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FOREWORD

This report documents an effort to use conventional design methods
in the design of an improved stability augmentation system for the F-106.
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SECTION I

INTRODUCTION

An improved lateral stability augmentation system (SAS) for the

F-106 has been designed and simulated in both piloted and non-piloted

real-time simulations and in a frequency domain simulation. The new

system emphasizes improvement in lateral handling qualities for the

air-to-air (ATA) tracking task.

The present lateral SAS is composed of washed out yaw rate, for

stability purposes, and a combination of washed out roll rate and an

aileron to rudder interconnect (ARI), for turn coordination. The new

system uses sideslip angle (0) and sideslip angle rate ( ) to achieve

both improved stability and improved turn coordination. The design

also includes a direct electrical signal from the pilot through the

rudder pedals to the control system to allow for direct command of

sideslip angle or sideslip rate.

The new system eliminates large unintentional sideslip perturbations

caused by the pilot's attempts to place the gunsight reticle, or pipper,

on the target aircraft. The system also allows the pilot to point more

accurately the aircraft when azimuth tracking error is small. An added

benefit provided by the system is an improvement in elevation tracking

error through a reduction of pilot workload in the lateral task.

A piloted simulation was conducted to evaluate the new lateral SAS.

Two Air Defense Command (ADCOM) flight test pilots, both current in the

F-106, spent a week flying approximately 150 ATA tracking passes.

Several configurations of the improved system were flown and compared with

the existing system. The pilots typically achieved reductions of 30% in

both elevation and azimuth tracking error using the improved lateral SAS.

The system was then installed on an F-106 and flight tested. The

performance improvements were similar to those measured during piloted

simulations.

)
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SECTION II

BACKGROUND

1. AIR-TO-AIR TRACKING

Before continuing with a specific discussion of the F-106, it is

perhaps instructive to look at the ATA tracking task and how the dif-

ficulty of the task is heavily influenced by the aircraft flight control

system. ATA tracking is typically a high-g maneuver which has superimposed

on it the extremely difficult task of precise aircraft pointing. The task

is further complicated because the aircraft is not being pointed as an end

in itself but to enable the pilot to place a gunsight reticle (pipper),

either fixed or computed and displayed, on the target aircraft. Since the

pipper is a representation of a target for which the gun is presently

correctly aimed, it will be depressed some angle from the aircraft body x-axis.

This depression is due to target aircraft acceleration, attacker velocity

and acceleration, and bullet gravity drop; its magnitude is further dependent

on the angle of the gun with respect to the aircraft (gun depression

angle). Figure 1 shows this situation and how it is viewed by the pilot

in the headup display (HUD). Figure 1 also shows how elevation tracking

error is defined. The tracking error is usually measured in angular units

of milliradians (mil). In the situation shown in Figure 1, the pilot's

task is simple: he pitches the aircraft up until the reticle is superimposed

on the target.

Unfortunately, when a large azimuth error also exists, the pilot

cannot simply move the reticle onto the target. To zero a large azimuth

tracking error, the pilot must first roll the aircraft to approximately

null the azimuth error and then pitch the aircraft to null the remaining

elevation error. After these large azimuch errors have been nulled, the

rudder pedals can be used to zero the remaining error. This sequence

of first nulling azimuth error then elevation error is the basis upon

which each pilot developes his own technique.

2
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Figure 1. Reticle Depression Angle and Tracking Error
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2. FACTORS AFFECTING ATA TRACKING

There are many factors which affect the pilot's ability to track a

target. Some of these factors are turbulence, evasive target maneuvers,

gunsight dynamics, and the attacker's own vehicle dynamics. The first

two are factors that cannot be controlled or changed by modifications

to the attacking aircraft. The third term can have a significant effect

on tracking performance and to a large extent can be controlled or changed

by modifications to the fire control system of the attacking aircraft.

The study of gunsight dynamics and other associated fire control problems

is, however, beyond the scope of this paper. To simplify the effects of

gunsight dynamics, a fixed depressed reticle was used for the remainder

of this study. A fixed depressed reticle, as the name implies, is a

gunsight reticle which is depressed a constant angle from the boresight

cross. Figure 2 shows a simple fixed depressed reticle as seen on the HUD.

The fourth factor affecting the pilot's ability to track the target is

vehicle dynamics. Like gunsight dynamics, vehicle dynamics can be changed

by modifications to the attacking aircraft.

+ IReticle
Depr*s )n
Angle
(Codnsta )' 0

Figure 2. Fixed Depressed Reticle
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To see how the vehicle dynamics affect the tracking error, one must

compare what the pilot sees through the HUD to what the aircraft is doing

within the airmass. Consider the HUD display in Figure 3(a) with a fixed

depressed reticle. Since the pipper is left of the target, the pilot must

null the azimuth error. Since the pilot cannot move his aircraft laterally,

he must first roll the aircraft right and then turn to zero the error.

Herein lies the problem. If the aircraft is unaugmented or contains just

simple yaw damping, the aileron deflection will cause the aircraft to

rotate about its nearest principle axis. For a rolling moment, this

principle axis is very near the x-axis of the aircraft or, from the pilot's

point of view, the boresight axis. This roll/sideslip coupling is shown

in Figure 4. What then happens from the pilot's viewpoint is shown in

Figure 3(b). When he rolls the aircraft, he rolls approximately about

the boresight cross thus generating a transient sideslip angle which causes the

pipper to move in the direction opposite that desired by the pilot. The

pilot perceives this as an increased azimuth error, so he rolls the air-

craft more to the right (Figure 3(c)), compounding the problem. This

phenomenon of the pipper rotating under the boresight cross is known as

the pendulum effect and has a destabilizing effect on ATA tracking.

The pendulum effect can be eliminated or greatly reduced by lateral

augmentation of the aircraft. Figures 3 and 4 show that the pendulum

effect is caused by the aircraft's natural trndency to roll about its

own x-axis. This results in the angle-of-attack changing into sideslip

as the roll angle goes from 0 to 90 degrees. Of course, this sideslip

will die out at the aircraft's dutch roll frequency and damping, but

this is too slow for the tracking task.

Another aspect of aircraft dynamics that affects the pilot's ability

to track becomes obvious only when large tracking errors have been

eliminated and the pilot is using the rudder to point the aircraft. When

the pilot is using the rudder for fine control of azimuth error, the

dutch roll frequency and damping become critical to the tracking task.

To be effective during this precise phase of tracking, the aircraft should

respond quickly to the pilot's input with a damping ratio which eliminates

large overshoots and at the same time avoids the excessive lag of an

5
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Figure 4. Roll/Sideslip Coupling

overdamped response. An overdamped response could result in the airplane

becoming too sluggish as perceived by the pilot. Typically a dutch roll

damping ratio of .7 to I is adequate. In this precise lateral pointing,

the pilot desires to yaw the aircraft without significant roll coupling.

3. CONTROL SYSTEMS FOR AIR-TO-AIR TRACKING

After seeing how an unaugmented aircraft behaves when used to track

a target, the possibilities of improvement using augmentation are obviously

significant. The answer is found by looking again at Figures 3 and 4.

If the aircraft were to roll about the velocity vector instead of the

x-axis, the pendulum effect could be eliminated or greatly reduced.

Figure 5 shows the same initial conditions as Figure 3 but shows how

the pilot's task would be simplified if the aircraft was forced to roll

about the velocity vector.

The design of a control system to improve aircraft dynamics for

ATA tracking is based on this capability of rolling about the velocity

vector. The result of rolling about the x-axis in the case of an

unaugmented aircraft, is the increase of sideslip and reduction of angle

of attack. This induced sideslip is the basis for the design of the control

system. If the sideslip angle is kept at zero during the roll, then the

aircraft is rolling about the velocity vector. The desired control system

is therefore an accurate and responsive turn coordinator. The feedbacks

needed to achieve this turn coordination are sideslip angle and sideslip

7
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a. Initial Condition

Of

b. Roll Right to Zero Azimuth Error

c. Pitch Up to Null Final Elevation Error

Figure 5. Rolling about Velocity Vector
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angle rate. A simplified block diagram of this control system is shown

in Figure 6. Since sideslip angle and sideslip rate are also the aircraft

states which can be controlled by the pilot with the rudder pedals, this

control system will also affect the aircraft response to rudder pedal input.

