
A0 G TRW DFES AND SACE SysTEMS GROUP REDONDO BEACH CA F/B 9/2
AIRBORNE SYSTEMS SOFTWARE ACQUISITION ENGINEERING GUIDEBOOK FOR--ETC(U)
MAR 80 M BARRY F33657-7B-C-O677

UNCLASSIFIED TRW-30323-6011
"

TU-00 ASD-TR-BO-5023 NL

oilllii~iIillllimiihiiIhhEEE~EE~hhE

111 1- 132 112.5~

11111 112.2

11.40 1120

1111125 1 III4

MICROCOPY RESOLUTION TEST CHART

ASD-TR-80-5023.--

Airborne Systems
Software Acquisition Engineering Guidebook

for
SOFTWARE TESTING

AND EVALUATION
0

MARCH 1980

DTIC
APPROVED FOR PUBLIC RELEASE; ELECTh

DISTRIBUTION UNLIMITED 098Q

PREPARED FOR
DEPUTY FOR ENGINEERING

AERONAUTICAL SYSTEMS DIVISION
>- WRIGHT-PATTERSON AFB, OH 45433

06

PREPARED BY 80 10 28 04
=TRW DEFENSE AND SPACE SYSTEMS GROUP

ONE SPACE PARK
REDONDO BEACH,CA 90278

NOTICE

When Government drawings, specifications, or other data are used for any purpose
ocher than in connection with a definitely related Government procurement operation,
the United States Government thereby incurs no responsibility nor any obligation
whatsoever; and the fact that the government may have formulated, furnished, or in
any way supplied the said drawings, specifications, or other data, is not to be re-
garded by implication or otherwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to manufacture
use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS, it will
be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

-M. OEFWANPjoect ngieerRICHAN) J.
(Eformatingineering Division ASD P4t S Focal Point

FOR THE COMMANDER

FC8ERT P. LAMIE, Colonel, USAF
Director of Avionics Engineering
Deputy for

"If your address has changed, if you wish to be removed from our mailing list, or
if the addressee Is no longer employed by your organization please notifyJS2N j,
N-PAFS, ON 45433 to help us maintain a current milling list".

Copies of this report should not be returned unless return Is required by security
considerations, contractual obligations, or notice oan a specific document.

AlI Po"CKM780/aM u 1 90 - 350

SECUNITV CLASSIFICATION OF THIS PAGE9 (3b. Date Ente..4
=EAD 0118RUCTONS

REPOR DOCUMTATION PAGE DEOS COMPL197WO FORM
1. NgEPOITNUMU 12. *ECIPIUN 00:7= wrS"T CATALOG HUMMER

(p Engineering Guidebook forCOED

Software Testing and Evaluation9 -

(/ En 3. B rY3

33 5 - 6 C

IS. OIAUTO s TAEET)g l ~.eApo ve for Pu li Re e s , D sr b t o ni ie

AT IIUTO RTipEN He1 IA btae.bEaSek SD -l,. e.R.

I . BarryLEMENTANY NOTES

neScear o insure sucsflotaetetn.Itpeet _cekit
aendo efeeces to suppemen inorato ingvrnetd 3uetsadt

IO I COTRLNG2 1473ICEMAMIOFANOV ISDRESSOT U 2NC PR DT

UNCLASSIFIED
SECUNITY CLASSIFI A I F ATIS PA GE AI GUe a ai

Approved~~~~~/2/~ fo4&lcRlae isrbto niie

17 ITIGTO TTEET(fth btat noei &ok3.OfQtsn kwRpn

UNICLASSIFIED
89CUONIV CLASSIFICATION O THIS PAGIM111M 800bm

Block 19 Coutinued

Test Report, Teot Toble, Unit Tests.

AccesSiofl For

AvaiLj and/Or
Dist. special

UNCLASSIFIED
SSCUM,tv CILASSICATSO WO S PA@SM.a B..0 Em

PREFACE

This guidebook is one of a series of guidebooks intended to assist

Air Force Program Office and Engineering personnel in software acquisition

engineering for airborne systems. The contents of the guidebooks will be

revised periodically to reflect changes in software acquisition policies

and practices and feedback from users.

This guidebook was prepared under the direction of the Aeronautical

Systems Division, Deputy for Engineering (ASDIEN) in coordination with

the Space Division, Deputy for Acquisition Management (SD/AQK).

The entire series of Software Acquisition Engineering Guidebooks

(Airborne Systems) is listed below along with ASD Technical Report numbers

and NTIS accession numbers where available.

Regulations, Specifications and Standards ASD-TR-78-6 ADA058428

Reviews and Audits ASD-TR-78-7 ADA058429

Software Quality Assurance ASD-TR-78-8 ADA059068

Configuration Management ASD-TR-7 9-5024 ADA076542

Computer Program Documentation Requirements ASD-TR-79-5025 ADA076543

Statements of Work and Requests for Proposal ASD-TR-79-5026 ADA076544

Requirements Analysis and Specification ASD-TR-79-5027

Verification, Validation and Certification ASD-TR-79-5028

Microprocessors and Firmware ASD-TR-80-5021

Software Development Planning and Control ASD-TR-80-5022

Software Testing and Evaluation ASD-TR-80-5023

*Contracting for Software Acquisition ASD-TR-80-5024

* Software Coat Analysis and Estimating ASD-TR-80-5025

* Supportable Airborne Software ASD-TR-80-5026

* Software Development and Support Facilities ASD-TR-80-5027

*SAE Guidebooks Application and Use ASD-TR-80-5028

*These Guidebooks Available F.11 1980.

iv

CONTENTS

PREFACE ii

ABBREVIATIONS AND ACRONYMS ix

1. INTRODUCTION I

1.1 Purpose and Scope of Software Testing and
Evaluation 0*... .. 0. * 1

1.2 Life Cycle Relationship 2

1.3 Relationship to Other GuidebooksO.. 2

i .4 Relationship to Verification, Validation and
Certification o* 3

i.5 Contents of This Guidebook 4

1.5.1 Section 1: Introduction 4

1.5.2 Section 2: Relevant Documents 4

I.5.3 Section 3: General Guidance for
Software Test and Evaluation 4

1.5.4 Section 4: Specific Guidance for
Software Test and Evaluation 4

1.5.5 AppendixA 4

2. RELEVANT DOCUMENTS 5

2.1 Regulations, Specifications and Standards 5

3. GENERAL GUIDELINES FOR SOFTWARE TEST
AND EVALUATION 7

3.1 Preliminary Concepts 7
3.1.1 Program Office 7
3.1.2 Contractor 8

3.1.3 Testing in the Software Life Cycle 10
3.2 Planning Considerations 16

3.2.1 Computer Program Development Plan 16

3.3 Test Conduct and Control 17
3.3.1 TestDesign 17

- V-e

CONTENTS (Concluded)

3.3.2 Control of Software Tests............. 19

3.3.3 Control of the Software Products 22

3.4 Test Tools 26

3.5 Management Considerations 30

3.5.1 Organization 30

3.5.2 Resources and Facilities 35

3.5.3 Schedule 35

4. SPECIFIC GUIDANCE FOR SOFTWARE TEST ANDEVALUATION o.. 37

4.1 Test Engineering and Specification 37

4.2 Software Testing and Evaluation 42

4.2.1 Unit Tests 42

4.2.2 Software Integration Tests .o.......... 46

4.2.3 Preliminary Qualification Tests 53

4.2.4 Formal Qualification Test 53

4.3 Retesting and Modifications to Support System
Testing 59

APPENDIX A: ANNOTATED BIBLIOGRAPHY 61

-vi-

TABLES

3-i. Software Related Testing Documents Reviewed at
Reviews and Audits 9

3-2. Test Documentation 12

3-3. Items In the CPDP Related to Software Testing 18

3-4. Advantages and Disadvantages of Bottom Up and
Top Down Development and Testing 20

3-5. Candidates for Control by Configuration Management o 23

3-6. Informationon Discrepancy Reports 24

3-7. Innrfmation on Discrepancy Report Log 25

3-8. Advantages and Disadvantages of Development of Test
Tools by Testers or Another Organization 28

3-9. Test Tools *. 31

4-i. CPDP Review Checklist, Testing Sections 38

4-2. Part I CPCI Development Specification Review
Checklist 41

4-3. Unit Testing Review Checklist 47

4-4. CPCTest Plan Review Checklist 55

4-5. CPCI Test Procedure Review Checklist 57

- vii -

ILLUSTRATIONS

3-i. Idealized Software Life Cycle

4-i. Sample UDF Cover Sheet 44

4-2. Sample TDF Cover Sheet 52

- viii -

ABBREVIATIONS AND ACRONYMS

AFLC Air Force Logistics Command

AFSC Air Force Systems Command

AFTEC Air Force Test and Evaluation Center

APR Air Force Regulation

AQM Acquisition Management Support

ASD Aeronautical Systems Division

ATE Automatic Test Equipment

CCB Configuration Control Board

CDR Critical Design Review

CDRL Contract Data Requirements List

C FE Contractor Furnished Equipment

CI Configuration Item

CM Configuration Management

CMC Configuration Management Organization

CPC Computer Program Component

CPCI Computer Program Configuration Item

CPDP Computer Program Development Plan

CRISP Computer Resources Integrated Support Plan

CRWG Computer Resources Working Group

DID Data Item Description

DODD Department of Defense Directive

DR Discrepancy Report

DRL Discrepancy Report Log

DT&E Development Test and Evaluation

-x-

ABBREVIATIONS AND ACRONYMS (Continued)

EN Deputy for Engineering

FCA Functional Configuration Audit

FOT&E Follow-on Operational Test and Evaluation

FOR Formal Qualification Review

FQT Formal Qualification Test

FSD Full Scale Development

GFE Government Furnished Equipment

ICS Interpretive Computer Sim'ilation

IOT&E Initial Operational Test and Evaluation

I/O Input/Output

JCL Job Control Language

MAJCOM Major Command

MIL Military

OT&E Operational Test and Evaluation

PCA Physical Configuration Audit

PDL Program Design Language

PDR Preliminary Design Review

PMD Program Management Directive

PMP Program Management Plan

POR Preliminary Qualification Review

PQT Preliminary Qualification Test

RFP Request for Proposal

SAE Software Acquisition Engineering

SAMSO Space and Missile Systems Organization

SD Space Division

-X
m

ABBREVIATIONS AND ACRONYMS (Concluded)

SDR System Design Review

SOW Statement of Work

SRR System Requirements Review

STD Standard

QA Quality Assurance

TDF Test Development Folder

TEMP Test and Evaluation Master Plan

TEOA Test and Evaluation Objectives Annex

TER Test Execution Record

TRR Test Readiness Review

TVRM Test Verification Requirements Matrix

T&E Test and Evaluation

UDF Unit Development Folder

VDD Version Description Document

V, V&C Verification, Validation and Certification

WBS Work Breakdown Structure

- xi -

- '- I - -- .-- .- -.. ---" -.. "liT.... . l~ l. . ..

