AD=AD91 015 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COHPUTE--ETC F/6 972
A SEMANTICS OF SYNCHRONIZATION.(U}
€ R SEAQUIST NDDOIB-?S-C—OGGI

SEP 80
UNCLASSIFIED MIT/LCS/TM-176

2

. =

22
L2 fas nie

A MASSACHUSETTS

"YIE INSTITUTE OF
(1 TECHNOLOGY @

' LABORATORY FOR
COMPUTER SCIENCE

MTIT/ICS/T™M-176

ADAO91015

A SEMANTICS OF SYNCHRONIZATION

s 0CT 301980 !
Carl R. Seaquist -_r‘ :

This research was supported in part by the Advanced Research
Projects Agency of the Department of Defense monitored
by the Office of Naval Research under contract N00014-75-C-0661
and in part by the National Science Foundation under
grant MCS78-17698

DDC FiLE copy,

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Gt aditian i Sl o PRI SR o N T
ant ! il il

)
af. ot

Aty At

| O

@U A Semantics of Synchrm:.zatmn ?

Y CLASSIFICATION OF THIS PAGE (When Dete Entered) @—/V‘QS'/eI’ S "//’@5/51 /

-

REPORT DOCUMENTATION PAGE

READ INSTRUSTIONS
BEFORE COMPLETING FORM

2. GOVT ACCESSION NO.

ADHAQQLGAS

3. RECIPIENT’S CATALOG NUMBER

S. TYPE OF REPORT & PERIOD COVERED

M.S.Thesis-Auqust 1980

_—

I3 AUTHOR(s)

Carl R. [Seaquist /

6. PERFORMING ORG. REPORY ;UN'EQ

NYG914-75-C~P661 ,
F -MCs78-17698

9. PERFORMING ORGANIZATION NAME AND ADDRESS
ratory for Computer Science
545 Technology Square ‘
Cambrdige, MA 02139

—

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

ARPA/Department of Defense / Program Director
1400 Wilson Boulevard / Office Computing 0
Arlington, VA 22209 i

1. CONTROLLING GFFICE NAME AND ADDRESS /NOF /ASSoclate (; N

Sepraniioudd
. NUMBER OF PAGES

113

. MONITORING AGENCY NAME & AODDRESS({f different from Controlling Otfice)

. Unclassified

15. SECURITY CLASS. (of this report)

Sa, DECLASSIFICATION/ DOWNGRADING
SCHEOULE :

ONR/Department of the Navy @)

16. DISTRIBUTION STATEMENT (of this Repori)

Information Systems Program
Arlington, VA 22217

';‘his t.:locment has been approved for public release
its distribution is unlimited

and sale;

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, i different from Report)

18. SUPPLEMENTARY NOTES

\

19. KEY WORDS (Continue on reverse side ! necesaary and identify by block number)

\ |

y and | ty by block number)

20. A&CT (Continue on reverse side i

This paper presents a rigorous framework in which to discuss the synchronization

necessary to coordinate accesses to a resource. The framework, among other things,
provides a method for specifying concurrency and forms the semantic basis of a
synchronization mechanism which avoids certain unfortunate characteristics of
monitors and serializers. Synchronization is viewed as being managed by a resource

DD . on' W73

KOITION OF 1 HOV 68 1S OBSOLETE
SECURITY CLASSIFICATION OF THIS PAGE (When Date
24O96 48 M
A:_% NP R IR w0 s

3

SLCUMTY CLASHPICATION OF THIS PASE(When Dave Batered)

0‘ ' ’
guardian. A synchronization problem is defined as a predicate on event scquences.

‘The interaction of a guardian and the rest of the system is formalized in terms of a two
person game. This formalization results in precise definitions of guardian and
guardian behavior. The notion of a "good” or optimal solution is defined, and the
solutions to certain classes of synchronization problems are characterized. An abstract
description of the genceral actions of a guardian is given. This general description, with
some restrictions, forms the basis of a simple synchronization mechanism for actually
implementing solutions. The mechanism is given a rigorous semantics based on the
definition of guardian. ‘This facilitates the verification of correctness. Many examples
of the use of the mechanism are given and its advantages are discussed.

7" \\‘\

\;

e e e R 0 g R S AR SN "

N

A Semantics of Synchronization

by

Carl R. Seaquist

26 August 1980

Accession For

NTIS GRA&I
DDC TAB
Unannounced

Justification

By,

Distrirutioc-/

e sty
&vailctt v Codeg
Availand/or
Dist. special

A

® Massachusetts Institute of Technology 1980

This rescarch was supported in part by the Advanced Rescarch Projects Agency of the
Department of Defense monitored by the Office of Naval Research under contract
NOOL-75-C-0661 and in part by the National Scicnce Foundation under grant

MCS78-17698.

Abstract

This paper presents a rigorous framework in which to discuss the synchronization
necessary to coordinate accesses to a resource. The framework, among other things,
provides a method for specifying concurrency and forms the semantic basis of a
synchronization mechanism which avoids certain unfortunate characteristics of
monitors and serializers. Synchronization is viewed as being managed by a resource
guardian. A synchronization problem is defined as a predicate on event scquences.
The interaction of a guardian and the rest of the system is formalized in terms of a two
person game. ‘This formalization results in precise definitions of guardian and
guardian hechavior. The notion of a "good” or optimal solution is defined, and the
solutions to certain classes of synchronization problems are characterized. An abstract
description of the general actions of a guardian is given. ‘This gencral description, with
some restrictions, forms the basis of a simple synchronization mechanism for actually
implementing solutions. The mechanism is given a rigorous semantics based on the
definition of guardian. ‘This facilitates the verification of correctness. Many examples
of the use of the mechanisim are given and its advantages are discussed.

Sulmitted to the Department of Electrical Engineering and Computer Science
on August 26, 1980 in partial fulfillment of the requirements for
the Degree of Master of Science

a7 g

@ RIS N

© T A B APt B

v £ e

Acknowledgments

I would like especially to thank my thesis advisor, Professor Irene Greif, for her
support and encouragement in pursuing this research. | am also thankful to Deepak
Kapur, Bill Weihl, Alicn Emerson, Will Clinger, and Joyce Mahan for reading various
drafis of the paper and for making many illuminating and helpful comments. | am also
indebted to many friends for their patience and kindness. Deserving special mention
arc Deepak Kapur, M. K, Srivas, Glen Miranker, and Louie Skipper.

This research was supported in part by the Advanced Rescarch Projects Agency
of the Department of Defense monitored by the Office of Naval Rescarch under
contract N00014-75-C-0661 and in part by the National Science Foundation under
grant MCS78-17698.

-4- ‘Table of Contents

!

CONTENTS ?

E
1. Introduction 17
L1 Related WOTK ... ccseecnserne s cacnsanaenssssssssesessessssasssencans 8
1.2 OULINE OF PAPETcooveerererecrretrinnnassestraesensssesassssnssnssosesens 9
2. Guardians and Guardian Behavior ; u
2.1 Resource GUardianoeceveccnnveerireeesenceresessssssssnrssessersssssonsses 11
2.2 Event Scquences and PrediCates ...eeevineeneennnneieeeenssessnneens 13
2.2.1 Events and Event SEQUENCESccecerreerereenecreneessernnessssessmscensens 13
2.2.2 Predicates on Event Sequences reeeseenesasasusneaenesaresessareses 17
2.3 General Polling Guardian veoreresrsesteberasassansensaranssnnn 20
2.4 Examples of General Polling Guardianscoceecveevenveninennnenes 23
2.5 Simple Polling Guardiancceeerereneeereeersseresesssesnsssseessessseses 28
2.6 Expression of Solutions as Simple Guardianscoceevrvereveeee 32
3. Guardian/Environment Game 35
3.1 Definitions . . 35
3.2 Specification of Concurrency ... reereresesesseseaeneasssesetessnas 38
3.3 Continuity Of SPECIfICAtIONScccoeererrrereeererssnecsesssessrrenssassssensanseses 43
3.4 Simple PredicCallsoevieincernnnncnsrnssssonsssssssessssmssessessasessassses 46

4. A Synchronization Mechanism 50 !

4.1 The Synchronization MechaniSmceoveereeenrenenessernsssssnenees M |
411 OVOIVIEW ..uneeevrerenreireneensanresssssnnsaenns rererestssessersnerararateneaensrenaanas 51
4.1.2 Definition of the Synchronization Mechanism ... 55
4.1.3 Implementation ISSUESccccueivrenrinnneressancessnessssssssssessssessssssens 64
4.2 Readers/Writers Problemeveiivniinesrereninenenssnsesssnassens 65
4.3 Disk Scheduler Problem T —— [A]
4.4 Five Dining PRHOSOPRETScoeivevrrienrinrenensenesssssnsnniessssesessnenens n
4.5 Bounded BUfTer Problemoeviveneininesnessssssnnsnssessnesens 82
4.6 Proof of Implementation COITCCINESSccevreerererernarersaessereaienans 86

kit & i ey >
4 e v o o

‘Table of Contents -5-

4.6.1 An Outline of the Methodologyccceuveeerermrererecrerrervrennns

4.6.2 Correctness of a Solution to the Readers/Writers Problem

4.6.3 Correctness of a Bounded Buffer Solutioncceeeveeevenennes
4.6.4 Remarks on the Methodologycveeveevrerernneeennenreicsenennn.
A7 CONCIUSIONS ...cvirrriiermsiessensriinneissesssssssessesssassaressssssssssessssassssssense

5. Summary and Directions for Future Work

.......

.......

5.1 SUMMATY coorrmeeeseersesseessssssssmmsessssssssssssssssmesssssssessssassossssssaosee
5.2 Future Research ceresesressesnstssaeseas e st besertsaerrasesassares

6. References

-6- ‘Table of Figures

FIGURES

Fig. 2.2.1.1. Examples of Events and Functions on Events 15
Fig. 2.2.1.2. Scquence Notation and Examples of Event Sequences: l,cgal dnd Ilegal 17
Fig. 2.3.3. Scheme for a General Polling Guardianoeveeeveenevecineesseneecsssnens 21
Fig. 2.3.4. A Solution to Mx(r,r) 22
Fig. 24.5. A SCmaphore SOION 10 ME(ET) wecriececsressemnencssenssssemsrenssssosensomsensserscesemsssssses 24
IFig. 2.4.6. Weak Semaphore SOIGON 10 MX(EF) oot ettsesesseresanssonsasosssnen 25
Fig. 2.4.7. Monitor Solution to Readers Priority Version of Readers/Writers Problem 27
Fig. 2.4.8. A Solution Equivalent to the Monitor SOIUtONoeveieeeercrnnccecenens . 28
Fig. 2.5.9. Scheme for Simple Polling Guardian 29
FFig. 2.5.10. Simple Polling Guardian Solution 10 Readers/Writers Problemoeeceeecveennees 31
Fig. 2.6.11. Subsets of Requests KX
Fig. 2.6.12. Specification of a Solution to Readers/Writers Problem -~ 34
Fiz. 3.1.1. An Instance of Guardian/Environment Game 1efined by P=Mx(0,0)ceeveveneneee 36
IFig. 3.1.2. Scequences and Their Corresponding Expanded VErsionsceeeevecneeenrececeennnes 19
IFig. 3.2.3. One at a 'Fime Solution to Readers/Writers Problem treeressasenisesnsasassertenes 39
i, 124, Greedy and Lazy SOIUONS 10 MX(ET') e eessess s s ssesscsessenens 42
Iig. 4.1.1.1. Simple Polting Guardian Procedure Sulving MX(F,F) oo, 52
Fip. 4.1.1.2. Ditterences in a Standard and Modified Invocation eerseerennaaresienass 52
g, £1.2.30 Summiary of Protector's OPCRlIonceecenenensrnmesssisssssssessssesmsisssasansssssssase 59
Fig. 4 1.2.4. Semantics of a Protectoreeveerenanenns e 60
IFig. 4.1.2.5. Synchronization Type for Mutual Exclusion 6]
Fig. 4.2.6. FCFS Solution to Readers/Writers Problem | 66
Fig. 4.2.7. Weak Readers Priority Solution to the Readers/Writers Problemcovevvenvnnenes 68
Fig. 4.2.8. Rcaders Priority Solution to the Readers/Writers Problem ... 69
I<ig. 4.2.9. Writers Priority Solution to the Readers/Writers Problem .70
I-ig. 4.2.10. Fair Solution to the Readers Priority Readers/Writers Problemeceeeeveernnes 72
Fig. 4.3.11. The SCAN Solution to the Disk Scheduler Problem 74
Fig. 4.3.12. The CSCAN Solution to the Disk Scheduler Problem 76
I-ig. 4.4.13. The Dining Philosophers Problem m
Fig. 4.4.14. Optimal Solution to the Dining Philosophers Problem 78
Iig. 4.4.15. FCFS Solution to the Dining Philosophers Problem 9
Iig. 4.4.16. Fair Solution w Dining Philosophers Problem with Very Hungry Sages 81
Fig. 4.5.17. Nearly F11FO Solution 1o the Bounded Bufter Problem . 83
Fig. 4.5.18. Solution to the Bounded Buffer ProBICI ... evevceeree e eesrensesmseseesasssssssssees 85
Fig 4.6.2.19. Fair Solution to the Readers Priority Readers/Writers Problem ... 90
Fig. -16.3.20. Selution 1 the Bounded Buffer Problemovnnnisinnses s 95
Iig. 4.6 4.21. Weak Readers Priority Solution to the Readers/ Writers Problem ... 98

Fig. 1.7.22. A Procedure for Testing i Synchronization Type s ... eniscnenieon 102

ol

A3

B
4
K

r
&
B ?"

é

L S B,

Introduction -7- Scction |

1. Introduction

The purpose of this paper is to give a rigorous framework in which to discuss
modular mechanisms of synchronization and, using this framework, (0 develop a
programming construct for implementing solutions to synchronization problems.
Attention is confined to guardian-type synchronization mechanisms {[LLAVETS8] --i.c.,
well-structured modular mcchaniéms which are resource protection envelopes capable
of realizing both exclusion and priority constraints. The behavior of synchronization
mcchanisms is defined in terms of scts of possible sequences of events. The interaction
betwecen the synchronization mechanism and its environment is made explicit in terms

of a two person game. The developed framework permits the pursuit of the following

goals:

i) To design a versatile yet semantically simple synchronization
programming construct.

i) 'To address the question ol accurate problem specification.

iit) To cxamine the semantics of synchronization mechanisms that are
currently described in the literature.

iv) To definc a notation for abstractly describing the solutions to
synchronization problems.

Besides being of technical interest, the pursuit of the above objectives enhances
the understanding of the nature of synchronization problems and the semantics and
limitations of certain modular synchronization mechanisms. The programming
construct which is introduced is demonstrated to be a usclful tool which aids in the
speedy implementation of efficient and correct solutions to the synchronization
problems which arise in a multi-processing cavironment. ‘To summarize, then, the
main contributions of this paper arc a method for viewing synchronization and a
framework which results in o versatile synchronization mechanism. In addition, the

framework provides an approach to problem specilication and the basis for verilication

Y S, ™y

DS, S 3

Section 1 ' -8- Introduction

of solutions.
1.1 Related Work

Since the late 1960's much has been written on the synchronization and
coordination of processes. This research is particularly indebted to the work on
message passing by Hewitt [HEWIT77], work on specification and on event scmantics by
Greif [GREITS), and to Dijkstra’s Secretary metaphor [DIJK71]).

Works by Greif [GREL7S5), [GREIT7] and by Laventhal [LAVE78] develop the
resource guardian model which they used to derive a method for precisely specifying
synchronization problems. In this paper the notion of resource guardian (i.e., an
envelope surrounding a resource) is combined with Dijkstra’s Secretary metaphor
[DIKT1] in order to obtain a scheme which can be used to describe the important
aspects of synchronization. In each of [GREIT5], [GREIT7], and [L.AVET8], emphasis
is placed on specifying exclusion and priority constraints with little or no mention of
concurrency constraints which specify that a certain amount of parallclism is desired in
a solution. For example, consider a Lypical specification of once of the simplest versions
of the readers/writers problem, [GREI77], [LLAVETS), [BI.LOO79]. A guardian which
allows only one read or write in the database at a time satisfics this specification.
Unfortunately this implementation violates our concept of a good solution to the
problem which is that reads should be able to proceed in parallel. In this paper a

method for writing specifications that exclude this unfortunate solution is presented.

The idca of applying game theory in order to make cxplicit certain situations
which arise in a multi-processing system has also appeared recently in other work. In
particular, Ladner [LADN79] describes the interaction of a process and a system in
terms of a game: ‘The process wins il it can enter a state in which it is locked out (from,
say, a resource or a section ol code) while the system wins i it can prevent the lockout.
Others, including Devillers [DEVI77} and Reif and Peterson [REIF80], have used

ames 0 define other system piopertics. Reil and Peterson use a "game-like
Jut

B R

Introduction -9- Section 1.1

semantics” to develop a paradigm for viewing general multi-processing problems.

The programming mechanism described in this paper has grown out of work
done on monitors [HOAR74] and scrializers [HEW179a], [HEWI79b). It combines
many of the good points of each of these constructs while avoiding some of their
pitfalls. Monitor solutions are sometimes difficult to understand because the locus of
control is very unstructured. In addition, as will be shown later, both serializers and
monitors exhibit undesirable behavior in some situations because of the way they have
been designed. All these problems are avoided in the programming mechanism
presented here. Work by Bloom [BLOO79] on ways of evaluating synchronization
constructs is used as a guide in developing this particular programming mechanism,
Recent work by Hewitt [HHEWIT79b] is very similar in spirit to the work described in this
paper but his construct scems to lack the firm semantic foundation of the construct
developed here. The dedication of a process to do conceptual polling in the
mechanism developed here scems to simplify control without necessarily sacrificing
efficiency. In a recent paper [HANS78], Brinch Hansen describes a synchronization
technique which also makes use of a dedicated process to accomplish synchronization.
He does not, however, treat events as data objects and thus loses some of the
debugging advantages which are described in Chapter 4. In [LAVET78], Laventhal
describes a technique for the synthesis of synchronization code from problem
specifications. Unfortunately, because of limitations in his solution specification
language, his method cannot handle several important cases. It is shown that the

design of our construct is general enough o permit handling of these cases.
1.2 Outline of Paper

The paper begins with an informal introduction which motivates our view of
synchronization. Then this view is made more formal to provide a base for carcful
reasoning about synchronization. Finally a practical programming construct for

synchronizing activity is presented.

R A7 - Py o+ wh a1y A 0 R Uy

4

Section 1.2 -10- Introduction

In the second chapter the notions of resource guardian, guardian lifetime, and
guardian behavior are introduced informally. Events and cvent sequences are defined,
making it possible to discuss predicates on event sequences and to introduce some
abbreviations for expressing commonly used predicates. Next a particular approach
for viewing resource guardians is presented. This results in the introduction of the
notions of general and simple polling guardians. The last section describes a notation

for abstractly defining simple polling guardians.

The third chapter describes the interaction between a resource guardian and the
rest of the system (i.e., the guardian’s environment) in terms of a two person infinite
game with perfect information [GALES3). A guardian is then formally defined as any
functional strategy for the second player. Also addressed in this chapter is the problem
of how to specify that a solution must permit concurrency whenever possible. In the
last two scctions continuous and simple predicates are defined, and several theorcms
arc proved which help characterize solutions to synchronization problems. These

characterizations arc useful in verifying the correctness of solutions.

The fourth chapter uses the results from the preceding two chapters and defines a
programming construct which represents a practical approach to implementing
solutions to synchronization problems. The chapter begins with a complete description

of the programming construct and goes on to consider many examples of classical

synchronization problems. The treatment of these problems is different from the usual
in that many solutions of diverse style and bchavior are given to each of the more -
interesting problems. An approach o verifying the correctness of implementations is

discussed, and several interesting examples are examined.

The fifth chapter summarizes the results of the paper and points to arcas where

further research might profitably be pursued.

E

\S
- : o S AT RN o

PRSIV - SRR

Guardians ' -11- Section 2

2. Guardi:ins and Guardian Behavior

In this chapter thc terms resource guardian, guardian behavior, behavior
equivalence, problem specification, and problem solution are defined informally. Lvents,
event sequences, and predicates on event sequences are defined. Then scveral
abbreviations arc introduced which make the expression of many common predicates
quite simple. A framework for viewing resource guardians is proposed which results in
what will be called a polling guardian. The generality of this approach will be
demonstrated by describing solutions to certain well known synchronization problems
in terms of the polling guardian. These solutions will be shown to be behaviorally
equivalent to other well accepted solutions implemented in terms of the more common
synchronization mechanisms found in the literature. Next a simplified version of the
polling guardian is cxamined. Although there is certain behavior which such a
guardian cannot enforce, it will be argued that this simplified version is not only
adequate but desirable. Finally notation for abstractly specifying a solution is

described.
2.1 Resource Guardian

The term resource guardian (or simply guardian) is used to refer to
synchronization code which monitors resource activity and uses this information to
control access to the resotirce. To access the resource, a process must make a request to
the guardian. A request event is associated with the guardian’s receipt of this request.
When the guardian decides that it is proper for the process to access the resource, the
guardian signals the process that it can enter (i.c., access) the resource, Associated with
the guardian’s giving of this signal is an enter event. Finally when the process finishes
with the resource, it notifies the guardian that it has exited from the resource. An exit
event is associated with the guardian's receipt of this notification. Three cvent types
are important in considering a guardian and its interaction with a particular access by a
process. These are the request l_‘or service event, the enter or grant of scrvice event, and

the exit or termination of service event.

