alpha:S)
This operation lakes a new request event, e, and updates the
object, alpha, to reflect the arrival of the event.

puttexit: proc(e:event,alpha:S)
This operation takes a new exit event, e, and updates the
object, alpha, to reflect the arrival of the event.

strategy: proc(alpha:S) returns(event) signals(ntill-event)
This operation returns either a request which is to be
allowed to continue and then updates S to reflect this action,
or it signals nulLevent if no request is to be allowed to
continue.

Bricfly, the protector which is created by the declaration is a process dedicated to

p)olling an input queue for new requests and exit events which it keeps track of by

encoding the history in an object of Ihc synchroni/alion typc. The data objcct is often

referred toias (he state ol tie protector. The proleclor examincs the history cntodcd in

'i t
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the data object and allows requesting processes i.e., those which are waiting -- to :

continue when appropriate. When a process invokes a procedure which is protected, a

request event is created which is added to the end of the protector's input queue. lie

process then deactivates itself. The protector takes this request off its input qteue and

updates its state via the put-request operation. When the protector decides that it is

safe for this process to execute the protected procedure -- i.e., when the operation

strategy returns the process's request -- it performs the allow command which

reactivates the waiting process. lie operation strategy updates the protector's state to

reflect that the request is now busy. Then as the process returns from the invoked

procedure, it notifies the protector that this event has occurred by adding an exit event

to the protector's input stream. Again the protector updates its state, this time via the

ptt-exit operation. The process then continues to exectite without firtlher

interference. Figure 4.1.2.3 summarizes these actions. Ilie semantics of a protector

can be given in more detail in terms of the simple polling guardian given in Chapter 2.

In figure 4.1.2.4 is a procedure with the form of a polling guardian which defines the

actions ofa protector. This procedure is actually just a rewriting of the simple guardian

procedure given in figure 2.5.9 of Chapter 2. hlle statement allow(r) is assumed to

activate the procedure which is waiting for the request r. The data type

"synchronization" is the synchronization type with which this particular protector was

created. The protector's input queue is represnted by in-queue which is treated here

like a stream of events. The operation "get" removes thc first event from the stream.

Note that the function "strategy" call signal null-event in which case no activation

occurs. A procedure like the one in figure 4.1.2.3 is created automatically by each

protector-crcatc declaration and is never acttially seen by the programmer. lie must

imercly smipply the cluster which implements the synchronization type.

To complete the discussion of the protector, it must be shown how events are

associated with the protector's execution. Recall, first, how events were associated with

the operation of , polling gulardian (see 2.3). "Ilie natural approach would be to say

that a request event would occur with the removal of a request event fiom the

protcctor's iniqueue. Similarly, an exit event would occur when an exit event is
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Fig. 4.1.2.3. Summary qf Proiccor's Operation

Code in Main Program

* i) The dclaat'ion causcs Ctlion of a

cretilt protector For procedures: op proleclor ,iind ll,} lifies aill imlitcations

using nix; ot op to causc proper crea i(o1 of signals.

ii) On executing op(x, ). a request C% ent f6r

op(x.y); this iu ncatiil i is cI c;ted aniid put on tihe
elnd o" tile Ii oteklorN ililut .iele. I hen lie

executing proccss de,ikati itself.

iii) See iii' below.

iv) After reactivalion, the Ilrocess iniokes
op(x,y). Oin return from op. tlhe process

creates an exit eent for this inuocation aund

puts it on the protector's input queue.

"11ic Protector

protector -- pro:();

iii') '1he protector gets the rcqucst; c: =cvelittaln|$get(inUtt);
and when it eventtally decides that the

invocation call precede, it activates the
%iaiting process ia the allow statcmcnt. allow(c);

............. I• ill,*- .. .... , .. . ... ... .. i.., • 1., . " .'ti , 'J-.. . . . .-.. .-..-.. . . . . . . . . .... . . . . . . . . . . . . . . . .... i+. l
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Fig. 4.1.2.4. Semantics of a Protector

protector = procO

alpha: .ynchronization: = synchronization$creatcO J- [ a -

%hile true do
e:event = evenLstream$gc(in-queue)

if event$typeof~e) = "request"
then .sw'ti(hroniz(aion$purcquest(c,alpha)

elseit c% ent$typCeoRc)= "exit" a ,-allin

then s),ti('hroPizittionp$Itcxit(c,alpha)

end %if
e: = .s iichroniziition$stratcgy(alpha) .c-G(a)

except %hlen nullevent: continue end a .-ale

:lloV(e) allow(e)

end %while
end protector

removed from the protector's in-queue. Finally, an enter event would occur with the

execution of the allow statement. However, the actual execution of the protector's

procedure is hidden from the imiplcmentor of a synchronization strategy. 'lierefore,

rather than associating the events with protector execution as above, we will instead

take the approach of associating the events with the execution of the operations of the

sN nchronization type. A request event occurs with the completion of the put-request

operation; an exit event occurs with the completion of the put-notice operation, and

an enter event occurs with the return from the strategy operation. After examining the

protector procedure given in figure 4.1.2.4, it is clear that associating the events, as in

the first approach, is equivalent to the association of events with the return from

operations o" the synchronization type as in the second approach.
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A brief example of protector use should clarify the above description somewhat.

Suppose that a programmer, in coding the procedure cs, realizes that it can be executed

by only one process at a time. Thus a protector is needed which will Ibrce mutually

exclusive access to cs. The module of the system containing the definition of cs %ould

have the following declaration:

create protector for procedures: cs using nix.

This declaration creates a protector and modifies all invocations of cs. In addition to

putting the above declaration in the module defining cs, the programmer would also

code an implementation of rex. The cluster implementing the synchronization data

type nix is given in figure 4.1.2.5. The implementation given in figure 4.1.2.5 uses the

data type event-seq to manage the outstanding requests. A brief description of the

Fig. 4. 1.25. Sjychronization 7'pe for Autual Exclusion

nix = cluster is create, put-request, putexit, strategy
rep = recordq:evcntscq,busy:bool]

create = proc() returns(cvt)
return(rcp${q:cvcntscq$create(),busy: faisc)
end create

put-request = proc(e:event,alpha:cvt)
cvcnt-seq$nq(alpha.q,c)
end putrequest

putexit = prot(c: eventalpha:cvt)
alplia.busy: s eals
end put-exit

strategy - proc(aI |lih: cv)ret urns(etent signals(null.cvent)
if -ulpha.busy

len c:e:ient: = cvent-scqfrst(alpha.q)
except ishen empty: signal uull-event end

alpla.busy: = (rue

evcn tscq$dq(alpha.q)
return(e)

else signal nullevent
end %if

end strategy
end ix

. ........ .o.. . - r ... : _', -- ,- ' ': i ° -
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data type event-seq is included below:

create: proclype() returns(evenLseq)
'11is operation returns an empty sequence.

nq: proctype(event-seq, event)
This operation modifies argl by adding arg2 onto the end of it.

remove: proctype(event, cvent-seq)
'[his operation temoves the first occurrence of argl fiom arg2.
Ifargl does not occur in arg2 zhen arg2 is remains unchanged.

dq: proctype(event-seq)
This operation removes the first event from argl. If argl is the
empty sequence then argl remains unchanged.

fist: proctype(event-seq) returns(event) signals(em pty)
Tlhis operation returns the first event in argl. If argl is the
eniptv sequence then it signals empty.

frstp: proctype(event-seq, proctype(event) returns(bool))
returns(event) signals(empty)

Thiis operation returns the first occurrence of an event in argl
that satisfies the predicate defined by arg2. If no such event
exists then it signals empty.

empty: proctype(event-seq) returns(bool)
The operation returns true if argl is the empty sequence and
otherwise returns false.

Although many other data types besides event-seq can be used I for managing the

outstanding requests, event-seq is often very convenient; its use will simplify the

presentation of solutions.

1. For sonic examples of the use of other data types for managing the outstanding
requests see the solutions, (figures 4.3.11 and 4.3.12), to the disk scheduler problem
discussed in 4.3.

-. -- ______
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Now we return to the discussion of the cluster Mx. The operations of mx should

be described briefly. The pUtrequest operation adds a request to the end of the event

sequence q, which contains the rest of the requests that are currently waiting to be

allowed to continue. The put-exit operation is called by the protector whenever a

process exits from cs; consequently the boolean busy is set to false. The operation

strategy checks to see if there is a process currently executing cs by testing the boolean

busy. If cs is not busy, the First request is removed from the sequence q and returned

so that the protector can allow it to continue. Thus the data type nix, in conjunction

with the semantics of a protector given by the procedure defined in figure 4.1.2.4,

implements tile following solution:

F(a) if B(a) = 0 then min(W(a))

otherwise A.

This example might seem ridiculously complicated for something so simple as mutual

exclusion; however, once the cluster mx has been written, the same kind of mutual

exclusion can be invoked for another operation csl simply with the declaration:

create protector for procedures: csl using rex.

It is envisioned that in a user library many synchronization data types would exist, each

of which would encapsulate an abstract synchronization behavior. A programmer

would, as necessary, simply use these data types in protector-create declarations in

order to accomplish synchronization by creating the proper protectors. If the precise

kind of behavior desired were not available in the library, he would write his own

synchronization type and add it to the library.

