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SECTION I

INTRODUCTION

1. OVERVIEW

Current U.S. Air Force operations dictate the use of numerous toxic sub-

stances, and among these are the three hydrazine family fuels (anhydrous, unsym-

metrical dimethyl, and monomethyl hydrazine). Hydrazine fuels are the basic

rocket propellent for strategic missiles and satellites, and the joint NASA- and

USAF-sponsored Space Shuttle Program will greatly increase the volume of hydra-

zine in general use. Bulk storage and transport of hydrazine fuels could lead

to accidental discharges, and if a discharge finds its way into a water body,

undesirable consequences could occur to the aquatic ecosystem. The objective

of the work described in this report was to undertake the development of a math-

ematical model for application in assessing the impact of catastrophic spills.

Specifically, the spill model addresses instantaneous point source dis-

charges into water courses including rivers, lakes, streams, and estuaries.

The primary requirement of the spill model is to assess dispersive character-

istics of spills of the hydrazine family fuels in the aquatic environment;

however, the development of the model has been carried out in a generalized

form using parameters and interchangeable data items so as to not unnecessarily

restrict the scope of application. Results which can be produced by the model

include the pollutant concentration as a function of location, time, and phy-

sical, chemical and biological characteristics of the pollutant. A spill model

of this type estimates the extent and duration of hazardous concentrations in

water bodies associated with accidental discharges, and when these concentra-

tions drop below toxic levels. Such a model could become a management tool to
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support a clean-up operation in the event of a spill, to provide for emergency

discharge contingency planning, permit post-incident analyses, and serve as a

basis for further development of methods of hazard assessment.

Previous analytical and computer modeling approaches provided the basis

and foundation from which the further development of the water dispersion model

for use with the hydrazine family fuels was undertaken. The spill model com-

putes the concentration of a water-miscible liquid or solid at any specified

point and given time for a discharge on the surface of a lake, river, or estuary.

All the chemical discharged or spilled is assumed to go into solution with water.

The same model can also be used for the dispersion of insoluble solids which

are neutrally buoyant or whose settling times are large compared to mixing times.

The model can also be used approximately for concentration estimates for those

liquids which react with water or whose boiling point is less than that of am-

bient temperature. This report describes the analytical formulation of the

model, a majority of the assumptions explicitly or implicitly made, details

the derivations used to arrive at the form of the model equations, and discusses

methods of using the models to develop hazard estimates.

The remaining subsections of the introduction address topics that are fun-

damental to the formulation of the model. The characteristics and potential

hazards of hydrazine fuels are described, and chemical and physical properties

are given. The overall framework and approach for hazard estimation embodied

in the CHRIS and HACS systems is described to provide background for the con-

text within which development of earlier versions of the water dispersion model

occurred. The final two subsections of the introduction describe the types

of spill environments incorporated in the model, introduce coordinate systems

and related spatial geometries, and detail the behavior of the different types

2



of discharge or release conditions. The body of the report then addresses the

development of the models to estimate the extent and duration of the spreading

of the chemical substance introduced into the aquatic environment by these dis-

charges.

The phenomenon of mixing is described by the classical diffusion equations

with one or more diffusion or dispersion coefficients. Solutions of the dif-

fusion equation for different types of receiving water bodies and assumed re-

lease or discharge conditions result in different mathematical models for es-

timating the dispersion of a spilled chemical over time and distance. However,

the characteristics of these different solutions have many similarities, and

the more complex behavior in receiving water bodies of three dimensions can be

approached by first considering elementary solutions for diffusion in one di-

mension.

Section II of the report first discusses the form of the generalized dif-

fusion equation in three dimensions, and then uses the equation in one dimen-

sion to develop methods of solution for different types of release conditions.

As each solution is derived, additional characteristics of the fundamental con-

centration distributions are described. At the end of this section, the methods

of generalizing from these solutions to three-dimensions is introduced.

In Sections III, IV, and V the different models for the waterborne disper-

sion of a miscible substance are presented. Each section deals with the models

appropriate for the particular receiving water body: still water or lakes, non-

tidal rivers, and tidal rivers. The sections are organized in order by in-

creasing complexity of the dispersion process, as modeled by solutions of the

classical diffusion equation, so that additional modeling complexities are in-

troduced as they occur. Within each section, the different types of models

3



appropriate for different types of release or conditions in the receiving water

body are developed. Each section concludes with a summary of the model equa-

tions, required input data, and computed results.