EACHA R At e A A e S

e e e v
@ -

. ,“_;.,.a Z

Section 2.1 -12- Guardians

Notice that all events are occurrences as scen by the guardian. In particular, the
enter event is associated with the sending of the signal to the process, nor with the
process’s receipt of the signal.l Also note that when a process makes a request of a
guardian, it will make no further requests of this guardian until it exits from the
resource, For an example of a resource guardian, consider a critical section of code
which is protected by a semaphore. The critical section of code corresponds to the
resource, and the P-instruction and the V-instruction make up the guardian. When a
process wants to enter the critical section, it begins to execute the P-instruction. The
request event occurs at the start of exccution of the P-instruction. Eventually it will be
decided which of the processes currently engaged in executing the P-instruction (i.e.,
waiting) will be allowed to finish with the instruction and permitted to enter the critical
section. The enter event occurs when the guardian decides that the process has
finished executing the P-instruction. When the process executes the V-instruction, it
signals that it is exiting the critical scction by decrementing the semaphore. Thus the

exit event oceurs the instant that the decrementing of the semaphore is complete.

The events associated with a guardian are assumed to be totally ordered by their
time of occurrence. Practically, this means there must be some sort of arbiter which
scrializes the guardian cvents which might otherwise appear to occur simultancously.
The necessity of arbitration is no surprise since simultancous requests must be
arbitrated in order to implement monitors or serializers. 1t is also assumed that the
cvents associated with a guardian form a sequence. This means, firs, that between any
two events there are only finitely many cvents -—-ie., cvents are not "dense”
[SCHWT8]-- and, sccond, that there is a first event. With these assumptions
understood, the following informal definitions can be made. More formal definitions

of many of these terms can bhe found in 3.1.

L. This is different from the way in which Carl Hewitt [HEW177] associates cvents in
message passing systems, where events are always associated with the receipt of the
MCSSage. '

Guardians -13- Section 2.1

A lifetime of a guardian is a sequence (finite or infinite) of events which might be
the result of the operation of the guardian. The behavior of a guardian G is the set of
all lifetimes of G, and is denoted by B(G). Note that many different lifetimes are
possible due to the different orderings of requests and exits which can occur. 'Two
guardians arc equivalent if they have identical behaviors. A synchronization problem
specification is any predicate defined on sequences of guardian events, The behavior
set of a problem consists of all the scquences that satisfy the problem specification.
The behavior sct of a predicate P also is denoted by P. This should cause no confusion.
A guardian satisfies a problem specification, or solves the problem, if and only if its
behavior is a subset of the problem’s behavior set. A solution 10 a problem

specification is any guardian which satisfics the specification.
2.2 Event Scquences and Predicates

In this section events and event sequences are dcfined, and many examples are
given. Then predicates on cvent sequences are discussed. Several useful abbreviations

for expressing common predicates are introduced.
2.2.1 Events and Event Sequences

A guardian event can be one of three types: request, enter, or exit. Associated
with each event is an operation which will be (or has been) performed on the resource
and, also, a process which will perform (or has performed) the operation. Thus cach
cvent can be viewed as an ordered triple consisting of type, operation, and process
along with some sort of unique identilication associated with a particular access
attempt. In this way it is possible to have two distinct request events by the same
process to perform the same operation. Two such requests are distinct because they

occur on different accesscs.

Section 2.2.1 - 14 - Guardians

Request events are denoted by r cither subscripted or primed. Subscripts and
primes are used to make explicit the uniqueness of access. Request event variables are
denoted by r, cither subscripted or primed to distinguish among variables. A variable r
ranges over all possible requests. Often it is necessary to denote a request or request
variable with an explicit operation and/or process. This is donc by writing the request
or request variable followed by the operation and/or process id enclosed in brackets.
To avoid ambiguity, numerals arc used to denote process ids but never operations. A
variable tfop] would range over all requests with the operation op. The function o
(rcad "the operation of™") takes a request as an argument and returns the operation to
be performed. The function p (read "the process of™) takes a request as an argument
and returns the identification of the process making the request. The domain of both o
and p is the set of requests. See part A of figure 2.2.1.1 for examples of requests and

the functions o and p.

In addition to a unique request, there is also associated with each access attempt a
unique cnter event and a unique exit event. The enter event corresponding to a
request r is denoted by e(r). Similarly the corresponding exit event is denoted by x(r).
Specific enter events or ¢xit events are often denoted by e and x respectively both of
which can be cither primed or subscripted to denote a particular access. A variable
ranging over enter events or exit events is denoted by ¢ or x subscripted or primed. 1t
is ofien convenient to talk about a null event which will be denoted by A, The
usefulness of the null event will become clear later. See part B of figure 2.2.1.1 for

examples of enter and exit events,

An event sequence is a one-to-one function from the positive integers (or an
initial segment of the positive integers) into the set of events. Scquences will be
denoted by Greek letters. Occasionally it is uscful to mention the empty sequence
which will be denoted by e. Note that e2X. If a is a scquence, then o is the ith
member in the sequence. With some abuse of notation, aCa is written il there exists an
i such that a; == a, where a is some event. A sequence s an initial segment of « il the

domain of g is a subsct of the domain of a. We write f<a il 8 is a linite initial scgment

i

PRBESCRE= 2N

P PR PATEI Rt SN

Guardians

-15-

Scction 2.2.1

Fig. 2.2.1.1. Examples of Events and Functions on Events

Part A: Requests
ry. lwrite], r(2), r5fop,1]
r, rlop), r[read4]

rylwrite,1], rs[write,1]

ofry[write,1])= write
ofr'[read])=read

pr2P=2
prfop.4D) =4

Part B: Enters and Exits
ey, ey[write,1]

e, ¢op]
er [) =t
X 1’ X2[Op, 1]

x(r'fop])=xop}

Request cvents
Request event variables

These requests represent two different
accesses to write by the same process

Operation function

Process function

Enter events
Enter event variables

Enter function
Exit events

Exit function

of a. Note that if a is finite, then a<a.

In the examples above, the functions o and p were defined on requests. The

domains of these lunctions are extended in the natural way to include enter and cxit

cvents. For cxample ole;) = write, if and only if o; = ([write,j) for some cvent type t

and process id j. - A new function, ¢4, (read "the type of™) on events is also introduced.

The function takes an event as an argument and returns its type.

For example

«r) request, () - enter, and f(x[op, 1]) == exit.

Section 2.2.1 -16 - Guardians

The following definitions are useful for isolating certain sets of important cvents

in a particular scquence.

Definition 2.2.1: In a sequence a, a request r is active at a point a; if there exists a
k<i with ay =, but there is not a k<i such that ay = x(r).

Definition 2.2.2: In a sequence a, a request r is outstanding at a point a; if there

exists a k<i with ay =7, but there is not a k<i such that ay = e(r).

Definition 2.2.3: In a sequence a, a request 1 is busy at a point a; if there exists a

k<iwith ap Ar), but there is not a k<i such that ay = x(r).
Note that if r is active in a @ then it is either outstanding or busy at aj.

Only some event scquences are of interest; namely, those that might arisc as

lifetimes of guardians. Such event scquences satisfy the following properties:

1) Every enter event must be preceded by its corresponding request event.
i) Every exit event must be preceded by its corresponding enter event.

i) No single process ever has two requests active at the same point.

Event sequences which satisfy the above constraints arc referred to as legal
guardian event sequences or, when there is no possibility of confusion, simply as
scquences. Finite legal sequences are called histories. For some cxamplces of event

scquences, both legal and iflegal, see figure 2.2.1.2.

It will not be necessary to distinguish between two legal scquences such as these:
ryiw.1] rylw.3) efw, 1], x[w.1]
and
ry[w.] rylw.3], epfw. 1], x5[w,1].
This observation motivates the following definition,

S T ot NI, . TP

(Ao o oyt

Guardians " -17- Section 2.2.1

lig. 2.2.1.2. Sequence Notation and Examples of Event Sequences: 1egal and Illegal
a = 0y[1], e)[1). 153}, x,[1] A legal event sequence.
ay = n[l] Examples of sequence notation
a3 = 1h[3] applied to a.
Xln] €a
B = rl[l], r2[l]. e2[1], x2[1] legal sequence (Violates iii).
§=Xpe.Ln lllegal scquence (Violates i & ii).
& =rpeX. 0 Not an event sequence since it is

not one-to-one.

Definition 2.2.4: Two sequences a and g are equivalent if and only if for every
natural number i:
i) ola)) = o(B)
i) plo;) = p(B;)
i) ;) = 8.

2.2.2 Predicates on Event Sequences

A predicate on event scquences is any function from the legal sequences to the
set {true,false}. We will use the full power of second order logic to express predicates
on sequences, Some useful abbreviations are introduced below. Often predicates on
sequences are defined by specifying ordering constraints on the events. The most
fundamental of these is "precedes”. There are several different ways to dcfine
"precedes”. For example, if a and b arc events, then a precedes b is truc of a if and

only if, when both a and b are in a then a comes before b, [GRl—‘.I77].] We, however,

1. In 3.4 it is shown that this definition of precedes can lead to predicates with
undcesirable characteristics.

YR 3 NPT

Section 2.2.2 -18- Guardians

will define it as follows: a precedes b is true of o if and only if b € « implies that a € a
and that a comes before b. We denote this notion of precedes by =». More formally
a=>bistrue of a if and only if

vilb#a;] v 3i3j[(i<j)/\(il=ai)/\(b'—‘—aj)].
The abbreviation a => b = ¢ is used to mean (a = b) A (b = ¢). As an example of the
use of precedes, the three properties defining legal scquences can be rewritten as

follows:

1) r=dr)
i) er) => x(r)
iii) (0= p(r) A (r=1)] = (x()=r).]

In specifying synchronization problems it is often necessary to express that two
classes of requests cannot be serviced in the resource concurrcrknly.2 The mutual
exclusion predicate, Mx(r,r’), is defined to be true of a sequence if and only if the
requests 1 and ' are not serviced concurrently. More formally, Mx(r,r') is truc of a if
and only if the following is truc of a:

[(e()=r)-(x(1)=> D] A [(A1)= A1) = (x(r)=e(r))].
Thus the predicate Mx(t]write],r'[write]) means that simultancous writes to the resource

are not allowed. Often the predicate Mx(rfop1].r'fop2]) is written as Mx(opl,0p2).

[t is also important to be able to express that outstanding requests must be
serviced according to some priority scheme. The predicate Pr(r,r’) is introduced for
this purpose. The predicate Pi(r,r') is truc of a if whenever two requests r and 1 are
both outstanding at the same point then r will be serviced before 1. More formally

Pir(r.r) is true for a if and only if the following is true of a:

1. ‘The symbol + is used for material implication,
2. Two requests 1 oand r which are serviced inoan event sequence are serviced
concurrently in that sequence if and only il (e{r)=s> x(r')) A (e(r)=>a(r)).

R TR SRR, TR

-

e o i tiean o s oy

Guardians -19- Scction 2.2.2

[ror=er) vV r=r=dr)] - «r)=r).
Often Pr(0,0') is written instead of Pr(r[o],t{o]).

As a brief cxample of problem specification, consider the readers/writers
problem with reader priority. (See 4.2 for a more complete discussion of the
readers/writers problem.) Briefly, there is a data base which can be accessed by either
reads or writes. Concurrent reads may occur; concurrent writes cannof occur; and a
read and a write must not occur concurrently. In addition, outstanding reads are given
priority over outstanding writes. The following predicate P captures these constraints:

P = Mx(rfwritc].r') A Pr(read,write).

There are some additional useful predicates which are now defined. The
predicate FIFO(op) is true of a sequence if and only if all outstanding requests with the
operation op are serviced in a first in first out manner; i.c.,

FIFO(op) = rlop}=>r'{op}=e(rfop]) = e(rop])=e(r'[op]).

The predicate Fi(r) is used to express that requests will not be starved as long as all the
requests which enter will eventually exit. More formally Fr(r) is true of « if and only if
the following is tru¢ of a:

vije(r)€a— x(r)€a] — Vi[r€a—e(r)€a).

Many of the predicates on event sequences can be put in one of the following

categories according to their use in defining a synchronization problem:

i) Exclusion Constraints -- Also called consistency constraints, these
predicates arc used to guarantce consistency of the resource by
preventing certain outstanding requests from being serviced until some
condition is met. An example is Mx(r,r).

ii) Priority Constraints -- ‘These predicates are used to specify the order in
which outstanding requests should be serviced. Examples are Pr(o.0°)
and FIFO(r).

Section 2.2.2 ' -20- Guardians

i) Fairness Constraints -- These constraints are used to specify that under
certain conditions, a request must eventually be serviced. An example is
Fr(r).

In section 3.2, optimality constraints are discussed. These constraints specify that
all requests must be serviced as soon as possible. Before discussing these predicates,

howeser, the notion of polling guardian must be introduced.
2.3 General Polling Guardian

The goal of this section is to define a framework in which to discuss all the
important behavioral aspects of guardian synchronization. Such a Tramework will
permit us to describe easily solutions to synchronization problems in 2.6. Dijkstra’s
Sceretary {DUK71] provides a suitable metaphor in which to discuss the framework.
The Sccretary is inagined as managing the access to a group of Directors. As a person
comes into the waiting room to request an appointment with a Director, the Secretary
cither allows the requester 1o enter the Director's office or, if the Director is busy, has
the requester wait, Presumably, as a person finishes with an appointment, he will

notify the Sceretary that he has exited the Director’s office.
The Sccretary's job can be described in terms of two tasks:

i) Consideration of any new requests or notifications of exit. Both of
which are considered one at a time on a first come first served basis.
Consideration of a new request consists, first, of allowing the requester
into the waiting room and, sccond, of modifying pertinent records.
Consideration of an exit notification consists of simply updating the
records which reflect the status of the Directors.

i) Determination of which, if any, of the waiting requesters can be allowed
to proceed. Once of these cligible requesters is then chosen and can have
access o a Director. Records are correspondingly updated.

rw. A L " M " ’ - A aiess _—1

1
I

i Guardians -21- Section 2.3 t

The Secretary alternates between these two tasks, possibly performing one of the
' tasks for quite some time before switching his attention to the other. The Secretary and 5
his actions can be formalized in terms of the procedure scheme in figure 2.3.3 which is
presented in an abbreviated syntax. The two tasks of the Sccretary are represented by
the two repeat...until statements. The first of these removes the first request or exit
notification from the "to be considered” queue (i.c., in) and updates the history of the
past events (i.e., a) by concatcnatingl llﬁs new request or notification onto the end of
the history. We assume here that if in is empty then allin is cquivalent to afix (i.c., to
a). New requests and notifications are repeatedly considered until eventually the

predicate P(a) becomes true. Then control is passed to the second task, that of

cvaluating which of the waiting requests that have been considered can be allowed to

continue. By examining the past history (i.e., a), the Sccretary chooses a waiting

requester via some strategy (i.c., G) and allows him to go on in 1o see a Director.

Rrg_corﬁ of this action is preserved by concatenating onto the history a corresponding
nbtiﬁcalinn of entrance. In some cases no requester can correctly be allowed to sec a

/’ director. In such a case it is assumed that G(a) returns A, that a=altaA), and that
/ allow() acts like a NOP. The actions of the second task arc repeated until Q(a) is true;
/ at which point control is passed back to the first task. The predicates P and Q are

referred to as the input and output predicates respectively. The function G is called

Fig. 2.3.3. Scheme for a General Polling Guardian

while true do
repeal a « allin - until P(a);
repeat {r « G(a),
a « alr),
allow(n)} until Q(a);
end while

1. The symbol i is used to denote concatenation.

Scction 2.3 -22- Guardians

the synchronization strategy. Initially it will be assumed that P, Q, and G can each be |
non-deterministic. By a non-deterministic function we mean a relation. If G is ‘
non-deterministic then G(a) denotes an arbitrary element of the range of G which is
related by G to a« [KAPUS0]. .

When the scheme in figure 2.3.3 is seen as a resource guardian, it is important to

understand how guardian events are associated with its actions. A request event is
associated with the action of removing a request from the "to be considered” queue.
Similarly an exit event is identified with the action of removing a notification of exit
from the qucue. An enter event is associated with the action of allowing a requester to

continue,

The scheme given in figure 2.3.3 is the form of what will be called the general
polling guardian. By giving the definitions of P, Q, and G, an actual general polling
guardian can be obtained. As an example, consider the procedure M given in figure

2.34. Here P and Q are both defined deterministically as the constant true. This

Fig. 2.3.4. A Solution to Mx(r,’)

procedure M
while true do
repeat a « altin until true;
repeat {r « [il (there is an enter event and
no corresponding exit event
in a) or (there are no out-
standing requests in a)
then return A
else choose non-deterministically
some outstanding request of a
and return it.),
a ¢ all(r),
allow(r)} until true;
end while
end procedure

I i it
O v A

TR BTG W RIS
. e e

.

“eporr

Guardians ' -23- Section 2.3

means that each of the tasks will be performed once, and then control will be passed on
to the other task. The function G has been given a non-deterministic definition which
guarantees that no two requests will be serviced at the same time. Thus the procedure
M enforces mutual exclusive access to the resource by all requesters. More formally,
we could prove that

BM) € Mx(rr).!

In the next section the behavior of M is examined further; and another
procedure, M', is defined which is also a solution to Mx(r,r') but which has very

different behavior.
2.4 Examples of General Polling Guardians

In this section the behavior of several solutions are ¢xamined and expressed as
polling guardians. In particular, several solutions to the mutual exclusion problem are
discussed. A monitor solution to the readers priority version of the readers/writers
problem is also discussed. Besides giving examples which will familiarize the reader
with general polling guardians, this scction indicates the usefulness of the polling

guardian in cxamining and comparing behaviors of resource guardians.

Consider the simple program S in figure 2.4.5 which is a critical section protected
by the binary semaphore s. It is assumed that s is initialized to 1. Recall from 2.1 thata
request event is associated with the instant a process starts exccuting the P operation.
An enter event is associated with the instant a process finishes the P operation. And an
exit event is associated with the instant that a process finishes decrementing the
semaphore in the V operation. The behavior of S can easily be described by adapting
Habermann's [HABET2] characterization of a semaphore in terms of events. The

rephrasing of his central theorem results in the following:

1. Recall that #(M) is the behavior of M,

r—'-—_—“ww e T e T— S—

o

. a4

e ———
Voteatiae

Scction 2.4 -24 - Guardians '
Fig. 2.4.5. A Semaphore Solution to Mx(r,r) l
procedure S "

P(s); |

|

Critical Section

|
Ves); >
end procedure f’:
by
|]
A scquence o € B(S) if and only if for every finite initial segment g of a which ‘;

does not end immediately before an enter event, the following equality holds if{
#Benter = min(#Brequest, l+#pexit), where #Bt is the number of '

H events of type tin B. f
i

Note that the restriction on 8, "which does not end immediately before an enter |
event,” is required because Habermann considers the P and V instructions to be]
indivisible relative to the theorem; i.e., the thcorem is guarantced to hold only when ‘l
one of these instructions is not in progress. Since immediately prior to an enter event a :i
process must be in the middle of executing one of these two instructions, naturally then ,
the equation does not hold. In all other cases, however, the equation must hold. }

Recall the general polling guardian M of figure 2.3.4. With the above formal
characterization of B(S), it is straightforward but somewhat tedious to prove that

B(S)= B(M). Thus it is possible to describe the semantics of mutual exclusion :
accomplished by standard scmaphores simply by giving the cquivalent polling '

guardian. Above we have described the behavior of the procedure S when semaphores i
are interpreted as in [HABE72). There is not, however, a conscnsus of opinion on the

semantics of semaphores. Occasionally when semaphores are discussed, it is assumed

that the process which has been waiting the longest is always removed first. For

e A

example, Hoare in [HOART74} dcefines the semantics of monitors in terms of

semaphores which he must have assumed were FIFO in behavior, Assuming s in

figure 2.4.5 were such a FIFO semaphore, then S would be equivalent to M (in figure

RN et [" e P S e at CRRNGUA R d a

Guardians -25- Section 2.4

2.3.4) if the non-deterministic choice among the outstanding requests were replaced by

the purely deterministic choice of the first outstanding request.

In [HABE76] and [STARS80), the difference between strong and weak
semaphores is pointed out. Since there has been some confusion in the literature
between these two versions of the semaphore (see [PRES7S], [KELL76], and
[HANST8)). it would be interesting to look at the general polling guardian whose
behavior is identical to the behavior of S (in figure 2.4.5) when s is interpreted as a
weak semaphore, In figure 2.4.6 such a polling guardian, M', is given. Notice that the
only difference between M’ (in figure 2.4.6) and M (in figurce 2.3.4) is the definition of
the input predicate which determines when to quit the first task and to continue with
the second task. In M’ after an exit occurs, a request can occur before an enter occurs.

In particular, the same process which has just exited can return to make a new request

Fig. 2.4.6. Weak Semaphore Solution to Mx(r,r)

procedure M’
while true do
repeat a ¢ allin until [if (last event of « is
not an cxit) then true
else choose non-deterministically
either true or false)
repeat {r « {if (there is an enter event and
no corresponding exit event
in «) or (there are no out-
standing requests in a)
then return A
clse choosc non-deterministically
some outstanding request of a
and return it.], '
a ¢ alle(r),
allow(r)} until true;
end while
end procedure

i I;"’ . YIS

e A —
cs T

Scction 2.4 ' -26- Guardians

and possibly be chosen o enter again the data base before any other waiting process is
allowed to enter. Notice that it is implicitly assumed that after an exit the input
predicate will eventually, after an arbitrary but unbounded length of time, become
true. In a sense the semantics of a weak semaphore makes use of a mechanism of
unbounded non-determinacy [D1J K76].1

The next example examines the behavior of a monitor solution to the
readers/writers problem with readers priority. Such a solution, taken from [BL.OO79),

2 The solution is typical of monitor and serializer solutions to

is given in figure 2.4.7.
the readers/writers problem in that if a number of readers arc waiting when a write
finishes, all the readers will be allowed into the data base before possession of the
monitor is released to a new requester or to a process wishing to exit. This is reflected
in the equivalent polling guardian solution given in figure 2.4.8 by the fact that control
does not leave the second task until all the waiting requests that can continue have

been allowed to continue.