It is oflen helpfhl to think of the history which is encoded in a synchrmoniz.alion
data type as consisting of' two distinct components: information oi the waiting

requests; and infornalion on the status of the resource. The I)tCLIuqlCst will Update

the waiting request coml)oncnt while the plLtexit updates the resource status. Ir the-

operation strategy does not signal the nullevent, it updates both component%. In the

*1o
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previous example, alpha.q was the first component while alpha.busy was the second

component.

4.1.3 Implementation Issues

Above, protector creation is described as something which occurs before

execution. It is assumed that when the system first starts, all the protector processes

will begin executing. Making protector creation a declarative rather than an executable

statement is much simpler; however, with proper care, protector creation could be

made dynamic.

Recall that it has been assumed that no procedure appears in more than one

prolector-crcatc decldration. It has also been tacitly assu med that none of the

operations (l a synclhronization type ever appear in a protector-create declaration.

That these assumptions are met, is easily checked automatically before execution time

if protector creation is not dynamic.

Although me implementation of the protector's input queue has not been

specified, it is possible that some sort of low level synchronization might be necessary

among the processes adding events to the end of the queue and the protector's process

which is removing requests from the queue. Rather than elaborate on how this might

be accomplished, it will simply be assumed that the adding and removing of an event

From the protector's input queue is an atomic operation: thus no problems arise with

maintlining (tltelle consistency.

The speed of a protector's process relative to the arrival rate or events and

ielati~c to the speed of the requesting processes is imipoltant, not to resource

consistency, but to the viability of the handling of priority constraints and to the

general practicality of the protector. 'l1e input queue of a protector should never

contain many events in order to force the guardian's state to represent as closely as

possible those requests which are actually waiting. nhe protectors process mutist run at

a high speed relative to the arrival rate of events in order to cnsur that a protector's

.!
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input queue really does remain relatively empty. Since an event is taken off the queue

lbr each iteration of the protector, the fastest burst rate at which events can occur must

be less than the longest time it takes the process to update the protector's state twice

and to evaluate the strategy function once. The speed of the protector's process should

be at least as fast as the the fastest of the requesters. Otherwise performance of high

speed processes would be degraded.

Since it has been argued that the protector's process must run at a relatively high

priority, it is important not to waste processing resources needlessly with pointless

polling. Fortunately, it is easy to prevent the protector's process from looping

uselessly, looking for new events. This is done by deactivating the protector's process if

the input queue is ever empty after a call to strategy has just signaled nullevent. "he

protector's process remains deactivated until a new event is put on the input ueue, at

which time it is reactivated. In this way the polling is "conceptual" only and is not

wasteful of resources.

4.2 Readers/Writers Problem

The readers/writers problem has become one of the most commonly discussed

examples of a synchronization problem. Since it was first introduced in [COUR71,

many solutions have been proposed and many synchronization mechanisms have been

justiflied by demonstrating elegant implementations of these solutions. The probletn

can be described as follows: Suppose there is a data base which various users must

access. An access may be either the reading of a part of the data base or the writing of

some new information into the data base. In either case it is assumed that the accesses

are not necessarily atomic. Thus in order to preserve the consistency of the operations

and the data base, reads must not be allowed concurrently with writes, and concurrent

writes must not be allowed. Basically any solution to the predicate

(0) Mx(r[writel,r')

is a solution to the general readers/writers problem. There are, however, many
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versions of the problem, some of which are discussed below.

One version of the problem [BL00791 requires that each request be served in a

first come first served order. This can be expressed more formally by the predicate

(1) Mx(r[writel,r')A FI FO(r).

The cluster described in figure 4.2.6 defines a protector which implements an optimal

solution to this version of the problem. It is assumed that in the module defining the -

procedures read and write, there is the declaration -

Fig. 4.2.6. FC fS So/uion io ReaderslWrilers Problem

rw = cluster is create, i)utrequcst, put-exit, strategy
read = I
write = 2
rep = recordq: even tseq,writes.reads: int]

create = procorcturns(cvt)
ret itrn(rep$ {q:evenLseq$createO,writcs:O,reads:O})
end create

put-requcst = proc(e:cvent,a:cvt)
evcnt-seq$nq(a.q,c)
end put-rcquest

put-ex it= proc(c:event,a:cvt)
if e~ent$op(e) = write then a.writcs: = a.writes-I
ciscif evenl$op(e)= read then a.rcads: = a.reads-1 end

end puLexit

strategy = proc(i:cvt)ret urns(evenlt)sigiials(nullcvcnt)
c:eent: = evcnitseq$frst(a.q)

except when empty: signal nullevent end
if a.writes =0 & (a.reads = Olevent$op(e) = read)

then evenitscq$dq(a.q)
if event$op(e) =write then a.writes: = a.writes+ 1

elseif event$op(e)= read then a.reads: = a.reads + I end
retuern(e)

end %if
signal nullevcnt
end strategy

end rw

!<* - -. ,~s~%~0
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create protector for procedures: read, write using rw.

Briefly, a.q is a sequence of events which contains the requests which are currently

outstanding. The integer variables a.reads and a.writes are the number of currently

busy reads and writes respectively. '11e strategy here is to take the oldest outstanding

request and see if it can be allowed to continLie. If it can, then the request is returned;

otherwise, nullevent is signaled.

Although this solution is an optimal solution to (1), it is not an optimal solution

to (0). In figure 4.2.7 is a cluster which implements an optimal solution to (0).1 'lhis
solution is the same as the one given by Andrews [ANDR79]. The stratcgy here is first

to determine what kind of requests can be allowed to continue and then to choose the

first outstanding request of that kind. Another optimal solution to (0) is defined by the

cluster in figure 4.2.8. This solution satisfies the readers priority version of the

readers/writers problem mentioned in both [BLOO791 and [GREl76. "Ibis problem is

characterized by the following predicate:

(2) M x(rlwritel,r')A Pr(read,write).

Another very similar problem, also mentioned in [BI.0079] and [GREI761, is the

writers priority version. This version can be formalized by the predicate:

(3) Mx(r[w rite), r')A Pr(write, read).

Figure 4.2.9 presents an implementation of a solution to (3). The similarity between

this implementation and the previous is obvious.

1. For a proof of Iis claim see subseclion 4.6.4.! I.
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Fig. 4.2.7. W4eak Readers Prionly So/u lion 10 Mhe Readers/Wriiers Problem

rw =cluster is create, put-rcqucst. put-exit, strategy
read = 1
write= 2
rep =recordlq: even tseq w rites, reads: intl

create =proc)returis(cvi)
return(rep${q:e% ent-scq$crtite),wits:O,rcads:O})
end create

put-reqtlcst =proc(c:event~a:cvt)
exent-scq$nq(a.q,e)
end pUt-request

put-exit -proc(e: event x evt)
if emniop(c) =-write then a.wrices: = a.writes-I

elscif cwiat$op(e) =read then a.reads: =a.rcads-I end
end put-exit

strategy =proc(a:cv t)rel ujrns(evieit)sigiials(inull....vcnt)
if (a.rcads = O)&(a.w rites= 0)

then e:eienct= event-seq~frst(a.q)
if eoent$op(e) =write then a.writes: =a.writcs +

elseif evintop(c) =read then a.reads: =a.rcads + I end
eveiit-seq$dq(a.q)
returiu(e)

eiseif a.writes=0
then e:ewent: = e v cntseq $frstp(a.q. readers)

a.reads: = a.reads+ 1
evcnu-scq~reinove(c~a.q)
return(e)

end %if
vc.cepI whien enipty: signa~l nulIII..vclt end

signal n[IIIevemi
end strategy

readers proc(e:evint)returus(booI)
rc(urn(m end op(c) read)

end readers,
end rw
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Fig. 4.2.8. Readers Priority Solution to the Readers/Writers Problemn

rA cluster is create, pkutrCqUCSt, pLe-Xit, strategy
read =1I
write =2
rep =:recordlq: :cvnt...scq,w rites,reads: iit]

create =procoreturns(M~)
ret iii( rep$ Iq:eveuitscq$creartc( ),writcs:O,reads:OI)
enl create

put..requcst =proc(c :evcnt,a:cvt)

end pLIL-requcst

if eieiil$op(e) =write (iecn a.writcs: ==a.writes- I
elseif ei ent~op(c) =read then a.rcads: =a.reads- I end

end pttxit

strategy =proc(;I :i rursent)iidsuevn
e:ei ent: = Ivn...c$rspaqracs

except when empty:
e:= evdnt-scq$fi-stp(a.q~writcrs)

exepji wihien emipty: signal nul)...eveifl end
ir (a.rcids = O)&(a.writcs = 0)I theni even tscq$rcmo vc(c,a.q)

a.writcs: =a.writes + I
refurn(c)

endi
end %/cxccpt

jr a.writcs= 0
then even -scq $rcmwve(e,a.q)

a. reads: = a. reads + I
re(urn(e)

end %if
signal null-cvent
end slratcgy

reaiders = proc(c: e'ent returns(hool)
retu~rn(evenl$op(e) = read)
end readers

writers proc(c:evenit)retturias(hooI)
ret urn(eveiiI$op(c)= write)

en wend writers
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l'ig. 4.2.9. Wr'liters Priority SolutLion to the ReaderslWriters Problem

i w -, cluster is create, put.reqUCSt, pul-cxit. strategy
read =
write = 2
rep =recordfq:cceu....seq,wi-its, reids: ii

create =proc( returns(Mv)

endi create

plU-oquest proc(e:ei eilt,iccit)

enld put-requlcst

pt...exit -proc(e:ei'enta:cvt)
if evellI~op(e) z write titeit a.writes: =a.writes- I

viscir emelt$op(c)-- read tliei areads: a.rcads- I end

Ct~iicllt -C veli t-CI~$ rl)t(Ia.,w rit lS)
extcept Ishlli emipty:

except MoIenl emrpL) signial ntill..evcnt end
if a.writes=0

then cm nt..scq$relmlove(ca.q)
.i~rcads: =a.reaids I

return(c)
cold %if

Coldi %except
if (a.reads 0)&(a.writes= 0)

then cvent scq$remwv'e(c,a.q)
a.%%rites: a.writes+ I

cold %if
Sigiia i I1.cI-venlt
Cold strategy

readers - iproc(e:ei cut Weturus( hool)
ret urn(esi l)(ct) = rad)
cloud rcaders

wi rlers p:Iruoc(L:cleult )reuurinshooI)
rewirii(cei il $u()) write)
Coldi wI'i ers

cnd rw
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Notice that none of tile solutions presented thus far, except for the first, is fair to

both readers and writers. Below, a protector which satisfies the following version of the

readers/writers problem is described:

(4) Mx(r[writeJ,r')AFr(r).