2. CHARACTERISTICS AND HAZARDS OF HYDRAZINE FUELS

The characteristics and hazards of hydrazine, unsymmetrical dimethyl-

hydrazine (UDMH), and monomethylhydrazine (MMH) are described in terms of their

physical and chemical properties. In addition, an overview is given of avail-

able methods for assessing environmental effects of these chemicals, with pri-

mary emphasis upon interactions within an aquatic medium.

a. Basic Properties

Table 1 summarizes the basic physical and chemical properties of the

three materials. Additional information for hydrazine include:

* Hydrazine is a miscible liquid, is a mildly alkaline base, and

has approximately the same density as water.

* Hydrazine is quite hygroscopic and tends to absorb water, carbon

dioxide, and oxygen from the atmosphere.

* The vapors of hydrazine may ignite spontaneously with air or

oxygen.

e Hydrazine and water form a maximum boiling azeotrope so that

water as an impurity in hydrazine causes a lower vapor pressure

than would be the case for the pure liquid.

e Hydrazine is a powerful reducing-agent. Reactions with strong

oxidizing agents may cause violent uncontrolled deflagration.

Additional data for unsymmetrical l,l-dimethylhydrazine (UDMH) include:

0 UDMH is hygroscopic and somewhat unique in that it is completely

miscible in both polar and nonpolar solvents.
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e UDMH can be classified as a weak base and a strong reductant

having antioxidant properties.

Additional points of interest for monomethylhydrazine (MMH) are:

o *MM is less reactive than hydrazine but readily undergoes re-

actions with a variety of organic and inorganic compounds.

* Like hydrazine, MMH is a strong reducing agency, weakly alkaline,

miscible, and very hygroscopic. It reacts with carbon dioxide

and oxygen in air.

b. Fire and Explosion Hazards

All three substances of interest are flammable in air and may ignite

spontaneously in the presence of oxidizing materials. Hydrazine, for example,

may ignite when exposed to large surface areas such as rags, cotton waste, and

sawdust [1].

Dilution with water reduces the flammability of any of these substances.

At concentrations below 40 percent in water, a hydrazine solution cannot be

ignited. At a 50-percent concentration, ignition will occur only if the solu-

tion is heated to a temperature near its boiling point[l].

If ignition does occur involving a quantity of UDMH, it cannot be assumed

that the products of combustion are harmless. Under certain conditions, it

has been shown that the poisonous gas, hydrogen cyanide,may be formed in con-

centrations as high as 1.5 percent in air[l].

In the liquid form, hydrazine, MMH, and UDMH cannot simply be exploded by

stock, friction, or electric discharge. A variety of initiating mechanisms,

however, can lead to explosive decomposition of their vapors[l].

c. Toxicity to Humans

All of these substances are toxic to the extent that prolonged exposure to
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high concentrations in air or ingestion of sizeable doses can be lethal.

Sublethal effects of the vapor include dizziness, nausea, chest pain, coughing,

wheezing, and/or hoarseness appearing gradually over long exposure periods[2].

Exposure of the eyes to vapor can cause itching, swelling of the mucous

membranes, painful blistering, and burns similar to those caused by a welding

arc. In all cases, the symptoms will depend upon the concentration and dura-

tion of exposure, as well as the resistance of the individual[2].

Ingestion or skin contact with absorption may cause caustic burns, head-

ache, dizziness, nausea, or even death, depending upon the nature of the ex-

posure. In this respect, hydrazine tends to cause surface burns whereas UDMR

tends to cause internal effects due to absorption through the skin. Hydrazine

is considered by some to be up to 15 times more toxic than UDMH when in contact

with the body, or up to 3 times more toxic when ingested. UDMH and MMH tend

to be most dangerous by inhalation of vapors[1].

All three of the substances of interest are suspected of causing cancer

in man, based on demonstration of carcinogenesis in one or more animal species

by appropriate methods[3,4]. The American Conference of Governmental Indus-

trial Hygienists [3] has adopted Threshold Limit Values-Time Weighted Averages

(TLV-TWA) for airborne concentrations for hydrazine of 0.1 ppm, for UDMH and

for MMH of 0.2 ppm. The time weighted average concentration is for a normal

8-hour workday or 40-hour workweek to which nearly all workers may oe repeat-

edly exposed without adverse effect.

