
AD-A090 965 TRW DEFENSE AND SPACE SYSTEMS GROUP REDONDO BEACH CA F/B 9/2
AIRBORNE SYSTEMS SOFTWARE ACQUISITION ENGINEERING GUIDEBOOK FOR-ETC(U)
SEP 78 F33657-76-C-0677

UNCLASSIFIED TRW-30323-6013-TU-00 ASO-TR-79-5027 NL

nuuuunuuuu

II

L611 I*O 8, __ L
1E1I1..-.u. 32

11111-2 1 1-6

MICROCOPY RESOLUTION TEST CHARff

~KASD-TR-79-50279-,,

Airborne Systems
Software Acquisition Engineering Guidebook

for
REQUIREMENTS ANALYSIS

AND SPECIFICATION
0

lSEPTEMBER 1978_DTIO
,nELECTE

APPROVED FOR PUBLIC RELEASE; 1'~OCT 30 19805
DISTRIBUTION UNLIMITED

PREPARED FOR
DEPUTY FOR ENGINEERING

AERONAUTICAL SYSTEMS DIVISION
WRIGHT-PATTERSON AFB, OH 45433

CD

PREPARED BY

TRW DEFENSE AND SPACE SYSTEMS GROUP
ONE SPACE PARK

REDONDO BEACHCA 90278

so0
28,

NOTICE

when Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely related Government procurement operation,
the United States Government thereby incurs no responsibility nor any obligation
whatsoever; and the fact that the government may have formulated, furnished, or in
any way supplied the said drawings, specifications, or other data, is not to be re-
garded by implication or otherwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to manufacture
use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS, it will
be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

J6 M HOEEMMP ject DiginwxMimj erj 0noU030tin DvsmASD Cocl P

FOM TME C(NANDU

I P. LAVOIE, Qolonel, WAF
Directr of Avionics ineering
Dqmty fo =kaiMeW n

"If your address has changed, if you wish to be removed from our mailing list, or
if the addressee is no longer employed by your organization please otif .,al.&Q_,
W-PAFD, ON 4433 to help us mintain a current mailing list0 .

Copies of this report should not be returned unless return is required by security

considerations, contractual obligations, or notice on a specific document.

AIR FORC MoMo Jy 19o - ISO

SECURITY CLASSIFICATION OF THIS5 PACE (When. Date E3.104 ________________

REPORT DOCUMENTATION PAGE BFRE COMPRLETINORM

AS; -79-5027 1

an 5 4ypAROA RgWOR T aUMPERIOSOEE
TWDfneadaeSystems GrtaeAcuso Jfg ri

iiOnae Pak oftwareroec/~j
Guiedook feaoh CAureet 92078si and - MP ____________

SI. CEROROLING OGFICEI NAME AND ADDRESSIa

Wright-ceParso AP O4434I. 7U4ERF PG-ES38

1N ONTRORING AGFICE NAME AN ADRESS 12litU. ~,I~dO~c)I. SECURITY CASS 1Aa,.

UNCLASSIFIED

1. DISTRIBUTION STATEMENT (of this Report)
1 MI T/DW RDN

Approved for Public Release
Distribution Unlimited

'7. DISTRIBUTION STATEMENT (.t the. astract entere 5t, Block It differen kmu Report)

10. SUPPLEMEtNTARY NOTES

19. IKY WORDS (Co.,dhvu an revese .5*55i necessary and d#mdd by We"akusbeq)

Software Requirements Analysis, Software Requirements Specification,
Software Development Specification

'Of ABSTRACT (Contfinums.owo .m alde*uNaoaeam0 md 5edd kgM Aweek annor)

This report is one of a series of guidebooks which provide guidance to the
acquisition management and engineering of Airborne Systems software procured
under Air Force 800-series regulations. it describes the derivation,
analysis, and documentation of Airborne software requirements.

DO ~ 147 EDVIOOP NOVSISSS@ETEU N C L A S S I F I I D
SECURITY CLASSIFICATION OF THIS PAGE (Men Daes Msrs

PREFACE

This guidebook is one of a series of guidebooks intended to assist

Air Force Program Office and Engineering personnel in software acquisition

engineering for airborne systems. The contents of the guidebooks will be

revised periodically to reflect changes in software acquisition policies

and practices and feedback from users.

This guidebook was prepared under the direction of the Aeronautical

Systems Division, Deputj for Engineering (ASD/EN) in coordination with

the Space Division, Deputy for Acquisition Management (SD/AQK).

The entire series of Software Acquisition Engineering Guidebooks

(Airborne Systems) is listed below along with ASD Technical Report numbers

and NTIS accession numbers where available.

Regulations, Specifications and Standards ASD-TR-78-6 ADA058428

Reviews and Audits ASD-TR-78-7 ADA058429

Software Quality Assurance ASD-TR-78-8 ADA059068

Configuration Management ASD-TR-79-5024 ADA076542

Computer Program Documentation Requirements ASD-TR-79-5025 ADA076543

Statements of Work and Requests for Proposal ASD-TR-79-5026 ADA076544

Requirements Analysis and Specification ASD-TR-79-5027

Verification, Validation and Certification ASD-TR-79-5028

Microprocessors and Firmware ASD-TR-80-5021

Software Development Planning and Control ASD-TR-80-5022

Software Testing and Evaluation ASD-TR-80-5023

* Contracting for Software Acquisition ASD-TR-80-5024

it m

* Software Cout Analysis and Estimatinlg ASD-TR-80-5025

* Supportable Airborne Software ASD-TR-80-5026

* Software Development and Support Facilities ASD-TR-80-5027

* SAS Guidebooks - Application and Use ASD-TR-80-5028

*These Guidebooks Available Fall 1980.

iv

CONTENTS

ABBREVIATIONS AND ACRYONYMS vii

4. INTRODUCTION I

1.4 Purpose and Scope I

1.2 Purpose of Software Requirements in a Request
for Proposal 2

1. 3 General Description of Software Requirements 3

1.4 General Description of Requirements Analysis 3

1. 5 Context of Software Requirements Analysis 5

1. 5. 1 Within the System Life Cycle 5

1. 5.2 Within the Guidebook Series 6

4.6 Guidebook Contents 6

2. RELEVANT DOCUMENTS 9

2.4 Government Documents Pertaining to Acquisition
Management Practices 9

2.2 Government Documents Pertaining to Management
Controls 9

2.3 Government Documents Pertaining to Human
Engineering 9

2.4 Government Documents Pertaining to Safety 10

2.5 Government Documents Pertaining to Security 10

2.6 Government Documents Pertaining to System
Engineering It

3. GENERAL GUIDELINES 13

3. 1 Software Requirements Analysis Procedure 13

3.2 Completeness of Requirements 17
3.3 Traceability of Requirements 18

3.4 Testability of Requirements 19

3.5 Consistency of Requirements 21

3.6 Feasibility of Requirements 22

3.7 Requirements Documentation 23

v

CONTENTS (Continued)

4. FUNCTIONAL AND PERFORMANCE REQUIREMENTS 25

4.1 Interface Requirements 26
4. 1. 1 Purpose of Interface Requirements 26

4.1.2 Derivation of Interface Requirements 28

4.1.3 Specification of Interface Requirements 29

4.2 Functional Requirements 34

4.2. 1 Purpose of Functional Requirements 34

4.2.2 Derivation of Functional Requirements 34

4.2. 3 Specification of Functional Requirements 35

4.3 Performance Requirements 40

4.3. 1 Purpose of Performance Requirements 40

4. 3.2 Derivation of Performance Requirements 40
4.3.3 Specification of Performance Requirements ... 44

4.4 Human Engineering Requirements 45

4.4. 1 Purpose of Human Engineering
Requirements 45

4.4.2 Derivation of Human Engineering
Requirements 45

4.4.3 Specification of Human Engineering
Requirements 45

4.5 Safety Requirements 46

4.5. 1 Purpose of Safety Requirements 46

4.5.2 Derivation of Safety Requirements 46

4.5.3 Specification of Safety Requirements 46

4.6 Failure Detection and Compensation Requirements • 47

4.6.1 Purpose of Failure Detection and
Compensation Requirements 47

4.6.2 Derivation of Failure Detection and
Compensation Requirements 47

4.6.3 Specification of Failure Detection and
Compensation Requirements 48

4.7 Self-Test Requirements................ 48

4.7. 1 Purpose of Self-Test Requirements 48

4.7.2 Derivation of Self-Test Requirements 48

V1

CONTENTS (Concluded)

49 a4.7.3 Specification of Self-Test Requirements.....

4.8 Environment Requirements 49
49

4.8.1 Purpose of Environment Requirements

4.8.2 Derivation of Environment Requirements 50

4.8.3 Specification of Environment Requirements • 51

4.9 Data Base Requirements 52

4.9.1 Purpose of Data Base Requirements 52

4.9.2 Derivation of Data Base Requirements 53

4.9.3 Specification of Data Base Requirements 53

5. DEVELOPMENT STANDARDS AND CONSTRAINTS 55

5.1 Software Development Procedure 56

5.2 Configuration Management Plan 56

5.3 Design Standards 56

5.4 Programming Standards 59

5.5 Software Testing Standards 59

5.6 Quality Assurance Standards 60

5.7 Documentation Standards 60

5.8 Language Requirements 61

5.9 Classified Data Requirements 62

5.10 Testability Requirements 63

5.11 Expandability Requirements 64

5.12 Government-Furnished Property List 67

5.13 Media Requirements 68

5.14 Identification Requirements 69

vii

ILLUSTRATIONS

1-1. Software Requirements Analysis 4

1-2. Idealized System Life Cycle 7

3-1. Airborne Software Requirements Generation
Procedure ... * 14

4-1. Interface Block Diagram 31

4-2. F-X CCS Functional Block Diagram 38

5-1. Effect of Hardware Constraints on Software Cost 66

TABLES

4-1. Cross Reference for Section 4 27

4-2. Inputs to F-X CCS from Multiplex Data Bus 33

4-3. F-X CCS Outputs to Multiplex Data Bus 33

4-4. Inputs to F-X CCS from HUD 33

4-5. F-X CCS Outputs to HUD 33

4-6. Executive Input Data 0 . . 39

4-7. Executive Processed Data 39

4-8. Executive Output Data 39

5-1. Cross Reference for Section 5 57

viii

ABBREVIATIONS AND ACRONYMS

ACS Armament Control Set

AFLC Air Force Logistics Command

AFM Air Force Manual

AFP Air Force Pamphlet

AFR Air Force Regulation

AFSC Air Force System Command

AFSCP Air Force System Command Pamphlet

AHRS Attitude Heading Reference Set

ANSI American National Standard Institute

ARSP Analog Radar Signal Processor

AS Airborne Software

ASP Avionic Status Panel

BIT Built-In Test

BITCP BIT Control Panel

CC Central Computer

CCA Central Computer Assembler

CDR Critical Design Review

CI Configuration Item

CPCI Computer Program Configuration Item

CPIN Computer Program Identification Number

DH Design Handbook

DODD Department of Defense Directive

DODI Department of Defense Instruction

DODM Department of Defense Manual

FIPS PUB Federal Information Processing Standards
Publication

FSED Full Scale Engineering Development

F-X Fighter-X

F-X AS F-X Airborne Software

HSI Horizontal Situation Indicator

HUD Heads-Up Display

ix

ABBREVIATIONS AND ACRONYMS (Concluded)

INS Inertial Navigation System

LCG Lead Computing Gyro

LDR Life Data Recorder

MENS Mission Element Need Statement

MIL Military

MIL-S Military Specification

MPI Multipurpose Indicator

MUX Multiplex

NCI Navigation Control Indicator

OFP Operational Flight Program

RDPS Radar Data Processing Software

SAE Software Acquisition Engineering

SAMSO Space and Missile Systems Organization

SON Statement of Operational Need

STD Standard

x

1. INTRODUCTION

1. 1 PURPOSE AND SCOPE

The purpose of this guidebook is to assist Air Force program office

engineering personnel in the derivation, analysis, and documentation of

airborne software requirements for inclusion in a Request for Proposal

(RFP) for Full Scale Engineering Development (FSED) of a weapon system

or a portion of a weapon system. The airborne software may be for a

totally new weapon system, or for a modification/retrofit of an existing

weapon system. In the latter case, the task of deriving and specifying

airborne software requirements may be simplified because the weapon

system hardware characteristics may be better defined and because some

requirements on the software may already exist. Hence, the task may

reduce to modifying existing software requirements to reflect the objectives

of the modified weapon system. In either case, the guidelines presented

here should be helpful in systematically deriving, analyzing, and document-

ing a complete set of airborne software requirements for inclusion in the

RFP. The concepts presented here could be applied to firmware for micro-

processors as well as to conventional software. Generally, the software

requirements are included in the Statement of Work (SOW) portion of the

RFP, either directly or by reference to a separate document that contains

the software requirements.