L Inaslightly ditferent context [KWONTY) this is similar to the linite delay property
of ascheduler,
2. 'The solution is presented in CLU syntax [LISK79].

A ! o R U Satie i M
0D . ST I S 00 A . e S e

e

Guardians -27- Scction 2.4

Fig. 2.4.7. Monitor Solution to Readers Priority Version of Readers/Writers Problem

readers_priority = monitor is create startread,cndread startwrite,endwrite
rep = record|readercount:int busy:bool,
rcaders,writers:condition)

create = proc() returns(cvt)
return(rep${rcadercount:0,busy:false,
readers,writers: condition$create()})
end create

startread = proc(m:cvt)
if m.busy then condition$wait(in.rcaders) end
m.readercount; = m.rcadercount+ 1
condition$signal{m.rcaders)
end startread

cndread = proc(m:cvt)
m.readercount: = m.readercount-1
if m.readercount=0
then condition$signal(m.writers)
end %if
end cndread

startwrile = proc(m:cvt);
if (m.rcadercount>0)im.busy
then condition$wait(m.writers)
end %if
m.busy: =true
end startwrite

chdwrite = proc(m:cvt)
m.busy: =false
if condition$qucuc{m.readers)
then condition$signal(m.readers)
clse condition$signal(m.writcrs)
end %if
end endwrite
end readers_priority

E - Scction 2.4 -28- Guardians

Fig. 24.8. A Solution Equivalent to the Monitor Solution

procedure R
while true do
repeat «a € allin until true;
repeat {r « [if (there is an outstanding read request
in a and there are no writes
currently active in a)
then return (the first outstanding read request in a)
else il (there is an outstanding write request in a
and there arc no currently active accesses in a)
then return (the first outstanding write request)
else return A,
a € all(r),
allow(r)} until (r=2);
end while
end procedure

2.5 Simple Polling Guardian

In the previous section several examples of the general polling guardian which
exhibited a variety of behaviors were examined. [In this section some of the generality
of the general polling guardian is restricted in order to obtain a simpler class of polling
guardians which will be referred to as simple polling guardians. Simple polling
guardians do not have as diverse a varicty of behavior as general polling guardians;
however, besides being simpler and casier to reason about, they are able to express

most of the uscful solutions to many of the synchronization problems.

A simple polling guardian is any general polling guardian which satisfies the

following restrictions:

Guardians ' -29. Section 2.5

i) The synchronization strategy must be a deterministic function of the
past history of the guardian.

ii) The input predicate must be the constant true.
iii) The output predicate must also be the constant true.

Figure 2.5.9 gives the abbreviated syntax of a simple polling guardian. Below, cach of

the restrictions is discussed and motivated in turn.

Non-determinism arises naturally in discussions of synchronization because the
length of arbitrary delays is often unpredictable and these independent delays can
cause radically different vresults which are unpredictable and therefore
non-deterministic in nature. In particular, the precise ordering of request and exit
events for a guardian is largely non-deterministic. 1t is belicved that non-determinism
should be confined to the ordering of request and exit events and that the guardian’s
response to any particular ordering should be functional. By so restraining the polling
guardians we greatly simplify reasoning about guardian behavior and avoid, at the local
level at least, complicated issues of the semantics of non-determinism. In addition by
avoiding non-determinism, it is possible in chapter 4 to define a programming

construct based on the polling guardian which can be practically dcbugged.

Fig. 2.5.9. Scheme for Simple Polling Guardian

while true do
a ¢ allin;
re G(a);
a € all(r);
allow(r);
end while

e " . e s NPT

Scction 2.5 -30- Guardians

Besides being required to be deterministic, the simple polling guardian is also
required to have the input predicate be the constant true. This requirement stems from
the desire that in the absence of any other processes a synchronization mechanism
should delay for as little as possible a request for service. In other words, when a new
request is made, the situation should be immediately checked to see if the process can
be allowed to continue with minimum delay. When a notification of exit is considered,
again there is a possibility that there are requests which have been waiting and which
can now be allowed to continue; consequently the mechanism should immediately start
on the second task. Finally by setting the input predicate to true, the possibility of
excluding the performance of the second task is avoided in a very simple and

straightforward manner.

Now the restriction that the output predicate should also be the constant true is
examined. The purpose of this restriction is to prevent the avoidance of the first task
for arbitrary lengths of time. Returning regularly to the first task makes possible the

timely consideration of new requests and exit notifications.

It is interesting that many synchronization mechanisms, notably monitors and
serializers, typically define solutions which can result in the avoidance of the first task
for arbitrary lengths of time. For instance, recall the monitor solution (sce figure 2.4.7)
to the readers/writers problem. The solution is described in terms of a general polling
guardian in figure 2.4.8. Here the output predicate is not simply (rue but rather (r=2»)
where ris the result of the fast evaluation of the strategy function. Thus the second
task is performed until the strategy function returns a null event. A close examination
seveals that in certain cases this output predicate results in undcesirable consequences.
For example, suppose a writer takes a relatively long time in the data base and that
during this time many readers arrive. In the monitor solution, when the write linally
exits from the data base, the first read request on the condition queue is awakened.
This requust enters the data base and awakens the next reader on the queue, and so on
until all the reads have entered the data base. An awakened process on the condition

queue has absolute priority over all other processes which are trying to gain control of

L
. - P> bbb i - e L R g s b o ke e . .
i

Guardians -31- Section 2.5 }

LA

the monitor. Thus from the time of the awakening of the first reader on the condition

queue until the last reader on the gqueue has entered the data base, no new requests are

considered and no processes in the data base can leave it. The ignoring of new
requests, some of which might be of very high priority, in order to service the requests
% which arc currently outstanding is not good. Similarly, the ignoring of exit

notifications, which results in the holding of processes in the resource, seems wrong, 1t

e T

is scen that solutions that can be described as having an output predicate which is not

the constant true can result in undesirable behavior, Therefore all solutions which will

be considered from now on will have an output predicate of true.

In figure 2.5.10 a simple polling guardian R’ is given which solves the

readers/writers problem with readers priority. Itis interesting to compare the behavior
of R’ with that of the general polling guardian solution R given in figure 2.4.8. In fact
it is easy to convince oneself that

B(R) € B(R').

Fig. 2.5.10. Simple Polling Guardian Solution to Readers/Writers Problem

procedure R’
while true do
a ¢ allin;
r« [if (thereis an outstanding read request
in a and there are no writes
currently active in a) J
then return (the first outstanding read request in a)
clse if (there is an outstanding write request in a
and there are no currently active accesses in a) :
then return (the first outstanding write request) :
else return AJ;
a « al(r);
Mlow(r);
end while
end procedure

Section 2.5 ' -32- Guardians

Thus in a sense the simple guardian R’ is the more general solution. The simple
polling guardian provides the basis for all further discussion of resource guardians.
From this point on whenever a polling guardian is mentioned, a simple polling

guardian is meant unless specifically stated to the contrary.
2.6 Expression of Solutions as Simple Guardians

This section introduces a notation for describing solutions to synchronization
problems. Recall from section 2.1 that a solution of a problem specification is a
guardian which satistics the specification. In section 2.4 the general polling guardian
was introduced, and it was informally demonstrated how this scheme could be used to
cmulate the behavior of many diverse solutions. The general polling guardian is
completely defined by giving descriptions of the input predicate, the output predicate,
and the synchronization strategy. Thus a method for defining non-deterministic
predicates and functions on histories would provide a simple solution specification
language. In the previous section, however, it was argued that the simple polling
guardian could provide most of the interesting solutions that might arise. Since a
simple polling guardian is completely defined by the description of its functional
synchronization strategy, it is sufficient to present a method for defining simple
functions on histories. Below, some conventions are given for defining synchronization

strategies.

Given a history a, it is often necessary to be able to talk about the outstanding
requests of a and also the busy requests of « -- i.e., those which have entered the
resource bt have not yet exited. The set of outstanding requests of « (i.c., the waiting
requests) is denoted by W(a), and the set of busy requests of « is denoted by B(a).
Sometimes it is desirable to distinguish among the waiting or busy requests which will

perform or are performing a particular operation, "Thus the set of requests waiting o

perform an operation op is denoted by W(a,0p). Similarly B(a,0p) denotes the set of

busy requests which are performing operation op. Occasionally it is usclul to deline

other sets which are subsets of the requests of a sequence a. "Phese are usually denoted

e e

—— e e e ey g e g
o : s ; .

L . . -

ey > T

Guardians -33- Section 2.6

by a capital letter followed by the sequence name in parenthesis. Figure 2.6.11 gives

some examples,

Given a sct of requests, S(a), it is often necessary to choose a particular clement
of the set based on the contents of S(a) and on the information implicit in the ordering
defined by a. Such a choice will be called a choice function. A choice function takes
two arguments. The first argument is a sequence a, while the second is a set of requests
S(a) which appear in «. A choice function always returns either a request which is a
member of its seccond argument or A, the null event. Thus if the second argument is

the empty set, a choice function must return A,

A useful choice function is min which returns the first request of its second
argument. In other words for every scquence a and set of requests S(a),
min(a,S(a)) = r where r€S(a) and if '€S(a), r=r' then r=1".
Since the first argument of a choice function is usually obvious from context, it is often

omitted. Thus min(S(a)) is written instcad of min(a,S(a)).

Fig. 26.11. Subsets of Requests
a = rj[write,2], e1[write,2], ry[read,1], r3[write,6]

U(a) = W(a) U B(a)
S(a) = {r€alp(r)=1}

W(a) = {ry. 13}
W(a,write) = {r3}
B(a) = {I‘l}
B(a,write) = {rl}
B(a,read) = {}
U(a) = {ry. 13,1}
S(a) = {I‘Z}

Section 2.6 -34- Guardians

To assist in defining choice functions the if...then...elseil function is introduced.
It is evaluated in a manner similar to the evaluation of the COND construct of LISP.
An example will make this clear. Consider the choice function ¢ on S(a) defined using
two other choice functions ¢y and ¢y, and the predicates P and Q:
«(S(a)) = il P(S(a)) then ¢;(S(a))

elseif Q(S(«)) then ¢(S(a))

otherwise A,
Now ¢(S(«a)) is cI(S(a)) whenever P(S(«)) is true, and is Cz(S(a)) if P(S(a)) is false but
Q(S(a)) is true. 1f both P(S(«)) and Q(S(«)) are false, then c(S(a)) is A, the null event.

A synchronization strategy G applied to a always returns a member of W(a), the
set of outstanding requests of a. Thus a synchronization strategy can be thought of as a
choice function where, when the first argument is a, the second argument is always
W(a). Therefore the methods for defining choice functions are also applicable for
defining synchronization strategics. Figure 2.6.12 is the definition of a synchronization
strategy which defines a solution to the readers/writers problem with readers priority.

'This is just a rewriting of the solution, R, given in figure 2.5.10.

This scction has presented a bricfintroduction to a way in which synchronization
strategics might be described. Although we will not do so, it is possible to extend the
techniques presented here to include more involved methods (e.g., rccursion) for

defining synchronization strategies.

Lig. 26.12. Specification of a Sclution 1o Readers/Writers Problem

Gla) = if (W(a.read) 2 $)A(B(a,writc) = 3) then min(W(a,rcad))
elseil (B(a) = @) then min{ W(a,write))
otherwise A.

B S S—————

-

Guardian/Emvironment Game -35- Section 3

3. Guardian/Environment Game

This chapter gives a formal definition of guardian and many of the other terms
which were introduced informally in 2.1. The formalization presented here stems from
viewing guardian interaction with its environment as a two person game. A guardian is
defined formally as a functional strategy for the second player. Once a guardian is
defined formally, it is possible to address the issue of concurrency in a problem
specification. ‘The notion of optimal solution is defined in order to capture the
intuition of what constitutes a good solution. Several examples are given showing how
concurrency can be specified by requiring that the solutions to a problem be optimal.
In the third section a certain subscet of well-behaved problem specifications is defined
as continuous. A thcorem is then proved which characterizes the solutions to all
continuous specifications. In the last section simple predicates are defined. Every
simple predicate is continuous, and it is casy to determine whether or not a solution is

optimal for simple predicates.
3.1 Delinitions

The interaction of a resource guardian and the rest of the system --ie., the
guardian’s environment -- can be viewed as a game between two players which will be
identified as players 1 and [1. Player [is associated with the environment while player
Il is associated with the guardian. The two players alternate moves building a legal
cvent sequence. Player 1 moves by concatenating cither a request or exit event onto the
sequence being built while player 11 plays only enter events. On each move, the player
moving has complete knowledge of the sequence constructed thus far. A predicate P
determines the winner of the game. Thus a different game arises from cach problem
specification P --i.c., from cach predicate on event sequences. Player 11 wins an
instance of a game defined by a predicate P il the sequence built by the game satisfies

P. If the sequence built does not satisfy P, then player | wins.

e g = -

-
e

_.--—v——.-
ea T Z

ropresry

Section 3.1 -36 - Guardian/Environment Game

Play starts with player | concatenating an event onto the empty sequence. A legal
move by player | is any request or exit event which when concatenated onto the game

sequence -- i.e., the sequence being built -- results in a legal event sequence. A legal

move by player Il is any enter event which when concatenated onto the game sequence .

results in a legal event sequence. If either player cannot make a move, he must pass. Fe

This is accomplished by playing the null event. Note that a player can also pass even

sy

when he has a legal move. When both players pass on consecutive moves, this
particular instance of the game is over and the sequence built is finite. Otherwise the

game continues forever and an infinite sequence is built. Figure 3.1.1 gives an example

f
r

of an instance of the game defined by the predicate Mx(0,0). Player | wins this

instance since the sequence a does not satisfy the predicate.

A strategy for player 1, the environment, is any function E from H (the set of
histories) into the set of non-enter type events such that if «€H then attE(a)€EH. A
strategy for player i, the guardian, is any function G from H into the sct of enter
events along with the null event such that if «€H then oiG(a)€H. Now a formal

definition of a simple guardian can be given:

Fig. 3.1.1. An Instance of Guardian/Environment Game Defined by P=M x(o,0)

Player I Player 1l

1. ryfo] ey[o]
2. l'2[0] A

3 r3(o] e;(o]
4, A 02[0]
5. X 1[01 A

6. X2[O] A

1. x3[0] A

8. A

a - ol ejfol. ryfol. rylol. esfol. eslol x o], x;lol, X30]

Guardian/ Linvironment Game -37- Scction 3.1

Definition 3.1.1: A simple guardian is any functional strategy for player Il.

If player | adopts a strategy E and player 1l adopts a strategy G, the sequence built in
playing the game is completely determined and is denoted by [E.G). Note that cither
[E.G] is infinite or G([E,G])=\ and E([E,G])=A.

Definition 3.1.2: A lifetime of a simple guardian G is any sequence a for which

there exists an environment strategy E such that « =[E,G).

Definition 3.1.3: The behavior of a guardian G, denoted by B(G), is the set of all

lifetimes of G.

Definition 3.1.4. A guardian strategy G is a winning strategy for the game
defined by a predicate P if and only if for every environment strategy E, P([F,G]) is

always true,

Definition 3.1.5. When G is a winning guardian strategy for a game P, then it is

said that G is a solution to the problem specification P.

To summarize, a game has been described which views a resource guardian as
trying to enforce a particular type of behavior while the possibly malicious
environment tries o defeat the guardian’s efforts. From this definition of a game,
formal definitions of simple guardian, lifctime, behavior, and solution have emerged.
Below we establish the connection between the simple guardian as defined above and
the simple polling guardian as defined in 2.5, L.et G’ be a functional strategy for player
I, Recall the scheme given for the simple polling guardian in figure 2.5.9. Consider
the simple polling guardian which results from using G' as the synchronization
strategy. Now the hchuﬁor. as described in 2.1, of this simple polling guardian is the
identical set of sequences as B(G') defined by 3.1.3. Fhis is true because the scheme
for simple polling guardian enforces the alternation of moves by the environment and
the functional strategy. Thus a legal game sequence will always result from the simple

polling guardian,

R S et A Bl St ok © i

Section 3.1 -38- Guardian/ Environment Game

It is often useful to speak of the domain and results of a strategy for player I1.
Informally, the domain of a strategy G for player Il is the set of sequences that might
arise in which it is player II's move, and the results of a strategy G are the set of

sequences that can arisc after a move by player . More formally:

Definition 3.1.6: The domain of G, denoted by dom(G), is defined inductively
below.
1) F(e)edom(G), for all strategies, F, for player L.
i) a€dom(G) - alG(aE(atG(a))€dom(G),

where a = a'llE(a’), for all strategics, E, for player 1.

Definition 3.1.7. 'The results of a strategy G for a player |1, denoted by res(G), is

defined as follows:

a€res(G) if and only if 38, pEdom(G) A a = puG(B).

Occasionally it is uscful to record all the moves of each player, including the
passcs. This results in an expanded game scquence. Notice that there is no new
imformation contained in an expanded sequence. This is because the playcrs alternate
moves and because they both follow functional strategies. Because they follow
functional strategies, two null events cannot appear in a row except at the end of the
scquence. There is a one-to-onc correspondence between the game sequences and the
expanded game scquences. See figure 3.1.2 for examples. Also note that null events
played by player | are differentiated from those played by player I1. Again this adds no
new information. The usefulness of the expanded representation of a scquence will be

seen in the next section.,
3.2 Specification of Concurrency

This section returns to the issue of problem specification. In particular, attention
is focused on how to specify that a certain amount of concurrency is to be required in a
solution, The discussion is centered around an example; namely, the readers/writers

problem with readers priority which was introduced in Chapter 2.

[
peun mustayanay TR

Py
L e SR s T i

Guardian/Environment Game -39- Scetion 3.2

Fig. 3.1.2. Sequences and Their Corresponding Expanded Versions

a = 1[o]. ej[0), ry[0}. r3fo]. esfo]. e5[o]. x;fo]. x50l x5[0]
a = l'l[()]. (‘1[0]‘ I'2[0], A“, l'3[0]. C}[O], }\l, 02[()], X1[O],)\“, Xz[O], A“. X}[()], ."\“., AI

B = I‘l, cl, l'2. Xl, 02, X2
B=Tp e Ty A X €0 X0 A Ay

I e R A R
€7 P A T3 €0 A €3 X Ay T Mg X Ap 1 X30 €4 X Mg Ay

Recall that the following predicate defines the readers priority version of the
readers/writers problem:
R = Mx(rfwrite],r')APr(read, write).
Notice that a solution which allows only one process at a time satisfies the specification.,
Thus the guardian O, specified in figure 3.2.3, is a solution to R. It would be uscful 10
be able to modify R so as to rule out solutions such as this one which cxcludes the

possibility of concurrent rcads.l

Fig. 3.2.8. One at a Time Solution to Readers/Writers Problem

O(a) « [iIF(B(a) = @)IA(W(a,rcad) =2 @) then min(W(a,read))
clseil B(a) = & then min(W(a))
otherwise A

1. Another pathological solution, O, is the one which simply prevents writes but
allows all reads to procecd unimpeded.

Scction 3.2 -40 - Guardian/Environment Game

First recall from 2.2.2 what it means for two requests r and r to be serviced

concurrently: If «(r) and o(r') are both in a sequence «, then
or)=x(r) A «r)=>x(r).
With this in mind, one approach to specifying concurrency would be to say that
whenever two read requests arc both outstanding at the same time, they should be
serviced concurrently; i.e.,
Q = [rfread]=>rread])= er)vrread]=>r[read]= «(r')] -
ar)=x(r') A er)=a(r).

Now the predicate R can be modified to obtain RAQ. Note that the guardian O
defined in figure 3.2.3 1s not a solution for R/\Q.] Thus ¥ would scem that this
approach solves the problem. In fact this is essentially the approach to specifying
concwirency taken by Hewitt and Atkinson [HEWI179a). In their paper they go on to
prove that a serializer can casily be used to guarantee concurrency because processes
which are in the "waiting room" are given absolute priority for gaining access to the
serializer over the processes trying to access the serializer from any other locations.2

As was scen in section 2.5, this approach can lead to the undesirable situation of
ignoring new requests and new notifications of exit. In fact it is this ignoring of new
exits until all the reads have entered that makes it possible for a scrializer to satisfy
RAQ. Ifexits were allowed to occur freely, the first read on the condition queuc might
enter and exit before the last read were able to enter. This would violate Q. Thus in
order to satisfy Q, a solution must prevent exits until all the outstanding reads are
allowed to enter. Surely specilying that a solution must be able to serve reads
concurrently should not imply that the solution must also at some time prevent exits

from occurring. The above approach to specifying concurrency is therefore discarded.

1. "The solution O described in the previous lootnote is not, however, ruled out by this
new predicate.

2. A similar claim can be made about monitors [HOAR74] since processes waiting on
condition gueues are given absolute priority over others which are trying to gain
control of the monitor (sce 2.4, 2.5).

Guardian/Environment Game -4] - Scction 3.2

In order to develop another method for specifying concurrency, we return to the

discussion of winning strategies for guardians.

A winning strategy is greedy if it passes only when it must in order to win. More

formally:

Definition 3.2.1: A winning strategy G is greedy if and only if for cvery
a€dom(G) such that G(a)=A there exists no other winning stratcgy G’ with
a€dom(G’) so that G'(a)=A.

‘A winning strategy is lazy if it always passes unless it must not in order 10 win. More

formally:

Definition 3.2.2: A winning strategy G is /azy if and only if for every a€dom(G)
such that G(a)=X there exists no other winning strategy G' with a€dom(G’) so that
G'(a)=A.