1. INTRODUCTION

This guidebook is written to assist Air Force Program Office

engineering and management personnel in interpreting and applying the

principles of Software Testing and Evaluation to the acquisition of

airborne systems software. The guidebook concentrates on techniques

and methodologies which have been successfully applied on software

programs. It is general enough that it can be used on both large and

small projects.

The guidebook describes the planning and testing which must be

conducted to insure a successful software testing program. It presents

guidelines and checklists to aid in reviewing the contractor's testing

activities. The guidelines, checklists, and references supplement

the information in government documents and summarize data from

professional journals and books.

1. 1 PURPOSE AND SCOPE OF SOFTWARE TESTING AND

EVALUATION

The objective of software testing is to ensure that the software

satisfies its specifications. The idea, of course, is that once all the

errors are found and eliminated, the software satisfies its specifications.

The elimination of all errors, except on simple programs, is unfor-

tunately beyond the state of the art of software testing. This guidebook

discusses techniques which have been successfully used to approach

this goal for informal CPCI testing and for both Preliminary Qualifi-

cation Test (PQT) and Formal Qualification Test (FQT).

Once errors are found, they must be eliminated. This process,

sometimes called debugging, requires both analysis and detailed
knowledge of the code developed. This topic is not addressed in this

guidebook.

-mom

1. 2 LIFE CYCLE RELATIONSHIP

Software Testing and Evaluation is an activity which encompassesF the entire life cycle. Planning begin. when the software requirements
are written; maintenance and retesting continues until the product is
removed from the government's inventory. This guidebook discusses

the testing activities from the initial planning through the retesting.

Retesting is discussed in terms of its relationship to the system testing.

1. 3 RELATIONSHIP TO OTHER GUIDEBOOKS

A number of topics related to Software Evaluation and Testing are

discussed in other guidebooks including

* Software Requirements Analysis and Specification

Guidelines for the derivation and specification of require-
ments for software for an avionics system are presented
here. The guidebook discusses the characteristics of
software requirements which are needed for successful
testing.

" Verification, Validation and Certification

Independent Verification, Validation and C ertification
(V, V&C) is conducted by an organization other than the
software contractor to provide assurance that computer
programs will perform their mission requirements.
The guidebook discusses V&V activities which can enhance
software testing.

* Quality Assurance

The Quality Assurance (QA) guidebook presents guidelines
for monitoring software development activities to insure
that the software program complies with the requirements
of the contract, including software testing. The guidebook
discusses monitoring activities needed to insure that the
software has a number of desirable characteristics
including testability. The characteristics of a successful
QA program for software testing are presented.

* Reviews and Audits

The Information needed to help Air Force personnel plan,
prepare, and conduct technical reviews and audits is
presented in this guidebook. Guidance on the conduct of
each review which may be required for successful soft-
ware testing is given.

-2-

* Configuration Management

Successful Configuration Management (CM) is vital to
software testing. The guidebook discusses CM activities
needed for successful software testing.

e Computer Program Documentation Requirements

This guidebook provides guidance in the process of
acquiring documentation of software development pro-
grams. Testing documents such as test plans, pro-
cedures, and reports are described.

1.4 RELATIONSHIP TO VERIFICATION, VALIDATION AND

CERTIFICATION

V, V&C is conducted to provide the Air Force Program Office

with systematic assurance that the computer programs will perform

their mission requirements. Independent V, V&C is done by having

an independent organization assess the adequacy of the software products.

V, V&C may be performed by a test group which is part of the con-

tractor's team, an independent contractor, or the government.

Verification is a technical review conducted during the time

between the publication of the Part I CPCI Development Specification

and completion of the Formal Qualification Test (FOT). Performed

in parallel with the Software Testing and Evaluation, it involves

independent reviews of the software requirements, software design,

test plans, procedures, and results. Verification is conducted in

parallel with Software Testing and Evaluation to complement, not

compete with that activity. The verification activity may result in

some modifications in the software testing that improve and enhance it.

Validation begins during the System Integration activities. It is

concerned with reviewing and evaluating the integration and testing

activities at the system level to provide assurance that the system

satisfies the design criteria in the System or System Segment Speci-

fication and the Part I CPCI Development Specification.

-3-

Certification is an administrative procedure performed to insure

that enough evidence is available to state with near certainty that the

system will satisfy the user's needs. It is performed after the system

testing has been completed. Certification embodies all the Software

Testing and Evaluation, verification, validation, and Initial Operational

Testing and Evaluation (IOT&E) activities that have been performed.

1. 5 CONTENTS OF THIS GUIDEBOOK

1. 5. 1 Section 1: Introduction

Discusses the purpose and scope of the guidebook, its relationship

to other guidebooks and the role of software testing and evaluation in

the software life cycle.

1. 5.2 Section 2: Relevant Documents

Lists government documents relevant to software testing.

1. 5.3 Section 3: General Guidance for Software Test and Evaluation

Discusses the general characteristics of a software testing

program including managerial considerations, planning and scheduling,

test tools, and test control.

1. 5.4 Section 4: Specific Guidance for Software Test and Evaluation

Discusses the activities of Software Testing and Evaluation

including informal unit and integration testing, formal PQT and FQT

testing and retesting due to system testing. Presents guidelines for

the reviewing and auditing of testing documents and results.

1. 5.5 Appendix A

Contains an annotated bibliography of books and articles on

software testing.

-4-

2. RELEVANT DOCUMENTS

2.1 REGULATIONS, SPECIFICATIONS AND STANDARDS

* DIRECTIVES

DODD 5000.3 Test and Evaluation, It April 1978

DODD 5000.29 Management of Computer Resources
in Major Defense Systems, 26 April
1976

* MILITARY STANDARDS

MIL-STD 483 Configuration Management Practices
for System Equipment, Munitions
and Computer Programs, 31 December
1970, Notice 1, 1 June 1971;
Notice 2, 21 March 1979

MIL-STD 490 Specification Practices, Notice I,
I February 1969; Notice 2, I8 May
1972

MIL-STD 1521A Technical Reviews and Audits for
Systems, Equipments and Computer
Programs, Notice 1, 29 September
1978

MIL-S-SZ779A Software Quality Assurance Program
Requirements, 5 April 1974

s AIR FORCE REGULATIONS

AFR 23-36 Organization and Mission-Field Air
Force Test and Evaluation Center
(AFTEC), 19 July 1976

AFR 80-14 Research and Development, Test
and Evaluation, 16 July 1976

AFR 310-1 Management of Contractor Data,
30 July 1969, Change 1, 14 June 1971

AFR 800-14, Acquisition Management, Management
Volume I of Computer Resources in Systems,

15 September t975, AFSC Supplement t,
8 August 1977

-5- j

AFR 800-4, Acquisition Management, Acquisition
Volume II and Support Procedures for Computer

Resources in Systems, 26 September
1975, AFLC Supplement i, 18 October
1976; Change 1, AFLC Supplement 1,
31 March 1977

* SAMSO DOCUMENTS

SAMSO-STD 73-3 Standard Engineering Practices for
Computer Software Design and
Development, 6 October 1973

SAMSO Quality and Reliability Assurance,
Pamphlet 74-2 Contractor Software Quality

Assurance Evaluation Guide,
I September 1976

-6-

3. GENERAL GUIDELINES FOR SOFTWARE
TEST AND EVALUATION

This section discusses the general activities that must be performed

for successful software test and evaluation. The major considerations
and trade-offs are described. Specific guidance for reviewing and
auditing the contractor's testing program is presented in Section 4.

3. i PRELIMINARY CONCEPTS

AFR 80-14 outlines policy and procedure for managing Test and
Evaluation (T&E) activities during the development, production, and
deployment of defense systems in the Air Force. It defines the two

major categories of T&E activities as follows

* Development Test and Evaluation (DT&E) - all tests per-
formed by the contractor from initial component tests to
system integration and retest under the direction of the
program office.

* Operation Test and Evaluation (OT&E) - performed pri-
marily by, and under direction of, other AF agencies,
i. e., the intended System Using Command (TAC, SAC,
etc.), and/or Air Force Test and Evaluation Center (AFTEC).

For a weapon system procurement with embedded computers,
software testing, as such, is normally limited to the DT&E phase.
OT&E is system level oriented, "to provide a reasonable assessment

of the system military utility in its intended operational environment".

This guidebook material is primarily applicable therefore to DT&E

type activities.

3.1.1 Prog ram Office

The Program Office, headed by a Program Manager, manages

the system (and its software) acquisition. It monitors contractor

Software Testing and Evaluation and assists the contractor by

e Reviewing the planning of tests

* Participating in reviews and audits required by the
contract

* Interfacing with the other maor commands (particularly
using and supporting commands)

-7-

On many programs the systems are acquired by contracting with

a prime contractor who acquires the subsystems, often including soft-

ware, through subcontracts. In this case, the Program Office manages

the software acquisition indirectly through the prime contractor. The

Program Office requires that the prime contractor conduct reviews

and develop documents. The prime contractor may ask the subcontractor

to participate in these activities, but the Program Office works with

the subcontractor through the prime contractor.

The relationship between reviews and audits held periodically to

monitor the software acquisition, and testing documentation available

for review is shown in Table 3-1. Guidelines for reviewing the testing

documents are presented in Section 4.

3. 1. Z Contractor

The software contractor has the responsibility to develop and

test the software from the initial tests through the Formal Qualification

Test (FQT) under the direction of either the prime contractor or the

Program Office. The software contractor prepares the documents

listed in Table 3-1, and schedules and conducts the reviews and audits

as required on the program. In addition the contractor normally must

provide for a Physical Configuration Audit (PCA), to establish the CPCI

product baseline, and a Functional Configuration Audit (FCA), to

determine the acceptability of the FQT.

If MIL-S-5779A is invoked on the contract, the prime contractor

is responsible to establish a Software QA program. If the software is

subcontracted, the prime contractor may direct the software sub-

contractor to establish it. The Software QA Program must identify all

QA measures related to software testing. This includes reviews of

software requirements, test plans, procedures and reports, monitoring

of tests and certification of results, and identification of support hard-

ware and software to be used. The Software QA Program also defines

the procedure for reporting and correcting software deficiencies.