0 As with many toxic substances, however, occasional higher ex-

posures for short time periods may be tolerated with little or

no ill effects. Dogs subjected to the vapors of UDMH have with-

stood 1 hour exposures to 50 ppm, 200 ppm for 15 minutes, and
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600 ppm for 5 minutes with no observable adverse effects[l], and

NIOSH has estimated[5] that UDHH vapor concentrations below 50 ppm

are not immediately dangerous to life and health for one half

hour human exposures in emergency situations. Similar limits for

hydrazine and MEI are 80 ppm and 5 ppm, respectively. (The latter

value, appearing somewhat out of context, is based on experimental

observations with laboratory mice, MH having been shown most

toxic in animal experiments.)

* The National Institute for Occupational Safety and Health (NIOSH)

has recommended[4] limits for hydrazine, UDMH and MMH of 0.03,

0.06, and 0.04 ppm respectively for chronic exposures.

d. Toxicity to Aquatic Organisms

Toxicity to aquatic organisms has not been studied to an extent that al-

lows a complete description of effects. Nevertheless, available data may be

useful in assessing the potential damage to eco-systems from spills of hydra-

zine and its derivatives into water.

Table 2 summarizes results[61 of experiments sponsored by the U.S. Air

Force at the Irvine Campus of the University of California and involving the

growth of algal systems in varying types of water bodies. These are mostly

useful for demonstrating the order of magnitude of concentrations that are

safe or harmful.

In simulated spill situations with experiments involving stickleback

fish[6], it was found that 50 percent of the fish expired within 96 hours

when the initial concentration of hydrazine in water was 6.6 ppm. During

this time period the hydrazine concentration dropped by approximately 50 per-

cent of initial values as assessed by actual measurements.
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TABLE 2. TOXICITY TO ALGAL SYSTEMS[6]

HYDRAZINE UDMH MMH

Water body I___I
Characteristics SC* EC** SC EC SC EC

Freshwater-oligotro-

phic conditions,
3-day exposure 0.001 0.02 0.5 0.08

Freshwater-inter-
mediate nutrient
status, 3-day
exposure 0.001 0.013 0.5 4.7 .. ..

Freshwater-eutro-
phic,3-day exposure 0.001 0.006 0.5 5.3 .. ..

Seawater-full
salinity w/Inshore
coastal nutrient
level, 6-day
exposure 0.0005 0.0008

Seawater-full
salinity w/nutrients

as in estaurine
waters, 6-day
exposure 0.001 0.0011 0.01 0.92 0.2 0.5

*SC - safe concentration in parts per million (ppm); i.e.,

concentration at which growth was not inhibited.

**EC concentration (ppm) at which growth is 50 percent
50 inhibited.

-- - data not reported.
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Other aquatic organisms (aufwuchs) were found to be more sensitive to

hydrazine, with 50 percent expiring within 96 hours at an initial concentra-

tion of 3.2 ppm of hydrazine in water.

e. Environmental Degradation of UDMH

Hydrazine, UDMH, and MMH will slowly decompose when released into the air

or water and will form a variety of decomposition products. A study[7] of

UDMH decomposition in water serves to demonstrate the speed of this process

and its possible consequences.

The study found that:

* The decomposition reaction is inhibited by the presence of acid

in the water.

e Trace metal ions in the water tend to have a catalytic (i.e.,

accelerating) effect on the reaction.

* Microbes in the water may help degrade certain products of the

decomposition reaction.

Among the possible decomposition products that were mentioned are formic

acid, ammonia, dimethylamine, dimethylnitrosamine, diazomethane, nitrous oxide,

methane, carbon dioxide, formaldehyde, the short-lived 1,1-dimethyl-diazene,

tetrazene, and others that are as yet unidentified. The number and variety

of products, as well as their respective toxicities and the factors that

regulate their formation, all lead to the observation that it is difficult to

properly judge the potential effects of a UDMH spill into the environment.

Although the UDMH decomposes, it forms products which are themselves possibly

harmful. The same statement also generally holds true for hydrazine and MM.