This guidebook addresses the engineering activity that occurs during

the validation phase of the weapon system life cycle. It provides informa-

tion concerning the allocation, generation and authentication of airborne

software requirements based on the weapon system requirements available

at the final System Requirements Review (SRR) and documented in the pre-

liminary system specification. This guidebook does not, however, describe

how to produce a complete Computer Program Part I Development Specifi-

cation; it does not address the software testing requirements that go into

the Quality Assurance section, Section 4, of a Computer Program Part I

Development Specification. Software testing is discussed in the SAE

Guidebook for Software Quality Assurance and in the SAE Guidebook for

Verification, Validation, and Certification. This guidebook does address

-1-

all the requirements that would appear in Section 3 of a Part I specification

and, hence, may be useful during preparation of a Part I specification. In

some cases the airborne software requirements in the RFP are referred to

as a Preliminary Computer Program Part I Development Specification, i.e.,

where the airborne software is a single Computer Program Configuration

Item (CPCI). In general, however, the airborne software addressed in an

RFP may consist of several CPCI's. For example, the weapon system may

include several airborne digital processors, each utilizing a separate CPCI.

In this case the RFP software requirements for all the airborne software

may be documented jointly or they may be documented in separate preli-

minary Part I development specifications for the CPCI's that make up the

airborne software. This guidebook is applicable in either case.
1.2 PURPOSE OF SOFTWARE REQUIREMENTS IN A

REQUEST FOR PROPOSAL

The purpose of airborne software requirements in an RFP is to

specify to the bidders all the known requirements of the software which

executes in the airborne digital processors of the weapon system or portion

of the weapon system addressed by the RFP. Definitive software require-

ments are essential to ensure airborne software which will accomplish the

mission objectives of the weapon system and will also provide for expansion

to accomplish future new objectives of the system while minimizing the life

cycle cost of the weapon system. The software requirements derived from

system specifications establish functional, performance, and interface

requirements that the airborne software must be designed to meet, and

establish development standards and constraints to which the airborne soft-

ware and its documentation must comply. Good software requirements as

part of the Request for Proposal convey to the potential contractor precisely

what the Air Force requires. This enables the potential contractor (bidder)

to define a viable technical approach and arrive at an accurate estimate of

the software development cost. It also increases the probability that the

end product will satisfy Air Force objectives. Properly defined software

requirements serve as a basis for the progressive definition and generation

of CPCI Part I development specifications and can also serve as a basis for

airborne software design and development after the contract is awarded.

-2-

Experience shows that good requirements early during software
development pays off in dollars and better software performance and also

facilitates top-down design, meaningful testing, and management visibility

and control.

Software requirements analysis is a prerequisite for specifying

software requirements in the RFP. A thorough analysis of objectives and

interfaces is necessary to derive and document the specific and quantitative

airborne software requirements.

1.3 GENERAL DESCRIPTION OF SOFTWARE REQUIREMENTS

The airborne software requirements in the RFP should include all

requirements that the airborne software must satisfy to perform its func-

tion adequately. The requirements are based on the weapon system level

requirements and on requirements analysis. The airborne software

requirements in the RFP describe the functions that the airborne software

must perform, and they include quantitative performance requirements

that specify how well it performs these functions. The requirements also

define the environment in which the airborne software must operate by

describing the interfaces between it and other elements t of the weapon

system and by describing the performance characteristics of the airborne

system to the extent that they can effect the airborne software performance.

Finally, the requirements may include constraints and standards that must

be followed during airborne software design and development.

1 .4 GENERAL DESCRIPTION OF REQUIREMENTS ANALYSIS

Figure 1-1 depicts the system engineering process that results in

software requirements that go into the FSED RFP. The system engineer-

ing process involves a hierarchy of requirements generation, beginning

with an operational mission need and ending with detailed engineering

specifications and data. Each level of requirements (beginning with

functional requirements) leads to the next lower level of detail until the

entire system is specified. The process continues to define and optimize

the requirements on subsystems that make up the total weapon system.

t In this document, the crew on an airborne system is considered to be an

element or a subsystem in that weapon system.

-3-

0 U0

J6-a
SM

I U

:1W

I.-4

0 vt4o

2 o0
A..

Ia 5a z 1

W'"~uj

SZ

t - - - - - - - - - - - -

'u 2 g 1
ju, y & -4-

This engineering data is then analyzed to determine design requirements,

and engineering and tradeoff studies are performed to determine the best

approach to a total weapon system configuration. This effort results in a

system specification and the establishment of a functional baseline for the

weapon system.

These system level requirements are allocated to hardware t and

software based on system performance and life cycle cost considerations.

The airborne software requirements derived from the system specification

must then undergo similar engineering analysis and tradeoffs to determine

functional, performance, interface and test requirements. Documentation

of the requirements generated in this iterative process is then provided to

potential system or subsystem developers as part of the Request for

Proposal, most often in the form of the Part I development specification.

This documentation can aid the developing contractor in preparing the

final Part I specification which, when authenticated, becomes the allocated

baseline. This is the basis for full scale engineering development.

A major task for the program office software engineer is to direct,

monitor and participate in this engineering effort that culminates in

authentication of Part I specifications.

1. 5 CONTEXT OF SOFTWARE REQUIREMENTS ANALYSIS

1. 5. 1 Within the System Life Cycle

Software requirements analysis is initiated when system require-

ments analysis on a weapon system determines that computer equipment

and computer programs are appropriate solutions to design objectives.

Since the software requirements are a part of a FSED Request for Proposal,

the software requirements analysis and specification activities must occur

before the FSED Request for Proposal is issued; i.e., software require-

ments analysis and specification must take place during the validation phase

of system development, while the hardware requirements analysis is taking

t In this guidebook, the term "hardware" refers to digital processing

equipment and any other non-software elements in the weapon system.

Paragraph 3.4.2 of MIL-STD 483 states that this authentication process
must be accomplished within 90 days after contract award.

-5-

place. Figure 1-2 depicts how software requirements generation fits into

the life cycle of the airborne system. The software requirements in the

RFP are used by the bidders during proposal generation, and are used by

the winning contractor in completing the CPCI Part I development specifi-

cations for the airborne software. The software requirements may also

be used in preparing an airborne software integration test plan and in

evaluating the airborne software test results. Information derived from

the software requirements analysis activity is included in the Computer

Program Development Plan and may also be useful in determining support

requirements and responsibilities to assist in preparation of the Computer

Resources Integrated Support Plan. The concepts set forth in this guide-

book are consistent with the management principles specified in AFR 800-14

and MIL-STD-499A.

1. 5.2 Within the Guidebook Series

While this guidebook addresses the derivation and documentation of

airborne software requirements, the other Software Acquisition Engineer-

ing Guidebooks address how those requirements will be used and how the

airborne software will be developed, reviewed, and tested to assure that

the end product satisfies the requirements and has been demonstrated to

do so. This guidebook contains references to other software acquisition

engineering guidebooks for amplifying information and applications when

appropriate.

1. 6 GUIDEBOOK CONTENTS

This guidebook contains the following parts:

* Abbreviations and Acronyms. A list of abbreviations and
acronyms used in the guidebook.

0 Section 1, Introduction. Describes the purpose and scope
of this guidebook, states the context for software require-
ments analysis and specification and outlines the contents
of this guidebook.

0 Section 2, Relevant Documents. Lists Department of
Defense and Air Force documents that are particularly
relevant to this guidebook.

-6-

__ __ _ __ _ __ _ ig

z z 0

SZ2 a
1 19

1

k: y 2

2- NbJ

z0 _z 2-

a w

v2

zI I
-7-2

" Section 3, General . rPoooe Sasgl
guidelines and pvoce~*G IO in178664 tOW sGPDOW6
airborne software roqui v. -Iiee ts so ed
requirements associand wish 066Mr9 Ps ui e
and discusses asis-..! 1 E1 I rAS
relative to completeness,t-.._ -dUYw .,
consistency, and feasibility.

" Section 4. Software Functional and Performance
Requirements. Discusses each type of airborne soft-
ware functional and performance requirement, gives
the purpose of the requirement, and describes how to
derive and document the requirement.

" Section 5, Software Development Standards and
Constraints. Discusses the various types of software
development standards and constraints that may be
appropriate to include in an RFP, and describes how
to select and document those standards and constraints.

-8-

2. RELEVANT DOCUMENTS

The following list of documents are particularly relevant to this

guidebook; they are referenced in this guidebook and, therefore, become

an extension of this guidebook.

2.1 GOVERNMENT DOCUMENTS PERTAINING TO
ACQUISITION MANAGEMENT PRACTICES

1. AFR 57-1 Operational Requirements Statement
of Operational Need (SON)

Z. AFR 800-14 Management of Computer Resources
in Systems (Volumes I and II)

2.2 GOVERNMENT DOCUMENTS PERTAINING
TO MANAGEMENT CONTROLS

1. MIL-STD 480 Configuration Control-Engineering
Changes, Deviations, and Waivers

2. MIL-STD 483 Configuration Management Practices
for Systems, Equipment, Munitions,
and Computer Programs

3. MIL-STD 490 Specifications Practices

4. MIL-STD 1521A Technical Reviews and Audits for
Systems, Equipment, and Computer
Programs

5. MIL-S 52779 Software Quality Assurance Program
Requirements

6. MIL-S 83490 Specifications, Types and Forms

2.3 GOVERNMENT DOCUMENTS PERTAINING TO
HUMAN ENGINEERING

1. AFR 80-46 Management of Personnel Subsystem/
Human Factors in System, Subsystem,
Equipment, and Modification
Development

2. AFR 800-15 Human Factors Engineering Management

3. AFSC DH 1-3 Personnel Subsystem Design Handbook

i4L-STD-480 is expected to be replaced by DOD-STD 480A.

-9-

4. MIL-STD 1472B Human Engineering Design Criteria
for Military Systems Equipment and
Facilities

5. MIL-H 46855A Human Engineering Requirements
for Military Systems, Equipment,
and Facilities

2.4 GOVERNMENT DOCUMENTS PERTAINING TO SAFETY

1. AFR 127-8 Responsibilities for USAF System
Safety Engineering Programs
(AFSC Supplement, 4/11/73)

2. AFR 127-13 Responsibilities for the USAF
Aerospace Safety Program
(AFSC Supplement, 8/12/74)

3. MIL-STD 454 Standard General Requirements
for Electronic Equipment

4. MIL-STD 882A Requirement for System Safety Program
for Systems and Associated Subsystems
and Equipment

2.5 GOVERNMENT DOCUMENTS PERTAINING TO SECURITY

1. AFM 207-1 Doctrine and Requirements for Security
of Air Force Weapons Systems

2. AFM 207-3 Aircraft Systems Security Standards

3. AFM 207-21 System Security Standard-Command
and Control and Communication System
(Reprint, 7/24/74)

4. AFP 205-2 Communications Security and
Transmission Security

5. AFR 8-9 USAF Communications Security and
Emanations Security Publications

6. AFR 80-7 Communications Security Research,
Development, Test, and Evaluation
Procedures
(AFSC Supplement, 10/5/71)

7. AFR 100-27 Release or Disclosure of Unclassified
Messages

8. AFR 100-51 Control of Compromising Emanations
(TEMPEST)
(ESD Supplement, 8/15/74)

-t0-

9. AFR 205-7 Communications Security
(AFSC Supplement, 12/20/73 and

ESD Supplement, 3/15/74)

10. AFR 205-28 Communications Security for Nuclear
Command and Control Communications

11. AFR 300-8 Security Requirements for Automatic
Data Processing Systems

12. AFSCM 122-1 Nuclear Systems Safety Design Manual

13. AFSCP 207-1 System Security Engineering

14. DODD 5200.5 Communications Security

15. DODD 5200.28 Security Requirements for Automatic
Data Processing (ADP) Systems

16. DODM 5200.28M Automatic Data Processing Security
Manual

2.6 GOVERNMENT DOCUMENTS PERTAINING TO
SYSTEM ENGINEERING

1. AFR 300-10 Computer Programming Languages

2. DODD 5000.3 Test and Evaluation

3. DODD 5000.31 Interim List of DOD Approved High
Order Programming Languages (HOL)

4. MIL-E 5400 Electronic Equipment, Airborne,
General Specification for

5. MIL-STD 499A Engineering Management

6. SAMSO Exhibit 73-3 Standard Engineering Practices for
Computer Software Design and
Development

-It-

3. GENERAL GUIDELINES

This section presents general guidelines that may be used by

government or contractor software engineers for deriving and analyzing

airborne software requirements that go into an RFP for full scale develop-

ment of a weapon system or portion of a weapon system that includes

airborne software. The software requirements should include all require-

ments that the airborne software must satisfy to perform its function

adequately, including the system-level objectives that the airborne software

must support. Each topic described in Sections 4 and 5 of this guidebook

should be addressed for applicability to the airborne software requirements

for the specific weapon system. As a minimum

* functional, performance, and interface requirements
should be specified.