-8-

Table 3-1. Software Related Testing Documents

Reviewed at Reviews and Audits

Review or Audit Software Documents Reviewed

System Design Review (SDR) Preliminary CM Plan

Preliminary QA Plan

Preliminary Part I CPCI Develop-
ment Specifications

CPDP

Preliminary Design Review Final Part 1 CPCI Development
(PDR) Specifications

Preliminary CPCI Test Plan

Critical Design Reviews Final CPCI Test Plan
(CDR) Preliminary CPCI Test Procedures

Test Readiness Review Informal review of the status
(TRR) of code, tools, facilities, per-

sonnel and CM procedures

Functional Configuration CPCI Test Results
Audits (FCA)

Physical Configuration VDD, configuration index, change
Audits (PCA) status reports, media, all above

documents

4i

I -9-

The prime contractor is also responsible for establishing a

Configuration Management Organization (CMO) to control designated

software products, and to establish a library of these products for all

users. The CMO maintains logs of all changes to the baselined pro-

ducts, and initiates and controls procedures for changing them. If

the software is subcontracted, the software subcontractor may establish

a CMO to perform the above functions before the software is released

to the prime contractor for system testing.

3.1.3 Testing in the Software Life Cycle

AFR 800-14 describes six phases of the software life cycle:

analysis, design, code and checkout, test and integration, installation

and operation support. As Figure 3-1 shows, the Software Testing

and Evaluation activity begins early with the development of the software

requirements, and then proceeds in parallel with the software develop-

ment. Unit testing is shown as a software development activity, because

it is generally conducted by the software developers. Retesting involves

both the software developers and testers, because code must be both

modified and retested. It is shown in the figure as a maintenance activity.

The reviews and audits shown in the figure are conducted as

required. Except for the TRR, these reviews and audits may be required

by invoking MIL-STD 1521A in the contract. The TRR is an informal

review not required by MIL-STD 1521A. It may be required by including

a requirement for it in the contract's Statement of Work (SOW).

The PCA is held for each CPCI to establish a product baseline.

This may be held at the end of the FQT or the end of the System Inte-

gration Testing. Conducting the PCA at the latter time may allow changes

to be made to the CPCI in a more cost effective manner.

A number of documents, related to Software Testing and Evaluation

are prepared during the software's acquisition. They are listed in

Table 3-2. Some administrative and managerial documents prepared

-10-

z I

Ix~ m

L8
U

Am ®1U

44
ZIA

z o z -

i °-
0W

- -a

i Ii

Ma E

il-'I~ 812

Table 3-2. Test Documentation

0 Test and Evaluation Objectives Annex (TEOA)

0 Purpose

This document, an annex to the Program Management
Directive (PMD), is responsive to the Decision
Coordinating Paper (DCP), and states the specific
Test and Evaluation (T&E) objectives that serve as
the baseline for all evaluations of DT&E and OT&E
programs.

0 Originator

The implementing command prepares the draft TEOA
in coordination with the Air Force Test and FJ4luation
Center (AFTEC) for attachment to the PMD.

* Program Management Plan (PMP)

* Purpose

The PMP is the implementing command's plan for
the management of an entire system acquisition
program. It is the directive for all participating
commands.

* Originator

The Program Office prepares the PMP.

* Computer Resources Integrated Support Plan (CRISP)

* Purpose

This document identifies the computer resources
required by the implementing, supporting, and
using commands throughout the system life cycle
and describes the plan for providing these resources.
It Is responsive to the direction in the PMD and PMP.

" Originator

The CRWG, composed of representatives from the
implementing, supporting, and using commands
prepares this document.

-S12a-

Table 3-2. Test Documentation (Continued)

* Test and Evaluation Master Plan (TEMP)

* Purpose

This is an overall test and evaluation plan designed
to identify and integrate the effort and schedule of all
T&E to be accomplished. The TEMP documents a
coordinated position for all participants in the T&E
program.

* Originator

The Program Office (PO) prepares this document.

* Computer Program Development Plan (CPDP)

The CPDP is developed in accordance with DI-S-30567A.

* Purpose

This plan identifies the actions needed to develop and
deliver computer program configuration items and
necessary support facilities. This document is dis-
cussed in detail in paragraph 3.2.

* Originator

The contractor normally prepares this document.

* Part I CPCI Development Specifications

These documents (also called TYPE BS) are developed in
accordance with MIL-STD 483.

e Purpose

These specifications contain the requirements to which
the software contractor is contractually obligated to
develop the software.

* Originator

The contractor prepares these specifications.

- 13 -

Table 3-2. Test Documentation (Continued)

9 Software Standards and Procedures

* Purpose

These documents state the program's software
standards including documentation, design des-
cription, programming, and testing standards.

* Originator

This is a collection of documents that may be prepared
by the contractor, the Air Force, or a combination of
both. These may be contractual or simply imposed
as a guide.

* Test Requirements Verification Matrix

* Purpose

This matrix identifies the software component(s),
CPC and/or CPCI, which implements each software
requirement. DI-S-30567A requires that the CPDP
define the technique used to assure traceability to
requirements. This document provides a way to
comply with that requirement.

* Originator

This is an internal document that the contractor
should prepare in conjunction with completion of the
B5 specification, Section 4 (Note: MIL-STD 483,
Notice 2, also requires a matrix).

* Test Plans

CPCI Test Plans are written in accordance with DI-T-3703A
or DI-T-30715. Test plans for informal (e.g., unit development/
integration) testing are internal contractor documents.

* Purpose

The formal documents provide detailed, coordinated,
integrated, and time-phased planning for software T&E.
A separate test plan is written for each individual
testing activity defined in the SOW.

* Originator

The contractor prepares these plans. The Program
Office reviews and approves the CPCI plans for the
PQT's and the FQT.

1 i4 -

Table 3-2. Test Documentation (Concluded)

* Test Procedures

CPCI Test Procedures are written in accordance with
DI-T-3703A or DI-T-30716. Test procedures for informal
testing are internal contractor documents.

* Purpose

The formal documents, prepared for each CPCI, pre-
sent the detailed steps needed to conduct each test
specified in the test plan.

a Originator

The contractor prepares the procedures. The Program
Office reviews each CPCI procedure for the PQT's and
the FQT.

* Test Reports

CPCI Test Reports are developed in accordance with DI-T-3717A.
Test reports for informal testing are internal contractor documents.

* Purpose

Test reports are written to document the analysis per-
formed and results obtained from each test. They pro-
vide a record of the software's performance to show that
the software satisfies its specifications.

Originator

The contractor prepares these reports. Reports of
each PQT and the FQT are reviewed and approved by
the Program Office.

* Version Description Document (VDD)

This document is prepared in accordance with DI-E-3121.

* Purpose

The VDD is prepared for each release of version or
interim change of a CPCI. It identifies the item
delivered and records all changes made to it.

a Originator

The releasing contractor prepares each VDD.

- 15 -

by the Air Force are discussed to show the flow of software testing

directives from the Program Management Directive to the individual tests.

The Computer Program Development Plan (CPDP) is required for

all software acquisition programs. Other documents prepared by the

contractor may be required by referencing the appropriate Data Item

Description (DID) in the Contract Data Requirements List (CDRL).

Contractor internal documents may be obtained as identified on the

Data Accession List.

3.2 PLANNING CONSIDERATIONS

A successful software testing program requires early and careful
planning, an activity which continues through the entire acquisition

activity. Test plans, written at progressively lower levels, provide

a mechanism to focus the planning concepts and to provide visibility

to the contractor and the program office. One of the first of these

test plans is actually part of the Computer Program Development Plan

(CPDP), a managerial document, which is discussed below. Other

planning documents, more closely related to individual testing activities,

are discussed in paragraph 4.

3. 2. 1 Computer Program Development Plan

The Computer Program Development Plan, required by AFR

800-14 for all software acquisition programs, is an overall plan to
identify the actions needed to develop and deliver the computer program

configuration items and necessary support resources. The document

is usually written during the analysis phase of the system development

or as a response to an FSD RFP. According to AFR 800-14, the items

affecting the testing that should be addressed are

* The organization, responsibilities, and structure of
the group(s) that will be testing the computer programs.

* The resources required to support the test of
computer programs.

* The general procedure for reporting, monitoring.
and resolving computer program errors and deficiencies
during testing (if not part of the QA plan).

- 16 -

The methods and procedures for collecting, analyzing,
monitoring, and reporting on the timing of time critical
computer programs.

* The methodology for insuring satisfactory testing
(including informal testing).

Specifically, the CPDP should contain the items listed in

Table 3-3. These items, found in DI-S-30567A, are detailed in the

following paragraphs.

3.3 TEST CONDUCT AND CONTROL

3.3.1 Test Design

The test design, which forms the testing philosophy discussed

in the CPDP, is usually based on two techniques of software develop-

ment and testing, bottom up and top down. Since the developmental

approach used significantly impacts the testing philosophy, the develop-

mental techniques and their relationships to testing are discussed.

The bottom up development starts with the design and coding

of individual routines. Usually the lowest level routines considered

most important to the application are developed first; the higher level

calling routines are then coded. Generally the interfaces between the

routines will not be completely defined when the lower level routines

are developed so modifications to lower level routines will be required

as the higher level routines are developed. This iterative process

of developing higher level routines and modifying lower level ones as

needed continues until all the software is developed.

Bottom up testing begins by testing each individual routine as it

becomes available. Routines are then combined and tested in large

units of code, continuing until the entire software product has been

tested. Bottom up testing requires that dummy routines called drivers

be developed to simulate the routines which call the modules being

tested.

- 17 -

Table 3-3. Items in the CPDP Related to
Software Testing

* Definition of the integration and testing philosophy, how
it leads to PQT and FQT.

* Identification of the testing activities and their relation-
ship to the Work Breakdown Structure (WBS).

* Definition of the testing organization, its responsibilities
and relationship to the other contractor's organizations.

* Identification of standards for development and testing,
including mechanisms for verifying compliance with the
standards.

* Identification of how traceability between requirements
and software is achieved.

0 Resources needed including special hardware, software,
GFE and data.

0 A listing of the testing documents to be produced including
when they will be available.

* Identification of test tools needed and how they are
validated.

0 A discussion of the control mechanisms needed for soft-
ware testing including method of documenting software
errors and special aspects of Configuration Management
not addressed in the Configuration Management Plan.

Note: The CPDP is the only source of information on
unit level testing.

- 8 -

The top down development begins with the definition of the

functions of the system. The logic controlling the sequencing of the

functions and their interfaces is then defined. The top level control

routines are then defined and developed. The above process is thcn

repeated for the next lower level of code, continuing until all the

routines have been developed and integrated.

The top down approach forces interfaces to be defined early, and

should reduce the changes needed to existing routines. Unfortunately,

interfaces are rarely completely defined at each level, so modifications

are generally made to the higher level routines as the lower level ones

are developed. Top down testing begins by integrating and testing the

highest level routines, using dummy routines called stubs, to simulate

the missing called routines. After these routines are integrated, the

process is repeated for routines at the next lower level. Again stubs

simulate the called routines. This process continues until all the soft-

ware is successfully integrated.