This means that the pilot's task of fine lateral pointing can be improved

using the system of Figure 6.

4. F-106 DYNAMICS

A hybrid simulation of the F-106 was conducted on the Aeronautcial

Systems Division Hybrid Computer to study the F-106 in a real-time

situation. The simulation was validated by checking angle of attack and

elevator deflection at numerous flight conditions throughout the F-106

flight envelope. Dynamic longitudinal and lateral checks were also made

at various flight conditions. The model used in the simulation proved to

be an accurate representation of the real aircraft. A description of the

simulation is included in Appendix A.

The purpose of the hybrid simulatioi was to look at the aircraft with

the present control system and determine if it did demonstrate character-

istics detrimental to ATA tracking. The two characteristics most likely

to be encountered were the roll/sideslip coupling and the underdamped

dutch roll. The standard SAS is shown in Figures 7a and 7b. The yaw rate

feedback is present primarily to achieve the needed dutch roll damping.

The roll rate feedback and ARI exist primarily to achieve turn coordination

or, equivalently, to allow the aircraft to roll approximately about

the velocity vactor.

The responses of the bare airframe (SAS turned off) to a 60-degree

roll input are shown in Figure 8. The roll angles were input using a

roll autopilot with a 1-second time constant. These responses show

sideslip perturbations of more than 1 degree with very low damping, on the

order of .15. Both characteristics would indicate the F-106 with the SAS

turned off could have deficient lateral handling qualities during ATA

tracking. The 60-degree roll angle command was also input to the F-106

at the same flight conditions but with the standard SAS turned on. The

results, shown in Figure 9, are significantly better than the bare airframe.

9
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7igure 7a. F-106 Longitudinal SAS
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The damping increases markedly from about .1 to .7. Although the standard

SAS improves the underdamped dutch roll characteristic, the large sideslip

perturbation, as seen in the bare airframe responses, is also present in the

standard SAS. This roll/sideslip coupling indicates a factor which will

affect the lateral tracking characteristics of the aircraft.

This preliminary analysis of the F-106 indicates possible areas of

improvement in the lateral handling qualities. The bare airframe is

obviously undesirable in terms of both dutch roll damping and roll/

sideslip coupling. The standard SAS improves dutch roll damping

considerably but the roll/sideslip perturbations are still large.

Figures 8 and 9 show the dynamic responses for the standard SAS due

to roll angle inputs from straight and level, I g flight. At higher g

loadings, typical for air-to-air tracking, the induced sideslip angle

would be larger than those shown in Figures 8 and 9. Based on these

significant sideslip perturbations, it therefore seemed appropriate to

consider a sideslip angle/sideslip angle rate ($-A) control system, as

mentioned earlier, for use on the F-106.

14
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SECTION III

SYSTEM DESCRIPTION

1. PRELIMINARY DESIGN MODEL

The system shown in Figure 10 is the basis for a preliminary design

of a - SAS for the F-106. By design, the system will tend to cause the

aircraft to maintain coordinated flight or, equivalently, to roll about

the velocity vector; therefore, the task remaining in the preliminary

design is to find the gains KB and K to provide sufficient damping and

adequate speed of response. The proportional plus integral compensator

is included to remove the steady-state error resulting from the 6

feedback. The integral gain KI is nominally set to .2 for the analysis.

2. ROOT MAP ANALYSIS

The closed-loop dynamic characteristics of the system are analyzed

using the root map technique (Reference 3). This technique involves

closing one loop at a constant gain, either sideslip or sideslip rate,

then plotting the root locus by allowing the other gain to vary from

zero to infinity. For generating a root locus at a constant KV, the

system model appears as Figure 11. The simplified transfer function,

0/6r, is based on McRuer's (Reference 7) fourth order model and is shown

below.

006r K(s + a)
s2 + bs + c

K tY b -- (Y~ + NI)6r V r

a a-(Y* N' + ~/~c - (N' +- Y N')

The dimensional aerodynamic derivatives making up the transfer function

are described in Reference 7 and the resulting transfer functions are

displayed in Appendix B.
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To generate a root locus for a varying K;, the beta inner loop must

first be closed at a given value of K8 and the inner loop transfer h

function calculated.

K(s + a)(s + K )
OH s(s + bs + c)1 + GH Inner Loop - K+as +)(

eonst KB  + K 8K(s + )s+KI-(2
s(sl + bs + c)

Simplifying.

G
1 + GH Inner Loop

const Ka

K(s + a)(s + KI

sa + (b + KK8)s- + (c + KK8(KI + a)]s + KKKa (3)

The open loop transfer function for the complete system is now obtained

by multiplying the inner loop transfer function, Equation 3, by sKA

GH) i ( Ks (so + a)(a + 7) K (4)COerall (b + KK s' + [c + KKC(KI + a)],-+ KKIK~a

Using Equation 4, root locus plots are drawn for different values of K8.

These plots show the closed loop poles for a given value of Ka as K; varies

from zero to infinity. Unfortunately, the gain Ka is not explicit on the

root locus. The desired closed-loop pole location must be chosen and then

compared with the tabular output to find the corresponding value of KA.

This is an extremely time consuming process when responses at given values

19
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of K and K* must be compared throughout the flight envelope. To simplify

this process of gain selection, root loci were also drawn at constant

values of K.

A procedure similar to the method described above is used to get

these root locus plots at constant values of KA. Figure 12 shows the

system model used for this procedure. The transfer function A/6r is just

s(/6r, as shown below, where (/6r is the same as Equation 1.

8/6r - Ks(s + a)
s 7 + bs + c (5)

Using Figure 12, the betadot inner loop is closed first to obtain the

inner-loop transfer function.

Ks(s + a)(s + K1 )
+ GH s(s2 + bs +,c)

Inner Loop KK(s + a)(s + Kl)s (6)

Const K + s(s + bs + c)

Simplifying.

G
1+ G1 Inner Loop

Const K;

-+KKK(s + a)(s + K )

b + K.K(K + a) c + K K Ka
+ 1 2

1 + KAK 1 + KAK (7)

The open-loop transfer function for the complete system is obtained by

multiplying the inner loop transfer function, Equation 7, by KB/s.
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GH)overalI K K
Const KA I + 8i (s + a)(s + K1) (8)

b + KAK(K + a) c + K*K Ka
+ - S "I I

Using Equation 8, root locus plots for different values of K; can be drawn.
Poles and zeros of Equations 4 and 8 are tabulated in Appendix B for the

flight condition analyzed.

To construct a root map, root loci are calculated, using Equations 4

and 8. Constant K root locus plots are drawn by setting Ka constant in

Equation 4 and letting K varying from zero to infinity. Values of K,

from 1 to 15 are used. The constant K root locus plots are drawn in

the same manner except that Ka is fixed and K, varies. Values of KA

from I to 7 are used. The root map consists of these 22 root locus

plots displayed on the same s-plane.

Root maps were constructed for the flight conditions shown in

Table 1 to insure that the gains chosen for K and K are adequate for

the entire flight envelope. Figures 13a through 13i show these root maps.

Also displayed on the maps is the boundary for a good response, a response

acceptable for ATA tracking. The boundary represents specifications of the

damping ratio from .65 to .75 and the natural frequency from 3.5 to 6

rad/sec. The specified damping ratio would provide good lateral damping

while the specified natural frequency provides adequate speed of response.

TABLE 1

ROOT MAP FLIGHT CONDITIONS

Map Mach Altitude

1 .4 S.L.
2 .9 S.L.
3 .7 10000
4 .6 15000
5 .9 15000
6 1.2 15000
7 .6 30000
8 .9 30000
9 1.4 30000
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Figure 13a. Root Map at Mach .4, Sea Level
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Figure 13c. Root Map at Mach .7, 10000 Feet
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Figure 13e. Root Map at Mach .9, 15000 Feet
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Figure 13g. Root Map at Mach .6, 30000 Feet
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Figure 13h. Root Map at Mach .9, 30000 Feet
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Figure 13i. Root Map at Mach 1.4, 30000 Feet
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To simplify the design, the option of gain scheduling K and K is

eliminated. This means that the values of K and K; should be set to

obtain an adequate response throughout the envelope but, if possible,

a good response at flight conditions typical for ATA tracking. ATA

tracking typically occurs at high subsonic Mach numbers at low and

middle altitudes. Using this somewhat subjective criterion, values of

K and K* were chosen as 6.5 and 2.5, respectively. These values are

shown on the root maps as the operating gains. Table 2 shows the

response of the aircraft in terms of damping and natural frequency

at these operating gains.