The existence of a winning strategy does not guarantee the existence of a lazy strategy
(c.g., Fr(r)).] To see that this example is correct, note that if a lazy strategy existed, it
would put off servicing a request for as long as possible. Since on any particular move,
a lazy strategy would not need to service any request, it would procrastinate forever
and would not be fair as required. Similarly, the existence of a winning strategy docs

not guarantee the existence of a grecdy strategy (¢.g., = Fi(r)).

Consider for a moment, as cxamples of greedy and lazy strategics, the two
solutions M and M’ to Mx(r,1I') which arc specified in figure 3.2.4. The solution M is
greedy while the solution M’ is lzy. In most cascs when a person writes the

specification of a problem, he has in mind only the greedy solutions. One way to

1. Recall from 2.2.2 that Fr(r) statcs that if every enter is cventually followed by a
corresponding exit, then every request will eventually be followed by a corresponding
enter. '

e T ey e e e g e

Section 3.2 -4) - Guardian/Lavitonment Game

Fig. 3.2.4. Greedy and Lazy Solutions to Mx(r,r)

M(a) = il B(a)=@ then min(W(«))
otherwise A

M(a) = A

climinate the lazy solutions is to define a predicate Q such that if G is a winning
solution for PAQ, then G is a greedy winning solution for P. ‘This is precisely what
needs to be done to eliminate the pathological solutions to the readers/writers

problem. This observation inspires the following definition.

Definition 3.2.3: Given a predicate P, the predicate Q is the optimality constraint

for P if the sct of solutions of PAQ is the set of greedy winning strategies for P,

Note that greedy winning strategies allow as much concurrency as possible. Thus given
a predicate P, the conjunction of P and the optimality constraint for P can be viewed as

specifying that as much concurrency as possible be present in all solutions,

It turns out that if one uscs the expanded representation of the scquences, it is
casy to express the optimality constraint for R, the specification of the readers/writers
problem discussed above. What is required is that whenever the guardian passes there
must cither be a write that is currently busy in which case no new requiests can be
allowed, or there must be no outstanding requests at all; i.e.,

Q=v) {3r[writc][c(r)=)\|=>x(r)l \Y;
Vr[r=>)\|-«>c(r)=>)\|]}.
We say that a sequence satisfies such a predicate if its expanded representation satisfics
the predicate. The predicate PAQ is now an accurate specification of what is usually
meant by the readers/writers problem with readers priority. Notice that not only has
the solution O given in figure 3.2.3 been climinated; so has the solution O alluded to

in the footnote. The guardian G described in ﬁgl.n'c 2.6.12 in the previous chapter is,

e L N v Chhe Tt
e e e i i i Sl W PSR

.

Guardian/Emvironment Game -43 - Section 3.2 }

however, a solution. :

It is interesting to look at the optimality constraint for mutual exclusion as well. I

Here the guardian must pass only if there is either a request which is busy or no k
request waiting. In other words:
Q =vN {3r[c(r)=>>\,=>.\(r)] v ¥
vifr=A i~)=}

In this section two approaches for differentiating between proper and
pathological solutions have been discussed. This lead to a discussion of maximally

concurrent solutions, which our intuition tells us are the best (i.c., optimal) solutions.

In an attempt to capture the notion of a maximally concurrent solution the following

definition is given:

EYRO ¥

Definition 3.2.1: A guardian G is an optimal solution 10 the problem
specification P if and only if G is a greedy winning strategy for player {f in the game
defined by P.

3.3 Continuity of Specifications

In the previous scctions several varictics of problem specifications were |

discussed. In this section continuity of a specification is defined. Several examples to

illustrate continuity arc given, Then a theorem which characterizes the solutions to a
continuous predicate is proved. This thecorem forms the basis for many of the

correctness proofs in Chapter 4.

Definition 3.3.1: A problem specification P (i.c., a predicate on sequences) is
continuous precisely when P(e) is true and when a sequence o satisfies P if and only if

all finite initial scgments of a satisly P,

Most of the specifications dealt with in this paper, with a few important exceptions

(c.g., Fr(r)), arce continuous as the folowing theorems ascertain,

Scction 3.3 -44 - Guardian/Environment Gaine

Theorem 3.3.1: 1f the specifications P and Q are both continuous, then PAQ is
continuous.

Theorem 3.3.2: The following predicates are continuous:

i) a=b

ii) Mx(r,r')
i) Pr(r,r)
iv) FIFO(r)

The proofs of these theorems are straightforward and of no special interest; therefore,

they are omitted.

The property of continuity is very powerful. Besides encompassing a large
number of practically uscful specifications, it also gives rise to the following theorem

which will prove helpful in verifying implementations.

Theorem 3.3.3: If P is a continuous predicate and G is a guardian, then the
following two statements are true:
1) (a€dom(G)AP(a)) = P(alG(a))
i) (a€res(G)AP(a)) = P(alE(a)) for any environment strategy E
if and only if

G is a solution for P,

This theorem rule looks more complicated than itis, It says that if P is continuous, onc
can always tell whether G, a guardian, is a solution for P simply by verifying the

following statement:

If P is truc of a scquence a, then for any environment strategy E, the
sequence resulting aller the next move (be it cither the guardian’s move
or environment’s move) will satisfy P.

Below we give a proof of theorem 3.3.3.

Guardian/kEnviromnent Game -45 - Scction 3.3

Proof: First assume that G is a solution for P. Denote by a a sequence
such that a€dom(G) and P(a). Now there exists a sequence g€ B(G)

with (alG(a))<g.! Since G is a solution 1o P, we know that P(8) holds;
but P is continuous; hence, P(attiG(a)) is true. Thus i) holds. That i)
holds may be shown in a similar manner.

Now we assuming that both i) and ii) hold, we show that G is a solution
for P. We proceed by contradiction supposing that G is not a solution
-- i.c., that there exists a sequence g in B(G) such that P(B) is false.
Since P is continuous, there must be some finite initial segment of g for
which P also does not hold. Let a be a shortest such segment. Now a is
not ¢ since (¢); so there is a non-null event, a, such that a =a'la. From
the way that o« has been chosen, we know that P(a’) is true. Ifais a
request or exit event, then a'€res(G) and ii) is contradicted. But if ais
an enter event, then a'€dom(G) and 1) is contradicted. Therefore G
must be a solution for P.

There are important predicates which arc not continuous but which have
solutions. For such predicates the theorem is not applicable. The most striking
example is Fr(r). For instance

a=ry.r. c(rl). x(rl). r3. ‘('2)' x(rz). Fgoenns T ‘('i-l)' "‘('i-l)‘"'
satisfies Fr(r) but Fr(r) is not truc for all of the finite initial segments of «. ‘The
guardian

G(a) =il W(a)# 2 then min(W(a))

is, however, a solution for Fr(r).
The following lemma will be useful in the next chapter.

Lemma 3.3.4: 1f G is a solution to a continuous predicate P and a€dom(G), then

P(a) is true.

1. Recall from 2.2.1 that f<a if and only if g is a finite initial segment of a.

Scction 3.3 -46 - Guardian/I'nvironment Game

Proof: Suppose, by way of contradiction, that «€dom(G) but =P(«). |
; Now since P is continuous, there must be a finite initial segment of o for t
which P does not hold. Let o be a shortest such initial segment. Since P ¥
! is continuous, P(e) must hold. Thus there must exist an event azA so ‘l
that gla=aqa’'. Now since G is a solution 1o P and P is continuous, we |
know from theorem 3.3.3 that for every o and for every environment E r
1) (a€dom(GIAP(a)) = P(aliG(a)) ;
% i) (a€res(G)AP(a)) - P(aF(a)). ’
' Now if a is an enter event then o = gnGg) and 1) above is violated.
Similarly if ais a request or exit, 1) is violated. ‘Therefore we have a 4
contradiction. We conclude that a€dom(G) implies P(a).

3.4 Simple Predicates 4

[}
In this section a subscet of the continuous predicates (i.c..the simple predicates) is }
defined. First it is shown that all of the continuwous predicates discussed so far are |
simple. Then two theorems are presented. 'The first characterizes solutions to simple i
predicates, and the sccond characterizes optimal solutions o simple predicates.

Another theorem states that every simple predicate has an optimal solution.

Definition 3.4.1: A predicate P is simple if and only if
1} Piscontinuous, and

i) Forevery event a, P(a)A(t(a)=enter)- P(alia).

The next two theorems follow directly from the definition of simple.
Theorem 3.4.1; 1P and Q are both simple then PAQ is simple.

Theorem 3.4.2: The following predicates are simple:

1) a=sb |
if) Mx(r.r") i
iii) Pr(r.r’) ‘

iv) I"IFO(I'}

Guardian/Environment Game -47 - Scction 3.4

S

An interesting example of a predicate which is continuous but not simple arises

from an alternate definition of precedes which was mentioned previously (sce 2.2.2).
Let < denote the alternate form for precedes which is defined as follows: For two
events a and b, a<b is true of a if and only if, when a and b are both in « then a comes
before b. Now we can define an alternate version of the mutual exclusion predicate
based on the above precedes as follows:

Mx‘(r.r)=[(e(r)<dr)) = ((r)<«r))] A [(r)<e(r)—(x(r)<dn)).
The predicate Mx'(r.r') can be shown to be continuous; however, the following
example shows that it is not simple. Consider the sequence

a=rr,dr)dr)

Now Mx'(r,r") is true of « but is not true of allx(r).

The following theorem characterizes the solutions to simple predicates. It is

actually just a corollary to Theorem 3.3.3.

Theorem 3.4.3: [P is a simple predicate and G is a guardian, then
(a€dom(GIAP(a)) = P(alG(a))
if and only if

G is a solution for P.

The next theorem provides more useful information about solutions to simple

predicates. Recall from 2.2.1 that g<a mcans that g is a finite initial segment of a.

Theorem 3.4.4: If P is a simple predicate such that P(a)=Vg[8<a = Q(B)] and G
is a guardian, then

(a€dom(G)AQ(a)) = Q(allG(a))
if and only if

G is a solution for P.

. vm{,'ﬁj:\;lf gy et -

.,..._.‘,
o "

- e e o et
- = NG

E
]
%
!
t
{

Section 3.4

¥ continuous. Also note that Q can be substantially weaker than P. In general we are

-48 - Guardian/Environment Game

Proof: First we assume that for all a, a€dom(G)AQ(a)~>Q(alG(a)). To
prove that G i1s a solution to P, we first prove that
a€dom(GIAP(a)—P(allG(a)), then we apply theorem 3.4.3. Assume
a€dom(G)AP(a). Now since P(a)=VB[8<a —» Q(B8)]. we know that
a€CdomM(G)AP(a)AQ(a) is truc. But a€dom(GIAQ(a)—Q(aliG(a)).
Therefore P(a)AQ(altG(a)) is true. Again from P(a)=VB[<a — Q(B)].
we can conclude that P(a#G(a)) is true. Thus
a€Edom(G)AP(a)— P(allG(a)) is true; and from thecorem 343, G is a
solution to P.

Next we assume that G is a solution to P and that a€dom(G)AQ(a). We
must show that Q(«ltG(a)). Now by lemma 3.3.4 P(a) is truc. Since G is
a solution to P, we can use theorem 3.4.3 to conclude that P(aliG(a)) is
true, which means that Q(altG(a)) is true.

Note that in the above theorem, Q does not have to be simple or even

i interested in the weakest such Q. As will be seen in 4.6, this theorem is quite useful in
i the verification of solutions. The next theorem characterizes the optimal solutions of

simple predicates.

Theorem 3.4.5: 1f G is a solution to a simple predicate P, then for all a€dom(G)

(G(a)=A)=VI{re W(a)—=—P(ale(1))]

if and only if

G is optimal.

Proof: Assumc G is optimal. Since G is a solution to P, a simple
predicate, we know that Vifre W(a)—> 2P(a ()] (G(a) = A) from
theorem 343, Now, by way of contradiction, suppose there is a
pCdom(G) such that G(B) - A but there is an r€W(p) with P(alie(r))
holding. Define the strategy G’ as follows:

G'(a) = G(a) ifazp

or) if a=:=f.

Now since G is a solution of P, theorem 3.4.3 and the definition of G
imply that for any a€dom(G’), P(a)—P(aliG'(a)). Thus by theorem 3.4.3
G’ is a solution to P, This implics G is not optimal which is a
contradiction. Therefore for all a€dom(G)

(G(a) = A)=Vi{re W(a)- ~P(abc(1))).

Guardian/nvironment Game -49 - Section 3.4

Next assume that for every a€dom(G)
(Gla)=N)=V1{re W(a)——P(alle(1))]. !]
Also assume that a€dom(G) and G(a)=AX. Let G’ be any other solution :
o P with a€dom(G"). Since a€dom(G). and since G is a solution to P, a
simple predicate, we know from lemma 3.3.4 that P(a) is true. But G'is
also a solution to P. So by theorem 3.4.3, if G'(a)=ec(r)=A, then
P(atie(r)) holds which contradicts (G(a)=A)=Vi{re W(a)— P (al(1))}.

S “ b

Thus G'(a) must be A. Therefore, from the definition of greedy, G must R

: be optimal. N
1§

[' Often it is uscful to know whether or not a predicate has a solution and, if' it docs i tj
have a solution, whether or not it has an optimal solution. The following theorem q

addresses this issue for simple predicates.
Theorem 3.4.6: 1T P is a simple predicate, then P has an optimal solution. |

Proof: We will prove the thecorem by defining an optimal solution for P.
Given a history a, define S(a), a subset of W(a), as follows:
S(a) = {re W(a)|P(ale(r))}.
Define the strategy G as follows: |
G(a) = il S(a)=@ then min(S(a)) ,
otherwise A. 1
From the definition of G, we know that if P(a) then P(allG(a)). Thus by
theorem 3.4.3, G is a solution to P. Also from the definitions of G and !
S(a), we know that
(G(a)=A)- Vi[re W(a)- —P(ali))].
Since G is a solution to P, this mcans that
(Gla)=N)=Vi{re W(a)— P(alie(r))).
Therefore from theorem 3.4.5 this means G is optimal.

Note that if a simple predicate P is decidable, this optimal solution will be computable;
i.c.. there will exist a program which can actually implement the functional strategy. q
To see that this is so, consider that the solution need only proceed as follows: For a
given a, test P(alle(r)) for cach rcW(a). I for some 1CW(a), Plalie(r)) is true, then

return 1, otherwise, il for all r€ W(a), =P(all(1)), then return A,

Scction 4 -50- Protectors

4. A Synchrdnization Mechanism

In this chapter the simple polling guardian developed previously is used as the
scmantic basis for a synchronization mechanism for coordinating the execution of
procedures in a multi-processing environment. A procedure is said to be protected by
the mechanism if every process which invokes the procedure must be granted
permission by the mechanism before it can execute the procedure. 'The invocation of a
protected procedure by a process results in the proeess being suspended and causes the
creation of a request signal which is sent to the mechanism. The return of a process
from a protected procedure causes an exit signal 1o be sent o the mechanism. A
process dedicated to the mechanism examines the sighals sent to it and decides which
of the suspended invocations, if any, may procced. It is this process which actually
implements the synchronization strategy used for coordinating the protected

procedures. If a process can proceed, it is activated and allowed to enter the procedure.

The first section of this chapter describes the synchronization mechanism in
further detail and includes a complete description of both the semantics and a possible
syntax. A simple example is given and some implementation issues are also
mentioned. The next four sections provide more detailed examples of the construct.
The synchronization problems discussed include the readers/writers problem, the
dining philosophers problem, and the disk scheduler problem. The next to the last
section presents an approach for verifying the correctness of implementations. Scveral
interesting examples are examined. the last section cevaluates the construct and

provides some concluding remarks.

Y L N

Protectors -51- Section 4

4.1 The Synchronization Mechanism

This section defines a synchronization mechanism which is based on the simple
polling guardian described in 2.5. First an overview is given. Then a more detailed |
description and a simple example are presented. The last subsection discusses bricfly

some of the implementation issues. |
4.1.1 Overview

The synchronization mechanism defined here is based on the description of the

simple polling guardian presented in 2.5. The mechanism will be defined in such a

o e e

way as to make possible the coordination of the execution of procedures. To
understand how a polling guardian might be used in order to accomplish

synchronization, consider the following scenario. f
!

Suppose that it is neccssary to limit execution of a procedure named ;
critical_section so that only one process at a time can be in critical_scction. This can be
donc as follows. First create a procedure like the one presented in figure 4.1.1.1, and :
then dedicate a process to executing this proccdurc.1 Next all invocations 1o :
critical_scction arc modified. Thc invocations are changed so that instcad of simply 1
calling critical_scction, a process will first crcate a message or signal, stating that it |

2

wishes to execute critical_section. Next the process puts this message“ on the queue in

|
|
of the proccdure protcctor.3 Then the process deactivates itself. Immediately after the j
deactivate command is a jump to critical_section. At the return point from |
critical_section, codc is inscrted so that the process will build another message. This !
message states that the process has finished executing critical_section. The process puts

it on the qucue in of protector which will interpret it as an cxit. Figure 4.1.1.2

I. Note that this procedure has the same form as the simple polling guardian given in
figure 2.5.9.

2. The message will be interpreted by protector as a request.

3. Operations on the queue are considered to be atomic (see 4.1.3).

Section 4.1.1 -5)- Protectors

Fig. 4.1.1.1. Simple Po!" - Cuardian Procedure Solving Mx(r.r)

procedure pro

a€e

while true do
a € allin;
re i B(a)=g then min(W(a))

otherwise A

a € all(r);
atlow(r);
end while

summarizes the differences between an invocation of critical_section before

modification and after modification.

From the above it can be scen that when a process goes 10 invoke critical_section,
i first passes a request message to protector and deactivates itself. The protector takes
the request off in and concatenates it o the history ol past messages. Eventually, when
there are no processes busy in critical_section, the request will be chosen by the
synclmmimlibn strategy. The history is updated to reflect this change and allow is
cxecuted. The execution of allow reactivates the sleeping process. On being awakened,

the process enters critical_section. On returning from critical_scction, the process

Fig. 4.1.1.2. Differences in a Standard and Modified Invocation

Standard Mnd_i fied

Create Request
LPut Request on in

- Deactivate Self
Cuall Critical _Section Cuall Critical_Section
retum; . return: Create it

Put I5vit onin
[]

L : X o e e R

© eew cm————

e i At ek Saa

Protectors " -53- Section 4.1.1

passes an exit message to protector in order to notify protector that it has finished.

Then the process continues executing as normat.

In a general situation, to accomplish synchronization using the approach outlined

by the above scenario, it is only necessary to specify:

1) The procedures which are to be protected by a particular guardian, and

it) The synchronization strategy which the protecting guardian will use.

Presumably the procedures to be protected by a particular guardian would be
specified at compilation time so that the modification to the pertinent invocations

1

could be casily made.” Also, presumably, a procedure could be protected by at most

one guardian,

The specification of the synchronization strategy could be expressed as a function
of the entire sequence of past events in a manner similar to that described in 2.6. Note
that a synchronization stratcgy almost never uses all the information contained in the
complete history of past cvents. Thus optimization is possible if the relevant
information of the history can be encoded and if the synchronization strategy can be
defined as a function of this encoding. For this reason, the definition of a strategy

function will take on the following character.

First the data structure which will encode the past history is defincd. The data

structure must contain the following operations:

1. Note that the modifications could be made at the entry and ¢xit code for the
procedure rather than at the points ol invocation,

. e bt

)

\)
SO, i i S

Section 4.1.1 -54 - Protectors

i) A create operation which will build an "empty” structure for use in
maintaining the information about the history.

i) A put_request operation which will take a new request and update the
data structure to reflect the fact that a new request has occurred.

1) A put_exit operation which will take a new exit notification and update
the data structure to reflect the fact that an exit has occurred.

iv) A put_enter operation which will update the data structure to reflect the
fact that an enter has occurred.

After the data structure has been defined, the synchronization strategy must be
defined on the data structure. Notice that when the strategy function returns a request
that will be allowed to continue, an enter event occurs; and there must be a call to
put_enter. Since put_enter and the synchronization strategy are so closely linked, they
will always be combined into a single operation on the data structure. Thus the
strategy function not only determines which outstanding request will be allowed to
continue next, it also updates the data structure to reflect the fact that the request has
been alfowed to continue - i.e., that an enter has occurred. Therefore put_enter as a
separate operation is not needed since the strategy function will be responsible for
updating the data structure when an enter event occurs. The strategy function is

thought of as an operation on the data structure.

To summarize, recall figure 4.1.1.1. A synchronization strategy can be specified
by defining a data structure which will be used to encode the past history, a. The
operations put_request and put_exit take the place of the concatenation of in onto the
history «, while the operation strategy takes the place of both the synchronization

strategy defined on a and the concatenating of the enter events onto the history a.

SN RA — W5 2SR S o b SRR A TR g e 2 wi

TR A Wkt o i i S . B 443 N i b A O SIN,

)

Protectors -55- Section 4.1.1

This subsection has provided an overview of how synchronization might be
accomplished using the simple polling guardian as a paradigm. The next subsection

presents a more concrete description of this approach.
4.1.2 Definition of the Synchronization Mechanism

The synchronization mechanism will be called a protector. To reiterate, the
purpose of a protector is to coordinate procedure calls of a program running in a
multi-processing environment. The protector is defined here in terms of a particular
programming language for definiteness. The language used is CLU [LISK79] because

of its ability to handle data abstractions conveniently.