The nature of development testing will change significantly in a

top down approach. Development test planning will have to treat

checkout and integration as a single process. It will no longer be

possible (unless exception is taken to doing everything top down) to

checkout the internal working of a routine before making sure that it

fits into the system. Therefore, the testing design, which forms the

testing philosophy, should be stated in the CPDP. Most testing pro-

grams use a combination of the top down and bottom up approaches.

High level routines are developed and tested in a top down manner.

A few selected routines are coded and developed from the bottom up,

especially critical routines and I/O routines. The advantages and

disadvantages of each approach are summarized in Table 3-4.

3.3.2 Control of Software Tests

Initial development testing control is quite informal. The docu-

mentation prepared for tests executed by the programmers is generally

- 19

Table 3-4. Advantages and Disadvantages of Bottom Up

and Top Down Development and Testing

Bottom Up

0 Advantages 0 Disadvantages

0 High risk routines tested early a Testing difficult because
interface problems and system

e Utility routines are developed requirements not addressed
early and tend to be common early
to the program

I Hard to maintain visibility of
* Easier to control testing entire software system

conditions
e Difficult to change because

* Development of top level interfaces may be "kiudged"
structure can be delayed,
allowing selection of a specific * Data base structure not
machine to be made later addressed early can result in

"kludged" data base
0 Drivers simple to develop

* System cannot be executed
until late in testing

Top Down

* Advantages 0 Disadvantages

0 System executes early in * Low level high risk modules
development and testing not developed early

* Data structure and interface * Multiple utility routines may
problems addressed and exist or redesign may be
resolved early needed to use common utility

routines
* Testing can be done in

parallel at more than one 0 Developing top level structure
level early may force project to

specific machine(s) too early
a Easier to maintain visibility

of the entire software * Stubs must be developed - they
system may be complicated

* Testing conditions may be hard
to control

e Coding of top level routines may
begin before the design is
completed

* Error conditions may be more
difficult (costly) to exhaustively
exercise

- 20 -

maintained and controlled by the individuals performing the testing.

While the test plans and procedures are usually reviewed by the con-

tractor, changes generally do not require approval by anyone outside

the programming team.

An increased level of control is usually placed on the informal
testing when an independent test team becomes involved. Plans and

procedures are published for internal contractor review, and are made

known to the Program Office via the Data Accession List. This docu-

mentation makes the following visible to the contractor

* extent of testing

* time phased resource needs

0 schedule

It also provides a mechanism to identify problems early. If the

milestones on the published schedule are not met, this is known, and

corrective action can be taken. Documentation is discussed in the

Guidebook on Computer Program Documentation Requirements.

Changes to these test plans and procedures may be controlled by

the contractor at his discretion. Some of these test plans and pro-

cedures may be controlled by the contractor's CMO, whose activities

are discussed in the Guidebook on Configuration Management.

Test plans are written by the contractor for formal testing, PQT

and FQT, and submitted to the Program Office for approval prior to

the testing. After the test plan is approved, changes should require

approval by the Program Office. A separate test procedure is written

for each qualification test and submitted to the Program Office for

review prior to the testing. The test procedures however may be

updated by the contractor as the testing proceeds to reflect the actual

testing performed. Formal test results are documented by the con-

tractor for review by the Program Office. Each of these testing docu-

ments should be identified in the CPDP.

- i

3.3.3 Control of the Software Products

Software being developed and tested by the originating

programming team is informally controlled, since the product is not

available except to team members. Changes are made at their dis-

cretion and internally coordinated.

When software products are released for use by organizations

other than the teams that developed them, the products must be con-

trolled by a central organization. This organization called Configu-

ration Management Office (CMO) will establish a library, usually

automated, with appropriate access and update controls. Details are

discussed in the Guidebook for Configuration Management. Some

typical items usually contained in the CM library are shown in

Table 3-5.

The controlled software products are placed in a library for use

by the software testers. The library version, however, can only be

modified under controlled conditions (e.g., approval by the CMO).

After a software product has been placed under library control any

requests for changes must be documented and submitted to a change

board. The contractor's internal engineering change board or Con-

figuration Control Board (CCB) performs this function. If a sub-

contractor develops the software, there may be two internal CCB Is,

the subcontractor's CCB and the prime contractor's CCB, both of

which must concur with any change.

Approved changes are given to the software developers for

implementation. The software product is then released for control

by the CMO.

To change a controlled software product, a Discrepancy Report

(DR) (or contractor change request form) is completed and sent to the

CCB. This form should contain the information listed in Table 3-6.

-22-

Table 3-5. Candidates for Control by
Configuration Management

* Contractually deliverable code - any coded and debugged

portions of a deliverable program

* Data base dictionaries

* Data base values

e Directives (e.g., JCL statements) to assemble or
compile code

* Directives to create load images

* Directives to execute code

* Directives to execute tests (test scripts), especially
those for PQT and FQT

Test tools listed in paragraph 3.4, especially those
used in POT and FQT

0 Patches (or quick fixes) to a controlled software
product

9 Compilers and assemblers (or modifications to compilers
and assemblers) needed to create object code for
deliverable software

0 Test results (successful and unsuccessful)

- 23 -

Table 3-6. Information of Discrepancy Reports

0 Description of the Problem

0 Identifier (Discrepancy Report Number)

0 Originator and date

* Affected software product

* Type of problem

* How detectedI Testing level and test (if any) at which problem was detected

* Hardware and software configurations used

0 Reason for change

0 Test(s) affected, if any

* Proposed change, if available

* Affected document(s) (i. e. , specification(s), if any)

0 Internal CCB action (accept and assigned to --- , defer
until --- , reject)

* Signature of authorized member of the internal CCB

* Disposition of the Problem

* Responsible organization

" Actual change made

* Software product(s) changed

* Approval signatures and dates

* Library Change

* Library(ies) changed and date, new version number(s)

* Retesting done

* Approval signatures and dates (by Retesting Test Team,
QA, and CMO)

- 24 -

Each DR must be resolved. To insure this. a Discrepancy

Report Log (DRL) summarizing the status of each DR should be
maintained by the internal CCB. The DRL should contain the infor-

mation listed in Table 3-7.

Table 3-7. Information on Discrepancy
Report Logr DR Identifier and Date

* CCB Action

0 Status (open, closed on ----------

If DR is accepted

0 Library(ies) to be changed, New
version number(s)

6 Expected or actual date of change

f Responsible organization

The DR forms may be used to gather statistics on software errors.

The number of errors, their type, and resolution by product and as a

function of time, can be obtained. This can be used in estimating the

quality of the software products and in isolating potential trouble spots.

A product with an inordinate number of errors may require special

attention, more testing or possibly as redesign. Summaries of these

data may be made available to the Program Office via the Data

Accession List.

Temporary patches to controlled software products may be required

to continue the testing. These patches may be needed to

* repair software errors

* add overlooked but necessary capabilities

* log data needed for analysis

* bypass hardware problems

* modify the software configuration to execute certain

tests

-25-

Since the patches can affect the testing results they should be

used carefully. Whenever possible the software patch should match

the eventual permanent software change (if there will be one).

These patches should be documented and controlled items. The

following information should be recorded for each patch

* Identifier

* Reason for Patch

0 Originator of Patch and Date

0 Software Product(s)/Configuration(s) Affected

0 Associated DR, if any

0 Resolution of Patch

* Listing of Patch

Testing runs should include a list of patches used, possibly

using a test tool to generate the list automatically.

The method by which software errors are detected, documented,

and corrected is stated in the CPDP. The method of controlling the

software products is stated in the overall Configuration Management

Plan or in the CPDP. The CPDP includes special aspects of software

configuration management not in the overall CM plan.

3.4 TEST TOOLS

Many tools have been developed to aid in the testing and evaluation

of software. The tools required should be identified early in the pro-

gram so appropriate resources can be allocated to their development.

DI-S-30567A requires the contractor to identify the tools in the CPDP,

stating their purpose, application, and validity.

The application of the tools should be carefully stated since they

can affect the software's performance. They can

* introduce errors into the results

* increase the memory required by the software

* alter the timing of the code

-26-

The procedure for qualifying tools and their use during software

development must be stated. Tools may be qualified by

* successfully completing a testing program.

0 establishing that they have been used successfully on
other software development programs.

MIL-S-52779A may be invoked to require the contractor to

describe how existing test tools were tested and qualified and how

proposed test tools will be tested and qualified prior to their use

(SAMSO P 74-2).

Simple tools or those applicable only to one testing team are

generally developed by that team. More complicated tools or those

useful to many test teams (simulations, for example) are usually

developed by a test tool development team. Advantages and disadvantages

of each approach are presented in Table 3-8.

Test tools may be used for the following software testing activities

* enforcement of software standards

0 requirements verification

0 product management

* error detection and performance analysis

e production of test scripts

Code or test auditors can be executed during software development

or testing to insure that the code satisfies certain standards. The

successful execution of these programs can be made part of the criteria

for the release of code or completion of testing.

Test Requirements Verification Matrices provide traceability

from requirements to test cases, and substantiate that each requirement

has been allocated to a test. The matrices should contain the following

information

0 Date

* Specification (and Revision Number, if any)

-27-

Table 3-8. Advantages and Disadvantages of Development
of Test Tools by Testers or Another Organization

Test Tool Advantages Disadvantages
Development

by Test Team 0 Tool tailored to 0 Tool too narrowly
or users needs of user designed to be used

by others

* Same tools developed
independently by
other groups

Tools not developed
by specialists

by Test Tool 0 Reduce redundancy 0 Interface with users
Development requires plans, pro-
Group cedures - may be

0 Tools may be costly
general enough to * Tools may not

apply to other exactly meet needs
projects of users

* More visibility -
forces plans to
allocate resources
to design, develop-
ment, and testing

- 28 -

0 Paragraph Number

* Test case(s)

* Testing level

* Method of Verification

• Software Component (CPC/CPCI)

Top down testing uses stubs to replace called routines. The

stubs may merely return control to the called routines or may include

the capability to

0 print messages indicating it was called

* return variables (typical or computed values)

* approximate the size of the code it replaces

* approximate the timing of the code it replaces

These more complex or smart stubs can provide a better

approximation of how the entire software product will perform. They

require more resources to develop, however, and must be tested.

The determination of how smart each stub should be depends upon the

complexity and the importance of an accurate representation of the

missing code.

Product Management, while not a part of software testing, is

vital for success. Therefore, tools used for this activity are listed

here. In particular the management of the software patches generated

by the testing activity requires close cooperation between the testers

and product managers, most likely configuration management.

Tools for error and fault isolation are clearly required. Selected

dury .s and traces, appropriately formatted, and data logging tools will

be the most important software tools for much of the early integration

testing.

- 29 -

The development of tools for performance analysis may use most

of the resources for test tool development. In particular, the develop-

ment of a simulation may be a major effort. It may itself be deliverable

software. An existing simulation may be used with an interface developed

for the new software. For example, a software interface mnay be built

for an existing missile simulation to evaluate new onboard guidance

software.