In lake water experiments[7], the half-lives of the disappearance of UDMH

was determined as a function of pH at a temperature of 30°C. The results were:
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pH t1 /2 (hours)

5 630

6 66

7 10

8 4.5

9 3.9

Given knowledge of the pH of a water body and assuming first order decay for

which exp(-kt) = C/Co , one can compute the value of the first-order decay co-

efficient from the expression:

(min-1 f 1.155 x 10- 2

t( /2(1)

where t1/2 is the half-life (in hours), corresponding to the given pH value.

Similar data, unfortunately, do not appear to be available for hydrazine or

MMH, although results mentioned previously of the stickleback fish experiments

do provide some crude guidance for hydrazine.

f. Action of Hydrazine and Its Derivatives Upon Release

From this overview of the properties and characterisitics of these sub-

stances, it is possible to develop profiles of their expected actions upon re-

lease to the environment. Since spills into water are of primary concern,

it is assumed that the liquids find their way into a body of water and do not

first become ignited. Nevertheless, comprehensive assessments of spill hazards

should fully consider the significant probability of early ignition and/or

detonation.
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Development of a water-spill profile for hydrazine requires special con-

sideration of the facts that:

9 The density of hydrazine is between that of pure water and sea

water, and the substance is fully miscible. It will mix with

water as rapidly as would a cup of coffee spilled into a lake,

river, or estuary.

* Hydrazine's heat of solution is a significant fraction of its

heat of vaporization. Indeed, for every 2.5 grams that dissolve

into water, sufficient heat is generated to vaporize a gram of

pure hydrazine.

* The freezing point of hydrazine is 1.50C (34.7 0 F). It may form

a solid on the ground or in water quite rapidly in very cold

weather; the solid would dissolve in water.

e The vapors of hydrazine are quite toxic. Although concentrations

as high as 80 ppm can probably be tolerated for half hour ex-

posures in an emergency, with no significant adverse effects, the

possible carcinogenicity of the substance, and the impact of this

finding in the minds of the public, suggest that vapor exposures

should be minimized to the greatest extent possible. Similarly,

concern must be given to possible ingestion of water supplies or

aquatic organisms that have been contaminated by hydrazine. A

previous discussion has focused on the potentially lethal effecti

of hydrazine on fish and algal systems.

* Hydrazine will decompose in water to form a variety of reaction

products, many of which may also be harmful. Limited data[6]

suggest a half-life in bay water of 80 to 100 hours or

thereabouts for hydrazine itself.
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Overall, one would expect a hydrazine spill into water to be generally

characterized by rapid mixing of the substance with water; evolution of some

amount of vapor at the spill site, and to a lesser extent, from the surface

of the body of water entered; and dispersal of the contaminant throughout the

water body with potentially adverse effects upon fish and other aquatic wild-

life until concentrations of hydrazine and its decomposition products drop

below safe limits.

Important characteristics for UDMH include the observations that:

a UDMH is fully miscible with water and about 20 percent less

dense than water. Although it will have an initial tendency to

float on the surface of a water body, it will also mix readily

if any sort of turbulence is present. An analogy would be the

ease with which alcohol mixes with water.

a The heat of solution of UDMH is estimated to be only a small

fraction of that of hydrazine. Nevertheless, the fact that its

vapor pressure is 10.9 times that of hydrazine at 20C (68*F) sug-

gests that vapor evolution could be a significantly greater problem

with UDMH.

o UDMH is also a suspected carcinogen. Although half-hour vapor

exposures to 50 ppm are likely to be tolerated with little or no

effect, it will be necessary to actively ensure that exposure of

the public is minimized. Similarly, risks of exposure by inges-

tion must be addressed. Previous discussion hpq focussed on the

effects of UDMH on algal systems. Fish and other aquatic organisms

13



are also likely to be adversely affected.

e The flash point and lower flammability limit of UDMH are relative-

ly low. Under appropriate conditions, there is a possibility

that vapors from the spill site or body of water can travel down-

wind and become ignited, or enter an enclosed space and explode.

Overall, the actions of UDMH would generally be similar to those of hydra-

zine. However, UDMH would mix somewhat more slowly with water, would evolve

a greater volume of vapors, and would present significantly greater flamma-

bility hazards as well as toxicity hazards.

The properties of MMI place its expected actions between those of hydra-

zine and UDMH. It is less dense than hydrazine but more dense than UDMH.

Similarly, its vapor pressure at 20*C (68*F) is 3.4 times that of hydrazine,

but roughly one-third that of UDMH; MMH has a flash point and lower flamma-

bility limit that are, respectively, lower than hydrazine's but higher than

UDMH's. Like the other two substances, it also is a suspected carcinogen.