The cluster in figure 4.2.10 implements a solution which is described in both

[ttOAR74] and 1131.0079]. In this solution, if there are writers wailing when a read is

requested, the read must wait until one write completes. When a write terminates, then

all waiting reads may proceed. In the implementation, a.fiq contains the outstanding

reads which either were requested when no writes were active or had seen a write

complete while the) were waiting. The event sequence -.rq is the outstanding reads

which are waiting Ibr a write to complete. The sequence a.wq is the outstanding writes.

For a proof that the protector does indeed satisfy (4), see 4.6.2.

I!
Ij

........ ................ ..............
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Fig. 4.2 10. Fair Solution io ihe Readers Priority ReadersWriters Problem

rw =dcuster is create. put.rcques(. put-exit, strategy
read= I
writc =2
rep = recordlrq, wq. frq :cvcnt-sq,writes, reads: int)

create = proc( )returns(cvt)
return(repSI rq :e% cnL-scq$crcatcO. wq:cvciLtscq$crcatcO).frq :cvcnitscq$crceO

w ritcs:O, reads: 01)
cud create

pLI-rcqucs( = proc(e:event~a:cvl)
if eventdop(c) = read

then ir cvcn~tscq$unpty(a. wq )&a.writcs =0 then cvcnt-seq$nq(afrq~c)
else even tsc.q$nq(a.rq,c)
end %if

ciscir eventdop(c) = write
(lien c%,cnt-.%q$rlq(a.wq~e)

end %if
end Iput-rcquest

j)ut.Cxit = proc(ecvent,a:cvt)
if event$op)(c) = read

then a.reads: = a.rcads- I
ciscir event$op(c) = write

t hen a.writcs: = awrites-lI
a. frq: = a. rq
a.rq: = cvcnt-scq~crcac()

end %if
end put-exit

srrattgy = proc(a cvt )retuirns(ei'en( )signals(nutilLcvcnt)
if -cvcnt-sq$cmipy(a. frq)&a.w rites= 0

M en c:event: =cvcnLscq$frsI~a. rrq)
cvcnt-scq$tdq(a.l'rq)
.reauds: = a. reads + I.
return(c)

elseif -evcnt-sc $cmpty(a. wq)&(a. reads= 0)&(a.w rites 0))
then e:cveni: - cvcnI-scq$t'rst(a.wq)

cvcnI-scq$dq(a.wq)
a.writcs: =a.writcs + I
return(c)

end %if~

end stritcgy
end rw
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4.3 Disk Scheduler Problem

In this section the disk scheduling problem is discussed. The probtem is to order

accesses to a single movable head disk in an attempt to optimize system efficiency and

individual response time [lTEOR721. When accessing a movable head disk, by far the

largest part of the delay is due to head movement. Thus solutitions to this problem

employ an algorithm for arranging the outstanding requests so as to minimize head

movement. Two such algorithms are discussed below: the SCAN or elevator

algorithm; and the C-SCAN or- circular scan algorithm. Each approach has its

advantages and disadvantages depending on whether disk utilization is heavy or light.

Note that any implementation of either algorithm mtust prevent concurrent accesses to

the disk since the disk can handle only one request at a time.

In the SCAN algorithm the head moves or scans across the disk in one direction,

servicing requests as it goes Until there are no more outstanding requests for cylinders

beyond the hcad's current position in tile direction it is moving. Then, assuming there

are outstanding requests back in the other direction, the head reverses direction and

moves back across the disk servicing requests as it goes. Figure 4.3.11 presents a cluster

which implements this approach. This solution is similar to one described in

[HOAR741 except that this soltion satisfies Fr(r) whereas -oarc's solution does not. It

is assumed here that somewhere a procedure "disk-access" is defined and that in its

defining module is the declaration:

create protector for procedures: disk-access using ds.

It is also assumed that the first argument of "disk-access" specifies the cylinder address

of the access. In the implementation, thc set of outstanding requests is partitioned

between two priority queues: ! a.uq and a.lq. 'lhc requests arc soiled on the priority

quetes according to what cylinder the request is accessing. The priority qticue a.lq

1. For a nice inllcmcntation of priority queues using heaps sec II.ISK791, p137-139.

L~
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Fig. 4.3.11. The SCAN Solution to the Disk Scheduler Problem

ds =cluster is create, put-rcquest. put-cxit, strategy
up-.scan=
dow n-scan = 2

rep = recordllq.uq:p-qucuef evenitl,pos~dir:intibusy hoolI
creatc =proc( retumns(cvt) V

return( rep$1 lq: pjqtaeuec[eventl$crcaitc(desccnding).
Liq :p-queucLIcvcnt $crctce(asccniding).
ptos:Odir:O.busy~falsel)

end crcate

put-rcqacst = proc(e:cvent.a:cvt)
.irg: int: = event $geL-arg(e,lI)
if arg~a.pos thena p.q tc Liclevent J$i iiscrt(a.uq~c)
eiseif arg<aLpos (lien p-qucujcenj$insert(a.lq,e)
ciseif arg = a.pos then

if a.dir= up..sc~n thien p..qtictaceventj$insert(ai.lq,c)
elseif a.dir =down..scan then p...quctcleventj$inisert(ai.tiq~e) cud

end %if
end put-rcquest

put-exit =PrOc(c-.eVeut'a-cvt)
a.busy: =raise
a.pos: =event $geL-arg(e, 1)
end put-exit

stratecgy =proc( a-.cvt)rctujrns(event)signuls( uall-cvent)
c:event
it -a.buisy&( p..qtictic[evceI i$canpcy(ai.lq )I -p..qtictieeveuitj$ernpty(a.uq))

then if (a.dir z. up-..scin)&(p-....quceveentJ$cmipty(a.lq))
then a.dir: = down-scan

elseif (a.di r =down..scin)&(p..queticjevenn I$cmpty(a.uq))
(lien .t.dir: =up...scan end

if a.dir=utp-scan then c: = p-queu[evcntj$reunovc(a.uq)
ciseif zi.dirzdown...scn then c: = p.quetcucttent$rcamwev(d.lq) end

a.busy: =I rue
returla(e)

CII( %if
signal nulLecvent
end strategy

descending = proc(c I .c2:event )returns(hool)
ret urn( event$gci-arg(e2, I )<evcut$gct-arg(e, 1))
end dececnding

ascending = pr4)c( ci .cevn)rcturnis(Ihol)
retuurrnevent~gel-arg(el 1.1)(event$gcL-arg(c2. 1))
end .ascending

end ds
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contains its requests in descending order while the priority queue a.luq contains its

requests in ascending order. The integer variable a.pos is the cylinder address where

the head is currently located. The integer variable a.dir is the direction in which the

head is currently scanning. i1lie direction determines fiom which queue requests will

be taken in the operation strategy. When dir=tipscan, then requests are removed

from a.uq: and when dir-down.scan, then requests are removed from a.lq. The

operation strategy changes the direction whenever the queue in the curre, nt direction is

empty and the queuie in the other direction is not empty. When pt~ireqtlest is called,

the request passed is inserted into a.uq, the upper queue, if the cylinder address of the

access is greater than the current position. If on the other hand the address is less than

the current position, the request is inserted into a.lq, the lower queue. When the access

address of the request is the current position, then the request is put on (he queue friom

whichever strategy currently is not removing requests. This prevents starvation of

other requests.

In the C-SCAN algorithm the head moves across the disk servicing requests in

only one direction. When there are no more outstanding requests in this direction,

then, assuming there are still some otitstanding requests, the head is moved all the way

back across tile disk to service the request with the cylinder address which is farthest

from tile current position. Figure 4.3.12 gives an implementation of this approach.

This solution is similar to one proposed in [ANDR791. "Me outstanding requests arc

partitioned between two priority queues, a.tiq and a.tq. Requests in each of these

queues are sorted in ascending order by cylinder address. "1lie integer a.pos is the

cylinder where the head is currently located. When put-reqest is called, the request is

inserted into the upper queue (i.e., a.uq) if it accesses a cylinder greater than the

current position. Otherwise the request is put oil the temporary queue, a.tq. In

strategy, reqlests are removed Ifroln a.lq. When a.tiq is empty, then if there are still

)LItslanding reqitiests, a.uq is set eqItial lo a.Iq and 1i.tq is ie-initiali/.ed as all emipty

queue.