A new declaration statement, the protector-create declaration, is added to CLU. }
This declaration describes which procedures are to be protected --i.c., have their '
invocations synchronized -- and indicates the cluster which implements the data
structure (i.e., data type) that defines the synchronization strategy. The declaration
creales a protector (i.e., a guardian-like procedure) and modifies all the invocations to

the protected procedures.
The syntax of the protector-create declaration is given below:
create protector for procedures: idn,... using idn’

The identifiers idn,.. are the names of the procedures whose invocations will be .
controlled by the protector. The procedures might be cither operations defined in a [
cluster module or actual proccdures defined in a procedure module. ‘The
protector-create declaration would appear in the module where these procedures are
defined. The identificr idn’ is a mutable data type (i.c., cluster name) which will be

uscd to encode the past history of events and to implement the synchronization

strategy.

., . LTS . . T i TNy ‘ PN o

P-——“—-w—— TrE— - o o

v

Scction 4.1.2 - 56 - Protectors

The set of basic types of CLU is also augmented to include a new type. An
object of the new type can be thought of as being a message with a very specific
purpose. This purpose is to provide a means for a process executing a protected
procedure to communicate with the protector which is protecting the procedure. For
reasons which will become clear, this type will be named event. There are
fundamemally two kinds of events: request and exit. A request event is a signal that is
sent by a process which would like to execute a protected procedure. An exit event is a
message sent to the protector when the process returns from a protected procedure.
Events are created and manipulated only in the context of synchronization brought
about by protectors. It is possibly confusing that within the data type event there is no
subclass of messages called enter events. The reason for this absence is that a protector
need not send any special message back to the process waiting o be allowed to
continue exccution. The protector need only activate the process. Thus no explicit
mention of an enter event as a data object is ever necessary. An event can be thought
of as a message containing three components: The processor id associated with the
event, the type of event (cither request or exit), and the procedure invocation
associated with the event. Since events arise only in the context of synchronization,
every event is also implicitly associated with a particular protcctor.l The operations on
cvents permit examination of these components. Below a brief description of each

operation is given:

type_of: proctype(event) returns(string)
Returns "request™ or "exit” if the argument is a request event or
an exit event respectively.

procid: proctype(event) returns(int)

Returns the unique integer which is the id of the process which
causcd the event.

. Recall that it has been assumed that a procedure can be protected by only a single
protector, A

i ARG RS,

|
.

4 e

D eites

et v o e ey

- BA

£y

PO AP VN

e e ———

Protectors -57- Scction 4.1.2

op: proctype(event) returns(int)
If the procedure associated with this cvent is the ith procedure
listed in the protector-create declaration, then the opcration
returns i.

get_arg: proctype(event,int) returns(any)
Let i be the second argument of get_arg. Then get_arg returns

th

the i argument of the procedure call associated with this event.

The data type which encodes the past history of events (idn” above) is often called
a synchronization type. A synchronization type, S, is a mutable data type which has the

following operations:

create: proc() returns(S)
This operation creates an object of type S and initializes it.
This object can then be used to encode relevant information
about the past history of events.

put_request: proc(c:event,alpha:S)
This operation lakes a new requcst event, ¢, and updates the
object, alpha, to reflect the arrival of the event.

put_exit: proc(c:event,alpha:S)
This operation takes a new exit event, ¢, and updates the
object, alpha, to reflect the arrival of the event,

strategy: proc(alpha:S) returns(event) signals(null_cvent)
This operation returns either a request which is to be
allowed to continue and then updates S to reflect this action,
or it signals null_event if no request is to be allowed to
continue,

Bricfly, the protector which is created by the declaration is a process dedicated to
polling an input queue for new requests and exit events which it keeps track of by
encoding the history in an object ol the synchronization type. “The data objectis often

referred to as the state of the protector. ‘The protector examines the history encoded in

. ’
'
4
——— .‘i

Rt K3 BN

ARG SN
oo . Nt e

Scction 4.1.2 -58 - Protectors

the data object and allows requesting processes -- i.e., those which are waiting -- to ! 3
continue when appropriate. When a process invokes a procedure which is protected, a :

request event is created which is added to the end of the protector’s input queue. The |

process then deactivates itself. The protector takes this request off its input queuc and b
updates its state via the put_request operation. When the protector decides that it is
safe for this process to execute the protected procedure --i.c., when the operation

strategy rcturns the process’'s request --, it performs the allow command which

reactivates the waiting process. The operation strategy updates the protector’s state to

-~
R e NSRS n
£ e

reflect that the request is now busy. Then as the process returns from the invoked

~&L’:'v.‘

procedure, it notifics the protector that this cvent has occurred by adding an exit event

Wh a’

to the protector's input stream. Again the protector updates its state, this time via the
put_exit operation. ‘The process then continues to execute without further

interference. Figure 4.1.2.3 summarizes these actions. The semantics of a protector

R WY

can be given in more detail in terms of the simple polling guardian given in Chapter 2.

et e+ i e =
N "

In figure 4.1.2.4 is a procedure with the form of a polling guardian which defines the
actions of a protector. This procedure is actually just a rewriting of the simple guardian
procedure given in figure 2.5.9 of Chapter 2. The statement allow(r) is assumed to
activate the procedure which is waiting for the request . The data type ‘
"synchronization” is the synchronization typc with which this particular protector was
created. The protector’s input queuc is represented by in_queue which is treated here
like a stream of cvents. The operation "get” removes the first event from the stream.
Note that the function “strategy”™ can signal null_cvent in which case no activatiom

occwrs. A procedure like the one in figure 4.1.2.3 is created automatically by cach

protector-create declaration and is never actually seen by the programmer. He must

1
|
mercly supply the cluster which implements the synchronization type. |
|
b

To complete the discussion of the protector, it must be shown how events are
associated with the protector’s execution. Recall, first, how events were associated with
the opceration of a polling guardian (sce 2.3). The natural approach would be to say
that a request event would occur with the removal of a request event from the

protector’s in_queue. Similarly, an cxit event would occur when an exit event s

\
. s b . o e ;,-m'..,wW' e TR
.. £ N\ L L . '5 e e [i

s e A 2

Protectors -89 - Section 412

e o

Fig. 4.1.2.3. Sunmimary of Protector’s Operation

Code in Main Program

i) The declaration causes creation of a

T =, - BT

crc;llc'prolu'tor for procedures: op protector and madifies al invocations
using mx; of op to cause proper creation of signals.
. !
¢ * ii) On executing op(x.y). a request event for i
op(x.y); this invocation is cicated and put on the j
: end of the protector's input queue. Then the
*

exeauting process deactivates iself,

i) Sec it below.,

iv) After reactivation, the process invokes
op(x.¥). On return from op, the process
creates an cxit event for this invocation and
puts it on the protector’s input qucue.

The Protector

i

protector = prog(); -

. 1

’ »

. i

;‘

iii") The protector gets the request; c: =cvenl_strcam$get(in_queue); .
and when it eventually decides that the .

invocation can precede, it activates the . '

waiting process via the allow statcment. allow(c);

.

Scction 4.1.2 -60 - Protectors

Fig. 4.1.2.4. Semantics of a Protector

protector = proe()
alpha:synchronization: = synchronization$creatc())—————[are
while true do
c:event = cvent_strcam$get(in_queue) 1
if event$type_oRc)="request" i

then synchronization$put_request(c,alpha)

clseil event$type_oRe) = "exit” ‘-—————[a «allin
then synchronization$put_cxit(c,alpha)

end %if i

¢: = synchronization$strategy(alpha)] c+Gla)
except when null_cveat: continue end __-[a «alle

atlow(c) j—————-{allow(c)

end %while
end protector

removed from the protector's in_queue. Finally, an enter event would occur with the
cxecution of the allow statement. However, the actual exccution of the protector's
procedure is hidden from the implementor of a synchronization strategy. Therefore,
rather than associating the events with protector execution as above, we will instead
take the approach of associating the events with the exccution of the operations of the
synchronization type. A request event occurs with the complction of the put_request
operation; an exit event occurs with the completion of the put_notice operation; and
an enter event occurs with the return from the strategy operation. After examining the
protector procedure given in figure 4.1.2.4, it is clear that associating the events, as in
the first approach, is cquivalent to the association of events with the return from

operations of the synchronization type as in the sccond approach.

ton

e L

Protcctors -61 - Section 4.1.2

A brief example of protector use should clarify the above description somewhat.
Suppost that a programmer, in coding the procedure cs, realizes that it can be exccuted
by only one process at a time. Thus a protector is necded which will force mutually
exclusive access to ¢s. The module of the system containing the definition of ¢s would

have the following declaration:
create protector for procedures: cs using mx.

This declaration creates a protector and modifies ail invocations of ¢cs. In addition to
putting the above declaration in the module defining cs, the programmer would also
code an implementation of mx. The cluster implementing the synchronization data
type mx is given in figure 4.1.2.5. The implementation given in figure 4.1.2.5 uscs the

data type cvent_seq to manage the outstanding requests. A brief description of the

Fig. 4.1.2.5. Synchronization Type for Mutual Exclusion

mx = cluster is create, put_request, put_exit, strategy
rep =record[q: cvent_scq.busy:bool]

create = proc() returns(cvt)
return(rep${q:cvent_seqScreate(),busy: false})
end create

put_request = proc(c:event,alpha:cvt)
event_seq$ng(alpha.g.c)
end put_request

put_cxit = proc(c:event,alpha:cvt)
alphi.busy; == false
end put_cxit

strategy -= proc(alpha:evt)returns(event)signals(null_cvent)
if ~alphabusy
then czevent: = cvent_scq$frsi(alpha.q)
except when cmpty: signal null_cvent end
alpha.busy: = true
event_seq$dq(alpha.q)
returi(c)
else signal null_cvent
end %if
end strategy
end mx

N

Section 4.1.2 -62- Protectors

data type event_seq is included below:

create: proctype() returns(event_scq)
This operation returns an empty sequence.

nq. proctype(event_scq, event)
This opceration modifies argl by adding arg2 onto the end of it.

remove: proctype(event, cvent_scq)

This operation 1emoves the first occurrence of argl from arg2.

If argl does not occur in arg2 then arg? is remains unchanged. 1
dq: proctype(cvent_scq)

‘This operation removes the first event from argl. If argl is the
cmpty sequence then argl remains unchanged.

frst: proctype(event_sey) returns(event) signals(cmpty)
This operation returns the first event in argl. If argl is the
empty sequence then it signals empty.

| frstp: proctype(event_seq, proctype(cvent) returns(bool))

5_ returns(event) signals(empty)

This operation returns the first occurrence of an event in argl
that satisfies the predicate defined by arg2. If no such event
exists then it signals empty.

cmpty: proctype(event_scq) returns(bool)
The operation returns true if argl is the ecmpty sequence and

i otherwise returns false,

Although many other data types besides event_seq can be uscd] for managing the

outstanding requests, cvent_scq is often very convenient; its use will simplify the

\

presentation of solutions,

1. For some examples of the use of other data types for managing the outstanding
requests sce the solutions, (figures 4.3.11 and 4.3.12), to the disk scheduler problem
discussed in 4.3, '

,
i
,
i
,

1
o

Protectors -63- Section 4.1.2

T T

o anie.

Now we return to the discussion of the cluster mx. The operations of mx should

i

be described briefly. The put_request operation adds a request to the end of the event
sequence q, which contains the rest of the requests that are currently waiting to be
allowed to continue. The put_exit operation is called by the protector whenever a
process exits from cs; consequently the boolean busy is set to false. The operation
strategy checks to see if there is a process currently executing cs by testing the boolean
busy. If cs is not busy, the first request is removed from the sequence ¢ and returned
so that the protector can allow it to continue. Thus the data type mx, in conjunction
with the semantics of a protector given by the procedure defined in figure 4.1.2.4,

implements the following solution:

Fla) = if B(a) = @ then min(W(a)) '

otherwise A. ’

This example might seem ridiculously complicated for something so simple as mutual

exclusion; however, once the cluster mx has been written, the same kind of mutual

exclusion can be invoked for another operation ¢sl simply with the declaration:
create protector for procedures: csl using mx.

It is envisioned that in a user library many synchronization data types would exist, each
of which would encapsulate an abstract synchronization bchavior. A programmer
would, as necessary, simply use these data types in protector-create declarations in
order to accomplish synchronization by creating the proper protectors. If the precise

kind of behavior desired were not available in the library, he would write his own

synchronization type and add it to the library.,

It is often helpful o think of the history which is encoded in a synchronization
data type as consisting of two distinet components: information on the waiting
requests; and information on the status of the resource. "The put_request will update
the waiting request component while the put_exit updates the resource status, | the

operation strategy does not signal the null_event, it updates both components, In the

Section 4.1.2 -64 - Protectors

previous example, alpha.q was the first component while alphabusy was the second

component.
4.1.3 Implementation Issues

Above, protector creation is described as something which occurs before
exccution, It is assumed that when the system first staits, all the protector processes
will begin executing. Making protector creation a declarative rather than an exccutable
statement is much simpler; however, with proper care, protector creation could be

made dynamic.

Recall that it has been assumed that no procedure appears in more than one
protector-create declaration. 1t has also been tacitly assumed that none of the
operations of a synchronization type cver appear in a protector-create declaration.
That these assumptions are met, is casily checked automatically before execution time

if protector creation is not dynamic.

Although we implementation of the protector's input queue has not been
specified, it is possible that some sort of low level synchronization might be necessary
among the processes adding events to the end of the queuc and the protector's process
which is removing requests from the queue. Rather than claborate on how this might
be accomplished, it will simply be assumed that the adding and removing of an event
from the protector's inptit queue is an atomic operation; thus no problems arisc with

maintianing ucue consistency.

The speed of a protector’s process relative to the arrival rate of cevents and
relative to the speed of the requesting processes is important, not to resource
consistency, but to the viability of the handling of priority constraints and to the
general practicality of the protector. The input queuc of a protector should never
contain many events in order to force the guardian’s state to represent as closely as
possible those requests which are actually waiting. The protector's process must run at

a high speed relative to the arrival rate of events in order to ensure that a protector's

.
. R P e - AT T TN
e u n o i Lt Ii %2V

* e S — il adifcan o

Protectors ' - 65 - Section 4.1.3

input queuc really does remain relatively empty. Since an event is taken off the queue
for cach iteration of the protector, the fastest burst rate at which events can occur must
be less than the longest time it takes the process to update the protector’s state twice
and to evaluate the strategy function once. The speed of the protector’s process should
be at least as fast as the the fastest of the requesters. Otherwise performance of high

speed processes would be degraded.

Since it has been argued that the protector’s process must run at a relatively high
priority, it is important not to waste processing resources needlessly with pointless
polling. Fortunately, it is casy to prevent the protector’s process from looping
usclessly, looking for new events. This is done by deactivating the protector’s process if
the input queue is ever empty after a call to strategy has just signaled null_event. ‘The
protector’s process remains deactivated until a new cvent is put on the input queue, at
which time it is reactivated. In this way the polling is "conceptual” only and is not

wasteful of resources.
4.2 Readers/Writers Problem

The recaders/writers problem has become onc of the most commonly discussed
examples of a synchronization problem. Since it was first introduced in [COURT71],
many solutions have been proposed and many synchronization mechanisms have been
justificd by demonstrating clegant implementations of these solutions. The problem
can be described as follows: Suppose there is a data base which various users must
access. An access may be cither the reading of a part of the data base or the writing of
some new information into the data base. In cither case it is assumed that the accesscs
are not nccessarily atomic. Thus in order to preserve the consistency of the opcrations
and the data base, rcads must not be allowed concurrently with writes, and concurrent

writes must not be allowed. Basically any solution to the predicate
) Mx(r[write],r")

is a solution to the general readers/writers problem. There are, however, many

Section 4.2 - 66 - Protectors

versions of the problem, some of which are discussed below.

One version of the problem [BL.OO79] requires that cach request be served in a

first come first served order. This can be expressed more formally by the predicate

) Mx(r{write),r)AFIFO(r).

‘The cluster described in figure 4.2.6 defines a protector which implements an optimal
solution to this version of the problem. It is assumed that in the module delining the

procedures read and write, there is the declaration

Fig. 4.2.6. IFCFS Solution to Readers/Writers Problem

rw = cluster is create, put_request, put_exit, strategy
read=1
write =2
rep = recond[q:cvent_scq, writes, reads:int) p

create = proc()returns(cvt)
return(rep${q:event_seq$creatc(), writes:0,rcads: 0})
end create

put_request = proc(c:cvent,a:cvt) :
cvent_scq¥ng(a.q.e) i
end put_request i

put_cxit= proc(c:event,a:cvt)
if event$op(e) = write then a.writes: = a.writes-1
clseif eventSop(c)=rcad then a.rcads: = a.rcads-1 end
end put_cxit 4

strategy = proc(a:evt)returs(event)signals(null_cvent) .
c:event: =event_scq$frst(a.q) {
except when emipty: signal null_cvent cnd ‘ }]
if a.writes =0 & (a.rcads = 0levent$op(c) = read)
then event_seq¥dq(a.q)
il event$op(c) = write then a.writes: = a.writes+ 1
elseif eventSop(c)=read then a.rcads: =a.rcads+ 1 end
retum(c)
end %if
signal null_cvent
end strategy
end rw

\s.-.‘» ey [P . B
. '53}’(1w;lmvﬁ"ﬁgw‘m“'ﬁ' o

Protectors -67- Scction 4.2

create protector for procedures: read, write using rw.

Bricfly, a.q is a sequence of events which contains the requests which are currently
outstanding. The integer variables a.reads and a.writes are the number of currently
busy reads and writes respectively. The strategy here is to take the oldest outstanding
request and see if it can be allowed to continue. 1 it can, then the request is returned;

otherwise, null_cvent is signaled.

Although this solution is an optimal solution to (1), it is not an optimal solution
to (0). In figure 4.2.7 is a cluster which implements an optimal solution to (0).] This
solution is the same as the one given by Andrews [ANDR79). The strategy here is first
to determine what kind of requests can be allowed to continue and then to choose the
first outstanding request of that kind. Another optimal solution to (0) is defined by the
cluster in figure 4.2.8. This solution satisfies the rcaders priority version of the
readers/writers problem mentioned in both [BLOO79] and {GREL76]. This problem is

characterized by the following predicate:
Q) Mx(r{write],r')APr(read, write).

Another very similar problem, also mentioned in {[BL.OO79] and [GREI76], is the

writers priority version. This version can be formalized by the predicate:
3) Mx(r{write],r)APr(write,read).

Figure 4.2.9 presents an implementation of a solution to (3). The similarity between

this implcmentation and the previous is obvious.

1. For a proof of this claim see subscction 4.6.4.

1
TS T T e TR L T T T T e e J

TN
3

o dai,) Ao’ R

[

Section 4.2 ‘ - 68 - Protectors

Fig. 4.2.7. Weak Readers Priority Solution 1o the Readers/Writers Problem

rw = cluster is creale, pul_tequcst, put_cxit, strategy
read=1
write=2
rep = record|q: cvent_scq.writes,reads:int]

crcate = proc()returns(cvt)
return(rep${g:cvent_seg$crcate(), writes:0,rcads: 03)
end create

pul_request = proc(c:event,a:cvt)
cvent_scq$ng(a.q.c) ,
end put_request

put_cxit = proc(c:eventa:cvt)
il eventdop(e) = write then awrites: = a.writes-1
elseifl eventSop{e) = read then a.rcads: = a.rcads-1 end
end put_cxit

strategy = proc(a:cvt)returns(event)signals(null_cvent)
if (a.rcads = 0)&(a.writes =0)
then e:event: =cvent_seq$frst(a.q)
il evemt$op(c) = write then a.writes: = a.writes + 1
elseif event$op(c) =rcad then a.rcads: =a.rcads+ 1 end
cvent_seq¥dg(a.q)
return(e)
elseif a.writes =0
then c:event: = event_scq$frsip(a.q.readers)
arcads: =a.rcads+1
cvent_scq$remove(e,a.q)
return{c)
end %if
except when empty: signal null_cvent end
signal null_cvent
end strategy
readers — proc(e:event)returns(bool)
return(eventSop(c) = read)
end readcers
end 1w

el - L R IR X T T TR T R

Protcctors -69- Scction 4.2

Fig. 4.2.8. Readers Priority Solution to the Readers/Writers Problem

rw = cluster is create, put_request, put_cxit, strategy
rcad=1
writc=2
rep = recordfg:cvent_scq, writcs,reads:int]

create = proc()returns(evt)
return{rep${q:cvent_seqScreate(), writes:0,reads:0)
end create

eveni_seq$ngla.g.c)

|
|
i
}
|
i
put_request = proc(c:event,a:cvt) %
end put_rcquest {

put_cxit = proc(c:event,azcvt) ' b
il event$op(e) = write then a.writes: = a.writes-1 |
elseil event$op(c) =rcad then a.rcads: = a.rcads-1 end

end put_cxit |
strategy = proc(a:cs Oretuens(erent)signals(null_cvent) f
cievent: = event_scq$fistp(a.q.readers) i
except when empty: 's
¢ =cvent_seq$frstp(a.q.writers) f :
except when cmpty: signal nuli_cvent end |
if (a.rcads = 0)&(a.writecs =0) }
then cvent_scq$remove(e,a.q)
a.writes: =a.writes+ 1
return(c)
end %if

end %except
if a.writes=0
then cvent_scq$remove(e,a.q)
arcads: =a.vcads+1
return(c)
end %if
signal null_event !
end strategy
readers = proc(e:event)returns(hool)
return(event$op(c) = read)
end readers
writers = proc(c:event)returns(bool)
return(event$op(c) = writc)
end writers
end rw

|
]
|
Q |
P KO- Vit o S e e ik e

Section 4.2 ‘ -10- Protectors (
¥
E
lig. 4.2.9. Writers Priority Solution to the Readers/ Writers Problem t
.
iw == cluster is create, put_requcst, put_cxit, stratcgy ‘,"
] read=1 !
write=2 ‘
rep = record|q: event_seq.writes, reads:int| {
t
1 create = proc)returns{cvt) :
return(rep${q:event_seqereate(). writes:0,rcads: 04) "5
el create .
pul_request = proc(cierent.a:cvt) ‘,_f!
cvent_seg$ngla.qg.e) 4
end put_request ",
put_cxit = proc{c:eventazevt) ’
if eventBop(e) = write then a.writes: = awrites-1
lseil event$op(e)== read then arcads: = arcads-1 end i
end put_cxit i
strategy - procGorOreturns(eventsignals(nuli_cvent) ,
crevent: = event_sey$listpla.q, writers) |
except when empty: '1
o =event_seg$frsipag.readers)
except when einply: signal null_event end
il awrites=0
then cvent_scq$remove(c.a.q)
arcads; = areads + 1
return(c)
end %if
end %exeept
il (.rcads = 0)&(a.writes = ()
then event_seg$remove(e,a.q)
awrites: = a.writes+1
return(c) <_
end %if
signal nutl_cvent
end strategy
readers = proc(e:event)retums(hool)
return(event $op(e) = read) '
end readers 5
writers = proc(c:evenreturns(hool) |
return{eyventfop(e) - write)
end wrilers
end rw
'

. \
Lo VAl - Con . : S T S R i . ,
TR R S S VR “*""'W‘~,m~‘&

PN

T T TSP A M A, 3 4 e)

Protectors -71- Section 4.2

Notice that none of the solutions presented thus far, except for the first, is fair to
both readers and writers. Below, a protector which satisfies the following version of the

readers/writers problem is described:
“) Mx(rfwrite],r')AFr(r).