Summaries using statistics, graphs, and plots may be important

to evaluate programs with large amounts of output. In some cases,

data reduction languages may be developed to aid in writing such test

tools.

As the testing continues, the production of test scripts will

become important. In retesting or regression testing, test scripts

which automatically or at user's selection execute a number of test

cases and summarize the results, are very useful.

Examples of each type of test tool are listed in Table 3-9.

3.* 5 MANAGEMENT CONSIDERATIONS

3.5. 1 Organization

Any contractor should generally have a staff organization and a

product line organization headed by a quality assurance (QA) manager,

and the program manager respectively. There may be a third orga-

nization, the contractor' s Configuration Management Office (CMO), or the

CM and the OA function may be combined.

For software development the QA manager has the responsibility

to provide an independent assessment that the software complies with

the requirements of the contract. To provide this independent assess-

ment, the QA organization must be independent of the organization

charged with developing the software. The QA organization reviews

both the development process and the products produced for compliance

with the standards and procedures established for the program. The

role of the QA organization during software development is discussed

in the Guidebook for Quality Assurance.

-30-

Table 3-9. Test Tools

Purpose Tool Description

Enforcement of Software Code Auditor Checks that appropriate structure
Standards and coding constraints were

observed. (structured program-
rming. adequate comments, few
GOTO's. etc.)

Test Auditor Determines number of branches
exercised and not exercised dur-
ing a series of test runs.

Requirements Verification Test Requirements Veri- Lists each requirement and the
fication Matrix test(s) which demonstrate that the

software satisfies the requirements.

Product Management Checksum or Comparator Compares two sets of code or data
to determine that they are
identical.

Software Patch Manager Creates files of software patches
for use by test teams.

Software Library Manager Aids in creating and maintaining
files of baselined software pro-
ducts for users.

Error Detection and Per- Editor or Static Analyzer Analyses source code for coding
formance Analysis errors and obtains information used

to check relationships between
sections of code, determines data
usage (elements input, computed.
used. output). checks error prone
constructions, determines inacces-
sible instructions.

Flow Chart Generatot Creates a flow chart from the code.
It may show where data elements
are set and used.

Instrumenters Inerts instructions into code to
record the value of data elements
during execution.

Dump and/or Data Logging Records the value of data elements
under specific conditions. The data
may be formatted and may be

selected by the tester.

Pathfinders Records the history of routines
called prior to the occurrence of
a specified condition (usually an
error condition).

Simulator (or Simulator Simulates external devices or
Interface) environments (or provides an

interface between an existing
simulator and the software) to
provide a more realistic environ-
ment for testing.

Data Reduction Programs Provides a language that allows
easier access to output data.

Summaries, Plots, Graphics, Summarizes software performance
Statistical Computations for analysis, presentation, and

generation of reports.

o31 -

Table 3-9. Test Tools (Concluded)

Purpose Tool Description

Error Detection and Per- Dynamic Analyzer Collects statistics on software
formnance Analysis (cont) characteristics, such as paths

executed, frequency of execution
of sections of code (routines,
CPC's. CPCI's). percentage of
total execution time used by
sections of code, queue lengths.
and waiting times.

Timiig Analyser Monitors and reports execution
time of program elements.

Driver Simulates calling routines to
allow called routines to be
executed.

Stubs Simulates called routines not yet
developed to allow developed
routines to be tested.

Computer Simulator or Simulates the execution charac-
Interpretative Computer teristics of a target computer
Simulator (ICS) (for which the software is written).

The program is executed on
another computer (a host computer).

Emulator A computer firmware tailored to
operate exactly like the computer
it replaces.

Data Analyzer A program that checks the
definition and use of data items
for consistency, proper specifi-
cation and use.

Hardware Monitor A hardware device that obtains
signals from probes inserted in a
host computer's circuitry.

Interface Checker A computer program that checks
the ranges of variables to ensure
compliance with Interface Design
Specifications.

Production of Test Scripts Test Data Generators Creates test data, usually in a
form directly accessible to the
software being tested.

Job Control Language A sequence of 3CL allowing a
(JCL) Data tester to execute one or more

tests and obtain output easily
(especially useful for retest-
ing. when the same tests are
executed repeatedly).

-32 -

On large software projects, the software contractor's program

manager may establish teams within his organization to assess the

quality of the software products or to control some products during

their development. This can provide him visibility which he may other-

wise not have. This does not obviate the need for separate CM and QA

organizations, however.

The contractor should also have separate organizations for soft-

ware development and testing, because

* It is difficult for developers to find errors in their
own products.

* It is difficult to review and critique one's own work.

* Independent testers may have a different interpretation
of ambiguous requirements. Discovering and resolving
this early is cost effective.

The testing may be conducted by the software contractor's QA orga-

nization or by the software contractor'sa program organization. If the

second approach is used, the program manager directs two independent

organizations, one charged with software development and the other with

software testing and evaluation. Another valid approach is for the pro-

gram manager to direct the unit testing and CPCI integration, while the

QA organization performs the system testing and conducts the retesting.

Software testing is done by a number of individual test teams or

individuals, each with the responsibility for a particular activity. The

software development organization is responsible for the routine or unit

level testing. The software developers may perform some integration

testing. For example, they may develop and integrate an environmental

simulator, used by the software testing organization to drive operational

software. In this case, test teams separate from the programming teams

may be established within the software development organization.

Generally, the independent testing organization is responsible for

additional testing performed using significantly larger amounts of code.

These testing activities, forming the testing levels, may include

o unit testing

* CPC testing

-33-

" CPC integration

" integrated CPCI testing

The CPC and CPCI integration activities may be one testing level, or

they may each be comprised of multiple testing levels. The number of

testing levels, which should be identified in the CPDP, depend on

* resources available

* size of software

0 complexity of interfaces

* innovativeness and difficulty of the software

* criticality of the software

A small program may require only two levels of testing, unit testing and

one set of integration tests, while a complex program may need more

levels of integration testing each using significantly more complicated

portions of the product.

At the individual manning level, some software developers may be

included on the testing organization's test teams. This has the following

advantages

* gives the development organization some responsibility
for successful testing

• provides the testing organization with expertise on the
details of the products

* provides personal contacts with the development
organization

To maintain the independence of the testers, these people should not
manage the testing activities.

The testing responsibilities of the development and testing

organizations should be clearly stated in the CPDP. Software performance

criteria which must be satisfied to release software to the testing orga-

nization should be defined and verified when the products are released.

- 34 -

3.5.2 Resources and Facilities

The CPDP should identify time phased needs for resources and

facilities for software testing and evaluation, including both contractor

furnished equipment (CFE) and government furnished equipment (GFE).

Periods of heavy demands on equipment, especially heavy demands on

computer facilities, should be anticipated. This demand may be due to

activities other than software test execution. These activities may

include

* software patch generation

* simulation development or simulation interface
development

* test plan, procedure, and data analysis report
generation

* test tool development or conversion

* dry runs

* preparation of test scripts including data bases
for testing

These activities must be considered in determining computer resources

required for software testing for they may require considerable resources.

3.5.3 Schedule

Three approaches have been used to monitor software testing.

* assessing the status of each test

* determining the number of completed tests

9 assessing the rate of occurrence of errors

The status of each test may be independently assessed to monitor

the progress of the testing. This is satisfactory if care is used. Often

a test may appear to be nearly complete, when in fact it is not. As a

result, a testing activity may be reported as almost completed when it

isn't.

- 35 -

.

A testing activity may consist of executing a given number of

tests. The ratio of the number of completed tests to the total number

may be used to measure the progress of the work. A problem with this

approach is that initial tests may be completed quickly. This may lead

one to believe that the testing is nearly complete, while in fact the few

remaining tests may require considerable resources to complete. If

this monitoring approach is used, the status of each test must be carefully

assessed.

During a testing activity, most errors will be found early. The rate

of occurrence will rise to a maximum and then decrease. This may be

used to monitor the progress of the testing. In fact, when the rate of

occurrence of errors drops below a predetermined number, the testing

activity may be declared complete. A point of diminishing returns

has been reached and, according to this theory, resources can then be

better used for other activities. This approach has two problems. The

error rate which signals the end of the testing must be predetermined,

and when this occurs tests may not be executed properly. While con-

tinued testing may not uncover many more errors, stopping without

successfully executing each test is not very satisfying, and should not

be allowed for PQT's or the FQT. This method of monitoring progress

must be used with care.

- 36 -

4. SPECIFIC GUIDANCE FOR SOFTWARE TEST
AND EVALUATION

4.1 TEST ENGINEERING AND SPECIFICATION

The quality of the CPDP and Part I CPCI Development Specification

are important factors in the success of the testing effort. Therefore,

they must be carefully reviewed.

The CPDP, discussed in paragraph 3. 2. 1, may be reviewed at

the SDR to insure that the contractor plans to conduct a responsive test

program to reduce the technical risks of the software development.

Since the CPDP defines the contractor's approach to software develop-

ment for the program, the entire document should be thoroughly reviewed.

A checklist is given in Table 4-i to aid in reviewing the parts of the

CPDP which pertain to Software Testing and Evaluation. These parts

may be scattered through the CPDP, so some paging may be necessary

to find this information. The reviewer shoud be able to answer each

question in the checklist, A negative response to any question in the

checklist should be resolved with the contractor to the reviewer's

satisfaction before the document is accepted. If the CPDP is a proposal

tool, Table 4-1 can be used to aid in source selection.

A Preliminary Part I Development Specification for each CPCI

should also be available at the SDR. A review checklist appears in

Table 4-2. Questions which cannot be satisfactorily answered should be

resolved with the contractor before the review is completed. It has

been demonstrated repeatedly that inadequate software requirements or

specifications cause serious problems, so it is critical that the specifi-

cation be clear, complete, unambiguous, and testable.

1 Part I CPCI Development Specification includes Interface Control

Specifications.

37

Table 4-1. CPDP Review Checklist, Testing Sections

0 Testing Structure

* Are the testing levels (including informal tests) defined?
Are the scope and objectives for each testing level stated?

0 Are the test support software and hardware needed for
testing identified?

* Are the organizations responsible for each testing level
identified? Are their responsibilities clearly defined? Are
the testers independent from the software developers?

a Are independent internal reviews planned? Are the
orgatnizations responsible for these reviews identified?
Will these reviews include

0 software design

* test plans

" test procedures

* test results

* Are standards given for these reviews? Are correction
procedures stated?

* Is a schedule shown for the testing activities?

* Are formal reviews and audits identified? Is a schedule
shown for each? Is the documentation to be available for
each review and audit listed?

* Is an independent Quality Assurance organization identified?
Do you know what QA's role in software testing will be from
reading the CPDP or the Software QA Plan, if MIL-S-527?9A
is invoked in the contract? Do you know what its relation-
ship to CM is?