TABLE 2

F-106 RESPONSE AT K8 = 6.5 AND K; = 2.5

Damping Natural Frequency
Map Mach, Altitude Ratio (rad/sec)

Figure 13a .4, S.L. .71 4.5

Figure 13b .9, S.L. .79 6.6

Figure 13c .7, 10000 .86 5.8

Figure 13d .6, 15000 .67 4.8

Figure 13e .9, 15000 .71 5.6

Figure 13f 1.2, 15000 .6 6.4

Figure 13g .6, 30000 .6 4.0

Figure 13h .9, 30000 .68 4.4

Figure 13i 1.4, 30000 .4 5.0

Table 2 shows that the chosen gains for K and K of 6.5 and 2.5 do

provide a good response at the lower altitude, subsonic flight conditions.

At the two supersonic conditions, however, the response is somewhat

underdamped. This tendency of an underdamped response at supersonic Mach

numbers should not be important since almost no tracking is done

supersonically.
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3. FREQUENCY RESPONSE ANALYSIS

The preliminary design of the 5-a system using the model from Figure 10

shows that acceptable responses can be achieved using gains of 6.5 and 2.5

for K and KA. This acceptability criteria is based subjectively on

the values of dutch roll damping and natural frequency. Since these

gains come from the root map analysis, which assumes a second-order-linear

aircraft model, it is appropriate to look at these gains in a more

sophisticated model. The EASY Dynamic Analysis Program (Reference 2) is

used to achieve this more elaborate model. Appendix C contains a short

description of the EASY program and contains the input data for the

frequency analyses.

The EASY program was used to obtain closed-loop frequency plots for

the following transfer functions: 5/Sr, d/Sr, a/6a. These plots are

shown for flight conditions of Mach .8 at 10000 feet and Mach .6 at

30000 feet. The first condition is somewhat typical of an ATA engagement

and the second is representative of a low dynamic pressure situation for

the aircraft. The three transfer functions above are chosen specifically

because each shows information significant to the ATA tracking task. The

frequencies of greatest importance for ATA tracking are those around the

dutch roll frequency. These frequencies are important because the dutch

roll mode is continually being excited during tracking. The frequencies

range from about two to seven rad/sec depending on control system and

flight condition. a/6r gives an indication of the ease with which the

pilot can point the aircraft using the rudder. 0/6r shows the coupling

effect of rudder into roll angle and it can also give an indication of

the ease with which the pilot can point the aircraft. An aircraft with a

control system designed to facilitate ATA tracking should have a large

magnitude for 6/6r (near 0 db) to provide adequate pointing capability

while maintaining a low magnitude for p/6r, or low roll/sideslip coupling.

The effect of a large 4/6r would be an i. crease in pilot workload due to

the inadvertent roll angles. 0/6a is an indicator of how well the

aircraft is maintaining coordinated flight, or equivalently, how precisely

the aircraft is rolling about the velocity vector. A low magnitude for

0/6a is most advantageous for ATA tracking.
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The closed-loop frequency plots for the two flight conditions are

shown for the bare airframe, standard SAS, and 0- SAS. Figures 14a - 14c

and Figures 15a - 15c show the frequency response for 0/6r for both flight

conditions. The plots show that the desirable quality of a relatively

large a/6r is achieved by both the bare airframe and the 6-; SAS at both

flight conditions. Figures 16a - 16c and Figures 17a - l7c show 4/6r at

the two flight conditions. The bare airframe 0/6r is unacceptably large,

but the standard SAS and the 8-6 SAS both have much lower magnitudes and

are therefore more desirable. This same desirable quality of low coupling

magnitude is also shown by the standard and 8- SAS's in their a/6a

frequency plots. These frequency plots are shown in Figures 18a - 18c

and Figures 19a - 19c.

Based on these frequency plots, the bare airframe is obviously least

desirable for ATA tracking due to its large 0/6r and a/6a ratios. On the

other hand the standard SAS and the 8- SAS have much smaller magnitudes

for a/6a and O/Sr and therefore are probably more applicable to ATA

tracking. The a-A SAS shows a larger magnitude 016r than the standard

SAS, possibly making it easier for the pilot to point the aircraft, but

the standard SAS has smaller 0/6r and a/6a coupling magnitudes, possibly

decreasing pilot workload. In summary, the bare airframe is probably not

adequate for the tracking task while both the standard and a-A SAS's

appear to be about equal in their capabilities.

4. DETAILED DESIGN MODEL

The preliminary design model from Figure 12 provided a basis for the

engineering analysis of the 0- control. A more detailed model is now

presented which includes "real world" criteria in its design. The very

first question asked on seeing the preliminary design model is, "Can a
and be measured?" The answer is yes for the sideslip angle. Beta vanes

provide adequate, though somewhat noisy, measurements of 8. Sideslip

angle rate, on the other hand, is not so easily measured. The beta signal

is too noisy to differentiate; hence, some other source for 6 must be

found.
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Using the definition of 0, an approximation of A can be derived
which consists of parameters measurable on the F-106. Appendix D

shows this derivation which provides an approximate, through fairly

accurate, synthesis of A. The synthesized A is shown below:

= pc - r + Ayacc + qcosesin
U

U

p = roll rate (rad/sec)

= angle of attack (rad)

r = yaw rate (rad/sec)

Ayac c = accelerometer lateral acceleration

U = true airspeed (ft/sec)

g = gravity constant (32.174 ft/sec 2)

e = pitch angle (rad)

€= roll angle (rad)

Based on this synthesis of A, a detailed design of the system is
shown in Figure 20. Figure 20 includes the +6 degree hardware limits

present on the existing F-106 SAS as well as a complementary filter on

the a signal. This complementary filter, with time constant T, allows

high frequency components of a to come from the A signal. The electrical

signal from the pilot comes from rudder pedal potentiometers and allows

the pilot to command sideslip angle directly or, if K and K are zero,

to command sideslip rate. A value of Kp, the pilot's gain, cannot be

determined in this nonpiloted simulation. A proportional plus integral

forward-loop compensator is included to get rid of the steady-state

error caused by the feedbacks.
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This detailed design of the - SAS was programmed on the Aeronautical

Systems Division Hybrid Computer to be compared to the present SAS. Use of

the 0- system showed significant improvement in both sideslip perturbation

and dutch roll damping. Figure 21 emphasizes the reduction of sideslip

perturbation during a 60 degree roll at different flight conditions. The

same response for the bare airframe and the standard SAS were shown

previously in Figures 8 and 9. Figure 22 shows the increased speed of

response and improved dutch roll damping provided by the 0 system.

Based on the hybrid simulation runs and previous root locus and

frequency response results, Figure 20 shows the configuration of a fixed-

gain -A SAS which provides significantly better performance than the

standard SAS in terms of sideslip perturbations due to roll, speed of

response, and dutch roll damping. The system also uses signals realistically

available on high performance aircraft, including the F-106.
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Figure 21. O- SAS Response to 600 Bank Angle
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SECTION IV

F-106 LAMARS SIMULATION

1. SIMULATION DESCRIPTION

Based on root locus, frequency response, and time response analysis

methods, the a-A system appears superior to the standard SAS in terms of

sideslip perturbations, speed of response, and dutch roll damping. None

of these three measures of merit, however, can be considered the ultimate

measure of the system's capability. The ultimate measure of merit is the

pilot's ability to track another aircraft. To evaluate these systems

using tracking performance as a measure of merit, a man-in-the-loop

simulation was used. Using the Flight Dynamics Laboratory's Large

Amplitude Multimode Aerospace Research Simulator (LAMARS), an experiment

was conducted to evaluate the new system.

The experiment was set up to compare the standard SAS, from Figure 6,

and two configurations of the a- SAS, from Figure 20. One configuration is

as shown in Figure 20 with K = 6.5 and K = 1.9. The second configuration

had K and KI both set to zero with K. = 1.9. This configuration, the Ti
system, allows only sideslip rate to be fed back to the rudder. This

system provides a sideslip rate control capability to the pilot. This

configuration is included because the pilots are most familiar with rate

control which is provided by the standard SAS. The ; system also provides

a significant reduction in system complexity because the B measurement

and all integrations are removed. The value of K. was changed from 2.5

to 1.9 after the system was installed and validated in the simulator.