The cluster in figure 4.2.10 implements a solution which is described in both
[HOAR74] and [BLOO79]. In this solution, if there arc writers waiting when a read is
requested, the read must wait untit one write completes. When a write terminates, then
all waiting reads may proceed. In the implementation, a.frq contains the outstanding
reads which either were requested when no writes were active or had seen a write
complete while they were waiting. The event sequence a.rg is the outstanding reads
which are waiting for a write to complete. The sequence a.wq is the outstanding writcs.

For a proof that the protector does indeed satisfy (4), see 4.6.2.

chtsndndtinlici

R]

it ol

Scction 4.2 -72- Protectors

Fig. 4.2.10. Fair Solution to the Readers Priority Readers/Writers Problem

rw = cluster is create, put_request, put_cxit, strategy
rcad=1
write=2
rep = record|rq. wq.frq:cvent_scq, writes,reads:int)

create = proc()returus(cvt)
return(rep${rq:cvent_seq$create().wq:event_seqScreate(), frq:cvent_seqcreate(),
writes:0,rcads:0})
end create

put_request = proc(c:event,a:cvt)
if eventSop(c)=recad
then if event_scqSempty(a.wq)&a.writes =0 then event_scq$ng(a.frq.c)
¢lse event_seq$ng(a.rq.c)
end %if
clseifl eventSop(c) = write
then cvent_seq$ng(a.wq.c)
end %if
end put_request

put_exit = proc(c:event,azevt)
if eventSop(e)=recad
then a.rcads: = a.reads-1
clseifl event$op(c) = write
then a.writes: = a.writes-1
a.frq:=arq
a.rq: = cveat_seqcreate()
end %if
end put_crit

strategy = proc{a:cvt)returns(event)signals(null_cvent)
if ~cvent_seg$empty(a.frg)&a.writes =0
then c:event: = cvent_scqS$frst(a.frq)
event_seq¥dqla.frq)
arcads: = arcads + 1
return(c)
clseif ~cvent_scqSempty(a.wq)&((a.reads = 0)&(a.writes = 0))
then cevent: = event_scq$frst{a.wq)
cvent_seq$dq(a.wq)
a.writes: = a.writes+ 1
return(c)
oend %if
signal null_cvent
end strategy
ond rw

e v e Al A i e alilbmi s a

Protectors -73- Scction 4.3

4.3 Disk Scheduler Problem

In this section the disk scheduling problem is discussed. The probiem is to order
accesses to a single movable head disk in an attempt to optimize system efficiency and
individual response time [TEOR72). When accessing a movable head disk, by far the
largest part of the delay is due to head movement. Thus solutions to this problem
employ an algorithm for arranging the outstanding requests so as to minimize head
movement. Two such algorithms are discussed below: the SCAN or clevator
algorithm; and the C-SCAN or circular scan algorithm. Fach approach has its
advantages and disadvantages depending on whether disk utilization is heavy or light.
Note that any implementation of cither algorithm must prevent concurrent accesses to

the disk since the disk can handle only one request at a time.

In the SCAN algorithin the head moves or scans across the disk in one dircction,
servicing requests as it goes until there are no more outstanding requests for cylinders
beyond the head's current position in the direction it is moving, ‘Then, assuming there
are outstanding requests back in the other direction, the head reverses direction and
movcs back across the disk servicing requests as it goes. Figure 4.3.11 presents a cluster
which implements this approach. This solution is similar to one described in
[HOAR74] except that this solution satisfies Fr(r) whereas Hoare's solution does not. It
is assumed here that somewhere a procedure "disk_access™ is defined and that in its

defining module is the declaration:
create protector for procedures: disk_access using ds.

Itis also assumed that the first argument of "disk_access” specifies the cylinder address

of the access. In the implementation, the set of outstanding requests is partitioned

1

between two priority queuces: ™ a.ug and alg. The requests are sorted on the priority

queues according to what cylinder the request is accessing. ‘The priority queue alg

1. For a nice implementation of priority queucs using heaps see [LISK79), pp137-139.

. T o "
et ’MW‘":‘“‘

Scction 4.3 -74 -

Protectors
Fig. 4.3.11. The SCAN Solution to the Disk Scheduler Problem
ds=cluster is crcate, put_rcquest, put_cxit, strategy
up_scan=1
down_scan=2
rep = recordflg.ug:p_qucucfevent],pos.dir:int,busy :bool]
! create = proc{)returns(cvt)
| retun(rep${iq: p_queucfevent)$create(descending),
; uq:p_queucfevent]Screate(ascending),
1 . pos:0.dir:0.busy:false})
/ end create
put_rcyucst = prac(c:event,azcvt) '
arg:int: = event$get_arg(e.l)
if arg>a.pos then p_queucfevent)$insert(a.ug,c)
elseif arg<a.pos then p_queucfevent]Sinsert(a.lq.c)
elseif arg = a.pos then
if a.dir=up_scan then p_qucuclevent]$insert(a.lq,c)
elseif a.dir = down_scan then p_gucucfevent]$insert(a.uq.c) end
end %if
end put_requcst
put_cxit = proc(c event a:cvt)
a.busy: = false]
a.pos: = event$get_arg(e,1) ¥
end put_cxit i
strategy = proc(a:cvtreturns{event)signals(null_cvent) E

c:event
il ~a.busy&(~p_queucfevent]Sempty(alq)|~ p_queucfevent}Sempty(a.ug))
then if (a.dir = up_scan)&(p_qucucfevent]Sempty(a.lq))
then a.dir: =down_scan
elseif (a.dir = down_scan)&(p_queucfevent]Sempty(a.uq))
then adir: =up_scan end
if adir =up_scan then ¢: = p_queuclevent$reinove(a.ug)
elseil a.dir=down_scan then ¢: = p_queucfesent]$remove(a.lq) end
a.busy: =true
return{c)
end %if
signal null_cvent
end strategy
descending = proc(cl.c2:evenOreturns(hool)
return{eventSget_arg(c2, D)KeventSget_arg(el 1))
end descending
ascending = proc(e] c2:event)returns(hool)
return(eventfget_arg(el, 1 <eventSget_arg(c2,1))
end ascending

end ds

Protectors -75- Section 4.3

contains its requests in descending order while the priority queue a.ug contains its

requests in ascending order. The integer variable a.pos is the cylinder address where

N

G e e ey g
. alaieae .

i

the head is currently located. The integer variable a.dir is the direction in which the '
$

head is currently scanning. The direction determines from which queuc requests will I
}

be taken in the operation strategy. When dir=up_scan, then requests are removed

from a.ug; and when dir=down_scan, then requests arc removed from alq. ‘The
operation strategy changes the direction whenever the queue in the current direction is
cmpty and the queue in the other direction is not empty. When put_request is called,
Y the request passed is inserted into a.ug, the upper queue, if the cylinder address of the
access is greater than the current position. 1f on the other hand the address is less than
the current position, the request is inserted into alg, the lower queue. When the access
address of the request is the current position, then the request is put on the queue from
whichever strategy currently is not removing requests. This prevents starvation of

other requests.

in the C-SCAN algorithm the head moves across the disk servicing requests in

only onc direction. When there are no more outstanding requests in this direction,
then, assuming there are still some outstanding requests, the head is moved all the way
back across the disk to service the request with the cylinder address which is farthest
from the current position. Figure 4.3.12 gives an implementation of this approach.
This solution is similar to one proposed in [ANDR79). The outstanding requests are
partitioned between two priority queues, a.uq and a.tg. Requests in cach of these
queues are sorted in ascending order by cylinder address. The integer a.pos is the

cylinder where the head is currently located. When put_request is called, the request is

inscrted into the upper queue (i.c., a.uq) if it accesses a cylinder greater than the
current position. Otherwise the request is put on the temporary queue, atq. In
strategy, requests are removed from a.ug. When aug is empty, then il there are still
outstanding requests, a.ug is set equal to atq and atq is re-initialized as an cmpty

queue,

A e e WIS,
-y o R Pt < s

Scction 4.3 -76 -

Fig. 4.3.12. The CSCAN Solution to the Disk Scheduler Problem

ds=cluster is create, put_request, put_cxit, strategy
rep =record[ug.tq: p_queucfevent),pos:int,busy: hool]

create = proc()returns(cvt)
return(rep${uq:p_queucfevent]$create(ascending),
tq: pqucucfevent]$create(ascending),
pos:0,busy:false})
end create

put_request = proc(c:event,a:cvt)
il event$get_arg(e.1)>a.pos then p_gucuc{eventjSinsert(a.ug.c)
clseif event$get_arg(e.1)X = a.pos then p_queuc|event]Sinscrt(a.tq.c) end
end put_request

put_cxit=proc(c:event,a:cvt)
a.busy: = false
a.pos: =event$get_arg(e.1)
end put_cxit

strategy = proc(a:cvt)returns(event)signals(null_cvent)
if ~a.busy&(~p_queuclevent]$empty(a.uq)l~p_queuc|event)$empty(a.tq))
then if ~p_gucucjeventj$empty(a.uq)
then aug: =atq
a.tq: = p_queucfevent}$create(ascending)
end %if
cievent: = p_queucfevent}Sremove(a.uq)
a.busy: =true
return(c)
end %if
signal null_cvent
end strategy
ascending = proc(el ¢2:event)returns(hool)
return(eventSget_arg(cl,)<event$get_arg(c2,1))
end ascending
end ds

- . e T e sl DR g

Protectors

Protectors ' -77- Section 4.4

4.4 Five Dining Philosophers

This section examines the problem of the five dining philosophers [DIJK71). In
this problem there are n Chinese philosophers or sages which alternate between

thinking and eating.]

The dining table at which they eat is sct so that each sage has his
own place at a round table. Unfortunately, there arc only n chop sticks which are
arranged so that between each two place settings there is a single chop stick. Sce figure
4.4.13. Thus philosophers with adjacent place scttings cannot cat simmultancously. [f

the sages are numbered 0 through (n-1) then this constraint can be restated as

(0) (i-j=x1) mod n - Mx(i].rjD.

In transforming this problem into a practical programming problem, it is assumed that
a procedure which is named "eat"” is called by various processes numbered 0 through
(n-1). In the header of the module where eat is defined, the following declaration

appears:

create protector for procedures: cat using dp[S).

Fig. 4.4.13. The Dining Philosophers Problem

1. In Dijkstra’s original statement of the problem, n=35,

o e e

Scction 4.4 -78 - Protectors !
Figure 4.4.14 presents a cluster which defines an implementation which is an optimal v
solution to (0). In the cluster, a.q contains the outstanding requests and the array
a.table tells who is currently eating. Thus a.table[ij=1 if and only if philosopher i is
eating and otherwise a.table[i]=0. The procedure "bind" needs some explanation. An ;
invocation of bind(p.i,s), where p is a function with k arguments, returns the function
p’ with k-1 arguments which results from the binding of s to the i[h argument of p. L’
Thus bind permits partial parameterization as in some extensions of ALGOL 68, k
[LIND74] and [LIND76). (
:
:
¥
Fig. 4.4.14. Optimal Solution 1o the Dining Philosophers Problem &

dp == cluster[n:int] is create, put_request, put_cxit, strategy
rep = record|q:cvent_scq,table:array]ing])

create = proc)returs(cvt)
return(rep${ q:cvent_scqScreate(), table:array [int]$£ill(0.n-1,0)}) ;
end create |

put_rcquest = proc(c:event,a:cvt)
event_seg¥nq(a.q.e)
end put_request

put_cxit=proc(c:event a:cyt)
atablefevenmt$procid(e)]: =0 5
end put_cxit

|
|
strategy = proc(azevt)returns(event)signals(null_event) l
c:event: = event_seq¥frsip(a.q,bind(open, 1 a.table)) k
except when empty: signad null_cvent end
atablefesent$procid(e)): = 1
event_scq¥remove(c.a.q)
return(c)
end strategy
open = proc(th):arraylint].c:event)returns(bool)
i:int: = event$procid(c) _
return((thif(i 1- 1)//n]) = 0)&{bN(i-1)//n)=0))
end open

end dp

ot

Protectors -79- Scction 4.4

As is pointed out in [DIJKT71], the above solution may result in the starvation of
one or more of the sages. A possible version of the dining philosophers problem also

requires that the solution be fair to all requests. More formally:
(1) [(-))=%1 mod n — Mx(ii].f[iP} A Fi(r).

Figurc 4.4.15 gives a cluster which results in the requests being served in a first come
first served order. ‘This will result in very little parallelism. For instance, if the oldest
outstanding request -- 1.e., the first one on the queue -- is blocked from cating, then

cven though all the rest of the outstanding requests might be free to eat, they cannot.

Fig. 4.4.15. FCFES Solution to the Dining Philosophers Problem

dp=cluster{n:int] is create, put_request, put_cxit, strategy
rep == record{q: event_seq.table:areay[int]]

create = proc(returns(evt)
return(rep${q:event_scg$ercate().able:arraylint$fill(0,n-1,0)})
end create

put_request = proc{c;event,a:cvt)
cvent_scq¥nq(a.q.c)
end put_request

put_cxit=proc(c:event,a;cvt)
atablefeventSprocid(e)}: =0
end put_cxit

strategy = proc(a:cvt)returns(event)signals(null_cvent)
c:event: = cvent_seq$frsi(a.q)
except when empty: signal null_cvent end
juintz = event$procid(e)
if Grtable]@ - 1//n] = 0)&(atable|(-1)//n] =0)
then atableljf =1
event_seg$dg(a.q)
return(c)
end %if
signal null_cvent
end strategy
end dp

Section 4.4 - 80 -

Protectors

A better approach to a solution to (1) is suggested by Dijkstra in [DIJK71). This
approach introduces the notion of very hungry, One way to formalize this notion is as
follows: A sage is hungry when his request to cat is outstanding, and a sage is very
hungry i whilc he has been hungry, k other sages have finished cating. Very hungiy
sages are served in a FCFS manner and given absolute priority over sages that are
1

simply hungry.” Figure 4.4.16 gives an implementation of such a solution. The integer

array, a.status, maintains the status of the sages as follows:

astatus[i] =0 Sage i is not active.

astatus[i]=-1 Sage i is cating

astatus[i]=m>0 Sage i is hungry and m-1 sages have caten since i has
been hungry. If m>k, then iis very hungry.

All outstanding requests are kept in the event sequence a.q. The predicate vh is true of
an outstanding request when it is both very hungry and ncither of its adjacent
neighbors is cating. The predicate b is true of an outstanding request when neither of
its adjacent neighbors is cating. Note that we have made k a parameter which would

be passed by the protector-create declaration.

e the HOES wdution given above.

Protectors - 81 - Scction 4.4

Fig. 4.4.16. Fair Solution to Dining Philosophers Problem with Very Hungry Sages

dp = cluster[n:int k:int] is create, put_requcst, put_cxit, strategy
rep = record]q: event_seq,status:arraylint]]

create = proc()returns(cvt)
return(rep$ {q:eventseqS$create().status: array|int]$ill(0.n-1,0)})
end create

put_request = proc{c:event,a:cvt)
astatusfevent$procid(e)): =1
event_scq$nqg(a.q.c)
end put_request

put_cxit = proc(c:event,a:cvt)

jiint: =0

while j<n do
if a.status[j]P>0 then astatusfj]: = astatusfjj+ 1 end
i=j+1
end %while

astatus[event$procid(e)): =0

end put_cxit

strategy = proc(a:cvt)returns(event)signals(null_cvent)
c:event: = cveni_seq$frstpa.q.bind(vh,) a.status))
except when empty:
¢: =cvent_seq$frstp(a.g.bind(h,1,a.status))
except when cmpty: signal null_event end
end %except
astatusfevent$procid(e)): =-
cvent_seq$remove(c,a.q)
return(c)
end strategy
vh = proc(st:array[int].c:event)returns(bool)
return(i(st,c)&stfeventSprocid(c)P =k)
cnd vh
h=proc(st:arraylint}.c:event)returns(boot)
izint: = event$procid(e)
return((st[(i + 1)//n)~ =-D&(st|(i-1)//n)~=-1))
end h
end dp

3
]

vy
sulaman,

.i.‘_“__.A

Labkt

P

Scction 4.5 -82- Protectors

4.5 Bounded Buffer Problem

In the bounded buffer problem it is assumed that there is a buffer which can
contain, at most, "max” items of information. A group of processes called producers
deposits information in the buffer, an item at a time, by invoking a procedure named
"produce.” Another group of processes called consumers removes information from
the buffer an item at a time by invoking a procedure called "consume.” The problem
is 10 synchronize calls to produce and calls to consume so that there is not mutual
interference. Also when an invocation of producc is allowed, the buffer must not be
full; and when an invocation of consume is allowed, the buffer must not be empty.

The predicate Z(a) below captures the fact that in order for consume to proceed, the

buffer must not be empty.

Z(a)=VB[Ba—(0< # Bx[produce]- # Bc[consumc])]l
where # ﬂl(o] is the number of events in g with operation o and of type t.

‘The predicate M(«) captures formally that in order for produce (o proceed, the buffer

must not be full.
M(a)=Va[B<a—(# Be[produce]— # px[consume] <max)]

[f no assumptions are made about the structure of the buffer, a solution must prevent
simultaneous invocations of produce and consume. Naturally two separate invocations
of either produce or consume cannot be allowed to occur simultancously. Thus the

following predicate defines the most gencral version of the bounded buffer problem:
0) Z AM A Mx(r,r).

In figure 4.5.17 is a cluster which defines a protector that implements a sofution (o (0).

It is assumed that in the module where the procedures produce and constime are

1. Recall from 2.2.1 that g<a means that g is a finite initial scgment of a.

Protectors -83- Scction 4.5

Fig. 4.5.17. Nearly FIFO Solution to the Bounded Buffer Problem

bb = clusterinax:int] is create, put_request, put_exit, strategy
produce=1
consume =2
rep = record[q:cvent_scq.count:int,busy:bool}

create = proc()returns(cyt)
return(rep${q:cvent_seqSercate().count:0,busy:false})
end crecate

put_rcquest = proc(c:event,a:cvt)
cvent_seg¥ng(a.q.e)
end put_request

put_cxit = proc(c:event,a:cvt)
a.busy: = false
if event$op(e) = produce then acount; =a.count +1
elseif event$op(e)=consume then acount: =acount-1 end %if
end put_cxit

strategy = proc(a:cvt)returns(event)signals(null_event)
if ~a.busy
then c:event: =cvent_seq$frst(a.q)
if eventSop(e) = produce&(a.count) = max)
then ¢: =cvent_seq$fistp(a.q.consumer)
clseil event$op(c) =consume&(a.count< = max)
then ¢: = cvent_seq$fistp(a.q.producer) end %oif
cvent_scq$remove(e,a.q)
a.busy: =true
return(c)
end %if
except when empty: signal null_cvent end
signal null_cvent
end strategy
consumer = proc(e:event)returns(bool)
return{event$op(c) =consume)
end consumer
produccer = proc(e: event)returns(bool)
return(event$op(c) = producc)
end producer
end bb

e e ——— -

—— ” TN

Section 4.5 -84 - Protectors

defined, the following declaration appears:
create protector for procedures; produce,consume using bb.

The solution being implemented here attempts to serve requests on a first come first
served basis. Sometimes in order to prevent deadlock this is not possible, For
example, if a request to consume were the first outstanding request but the buffer were
cmpty, then the strategy would return the first outstanding produce request, assuming
the buffer were not busy. In the implementation, the boolean a.busy is truc whenever
cither a production or a consumption is in progress; otherwise it is false. Al
outstanding requests arc kept in the event sequence a.q. The integer a.count is the

number of items currently in the buffer.

Another version of the bounded buffer problem assumes that produce and
consume can be executed concurrently. This might be the case if, for example, the
buffer were implemented as a simple array. This version of the problem is made

explicit by the predicate
(1) Z A M A Mx(produce,produce) A Mx(consume,consume).