-....

. . .- ' : • , , .., , ,..-.. - , ,;ltt ' --,'
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Fig. 4.3.12. The CSCAN So/utlion to the Disk Scheduler Problem

ds =cluister is create, put-rcqucst, put-exit, strategy
rep = record[ uq. q: p..q tcticle venIiJ,pos: int, busy:hboolJ

create = procoreturnis(cvt)
return( rep$1 ti q p...quculeventj$crcace(asccniding),

tq: p-quctijcvent$cicatc(aisceniding),
pos:Obusy: false))

end create

put requcst proc(c:event,a:cvt)
if event$gct..arg( e I )>a.pos thecn p...quicuecentl$inscr-t(a.iiq.c)
elseif evenI$get..arg(e.K l)< .. pos (lien enuu~vI~jisr~dt~)cd

end put...rcqucst f

put -exit= proc(c:cticnt.a:cvt)
ahbusy: =ralse
apos: =ei entggc-arg(c. 1)
end put.exit

strategy = proc(a: c v )ret uruis(ei en t)signa ls(rn i.11-c vent)
if -i.btusy&( -p-q ucuicleventil$cmipty(a.uiq )I - p.qucticie'cntJ$crnpty(a.tq))

then if -pqticucjevenIj$crnpty(a.uq)
then amuq: = a.tq

a.1q: = p..quicuc[cvintJ ,crcatc(asccnding)
end %ir

c:evetut: = .qticuiclcveiutj$rcm-ovc(a.uq)
ahutsy: =(true
return(e)

end %if
signal ,iullcevcnt
end strategy

ascending =proc(eI~c2:evcuit)returns(bool)
rVt arn(evenI$gct~arg(cJ 1. )<event $gct-a rg(c2, I))
end isccniding

end ds
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4.4 Five Dining Philosophers

This section examines the problem of the five dining philosophers [DIJK71J. In

this problem there are n Chinese philosophers or sages which alternate between

thinking and eating. The dining table at which they eat is set so that each sage has his

own place at a round table. Unfortunately, there are only n chop sticks which are

arranged so that between each two place settings there is a single chop stick. See figure

4.4.13. Thus philosophers with adjacent place settings cannot eat simultaneously. If

the sages are numbered 0 through (n-i) then this constraint can be restated as

(0) (i-j=±) mod n - Mx(il,r[j]).

In transforming this problem into a practical programming problem, it is assumed that

a procedure which is named "eat" is called by various processes n1umbered 0 through

(n-1). In the header of the module where eat is defined, the following declaration

appears:

create protector for procedures: eat using dp[5].

Fig. 4.4.13. The Dining Philosophers Problem

1. In Dijkstra's original statement of the problem, n = 5.
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Figure 4.4.14 presents a cluster which defines an implementation which is an optimal

solution to (0). In the cluster, a.q contains the outstanding requests and the array

a.table tells who is currently eating. Thus a.table[i]=1 if and only if philosopher i is

eating and otherwise a.table[i] = 0. The procedure "bind" needs some explanation. An

invocation of bind(p,i,s), where p is a function with k arguments, returns the function

p' %kith k-1 arguments which results from the binding of s to the ith argument of p.

Thus bind permits partial parameterization as in some extensions of ALGOL 68,

[LIN D741 and ILIND76.

Fig. 4.4.14. Opinal Sohion io ihe Dining Philosophers Problem

dp = cluster(nintl is create, put-reqtcst, put-exit, strategy
rep - recordlq:cvcnt-scq,taiblc::|rra)lit]I

cretc = procOreturns(cvt)
return(rep$ { q:cvcnt-scq$crcatc0,tuble: arra l)int$fill(0n- 1,0)})
end create

putirequest = proc(c:event,a:cvt)
evcnt-scq$nq(a.q,e)
end putrrequcst

put-xi- proc(e:eventa:cvt)
a.tablclevent$procid(e)l: = 0
end pujt.cxit

strattcgy = proc( i:clt)rettirns(evtent)sign:dis(tmillevent)
c:coent: = cot_scq~frstl(a.q,hind(opcn, 1,a.table))

except shcn empty: signal null-event end
,.11hcleieiin$procid(c): = I
cvent-scq$rcmove(ea.q)
return(c)
end strategy

opleCn prn( illN: .,rr:,,linIll~c: event )relurns4 boot)
i: int: .-:ei ct~prncid(c)
reluran((thlf(i I I)//n] = )&tbl(i-I)//n]=~ 0))

end open
end dp
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As is pointed out in [DIJK711, the above solution may result in the starvation of

one or more of the sages. A possible version of the dining philosophers problem also

requires that the soltution be fair to all requests. More formally:

(1) [(i-j)=± mod n - Mx(r[i],rj])J A Fr(r).

Figure 4.4.15 gives a cluster which results in the requests being served in a first come

first served order. This will result in very little parallelism. For instance, if the oldest

outstanding request -- i.e., the first one on the queue -- is blocked from eating, then

even though all the rest of the outstanding requests might be fiee to eat, they cannot.

Fig. 4.4.15. FCFS Solutlon to the Dining Philosophers Problem

dp = clusterln:intl is create, putrequest, put-cxit, strategy
rep z recordlq:cvciitseq,tiidc::rry[iiitl]

cre tle = procorchturns(cyt)
retu~rn(rtcp$ {q:cventsq$crctc(),tabi:arraIlintl$fill(0,n- 1,0)})

end create

pt-rcquest = proc(e:ei ent,a:cvt)

evcntseq$nq(a.q,e)
end putrequest

put_exit = proc(e:event,a:cvt)
a.tablelesentdprocid(e)]: =0
end put-exit

strategy = p)ro(a:cvt)returns(evcnt)sigiials(null-event)
e:event: = event_seq$frst(a.q)

except iiliet empty: signal null.event end

j: in(: -. eit$procid(e)
if (a.tadlelo I)//i: ( )&(a.1~hllj-I)//ni--0)

thenl ;I.tllddljl: :- I
cveLt_seq$dq(a.q)

relurn(c)

eI %if
signal null-cvcnt
end strategy

end dp

g
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A better approach to a solution to (1) is suggested by Dijkstra in [DIJK71. '[his

approach introduces the notion of very hungry. One way to formalize this notion is as

follows: A sage is hungry when his request to eat is outstanding, and a sage is very

hungry if while he has been hungry, k other sages have finished eating. Very hungry

sages are served in a FCFS manner and given absolute priority over sages that are

simply hlngry. Figure 4.4.16 gives an implementation of such a solution. The integer

array, a.status, maintains the status of the sages as follows:

a.statusli] =0 Sage i is not active.
a.status[i:-1 Sage i is eating
a.status[ij=m>0 Sage i is hungry and rn-I sages have eaten since i has

been hungry. If re>k, theu i is very hungry.

All outstanding requests are kept in the event sequence a.q. "lhe i)redicate vh is true of

an outstanding request when it is both very hungry and neither of its adjacent

neighbors is eating. l1e predicate h is true (W an outstanding request when neither of

its adjacent neighbors is eating. Note that we have made k a parameter which would

be passed by the protector-create declaration.

... .1 , t( 1 ,,,lol ,flgO t'tlIh lvI
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Fig. 4.4.16. Fair Soluion to Dining Philosophers Problem wih Very hlungry Sages

dp =cisterin intk Intl is create, put-request, put-exit. strategy
rep =recordlq :cvcnitscqsUtu~s:arraiylint]I

create =procOreturns(mv)
return(rep$ fq:evcnitsq$cratcO.status:arryill$iI(O,ni-l,O)})
end create

put-equet =proc(ecvc~nt,a:cvt)
aIsattsleen~procid(c)]: I '~
ee ntscq$nq(a.q.c)
end put-request

Iput-Cxit proc(c:event,a: cvt)
j: int: = 0
while j~n do0

if a.statusljj)0 then a.statusljl: a.statusl + I end
j:=j±1.
end %while

a.statUSleveiut$procid(c)j: = 0
end pt-xit

strategy =proc(at:cvt )re(urns(event)sigiiatls( ntILc-vcnt)
c:event: =ceci1L-scq$frstp(di.q~biitd( vh, I.a.sltus)

except Iv~heii empty:
e:= cvcnt-scq$frstp(ai.q~bitd(I, I,ai.status))

except whlen empty: siginl nuiL-vent end
end %except

a.status(eient$procid(c)I: = -I
cxcnt-scq$rcmovc(c~a.q)
retiirn(c)
end strategy

vh proc(st:arra li ntl~c: even t)ret urns(bool)
ret urn(h(st~c)&stle vent $p roc id(c)> =k)

end vii
h =proc(si::arriyfiitJ~c:event)reiurns(bool)

i: int: = eienlprocid(e)
return((stl(i + 1)/i-=-(t~-)//nj-- -)
end h

end dp
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4.5 Bounded Buffer Problem

In the bounded buffer problem it is assumed that there is a buffer which can

contain, at most, "max" items of information. A group of processes called producers

deposits information in the buffer, an item at a time, by invoking a procedure named

produce." Another group of processes called consumers removes information from

the )ufler an item at a time by invoking a procedure called "consume." The problem

is to synchronize calls to produce and calls to consume so that there is not mutual

imerfercnce. Also when an invocation of produce is allowed, the buffer must not be

I'ull: and when an invocation of consume is allowed, the buffer must not be empty.