* design goals that are not requirements should be clearly
marked as such.

* requirements should be specific and quantitative whenever
possible, and they should be stated clearly, concisely, and
unambiguously.

* each requirement should have a unique identifier
(paragraph number).

3.1 SOFTWARE REQUIREMENTS ANALYSIS PROCEDURE

Software requirements analysis is a highly interactive process that

requires considerable system and software engineering analysis and may

require numerous iterations of tradeoffs to determine the best possible

approach. Life cycle cost including subsystem supportability issues are

also very much a part of the selection criteria for determining not only

the types of computer equipment and computer programs but also the

subsystem architecture and allocation of requirements to subsystem

elements. The following discussion describes the type of procedural

activity necessary to generate airborne software requirements for the RFP.

Figure 3-1 depicts the software requirements analysis procedure.

Phase I of the procedure consists of studying the system-level require-

ments, the weapon system conceptual design, and the airborne software

environment. As shown in Figure 1-2, the process begins after the final

-13-

-1

,u,
u'4

-iw

u4'
"J4Aa jU

LL.L

'UMUJ m

U. 04,3U

0~a uuv; P

>
0

ui > z 14.

eg 0 .0
9L vi.a

ui4

ui OLU ad U.41

ce I Z 1-.

LU 4A

-A 14-3

System Requirements Review (SRR), when the weapon system, conceptual

design and preliminary system level requirements are available as a

result of system requiremeints analysis. The first step in airborne soft-

ware requirements analysis is to study and thoroughly understand the

weapon system conceptual design and the system-level requirements and

determine their impact on the airborne software requirements. This

analysis yields a preliminary set of airborne software functions.

The environment in which the airborne software must operate must

also be studied during Phase I. This includes the external environment

of the airborne system, the aircraft, crew, and all other subsystems in

the weapon system. The environment is described by mathematical models

consisting of equations and values of parameters that appear in the equa-

tions. Models of the aerodynamics, atmospheric conditions, instrumenta-

tion performance, target characteristics, and spectrum of missions could,

for example, be included in the environmental models.

At the completion of Phase I of the requirements analysis procedure,

the software requirements analysts are prepared to begin deriving the

detailed airborne software requirements as described in Sections 4 and 5

of this guidebook; this is Phase II of the procedure. During Phase II each

type of requirement discussed in Sections 4 and 5 should be addressed.

The FSED contractor may be required to derive some of the requirements

in Section 5 after the contract is awarded. In order to produce require-

ments that correspond to acceptable system performance while minimizing

weapon system life cycle cost, numerous tradeoffs, iterations, and studies

must be performed during Phase II. Figure 1-2 shows hardware t require-

ments analysis taking place at the same time as software requirements

analysis. The two analyses must be interactive so that the software

requirements are compatible with the hardware requirements and to

minimize weapon system life cycle cost. Hence, the hardware require-

ments and study results must be provided to the software requirements

analysts, and the software requirements and study results must be provided

to the hardware requirements analysts. The key document during this phase

in this guidebook, the term "hardware t refers to digital processing
equipment as well as all other non-software elements in the weapon system.

-15-

is a working level subsystem interface specification. The software

requirements analysts must review the hardware outputs to determine any

additional airborne software functions that are required by the hardware,

to establish hardware/software interfaces, to confirm that the hardware

will be adequate to support the airborne software functions, and to

identify any constraints that the hardware imposes on the airborne soft-

ware. The hardware requirements analysts should inform the software

requirements analysts of any inconsistencies that they uncover between

the software requirements and the hardware requirements.

Tradeoffs must be performed between hardware requirements and

software requirements in order to minimize life cycle cost of the weapon

system. For example, if the digital processing equipment is not required

to have adequate memory for program and constant storage, then the cost

of developing and maintaining the airborne software may be excessive

compared with the cost of providing more memory. As another example,

if on-board radar equipment has excessively high accuracy requirements,

then the cost of the radar equipment may be higher than the cost of less

accurate radar equipment plus the cost of requiring the airborne software

to filter the radar measurements to yield the required weapon system

accuracy.

At the end of Phase II of the requirements analysis, a baseline set

of airborne software requirements will have been completed. The next

phase of software requirements analysis is an assessment of those require-

ments relative to completeness, traceability, testability, consistency, and

feasibility. These concepts are described in Sections 3.2 through-3.6 of

this guidebook. This phase also includes factoring in updated hardware

characteristics into the requirements. This third phase of software

requirements analysis may result in many changes to the airborne software

requirements; it is part of the iterative process in creating good require-

ments. This completes the software requirements analysis task. The

resulting requirements can be incorporated into the Statement of Work

portion of the FSED Request for Proposal, either directly or by reference.

If the effort is being contracted, then provisions must be included in the

validation phase contract for delivery of the data via CDRL as a study

report, in addition to the preliminary version of the Computer Program

Development Specification.

3.2 COMPLETENESS OF REQUIREMENTS

The airborne software requirements that go into the RFP should be

as complete as possible. They should reflect all Air Force objectives

and specify the relationship between the airborne software and the rest of

the weapon system. Each topic discussed in Section 4 and applicable topics

in Section 5 of this guidebook should be addressed. In addition, each

system-level requirement and constraint should be analyzed to determine

if it imposes any requirements on the airborne software. For example,

if the system-level requirements include accuracy requirements, then the
accuracy requirements must be allocated to the subsystems,! including the

airborne software. The allocation of system-level accuracy requirements

to the subsystems yields an error budget; this error budgeting activity is

discussed in Section 4.3.

In addition to analysis of each system-level requirement and con-

straint for its impact on airborne software requirements, each subsystem

that interfaces with the airborne software (receives data from or provides

data to the airborne software) should be analyzed to determine what

constraints and requirements it imposes on the airborne software (and

what requirements the airborne software imposes on the subsystem). For

example, the frequency at which data are needed from the airborne soft-

ware by a subsystem in order for the subsystem to function properly would

impose a processing (updating frequency) constraint on the airborne soft-

ware. Similarly, the range of values and other characteristics of data

needed from the airborne software by a subsystem would impose process-

ing constraints on the airborne software. The update frequency and other

attributes of data supplied to the airborne software by a subsystem may

also impose processing requirements on the airborne software. For

example, if the data received by the airborne software from a hardware

item are known to be noisy and/or have compensable errors in it, this

may impose a processing requirement on the airborne software to filter

the data and/or compensate for the errors. The requirements may be in

the form of airborne software output data accuracy requirements which

tin this guidebook, a subsystem is a hardware item, a software item, or a

crew member that is an integral part (element) of the total weapon system.

-17-

are so stringent that the filtering and/or error compensation are

necessary in order to satisfy the accuracy requirements. The statistical

properties of the noise and compensable errors in the data received by

the airborne software must also be supplied. The analysis of the inter-

facing subsystems to determine their effects on airborne software

requirements results in a thorough understanding of the weapon system

and the role of the airborne software in that system.

The goals to minimize life cycle cost and maximize reliability of

the weapon system may not be explicitly stated in system-level require-

ments. Nevertheless, the impact of these goals on airborne software

requirements must also be ascertained and taken into account in the

requirements.

3.3 TRACEABILITY OF REQUIREMENTS

Each airborne software requirement in the RFP must be traceable

to some underlying source, such as a system-level requirement; if this is

not possible, then the requirement is not a real, defendable requirement.

The source or basis of each requirement should be documented, as well as

any analysis that leads from the basic source of the requirement to the

requirement as it appears in the RFP. Documentation of the source of

each requirement should take place at the time that the requirement is

derived. This documentation does not necessarily have to be included in

the RFP. The documentation is needed to record the requirements tracing

information so that it can later be used in determining the effect on the

airborne software requirements of a change in the weapon system hardware

or a change in system-level requirements. The documentation also serves

as proof that each requirement is traceable (real).

A requirement may trace back to a constraint imposed by an inter-

facing subsystem, the goal to minimizing the life cycle cost of the weapon

system, system reliability considerations, or system-level requirements

resulting from weapon system requirements analysis.

In addition to tracing each requirement back to its source, each

requirement should have a separate paragraph number so that the airborne

software design, code, and test plans can be precisely traced back to the

requirements.

-18-

3.4 TESTABILITY OF REQUIREMENTS

All airborne software requirements in the RFP must be testable;

i. e., an economically feasible method of testing each requirement should

be identified during software requirements analysis. If a requirement
has not been shown to be testable, then there is no assurance that the

developing contractor will be capable of demonstrating that the airborne

software end product satisfies that requirement. The methods of testing

the requirements vary greatly with the types of requirements. Software

testing methods are described in the SAE Guidebook for Verification

Validation, and Certification.

In order to be testable, requirements must be specific, unambiguous

and quantitative whenever possible. Vague, general statements such as

the following are not testable requirements:

" The airborne software shall function well under all
operating conditions.

" The airborne software shall be developed in accordance

with good development standards.

* The airborne software shall satisfy all system constraints.

* The airborne software shall provide features that
facilitate future testing.

* The computer memory utilization by the airborne
software shall be minimized in order to provide for
future growth.

* The airborne software shall provide self tests for the
airborne digital processors.

* The airborne software deliverables shall be appro-
priately identified.

Sections 4 and 5 of this guidebook describe how to produce testable

requirements and include examples of testable requirements.

An economical method of testing each requirement should be docu-

mented by the software requirements analysts. The documentation of

testing methods may be used by the developing contractor in estimating

testing costs for his proposal and to aid him in preparing the test plans.

The documentation also serves as proof that all the requirements are

testable.

-19-

In order for the requirements to be testable, the environment in

which the airborne software must operate should be defined. The require-

ments must define all the interfaces between the airborne software and

other elements of the weapon system. All inputs must be identified, and

the ranges of values, update frequencies, and other attributes of these

inputs must be specified. In order to provide testability, the requirements

must often include (either directly or by reference) mathematical models

of the environment in which the airborne software must function. Both

equations and parameter values should be included in model specifications.

Statistical properties or ranges of values of perturbations in the model

parameters should be given as well as nominal values of the model param-

eters. Functional models and error source models for each applicable

subsystem that may influence the airborne software design and testing

should be included or referenced. These could include system hardware

performance characteristics, vehicle aerodynamics models, instrument-

ation characteristics, and descriptions of the environment external to the

airborne system such as gravity models and atmospheric conditions.

Error source models should describe the difference between actual sub-

system characteristics and the ideal subsystem characteristics. For

example, the statistical properties of radar measurement noise may be

appropriate to include. The spectrum of missions over which the airborne

system is expected to function must also be specified; e.g., the maximum

time duration and range of a mission, altitude, speeds, and maneuvers

anticipated during missions, and the characteristics of targets may be

specified.

Certain airborne software performance characteristics may depend

on values of airborne system parameters that are not fixed but are random

variables or random processes that take on perturbed values. These

system parameters may include radar measurement noise, atmosphere

perturbations (winds), and mass properties uncertainties. As a result

these airborne software performance characteristics are also random,

and requirements on these performance characteristics must be statistical

requirements. For example, a requirement that target miss must always

be less than XYZ feet may be untestable for such a system. However, a

requirement that the root mean squared value of target miss be less than

-20-

XYZ feet may be testable. In some cases, the statistical properties of

airborne software performance characteristics can be computed exactly,

e.g., by using linear statistics. In other cases, however, the statistical

properties of the performance characteristics must be estimated empiri-
cally, e.g., using Monte Carlo statistical analysis. In the latter case,

requirements on the statistical properties of the performance character-

istics must include associated confidence levels less than 100 percent in

order to make the requirements testable. Otherwise, an infinite number

of Monte Carlo samples would be needed to prove that the requirements
are satisfied. Alternatively, the requirements could specify precisely
what tests are to be performed and what the results of the test must be;

e.g., by providing a table of values of weapon system parameters for

several cases, and requiring that the RMS of target miss be less than

XYZ feet for those cases. This method of specifying performance

requirements has the disadvantage that there is a danger that the develop-

ing contractor may design the airborne software to perform its best for

those cases to be used in testing.

Deriving testable requirements that totally define the airborne

software and cover all its capabilities, and demonstrating that they are

testable requirements can be large, time consuming tasks. However, the

benefits to be gained for the weapon system and the airborne software

system, in particular, usually outweigh the expense involved, provided

that the analysis is conducted early enough in the life cycle (e. g., valida-

tion phase) to effectively influence the system and software designs.