The change was based on pilot opinion and engineering judgment. A value

of K of 10 was chosen to provide the same steady state sideslip rate as
p

the standard system. The units of Kp for the A configuration are deg/sec
sideslip rate per inch of rudder pedal travel. This provides the pilot

with the capability to command sideslip rate up to the +60 SAS rudder

actuator limits. The units for Kp in the B- system are degrees sideslip

angle per inch of rudder travel again up to the +60 actuator limits.

Figures 23a and 23b show a comparison of these three systems at a high

dynamic pressure, Mach .9 at 10000 feet, and a low dynamic pressure,
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Mach .6 at 30000 feet. The responses to a 600 roll input followed by a

rollout show that both the and the -; system eliminate the overshoot

at high dynamic pressures and reduce maximum sideslip excursion at low

dynamic pressure.

The experiment was set up using two pilots flying each of the three

control systems four times. The pilots were flight test pilots experienced

and current in the F-106. The task performed by the pilots was tracking a

constant g target. The experiment was run at the following three flight

conditions: Mach .72 at 10000 feet with 3 g target, Mach .9 at 10000 feet

with 3 g target, and Mach .9 at 10000 feet with 6 g target. These flight

conditions were chosen to provide realistic ATA tracking conditions. The

tracking was performed using a fixed reticle depressed 50 milliradians

from the waterline.

The experiment was designed specifically to measure the difficulty

of the tracking task using the three SAS models and was set up similar

to handling qualities during tracking (HQDT) tests, with some minor

modifications. As in HQDT tests, the pilot's task was to keep the

pipper superimposed on the target. Unlike normal HQDT tests, the pilots

were allowed to use rudder pedals for aircraft control. This use of

rudder pedals during tracking, not normally allowed in an HQDT test,

was allowed because the pilots indicated that the rudder was the main

lateral control used at large angles of attack. Initially the pilots

were not told which system they were flying; this was done to avoid

any biasing of the results. Later and for all the data runs, the pilots

were informed of the system being flown. This was necessary because

the pilots had developed different techniques for flying with each

system.

Since the purpose of the new system is to improve lateral tracking,

a quantitative measure of merit for this improvement was needed. This

measure of merit was chosen to be the standard deviation of the tracking

error. Since the system tested acts only on the lateral modes, the

total error was divided into elevation and azimuth errors. The elevation

and azimuth means are also included as an indicator of the actual point

about which the pilot was tracking. To make the steady state tracking
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error statistics valid, the acquisition transients at the beginning of

each run were deleted. During this acquisition phase, the pilots often

generate large tracking errors while attempting to establish an in-plane

steady-state tracking turn behind the target. The errors are extremely

difficult to analyze quantitatively and are large relative to the steady

tracking errors; therefore, if included, they would have decreased the

usefulness of the standard deviation as a quantitative measure of merit.

In addition to these quantitative measures, the pilot opinions were

obtained in the form of pilot ratings based on the Cooper-Harper Scale

(Figure 24). These ratings, along with the means and standard deviations

of the tracking errors, provided the measures of merit for evaluating

the three SAS's.

2. SIMULATION RESULTS

Approximately 75 runs provided data which could be used for evaluating

the systems. Table 3 shows the results of these runs in terms of the

quantitative measures of merit described earlier. To eliminate the

acquisition transients, the middle 30 seconds of the 60-second runs

were used for calculating the error statistics for the 3 g runs. For the

6 g runs, the middle 20 seconds of the 45-second runs were used.

Although the mean tracking errors for three SAS's are shown, they

provide little insight into the relative merits of the different systems.

These mean values are more a function of pilot technique than of the

quality of the SAS. This is evident in the azimuth means where Table 3

shows pilot 1 to consistently track left of the target and pilot 2 to

consistently track right of the target. These different means could also

be due to the position of the pilot's head and his resulting view through

the HUD. The elevation means show that the pilots tracked consistently

below the target with large error magnitudes as g and airspeed increased

with little apparent relation to the SAS's. The elevation means could also

have been effected by bias in the data measurement system in the LAMARS

facility or again by the pilots' head location.
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The most important quantitative measure of merit is the standard

deviation of the tracking errors. The standard deviation shows the

precision with which the pilot can hold the pipper on the target. The

smaller the standard deviation, the more precisely the pilot can hold

the pipper on the target.

To determine the statistical significance of the SAS effects on

the results, a three-way analysis of variance was performed on azimuth,

elevation, and total error (vector sum of azimuth and elevation error).

The analysis is shown in Appendix E. The three error sources were SAS,

pilot, and flight condition. The results are shown in Table 4 (a through c)

in terms of level of significance for the different error sources. These

levels of significance describe the probability of mistakenly attributing

changes in tracking error to one of the error sources when in fact that

error source was not the factor causing the change. For instance, the

.0173 level of significance of the SAS as an error source in azimuth

error means that there is a .0173 probability that the changes, which

occurred in azimuth tracking error when the SAS was changed, were not

due to the SAS at all but were either random errors or due to some other

factor. The results show that the SAS was indeed significant as an

error source. The results also show that the pilot and flight condition

were even more significant as error sources.

Since the analysis of variance shows the SAS effects to be signi-

ficant, the results from Table 3 can be examined in more detail. The

percentage improvement over the standard SAS, in terms of standard

deviation of the tracking error, is shown in Table 5. There are quite

large improvements at Mach .72, 10000 feet but as the Mach number and

g loading increase, the levels of improvement become smaller. This

decrease in percentage improvement is probably due to the increasing

difficulty of the task itself, which tends to overwhelm and mask the

SAS differences. This is also evident in the analysis of variance,

which shows the flight condition to have a highly significant effect

on the results. Pilot skill also appears to be important to the results.

Pilot 1 consistently had smaller tracking errors and also had consistently

higher levels of improvement. As with flight condition, this pilot
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TABLE 4

ANALYSIS OF VARIANCE RESULTS

Error Source Level of Significance

Pilot .0163

Flt Cond .00003

SAS .0173

a. Azimuth Error

Error Source Level of Significance

Pilot .0201

Flt Cond .00001

SAS .044

b. Elevation Error

Error Source Level of Significance

Pilot .0053

Flt Cond .00001

SAS .0135

c. Total Error
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TABLE 5

PERCENT IMPROVEMENTS OVER STANDARD SAS*

M = .72, 3 g, 10000 FEET

Pilot I Pilot 2

System Azimuth Elevation Total Azimuth Elevation Total
Error Error Error Error Error Error

44 39 1 43 2520 I241
O-B 44 49 45 21 29 23

M .9, 3 g, 10000 FEET

Ba8 -8 6 1-19 18 -14

Mt .9, 6 g, 10000 FEET*i I I m
13 5 10 12 I 17 7~

I-25 37 I -5 1-24 1 a
*Negative value indicates a degradation

effect was evident in the analysis of variance. Based on the quantitative

measures of merit in Tables 3 and 5, the ; SAS appears to be best, followed

by the standard SAS and the a-A SAS.

The three SAS's were also compared qualitatively using the Cooper-

Harper rating scale. These ratings, for the 3 g runs, are shown in Table 6.

These qualitative measures follow very closely the quantitative measures

of Tables 3 and 5. They show the A system to be best followed by the

standard and the -A system. Figures 25a-25c show representative pipper

traces at the Mach .9, 3 g flight condition using each of the three SAS's.

These pipper traces are from runs flown by pilot 1. The improvement is

evident in the A SAS, Figure 25c. Figure 26 also shows the improvement

provided by the ; SAS. In Figure 26, the standard SAS was being flown

by the pilot as he tracked a 3 g target; at the point shown, the standard

SAS was turned off and the SAS turned on. The improvement is evidenced

by the elimination of the low frequency oscillation.
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TABLE 6

COOPER-HARPER RATINGS (3 g ENCOUNTERS)

System Pilot 1 Pilot 2

Standard 3 4

2 3

5 5

Although the nonpiloted simulations indicated that the : system

was better than the system, in terms of dynamic response, the pilots

preferred and performed better with the 3 system, a rate control. This

apparent discrepancy can probably be attributed to the fact that the

pilots were most familiar with rate control, as with the standard SAS;

the position control of the -3 system was therefore, something new

which the pilots had to learn how to use as they evaluated it. This

lack of experience in using position control of sideslip might have put

a bias on the results. Unfortunately, this possible bias cannot be

measured using the data and should not, therefore, enter the results.