[he predicate (a) below captures the fact that in order for consume to proceed, the

buffer must not be empty.

/(a)- V#[, O<-(O<# x[produce]- # e[consume)!I

where #Bt[ol is the number of events in fl with operation o and of type t.

'lle predicate M(a) captures formally that in order for produce to proceed, the buffer

must not be full.

M(a)-Vpf , <a -#( # e[produce]- # #x[consume]_<max)]

If no assumptions are made about the structure of the buffer, a solution must prevent

simultaneous invocations of produce and consume. Naturally two separate invocations

of either produce or consume cannot be allowed to occur simultaneously. Thus the

fillowing predicate dclines the most general version of the bounded buffer problem:

(0) Z A M A Mx(r,r').

In figure 4.5.17 is a cluster which defines a protector that implements a solution to (0).

It is assumed that in the module where the procedures produce and consume are

1. Recall from 2.2.1 that 11<a means that / is a finite initial segment ofa.

-'. . , -
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Fig. 4.5.17. Nearly FIFO Solution to thec Bounded Buffer Problem *

bb =clusteritux intl is create, put-rcquest. put-exit, strategy
produce =1I
consuire = 2
rep = rccordlq: cvent.scq,count: int~busy :booll

create =pO()returns(cyt)

return( rep$ f q:cvcnt scq$Lrcatc( ),cou nt:O,busy :false})
end create

put-rcquwst = proc(e:elent,a:cvt)
c% en tscq$nq(a.q,e)
en(I put...rcqucst V
a.husy: = false
if e~eidop(e) =produce thmen a.cotmnt: =a.count + I

elseil eveit$op(e)c) onsmne thien a.coult: =a.couInt- I end %if
end put-cxit

strategy = I)roc(di:clt)returns(eveIIt )sigiials(niulI...cvcnt)
if -a.bLuSY

then c:evcnt: =cvent-seq$frst(a.q)
if ev'ent$op(c) = p rodLIce&(a.count> =max)

then e: = cvcnt-scq$firstp(a.q,conistrncr)
elsei f event$op(c) = consuimc&(a.cou nt = max)

theni c: = cvcnt-scq$frstp(a.q,producer) end %if
e% en tscq$rcmove4c,a.q)
a.busy: = true
return(c)

end %if
except %~hen empty: signal nulL-event end

signal nuflscvent
end strategy

consumer = proc(e:event)rcturns(boOl)
ret urn(event~op(e) = consume)
end consumer

produjccr = proc(e:evcnt)rcturns(bool)
ret urn(et'cnt$op(c)= produce)

en bend producer
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defined, the Ibllowing declaration appears:

creafe proleclor for procedures: produce,consume using bb.

'he solution being implemented here attempts to serve requests on a first come first

served basis. Sometimes in order to prevent deadlock this is not possible. For

example, if a request to consume were the first outstanding request but the buffer were

empty, then the strategy would return the first outstanding produce request, assuming

the buffer were not busy. In the implementation, the boolean a.husy is true whenever

either a production or a consumption is in progress: otherwise it is hise. All

outstanding requests are kept in the event sequence a.q. The integer a.count is the

number of items currently in the buffer.

Another version of the bounded buffer problem assumes that produce and

consume can be executed concurrently. This might be the case if, for example, the

buffer were implemented as a simple array. This version of the problem is made

explicit by the predicate L

(1) Z A M A Mx(produce,produce) A Mx(consume,consume).

Figure 4.5.18 presents an implementation of a solution to (1). The boolean a.c-busy is

trilc if and only if a process is currently executing consume. Similarly a.p-busy is true

if and only if a process is currently executing produce. The outstanding requests to

produce are kept in a.ptl while the outstanding requests to consume are kept in a.cq.

Tlhe integer variable a.count is the number of items in the buffer. For a proof, of the

correctness of this implementation see 4.6.3.

i-I
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Fig. 4.5.18. Solulfion Io Mei Bounded Buffer Problem

bb=cluterjmax:int] is create, put-rcqucst, put-exit, strategy
produce =I
consume = 2
rep = recordf pq,cq: cvcnt-seq,couInt: int,piusys..busy: hooll

create= proc( returns(cvt)
ret urn( rep$ I pq: even tscq $c reat( ).q: even tseq $create().

Coilnt:Op..btsy: :alse,cjbusy: false))
end create

put-rcqucst =proc(e:eient~a:cvt)
if ei'eni~op(e) =produce Mlen even tscq $nq(a.pq,c)

elseif event$op(c)=cnun Cl then lef vcntscq$nq(a.cil,c) end %if
enl puL..rcqucst

puL-cxit =proc(c: event,i: cvt)
if event$op(e) =produce

then a.count: = a.count+ I
a.p..busy: = false

elseif mint$op(e) =consumc
then a.couifl: = a.count- I

a.c..husy: = falIse

colid %if
endt pLILCxit

Strategy =proc(ai.citt)reluirris(evci,( )s;ignails(nullecvcnt)
if -ak.c-thusy&(O<a.con&-event-seq$empty(a.cq)

tlien e:esent: =even tseq Sfrst(a.cq)
evcm...scq$dq(a.cq)
a.c..b usy: = true
return(c)

elseif - a. p.busy&(a.cou n K nax)& -even Lseq $em py(a.pq)
then c:ceent: =ceventseq$trst(a.pq)

even...seq$dq(a.pq)
a.p..busy: =truse
ret urn(e)

end %if
signalu niull...vent
end straegy

endt bb
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4.6 Proor or Inplementation Correctness

This section is devoted to the development of a methodology for verifying the

correctness of implementations. The way in which protectors have been defined makes

it possible to use the basic techniques of the Floyd-Hoare partial correctness method t1

[Fl.OY671 in order to verify many properties of a protector. Sonic properties require a

different approach. Often these properties can be verified using the intermittent

assertion method proposed in [BURS74] and [MANN78]. III the first subsection a

brief outline of an approach to verifying correctness is given. "hlien several examples

are examined.

Before giving an outline of the approach it is useful to clarify the goal of the

nlcthodolog.. The goal is to make possible the proof that the behavior of the guardian

as implemented by the protector is a subset of the set of sequences satisfying a problem

specification. In order to accomplish this goal, the methodology first shows that at any

given point in execution, the protector's state, as represented by an object of its

synchronization type, accurately encodes all the important information about the

history of events which have occurred thus far. T'hen the methodology must show that

the state of the protector implies both that nothing bad happens and that certain good

things do happen. ihus the goals here are somewhat different from those of a

methodolog) for verifying the correctness of a standard sequential program. Such a

mcihodology need only prove that, given an input, the program will terminate with a

gi% en otitptmt. 'llere is no question of behavior over continued operation.

4.6.1 An Outline or the Methodology

Following I Imnport [I .A M 781 the methodology separates specilications into two

categories:

f
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i) Safety properties -- i.e., those specifications which state that
something bad cannot happen; and

ii) Liveness properties -- i.e., those specifications which state that
something good must happen.

In general, consistency and priority constraints are examples of safety properties while

fairness constraints are examples of liveness properties.

Ik)finition 4.6.1.1: A behavioral invariant is a predicate which is always true after

the execution of the synchronization create operation whenever the protector's process

is not executing an operation of its synchronization type.

Because of theorem 3.3.3, we can prove that a protector satisfies a continuous predicate

P by proving that P is a behavioral invariant. This is accomplished b) showing that P

holds immediately after the execution of the create operation and that for each

additional synchronization operation, if P holds before its execution, it will hold after

its execution. if P is a simple predicate, then by theorem 3.4.3 it is sufficient to prove

that 13 is true after the create operation and that P remains invariant with the execution

of strategy. Sometimes it is useful to restate a predicate P in the form Vl[P<a--Q(O)]

where Q is a predicate that tests only information which is encoded by tile

synchronization type. By theorem 3.4.4, P can be shown to be a behavioral invariant

simply by showing that Q is true after the create operation and that Q remains

invariant with the execution of strategy. Notice that behavioral invariants are very

similar to the invariant assertions of the Floyd-Hoare method [I.OY671 for

establishing partial correctness of simple sequential programs and can therefore be

proved by the sinac techniques.

To establish ilat a protector satisfies a liveness property is more difficult since

liveness properties are not continuous. Insleadl o " establishing behavioral invariants,

we must prove predicates of the form: "If the point of execution is at point I. of tile

cluster with state Q, then eventually control will be at point IL' with state Q'." Vibesw

assertions are proved by induction on the state of the protector. "1ibis technique is
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precisely the method of intermittent assertions which is put Ibrth in [BURS741 and

[MANN78].

Below we give a brief outline of how to establish the correctness of a protector:

A) First the specification is decomposed into its component predicates.

B) The following is done for each.

1) Rephrase the predicate in terms of the protector state.

2) Establish that the portions of the state mentioned in the
rephrasing actually encode the proper information about
the past history of events.

3) Depending on whether or not the predicate is continuous,
do one of the following.

a) If it is continuous, prove it to be a
behavioral invariant.

b) If it is not continuous, prove it true using
the techniques of intermittent assertions.