3.5 CONSISTENCY OF REQUIREMENTS

The airborne software requirements in the RFP must be self
consistent; i. e., no requirements should conflict with any other require-

ments. For example, the required update frequency of some airborne

software output data must be consistent with the frequency at which input

data is updated. Consistency of the requirements should be checked by

examining each requirement in relation to each of the other requirements

for consistency and compatibility from a flow-oriented viewpoint and from

a functional breakdown viewpoint. The requirements must also be checked

for consistency with the airborne system-level requirements and with the

constraints imposed by the interfacing subsystems.)
o-21-

3.6 FEASIBILITY OF REQUIREMENTS

It must be feasible to develop airborne software that will fulfill

each requirement in the RFP. Requirements that have questionable

feasibility, e.g., accuracy requirements, should be analyzed during

software requirements analysis to prove their feasibility. One method of

proving feasibility of a requirement is to produce a representative proto-

type airborne software design and demonstrate that it satisfies the

requirement. For example, if an airborne navigation system has accuracy

requirements imposed against it, a representative set of navigation equa-

tions could be designed and tested to show that the requirements are

technically feasible. Any such prototype design and the analysis that lead

to the design should be documented. This documentation should be

provided to each potential bidding contractor to aid him in arriving at a

technical approach for his proposal. Feasibility of each requirement

should be assessed from the following standpoints: weapon system life

cycle cost impact, computational capacity impact (throughput, memory

requirements, wordlength, instruction set, etc.), technical feasibility,

development schedule impact, and impact on interfacing subsystem

requirements.

Feasibility of all the requirements when considered jointly must be

assessed, as well as the feasibility of each requirement considered

separately. In some cases each individual requirement may be feasible;

however, certain requirements may be incompatible with other require-

ments. For example, the computer throughput limitations may be incom-

patible with the required update frequency of certain output data. Or the

functional requirements or performance requirements may be inconsistent

with the computer memory allocated for program and data storage. From

these observations it is apparent that analyzing the requirements

for feasibility overlaps analyzing the requirements for consistency.

-22-

3,7 REQUIREMENTS DOCUMENTATION

Whenever possible, the airborne software requirements

documentation in the RFP should conform to the format for a CPCI Part I

Development Specification as described in MIL-STD 483. This wil

simplify the developing contractor's task of converting the R.VP require-

ments into CPCI development specifications. It will also simplify the Air

Force procuring agency's task of reviewing the CPCI development specifi-

cations for consistency with the RFP requirements.

-23-

4. FUNCTIONAL AND PERFORMANCE REQUIREMENTS

This section describes how to derive and document airborne software

functional, performance, and interface requirements that go into an RFP

for Full Scale Engineering Development of a weapon system or portion of a

weapon system that includes airborne software. All the requirements

discussed in this section are critical airborne software requirements that

should be addressed in the RFP. Each subsection describes one type of

requirement, gives the purpose of the requirement, suggests how to

derive the requirement and describes how to document the requirement in

MIL-STD 483 format.

Many illustrative examples are included in this section which are

based on a hypothetical weapon system referred to as F-X. The airborne

software for this weapon system is identified as the F-X Airborne Software

(F-X AS). The AS is used to perform navigation, visual display, and

weapons delivery and control. The F-X AS consists of two CPCI's, the

F-X Central Computer Software (F-X CCS) and the F-X Radar Data Pro-

cessing Software (F-X RDPS). The F-X CCS performs the following

functions:

" AS Master Executive

" Navigation

" Air-to-Air Support

* Air-to-Ground Support

* Self Test

The F-X RDPS performs the following functions:

* RDP Executive

* Antenna Control

• Search and Acquisition

* Tracking

0 Displays Processing

0 Radar Built-In Tests

-25-

___&S Rm

The F-X CCS resides and executes in the F-X Central Computer and

the F-X RDPS resides and executes in the Radar Digital Processor. The

subsections that follow include illustrative examples that specify require-

ments for this hypothetical airborne software.

Table 4-1 summarizes the topics covered in this section and relates

thoe topics covered with the applicable government documents (regulations,

handbooks, and standards).

4.1 INTERFACE REQUIREMENTS

4. 4. 1 Purpose of Interface Requirements

Interface requirements in the RFP describe the functional relation-

ship of the airborne software to other subsystems with which it must

interface, i. e., subsystems which receive data from the airborne software

or provide data to the airborne software. The interface requirements

impose requirements and constraints, resulting from the interfaces, onto

the airborne software. For example, an interface requirement on the

airborne software to provide certain data to another subsystem imposes

the requirement to produce that data, which may require processing by

the airborne software. Attributes of that data that are specified in the

interface requirements may impose constraints on the airborne software

in producing the data. The interface requirements also impose require-

ments and constraints onto interfacing subsystems. The interface

requirements are given in quantitative terms with tolerances where appli-

cable. Interface requirements may specify the following characteristics

(attributes and constraints) for each airborne software input/output

data item:

* data item symbol

* definition

* units

* source subsystem (for airborne software input data)

* destination subsystems (for airborne software output data)

* source function (for airborne software output data)

* destination functions (for airborne software input data)

-26-

Table 4-1. Cross Reference for Section 4

Section Applicable
Number Subject Government

Documents

4.1 Interface Requirements AFR 800-14
MIL-STD 483

4.2 Functional Requirements AFR 800-14
MIL-STD 483

4.3 Performance Requirements AFR 800-14
MIL-STD 483

4.4 Human Engineering Requirements AFR 80-46
AFR 800-15
AFSC DH 1-3
MIL-H 46855A
MIL-STD 483
MIL-STD 1472B

4.5 Safety Requirements AFR 127-8
AFR 127-13
MIL-STD 454
MIL-STD 882A

4.6 Failure Compensation Requirements MIL-STD 483

4.7 Self-Test Requirements MIL-STD 483

4.8 Environment Requirements MIL-STD 483

4.9 Data Base Requirements MIL-STD 483

-27-

* paragraph number of source/destination function
specification

* applicable airborne software mode of operation

* data rate

* message format

0 maximum value

0 minimum value

* precision

* means of data transfer between airborne software
and interfacing subsystem

* memory storage locations

* sign/polarity conventions

* least significant bit/most significant bit conventions

* timing and sequencing constraints

* duration

* comments

* control

4. 1.2 Derivation of Interface Requirements

The airborne software interface requirements are based on system-

level requirements analysis and on analysis of the relationship between

the airborne software and interfacing subsystems. Each interfacing sub-

system must be analyzed to determine what data it needs from the

airborne software, what data it provides to the airborne software, and the

constraints and characteristics of those interface data. Each function of

the airborne software must also be analyzed to determine what data the

function needs from interfacing subsystems, what data the function provides

to the interfacing subsystems, and the constraints and characteristics of

those interface data.

-28-

4.1.3 Specification of Interface Requirements

If the airborne software requirements in the RFP are documented

in MIL,-STD 483 format, then the interface requirements should appear in

Paragraphs 3.1.1. 3.1.1.1, and 3.1.1.2 of the document. Para-

graph 3. 1. 1 contains only general introductory information, no quantitative

information. Paragraph 3. 1. 1. 1 contains an interface block diagram show-

ing the functional relationship between the airborne software and interfacing

subsystems. Paragraph 3.1.1.2 and its subparagraphs contain the detailed

interface requirements in quantitative terms, including the characteristics

of the interface data. The requirements for the interface between the

airborne software and each interfacing subsystem are presented in a

separate subparagraph of Paragraph 3.1.1 . 2. Each subparagraph includes

a table of inputs to the airborne software from the interfacing subsystem

and a table of outputs from the airborne software to the interfacing subsys-

tem. Each table has the interfacing data running vertically and the inter-

facing data characteristics running horizontally. Each subparagraph of

Paragraph 3.1.1.2 also includes interface constraints and requirements

that do not appear in the tables.

The following pages are examples of interface requirements for the

airborne software CPCI designated F-X CCS in the hypothetical F-X

weapon system.

t When interfaces are complex or involve subcontractors, separate govern-
ment agencies, etc., they can be documented in a separate document such
as an Interface Control Document (ICD) that is referenced in the airborne
software requirements documentation.

Note that an equivalent analysis should be included for each C PCI, e.g.,
the F-X RDPS. If CPCI's have not been identified, the airborne software
qystem can be treated as a whole.

-29-

Sample

.1.1 Interface Requirements
This paregraph specifies requirements imposed on the F-X CCS because of its relationship to

other equipment and software. This includes the input/output requirnements that exist between the
F-X CCS and the interfacing systems, and it includes the constraints which ensure that these inter-
face requirement are tisfied. The interfacing systems are:

1. Central Computer, CC

2 Central Computer Assembler, CCA
3 Multiplex (MUX) buses

4. Heads-Up Display, HUD
5. Navigation Control Indicator, NCI
6. Multi-Purpose Indicator, MPI

7. Horizontal Situation Indicator, HSI

a Analog Radar Signal Processor, ARSP

9. Attitude Heading Reference Set, AHRS
la Life Data Recorder, LDR
1I. Radar Data Procesing Software

12 Inertial Navigation System, INS
13 Lead Computing Gyro, LCG
14. Armament Control Set, ACS
15. Built In Test (BIT Control Panel, BITCP
16 Avionic Status Panel, ASP

3. 1. 1. 1 Interface Block Diagram

The relationship of the F-X CCS to its interfacing elements is shown in Figure 4-1. Each sub-
paragraph number appearing in the figure refers to a paragraph which describes in detail the relation-
ship of that particular system element with the F-X CCS. The configuration item number, CI-XXXXX,
is included for each interfacing element, where applicable.
3. 1.2 Detailed Interface Definition

This paragraph specifies the relationship between the F-X CCS and interfacing subsystems, and
it specifies design requirements imposed upon other equipment and computer programs as a result of
the requirements on this CPCI. This information is given in quantitative terms with the range of
acceptable values where applicable and to the level of detail necessary to permit design of the CPCI.
The interface requirements are delineated in the following subparagrapht

3.1.1.2 1 Central Computer

a 1.1.21.1 Inputs

This section is not applicable to this specification.
31.1.2.1.2 Outputs

This section is not applicable to this specification.

3I. 1.2 1.3 Constraints
The F.X CCS shall use CC locations 1234568 rough 7123458 The CC is described in the F-X

Central Computer Programming Reference Document TI-234.
,I. 1.2.2 Central Computer Assembler
3.1.1.2.21 Inputs

This paragraph is not applicable to this interface.
,1. 1.222 Outputs

This paragraph is not applicable to this interface.

-30-

Sample

211.2.

H UD

Cl- 13573

NOI

Cl- 13574

11.1.26 311.1.212

11.1.21 3.1.1.2.17
MPI INS

cc 8ITCP
CI- 13575 CI. 13581

CI-6 7890 CI 1-3572
21.1.27 11. 1.213

HSI LCG

FXCSCI. 13576 CI. 13582

11.1.28 3.1.1.2 14
CI. 12345 CI.24 680

ADC ACS

CI. 13577 CI. 13583

11..2 I11.11.2151

CCA Lo ARSP11.2

AHRS L+ ASP
CI. 13570 CI- 13571

C1. 13578 CI- 13584

11.1.210

LDR

CI- 13579

11. 1.211

RDPS

CI- 13580

Figure 4- 1. inteface Block Diagram

Sample
3. 1.1.2.23 Constraints

The F-X CCS shall be coded in JOVIAL J73/ as defined by MIL-STD 1589 and in F-X central
computer assembly language as defined in the F.X Central Computer Master Programming Reference
Manual TI.234.

3.1.1.23 Multiplex Buses

3.1.1.2.3.1 Inputs

The F-X CCS shall accept inputs from the multiplex data buses as shown in Table 4-2.

3. .1.23.2 Outputs

The F-X CCS shall provide outputs to the multiplex data buses as shown in Table 4-3.

2I. 1.2.3.3 Constraints

The multiplexing restrictions for the R.X multiplex data buses shall be in accordance with the
F-X Multiplex Data Bus Reference Document TI.345.

1. 1.2.4 Heads-Up Display

3.1.24.1 Inputs

The F-X CCS shall accept inputs from the ,heads-up Display (HUD) as specified in Table 4-4

3. .1.24.2 Outputs

The F.X CCS shall provide outputs to the heads-up display as shown in Table 4-5.

11.1.24.3 Constraints

The F-X, CCS interlace with the HUD shall be in accordance with the following constraints:

a. Symbol positioning polarities and coordinates shall be in accordance with the
HUD Reference Manual TI-456, Volume II, paragraph 3.0.