Although concentrations of up to 5 ppm can probably be tolerated for one-half

hour without major ill effect, inhalation and ingestion exposures should be

minimized to the greatest extent possible.

g. Water Dispersion Models

This report presents a number of models that allow the user to estimate

the concentration of a contaminant in water as a function of spatial position

and elapsed time from initiation of discharge. Addressing both instantaneous

and continuous releases into lakes, non-tidal rivers, and estuaries, the

models can be useful tools for contingency planning and/or assessment of the

adverse effects of a spill.
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There are various attributes of the water dispersion models that merit

discussion. These essentially involve limitations on the capabilities of the

models in representing the specific actions of hydrazine, UDMR, and MMH upon

release to an aquatic environment. Major topics of interest include model

formulation assumptions of mass conservation, neutral buoyancy, and water body

configuration, among others.

All of the models allow for depletion of the contaminant in water through

first-order decomposition reactions. Available data for UDMH in particular

allow estimation of the necessary decay coefficient (k) as a function of pH.

There are two serious problems, however, in using this attribute of the models

to full advantage. The first stems from the observation that analogous data

do not appear to be available for hydrazine and MMH. The second from the

clear indication that one or more of the decomposition products of any of the

three substances of interest are likely to be highly toxic or otherwise harm-

ful to the environment themselves.

An associated problem, which is mostly important for UDNH, somewhat less

so for MMH, and least important for hydrazine, involves the fact that none

of the water dispersion models available currently have the capability to es-

timate the amount or rate of vapor evolution from the surface of a contamin-

ated water body. Since vapor evolution depletes the amount of contaminant in

solution, this inability leads to a certain degree of conservatism in pre-

dictions of concentration.

A suggested solution to the first problem of mass conservation is to ignore

the decomposition reactions by setting the decay coefficient for each subject

material to zero. Although this approach may provide conservative concentra-

tion predictions for the spilled pollutant in water, it serves to better
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account for the possible adverse effects of decomposition products. The second

problem of vapor evolution simply cannot be solved at this time with any of

the available models.

All of the models additionally assume that the spilled pollutant has the

same density as water, i.e., is neutrally buoyant. For hydrazine, the assump-

tion is perfectly acceptable. For UDMH and MMH, since these substances are

somewhat lighter than water, the assumption can affect the accuracy of pre-

dictions under certain conditions. The adverse effect should not be highly

significant, however, since the difference in density is not great, and both

substances are fully miscible in water.

Further limitations in model formulation stem from the manner in which

the models address the configuration of the affected water body. Each of them

generally assumes some set of typical water body characteristics, even though

real world bodies of water are far from being uniformly similar. Overall,

therefore, it is seen that any concentration predictions provided by a model

are simply best estimates consistent with current knowledge of dispersion

phenomena.

(1) Other Hazard Assessment Models

Within the Chemical Hazards Response Information System (CHRIS)[2,8,9,10,

11] of the U.S. Coast Guard are a number of components that can be of assis-

tance in assessing the adverse impact of spills of hydrazine and its deriva-

tives. Among these are included the Hazard Assessment Handbook (CG-446-3)

and the Hazard Assessment Computer System (HACS). Each contains a variety of

models addressing such phenomena as vapor dispersion, vapor evolution, and

pool fires, among others. Previously developed models appropriate for use

with the hydrazine fuels are briefly identified:
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Model P in these components is the primary water dispersion model and forms

the basis of the models presented in this report. It allows users to very

rapidly assess the impact of a spill upon downstream water users under emer-

gency conditions, as well as for contingency planning purposes. In consequence,

there is a potential for vulnerable downstream resources to not only be warned

of a spill, but to be provided with specific time of arrival, duration, and

concentration estimates. Limitations of the model are essentially a function

of the assumptions with which it is formulated, and variations in solubility,

density, reactivity, and/or volatility are not presently included.

Model R is useful for instantaneous spills of miscible liquids which have

high vapor pressures at ambient temperatures. For still waters and non-tidal

rivers, it utilizes the mixing and dilution equations of the water dispersion

model to estimate downstream concentrations on the surface of a water body,

and from these, the vaporization rate of the contaminant at each point. Inte-

gration of these vaporization rates over an appropriate surface area of the

water body provides a crude estimate of the total amount of vapor liberated,

and this estimate can then be used for approximate assessments of subsequent

vapor dispersion hazards. A significant limitation of the current version of

this model is that it does not attempt to adjust the concentrations in water

to account for the amount of previously vaporized contaminant.