Figure 4.5.18 presents an implementation of a solution to (1). The boolcan a.c_busy is
true if and only if a process is currently executing consume. Similarly a.p_busy is true
il and only if a process is currently exccuting produce. The outstanding requests to
produce are kept in a.pg while the outstanding requests © consume are kept in a.cq.
The integer variable a.count is the number of items in the buffer. For a proof of the

correctness of this implementation sce 4.6.3.

e - =
e L3

Protectors -85 -

Fig. 4.5.18. Solution to the Bounded Buffer Problem

bb =cluster[max:int] is create, put_request, put_cxit, strategy
produce=1
consume =2
rep = record{pq.cq:cvent_seg.count:int,p_busy c_busy:hool|

create = proc()returns(cve)
return(rep${pq:event_segSereate().cq:event_seg$create().
count:0.p_busy:false.c_busy:false})
end create

put_request = proc(c:event,a:cvt)
if event$op(c) = produce then event_seq$ng(a.pq.c)
clseif eventSop(c) = consume then event_seqdng(a.cq.c) end %if
end put_rcquest

put_cxit = proc(c:event,a:cvt)
if event$op(c)=produce
then acount: =acount+1
a.p_busy: =false
clseif event$op(e)=consume
then a.count: =acount-1
ac_busy: =false
end %if
end put_cxit

strategy = proc(uevt)returns(event)signals(null_cvent)
if ~a.c_busy&(0<a.count)& ~event_seqSempty(a.cq)
then c:event: = cvent_seq$frst(a.cq)
cvent_seq$dq(a.cq)
a.c_busy: =true
return(e)
clseif ~a.p_busy&(a.count<max)&~cvent_seqSempty(a.pq)
then c:event: =cvent_seq$trsi(a.pq)
cvent_seq$dq(a.pq)
a.p_busy: =true
return(c)
cnd %if
signal null_cvent
end strategy
end bb

Section 4.5

v
:

l

F

Section 4.6 - 86 - Protectors

4.6 Proof of Implementation Correctness

This section is devoted to the development of a methodology for verifying the
correctness of implementations. The way in which protectors have been defined makes
it possible to use the basic techniques of the Floyd-Hoare partial correctness method
[F1.LOY67] in order to verify many properties of a protector. Some properties require a
different approach. Often these properties can be verified using the intermittent
asscrtion method proposed in [BURS74] and [MANNT8]. In the first subscction a
brief outline of an approach to verifying correctness is given. Then several examples

are examined.

Before giving an outline of the approach it is useful to clarify the goal of the
mcethodology. The goal is to make possible the proof that the behavior of the guardian
as implemented by the protector is a subset of the set of scquences satisfying a problem
specification. In order to accomplish this goal, the methodology first shows that at any
given point in execution, the protector’s state, as represented by an object of its
synchronization type, accurately encodes all the important information about the
history of events which have occurred thus far. Then the methodology must show that
the state of the protector implies both that nothing bad happens and that certain good
things do happen. Thus the goals here are somewhat different from those of a
methodology for verifying the correctness of a standard sequential program. Such a
methodology need only prove that, given an input, the program will terminate with a

given output. ‘There is no guestion of behavior over continued operation.
4.6.1 An Qutline of the Methodology

Following Lamport [LAMPT78] the methodology separates specifications into two

categorics:

- . - "
0L e GO S h

PRSI TR

Protectors -87- Section 4.6.1

i) Safety properties --i.c., those specifications which state that
somcthing bad cannot happen; and

i) Liveness properties --i.e., those specifications which state that
somcthing good must happen.

In general, consistency and priority constraints are examples of safety properties while

fairness constraints arc examples of liveness properties.

Definition 4.6.1.1: A behavioral invariant is a predicate which is always true after
the exccution of the synchronization create operation whenever the protector’s process

is not exccuting an operation of its synchronization type.

Because of theorem 3.3.3, we can prove that a protector satisfies a continuous predicate
P by proving that P is a behavioral invariant. This is accomplished by showing that P
holds immediately after the exccution of the create operation and that for cach
additional synchronization operation, if P holds before its execution, it will hold after
its execution. I P is a simple predicate, then by theorem 3.4.3 it is sufTicient to prove
that P is true after the create operation and that P remains invariant with the execution
of strategy. Sometimes it is useful to restate a predicate P in the form va[a<a—Q(B)]
where Q is a predicate that tests only information which is encoded by the
synchronization type. By theorem 3.4.4, P can be shown to be a behavioral invariant
simply by showing that Q is truc after the create operation and that Q remains
invariant with the exccution of strategy. Notice that behavioral invariants are very
similar to the invariant asscrtions of the Floyd-Hoare method [FI.OY67] for
establishing partial correctness of simple sequential programs and can thercfore be

proved by the same techniques.

To establish that a protector satisfics a liveness property is more difficult since
liveness propertics are not continvous. Instead of establishing behavioral invariants,
we must prove predicates of the form: "If the point of exceution is at point 1. of the
cluster with state Q, then eventually control will be at point L' with state Q." ‘These

assertions are proved by induction on the state of the protector. This technique is

L

G PR,

Oz

B oo R -
s YRR i

¥

e e e T T

—— —

Section 4.6.1 -88 - Protectors

preciscly the method of intermittent assertions which is put forth in [BURS74} and
[MANNT7S].

Below we give a brief outline of how to establish the correctness of a protector:

A) First the specification is deccomposed into its component predicates.
B) The following is done for each.
1) Rephrase the predicate in terms of the protector state.

2) Establish that the portions of the state mentioned in the
rephrasing actually encode the proper information about
the past history of events.

3) Depending on whether or not the predicate is continuous,
do onc of the following.

a) If it is continuous, prove it to be a
behavioral invariant.

b) If it is not continuous, prove it true using
the techniques of intermittent assertions.

In the following subsections we examine several examples in which the above

outline is followed.
4.6.2 Correctness of a Solution to the Readers/ Writers Problem

In this subsection, the protector described in figure 4.6.2.19 is examined and is

1

proved to be a solution” to the predicate

1. This implementation was discussed previously in 4.2,

< e e -

o e e

L Protectors ' -89- Section 4.6.2

) | Mx(r]write],r')AFr(r).

L3k b

We start by examining the predicate Mx(t{write],r'). Note that it can be rewritten

ik

g e

vB[B<a—((|B(8,write)| = OV|B(8.read)| = 0) A [B(8.write)}<1)).}
From theorem 3.4.4 we know that we need only verify that

|
[
I

1) ((IB(a,write)] = 0V [B(a,read)| = 0) A [B(a,write)|<1)

is true after the execution of crecate and is an invariant of the execution of strategy.

An examination of the cluster rw reveals that a.reads and a.writes presumably are
the number of busy read and write requests respectively. Thus the predicate (1) can be

rewritten in terms of the protector’s state as ;

) [(a.reads =0)v(a.writes = 0)]Afa.writes<1].

In order to show that (2) is actually the same as (1) it must be shown that a.reads
and a.writes actually do represent the number of busy requests -- i.e., that the following

are behavioral invariants;

3) a.reads = # e[read]- # x[read)
C)) a.writes = # e[write]- # x[write]

T

Further examination of rw reveals that the cvent sequences a.rq and a.frq must
contain the outstanding read requests and a.wq must contain the outstanding write

requests. To make certain of this, the following predicates must be shown to be

behavioral invariants: g

1. Fora finitc set A, JA| is the number of clements in A.

b
—— L. . e BT e PSS O - ——— o ————— .- i [

PR "

et el A il

Scction 4.6.2 -90 - Protectors

Fig.

4.6.2.19. Fair Solution to the Readers Prioritly Readers/Writers Problem

rw =cluster is create, put_request, put_exit, strategy

o W o

[~ 29NV]

13
14
15
16
17
18
19
20
21
22

23

recad=1
write=2
rep =record[rq, wq.frq:event_scq,writes,reads:int)

create = proc()returns(cvt)
return(rep${rg:event_seqScreate().wq:event_seq$create(). frq:event_seq$create(),
writes:0,rcads: 0})
end create

put_requcst = proc(c:event,a:cvt)
if event$op(c)=read
then if event_scq$empty(a.wq)&a.writes =0 then cvent_seq$ng(a.frq.c)
¢else event_scq$ng(a.rq,c)
end %if
elscif eventSop(c) = write
then cvent_scq¥ng(a.wq,c)
end %if
end put_request

put_cxit = proc(c:event,a:cvt)
il event$op(c)=read
then a.rcads: = a.rcads-1
ciseif event$op{c) = write

then a.writes: = a.writes-1
afrq:=arq
arq: =cvent_seq$create()

end %if
end put_exit

strategy = proc(a:cvt)returns(event)signals(null_cvent)
if ~cvent_scq$empty(a.frq)&a.writes =0
then c:event: =event_scq$frst(a.frq)
event_seq$dy(a.frq)
arcads: =a.rcads+1
return(e)
¢lseif ~cvent_scq$empty(a.wq)&((a.reads = 0)&(a.writes =0))
then c:event: =cvent_seq$fisi(a.wq)
cvent_seq$dq(a.wq)
awriles: = a.writes+ 1
return(c)
end %if
sigmal null_cvent
end strategy

ond rw

e T P 1 e wiiger SO AT

oo e s

— i M it b T e o -

Protectors -91 - Scction 4.6.2
) (a.rq)U(a.frq) = W(a,reads)’
6) (a.wq) = W(a,writes)

Now if we assume that every process which invokes cither read or write will eventually

rcturn, the predicate Fr(r) can be rephrased as follows:

M "If a request r is ever on a.rq, a.frq, or a.wq, then eventually r will be

be removed and returned by the operation strategy.”

With this introduction, we continue in more detail. First we prove that (3) is a
behavioral invariant. Surely (3) is true immediatcly after the exccution of create when
a.reads =0 and no events have occurred. The execution of put_request ncither changes
the number of enter and exit events or a.reads. The execution of put_cxit when e is a
read decreases a.read by 1 (line 8) but also increases # x[read] by one. If e is a write
then none of the values pertinent to (3) are changed. Thus if (3) is true prior to
exccution of put_exit, it will be true afterwards.2 The exccution of the operation
strategy can increment a.reads (linc 16) but only by increasing #cfread] (line 17),
assuming a.frq contains only read requests. Also #efread] can be increased only if
areads is incremented, assuming that awq contains only write requests. Our

assumptions about a.frq and a.wq can be proved by showing that

8) (a.rq)U(a.frq)C W(a,read)
9) (a.wq)C W(a,write)

are behavioral invariants. A quick examination of rw shows this to be so. Thus (3) is a
behavioral invariant, In a similar way it can be shown that (4) is also a behavioral

invariant.

1. ‘The expression (a.rg)U(a.ltq) is used to denote the set of all reguests in cither aurg
or a.frqg.

2. Note that this could have been done much more formally by using the standard
techniques used by Floyd for proving invariant asscrtions.

e

¥

i

Section 4.6.2 ' -92- Protectors

Now (2) is certainly true immediately after the execution of the create when
a.rcads and a.writes arc both zero. So we need only show that if (2) holds prior to the
execution of strategy, it will hold afterwards. This is casily done using the standard
techniques used by Floyd in proving invariant assertions. ‘Therefore, the protector

defined by rw is a solution to Mx(t[write],r’).

At this point we turn our attention to Fr(r) which has been rewritten in terms of
the protector’s state in (7). First we must cstablish that (5) and (6) are behavioral
invariants in order to show that (7) is rcally the same as Fr(r). That (6) is a behavioral
invariant is casy to verify. Part of (5) is also easy (sce (8) above). It is more difficult,
however, to show that every time a request is removed from arqg or a.frq a read is
allowed to enter. This is because if a.frq is not empty when fines 11-12 are executed,

implicit removal of requests occurs. If we can show that
(10) (a.writes=0)v(empty(a.frq))

is a behavioral invariant, then we will know that lines 11-12 will never be executed
unless a.frq is empty. Verifying that (10) is a behavioral invariant is again
straightforward.l Since (10) is a behavioral invariant, we know that every time a
request is removed from a.rq or a.frq a read is allowed to enter. Thus (4) is a

behavioral invariant,

Finally we are in the position to prove that (7) is true. This will be done by first
proving that every request put on a.frq is eventually removed and returned by strategy.
Then it will be shown that every request on a.wq is eventually removed and allowed to
continuc. Last to be shown is that if a.rq is ever non-empty, eventually all requests on

a.rq will be put on a.frq.

1. Inlight of the truth of (10) the predicate in the testin line 13 is redundant.

— P RS

Protectors -93 - Scction 4.6.2

Let us suppose that ¢ is the first request on a.frq. Note that ¢ can be removed
only on line 15 in strategy. Now from the semantics of protectors and the ...t that cach

1 we know that eventually strategy

of the opcerations of the cluster rw always terminates,
will be called and e will still be the first request on a.frq. Thus when the test at line 13
1s exccuted, the branch (14-17) will be taken and e will be removed and returned to the
protector. Thus by simple induction on event_seq it is possible to show that any event

in a.frq will eventually be removed and returned by strategy.

Next we examine a.wq. Suppose that e is the first event on a.wq. Now there are

‘ two cases: i) awrites=0; or 1i) awrites=1. In the sccond case, the write which is in
the data base will eventually leave the data base and a.write will be set to zero; then we

will be in the first case. From this point on no request will be added to a.frq until
cither a.wq is ecmpty (line 3) or another write lecaves the data base (line 10). o cither

case no requests will be added to a.frq until ¢ is removed from awgq. Previously we

showed that every request must eventually be removed from a.frg. Also we assumed
that every request would return from the data base. Thercefore, eventually strategy will
be called with a.reads=0 and a.frq empty and with ¢ the first event on a.wq. At this
point the elseif branch (line 18) will be true and lines 19-22 will be executed resulting
in the removal of ¢ from a.wg. Again by induction, it can be shown that if e is ever in

a.wq, eventually it will be removed.

.

Last of all we look at a.rq. Requests are removed from a.rq only on lines 11-12
and all arc placed on a.frg which, from previous argements, implies they will
cventually be returned by strategy. ‘Thus we need only show that if a request is cver
added to a.rq, eventually lines 11-12 will be executed. Requests are put on a.rq only on
line 4, when either awq is not empty or a.writes=:1. In any casc cither a.writes =1

2

now, or a.writes will be equal to one in the future.” We assumed that a write in the

1. Since none of the operations contains any loops, this is immediate.
: 2. We know this from our previous arguments about a.wq

- Th e e ae e

,
»
S — aa e AR Y M e

AD=A091 015 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COHPUTE--ETC F/6 9/2
A SEMANTICS OF SYNCHRONIZATION.(U)
SEP 80 C R SEAQUIST Noooxu-'ys.c-oau
UNCLASSIFIED MIT/LCS/TM=176

P—— _ _
||l|' .0 e
= g2

TR
= e

L2 fis e

EROLETION Tt cHAaRT
] N . A
—— % T skl

Scction 4.6.2 -94 - Protectors

data base will always eventually exit the data base. Thus eventually an exit event will
be passed to put_exit and lines 11-12 will be executed. Thus (7) is true. Therefore, we
have established that the protector defined by rw in figure 4.6.2.19 is a solution to (0).

4.6.3 Correctness of a Bounded Buffer Solution

In this sub-section we show that the protector defined by the cluster bb given in

figure 4.6.3.20is a solution! to the predicate
©) Z A M A Mx(produce,produce) A Mx(consume,consume),
where

Z(a)=VB[BLa—(0< # Bx[produce]-# pe[consume])]
M(a)=VB[B<a—(# Be[produce]- # Bx[consume])smax].

We will use a function i:Bool—integers to simplify the expression of some of the
predicates used below. We define

Atrue)=1, and
Afalse)=0.

After some examination of the definition of the cluster bb, it is obvious that
a.count is supposed to represent the number of items curreistly in the buffer while
a.p_busy and ac_busy indicate whether there are any producers or consumers,
respectively, accessing the buffers. We can make this explicit by proving the following

to be behavioral invariants.

1) a.count = # x[produce]- # x[consume]
(2) Ka.p_busy) = # c[producc]- # x[producc]

1. This solution was discusscd earlier in 4.5,

Protectors Scction 4.6.3

Fig. 4.6.3.20. Solution to the Bounded Buffer Problem

bb = clusterfmax:int] is create, put_request, put_cxit, strategy
produce=1
consume =2
rep = record[pq.cq:cvent_seq.count:int,p_busy.c_busy:bool]

create = proc()returns(cvt)
1 return(rep${ pg:cvent_seqScreate().cq: cvent_seq$create(),
count:0,p_busy:false.c_busy:false})
end create

put_request = proc(c:cvent,a;cvt)

2 if event$op(c)=produce then cvent_scq$ng(a.pq.c)
3 elseif event$op(e) =conseme then cvent_scqdnq(a.cq,c) end %if E
end put_request 5
put_cxit=proc(c:event,ascvt) A
4 if event$op(c) =produce ;
5 then a.count: =a.count+1 E
6 a.p_busy: =lalse q
7 clseil event$op(c) =consume :
8 then acount: =a.count-1 >
9 ac_busy: = false
end) %if 5

end put_exit

strategy = proc(a:evt)returns(event)signals(null_cvent)

10 il ~a.c_busy&(0<a.count)& ~event_seq$empty(a.cq)
11 then c:event: = cvent_scq$frst(a.cq)
12 event_seq$dq(a.cq)
13 a.c_busy: =true
14 return{c)
15 elseif ~a.p_busy&(a.count<{max)&~cvent_seq$empty(a.pq)
16 then c:event: = cvent_scq$fst(a.pq)
17 event_seq$dq(a.pq)
18 a.p_busy: =true
19 returi(e)
end %if
20 signal null_cvent

end strategy

end bb

Scction 4.6.3 ' -96 - Protectors

3) Iia.c_busy)z # efconsume} # x[consume)

Showing that (1) is a behavioral invariant is straightforward. To show that (2) and (3)
are behavioral invariants we must first show that

4 a.pq = W(a,produce)
(5) a.cq = W(a,consume)

which is easily done. Note that by establishing the truth of (2) and (3), we show that
the protector is a solution to

Mx(produce,produce) A Mx(consume,consume).

Thus we need only show that the protector is a solution to ZAM and we will be
finished. From theorem 3.4.4 we know it is sufficient to show that the following two

predicates arc true after the create operation and are invariants of the execution of

strategy,
) (0< # x[produce]- # e[consume])
) (# elproduce]- # x[consume]) <max.

Using (1)-(3) and simple algebra, we can rewrite (6) in terms of the protector's state as
follows,

8) 0<a.count-ia.c_busy).
Similarly we can rewrite (7) as
)] Aa.p_busy)+a.count<max.

After create, (8) and (9) are certainly true. Now we need only show that if (8) and (9)
are true before the execution of strategy, thcy will be true afterwards. This is casily
seen to be the case. Therefore, bb defines a protector which is a solution to (0).

i FONPUD DU CONY - 05 o e - T 3

=y

&

TR

T s AW BT,

T AN i T

eI Ve g

o e e e 1 PR

Protectors -97- Scction 4.6.4

4.6.4 Remarks on the Methodology

In this section our understanding of the semantics of protectors has been applied
in order to develop a method for proving the correctness of protectors. The examples
of correctness proofs, although somewhat tedious, demonstrate that the method
actually does lead to a more thorough understanding of the implementation. For
instance, the fact that the conjunction in the if statement of the cluster rw (line 13,
figure 4.6.2.19) was redundant was certainly not obvious when the code was first
written. Thus in addition to being used to verify correctness, the understanding gained
through the proof of behavioral invariants can be used to modify and optimize the
code. This section has placed all its emphasis on proving that a solution satisfies
consistency, priority and fairness constraints. It is, however, also possible to prove that
a solution to a simple predicate is optimal. The discussion about optimal solutions in

chapter 3 suggests an approach.

From theorem 3.4.5 we know that to show that a protector is an optimal solution
to a simple predicate P, we must prove that whenever the operation strategy signals
null_event, then cither there are no outstanding requests, or returning a request would
violate P. As an cxample, consider the weak readers priority solution to the
readers/writers given in figure 46.421.1 Assume ihat we have already proved that a.q
actually contains all the outstanding requests and that the following arc behavioral

invariants:
(1)) a.rcads = # e[read)- # x[read]
(1) a.writes= # e[write]- # x[writc]
Q) [(a.reads =0)Vv(a.writes = 0)] Afa.writes< 1).

We want to prove that whenever strategy signals null_cvent, then returning any

outstanding request would violate one of (0-2). Now null_event can be signaled only

1. This solution was discussed previously in 4.2,

NPT . T TS A NI

iy TV DRNIRY: DR TPRQT SV I 2 Womm rop 3 AT

e

e R R T

L

e e

Scction 4.6.4 -98 - Protectors
Fig. 4.6.4.21. Weak Readers Priority Solution to the Readers/Weriters Problem
rw = cluster is create, put_request, put_cxit, stratcgy
rcad=1
write=2
rep = record|(: cvent_scq,writcs,rcads:int)
create = proc()returns(cvt) 4
1 return(rep${q: cveni_seqSereate(). writes:0.rcads: 0}) y
cnd create i
put_request = proc(c:event,a:cvt) ?
2 cvent_seqing(a.q.c) §
end put_request :
put_cxit == proc(e:event,azevt) £
R} il eventSop(e) = write then a.writes: = a.writes-1
4 elseil event$op(e) = read then arcads: =a.rcads-1 end
end put_exit
strategy = proc(azevtireturns(event)signals(null_cvent) il
) il Grcads = 0)&(a.writes = 0)
6 then c:ovent: = cvent_seq$frst(a.qg)
7 il event$op(e) = write then a.writes: =a.writes+ 1
8 elseil event$op(e) = read then a.reads: =a.rcads+ | end
9 event_seqldq(a.q) f
10 return(c)
11 elseif awrites=0
12 then ¢:event: = event_seq$frstp(a.q.readers)
13 arcads: = arcads+ 1
14 event_seq$remove(e,a.q)
15 return(c) !
end %if 3
16 except when empty: signal null_¢vent end ;
7 signal null_cvent

end strategy
readers = proc(c: event)returns(hool)
return(eventSop(c) =rcad) .
end readers [
end ow

T A s B i 8 i R AT L, i LI i s 15 o b AR AP N . (10 v A At a1 53 -

A

Protectors ' -99- Scction 4.6.4

ey

from linc 16 and line 17. If strategy signals null_event at line 17, then a.writes=1 in
which case no request can be returned without violating one of (0-2). If strategy signals
null_event at line 16, there are two possibilities: i) there are no outstanding requests;
or ii) there are no outstanding read requests and a.reads>0 in which case no write
requests can be returned. Thus whenever null_event is signaled, cither there are no .
outstanding requests, or returning a request would violate onc of (0-2). ‘Therefore, the t

cluster rw defines a protector which implements an optimal solution to Mx({write],r’).