In the following subsections we examine several examples in which the above

outline is followed.

4.6.2 Correctness of a Solution to (he Readers/Writers Problem

In this subsection, the protector described in figure 4.6.2.19 is examined and is

proved to be a solution I to the predicate

1. This implementation was discussed previously in 4.2.

LI
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(0) Mx(r[writej,r')AFr(r).

We start by examining the predicate Mx(r[write],r'). Note that it can be rewritten

as

Vp#<a-((IB(p,write)I = OvIB(t,read) =0) A IB(fl,write)<1)]. 1

From theorem 3.4.4 we know that we need only verify that

(1) ((I B(a,write)I = OVIB(a,read) = 0) A IB(a,write)1<1)

is true after the execution of create and is an invariant of the execution of strategy.

An examination of the cluster rw reveals that a.reads and a.writes presumably are

the number of busy read and write requests respectively. Thus the predicate (1) can be

rewritten in terms of the protector's state as

(2) [(a. reads = O)V(a. writes= 0)1^[a.writes< I].

In order to show that (2) is actually the same as (1) it must be shown that a.reads

and a.writes actually do represent the number of busy requests -- i.e., that the following

are behavioral invariants:

(3) a.reads = # e[readl- # x[read]

(4) a.writes = #e[writel- #xlwritel

Further examination of rw reveals that the event sequences a.rq and a.frq must

contain the outstanding read requests and a.wq must contain the outstanding write

requests. To make certain of this, the following predicates must be shown to be

behavioral invariants:

1. For a finite set A, JAI is the humber of elements in A.
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Fig. 4.6.2.19. Fair Solutlion to the Readers Priority Readers/Writers Problem

rw = cluster is create, put.rcquest. put-exit, strategy
read =1 I
write = 2
rep = recordlrq. wq, frq: cvcnt-scq,w rites, reads: in(]

create = procOrewurns(Mv)
Iret urn( rep$I rq :ccnt-scq$crcatcO),wq :cvcnt-seq$crcatc( ). fr-:eccnLsq$crcatc0.

writes:0rceids:01)
end create

put-rcquscs= proc(e:evcnt.a:cvt)
2if evnt$op(c) =read

3 (lien if evcllrscq~cmnpty(a. wq )&a.w rites = 0 tlien cvcntscq$nq(a.frq,c)
4 else evew~scq$nq(a.rq,c)

end %if
5 elseif cvcnt$op(e) = write
6 tlien c~ cntscq$nq(a.wq,e)

end %if
end puL-rcqucst

put-exit = proc(c:cienI.a:cvt)
7 if o ent$op(c) = read
8 (lien a.rcads: = a.rcads-I
9 elseir evvnt$op~c)= write
10 thien a.writcs: = a.writes- I
11 a. frq: =a. rq
12 a.rq: = event-seq$crcate()

end %if
end put.exit

strategy proc(a:cvlrcturnis(cvciiI )signals(iiill-evcnt)
13 if - eve ciiseq$t inpty(a. frq)&a.w rites = 0
14 then c:evcnt: = evcntscq$frst(afrq)
Is evcntscq$dq(a.frq)
16 a. reads: = a. rcads+ I
17 refurn(c)
18 elseil '-even tseq$ciiipty(a.wq )&((a. rcads =0)&(a.wri tcs 0))
19 then c:even(: =eventscq$frst(a.wq)
20 cvent..scq$dq(a.wq)
21 a.writes: .i.writcs + 1
22 return(e)

end %if
23 signal nliL-event

end strategy
edrw
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(5) (a.rq)U(a.firq)= W(a,reads)'

(6) (a.wq) = W(a,writes)

Now if we assume that every process which invokes either read or write will eventually

return, the predicate Fr(r) can be rephrased as follows:

(7) "Ifa request r is ever on a.rq, a.frq, or a.wq, then eventually r will be

be removed and returned by the operation strategy."

With this introduction, we continue in more detail. First we prove that (3) is a

behavioral invariant. Surely (3) is true immediately after the execution of create when

a.reads= 0 and no events have occurred. The execution of puLtrequest neither changes

the number of enter and exit events or a.reads. The execution of put-exit when e is a

read decreases a.read by I (line 8) but also increases #x[read] by one. If e is a write

then none of the values pertinent to (3) are changed. Thus if (3) is true prior to

execution of put-exit, it will be true afterwards.2 The execution of the operation

strategy can increment a.reads (line 16) but only by increasing #eread] (line 17),

assuming a.frq contains only read requests. Also #e[read] can be increased only if

a.reads is incremented, assuming that a.wq contains only write requests. Our

assumptions about a.frq and a.wq can be proved by showing that

(8) (a.rq)U(a.frq)gW(a,read)

(9) (a.wq)cW(a,write)

are behavioral invariants. A quick examination of rw shows this to be so. Thus (3) is a

behavioral invariant. In a similar way it can be shown that (4) is also a behavioral

invariant.

1. The expression (a.rq)U(a.f'q) is used to denote the set of all requests in either a.rq
or a.frq.
2. Note that this could have been done much more formally by using the standard

techniques used by Floyd for proving invariant assertions.

I.
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Now (2) is certainly true immediately after the execution of the create when

a.reads and a.writes are both zero. So we need only show that if(2) holds prior to the

execution of strategy, it will hold afterwards. This is easily done using tile standard

techniques used by Floyd in proving invariant assertions. 'Ilerfore, the protector

defined by rw is a solution to Mx(r[writel,r').

At this point we turn our attention to Fr(r) which has been rewritten in terms of

the protector's state in (7). First we must establish that (5) and (6) are behavioral

invariants in order to show that (7) is really the same as Fr(r). That (6) is a behavioral

invariant is easy to verify. Part of (5) is also easy (see (8) above). It is more difficult,

however, to show that every time a request is removed from a.rq or a.frq a read is

allowed to enter. This is because if a.fiq is not empty when lines 11-12 are executed,

implicit removal of requests occurs. If we can show that

(10) (a.w rites= 0)v(em pty(a.frq))

is a behavioral invariant, then we will know that lines 11-12 will never be executed

unless a.frq is empty. Verifying that (10) is a behavioral invariant is again

straightforward. 1 Since (10) is a behavioral invariant, we know that every time a

request is removed from a.rq or a.frq a read is allowed to enter. Thus (4) is a

behavioral invariant.

Finally we are in the position to prove that (7) is true. This will be done by first

proving that every request put on a.frq is eventually removed and returned by strategy.

Then it will be shown that every request on a.wq is eventually removed and allowed to

continuc. Last to be shown is that if a.rq is ever non-empty, eventually all requests on

a.rq will be put on a.frq.

1. In light of the truth of(lo) the predicate in the test in line 13 is redundant.
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Let us suppose that e is the first request on a.frq. Note that e can be removed

only on line 15 in strategy. Now from the semantics of protectors and the ,t that each

of the operations of the cluster rw always terminates, 1 we know that eventually strategy

will be called and e will still be the first request on a.fiq. Thus when the test at line 13

is executed, tile branch (14-17) will be taken and e will be removed and returned to tle

protector. Thus by simple induction on event-seq it is possible to show that any event

in a.frq will eventually be removed and returned by strategy.

Next we examine a.wq. Suppose that e is the first event on a.wq. Now there are

two cases: i) a.writes=0; or ii) a.writes= 1. In the second case, the write which is in

the data base will eventually leave the data base and a.write will be set to zero, then we

will be in the first case. From this point on no request will be added to a.frq until

either a.wq is empty (line 3) or another write leaves the data base (line 10). In either

case no icqletS will be added to a.fiq until e is removed from a.wq. Previously we

showed that every request must eventually be removed from a.frq. Also we assumed

that every request would return from the data base. T-herefore, eventually strategy will

be called with a.reads=0 and a.frq empty and with e the first event on a.wq. At this

point the elseif branch (line 18) will be true and lines 19-22 will be executed resulting

in the reloval of e from a.wq. Again by induction, it can be shown that if e is ever in

a.wq, eventually it will be removed.

Last of all we look at a.rq. Requests are removed from a.rq only on lines 11-12

and all are placed on a.frq which, from previous arguments, imIplies they will

eventually be returned by strategy. Thus we need only show that if a request is ever

added to a.rq, eventually lines 11-12 will be executed. Reqmests are put on a.rq only ol

line 4, mhen either a.wq is not empty or a.writes:- 1. In any case either a.writes- I

now, or a.writes will be equal to one in the future. 2 We assumed that a write in the

1. Since none of the operations contains any loops, this is immediate.
2. We know this from our plevious argullents about a.wq

......................
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data base wilt always eventually exit the data base. Thus eventually an exit event will

be passed to puLexit arnd lines 11-12 will be executed. Thus (7) is true. Therefore, we

have established that the protector defined by rw in figure 4.6.2. 19 is a solution to (0).

4.6.3 Correctness of a Bounded Buffer Solution

In this sub-section we show that the protector defined by the cluster bb given in

figure 4.6.3.20 is a solution1 to the predicate

(0) Z A M A Mx(produce~produce) A Mx~consume,consume),

where

Z(a)= VIpp<a -40< #x[produceI-# #e[consumeDJ

N(a)= V141J<a -(# #e[produceI- #x[consLumeI)-5max].

We will use a function t:Bool-integers to simplify the expression of some of the

predicates uised below. We define

(true) = 1, and

iKfalse) = 0.