-32-

Sample

Table 4-2. Inputs to F.X CCS from Multiplex Data Bus

Sample Bus Destination

Symbol Name AS Mode Frnqcy Number Time Slot Function Paragraph

OD Depression Air-to-Air 5 1,3 t8 Air-to-Air 3.2.1
Angle

Table 4-3. F-X CCS Outputs to Multiplex Data Bus

Sample Bus Source
Symbol Name AS Mode -r "cy Number Time Function Pgraph

Sp Symbol Air-to-Air 5 2,4 23 Air-to-Air 3.2.1
Position

Table 4-4. Inputs to F-X CCS from HUD

Limits ______ io

Symbol N e Units Mii m Maximum precision Fre y Destination

mFunction Paragraph

SR Symbol NA 0 1 (a5 5 Air-to-Air 3.2. 1
Reject

O Depresion deg 0 360 0.01 5 Air-to-Air 3.2. 1

Angle

Table 4-5. F-X CCS Outputs to HUD
Limits ",,,,,....Feu Source

Symbol Name Units iis - Precision Freiwqouc
_ _ol N__me_ U Minimum Maximum / Function Paragraph

Sc$ Status NA 0 1 0.5 5 Air-to-Air 3.21
Cont rol

Sp Symbol dk 0 360 0.01 5 Air-to-Air 3.2.1
A00ihon

-33-

4.2 FUNCTIONAL REQUIREMENTS

4.2. 1 Purpose of Functional Requirements

Functional requirements in the RFP for Full Scale Engineering

Development specify the processing performed by the airborne software.

An airborne software function is a data processing operation to which

quantitative performance requirements can be meaningfully applied. It is

the lowest level of airborne software breakdown appearing in the RFP. A

function may include decision logic as well as arithmetical processing.

The functional requirements describe the inputs, outputs, and

processing performed by each function, and they specify the quantitative

performance requirements of each function when applicable.

4.2.2 Derivation of Functional Requirements

Derivation of functional requirements begins with establishing and

defining all the functions that must be performed by the airborne software.

Some functions may be identified in the system-level requirements. The

remaining functions must be identified during software requirements

analysis as a result of studying the weapon system; e. g., some of the

remaining functions are based on the requirements imposed by subsystems

which interface with the airborne software. The combination of all airborne

software functions should constitute all desired processing capabilities of

the airborne software; i.e., every processing operation performed by the

airborne software should fall under one of the functions.

After all the functions are identified and defined, the required outputs

from each function should be established and described. This includes

determining the destinations, units of measure, limits/ranges of values,

accuracy/precision, and frequency of update of each output of a function.

Some of these characteristics of the output data are based on requirements

of the subsystems and functions that interface with the function, and some

of the characte-iitics are based on human engineering considerations and

weapon system-level requirements.

After the required outputs to each function are defined, the process-

ing performed by each function must be determined. This task can be

accomplished by first establishing the precise objectives of each function

-34-

and then analyzing what processing is required to accomplish those

objectives. In some cases, the required processing is straightforward,

and mathematical equations and logic that will accomplish the processing

objectives can be easily derived. In other cases, however, the required

processing is not so straightforward; e. g., when there are many mathe-

matical algorithms that could accomplish the processing objectives and

when compromises and tradeoffs must be made in the algorithm design.

In these cases the processing requirements become the processing

objectives together with functional performance requirements that specify

quantitatively how well those objectives must be met. The performance

requirements should include tolerances and quantitative constraints when-

ever applicable, e.g., limits on acceptable degraded performance. In

some cases, the performance requirements are best expressed in

statistical terms; e.g., the single shot kill probability shall be at least

X percent, or the standard deviation of the output error shall be no greater

than Y unite. These quantitative performance requirements are generally
based onweapon system-level performance requirements or requirements

imposed by other subsystems onto the airborne software. The derivations
of airborne software performance requirements are described in

Section 4.3, below. The processing requirements should include relative

sequencing, periodicities, options, and other important relationships of

each function as appropriate.

After the processing requirements of a function have been determined,

then-the required inputs to the function can be identified and described,

including the sources of the input data, units of measure, limits/ranges of

values, precision, and frequency of arrival of the input data.

4.2.3 Specification of Functional Requirements

If the requirements are documented in MIL-STD 483 format, then

the functional requirements should appear in Paragraph 3.2 and its sub-

paragraphs. Paragraph 3.2 should contain general and descriptive material

about the functional requirements. It should include a functional block

diagram or the equivalent illustrating the functional operation of the soft-

ware, the relationships between the functions, and the relationships

between software functions and the interfacing subsystem functions.

-35-

The detailed requirements for each software function should be

presented in a separate subparagraph of Paragraph 3.2. Each subpara-

graph should begin with a narrative description of the subject function and

its relation to other functions and subsystems.

Next the subparagraph should describe the required inputs to the

function, usually in a table of input variables versus their characteristics

(definition, sources, units of measure, limits/ranges of values, accuracy/

precision required, frequencies of arrival, etc.).

Then the subparagraph should present the processing requirements

of the function. It should describe the exact intent of processing operations,

and it should include textual descriptions and symbol definitions for all

mathematical equations and logic included. It should also specify required

accuracies of processing, sequences and timing of processing operations,

and relevant restrictions and limitations on the processing required. It

should include quantitative performance requirements where appropriate.

Finally, the subparagraph should describe the required outputs from

the function, usually in a table of output variables versus their character-

istics (definitions, destinations, units of measure, accuracy/precision

required, frequency of update, etc.).

The following pages are examples of functional requirements for the

hypothetical F-X CCS CPCI.

1Note that an equivalent analysis should be performed for each CPCI,

e.g., the F-X RDPS.

-36-

Sample
12 DETAILED FUNCTIONAL REOUIREMENTS

The F.X CCS performs the following functions:

1. Executve

2 Nevietion
I Air-to-Air Delivwry Support

4 Air-to-Ground Dekwory Support

5 Self-Tat

The detailed requirennts for each of these functions are specified in the following pergrwhs,
and die relationship between functionsia illustraMd by dhe functional block diagram, Figure 4-2

3.21 Executive

This function inoes order and structure to the F.X CC The function providn system
initializadon upon start-up or after restart from apower interrupt, This function also schedules d
order and rate of execution and I/0 operation for each functional module. This function provides
facilities for servicing all inerrupt, external and internal.

3.2. 1 Inputs

This function accepts the inputs as delineated in Table 4-.

3.21.2 Processing

This function of die F-X CC shall execute the necessary computations at three basic rates:
minor cycle (20 per second), intermediate cycle (10 per second), and major cycle (5 per second).
The F.X CCS shIll generste die outputs as specified in Paragraph 3.2.1.3 using die input data specified
in Paragraph 3.2. 1. and the processed deta specifications of Table 4-7.

3.21.21 F-X CCS Initialization

The executive function shall initialize he F-X CCS upon start-up or after restart from a power
interrupt This consist of setting numerous executive variables and flags to their appropriate initial
value and commanding die functions to perform their initialization computations, as shown in
Figure....

3 21.2.2 SWheduling Execution of Each Function

The execution function diall schedule the execution of each F-X CCS function based on the mode
of operation and the required execution frequency. The scheduling is based on raal-time-interrupt
dcrees recehid from die central computer clock ...

3.21.3 outputs

The executive function shall output data derived from Mhe proceseing described in Paragraph 3.21.2
and Its subparagraphs, as specified in Table 4.8

-37-

Sample

C123 EXECUTIE 0
C268 12 al246

NA VIGA TION C1 12345
3.22-,, C13579

AIR-TO-AIR SUPPORT Cl24680
23 CI 12345

-FAIR.TOGROUIND SUPPORT CI13579
P11 114C1 12345

Cl 12345

Figure 4-2 F-X CCS Functional Block Diagram

-38-

Sample

Table 4." Executive Input Dat

Constant N&m Source

or Symbol (Pararaph)

tR Refeence time 11. 21.1

'RT Rie time interrupt 31.1.21.1

ALT Altitude above tarpt 3221.3

Table 4-7 Executive Processed Data

Value
Symbol Name Units Maximum Lnt

Absolute Significant

tLI Time of last Interrupt se 20,O0 aOD

AtLI Elapsed time since last interrupt sc 1.0 ao00

Table 4" Executive Output Data

Value (Mitt of Detonamtion
Constant Name Source Maximum Lewt ntsene

Absolute Signifcant Function Pargraph

tNA V NAviption 3.2 1.22 20,000 a0 w c Navigation 3.221

update time
1ST Seftest direte 121.29 ON OFF Discrete Self-est 3.28.1

-39-

4.3 PERFORMANCE REQUIREMENTS

4.3.1 Purpose of Performance Requirements

Airborne software performance requirements in an RFP for Full

Scale Engineering Development specify in quantitative terms how well the

airborne software must satisfy its processing objectives. A performance

requirement may be directed at a single function or it can be directed at

the airborne software as a whole. A performance requirement may be

based on system-level performance requirements such as accuracy

requirements or it may be based on requirements imposed onto the air-

borne software by other subsystems that interface with the airborne soft-

ware. A performance requirement is- generally used when approximations,

compromises, and tradeoffs must be made in the design in order to satisfy

a processing objective within the system constraints, e.g., within

computer storage and throughput limitations.

4.3. Z Derivation of Performance Requirements

It is generally necessary to transform weapon system-level perform-

ance requirements into performance requirements imposed on the airborne

software; this task is part of software requirements analysis. First each

system-level performance requirement must be analyzed to determine if

the airborne software performance could affect the satisfaction of that

requirement. If the airborne software performance could affect the satis-

faction of a system-level performance requirement, then all other subsys-

tems which could also affect the satisfaction of the requirement should be

identified. The airborne software performance requirement that reflects

the system-level performance requirement must be designed so that if the

airborne software and all other subsystems satisfy their performance

requirements, then the system-level performance requirement will be met.

Therefore, the derivation of the airborne software performance requirement

must be coordinated with requirements generation for all other subsystems

that may affect satisfaction of the system-level requirement. In addition, the

performance requirements on the subsystems should not be more stringent

than necessary to ensure that the system-level performance requirements

will be met; otherwise, the cost of the subsystems may be higher than

necessary. For example, suppose a system-level performance require-

ment is that the standard deviation (a) of crossrange target miss for a

-40-

bomb must not exceed w M feet; suppose the target miss is due to airborne

software approximations, human errors and instrument errors; and

suppose the three contributions to crossrange miss are uncorrelated.

Then the required standard deviations of the contributions to croserange

miss due to the three contributors 7 AS' T HMN' and T INST must satisfy

0AS +" HMN +oINST =T M

in order to ensure that the system-level requirement will be met and that

the subsystem-level requirements are not more stringent than necessary.

The budgeting of the system-level performance requirement between the

subsystems (e.g., the selection of oA5 , MN' and G INST which satisfy

the above equation) should be accomplished with a goal of minimizing

weapon system life cycle cost.

As the above example suggests, a system-level performance require-

ment influences the method of specifying airborne software performance

requirements as well as providing the quantitative data on which the

airborne software requirement is based. In the above example, the

simplest way to specify the airborne software accuracy requirement on

crossrange miss is to specify a standard deviation a AS of crossrange miss

contribution due to the airborne software.

Part of software requirements analysis is to demonstrate that if the

airborne software and all other subsystems satisfy their performance

requirements, then the system-level performance requirements will be

met; i. e., show that all the performance requirements are consistent.

An important consideration in deriving performance requirements is

testability of the requirements. The requirements must be stated so that

the airborne software can be tested against its requirements by economi-

cally feasible methods. For example, an absolute tolerance on the error

in some airborne software output parameter may be impossible to test

because of the large range of values and the many possible combinations

of values of the airborne software input data; it may not be economically

feasible to prove that the airborne software error can never exceed the

tolerance. In this case, it is necessary to state the accuracy requirement

as a statistical requirement. For example, require that the probability of

-41-

, ' , OllN "...

the error exceeding the tolerance must be no more than 10 percent. This

approach to writing performance requirements requires that statistical

properties of the relevant input data are known or can be determined.

Otherwise, the statistical properties of the airborne software performance
could not be determined during testing. Information that can be itsed to
determine the statistical properties of the airborne software input data

should be included in the requirements, either directly or by reference.

This information may be in the form of statistical properties of weapon

system parameters and error sources.

For a complex weapon system, it may be impossible to analytically

determine the exact statistical properties of airborne software performance,

and it may be necessary to use Monte Carlo analysis to estimate the statis-

tical properties of performance. For this airborne system the statistical

performance requirements must include confidence levels in order to make

the performance requirements testable by an economically feasible number

of Monte Carlo samples. For example, require that the probability of an

airborne software error exceeding a tolerance must be no more than

10 percent with at least 80 percent confidence. Or require that the stan-

dard deviation of an error parameter be no greater than 0 AS with 90 per-

cent confidence.