In summary, the LAMARS simulation showed that the 3 SAS provides a

significant improvement over the standard SAS. This improvement was

evidenced by both quantitative measures of merit, tracking error, and

qualitative measures of merit, pilot ratings.
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SECTION V

F-106 FLIGHT TEST

1. SYSTEM CONFIGURATION AND IMPLEMENTATION

Based on the results of the piloted simulation, both analysis

results and pilot comments, the Aerospace Defense Command (ADCOM/DOV) gave

the Flight Dynamics Laboratory approval to flight test the modified SAS

on an F-106 at Tyndall AFB, Florida. The Flight Dynamics Laboratory,

with assistance from the 475th Test Squadron from Tyndall AFB, designed

a flight test implementation which allowed for much flexibility during

the flight test. The Class II modification package based on this

design was approved by Air Force Systems Command. The design for

flight test included only provisions to evaluate the sideslip rate (3)

feedback. The reasons for looking at only the A feedback are twofold.

Primarily, the pilot comments and performance measures from the piloted

simulation shows this system to have a much greater performance

improvement potential than the 3- system. Also, the cost for

implementing the system was considerably less because no integrations

were required in the control law.

During the design of the flight test implementation, the Flight

Dynamics Laboratory presented an option to ADCOM which would allow for

the addition of a roll SAS to the F-106 being tested. The reasons for

including this option were that the F-106 did not have roll rate feed-

back to the SAS, the pilot controlled the elevon position directly, and

the change would be very simple, involving only a circuit change to the

existing control system. ADCOM/DOV approved this addition to the

flight test, and the roll SAS design was included and approved in the

Class II modification package.

The F-106 avionics system and flight control system were well

suited for testing the A SAS and roll SAS because they required only

minor modifications to the existing system. The Hughes-built IRAM

computer was used for all SAS calculations, both yaw and roll. Since

the IRAM computer is part of the MA-l fire control and automatic

intercept system, existing electrical paths from the IRAM computer to
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the 464821 flight control interface box were used to carry the calculated

SAS commands to the flight control system actuators. Figure 27 shows a

conceptual block diagram of the system implementation.

The standard yaw SAS is a single-thread analog system located in the

821 unit. The sensor outputs from the turn rate transmitter (TRT), yaw

rate and roll rate, are input to this 821 unit which does the analog

SAS calculation for roll and pitch and then sent to the rudder actuator

and the two elevon actuators.

The rudder actuator mechanically limits the SAS command rudder

movement to +60. Likewise, the pitch SAS commands are mechanically

limited to +l by the elevon actuators. This pitch authority (+l) was

also the limit for the roll SAS since the roll SAS consisted of using

the existing pitch system but in a differential manner.

The SAS implementation is shown in Figure 28. Figure 29 further

describes the inputs and switching used in the SAS. To have all the

quantities necessary to solve the equation in the MA-l IRAM computer,

some standard inputs to the computer had to be removed and replaced with

sensor measurements needed by the 3 SAS. The pitch rate normally input

to the computer was replaced by an angle of attack (a) signal from an C,

vane located on the pitot-static boom. The lateral acceleration (A y),

which came from a Honeywell inertial reference platform (IRP), replaced
the existing gunsight sideslip measurement. Rudder pedal position (6rp)

replaced the right elevon position. These three signals, (, Ay, and 6rps

were available from instrumentation installed previously for an F-106

parameter identification flight test.

The roll SAS implementation was set up in the same way as the T SAS.

Figures 30 and 31 show the implementation and switching logic used for

the roll SAS. The lateral stick position needed by the roll control law

is taken from a lateral stick position potentiometer and input to the

computer in the location normally containing left elevon position.

The computer program was set up to enable a maximum amount of flexi-

bility in both system checkout and flight test validation. The program

had an option for a ground check by using the aircraft short system
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ground check number three (SSGC #3). When SSGC was engaged, the computer

would read stored data locations instead of the sensor input. The

control law was computed using these values for the sensor measurements.

The resulting rudder deflection was then compared with the rudder deflection

which should theoretically have occurred. These ground check calculations

are shown in Figure 32.

Flight test flexibility was achieved by designing the system with

variable gains and SAS mode switching logic. To achieve variable gains

in the control law itself, the homing point selector (an existing

navigation control) was used as a gain select. For each switch location

on the homing point select, a different set of gains were used in the SAS

calculations. Table 7 shows the homing point values and the associated

gains. In addition to the variable gains, adjusted by the homing point

select, an electrical bias or trim was available using the altitude alert

switch, an existing digital input to the computer. This electrical bias

allowed the pilot to trim out the bias resulting from an accumulation of

sensor biases. This electrical trim was used in place of the normal trim

because the normal rudder trim uses part of the +60 SAS authority of

rudder actuator. By using the electrical trim, the SAS control law still

had even +60 authority instead of an uneven authority such as +50, -7'

which could occur if a 10 bias was eliminated using the standard rudder

trim.

TABLE 7

HOMING POINT SELECT GAIN VALUES

HD Ki Kp ub  Krr Ks

A 1.9 5 4 .15 3
B 1.9 5 1 .15 3
C 1.25 3.28 4 .15 3
D 2.25 5 4 .15 3
E 1.5 3.45 4 .15 3
F 1.9 5 3 .15 3
G 1.9 5 6.36 .15 3
H 1.9 2.5 4 .15 3
I 1.9 10 4 .25 3
J 1.9 5 2 .15 3
K 1.9 5 4 .15 2
L 1.9 5 4 .15 4
1l 1.9 5 4 .1 3
N 1.9 5 4 .2 3

80-- _ _ __ _ _ _ __ _I
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Rudder Check

Src (K p6 p + TRIM- Ks)

_p( +a b ) - r + 57.3Ay + 57.3gcosesin
57.3 U

p = 5 deg/sec 9 -50

= 7 deg -151

r = 5 deg/sec TRIM = 0

A = -3 ft/sec2  61p = -1.25 in

U = 862 ft/sec
1

= 5(7 + b) -5 + 57.3(-3) + 57.3(32.2) cos (-50) sin (-150)
57.3 862 862

= .611 + .0873ab - 5 - .199 - .552

= .0873ab - 5.14

6rc = [Kp *1.25 + 0 - K (.0873ab - 5.14)]

= -1.25K p - Kj (.08 73ab - 5.14)

Aileron Check

6ac = (Kg 6ps - Krr P)

p = 5 deg/sec

6ps = 0

6ac = OKg - 5Krr

= -5Krr

Figure 32. Built-in-Test
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The switching logic also allowed some of the parameters in the ; SAS

control law to be deleted from the control law calculation. Specifically,

the heads up display (HUD) switches 3 and 4 were used to delete pilot

rudder pedal position (6rp) and lateral acceleration (A y) respectively.
These options proved very helpful, both in debugging the system and in

picking the best overall system configuration. HUD switch 1 was used to

start the computer calculations and HUD switch 2 was used to fade-in the

control law. The fade-in consisted of a 1-second ramp from zero to one.

This fade-in is shown as F(t) on Figures 28-31.

The actual computer program which did the SAS calculations is shown

in Appendix F. This IRAM assembly code shown did the 3 and roll SAS

calculations, the rudder trim, gain changes, and also displayed a fixed

reticle depressed 50 mils from the water line and 15 mils right of

centerline. The cross was placed off center so that the vision
splitter on the 106 did not interfere with the HUD camera. The computer

program is located on the magnetic memory drum at the same location as

the gunsight program; therefore, to load the program, the pilot selected

Special Weapons (SPL WPM) on the weapon control panel.

2. FLIGHT TEST RESULTS

After several system checkout flights, the system was debugged and

data flights were flown. The 475th Test Squadron flew the ; and roll SAS

during the months of June, July, and August of 1978. The system was
flown by three different pilots during this period. Both basic handling

qualities tests and handling qualities during tracking (HQDT) tests were

flown by all three pilots.