After some examination of the definition of the cluster bb. it is obvious that

a.count is supposed to represent the number of items currently in the buffer while

a.p-.busy and a.c...busy indicate whether there are any producers or consumers,

respectively, accessing the buffers. We can make this explicit by proving the following

to b e b e h a v io ra l in v a ria n ts . - x c n u e
(1) a.coulnt = # x[produceJ-#xcnue

(2) ,(a.p..btisy) = #e[producel- #x~producej

i. This solution was discussed earlier in 4.5.
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Fig. 4.6.3.20. Solution to the Bounded Buffer Problem

bb =cluslcenhaxAMin is create, put-request, put-exit, strategy
pro~duce I
consume = 2
rep = reco rd[pqxcq:even tscqcou nt: int, pbusy,c.busy: booll

create = procOrcturns(cvt)
I ret urn( rtp$ f pq: cvcn~scqSc reateO),cq: even tscq$c rcareo.

count:0p-busy: falscec..busy: false))
end create

put-rcqucst =proc(e:cvent,a:cvt)
2 if eventdop(c) =produce then cvent-scq$niq(a.pq.c)
3 elscif endmtop(e) =conswmne then cv'cnt-cq$nq(a.cq,c) end %if

end put-requcst

put-cxit = proc(c:cvent.a:cvt)
4 if evenI$op(c) =produce
5 theni a.coiint: = a.count+ 1
6 a.p-.busy: = raise
7 ciscir event$op(c) =consume
8 then a.coutan: = a.count- I
9 a.c..busy: = false

end %if
end put-exit

stramtegy proe(a:cvt)returnis(eteiit )signals(iull-event)
10 if .-a.c-1~isy&(0(a.couint)&-cvenL-scq$cmpty(a.cq)
11 (hen c:event: = cenLseq~frst(a.cq)
12 cveiit-cq$dq(a.cq)
13 a.c-.busy: = true
14 return(c)
15 elseif -a.p-bhsy&(a.cotintrniax)&-evenLscq$empty(a.pq)
16 theni e:event: = ecn(scq~frst(a.pq)
17 evcnt-seq$dq(a.pq)
18 a.p..busy: =true

19 rcturn(c)
end %if

20 signal nuilLevent
cmid strategy

end bb
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(3) 4(a.c.busy) = #e[consume- # xjconsumej

Showing that (1) is a behavioral invariant is straightforward. To show that (2) and (3)

are behavioral invariants we must first show that

(4) a.pq = W(a,produce)

(5) a.cq = W(c,consume)

which is easily done. Note that by establishing the truth of (2) and (3), we show that

the protector is a solution to

Mx(produce,produce) A Mx(consume,consume).

Thus we need only show that the protector is a solution to ZAM and we will be

finished. From theorem 3.4.4 we know it is sufficient to show that the following two

predicates are true after the create operation and are invariants of the execution of

strategy,

(6) (0< # xlproducel- #ejconsumej)

(7) (# e[pioducej- # x[consurne)<max.

Using (1)-(3) and simple algebra, we can rewrite (6) in terms of the protector's state as

follows,

(8) 0<a.count- Ka.c.busy).

Similarly we can rewrite (7) as

(9) (a.pbusy) + a.count<max.

After create, (8) and (9) are certainly true. Now we need only show that if(8) and (9)

are true before the execution of strategy, they will be true afterwards. This is easily

seen to be the case. Therefore, bb defines a protector which is a solution to (0).
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4.6.4 Remarks on the Methodology

In this section our understanding of the semantics of protectors has been applied

in order to develop a method for proving the correctness of protectors. The examples

of correctness proofs, although somewhat tedious, demonstrate that the method

actually does lead to a more thorough understanding of the implementation. For

instance, the fact that the conjunction in the if statement of the cluster rw (line 13,

figure 4.6.2.19) was redundant was certainly not obvious when the code was first

written. Thus in addition to being used to verify correctness, the understanding gained

through the proof of behavioral invariants can be used to modify and optimize the

code. This section has placed all its emphasis on proving that a solution satisfies

consistency, priority and fairness constraints. It is, however, also possible to prove that

a solution to a simple predicate is optimal. The discussion about optimal solutions in

chapter 3 suggests an approach.

From theorem 3.4.5 we know that to show that a protector is an optimal solution

to a simple predicate P, we must prove that whenever the operation strategy signals

null-event, then either there are no outstanding requests, or returning a request would

violate P. As an example, consider the weak readers priority solution to the

readers/writers given in figure 4.6.4.21.1 Assume that we have already proved that a.q

actually contains all the outstanding requests and that the following are behavioral

invariants:

(0) a. reads = #e[read]- #x[read]

(1) a.writes= #e[writel-#x[writel

(2) [(a.reads= O)V(a.writes= 0)]A[a.writes5 <11.

We want to prove that whenever strategy signals null-event, then returning any

outstanding request would violate one or (0-2). Now null-event can be signaled only

1. 'ibis solution was discussed previously in 4.1.
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Fig. 4.6.4.2 1. Weak Readers Prioriij' Solutlion to thRe Readers/Writers Problem

rw = cluster is create. puL-rcqUCSt. put-exit, strategy
read = I
write = 2
rep = rcc)nlitq: cvent-scq~writcs.reads: int]

create = procOreturns(cwt)
return(rep$ I q : evenLseq$L rcaIuc(.writcs:0.rcads:0j)
cod create

puit-..rcquest = p~roc(c:eielt,a:cvt)
2 eC%-nLsCq$Iq(a.q.C)

end p)1t-rcquest

3 if usentSoplc)= wkrite then aLwrices: =a.writcs-I
4 elseir eientsop(e)= read thien a.reads: =a.rcads-l cod

end I)IILCxit

strategy =pric(a :ci t)returns,( cvcnt )signaits( iilLcvcnt)
5 if (a.rcaids zO)f(.writs =0)
6 1tiVIS C:eenI: = ee)...e~i~aq
7 if eveitolp(e) = write thten a.writcs: = a.writcs + I.
8 ekevir eveant$Iop(c) = read thent a.rcads: =a.rcads + I cnd
9 event-eq$dq(a.q)
10 return(e)
I I eiscir a.wries = 0
12 then c:event: = cvcnt-scq$trstp(a.q~readcrs)
13 a.recads: = a.rcads+ I
14 evcnt-scq$rcmovc(c~a.q)
Is return(e)

end %if'
16 ecept wni empty: signal nuil-evet end
17 signal nullcvoit

end stratecgy
rceaders = proc(c: e'ient returns(hool)

retlurn(evintol(c) =read)

enda rceadcrs
end rw
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from line 16 and line 17. If strategy signals null-event at line 17, then a.writes= 1 in

which case no request can be returned without violating one of(O-2). If strategy signals

null-event at line 16, there are two possibilities: i) there are 1no outstanding requests;

or ii) there are no outstanding read requests and a.reads>0 in which case no write

requests can be returned. Thus whenever null-event is signaled, either there are no

outstanding requests, or returning a request would violate one of (0-2). ''herefore, the

cluster rw defines a protector which implements an opuimal solution to Mx(r[writejr').

4.7 Conclusions

This chapter has demonstrated how the notion of a simple polling guardian can

lead to a useful and practical mechanism for implementing solutions to

synchronization problems. Below, the advantages of this approach are discussed.

The variety of solutions which were implemented in the previous sections

testifies to the expressiveness of the mechanism. All the implementations are direct

and fairly simple to follow. For example, in the fair solution to the dining philosophers

problem, it was straightforward to implement Dijkstra's suggestion of having very

hungry philosophers. One can easily imagine the complexity of the equivalent

implementation using semaphores.

Synchronization types are easy to write. This stems partly from the ability to

separate the implementation of priority constraints from the implementation of

consistency constraints. The ability to use many different data types for maintaining

the currently outstanding requests makes implementing priority constraints relatively

easy. For example, suppose that we wished to implement a solution to

(0) Mx(r[write],r') A LIFO(r).

where LIFO(r) is a predicate stating that all outstanding requests must be serviced in a

last conic first served manner. Such an implementation can be readily obtained from

the FCFS solution given in figure 4.2.6, simply by changing the type of q (which

contains the outstanding requests) from evenLscq to a type called evenLstack. The
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operations of event-seq: nq, frst, and dq would by replaced by the corresponding

operations for event-stack: push, top, and pop. Although it is probably possible to

implement a solution to (0) with monitors, the implementation would undoubtedly be

quite complicated and hard to understand. The complexity of the monitor solution

results from the inflexibility of condition queues. The above example also suggests

that it is easy to modify a synchronization type in order to con fonn with small changes

in the specifications. As another example, recall from 4.2 how the implementations of

the solutions to the readers priority and writers priority versions of the readers/writers

problem were very similar. Once the readers priority version (figure 4.2.8) was written,

it was simple to modify it to obtain the writers priority version (figure 4.2.9). Thus it is

.en that protectors arc easily modified in order to meet changes in specification.

Protectors support modularity in several important ways. For example, when a

synchronization type is implemented by a particular cluster, it can be used to define

many separate protectors each coordinating the accesses to distinct sets of procedures.

Thus a synchronization type encapsulates a certain guardian behavior. The cluster

implementing the synchronization type can be viewed as implementing a
"synchronization abstraction." The use of a "synchronization abstraction" in a

protector-create statement is completely separate from its implementation. This is

quite different from both monitors and serializers where a new monitor or serializer

must be written for each new application.