-38-

Table 4-i. CPDP Review Checklist, Testing

Sections (Continued)

S Testing Control

* Is an organization identified to control software products
and documents?

* Are the products and documents that will be controlled
identified?

* Does the CPDP state when these items will be baselined?

* Does the CPDP state how items will be controlled prior
to formal baselining?

* Is a mechanism given to implement this control stating

* how changes to controlled items are proposed

* how requests for changes are reviewed and
resolved

0 how controlled items are changed

0 who has the responsibility for each of the above
activities

* Testing Standards

* Are standards listed for the testing activities?

* Is an organization identified with the responsibility to
enforce the standards? Does this organization "sign-off"
on the completed test procedures and report?

" Is a methodology given to enforce the standards? (The
methodology may be a set of guidelines to be published in
another document. If this is the case, that document
should be identified).

* Is a mechanism identified to map CPCI Development
Specification Requirements to test cases?

-39-

Table 4-i. CPDP Review Checklist,

Testing Sections (Concluded)

* Testing Objectives and Priorities

0 Is the testing philosophy defined? Is it shown how
this leads to PQT's and FQT?

0 Is the importance of testability relative to other
software characteristics discussed?

* Documentation

* Is the documentation approach discussed?

0 Is each contractually deliverable testing document
identified?

0 Is the organization responsible for each contractually
deliverable document shown?

- 40 -

Table 4-2. Part 1 CPCI Development Specification Review Checklist

6 Is each requirement consistent? Can you find two or more
requirements which,* under some conditions, force the
software to do something logically impossible?

0 Is each requirement clear? Do you understand exactly
what it means?

* Is each requirement unambiguous? Can you think of
more than one interpretation for the requirement?

* Is each requirement testable? Requirements should state
range of acceptable inputs, processing to be performed,
and output. Can you think of a test which could be used to
show that the software verifies the requirement? If the
test requires a computer run, you must be able to sj~ecify
input, output, and acceptance criteria.

a Are the requirements complete? Can you completely map
each requirement in the system specification, which is
allocated to software, to one or more requirements in a
CPCI Development Specification? Can you think of a soft-
ware requirement in the system specification which is not
allocated to a requirement in the CPCI Development
Specification? Could an input outside the range of accept-
able values occur? If so, is the software's response
specified ?

* Are all the requirements necessary? Can you find a
requirement in the CPCI Development Specification which
cannot be referenced to one or more requirements in the
system specification?

* Is each requirement feasible? Should the software perform
the function stated? Can the requirement be satisfied in the
intended system?

k & Is each requirement allocated to a test? Is there a matrix
in the CPCI Development Specification which identifies the
following for each requirement

* method of verification (inspection, alalysis,
simulation, operational test)

* testing level (unit, software integration, system
integration)

* Are these mappings correct? Can you think of a situation
in which the requirement cannot be verified by the method
shown or at the testing level listed?

* Are any timing or sizing requirernients near the limits of
the system? If so, this should cause alarm. The software
will be hard to modify and expensive and risky to develop.

- 41-

4. 2 SOFTWARE TESTING AND EVALUATION

4.2.1 Unit Tests.

Unit testing, performed by the software development organization

on each routine, is the lowest level of software testing. It is designed

to make each executable section of code, module or routine, as error

free as possible and is oriented to finding errors which commonly occur

in the development of code, such as

* coding errors

* computational errors and inaccuracies within a routine

* inadequate input data specification

* incorrect output formatting and content

* logical errors within the unit of code

This testing is also used to verify requirements which can be allocated

to the unit level.

The software development organization is responsible for this

testing activity. That organization is responsible for all the documen-

tation of the testing for that routine, including generating the test plan,

procedure, input and expected output data, analyzing the output, and

documenting the results.

The software contractor should have established testing standards

for this activity before it begins. These standards may, for example,

include the following:

0 Each instruction is executed at least once.

* Each branch of each decision statement is executed
at least once.

* All formats and options are exercised. Lower and upper
limits are tested, Out-of-range values are tested and
error messages are formed where appropriate.

- 42-

a All error messages are exercised.

0 All computational logic is manually checked.

* Table limits are exercised, including cyclic tables
through their cycle points.

* All data input options are exercised.

These standards require two things. The person defining the

test cases must know the structare of the routine being tested, and must

be able to control its execution through input.

Test cases at this level are usually defined by a detailed analysis

of the code being tested. The test cases typically insure that the code

executes as it was designed. They do not generally consider whether

the routine was designed correctly. To avoid this problem, an inde-

pendent group, the testing organization or QA, may review the design

of the CPCI, and prepare a list of functional capabilities which the

routine should satisfy. The unit testing, of course, should show that

the routine does have the listed capabilities.

As with any testing activity, test plans, procedures, and reports

should be prepared. In this case the documentation is usually informal;

it is available for review, but is often not published. The test plan may

be a single document covering all the unit tests. The test procedures

prepared for each test may merely list the input and expected output.

The report may consist of the output with certification by the contractor's

QA organization that it matches the expected output. The testing docu-

mentation may be kept with the developmental documentation for the

routine. On some programs, this information is maintained in a Unit

Development Folder (UDF) for each group of related routines. This

provides a controlling mechanism for the code at this stage of develop-

ment. Figure 4-1 is an example of a cover sheet for a UDF.

- 43 -

'U
LIU

CACJI.

0

UiLI CA..
I-4

4A #

zI IOU

0 z < 'U

ad0 0 4

In r U - I" zP

w 0 -1LUu

0U0

z
0.l _L DC

L I . 4 C V V l t o 0 K% 0 1 0

'U

- 44 -

Much of this testing may use automated test tools described in

paragraph 3.4. A testing standard may be defined for the program.

requiring that each unit test use a single test driver. The execution

of certain test tools, such as code auditors or dynamic analyzers, may

be required for each test. This can be used to enforce standards such

as adequate comments, structured programming, and the execution of

each branch of code.

Automated test tools can simplify the documentation needed. If

the same tools and supporting facilities are used for each unit test or

group of tests, that information need not be repeated for each routine.

A description of each test, its input, and expected output should be

included, however.

During the unit testing, the tester will generally be the only per-

son using the code. Therefore, the code will generally not be controlled.

if these tests show that the code satisfies requirements, it must be

shown that the code executed is the same as the software product which

is put in the contractor's program library. Checksum programs can

be used to do this.

Before testing begins, reviews may be conducted by the contractor;

these includet

* Desk checking - an inspection of the code by the programmer.

* Code inspection - a review of the design and code of a
routine by a team of programmers.

0 Walkthrough - a detailed review of the design, coding, and
testing documentation by examining the execution expected
of a set of input data.

* Rating by colleagues - a review of the routine by other
programmers who rate it and make suggestions for
improvements.

A number of publications provide checklists for these reviews.
Appendix A lists some of these documents.

-45-

The programmer should conduct the desk checking in the course

of coding the routine. The other reviews may be conducted by the con-

tractor for some or all of the code developed. Since conducting the

latter three reviews for all routines may be expensive, tie contractor

may elect to conduct one or more reviews for selected routines (critical

and/or chosen at random).

The Program Office may not have the resources to participate in

these reviews. In fact, participation by the Program Office may hinder
a thorough review at this low level. The designers may be reluctant

to discuss problems with the Air Force at this preliminary stage. If

the software contains a few critical routines, however, the Program

Office may want to participate as part of the reviewing team. A report

summarizing the results of the reviews, recommendations, action items

assigned, and their resolutions should be written and may be available

for review by the Program Office via the Data Accession List.

The testing documentation as well as the actual code should be

reviewed by the contractor's QA organization. A checklist for this

review is given in Table 4-3. If the contractor maintains UDF's, the

contractor's QA organization should sign the cover sheet, certifying

that the testing meets the program's standards.

The Program Office will probably not have the resources to

thoroughly review this documentation. Selected routines may be

chosen for review. A check of some UDF' s may be made to insure that

the contractor's QA organization has reviewed and approved them.

4.2.2 Software Intezration Tests

After routines have successfully completed unit testing, they

are combined and executed in integration tests to

* integrate routines into CPC's and CPCI's.

* verify CPC's and CPCI's through the anticipated range
of operating conditions.

* verify requirements allocated to CPCI's which cannot be
verified at the unit level.

- 46-

Table 4-3. Unt euing Rieview Chueck.list

* Is the design clear? Does it do what is intended?

0 Is the coding clear? Did you have trouble under-
standing it?

* Are the comments helpful in understanding the routine?

0 Would you have trouble modifying it?

* Would you be proud of this work if it were yours?

* Does the code meet the program's coding standards?

* Do the tests meet the program's standards for unit
testing ?

* Does input data vary over allowable values including
maximum, minimum, and nominal values? (All alike
data, especially all zeros, is usually a poor choice).

* Is erroneous input data used? (This should be done.
In fact all error conditions should be checked). Can you
think of erroneous data conditions which were not used?

* Do the tests show that the routine has the functional
capabilities allocated to it?

0 Do the tests demonstrate that the code completely

satisfies each requirement allocated to it?
e Does the actual output match the expected output?

-47-

In a typical program, the responsibility for the software integration

testing will be divided between the development and testing organizations

using the guidelines given in paragraph 3.5S. The testing activities are

divided into testing levels, each of which integrates larger amounts of

code until each CPCI has been integrated. The lowest levels of testing

may be conducted by the programming team that developed the software.

This testing in conducted and controlled in the same way as unit tests.

Integration of software developed by more than one programming team

requires more formality in the test team organization, documentation,

and control of the software products.

The tests not conducted by the programming teams are executed

by individual test teams, each consisting of a Test Manager, Test

Conductors and a Test Librarian. The role of each is as follows:

* Test Manager - The director of the testing effort, this
person is responsible for achieving the objectives of
the test plan, and for the technical adequacy and complete-
ness of the tests. This person establishes the detailed
schedule, manages the resources and budget of the team,
negotiates to insure that needed facilities and resources
are available, and monitors and reviews the work of
the members of the test team.

0 Test Conductor(s) - These people write the test plans
and procedures, execute the tests, analyze the results,
and maintain the testing documents. Test conductors
may have the primary or secondary responsibility for
one or more tests and the responsibility may include
the development of test tools and drivers. The test con-
ductor aids in documenting software problems, resolving
them and generating patches. To do this, the test con-
ductor should have or develop a good working relation-
ship with the software developers. (The software
developers are responsible for resolving software
problems).

0 Test Librarian - This person maintains the software tools
and products necessary to perform the testing. The Con-
figuration Management Office (CMO) may, however, main-
tain some or all of these software tools and products. Most
likely, though, CMO will not control all the items needed
for software testing. The Test Librarian may submit some
or all computer runs, generate object code for some or all
of the software products, and maintain and control the tools
needed by the test team. The Test Librarian may check to
insure that the testing documentation is kept up to date.