Model C in each component is a vapor dispersion model allowing estimation

of contaminant concentrations in air. Although it is difficult to apply to

the case of a moving source of vapors (contaminant flowing downstream in a

river, for example), its use can provide an upper bound to the downwind areas

that may be subjected to excessive vapor concentrations.
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The pool burning Model E predicts the distances from a fire that are safe

for buildings and people. Mostly applicable for spills of insoluble, floating

substances on water, and spills of any type of flammable liquid on land, it

can also be roughly applied to spills of hydrazine and its derivatives onto

water.

It should be noted that each of these models addresses specific phenomena

which chemicals can display on release. When a specific chemical discharge

displays a multiple set of phenomena, it is appropriate to utilize all models

of pertinence and to utilize judgment in the interpretation of results. Ad-

ditionally, each model contains tradeoffs between the degree of its accuracy

and the nature of the input data required. None are necessarily as complex

as could be formulated, but all can be utilized with a basic set of input data

usually readily available or reasonably estimated for any given water body

and spill situation. Requirements for extensive input data pertinent only to

a local environment have been minimized wherever possible.

3. FRAMEWORK FOR HAZARD ASSESSMENT

Accidents involving the discharge of chemicals on water may cause hazards,

the consequences of which may result in loss of life, limb, natural resources,

and/or property. A chemical discharge or spill on water can create a hazard

because of its flammability, its toxicity, or both. As the spill disperses

and becomes diluted, the hazard normally decreases and disappears. If knowl-

edge can be obtained of how far and how fast a spilled chemical may spread,

the hazards can be assessed in terms of the distance and time over which the

spreading chemical may be toxic, hazardous, or flammable.

The processes of dispersion, evaporation, combustion, and the like, which

are associated with spills of chemicals on water, are quite complex and depend
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on many variables, including the nature of the chemical itself, conditions of

the accident or spill, environmental conditions at the time and place of the

spill, and the nature of the interaction of the spilled chemical with the

aquatic environment. As a consequence, comprehensive assessments of the ex-

tent of hazards produced by an accidental discharge require identifying and

describing the different types of chemical behavior on release, their inter-

actions and their contribution to different types of hazards. The Chemical

Hazard Response Information[9], known as CHRIS, and the Hazard Assessment

Computer System[ll] component of CHRIS, known as HACS, which have been de-

veloped for the U.S. Coast Guard, provide a systematic, simplified approach

to identifying the appropriate processes governing a given chemical release

and methods for estimating the hazard. Basic hazard estimates can be obtained

in terms of distances over which a toxic or flammable concentration of a given

chemical may exist and the minimum safe distance between the spill site and

people, combustible materials or protected resources.

One of the spill models originally formulated for use within HACS and

CHRIS addressed the prediction of hazards caused by the accidental spill of a

toxic chemical miscible with water on different types of receiving water bodies.

When a miscible chemical is spilled on the water surface, it rapidly mixes

with the water. This mixing is primarily caused by flow non-uniformities

(turbulence) or in some cases by wave action. Because of the predominance of

certain types of phenomena in different regions of the different types of re-

ceiving water bodies, the model for water dispersion of miscible substances

is actually composed of a series of different theoretical predictive methods.

This serves the purpose of estimating the concentration levels of the dis-

persing chemical in water at different locations and different times after
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the occurrence of a spill at some point.

Since the objective of the work described in this report was the further

development and refinement of the spill model for the dispersion of miscible

substances in water, it is important to recognize and emphasize that the model

describes a particular type of chemical behavior and the consequences of that

behavior. Additional hazards may result from other behavior on release; there-

fore, in this section the overall framework for hazard assessment provided by

CHRIS and HACS is introduced and the approach and concepts employed in these

systems are beiefly described.

a. Overview

CHRIS and HACS were designed to enable quick and accurate estimates of

hazards presented by a discharge, or potential discharge, of hazardous chemi-

cals, and to provide these estimates in a form useful to response personnel.