One of the criticisms often leveled at monitors is that they do not actually isolate

the resource. Thus if a monitor is used with no additional structure, correct results

depend on proper invocation of the monitor operations before and after each access.

Unsynchronized access is, however, still possible. Protectors do not have this problem

because all invocations are automatically modified in order to guarantee that only

synchronized accesses occur.

'" " SIA
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In the previous section the verification of correctness was discussed. Because the

semantics of the protector is based on the simple guardian, many of the theorems of

Chapter 3, which help characterize the nature of solutions, can be used in the

verification of correctness. The proving of behavioral invariants, in addition to being

useful for verification of correctness, also helps increase understanding of an

implementation and occasionally points out optinizations which can be made. For

example, in proving the correctness of the fair solution to the readers priority version

of the readers/writers problem, it was discovered that the predicate of a test was

redundant. Thus this test could be simplified. Therefore, we see that an advantage of

protectors is that they have a precise, yet simple, semantics. This helps in reasoning

about implementations.

Although the verification methods discussed in the previous section are

important, it is also important to be able to debug programs through the actual

execution of code. Typically, debugging multi-processing systems is very difficult

because it is often practically impossible to force a certain interleaving of events to

occur in order to see the implementation's response. Thus even though a solution

might supposedly be designed to handle a certain situation, that situation might never

occur during testing. Even when a bug is found, it is usually impossible to recreate the

problem. With the protector approach this is not the case. For example, suppose we

had a synchronization type s which we wanted to test. It is a simple matter to code the

protector procedure of figure 4.1.2.4 with the following changes: Replace the in-queue

by an input stream from a file; replace synchronization by s; remove the allow

command: and add code to log all events on a second file. (See figure 4.7.22.) Now

any possible interleaving of events can be written to the input file. The procedure

tesLs can then be invoked. After the return from tesLs, the output file needs only to

be examined to see if the synchronization type s is actually handling the test situations

correctly. Ihus it is quit simple to test synchronization strategies.

I7
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Fig. 4.7.22. A Procedure for Testing a Synchronization Type s

teSL-s = proc()
% code for opening the input ile and log ile should go here.
alpha:s: = s$create()
while true do

c:evcnt: = evenLstrcam$get( Input-File)
eventjircam~put( I og-.Filee)
if event$typeoIe) = "request"

then s$puLrequest(e,alpha)
eiscil' cvent$typc..oie) =*'exit"

then s$put..exit(e~alpha)
end %if

c: =s$strategy(alpha)
except when nulL-event: continue end

cvcnLstrcarn~put(Log-Fileme)
jtlow(e)
end %while

except when end-offile: end
end tesLs
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5. Summary and Directions for Future Work

This chapter summarizes the contributions of the thesis and suggests areas for

further research. There are two sections. The first reviews how the polling guardian

has provided a framework for understanding synchronization. The second section

addresses areas in which further work would be useful.

5.1 Summary

The main contribution of this paper is the notion of a simple polling guardian.

The polling guardian has provided a framework Ior the discussion of synchronization

problems and their solutions. Within this framework it has been possible to express

solutions, examine behavior of solutions, define "good" or optimal solutions,

characterize solutions to certain classes of predicates, and derive an approach for

implementing solutions in actuai computer systems.

By using polling guardians to describe solutions derived from standard

synchronization constructs, we were able to discover certain idiosyncratic behavior

which is implicit in these mechanisms. For example, when a monitor solution to the

readers/writers problem was examined, it was found that on certain occasions,

monitors ignore processes which are trying to exit from the resource. When the

monitor solution was stated in terms of a polling guardian, the cause of and remedy for

this undesirable behavior was self evident: The problem occurred because the output

predicate was not the constant true; and the temedy was simply to make the output

predicate true.

Defining the simple polling guardian as a functional strategy for a player of a

game had important consequences. When a simple polling guardian was seen solely as

a functional strategy, it was possible to prove several useful theorems. These theorems

are interesting because they show that a class of predicates (i.e., the simple predicates)

always have optimal solutions. The definition of simple predicates can, therefore, be

ft. - ______________________
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used as a guide in writing reasonable specifications. Other theorems characterize the

solutions of simple predicates. These theorems are useful in checking whether or not a

particular guardian is indeed a solution to a specification.

A "good" or optimal solution to a specification was defined to be a solution

which always tries to keep the resource as busy as possible. It was easy to formalize this

definition in terms of the simple polling guardian. By stating that a solution to a

specification 11 must be optimal, the pathological solutions arc eliminated. Among the

solutions eliminated are those which do not allow concurrency when they can.

In the development of an actual synchronization mechanism, the framework

provided by earlier chapters was extremely useful. We were able to define the

semantics of the protector directly as a simple polling guardian. This is in direct

contrast with the usual method or defining new synchronization constructs which

consists of implementing them in terms of older, presumably well understood,

constructs. Unfortunately, the older construct often is not understood. That the

protector is given a simple non-operational semantics has been useful. The theorems

characterizing solutions are immediately applicable to verifying the correctness of

implementations because the semantics of the protector is based directly on the simple

polling guardian.

The main advantage of the protector approach to synchronization is that it

separates the act of using a synchronization strategy from its implementation. Thus if a

programmer is writing a module implementing the procedures p] .. ,pn and he decides

that the accesses to these procedures should be protected, he can write

create protector ror procedures: pl,...,pn using dt,

and give a specification for the synchronization type dt. The specification can be

written as a predicate otn event sequences. I aier a cluster iiy be written which

impleilmnts a lype tha atisfies the specilicalion. 'Ilie distinction between a

synchronization strategy, as emblied in the synchronization type, and its

implementation eases program development, modilication, and maintenancc.

.o,4
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In conclusion, the paper has provided some insight into the problems which arise

in attempting to synchronize accesses to a resource. It is hoped that, in addition, the

protector approach to synchronization will be of use to programmers in that it provides

a structured framework for solving complex synchronization problems.

5.2 Future Research

There should be a formal language for expressing predicates on event sequences.

ThLi: language should be defined in such a way that the expressible predicates are

precisely those which have certain useful properties (e.g., continuity).

Better methods are needed for verifying solutions to fairness properties. A

possible approach is to examine all exclusion constraints P for which there exists a

priority constraint Q such that all optimal solutions to PAQ are fair. For example,

most interesting exclusion constraints P probably have the following properties:

i) P is simple; and
ii) For every history a, P(a)A(B(a)= 0)A(rEW(a))-P(ae(r)).

For such a predicate P it can be shown that any optimal solution of PAFIFO(r) must

also be a solution to Fr(r). Note that verifying a guardian G as an optimal solution to

PAFIFO(r) is very likely to be easier than directly verifying that G is a solution to

Fr(r).

In describing protectors, we have stated that an object of the synchronization

type encodes the important aspects of the past history. An interesting question is how

much information about the past history must be encoded in order to solve a given

synchronization problem. Being able to answer this question would provide a space

complexity measure of the synchronization problem. Another similar question asks

what is the necessary time complexity of the operations puLrequest, put-enter, and

strategy to solve a given synchronization problem. As synchronization problems

become more complicated, the answers to the above questions will become more

era
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important.

In many of the synchronization problems there seems to be a trade-off between

the "responsiveness" and the "throughput" of a solution. For example in the

readers/writers problem, the FCFS solution (figure 4.2.6) is very "responsive" to

requesters but has much less "throughput" than the readers priority solution (figure

4.2.8) which can starve requesters. The fair solution (figure 4.2.10) is not as
"responsive" is the FCFS solution but it has better "throughput." When compared to

the readers priority solution it is seen that the fair solution is more "responsive" but has

worse "throughput" It would be interesting to be able to fonralize the notions of
"responsiveness" and "throughput" and to be able to make explicit their relationship

given any predicate.

A generalization of the protector mechanism that could handle synchronization

problems which fall outside the resource guardian model would be useful. A way to

proceed is suggested by a carefil examination of the request, enter, and exit events

when viewed as messages sent to and from a polling guardian. A request event is a

message that requires a response from the polling guardian. In the resource guardian

model this response is an enter message. Thus enter events are a special case of the

general class of response events. An exit event can be thought of a message sent to the

guardian for which no response is necessary. More generally an exit event can be

thought of as just a notice sent to the guardian. Note that every response statement

must be preceded by a corresponding request statement but that notice events can

occur independently. Now in the more general framework of sequences of request

response, and notice events, it is a siml)le matter to extend the protector mechanism to

handle more general problems.

One complaint that can be made about the protector mechanism is that for a

particular solution it concentrates all the duties of synchronization into a single and

possibly vulnerable process. Thus the mechanism is not suitable for providing a robust

implementation of a solution in a distributed system. One possible approach to slving
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this problem is to have n separate protectors guarding a set of procedures instead of

just one. In such a case, before an activity could invoke a protected procedure, it

would put requests on the input queues of all n of the protectors. The process would

then wait until all n protectors had re-activated it. If any of the protectors failed, the

other protectors would detect this via a time-out mechanism. The detection of a failure

would cause some sort of clean-up of the failing protector and possibly the creation of a

replacement. For such an approach to work, the progress of each protector would have

to keep pace with the others. Although the sketch of this approach barely hints at the

problems inherent in it, preliminary study suggests that the approach is worth further

investigation.
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