- 48-

Tests not performed by the programming teams require more formal

documentation. Test plans and procedures should be written before the

testing begins and should be published for review. The test plan estab-

lishes the criteria, methodology, responsibilities, and overall planning

for the testing activity. It should contain the following information:

* Definition of each test

01 Specific objectives of each test

* Location of each test

* Methods for preparation of input data

0 Data recording requirements

* General procedures for data reduction

* Qualified personnel, numbers, responsibilities, and
required knowledge and skills

0 Requirements and procedures for controlling and

documenting the test programs

0 Test tools and simulations needed

6 Schedule for each test and for development of each
test tool and simulation

* Resources and facilities required

As with unit testing, the definition of the test cases is critical.

At these higher testing levels, test cases are not generally defined by

analyzing the logic of the individual routines. They are defined by

considering the code as a black box, and using the Part I CPCI Develop-

ment Specification to define inputs and expected outputs. Strategies

used in defining these test cases include

" Partitioning - splitting input into equivalence classes
and selecting representative input from each
equivalence class.

* Boundary values - selecting input values at the boundary
of the range of acceptable values, and picking input values
that produce output at the boundaries of the output space.

- 49

*Cause and effect - creating a graphical representation of
the code and selecting input to exercise each branch
of the graph.

* Error exposure - using a combination of intuition,
experience, and serendipity to select input most likely
to uncover errors in the software.

A test procedure should be prepared for each test defined in the

test plan. The procedure may be incorporated in the test plan or may

be written later, incorporating comments from reviews of the test plan.

In either event, it should be written before the test execution runs are

made. The test procedures should including the following information

* Test objectives

* Location and schedule of test briefings, debriefings,
and associated data reduction/analysis

0 Reference to applicable test plans, specifications,
manuals, and handbooks

6 Requirements and responsibilities for console operators,
test director, test conductors, test librarian

* Requirements for computer programs

* Test operation procedures

* A description of each test to be performed including
test inputs, expected test outputs, expected results,
requirements to be verified, methods of verification
including inspection, analysis, demonstration, and
formal test

0 Requirements and procedures for recording, reduction,
and analysis of test data

Both the test plan and procedure should be reviewed and approved

before the testing begins.

The contractor may conduct an informal Test Readiness Review

(TRR) before this testing begins to

* assess adequacy of the unit testing conducted.

* assess adequacy of planned testing.

-50

* determine readiness to begin testing by reviewing the
status of the code, tools, facilities, personnel, and
CM procedure.

The Program Office may require the contractor to conduct a TRR before

certain tests by including a requirement to do so in the Statement of Work.

To insure adequate documentation for each test case and to insure

visibility, the contractor may establish a Test Development Folder (TDF)

for each test. The TDF is an informal document internal to the con-

tractor, which is generated and maintained during the development and

execution of each test case run. It serves as a collection point for all

information associated with that particular test case. Each TDF should

contain the following information

• The test procedure to be followed during test case
execution. If modifications are made during execution,
the procedures are annotated to represent the as-run
operations. The annotated procedure is initiated at each
correction, as required, by the test conductor.

0 Requirements tested and the procedure step that
verifies each requirement.

• Hard copy output from the final test execution.

o Copies of any discrepancy reports generated as a result
of a test execution and their final disposition.

0 Test results/analysis reports.

A sample cover sheet from a TDF is shown in Figure 4-2. The cover

sheet indicates that the Test Manager and a member of the contractor' a

QA organization may review this documentation to insure the technical

adequacy of the testing conducted.

To insure that the test runs are repeatable, the contractor may

use an internal form, a Test Execution Record (TER), to record the

hardware and software configurations under which tests have been

executed. Depending on the formality of the test, a TER may be written

a-x x
a ____________________

x
a- x

4.P4

4UA

z 0

02 fK K

.(a on KK

0 . ta * a o

5 K0

52 (

for each test came run or only for successful runs. The TER should be

originated by the Test Conductor, and reviewed by the Test Manager.

Each TER should contain the following information

* Date and Time of Run

* Run ID

" Testing Level

" Hardware Configuration (including patches)

* Software Configuration (including patches)

" Data Base

* Test Support Hardware and Software

" Result of the Run

" Name and Signature of Test Conductor, Test
Manager and Reviewer

Some of this information may be generated automatically with

the hard copy output from the execution run.

The documentation produced by this informal testing is available

for review by the Program Office via the Data Accession List. Since

the guidelines for reviewing the information for informal and formal

testing are the same, this topic is deferred to paragraphs 4.3 and 4.4.

4.2.3 Preliminary Qualification Tests

The Preliminary Qualification Tests (POT's) are a sequence of

incremental tests which provide visibility and control to the Program

Office of the computer program development between the CDR and FOT.

These tests are conducted for selected complex or critical functions.

Functions considered critical include those with

* time critical requirements

* performance critical requirements

* critical safety requirements

-53-

Special tests may be conducted for the PQT's, or some software

integration tests may be designated as PQT's. In either case, the tests

should be conducted by a team independent from the software developers.

The team is organized as stated in paragraph 4.2.2.

The contractor writes a test plan for each CPCI in accordance with

DI-T-3703A or DI-T-30715.

0 The CPC's or functions to be tested during PQT

* The sequence of tests

* Performance and design requirements to be tested

Specifically, each test plan should contain the information detailed in

paragraph 4.2.2. A test procedure containing the information inpara-

graph 4.2.2 is also written for each function or CPC to be tested. The

tests are conducted using the guidelines given in paragraph 4.2.2.

Each CPCI test plan is reviewed by the Program Office. Pre-

liminary CPCI test plans are reviewed at the PDR; the final CPCI test

plan is reviewed at the CDR for the CPCI under review. To aid in these

reviews, a checklist is given in Table 4-4.

The test procedures for the CPCI under consideration are reviewed

at the CDR. These documents are very detailed, so a thorough review

of each procedure may not be possible. A checklist for the review is

provided in Table 4-5. These documents are not baselined at the CDR;

the contractor updates the test procedures as the testing is conducted

to reflect the testing as performed.

Test reports for the POT's are written by the contractor and

reviewed when available. The test reports may be a set of completed

test procedures or one or more separate documents for each PQT.

They should include the following information for each test

* Objective of the test

* Description of the test

* Summary of results of the test and an analysis of
their significance

- 54 -

Table 4-4. CPCI Test Plan Review Checklist

* Is each test defined and discussed separately? Are the
testing approaches discussed?

* Are the testing objectives given? Are priorities listed?

• Is the scope of testing defined? Are limitations listed?

* Is the testing environment defined for each test? This
should include

0 Drivers and/or stubs including emulators, ICS,
and simulators

* Data base value generators

0 Data logging tools

* Instrumentation or patches required

* Post processors and data reduction programs

* The version of all controlled software pioducts
to be used

0 Hardware configuration including host computer(s)
and needed peripheral equipment. If standard con-
figurations are maintained by the lontractor or
subcontractor, the appropriate configuration can
be identified without listing the equipment used.

* Are required supporting items listed? These include

* GFE and CFE

* Computer resources

* Support from other organizations including contractor
and Air Force support

0 Logistic support

- 55 -

Table 4-4. CPCI Test Plan Review Checklist
(Concluded)

6 Are the organizations responsible for this testing activity

identified? This includes responsibilities for

* Maintaining hardware

0 Executing tests and analyzing results

* Repairing errors and generating patches as needed

a Is a schedule given for each testing activity?

a Is the contractor's review procedure given? Are
evaluation criteria stated for each test?

* Are test approval mechanisms stated including,
when appropriate, review and approval of tests by

* Quality Assurance

* Test Manager

* Other Contractor Reviewers and Supervisors

* Program Office

56-

Table 4-5. CPCI Test Procedure Review Checklist

* Is the purpose, organization, and structure of each
procedure discussed?

* Is the change control mechanism identified? The CM
plan may be referenced for controlled items. For non-
controlled items which require some internal control,
for example a post processor, a change control mechanism

should be given.

* Are procedures given for recording the testing progress,
and for documenting and resolving problems?

* Is the procedure complete? Do you know how to execute
each test after reading the procedure? Can you tell the
difference between satisfactory and unsatisfactory results ?

* Is the expected output listed for each test?

* Are the expected output values correct for the input values?
Does it agree with the Part I CPCI Development Specifi-
cation? Does it surprise you? (If so, there may be a
problem with the requirement).

* Are guidelines given to aid in interpreting the output?

0 The hardware and software configuration used including
a list of all software patches (may be included by
referencing the test procedure).

* A discussion of both outstanding and resolved problems,
their status and corrective action, including requirements
the software does not satisfy, and actual output which
doesn't agree with the expected output.

Testing meetings attended by representatives from the contractor's

software development, test, QA and CM organizations, and, depending

on the project, the Program Office, may be held by the contractor.

These meetings are held to

0 monitor the progress of the testing.

0 identify problems early.

* coordinate testing among the organizations involved.

Attendance at these meetings is an excellent way to keep informed

of the testing activity.

4.2.4 Formal Qualification Test

The Formal Qualification Test (FQT) is a comprehensive test of

a CPCI conducted by the contractor after the software has been developed.

It is designed to qualify the software for system integration and later

operational testing. The testing should exercise every function of the

CPCI regardless of previous PQT's. The PQT's may evolve into the

FQT, but should not be substituted for any part of the FQT. When

practical, the FQT is conducted at the developer's facility. Testing of

a CPCI which is sensitive to the operational environment may be con-

ducted at the system's testing location.

Much of the information given in paragraph 4.2.3 for POT's applies

here. The test team is organized in the same way. The test plan and

procedures are reviewed by the Program Office before the testing begins.

The documents are controlled by the contractor.

- 58 -

- -.

The test plans and procedures are reviewed using the guidelines

in paragraph 4.2.3. Also, a TRR may be held before the FQT is

conducted.

4.3 RETESTING AND MODIFICATIONS TO SUPPORT SYSTEM
TESTING

After the software is baselined, changes will be made to resolve

problems found in testing, to add features and enhancements to the

software, and to change capabilities as a result of changes to the

specifications. Often changes are made to the software as a result of

system testing. It is frequently more cost effective to modify the soft-

ware to resolve problems than to change hardware.

Each change does not result in a new software product. Changes

are accumulated and the affected software products are retested and

periodically rebaselined by the contractor's CMO as new versions.

Each revised software product must be retested to

* verify that changes resolve problems.

* verify that changes add the features, enhancements
or capabilities intended.

* insure that changes do not introduce new problems
(the ripple effect).

Each problem encountered should be documented in a DR. This

provides an efficient way to gather statistics on errors and software

failures, which can be used in assessing the quality and reliability of

the software that is produced.

Retesting, sometimes called regression testing, begins with

reezecuting the unit tests for each modified routine. The tester should4

reexamine the tests defined for the routine, and modify them to insure

that they meet the program's standards for unit testing. Input and

expected output should be recomputed before the unit tests are executed.