The roll SAS proved to be the least effective of the two systems

tested. This ineffectiveness was due primarily to limitations in the

way the system was implemented. Since the roll SAS had only +1 degree

of elevon authority, small biases in roll rate and lateral stick position

measurements saturated the system. This saturation meant that the control

law would operate only in one direction. In spite of these limitations,

the pilots felt that when the system was operating properly, it was very

effective and desirable for air-to-air tracking. Unfortunately, the
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stick position and roll rate biases were present during most of the

flights, thereby making the roll SAS, on the whole, ineffective.

Additionally, instrumentation problems precluded the reduction of

aircraft data for the roll SAS flights.

The SAS was shown to be effective in the ATA tracking task by

reductions in the tracking error shown on gun camera film. The lateral

acceleration (A y) term in the control law was switched out during the

data gathering flights because it was very noisy and added no real

improvement to the response. The system also showed to be an improvement

over the standard SAS in terms of reduction in pilot workload. These

conclusions are based primarily on pilot comments and on gun camera

film taken during many of the tracking encounters. There is also some

strip chart data of aircraft parameters which aided somewhat in system

evaluation. Unfortunately, the parameters most critical to the ; system

evaluation, a and r, were not measured during the tests due to instrumen-

tation problems.

Figures 33 and 34 show a d4rect comparison between the standard SAS

and the A SAS with Homing Point E gains (K;=1.5, Kp=3.45). The long

straight line in the pipper trace of Figure 33 is caused by a data dropout

in the instrumentation system. The flight condition was Mach = .8,

10,000 ft. These figures show tracking error data during an aileron

reversal. In this case, the difficulty of the task masked much of the

SAS differences, although one can see a higher frequency content in the

A SAS error time plots. This higher frequency content is indicative of

the faster response available when the aircraft was flying with the

SAS engaged. Pilot comments confirmed the faster response time with the

SAS. They also indicated this faster response to be a desirable

capability during ATA tracking.

Figures 35 and 36 show similar tracking error comparisons between

the standard SAS and the SAS. Both a right and left 4 g turn at Mach .8

and 10,000 feet are shown. The right turn shows little difference

between the two systems other than the decreased response time of ; SAS

as indicated qualitatively by the higher frequency content of the error
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time plots. The left turn, however, does show a significant decrease

in tracking error on both the pipper plot and the error time plots.

Figures 37 through 42 show additional flight test results for

constant 3.5 to 4 g turns. The standard SAS results, Figure 37, show

a fairly large pipper trace with excursions as high as +25 mils in

both elevation and traverse. The SAS, Figures 38 through 42, shows

significant reduction in this aim wander. The results are especially

impressive in Figure 38 with K.=l.9 and Kp=3.45, over 50% reduction in

aim wander. Although these plots represent tracking performance for

only one flight, they are representative of the performance achieved

by all the pilots on all the test missions.

In addition to the improvement evidenced by the pipper plots,

Figure 43 shows data which is indicative of the reduction in pilot

workloads achieved using the system. The time history strip chart

recordings from this figure were taken from the pass whose pipper plot

is shown in Figure 42. The reduction in pilot workload is evidenced by

the reduction in magnitude of the stick and rudder deflections. The

decreased response time is evidenced by the higher frequency content of

the control movements using the ; SAS. The workload reduction evidenced

by Figure 43 is very similar to the workload reduction evidenced by

Figure 28 showing simulator results.

A total of three different pilots flew the modified SAS. The roll

SAS did not function and was therefore not evaluated. All agreed that

the ; SAS was an improvement over the standard SAS during ATA tracking.

The pilot comments indicated that the improvement in tracking capability

was due to the "crisper", faster response available using the ; SAS. The

consensus was that the gains of KA=l.9 and Kp=2.5 were the best of those

tested. The pilots felt that these gains made the best system by

providing a quick but controllable response.

r
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SECTION VI

CONCLUSIONS AND RECOMMENDATIONS

1. CONCLUSIONS

A lateral stability augmentation system for the F-106 has been designed

using sideslip rate and sideslip angle as primary feedbacks. The sideslip

rate is synthesized from signals available from sensors on board the air-

craft. Both time and frequency domain simulations showed that the dynamic

response of the aircraft is improved using the new SAS. A piloted simula-

tion of ATA tracking encounters was also conducted to compare the existing

SAS with two configurations of the 6- SAS. This simulation showed that

a configuration of the a-A SAS which allowed only A to be fed to the rudder

demonstrated substantial improvement over the standard SAS. This improve-

ment in standard deviation of tracking error varied from 5% to 45% depend-

ing on pilot and flight condition. Based on these piloted and non-piloted

simulations, the use of a A feedback in place of the existing SAS on the

F-106 will significantly improve lateral handling qualities during tracking.

To verify this conclusion, this system was flight tested at Tyndall

AFB, Florida. The flight test results, in terms of HUD camera film data

and pilot comments, confirmed this conclusion that a A SAS will improve

the F-106 handling qualities during tracking.

2. RECOMMENDATIONS

Based on the flight test results and pilot comments, the Control

Systems Development Branch of the Flight Dynamics Laboratory recommended to

the Air Defense Command (ADCOM) that this modified system, using as

primary feedback, be retrofitted to the F-106's now in the inventory.

ADCOM/DOV agreed with the conclusion that such a system would improve

the F-106 flight control system; however, fiscal considerations forced a

negative decision on retrofit.
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APPENDIX A

ASD HYBRID SIMULATION

Part of the e sign process includes looking at the different SAS's

in a six degree-of-freedom, nonlinear simulation. This simulation is

based en force and moment equations from the GDCA report (Reference 7).

The force and moment equations, composed of the aerodynamic coefficients

for the F-106, are used in the simulation equations which solve for

p, q, r, u, v, and w (Reference 8). These simulation equations and the

force and moment equations are shown below.

1. SIMULATION EQUATIONS

The following equations are the basic differential equations used

in the ASD hybrid simulation.

=L+ .1 (I I) I
I xz qr Iy + pq xz (A-l)

x y X

= + pr (Iz x + (r - p ) xzIy I I (A-2)

N . (I - I I ry + Xz-pq (A-3)
z X 7

= T + Fx - g sinO + rv - qvSm (A-4)

E x + g cosesi0n + pw - ru
M (A-5)

- Fz + g cosecoso + qu - pvm (A-6)
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2. FORCE AND MOMENT EQUATIONS

The force and moment equations below are used as inputs to the

simulation equations above. The equations include both first and second

order aerodynamic effects. A more detailed description of the equations

and coefficients is found in Reference 6.

F = -CDCOScx + CL sina)qS (A-7)

F = C + C 6a + C 6r + (C +C r)b - [ +
+-r 21 a0 (A-8)

3C ac 1
yR )a + Y8

Oa a C eqS(A9

Fz  (-C L cosa,- CD sina + C ca + C Z 6e)qS (A-9)

{C 1p + C1 r)b 6 a 6r + [(c jL = rp + rj + 18+ + +(

2 a

ac 1 8 a +ac 1  ac ac1  ac 1  r(A-- b )

3c 3 1a + -- -PC l + l + _ q(A -10

H C C~ CM =m + m q2U (q + c) + M6e Se]  Sc + (n.p. + C- x cg )Fz (A-il)

{C 8 CI (Cnp Cnr~i bs
N C n 3 + Cn a6a + C n6rr + (CnP+ Cnrr01.- +

'C ac nc
n5- 8 n An8

-- a+ )+ a-81IsI+ a 81

•" n6,, + n 6a

- -- e)6aJ qSb (A-12)
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APPENDIX B

ROOT MAP DATA FOR THE F-106

The root map technique, described in Section 1I.1, involves

finding numerous root loci at each flight condition. Part of the root

loci at a given flight condition are generated with fixed values of K8
while the gain KA is allowed to vary. The remaining loci have fixed

values of K* while K, varies. The transfer function used with a fixed

value for K is shown below. The derivation is shown in Section III.1.

Ci) KAKs(s + a)(s + KI)
Const K8  s' + bs' + c's + d' (B-l)

A similar transfer function results when KA is held constand and K,

varies.