Confirmation that performance requirements are feasible (realizable)

is also part of software requirements analysis. This task may require

development of prototype (representative) designs of critical portions of

the airborne software and testing the prototype designs to verify that they

satisfy the performance requirements.

The procedure for deriving airborne software performance require-

ments based on requirements imposed on the airborne software by other

subsystems is analogous to the system-level procedure described above.

Budgeting a system-level accuracy requirement to the subsystems

is more difficult when the system-level accuracy requirement is specified

in terms of a required Probability of Kill (PK) or the Circular Error

Probability (CEP). If CEP is specified then in order to specify the air-

borne software accuracy requirement, it is necessary to know the joint

probability distribution of the contributions to miss due to all other

-42-

subsystems. If PK is specified, then it is also necessary to know the

probability distribution of the effective kill radius of the exploding device.

This information is generally not available during software requirements

analysis. For this reason, it is desirable to re-specify the system-level

accuracy requirements in terms of tolerances on the root summed squared

value of mean values of the three components of miss and on the root

sumed squared value of the standard deviations of the three components of

miss; i.e., the mean values ux, uy, and uz of the three components of

miss must satisfy

uX + Uy2 + uz2 <uMAX

and standard deviations o-X' a' Y. and a- of the three components of miss

must satisfy

0- +a-y2 +a- Z 2 MAX

If the three components of miss are assumed to be Gaussian (normal)

random variables, then the tolerances uMAX and 0 MAX can be selected

so that if the above tolerances are satisfied, then the probability of kill

or CEP requirement will be satisfied. (The central limit theorem of

statistics states that if the total miss is a summation of uncorrelated miss

contributions, then the total miss tends to be a Gaussian (normal) random

variable, even if the miss contributions are not Gaussian.)

If the contributions to miss due to the subsystems are statistically
t

uncorrelated, each subsystem should have the following accuracy require-

ment imposed against it:

X2 + 0y. +- z 2 '5a-MAX.

where a- x , Y, and a- are the standard deviation of the three componentsi i Zi th

of the contribution of miss due to the i subsystem. To ensure that the

If the contributions to miss due to. any two subsystems are correlated,
then these two subsystems can be combined into a single subsystem for
the purpose of accuracy specification.

-43-

probability of kill or CEP requirement will be met, the subsystem

tolerances must satisfy

2 2
T MAX. = MAX

11

Generally, one subsystem, e.g., the jth subsystem, is responsible

for compensating for any bias in the system, i.e., responsible for mini-

mizing the mean miss. This subsystem should have the following addi-

tional accuracy requirement imposed against it:

U 2 + U 2 + U 2 < U~

Y9 Z MAX

where ux , Uy, and u Z are the mean values of the three components of the

total miss.

If only two components of miss (X and Y) are defined for a given

system, then uZ , 0 V, and a Zi can be deleted from the above expressions.

In order to make them economically testable, it may be necessary

to include confidence levels less than 100 percent in the above accuracy

requirements.

4.3.3 Specification of Performance Requirements

If the airborne software requirements are documented in MIL-STD

483 format, then a performance requirement that pertains to only one

function should be included in the functional requirements (processing

requirements) for that function, i.e., in the appropriate subparagraph

of Paragraph 3.2. Functional requirements that cannot be assigned to a

single function but pertain to the CPCI as a whole should be placed in the

special requirements subparagraph of Paragraph 3.2. The special require-

ments subparagraph follows immediately after the functional requirements

subparagraphs. In any case, functional requirements should be stated

clearly and concisely.

-44-

4.4 HUMAN ENGINEERING REQUIREMENTS

4.4.1 Purpose of Human Engineering Requirements

Human engineering requirements specify the interface requirements

between the airborne software and the crew, and they characterize (model)

the performance of the crew members as subsystems in the weapon system.

The human engineering interface requirements may specify maximum

allowed time for airborne software responses to input data, maximum

display densities of information, clarity requirements on data presented

in displays, and other attributes of data provided to the crew by the air-

borne software. Models of the crew may specify minimum times for

human decision-making and for response to stimuli, they may describe the

accuracy of human performance, and they may describe the human

decision-making logic. The human engineering requirements should pro-

vide enough information about the crew performance so that the crew

members can be treated as subsystems in the airborne system during

airborne software design.

4.4.2 Derivation of Human Engineering Requirements

Some human engineering requirements are based on system-level

human performance and human engineering requirements. Others are

based on measuring human performance and reaction times under simu-

lated in-flight conditions. The government documents listed in Section2.3

and the SAE Guidebook for Software Quality Assurance may be helpful in

deriving human engineering requirements.

4.4.3 Specification of Human Engineering Requirements

If the airborne software requirements are documented in MIL-STD

483 format, then the human engineering requirements should appear in the

first subparagraph of the last functional requirements paragraph (Special

Requirements); the title of this subparagraph should be "Human Perform-

ance." The subparagraph should cite appropriate paragraphs of the

system/system segment specification which establish human performance

and human engineering requirements. The subparagraph should be similar

to an interface requirements paragraph; it should list all the data provided

to the crew by the airborne software and all the data provided to the air-

borne software by the crew, along with attributes of these data. The

-45-

subparagraph should also include any constraints associated with interface

between the airborne software and crew, and it should provide models of

the relevant performance characteristics of the crew.

4.5 SAFETY REQUIREMENTS

4.5. 1 Purpose of Safety Requirements

Airborne software safety requirements in an RFP for Full Scale

Engineering Development relate to providing safety to the crew, other

personnel, allied forces, and population and structures other than military

targets. Safety requirements may specify airborne software features for

detecting subsystem malfunctions and dangerous situations, providing

warning signals to the crew in dangerous situations, implementing back-up

modes of operation when a subsystem fails, and initiating corrective action

in a dangerous situation.

4. 5. 2 Derivation of Safety Requirements

Safety requirements depend on the weapon system and its mission.

An analysis of the subsystems in the airborne system may reveal critical

elements that could fail and cause a safety hazard. The airborne software

may be required to detect such a failure, provide a warning signal to the

crew when the failure occurs, and compensate for the failure. Analysis of

the missions performed by the airborne system and its operating environ-

ment may identify potentially hazardous situations that could occur during

a mission. The airborne software may be required to detect these

hazardous situations, provide a warning to the crew when a hazardous

situation occurs, and initiate corrective action to compensate for or elimi-

nate the hazardous situation. Flight safety requirements are generally

based on system-level requirements derived from system-level require-

ments analysis. The government documents listed in Section 2.4, above,

may also be useful in deriving flight safety requirements.

4. 5. 3 Specification of Safety Requirements

If the airborne software requirements are documented in MIL-STD

483 format, then a function providing safety should be documented as a

functional requirement in a subparagraph to Paragraph 3.2 (Detailed

Functional Requirements). Specification of functional requirements is

-46-

covered in Section 4.2 of this guidebook. General safety requirements

that do not pertain to any one function but pertain to the CPCI or airborne

software as a whole should be documented in last functional requirements

subparagraph (Special Requirements) of Paragraph 3.2.

4.6 FAILURE DETECTION AND COMPENSATION REQUIREMENTS

4.6. 1 Purpose of Failure Detection and Compensation Requirements

Failure detection and compensation requirements specify airborne

software functions and performance characteristics that will increase the
t

reliability of the weapon system. The airborne software may be required

to detect and compensate for subsystem failures and for off-nominal

system parameters that would otherwise cause failure of a mission. The

requirements increase the probability of successfully completing a

mission, and they reduce system maintenance costs and time.

4.6.2 Derivation of Failure Detection and Compensation Requirements

Failure detection and compensation requirements are based on

analysis of other subsystems in the airborne system. A subsystem may

have a relatively short mean time between failures or it may contain error

sources that could reduce the probability of successfully completing a

mission. If software requirements analysis demonstrate that the airborne

software receives sufficient information to detect and compensate for the

subsystem failures and/or to compensate for the error sources in the
system, then it can be required to perform this function. Failure detec-

tion and compensation requirements such as these may also be based on

the system-level requirements. In arriving at a failure detection and

compensation requirement, a life cycle cost tradeoff analysis should be

performed to weigh the cost of including this function in the airborne soft-

ware with the cost of building and operating additional airborne systems

and increased maintenance of those systems to provide the same total

weapon system reliability and effectiveness.

tReliability of the airborne software itself (i. e., relative to errors in the
airborne software) is addressed in the quality assurance provisions
(Section 4) of the requirements. The SAE Guidebook for Quality Assurance
and the SAE Guidebook for Verification, Validation, and Certification cover
quality assurance and testing methods required to assure reliable software.

-47-

4.6.3 Specification of Failure Detection and Compensation Requirements

If the requirements are documented in MIL-STD 483 format, then

failure detection and compensation requirements specify additional

airborne software functions that will increase r-eliability of the weapon

system, and these functions should be specified in subparagraphs of

Paragraph 3.2 (Detailed Functional Requirements) of the requirements.

Section 4.2 of this guidebook describes how to specify functional

requirements.

4.7 SELF-TEST REQUIREMENTS

4.7. 1 Purpose of Self-Test Requirements

Self-test requirements are a special class of failure detection

requirements; they specify that the airborne software periodically test the

airborne digital processors. The requirements may specify that if a pro-

cessor malfunction is detected, then a warning is provided to the crew and

a backup system is automatically put into service.

4. 7. 2 Derivation of Self-Test Requirements

Self-test requirements are based on analysis of the digital proces-

sors in the airborne digital processor subsystem and analysis of processor

status monitoring devices. Instruction test routines are generally required

to execute each digital processor through a sequence of typical computations

and compare the results (bit-for-bit) with pre-stored answers. Any dis-

agreement with the pre-stored answers indicates a processor malfunction.

Another test that may be required is a memory checksum test to ensure

that data stored in a computer memory did not change value unintentionally.

If the airborne digital processor includes redundant processors, i.e.,

identical processors that perform exactly the same computations, then the

results of the computations can be compared to identify a processor mal-

function. If processors are triply redundant, i.e., three identical

processors, then a malfunction can also be isolated to one of the three

processors, and the two remaining good processors can continue to

perform the processing. With doubly redundant processors, reasonable-

ness checks can sometimes be used to determine which processor has

malfunctioned. Status monitoring devices (which measure parameters

-48-

such as processor temperature, voltage, and current, input/output rates,

and timing of routines) can also aid in identifying and isolating processor

malfunctions.

The need for self-test requirements also depends on the reliability

of the computers (mean time between failures) and on the possible losses

if a malfunction goes undetected and/or uncompensated. The life-cycle-

cost (acquisition and maintenance) of self-test equipment and software

should be compared with the dollar cost penalty of undetected and uncom-

pensated processor failures, weighted by the probability of a processor

failure during a mission.

4. 7. 3 Specification of Self-Test Requirements

Self-tests can be treated as airborne software functions. If the

requirements are documented in MIL-STD 483 format, the requirements

for those self-test functions should be specified in subparagraphs of

Paragraph 3.2 (Detailed Functional Requirements).

4.8 ENVIRONMENT REQUIREMENTS

4.8. 1 Purpose of Environment Requirements

Environment requirements specify the environmental conditions in

which the airborne software must function and satisfy its performance

requirements. The requirements describe the environmental parameters

and mathematical models (equations and coefficients) that affect the design

and performance of the airborne software. Whereas interface require-

ments discussed in Section 4. 1, above, specify the characteristics of data

that is communicated between the airborne software and interfacing

subsystems, environment requirements describe the performance of the

interfacing subsystems and of subsystems that do not interface directly

with the airborne software. The subsystems that are described are those

whose performance could affect the satisfaction of airborne software

performance requirements discussed in Section 4.3, above. Each subsys-

tem is described adequately to determine the effect of that subsystem

performance on airborne software performance. The descriptions of the

environmental parameters should specify the anticipated characteristics

of the parameters for all airborne software installations and under all

-49-

mission conditions. Nominal values and ranges or statistical properties

of perturbations relative to the nominal values should be specified. The

environmental parameters may include mission parameters such as mis-

sion durations, ranges, altitudes, velocities, maneuvers, and target

characteristics. The environmental parameters may also include airborne

system parameters, such as aerodynamic properties, mass properties,

propulsion parameters, and performance characteristics of subsystems in

the airborne system. Finally, the environmental parameters may include

external environmental parameters such as gravity models, atmospheric

conditions (wind, visibility, radar transmission, etc.), and effects of

enemy countermeasures (electronic countermeasures, nuclear radiation,

anti-aircraft fire, surface-to-air missiles, etc.).