4.7 Conclusions

This chapter has demonstrated how the notion of a simple polling guardian can
lead to a wuseful and practical mechanism for implementing solutions to

synchronization problems. Below, the advantages of this approach are discussed.

e T T ST

The variety of solutions which were implemented in the previous sections
testifies to the expressiveness of the mechanism. All the implementations are direct
and fairly simple to follow. For example, in the fair solution to the dining philosophers
problem, it was straightforward to implement Dijkstra’s suggestion of having very
hungry philosophers. One can easily imagine the complexity of the equivalent
implementation using semaphores.

Synchronization types are easy to write. This stems partly from the ability to

R gt

separate the implementation of priority constraints from the implementation of
consistency constraints, The ability to use many different data types for maintaining
the currently outstanding requests makes implementing priority constraints relatively

easy. For example, suppose that we wished to implement a solution to

) Mx(rfwrite],r') A LIFO(r).

where LIFO(r) is a predicate stating that all outstanding requests must be serviced in a
| last come first served manner. Such an implcmentation can be readily obtained from
the FCFS solution given in figure 4.2.6, simply by changing the type of q (which
1 contains the outstanding requests) from event_scq to a type called event_stack. The

Scction 4.7 - 100 - Protectors

operations of event_seq: nq, fist, and dq would by replaced by the corresponding
operations for event_stack: push, top, and pop. Although it is probably possible to
implement a solution to (0) with monitors, the implementation would undoubtedly be
quite complicated and hard to understand. The complexity of the monitor solution
results from the inflexibility of condition queues. The above example also suggests
that it is easy to modify a synchronization type in order to conform with small changes
in the specifications. As another example, recall from 4.2 how the implementations of
the solutions to the readers priority and writers priority versions of the readers/writers
problem were very similar. Once the readers priority version (figure 4.2.8) was written,
it was simple to modily it to obtain the writers priority version (figure 4.2.9). Thus it is

seen that protectors arc casily modified in order to mect changes in specification.

Protectors support modularity in several important ways. For example, when a
synchronization type is implemented by a particular cluster, it can be used to define
many separate protectors each coordinating the accesses to distinct sets of procedures.
Thus a synchronization type encapsulates a certain guardian behavior. The cluster
implementing the synchronization type can be viewed as implementing a
"synchronization abstraction.” The use of a "synchronization abstraction” in a
protector-create statement is completely separate from its implementation. This is
quite different from both monitors and serializers where a new monitor or serializer

must be written for each new application.

One of the criticisms often leveled at monitors is that they do not actually isolate
the resource. Thus if a monitor is used with no additional structure, correct results
depend on proper invocation of the monitor operations before and after each access.
Unsynchronized access is, howevcr, still possible. Protectors do not have this problem
because all invocations are automatically modified in order to guarantee that only
synchronized accesses occur,

LR e o L X i

et
k-

Protectors - 101 - Section 4.7

In the previous section the verification of correctness was discussed. Because the
semantics of the protector is based on the simple guardian, many of the thcorems of
Chapter 3, which help characterize the nature of solutions, can be used in the
verification of correctness. The proving of behavioral invariants, in addition to being
useful for verification of correctness, also helps incrcase understanding of an
implementation and occasionally points out optimizations which can be made. For
example, in proving the correctness of the fair solution to the readers priority version
of the readers/writers problem, it was discovered that the predicate of a test was
redundant. Thus this test could be simplified. Therefore, we see that an advantage of
protectors is that they have a precise, yet simple, semantics. This helps in reasoning

about implementations.

Although the verification methods discussed in the previous section are
important, it is also important to be able to debug programs through the actual
execution of code. Typically, debugging multi-processing systems is very difficult
because it is often practically impossible to force a certain interleaving of events to
occur in order to sec the implementation’s response. Thus cven though a solution
might supposedly be designed to handle a certain situation, that situation might never
occur during testing. Even when a bug is found, it is usually impossible (o recrcate the
problem. With the protector approach this is not the case. For example, suppose we
had a synchronization type s which we wanted to test. It is a simple matter to code the
protector procedure of figure 4.1.2.4 with the following changes: Replace the in_queue
by an input stream from a file; replace synchronization by s, remove the allow
command; and add code to log all events on a second file. (See figure 4.7.22.) Now
any possible interleaving of events can be written to the input file. The procedure
test_s can then be invoked. After the return from test_s, the output file needs only to
be examined 1o see if the synchronization type s is actually handling the test situations

correctly. ‘Thus it is quit simple to test synchronization strategics.

Scction 4.7 ' -102-

Fig. 4.7.22. A Procedure for Testing a Synchronization Type s

test_s = proc()

% code for opening the input file and log file should go here.

alpha:s: =s$create()
while true do
c:event: =event_strcam$get(Input_File)
event_strcam$put(1.og_File,e)
if eventStype_of(c)="request”
then s$put_request(c,alpha)
elscifl event$type_ofle) = "exit"
then s$put_cxit(c,alpha)
end %if
c: =s$strategy(alpha)
except when null_cvent: continue end
cvent_strcam$put(lLog_File,c)
atlow(c)
end %while
except when end_of_file: end
end test_s

Conclusions

R e

G

R ot a2

TR i P SO

T T e SRR P e I (e TP T~ g TR NS08 MR LR N e

Conclusions - 103 - Scction §

5. Summary and Directions for Future Work

This chapter summarizes the contributions of the thesis and suggests areas for-

further research. There are two sections. The first reviews how the polling guardian
has provided a framework for understanding synchronization. The second section

addresses areas in which further work would be useful.
5.1 Summary

The main contribution of this paper is the notion of a simple polling guardian.
The polling guardian has provided a framework for tﬁe discussion of synchronization
problems and their solutions. Within this framework it has been possiblc to express
solutions, examine bchavior of solutions, define "good" or optimal solutions,
characterize solutions to certain classes of predicates, and derive an approach for

implementing solutions in actuai computer systems.

By using polling guardians to describe solutions derived from standard
synchronization constructs, we were able to discover certain idiosyncratic behavior
which is implicit in thesc mechanisms. For example, when a monitor solution to the
readers/writers problem was examined, it was found that on certain occasions,
monitors ignore processes which are trying to exit from the resource. When the
monitor solution was statcd in terms of a polling guardian, the cause of and remedy for
this undesirable behavior was self evident: The problem occurred because the output
predicate was not the constant true; and the temedy was simply to make the output

predicate true.

Defining the simplc polling guardian as a functional strategy for a player of a
game had important consequences. When a simple polling guardian was seen solely as
a functional strategy, it was possible to prove several uscful theorems. These thcorems
are interesting because they show that a class of predicates (i.e., the simple predicates)

always have optimal solutions. The dcfinition of simple predicates can, thercfore, be

i ot A T

Scction 5.1 - 104 - Conclusions

used as a guide in writing reasonable specifications. Other theorems characterize the
solutions of simple predicates. These theorems are useful in checking whether or not a

particular guardian is indeed a solution to a specification.

A "good" or optimal solution to a specification was defined to be a solution
which always tries to keep the resource as busy as possible. It was casy to formalize this
definition in terms of the simple polling guardian. By stating that a solution to a
specification P must be optimal, the pathological solutions arc eliminated. Among the

solutions eliminated are those which do not allow concurrency when they can.

In the development of an actual synchronization mechanism, the framework
provided by earlicr chapters was extremely uscful. We were able to define the
semantics of the protector directly as a simple polling guardian. This is in direct
contrast with the usual method of defining new synchronization constructs which
consists of implementing them in terms of older, presumably well understood,
constructs. Unfortunately, the older construct often is nor understood. That the
protector is given a simple non-operational semantics has been useful. The theorems
characterizing solutions are immediately applicable to verifying the correctness of
implementations because the semantics of the protector is based directly on the simple

polling guardian,

The main advantage of the protector approach to synchronization is that it
scparates the act of using a synchronization strategy from its implementation. Thus ifa
programmer is writing a module implementing the procedures pl.,...,pn and he decides
that the accesses to these procedures should be protected, he can write

create protector for procedures: pl....,pn using dt,
and give a specification for the synchronization type dt. The specification can be
written as a predicate on event sequences, Later a cluster may be written which
implements o type that satisfies the specilication, ‘The distinction between a
synchronization strategy, as embodied in the synchronization type, and its

implementation eascs program development, modification, and maintenance.

.

s

Conclusions ‘ - 105 - Scction 5.1

In conclusion, the paper has provided some insight into the problems which arise
in attempting to synchronize accesses to a resource. It is hoped that, in addition, the
protector approach to synchronization will be of use to programmers in that it provides

a structured framework for solving complex synchronization problems.
5.2 Future Research

There should be a formal language for expressing predicates on event sequences.
Thi: language should be defined in such a way that the expressible predicates are
precisely those which have certain useful properties (e.g., continuity).

Better methods are needed for verifying solutions to fairness properties. A
possible approach is to examine all exclusion constraints P for which there exists a
priority constraint Q such that all optimal solutions to PAQ are fair. For example,
most interesting exclusion constraints P probably have the following properties:

i) Pissimple; and
ii) For every history a, P(a)A(B(a) = 2)A(r€e W(a))—P(alie(r)).

For such a predicate P it can be shown that any optimal solution of PAFIFO(r) must
also be a solution to Fr(r). Note that verifying a guardian G as an optimal solution to
PAFIFO(r) is very likely to be easier than directly verifying that G is a solution to

Fr(r).

In describing protectors, we have stated that an object of the synchronization
type encodes the important aspects of the past history. An interesting question is how
much information about the past history must be encoded in order to solve a given
synchronization problem. Being able to answer this question would provide a space
complexity measure of the synchronization problem. Another similar question asks
what is the necessary time complexity of the operations put_request, put_enter, and
strategy to solve a given synchronization problem. As synchronization problems
become more complicated, the answers to the above questions will become more

Scction 5.2 - 106 - Conclusions

important.

In many of the synchronization problems there seems to be a trade-off between
the "responsiveness” and the "throughput” of a solution. For example in the
readers/writers problem, the FCFS solution (figure 4.2.6) is very "responsive” to
requesters but has much less "throughput” than the readers priority solution (figure
4.2.8) which can starve requesters. The fair solution (figure 4.2.10) is not as
“responsive” as the FCFS solution but it has better "throughput.” When compared to
the readers priority solution it is seen that the fair solution is more "responsive” but has
worse “throughput.” It would be interesting to be able to formalize the notions of
“responsiveness” and "throughput” and to be able to make explicit their relationship

given any predicate.

A generalization of the protector mechanism that could handle synchronization
prablems which fall outside the resource guardian model would be useful. A way to
proceed is suggested by a careful examination of the request, enter, and exit events
when viewed as messages sent to and from a polling guardian. A request event is a
message that requires a response from the polling guardian. In the resource guardian
model this response is an enter message. Thus enter events are a special case of the
general class of response events. An exit event can be thought of a message sent to the
guardian for which no response is necessary. More generally an exit event can be
thought of as just a notice scnt to the guardian. Note that every responsc statement
must be preceded by a corresponding request statement but that notice events can
occur independently. Now in the more general framework of sequences of request,
response, and notice events, it is a simple matter to extend the protector mechanism to

handle more general problcms.

One complaint that can be made about the protector mechanism is that for a
particular solution it concentrates all the duties of synchronization into a single and
possibly vulncrable process. Thus the mechanism is not suitable for providing a robust

implementation of a solution in a distributed system. One possible approach o solving

v ey 2

AR i S oo Aot A .3 A i AUt

Conclusions - 107 - Scction 5.2

this problem is to have n separate protectors guarding a set of procedures instcad of
just one. In such a case, before an activity could invoke a protected procedure, it
would put requests on the input queucs of all n of the protectors. The process would
then wait until all n protectors had re-activated it. If any of the protectors failed, the
other protectors would detect this via a time-out mechanism. The detection of a failure
would cause some sort of clean-up. of the failing protector and possibly the creation of a
replacement. For such an abproach to work, the progress of each protector would have
to keep pace with the others. Although the sketch of this approach barely hints at the
problems inherent in it, preliminary study suggests that the approach is worth further

investigation.

b
!
.
] ;
Y
3
“

Scction 6

- 108 - References

6. Referenceé

[ANDR79] Andrews, G.R., "Synchronizing Resources,” Computer Science

[BLOO79)

[BURS74]

[COURTI]

[DEVITT]

[DIJK68)

[DUKT1]

[DIIK76]

[FLOY67]

[GALES3)

TR 78-360, Department of Computer Science, Cornell University, Ithica,
NY, Feb. 1979,

Bloom, T., “Synchronization Mechanisms for Modular Programming
Languages,” TR-211, Laboratory for Computer Science, M.ILT.,
Cambridge, Mass., Jan., 1979.

Burstall, R.M., "Program Proving as Hand Simulation with a Little
Induction,” Information Processing, North Holland Publishing
Company, Amsterdam, 1974, pp308-312.

Courotis, P.J., F. Heymans, and D.L. Parnas, "Concurrent Control with
'‘Readers’ and "Writers’," Communications of the ACM, (14,10) Oct. 1971,
pp667-668.

Devillers, R., "Game Interpretation of the Deadlock Avoidance
Problem,” Communications of the ACM, (20,10) Oct., 1977, pp741-745.

Dijkstra, EW., "Cooperating Sequential Processes,” Programming
Languages (F. Genuys, ed.), Academic Press, NY 1968, pp43-111.

Dijkstra, E.W., "Hierarchical Ordering of Sequential Processes,” Acta
Informatica, (1,2) 1971, pp115-138.

Dijkstra, E.W., A4 Discipline of Programming, Prentice-Hall, Englewood
Cliffs, NJ, 1976.

Floyd, R.W., "Assigning Meanings to Programs," Mathematical Aspects
of Computer Science (J.T. Schwartz, ed.), Proc. Symp. App. Math., 19,
Amecrican Mathematical Society, 1967, pp19-32.

Gale, D. and F.M. Stewart, "Infinite games with perfect information,”
Contributions to the Theory of Games, Annals of Mathematics Studies
No. 28, Princcton University Press, 1953, pp245-266.

TR T

PR it AP v R B .

References

[GREIT5]

[GRE176]

[GREI77]

[HABET2]

[HABET0]

[HANS78]

[HEWI77)

[HEWI79a]

[(HEWI79b]

[HINMT79]

[HOAR74)

-109 - Scction 6

Greif, ., "Semantics of Communicating Parallel Processes,” TR-154,
Project MAC, Laboratory for Computer Science, M.L.T., Cambridge,
Mass., Sept. 1975, '

Greif, 1., “"Formal Problem Specification for Readers and Writers
Scheduling,” Proc. MRI Symp. on Sofiware Eng., Polytechnic Institute
of New York, 1976, pp225-238.

Greif, 1, "A \Language for Formal Problem Specification,”
Communications of the ACM, (20,12) Dec. 1977, pp931-935.

Habermann, A.N., "Synchronization of Communicating Processes,”
Communications of the ACM, (15,3) Mar.-1972, pp171-176.

Habermann, A.N., "Review of Article by Leon Presser on
Multiprogramming Coordination,” Computing Reviews, (29,788) April
1976, pp150-151.

Hansen, P.B., "Distributed Processes: A Concurrent Programming
Concept,"” Communications of the ACM, (21,11) Nov. 1978, pp934-941.

Hewitt, C.E., "Viewing Control Structures as Patterns of Passing
Mcssages,” Artificial Intelligence, (8,3) June 1977, pp323-364.

Hewitt, C.E., and R.R. Atkinson, "Spccifications and Proof Techniques
for Serializers," IEEE Transactions on Sofiware Engineering, (SE-5,1)
Jan. 1979, ppl10-23.

Hewitt, C.E., G. Attradi, and H. Lieberman, “"Specifying and Proving
Properties of Guardians for Distributed Systems,” A.l. Memo 505,
Artificial Intelligence Laboratory, M.1.T., Cambridge, Mass., June 1979.

Hinman, P.G., "Borel Determinacy,” The American Mathematical
Monthly, (86,2) Feb. 1979, pp114-115,

Hoare, C.A.R., "Monitors: An Operating System Structuring Concept,”
Communications of the ACM, (17,10) Oct. 1974, pp549-557.

ik 7aR R S et

Scction 6

[KAPUS(]

[KELL76}

[KWONT78]

[LADN79]

[LAMP78]

[LAVE7S)

[LIND74]

[LIND76]

[LISK79]

[MANNT78]

{McCAG65)

[PRES7S)

-110- References

Kapur, D.K., “Towards a Theory for Abstract Data Types,” TR-237,
Laboratory for Computer Science, M.1.T., Cambridge, Mass., 1980.

Keller, R.M., "Formal Verification of Parallel Programs,"
Communications of the ACM, (19,7) July 1976, pp371-384.

Kwong, Y.S., "Livelocks in Parallel Programs, Part 1," CS-TR-78-CS-15,
McMaster University, Hamilton, Ontario, August 1978.

Ladner, R.E., "The Complexity of Problems in Systems of
Communicating Sequential Processes,” TR 79-03-01, Department of
Computer Science, University of Washington, 1979.

Lamport, L., "The "Hoare Logic’ of Concurrent Programs-Preliminary
Draft,” CSL-79, SRI International, Nov. 1978,

Laventhal, M.S., "Synthesis of Synchronization Code for Data
Abstractions,” TR-203, Laboratory for Computer Science, M.LT.,
Cambridge, Mass., June 1978,

Lindsey, C.H., "Partial Parameterization,” ALGOL Bulletin, No. 37,
pp24-26.

Lindsey, C.H., “"Specification of Partial Parameterization Proposal,”
ALGOL Bulletin, No. 39, pp6-9.

Liskov, B., R. Atkinson, T. Bloom, E.B. Moss, C. Schaffert, B. Scheifler,
A. Snyder, "CLU Reference Manual,” TR-225, Laboratory for
Computer Scicnce, M.LT., Cambridge, Mass., Oct. 1979.

Manna, Z. and R. Waldinger, “Is Sometimes’ Sometimes Better than
'Always'? Intermittent Assertions in Proving Program Correctness,”
Communications of the ACM, (21,2) Feb. 1978, pp159-1717.

McCarthy, J., P.W. Abrahams, D.J. Edwards, T.P. Hart, and M.1. Levin,
LISP 1.5 Programmer’s Manual, M.1.T, Press, Cambridge, Mass., 1965.

Presser, L., "Multiprogramming Coordination," Computing Surveys,
(7,1) March 1975, pp21-44.

i- -
v Sasvag .

B e i o o . &

T o

e
ey

o

References

{(REED79)

[REIF80}

[SCHW78]

[STAR79]

[TEOR72]

- 111 - Scction 6

Reed, D.P. and R.K. Kanodia, "Synchronization with Events and
Sequencers,” Communications of the ACM, (22,2) Feb. 1979, pp115-123.

Reif J.H. and G.L. Peterson, "A Dynamic Logic of Multiprocessing with
Incomplete Information,” Seventh Annual Symposium on Principles of
Prog. Lang., 1980, pp193-202.

Schwarz, 1.S., "Distributed Synchronization of Communicating
Sequential Processes,” Manuscript, University of Edinburgh, July 1978.

Stark, E.W., "Semaphore Primitives and Fair Mutual Exclusion,”
TM-158, Laboratory for Computer Science, M.1.T., Cambridge, Mass.,
1979.

Teorey, T.J. and T.B. Pinkerton, "A Comparative Analysis of Disk
Scheduling Policies,” Communications of the ACM, (15,3) March 1972,
ppl77-184.

T T LR Y A i R ki 35 b -
- e Hh iy ey AR 4y S A i e ths

OFFICIAL DISTRIBUTION LIST

vy,

Defense Technical Information Center
Cameron Station

Alexandria, VA 22314 12 copies
Office of Naval Research Office of Naval Research
Information Systems Program Code 455
: Code 437 Arlington, VA 22217
{ Arlington, VA 22217 1 copy
; 2 copies
{ Dr. A. L. Slafkosky
. Office of Naval Research Scientific Advisor |
Branch Office/Boston Commandant of the Marine Corps K
Building 114, Section D (Code RD-1)
666 Sumer Street Washington, D. C. 20380 r
’ Boston, MA 02210 1 ocopy 4
- 1 copy . :
Office of Naval Research ;
Office of Naval Research Code 458
Branch Office/Chicago Arlington, VA 22217
536 South Clark Street 1 copy :
Chicago, IL 60605 ?
1 copy Naval Ocean Systems Center, Code 91 !
Beadquarters-Computer Sciences & ;
Office of Naval Research Simalation Department s
Branch Office/Pasadena San Diego, CA 92152 §
1030 East Green Street Mr. Lloyd Z. Maudlin {
Pasadena, CA 91106 1 copy E
1 v }

Mr. E. H. Gleissner
. Naval ship Research & Development Center
. Camputation & Math Department

Bethesda, MD 20084

T e ey T~

1 copy
Naval Research Laboratory Captain Grace M. Hopper, USNR
Technical Information Division NAVDAC~-OOH
Code 2627 Department of the Navy
wWashington, D. C. 20375 wWashingon, D. C. 20374
6 copies 1 copy

Asgistant Chief for Technology
Office of Naval Research
Code 200
Arlington, VA 22217
1 copy