KBK
K K)- (s + a)(s + KI)

)CoRst K (B-2)Cons K; s(s' + trs + c'

The tables included in this appendix contain the numerator and

denominator roots for the transfer functions used to generate the root

maps of Section III. The fixed values of K; vary from I to 7; K6

varies from 1 to 15.
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TABLE B-i

TRANSFER FUNCTION DATA FOR MACH .4, SEA LEVEL

K Constant: K
K_

KA1 + KAK Numerator Roots Denominator Roots

1 .0427 -.2, -53.23 0, -1.64+11.85

2 .0409 0, -3.57, -1.76

3 .0393 0, -6.17, -1.05

4 .0378 0, -8.16, - .81

5 .0365 0, -9.91, - .68

6 .0352 0, -11,49,-0.6

7 .034 0, -12.96, -.54

Constant r.

Ka K Numerator Roots Denominator Roots

1 .0446 0, -.2, -53.23 -.058, -.518+12.82

2 -.090, -.524+13.21

3 -.11 , -.535+13.55

4 -.124, -.551+13.87

5 ~-.134, -.568+14J'6

6 -.142, -.587+14.43

7 -.149, -.606+14.69

8 -.154, -.626+14.93

9 -.158, -.646+15.17

10 -.161, -.667+15.39

11 -.164, -.688+15.6

12 -.167, -.709+15.81

13 -.169, -.730+16.00

14 -.171, -.750,+16.20

15 -.173, -.774+16.38
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TABLE B-2

TRANSFER FUNCTION DATA FOR MACH .9, SEA LEVEL

ConstantK

K
KA1 + KAK Numerator Roots Denominator Roots

1 .0641 -.2, -57.34 0, -2.77±i3.98

2 .0602 0, -4.34±i2.0

3 .0568 0, -8.99 , -2.46

4 .0538 0, -12.14, -1.78

5 .051 0, -14.72, -1.43

6 .0485 0, -16.94, -1.22

7 .0463 0, -18.91, -1.07

Constant K8

K 8  K Numerator Roots Denominator Roots

1 .0685 0, -.2, -57.34 -.028, -1.01 ±15.22

2 -.049, -1.03 ±15.57

3 -.066, -1.06 ±15.90

4 -.079, -1.09 ±16.22

5 -.090, -1.11 ±16.53

6 -.099, -1.14 ±16.82

7 -.106, -1.17 ±17.06

8 -.113, -1.203±i7.36

9 -.119, -1.236±17.62

10 -.123, -1.268±i7.86

11 -.128, -1.298±i8.10

1,2 -.132, -1.329±i8.34

13 -.136, -1.362±18.57

14 -.139, -1.4 ±18.79

15 -.142, -1.43 ±19.0
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TABLE B-3

TRANSFER FUNCTION DATA FOR MACH .7, 10000 FEET

K- Constant K

1 + K K Numerator Roots Denominator Roots

1.0495 -.2, .78.08 0, -2.471+i2.13

2 .0472 0, -6,8, -1.6

3 .0451 0, -10.49, -1.06

4 .0431 0, -13. 6, -.83

5 .0413 0, -16.37, -.7

6 .0397 0, -18.88, -.62

7 .0382 0, -21.2, -.56

Constant KS

K K Numerator Roots Denominator Roots

1.0521 0, -.2, -78.077 -.056 ,-.558±i3.75

2 -.088 ,-.566±ti4.26

3 -.1085, -.584±i4.71

4 -.1229, -.c,03±f5.11

5.133 ,-.624±i5.5

6 -.141 ,-.645±i5.85

7 -.147 ,-.67 ±16.19

8 -.152 ,-.69 !A6.51

9 -.156 ,-.717±i6.81

10 -.16 ,-.74 ±17.1

11 -.163 ,-.765i17.38

12 -.165 . -. 79 ±:17.64

13 -.168 , -.82 ±17.9

14 -.17 , -.84 ±i8.16

15 -.171 , -.86 t18.4
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TABLE B-4

TRANSFER FUNCTION DATA FOR MACH .6, 15000 FEET

Constant Ki

8j+ ; Numerator Roots Denominator Roots

1 .024 -.2, -102.85 0, -1.71 +12.08

2 .0234 0, -3.82 ,-1.96

3 .0229 0, -6.85 ,-1.12

4 .0224 0, -9.15 ,- .86

5 .022 0, -11.2 ,- .72

6 .0214 0, -13.08, - .63

7 .021 0, -14.83, - .57

Constant K8

KA K Numerator Roots Denominator Roots

1 .0391 0, -.2, -68.21 -.056, -.431±i3.07

2 --.087, -.435±i3.48

3 -.107, -.446±i3.84

4 -.121, -.454±14.17

5 -.132, -.469±i4.48

6 -.14 , -.485±i4.76

7 -.146, -. 502±i5.03

8 -.151, -.519±i5.29

9 -.155, -.537±i5.54

10 -.159, -.556±i5.77

11 -.162, -.574±15.99

12 -.165, -.593±i6.21

13 -.167, -.610±i6.42

14 -.169, -.630±i6.62

15 -.171, -.647±i6.82
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TABLE B-5

TRANSFER FUNCTION DATA FOR MACH .9, 15000 FEET

K Constant K*

K A1 + KAK Numerator Roots Denominator Roots

1 .0443 -.2, -64.51 0, -2.02±i3.19

2 .0424 0, -3.31±11.81

3 .0407 0, -6.94 ,-2.04

4 .0391 0, -9.71 ,-1.45

5 .0376 0, -12.01, -1.17

6 .0362 0, -14.04, -1

7 .035 0, -15.91, - .88

Constant K8

KA K Numerator Roots Denominator Roots

1 .0463 0, -.2, -64.51 -.035, -.618±i4.11

2 -.059, -.63 ±14.45

3 -.077, -.643±i4.77

4 -.091, -.659±i5.08

5 -.102, -.679±i5.36

6 -.11 ,-.694±i5.63

7 -.12 ,-.715±i5.88

8 -.13 ,-.757±i6.13

9 -.13 ,-.755±i6.37

10 -.13 ,-.777±16.6

11 -.14 ,-.795±16.82

12 -.14 ,-.818±17.03

13 -.15 ,-.842±17.23

14 -.15 ,-.860±i7.44

15 -.15 ,-.884±i7.63
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TABLE B-6

TRANSFER FUNCTION DATA FOR MACH 1.2, 15000 FEET

K Constant K$
1j + KAK Numerator Roots Denominator Roots

1 .0376 -.2, -88.21 0, -1.91 ±14.66

2 .0363 0, -3.07 ±13.97

3 .035 0, -4.18 ±12.77

4 .0338 0, -6.79 , -3.68

5 .0327 0, -10.01, -2.49

6 .0317 0, **12.4 , -2

7 .0307 0, -14.61, -1.69

Constant K8

K K Numerator Roots Denominator Roots

1 .0246 0, -. ,-102.85 -.018, -.686±15.24

2 -.033, -.688±i5.48

3 -.046, -.697±i5.70

4 -.057, -.702±i5.92

5 -.067, -.712±16.12

6 -.075, -.717±i6.33

7 -.082, -.729±16.52

8 -.089, -.739±i6.72

9 -.095, -.748±16.90
10 -.100, -.755±i7.08

11 -.105, -.768±17.25

12 -.109, -.775±i7.42

13 -.113, -.786±17+59

14 -.117, -.797±17.75

15-.120, -.807±i7.91

105



AFWAL-TR- 80-3015

TABLE B-7

TRANSFER FUNCTION DATA FOR MACH .6, 30000 FEET

Constant
K

1 + KaK Numerator Roots Denominator Roots

1 .0221 -.2, 78.67 ), -1.18 t1i2.01

.0216 0, -2.013,±il.272

3 .0212 o, -4.21 , -1.4

4 .0207 0, -6.14 , - .99

5 .0203 0, -7.78 , - .808

6 .0122 o, -9.82 , - .7

7 .0195 0, -10.71, - .62

Constant K8

K K Numerator Roots Denominator Roots

1 .0226 0, -.2, -78.67 -.05", --31±i2.62
2 -..081, -- ±12.94

6 -. 3,-32±i.3.97
7 -.1 , -33±i.4.18

8 ..147. --34±i4.39

90 -.155, -*36±j4.78

11 -.157, --37±i4.96

12 -..16 - -*38±i5.13

13 -.16 - -9i.