In order to precisely specify the environment (unambiguously) it is

often necessary to include equations that model the environment and show

how the environmental parameters relate to the airborne software functions

and the physical laws that govern the subsystem performance. For exam-

ple, if aerodynamic parameters are included, the equations that relate

these parameters to the forces and moments acting on the aircraft should

be included, and if the instrument error parameters are described, the

equations that relate the error parameters with the measurements

received from those instruments should be specified.

Mathematical models that specify the relationship between the air-

borne software outputs and the performance parameters (measures of

airborne software performance that have requirements imposed against

them) are also included in the environment requirements. For example,

if the airborne software requirements include accuracy requirements on

target miss, then equations and coefficients that determine target miss

resulting from airborne software outputs should be included in the environ-

ment requirements.

4.8.2 Derivation of Environment Requirements

Environment requirements are derived by analyzing each subsystem

that interfaces with the airborne software. Those performance character-

istics and mathematical models of each subsystem that may affect the

design or performance of the airborne software should be included in the

-50-

environment requirements. In addition, all external environmental

parameters and characteristics that affect the inputs to the airborne soft-

ware should be identified, analyzed, modeled, and included in the environ-

ment requirements. For example, if a radar subsystem interfaces with

the airborne software, the atmospheric conditions may affect the charac-

teristics (noise) of radar data that is provided to the airborne software.

Hence, the anticipated atmospheric conditions should be analyzed, modeled,

and included in the environment requirements. As another example, target

characteristics and evasive maneuvers that are performed by a target will

affect measurements of the target location that are input to the airborne

software. Therefore, anticipated target characteristi-s and evasive

maneuvers should be analyzed, modeled, and included in the environmental

requirements.

Mathematical models that relate the airborne software outputs with

the airborne software performance parameters are derived by analyzing

the relationship between the airborne software, the weapon system and its

external environment. This analysis should result in equations and

associated coefficients that determine the value of the airborne software

performance parameters based on a given set of airborne software outputs.

Whenever coordinate systems are included in environmental models,

the coordinate axes should be defined.

4.8.3 Specification of Environment Requirements

If the software requirements are documented in MIL-STD 483 format,

then the environmental requirements are presented in Paragraph 3.3. 1

(General Environment). However, if any or all of the mathematical models

that define the airborne software environment are lengthy, then those

models can be documented in appendices, and Paragraph 3.3. 1 can merely

mention each model and refer to the appropriate appendix for the model

description.

-51-

4.9 DATA BASE REQUIREMENTS

4.9.1 Purpose of Data Base Requirements

Data base requirements summarize in descriptive and quantitative

terms the constants and parameters needed by the airborne software to

satisfy its functional and performance requirements. Constants needed by

the airborne software may consist of independent constants, aircraft-

dependent constants, and mission-dependent constants. An independent

constant is a constant that will always have a fixed value such as the earth

gravitation constant and the earth rotational rate. These constants are

usually considered to be part of the airborne software, and the developing

contractor is required to provide them when he delivers the airborne

software.

Aircraft-dependent constants are constants that will have different

values for each aircraft in which the airborne software is utilized but

which will have the same value for every mission. The constants may

include, for example, instrument compensation constants and gunnery

alignment constants. If these constants are also considered to be part of

the airborne software, then the developing contractor is required to

provide a set of these constants for each aircraft employing the airborne

software.

Mission-dependent constants are constants that will vary from

mission-to-mission such as target locations, vehicle mass properties,

and vehicle initial position. These are generally not considered to be part

of the airborne software, and they may be generated by a separate

organization.

All of the known airborne software input constants should be listed

and described, and criteria for selecting or methods of generating each

constant should be specified. The anticipated range of values for each

aircraft-dependent and mission-dependent constant should also be specified

in the data base requirements. The values of constants and/or the values

of parameters needed to compute the constants may be provided in the

airborne software requirements.

-52-

Those portions of the data base that are considered to be part of the

deliverable airborne software are subject to the same functional and

performance requirements as the coding in the airborne software.

Data base requirements may also specify constraints on the data

base structure in order to provide for future changes and/or expansion

of the data base.

4.9.2 Derivation of Data Base Requirements

Data base requirements are determined by analyzing the interface

requirements and the functional requirements. Some of the constants

needed by the airborne software will be specified as inputs in the interface

requirements. For example, instrument compensation constants may

appear in the interface requirements between the airborne software and a

calibration tape. Other constants needed by the airborne software may

appear as inputs to the functions specified in the functional requirements.

The list of constants in the data base requirements may not be the com-

plete list of all the constants that will be needed by the airborne software

because the complete list of constants depends on the final design.

The description of each input constant should specify which functions

utilize the constant and how the functions utilize the constants.

Criteria for selecting or methods of generating each constant and its

anticipated range of values are derived by analyzing how the airborne

software functions will utilize the constant and determining the source
data on which the constant is based. For example, an instrument compen-

sation constant is based on calibrating the instrument, and its range of values

depends on the anticipated values of instrument parameters. A mission-

dependent constant is based on mission requirements (target locations,

weapons to be employed, etc.), and its range of values is determined by

the spectrum of missions that the weapon system is required to perform.

Data base structure requirements are based on anticipated future

changes to the data base.

4.9.3 Specification of Data Base Requirements

If the airborne software requirements are documented in MIL-STD

483 format, then the data base requirements shou!d be presented in

Paragraph 3.3.2 (System Parameters).

-53-

5. DEVELOPMENT STANDARDS AND CONSTRAINTS

The software development standards and constraints specify how

the full scale development contractor is to accomplish the following goals

during airborne software development: assure compatibility among

computer program components; ensure an orderly, systematic develop-

ment procedure; ensure adequate software documentation; achieve a high

quality product; and provide for future modifications and growth to the

software. Development standards minimize the life cycle cost of the air-

borne software by reducing management, checkout and testing costs

during software development and by minimizing operation, modification,

and maintenance costs after development. These costs savings are

attributed to the systematic development procedure and the well docu-

mented, high quality software product enforced by the development

standards. For large, complex airborne software the development

standards may also reduce costs of design and coding because of the

orderly development procedure which tends to eliminate costly design

and coding errors. The standards also ensure that the airborne software

will be compatible with the airborne avionic digital processors and other

subsystems.

In some cases, the full scale development contractor is required to

prepare development standerds as part of the development contract. An

advantage to including them in the RFP is that the potential development

contractor (bidder) can use the information provided in the development

standards to aid him in arriving at an accurate cost estimate for his

proposal. The standards in the RFP can also aid the selected develop-

ment contractor to produce a high quality end product.

Software development standards generally include a software

development procedure, a configuration management plan, design

standards, programming standards, software testing standards, quality

assurance standards, and documentation standards. They should conform

with SAMSO Exhibit 73-3 whenever it is applicable.

-55-

If the airborne software requirements are documented in MIL-STD

483 format, then most of the development standards and constraints should

appear or be referenced in the last subparagraph of paragraph 3.2, called

the special requirements section. Development standards are generally

included in the RFP by reference to separate software standards documents.

The subsections of this section describe how to derive and specify

airborne software development standards and constraints. Table 5-1

summarizes the topics covered in this section and provides a aross

reference of applicable government documents.

5.1 SOFTWARE DEVELOPMENT PROCEDURE

The software development procedure should describe each step in

the software development process. This portion of the software standards

should reflect MIL-STD 1521A as described in the SAE Guidebook for

Reviews and Audits.

5.2 CONFIGURATION MANAGEMENT PLAN

The configuration management plan should describe the activities

that are to be performed by the airborne software development contractor

for configuration management. The plan should reflect MIL-STD 1521A

as described in the SAE Guidebook for Reviews and Audits, and it should

reflect MIL-STD 480 and 483 as described in the SAE Guidebook for

Configuration Management.

5.3 DESIGN STANDARDS

Generally, software design standards require the use of a top-down

design procedure; however, in cases where significant portions of the air-

borne software already exists or when certain lower level algorithms have

high technical risk, a combination of top-down and bottom-up design is

often recommended. Top down design requires that the design be per-

formed by starting with the top level function and proceeding downward in

the design of successively lower level functions. This design approach

enhances design traceability, completeness, and comprehensiveness.

-56-

Table 5-1. Cross Reference for Section 5

Section Applicable
Number Subject GovernmentDocuments

5.1 Software Development Procedure MIL-STD 1521A

5.2 Configuration Management Plan MIL-STD 480
MIL-STD 483
MIL-STD 1521A

5.3 Design Standards MIL-STD 483

SAMSO Exhibit 73-3

5.4 Programming Standards SAMSO Exhibit 73-3

5.5 Software Testing Standards DODD 5000.3

5.6 Quality Assurance Standards MIL-S 52779 (AD)

5.7 Documentation Standards MIL-STD 1521A

5.8 Language Requirements AFR 300-10
DODD 5000.3

5.9 Classified Data Requirements See Section 2.5

5.10 Testability Requirements MIL-STD 483

5.11 Expandability Requirements MIL-STD 483

5.12 Government Furnished Property MIL-STD 483
List

5.13 Media Requirements MIL-STD 483

5.14 Identification Requirements AFR 800-14
MIL-STD 483

-57-

Top down design is initiated by establishing a functional hierarchy.

The top level function in the hierarchy is the overall mission to be per-

formed by the software. Successively lower levels are obtained by

breaking down and partitioning the software functions into functions with

progressively greater detail. The software functional requirements

should be allocated and mapped onto this design hierarchy. The lowest

level functions of the design hierarchy should account for all of the soft-

ware functions, inputs and outputs.

After the functional hierarchy is established, the design of each

function can take place, starting with the top level function and proceeding

down each successive level of the hierarchy. At each level of design, the

higher level function designs should be reviewed and expanded upo,

Functions, criteria, and design concepts should be evaluated iteratively.

Software components, functions performed by each and interactions and

interfaces between the software components should be established at each

level of the design. Any discrepancies between the software design and

the functional requirements should be resolved at each level of design.

Criteria, rationale, and tradeoffs used to establish the software design

should be recorded.

In addition to requiring top-down design, the software design

standards should include design representation standards to promote

uniformity, readability, understandability, and maintainability of the

airborne software design. The design representation standards should be

compatible with the programming language selected for airborne software

development, they should be compatible with top-down design, and they

should be compatible with the structured programming standards. The

SAE Guidebook for Computer Program Documentation Requirements

addresses design representation standards and indicates how to amend

MIL-STD 483 to allow the use of structured design representations (e.g.,

HIPO and PDL) as well as flow charts.

-58-

5.4 PROGRAMMING STANDARDS

Programming standards promote uniformity, readability, testability,

understandability, maintainability, and reliability in the airborne software.

When applicable, the programming standards can also contribute to port-

ability of the airborne software between different computers and com-

patibility with existing and future support software. Standards should be

established for each programming language that is to be used in airborne

software development. The standards should specify requirements for

preface text and inline comments in the coding, and they should specify

structured programming rules appropriate to the languages being used in

airborne software development. The standards should also address

memory utilization, maximum routine size, duty cycle, naming of

variables, and modular construction. The primary objectives for pro-

gramming standards are to minimize life cycle cost and to maximize soft-

ware reliability (minimizing the probability of coding errors). These

objectives are accomplished by ensuring a high quality, understandable

(readable), well structured, modular software product, thereby reducing

checkout, verification, and validation costs; documentation cost; manage-

ment costs; and utilization, modification, and maintenance costs. The

structured programming rules must be compatible with the flow chart

standards as well as the programming languages so that the task of pro-

ducing code corresponding to the flow charts becomes a straightforward,

systematic procedure.

The SAE Guidebook for Computer Program Documentation Require-

ments and the SAE Guidebook for Quality Assurance address programming

standards.

5.5 SOFTWARE TESTING STANDARDS

Software testing standards describe the testing required to demon-

strate that the airborne software is a reliable, high quality product that

satisfies all the requirements and constraints in the airborne software

requirements with high confidence over the spectrum of missions and

system parameter variations specified in the requirements. The

-59-

standards should also require testing of the airborne software relative to

the development and documentation standards and constraints. The testing

standards should establish software testing methods and criteria for soft-

ware certification. The software testing standards should reflect Section

60.4.4 of MIL-STD 483. Software testing is described in the SAE Guide-

book for Verification, Validation and Certification and also in the SAE

Guidebook for Software Quality Assurance.

If the airborne software requirements are documented in MIL-STD

483 format, then the software testing requirements should appear in

Section 4 called Quality Assurance.

5.6 QUALITY ASSURANCE STANDARDS

Quality assurance standards establish quality assurance objectives

and describe the activities to be performed to meet those objectives.

Software testing discussed in Section 5.5 above is one aspect of quality

assurance. The quality assurance standards should also require quality

assurance activities during the early phases of software development to

ensure that high quality airborne software is developed to minimize the

life cycle cost of the weapon system. The SAE Guidebook for Software

Quality Assurance describes the activities required for a good quality

assurance effort as specified in MIL-S 52779 (AD).