-59-

Some integration testis may be rerun, depending on the testing

level and the extensiveness of the changes. Integration teats run by the

programming teams may be rerun each time the computer program is

changed. Those performed by other organizations may be rerun only

occasionally. Extensive changes may require rerunning all the previous

tests and executing new ones. As with the unit testing, the tester should

analyze the revised computer program, and modify and add tests using

the guidelines given in paragraph 4.2.2 for defining test cases. Input

and expected output must be defined before these tests are executed.

During the early testing, existing test teams may have the respon-

sibility to retest the code. After this testing has been completed and the

test teams have been disbanded, a new team is usually formed to retest

the computer program. This team is structured as stated in para-

graph 4.2.2. It defines test cases and executes them using the guide-

lines given there. The team may define a standard set of test cases,

benchmark tests, which will be executed for each revision of the com-

puter program.

To aid in this activity test scripts may be prepared. The test

scripts are test tools which provide an automated way to execute the

benchmark test cases, summarize the results, compare the output of

the computer run with previous results, and print the differences. This

reduces the chance of overlooking changes in the performance of the

software.

The FQT procedures are maintained and used throughout the

operational life of the software. The procedures are revised as needed

to test any revised code. The tests are then rerun under the same con-

trolled conditions as the original FQT.

The computer program products are controlled as discussed in

paragraph 3.3.3. All the testing materials including the test scripts

and post processors may also be controlled.

The releasing contractor prepares a Version Description Document

(VDD), in accordance with DI-E-3121, to accompany the release of each

version of a CPCI. The contractor must also prepare a VDD, identifying

the item delivered and its changes, for each release of an interim change

to a CPCI.
-60-

APPENDIX A

ANNOTATED BIBLIOGRAPHY

Anderson, T., and S. K. Shrivastava, "Reliable Software: A Selective
Annotated Bibliography, " Software - Practice and Experience, 8,
59-76, 1978.

Sixty-four references to papers, books, and conference proceedings

on software reliability are selected and annotated. The papers selected

are generally recent and introductory to provide a current survey of

the subject.

Boehm, B.W., R.K. McClean, and D.B. Urfrig, "Some Experience
with Automated Aids to the Design of Large-Scale Reliable Software,"
IEEE Trans. on Software Enfineerini, SE-i, 1, 125-133, March 1975.

The paper discusses types of software errors encountered on large soft-

ware projects. A taxonomy of the causes of software errors and an

analysis of design error data are discussed. A prototype of an auto-

mated aid to detect inconsistencies between assertions of input and

output of elements of a software design is presented.

Boehm, B.W., "Software Engineering," TRW Software Series? TRW-SS-
76-08, 1976.

This paper is a survey of the state of the art of software engineering

and likely future trends. The survey discusses requirements engineering,

design, coding test, and maintenance. The domain of applicability of

techniques rather than details of their workings is presented. An

extensive bibliography is included.

Buckley, Fletcher, "A Standard for Software Quality Assurance Plans,"
Computer, 12, 8, 43-50, August 1979.

The paper presents a draft "Standard for Software Quality Assurance Plan,

the work of the Software Engineering Standards Subcommittee of the IEEE

Computer Society's Technical Committee of Software Engineering.

-61-

DeMillo, Richard A., Richard J. Lipton, and Frederick G. Sayward,
"Hints on Test Data Selet:tion: Help for the Practicing Programmer,"
Computer, Ii, 4, 34-41, April 1978.

The paper discusses practical strategies for selecting test cases, exploi-

ting the fact that programs are close to being correct. Test cases should

be simply defined by using a detailed knowledge of the code and its appli-

cation. The coupling effect is discussed. Simple test cases, those that

distinguish programs differing from correct ones by only simple errors,

are so sensitive that they also distinguish complex errors.

Duke, M. 0., "Testing in a Complex Systems Environment, " IBM

Systems Journal, 4, 353-365, 1975.

This paper is a discussion of the testing performed on a complex com-

puter system, Information Management System/Virtual Storage (IMS/VS).

Two types of testing, functional and performance testing, are discussed.

The testing methodology, execution, and post-test analysis used on this

program are summarized. The need for test tools, libraries, and editors

is emphasized.

Fairley, Richard E., "Tutorial: Static Analysis and Dynamic Testing of
Computer Software," Computer 1i, 4, 14-23, April 1978.

Two complementary approaches to software testing, static analysis and
dynamic testing, are discussed. Static analysis involves obtaining global

information about the structure of the program, while dynamic testing

investigates the program's run time behavior. Bottom up, top down, and

mixed testing strategies are discussed. A software system design to

obtain data on the execution of batch-mode ALGOL 60 source programs

is discussed.

Finfer, Marcia, Jon Fellos, and Dan Casey (System Development Cor-
poration), "Software Debugging Methodology," RADC-TR-79-57, Vol. I
(of three) Final Technical Report, April 1979.

The document surveys research currently being conducted in software

debugging at the integration level. Emphasis is given to assessing tools

and techniques used for embedded software. The paper was written to

present a software debugging methodology applicable to diverse

environments.

- 62 -

Gerhart, Susan L., and Laurence Yelowits, "Observations of Fallibility
in Applications of Modern Programming Methodology, "1 IEEE Trans. on
Software Engineering, SE-2, 3, 195-206, September 1979.

The paper defines three types of errors: specification errors, systematic

construction errors, and proved program errors. It considers twelve

algorithms, many of which are used as examples in teaching modern pro-

gramming practices. The paper shows that even those programs contain

examples of each of the above types of errors. Software errors abound'

Gilb, Tom, Software Metrics, Weinthrop Publisher, Inc., Cambridge,
Mass., 1977.

The book presents techniques for measuring many software character-

istics such as reliability, flexibility, structuredness, performance, and

resource needs. Practical applications of these techniques are given.

Helpful checklists are given in the appendices, including a checklist for

insepection of COBOL programs, and a description of the process of test

inspections, with some sample forms.

Glass, Robert L., Software Reliability Guidebook, Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1979.

A survey of technological and managerial techniques used to develop reli-

able software is presented as a menu. Technological techniques discussed

include requirements specification, design, implementation, checkout,

and maintenance techniques. Managerial topics of planning, organization,

documentation, production, and scheduling are discussed. References

are given for each item introduced. The techniques presented are ranked

in order of importance and recommendations for the use of each method-

ology are given for projects as functions of cost and importance of reliability.

Hetzel, W.C., ed., Program Test Methodsj Prentice-Hall, Inc., Englewood

Cliffs, N.J., 1973.

The book contains a series of papers on various aspects of software testing

presented at the Computer Program Test Methods Symposium held at the

University of North Carolina, Chapel Hills, North Carolina, June 21-23,

1972. The book also has an extensive annotated bibliography.

- 63 -

Ingrassia, F. S., "The Unit Development Folder (UDF): An Effective
Management Tool for Software Development," TRW Software Series,
TRW-SS-76-41, October 1976.

The paper discusses the concept and use of the UDF in software develop-

ment and unit testing.

Mills, Harlan D., "Software Development," IEEE Trans. on Software

Engineerina, SE-2, 4, 265-273, December 1976.

The paper states that software development is a critical factor in the use

of automatic data processing. Improvement wil occur only when the
software design and methodology improves. Reliability must be put into
the design. Suggestions to do this are given. The paper also discusses

the error day - one software error existing for one day is one error day.

Mullin, F. J., "Considerations for a Successful Software Test Program, "
TRW Software Series, TRW-SS-77-01, January 1977.

This paper discusses some managerial considerations for software test-

ing. It emphasizes the need for early test planning and describes the

activities and responsibilities of the group assigned to formally test
the software.

Myers, Glenford J., Software Reliability: Principles and Practices,

J.Wiley and Sons, NY, NY, 1976.

The book covers the elements of software reliability. Design techniques

and methods are covered in detail. Software testing including basic
principles, module, function and system testing, and debugging, are

presented. (Much of the material on software testing also appears in
the author's book, The Art of Software Testing.) Other topics such as
programming languages, computer architectures, and reliability models

are given. References, checklists, and many examples are presented.

This book, as the one below, is very readable.

- 64 -

Myers, Glenford J., The Art of Software Testing, 3.Wiley and Sons, NY,
NY, 1979.

The book is a practical rather than theoretical discussion of the nature of

software testing. The book presents and explains techniques of test case

definition or testing design at the different levels of testing. Program

inspections, walkthroughs, and reviews are discussed, with detailed

checklists given to aid in these activities. Top down and bottom up test-

ing methods are analyzed. Debugging methods and test tools are discussed

in detail. The book is an excellent statement of the state of the art in

software testing t~day and is well worth reading.

Ramamoorthy, C.V., and S.B.F. Ho, "Testing Large Software with
Automated Software Evaluation Systems, " IEEE Trans. on Software
Engineering SE-i, 1, 46-58, 1975.

The article surveys automated tools used in software design and testing.

The tools are classified into six functional areas and the characteristics

of each are discussed. Tools used in industry are described. The paper

contains a list of 31 references on the subject.

Reifer, Donald J., (The Aerospace Corporation), "Microprogram
Verification and Validation," SAMSO-TR-76, 217, Interim Report,
February 1976.

This report documents present methods and techniques used for veri-

fication and validation of microprogramso Six methods (diagnostics,

test and evaluation, program proving, simulation/emulation, graph-

theoretic, and monitors) are discussed.

Reifer, Donald J., and Stephen Trattner, "A Glossary of Software Tools
and Techniques, " Comyuter 10, 7, 52-60, 3uly 1977.

This paper describes 70 types of tools and techniques used in the software

life cycle. Some of the information in this paper can be found in Appendix

B of the SAE Guidebook on Verification, Validation and Certification.

- 65 -

Tausworthe, Robert C., Standardized Development of Computer Software.
Part II. Standards. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979.

The book details the standards used by JPL to develop software to

upgrade the digital data systems of all of JPL's deep-space stations.

Standards are given for software requirements, program design, coding,

testing, quality assurance, and documentation. Detailed examples are

given. Eleven appendices are used to present detailed outlines for

specifications, notebooks, and manuals, and to illustrate sample forms

for product control and status reporting.

Zelkowitz, Marvin V., "Perspectives on Software Engineering,"
Computing Surveys, 10, 2, 197-216, June 1978.

This paper summarizes the state of the art of software engineering. The

software development life cycle, requirements analysis, specification,

design, coding, testing, and operation and maintenance are discussed.

Both management and programming considerations in software develop-

ment are presented. Topics discussed include the use of librarians,

chief programming teams, estimation techniques, design walkthroughs,

automated tools, formal testing, structured programming, and design

techniques including top down design and development, virtual machines,

and program design language (PDL).

- 66 -
*U.$.Government Prlntln office 1910 - 617-oo412