14 -.166, --40±i5.47

15 -.167, -41±j5.63
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TABLE B-8

TRANSFER FUNCTION DATA FOR MACH .9, 30000 FEET

Constant K

K
Ki 1 + KAK Numerator Roots Denominator Roots
1 .0274 -.2, -76.56 0, -1.416±i2.551

2 .0267 0, -2.401±il.712

3 .026 0, -4.834, -1.83

4 .0253 0, -7.183, -1.257

5 .0247 0, -9.118, -1.007

6 .0241 0, -10.869, -.859

Constant KB

K K Numerator Roots Denominator Roots

1 .0282 0, -.2, -76.56 -.0413, -.37 ±i3.21

2 -.0686, -.37 ±13.53

3 -.088 , -.37 ±13.82

4 -.1 , -.38 ±14.09

5 -.11 , -.39 ±14.34

6 -.12 , -.40 ±14.59

7 -.13 , -.41 ±14.81

8 -.135 , -.42 ±i5.03

9 -.14 ,-.43 ±i5.24

10 -.145 ,-.44 ±15.44

11 -.149 , -.46 ±15.635

12 -.152 , -.47 ±i5.82

13 -.155 , -.48 ±16.0

14 -.157 , -.494±i6.2

15 -.159 , -.51 ±16.35
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TABLE B-9

TRANSFER FUNCTION DATA FOR MACH 1.4, 30000 FEET

K Constant K

8+Kj Numerator Roots Denominator Roots
.0148 -.2, -81.67 0, -1.045±i4.017

2 .0146 0, -1.626±i3.817

3 .0144 0, -2.191±i3.522

4 .0142 0, -2.739±i3.113

5 .014 0, -3.272±i2.544

6 .0138 0, -3.79 ±i1.673

7 .0136 0, -5.43 -3.1593

Constant K

K K Numerator Roots Den~ominator Roots

1 .015 0, -.2, -81.67 -.013 ,-.448±i4.27

2 -.025 ,-.45 ±14.413

3 -.035 ,-.452±i4.55

4 -.044 ,-.455±i4.68

5 -.053 ,-.458±i4.81

6 -.06 ,-.462±i4.93

7 -.067 ,-.467±i5.056

8 -.073 ,-.471±i5.174

9 -.078 ,-.475±i5.29

10 -.083 ,-.48 ±15.14

11 -.088 ,-.49 ±15.52

12 -.0921, -.49 ±15.625

13 -.096 ,-.50 ±15.73

14 -.1 ,-.50 ±15.836

15 -.103 -.51 ±i5.94
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APPENDIX C

EASY DYNAMIC ANALYSIS PROGRAM

Under contract to the USAF, The Boeing Aircraft Company developed

the Environmental Systems Analysis (EASY) digital computer program.

The program was originally developed to use in designing environmental

control systems. It has since been extended to allow time and frequency

domain analysis of aircraft systems.

The program is used to describing the system to be analyzed through

the use of block diagrams and the associated interconnections. The

program supplies generic block diagrams of the airframe and engine and

the user supplies the aerodynamic data and the block diagrams

representing the control system, pilot model, gunsight algorithm or any

aircraft subsystem desired in the analysis. The F-106 was programmed

using the same set of force and moment equations as used in the ASO

Hybrid Simulation described in Appendix A.

The included listings show an example of the data required to

generate the F-106 aircraft system model with both standard and 6- SAS.

Also shown are the models resulting from the data and the data decks

required to produce the Bode plots at .8 Mach and 10000 feet. Figures C-i

and C-2 contain the input data and resulting models for the a- and

standard SAS. Figures C-3 and C-4 contains the analysis data used to draw

the Bode plots.
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Figure C-1. EASY Model Generation Data and Resulting Model for
a-A SAS
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Standard SAS
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APPENDIX D

DERIVATION OF SIDESLIP RATE

The 8- system uses as feedbacks both sideslip (a) and sideslip rate

( ). Sideslip can be measured with a vane attached to the aircraft.

Sideslip rate, on the other hand, cannot be measured directly. The 8

signal is too noisy to differentiate, so 8 must come from some other

source. The solution to this problem begins with the definition of a.

0 = arcsin v/U (D-l)

v and U are the side and total velocity of the aircraft in body axis

coordinates differentiating with respect to time.

= U4-vU (D-2)

u2+V
2

The terms in D-2 are normalized using total velocity, U.

U vU

U U U U (D-3)
U 2

'U2

An order of magnitude analysis is performed on Equation D-3 using the

assumptions below.

<<

v-'< I
U

V
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The ; term in Equation D-4 is the side acceleration as seen by an

observer in the body coordinate frame. This term cannot be measured;

it must be synthesized from aircraft states which can be measured by

sensors onboard the aircraft.

The total rate of change of the velocity in the inertial frame

must be derived in order to get v in terms of measurable variables.

"- +Wx (D-5)vI -- bb

iu the inertial acceleration vector in body axis
V1 = coordinates

=v u the acceleration vector observed in the body frame

=b w in body axis coordinates
b

rJ- [u the body angular rate vector in body axis coordinates

ul the body velocity vector in body axis coordinates

b w

The y-coordinate scalar equation resulting from Equation 0-5 is shown

below.

v1 -v-pw + ur (D-6)
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The inertial side acceleration is a measurable quantity consisting of

lateral accelerometer output, A summed with the gravitationaly acc' umdwt h rvttoa
component in the y-direction.

i y acc cosesino (D-7)

Using Equation D-6 and Equation D-7, v is shown below.

v - pw - ur + Ay)ace + g cosesino (D-8)

Dividing by V.

" - !- +  v + kosesin, (D-9)

Equation D-9 is further simplified by assuming !- equal to angle ofuV
attack and R equal to one.

pa - r + + osesino (D-10)
V V

Substituting, using Equation D-4,

pa - r + v + v s i (D-11)

Equation D-11 represents a synthesis of sideslip rate based on

measurable variables.
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APPENDIX E

ANALYSIS OF VARIANCE OF TRACKING DATA

A three-way analysis of variance was conducted on azimuth error,

elevation error, and total error. The three error sources considered

were pilot, flight condition, and SAS. Since no replications were

available, the error source interactions were not examined. The

analysis is based on the method described by Miller and Freund.

The model used for the analysis is shown below.

ijk = J+i+% +Y + ijk

a, = Effect due to ith pilot i 1 1, 2

' Effect due to j th SAS j = 1, 2, 3

th
Effect due to k- flight condition k 1, 2, 3

Cijk = Effect due to interactions and error

SSTO = Yijk - C

SS(Pilot) = (Eypilot 1)2+ (EYpilot 2
)2- C

N pi~ot

+2 +' )'SS(SAS) (ZYSAs) 2 + SAS2) + (ZYSAS3 C
NSAS

SS(FC) = ( FC I)2 + (EY Fc2 )2 + (ZY FC3 )  .

NFL

N total
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TABLE E-1

AZIMUTH ERROR ANOVA

Source 55 DOF ms F Level of Significance

Pilot 26.68 1 26.68 7.8 .0163
Fit Cond 188.6 2 94.3 27.6 .00003
SAS 39.66 2 19.83 5.8 .0173
Error 41.02 12 3.42 ____ ________

Total 296 17

TABLE E-2

ELEVATION ERROR ANOVA

Source SS DOF ms F Level of Significance

Pilot 8.76 1 8.76 7.18 .0201
Fit Cond 157.6 2 78.8 64.55 .00001
SAS 10.08 2 5.01 4.1 .044
Error 14.65 12 1.22

Total 191.09 17

TABLE E-3

TOTAL ERROR ANOVA

Source SS DOF ms F Level of Significaince

Pilot 33i49 1 33.49 10.97 .0053
Fit Cond 317.28 2 158.6 52 .00001
SAS 38.45 2 19.23 6.3 .0135
Error 36.65 12 3.05

Total 425.87 17
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APPENDIX F

ASSEMBLY LISTING OF FLIGHT TEST OPERATIONAL FLIGHT PROGRAM

This appendix contains an assembled listing of the IRAM computer

program used to perform the SAS calculations and the built-in test. The

Hughes-built IRAM (improved reliability and maintainability) computer is

a fixed-point, two's compliment airborne digital computer in the F-106

fire control system.
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