5.7 DOCUMENTATION STANDARDS

The airborne software documentation standards should describe the

documents that the development contractor is required to produce. The

following airborne software documentation may be required:

s Program Plans

s CPCI Development Specifications

* CPCI Interface Specifications

* CPCI Product Specification (Build-to)

* CPCI Product Specification (As-built)

* CPCI Development Standards

* Software Acceptance Plans

0 Test Plans and Procedures

* Test Results

* User's Manuals

-60-

The purpose and contents of each of these documents and any other

documents that are required should be specified in the documentation

standards. The SAE Guidebook for Computer Program Documentation

Requirements describes each of the above documents.

5.8 LANGUAGE REQUIREMENTS

Language requirements specify what programming languages (e.g.,

JOVIAL) and dialects (e. g., J73) are permissible for use during airborne

software development. They may also specify under what conditions

various languages can be used in different portions of the airborne soft-

ware. Language requirements may be different for software that executes

on different computers in the airborne digital processing subsystem.

Language requirements should be based on minimizing the life cycle cost

of the weapon system. The programming language may affect the life

cycle costs of the airborne software (design, development, verification,

validation, and maintenance), the support software (development and

maintenance of compilers, assemblers, operating systems, etc.), digital

processors (design, manufacture, and maintenance) and other interfacing

subsystems.

As mentioned above, selection of programming languages and dia-

lects is based on minimizing the life cycle cost of the weapon system. If

a compiler exists for a computer in the avionic digital processing sub-

system, requirements to utilize the high level language/dialect that is

compatible with that compiler may minimize life cycle cost. However,

if that language /dialect is inefficient (in terms of memory utilization),

difficult to program, or costly to maintain, it may be less costly overall

to modify that compiler or to develop a new compiler. Similarly, if no

compiler exists for a computer in the airborne digital processing sub-

system, then the cost of developing a compiler for that computer and

using its high level language for airborne software development may

result in lower life cycle cost than using assembly language for airborne

software development. Using a high level language generally reduces

software development and maintenance costs (relative to using assembly

I -61-

language); however, using a high level language also tends to require more

computer memory for program storage (thereby increasing computer

costs), and it sometimes imposes the added cost of compiler development

and/or maintenance. AFR 300-10 specifies computer programming

languages that are acceptable for use in software development for the Air

Force; however, a waiver of this regulation can sometimes be obtained,

for example, on the basis of minimizing life cycle cost. t Part of software

requirements analysis is to perform comparisons of weapon system life

cycle costs corresponding to the various language alternatives so that the

most cost effective language can be selected.

If the airborne software requirements are documented in MIL-STD

483 format, then the programming language requirements should appear

in the subparagraphs of paragraph 3. 1. 1. 2 as interface requirements

between airborne software and the compilers and/or assemblers. If one

of the compilers or assemblers to be utilized already exists, it should be

identified along with reference to its language description documentation.

If a compiler or assembler does not yet exist, the language characteristics

should be described, either directly or by reference to appropriate docu-

mentation.

5.9 CLASSIFIED DATA REQUIREMENTS

Airborne software may include classified data, classified codes,

and/or classified algorithms. Consequently, special handling and storage

of portions of the airborne software and its documentation may be required.

Classified data requirements specify software design constraints that

protect the classified data, i.e., to prevent unauthorized access to the

classified information and to prevent alteration (sabotage) of the classified

material.

Classified data requirements generally depend on the nature of the

classified material, its level of classification, and how it is used and

communicated. The requirements are based on security requirements in

appropriate security manuals such as those listed in Section 2. 5, above.

There are often special security manuals for specific weapon systems.

t AFR 300-10 specifies the waiver procedure.

-62-

5.10 TESTABILITY REQUIREMENTS

Testability requirements specify features in the airborne software

design to facilitate efficient testing of the airborne software against its

requirements. For example, there may be requirements for output of

special data such as intermediate calculation results, and there may be

requirements for special interfaces with other subsystem and peripheral

equipment so that airborne software input data and output data can be

monitored and recorded.

Testability requirements may also be imposed on the airborne soft-

ware to reduce maintenance (modification, update, and trouble shooting)

costs or for quality assurance purposes.

Testability requirements are based on the testing that must be per-

formed to verify that other airborne software requirements are being

satisfied. Testing requirements may simply specify that the developing

contractor provide whatever airborne software features that are needed

to facilitate economical testing against the requirements and to provide

for certain maintenance operations. Alternatively, the testability require-

ments can be more specific by specifying what types of testing must be

supported by the testability features or by specifying precisely what data

must be output to monitoring equipment such as output tape units, cathode

ray tubes, printers, or telemetry equipment. These testability features

required of the airborne software can be derived by analyzing the proof of

testability for each requirement. The proof of testability consists of

defining an economical method of testing the airborne software against

each requirement. Airborne software features that are required to conduct

these tests should be identified for each method of testing. Hence, the

required features needed to test the airborne software against each require-

ment are identified.

Additional airborne software capabilities needed for maintenance and

quality assurance are based on analyzing the maintenance and quality

assurance activities that are anticipated after initial operational capability.

-63-

Testability requirements may also be based on analyzing the testing

methods recommended in the SAE Guidebook for Verification, Validation

and Certification. Testability requirements are covered in the SAE Guide-

book for Computer Program Maintenance and in the SAE Guidebook for

Software Quality Assurance.

Testability requirements to provide data to monitoring and recording

devices should be included in the interface requirements section (paragraph

3. . 1), a separate paragraph specifying the interface requirements

between the airborne software and each monitoring and recording device.

Testability requirements that affect only one airborne software function

can be included in the functional requirements subparagraph for that

function. All remaining testability requirements should be inserted into

the last functional requirements paragraph (Special Requirements).

5. 11 EXPANDABILITY REQUIREMENTS

Expandability requirements constrain the airborne software to
utilize less than the full capability of the airborne digital processors.

They may limit the computer memory utilized by the airborne software,

the processor duty cycle (throughput), the input/output interface devices

utilized, data bus channels utilized, and the level of usage of other sub-

systems that interface with the airborne software. The expandability

requirements may also specify constraints on the software structure,

e.g., modularity, in order to provide for future growth of the airborne
software at a minimum cost. Modularity enables one portion (module) of

the software to be modified and/or expanded without significantly affecting

the rest of the software. The purpose of these requirements is to mini-

mize the cost of future updates and modifications to the weapon system;

i. e., the requirements provide for expansion of the airborne software

without requiring changes to the airborne digital processor hardware and

the interfacing subsystems.

-64-

-au .& __

Expandability requirements can be based on providing for identified

anticipated improvements to the weapon system, or they can be based on

providing for unidentified future improvements (or a combination of both).

If identified improvements are anticipated, then the expandability require-

ments are derived by estimating the additional system software capacity

required to provide for the anticipated improvements. This is the amount

by which the current budget for the airborne software must differ from

the total software capacity of the airborne digital processors and the inter-

facing subsystems. The portions of the airborne software that will be

affected by anticipated improvements should also be determined.

Expandability requirements for unidentified (unknown) future changes

to the airborne software are based on past history of the evolutions of

similar weapon systems and on minimizing the expected value of life cycle

cost. For example, there is a tradeoff between investing dollars into the

current weapon system to provide for expandability that may never be

needed in this weapon system as opposed to spending dollars later to pro-

vide that additional hardware needed for airborne software expunsion.

Tradeoffs such as this are inexact at best, but they should still be

attempted.

It should be noted that spare processing capacity (throughput t and

storage) should be provided beyond that needed for expandability. Exper-

ience shows that software development cost, both initial development and

subsequent updates, increases significantly as spare processing capacity

goes down. Figure 5-1 depicts how the cost of software development

increases as the spare capacity goes down. Limited processor capacity

may also necessitate compromises in the airborne software design which

produce degraded performance. The amount of spare processing capacity

that should be provided beyond that needed for future expansion should be

based on minimizing the life cycle cost of the total weapon system, i.e.,

a compromise between software costs and processing hardware costs.

1 Throughput is the number of machine level instructions that are executed

per second.

-65-

4

z

8S -
z
cc
$- EXPERIENCE
02-
U
LU

0V1

cc EXPECTATION

01-
0 25 so 75 100

UTIUZATION OF SPEED AND MEMORY CAPACITY, %

Figure 5-1. Effect of Hardware Constraints
On Software Cost

-66 -

Expandability requirements must be coordinated between the

airborne software requirements analysis and the requirements analysis

for other subsystems in order to ensure the airborne software can be

built within its software budget (expandability constraints) and to ensure

that the airborne software together with the other subsystems will provide

the required spare capacity and flexibility. The SAE Guidebook for Soft-

ware Quality Assurance addresses software maintainability.

Expandability requirements should be included as constraints in the

interface requirements paragraphs of the airborne software requirements.

Each expandaiility requirement limits the usage of an equipment that

interfaces with the airborne software, e.g., an airborne digital computer.

The expandability requirement should be included in the interface require-

ments paragraph for that piece of equipment.

5.12 GOVERNMENT-FURNISHED PROPERTY LIST

The government-furnished property list specifies what facilities and

equipment are to be provided to the developing contractor by the govern-

ment for use in developing and testing the airborne software. The list

includes any government furnished software which the airborne software

must be degigned to incorporate, such as existing CPCI's that are to

become part of the new airborne software. The list also includes soft-

ware, computer hardware, peripheral processing equipment, and other

equipment that is to be provided by the government for use in developing

and testing the airborne software.

The government-furnished property list should include any available

government owned software and equipment whoso use may reduce the life

cycle costs. The identification of equipment an software that may be

useful to the developing contractor is based on tXae equipment and software

used previously in developing and testing softwire similar to the airborne

software, on the analysis of testability of the airborne software and on

testability requirements. The proof of testability of each airborne soft-

ware requirement generally consists of defining an economically feasible

method of testing the requirement. Any equipment and software that are

-67-

required to perform that testing may be useful to the developing contractor.

Of the equipment that may be useful to the developing contractor, any

equipment that i government owned and that will be available for use

during the airborne software development and testing period should be

included on the list of government-furnished equipment. In addition,

processing equipment, systems software, compilers, assemblers, and

simulation software that could be useful during airborne software develop-

ment and that are government owned should be candidates for inclusion in

the list.

Any existing CPCI that could be usable in developing the airborne

software should also be included on the list of government-furnished

equipment.

If the requirements are documented in MIL-STD 483 format, then

the government-furnished property list should be a subparagraph of the

last functional requirements paragraph (Special Requirements). The list

should specify the software and equipment by nomenclature, specification

number, model number, and associated documentation. The list should be

divided into government-provided property and government-loaned property.

5. i3 MEDIA REQUIREMENTS

Media requirements specify the physical media through which the
airborne software is to be delivered to the Air Force procuring agency.

For example, the developing contractor may be required to deliver the

airborne software in the form of a magnetic tape, a card deck, a disk, a
punched mylar tape, or a combination of the above. The format in which

the airborne software is stored in the required media should also be

specified. For example, the card punch character set and the tape format

(density, parity, and encoding format) should be specified. Source code,

as well as object code, may be required and should be specified.

Media requirements are based on the peripheral processing equip-

ment (tape decks, card readers, disk readers, etc.) available for loading

the airborne software into the airborne digital processors and on equip-

ment available to other users. The SAE Guidebook for Configuration

Manaaement discusses software media.

-68-

If the airborne software requirements are documented in

MIL-STD 483 format, then the media requirements may appear in

Section 5 (Preparation for Delivery).

5.14 IDENTIFICATION REQUIREMENTS

Identification requirements specify what markings will beused on the

deliverable items, i.e., computer program media and documentation.

The requirements may specify that the identification markings be visually

and machine readable and that the markings provide direct correlation

between the computer program media (e. g., disks, magnetic tapes, card

decks, mylar tapes) and the computer program documentation. The

requirements should also specify that a Computer Program Identification

Number (CPIN) will be assigned by AVLC to each CPCI in the airborne

software before the Critical Design Review (CDR) as specified in AFR

800-14.

The identification requirements may specify criteria for selecting

markings, e.g., visually and machine readable, correlation between

computer program media and its documentation, unique to each computer

program, clear and unambiguous. Alternatively, the identification require-

ments can specify precisely the markings that must be placed on each

deliverable CPCI, e.g., the CPIN. The requirements in MIL-E 5400 may

be helpful in deriving identification requirements. The SAE Guidebook for

Configuration Management also addresses software and documentation

identification.

If the requirements are documented in MIL-STD 483 format, then

the identification requirements should appear in Section 5 (Preparation for

Delivery).

-69-
*U.S.Governmant Printing ofIi. 190 0- 6s7.014/ga