The broader scope of CHRIS encompasses a compendium of chemical data, data

on response methods, data bases for contingency plans, and field manuals, in

addition to analytical methods and manual procedures for quickly obtaining

hazard estimates. HACS was originally developed as an extension of the analy-

tical procedures included in CHRIS to extend the level of detail and accuracy

beyond that possible for simplified field procedures.

HACS is a computer-based system, incorporating the mathematical models

originally developed as the basis for the field calculation procedures imple-

mented in CHRIS, and a number of specialized models developed specifically

for computer application. The design and implementation of HACS focussed on

providing rapid and quantitative assessments in response to questions such as

the following:
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* When will the air/water concentration of a discharged material

reach a specified level of toxicity at a given location?

* When will the air/water concentration return to a specified safe

or nontoxic level?

e What is the concentration of discharged material at a specified

location and time?

Both CHRIS and HACS are generalized systems, encompassing different types

of chemical behavior and different types of hazards. They have been designed

for use under emergency conditions involving the actual or potential accidental

discharge of a hazardous material into navigable waters and for such non-

emergency uses as contingency planning (pre-planned assessments and responses),

training, and evaluation and improvement of assessment methods.

b. Information and Use Requirements

The evaluation of a hazard due to a chemical discharge was considered to

involve the following sequence of action:

" Determination of information pertinent to the on-scene conditions

at the spill site.

" Selection of appropriate calculation procedures.

" Evaluation of the extent of hazards as indicated by these calcu-

lations.

Within CHRIS, information describing on-scene conditions was considered to

fall in two categories: (1) that which is absolutely essential for even the

most basic assessment of hazard potential and (2) that which will permit a

more refined and accurate assessment if time permits. For use with HACS, a

broader class of information inputs were postulated, encompassing on-scene

data, characteristics of chemical behavior that might be independently
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obtained, and computer system parameters for use in selecting tables and gra-

phic displays of hazardous conditions. Provisions were then included within

HACS to permit computations to be carried out under the realistic condition

in which not all desired information is available.

The types of information relating to the discharge conditions at the

scene of the spill as incorporated in HACS are:

" Discharged chemical characteristics (e.g., name, storage pressure,

temperature, quantity).

" Discharge conditions (e.g., tank size, location of discharge open-

ing relative to water's surface and to tank level).

e Environmental conditions (e.g., wind speed, air and water tempera-

tures).

" Marine conditions (e.g., current speed, water depth at spill site,

spill geography).

c. Specification and Selection of Calculation Procedures

Once the chemical being discharged has been identified, the hazard pre-

sented can be assessed provided the nature of the interactions of the chemical

with water is known. The approach utilized for CHRIS and HACS was to classify

the different types of water interactions that might occur and then to list

chemicals of interest into these interaction categories. Since the chemical

behavior depends on a variety of factors, including chemical properties and

environmental conditions, chemicals grouped by one type of interaction may

also separately and individually be associated with other types of interac-

tions, and multiple types of hazard situations may be presented as a conse-

quence of the release of a specific substance.
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The resulting classification approach was developed in the form of a

hazard assessment tree and is represented by Figure 1. Given the properties

of the discharged chemical and ambient conditions, the appropriate vertical

path in the tree can be selected and followed to determine which calculation

procedures should be used for the particular chemical.

The first box (beneath ACCIDENT) in Figure 1 is designated by the letter

A and represents a quantitative description of the discharge, e.g., the chemi-

cal, its rate of flow or total quantity discharged, the state of the discharged

chemical, and significant parameters, such as temperature and pressure. De-

pending on the state of the released chemical (gas, liquid, solid, or mixture),

it can be said to belong to one or more of the vertical paths represented in

Figure 1:

* Gases

* Liquids

" Non-reacting with water

" Boiling point below ambient temperature of water

" Boiling point above ambient temperature of water

" Reactive with water

" Self-reacting (polymerization, decomposition, etc.)

e Solids

e Soluble

* Insoluble

* Reactive.

Along each path flowing from the release condition in Figure 1 are deci-

sion points that are based upon physical properties and eavironmental condi-

tions. Following these decision points are a series of calculation procedures
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which mathematically represent different physical phenomena (boiling, dis-

persion, etc.). While these procedures simply indicate how rapidly certain

physical processes are taking place, they are essential because they help

determine the extent of the hazard. Each calculation procedure is designated

by a letter, so that a particular path may be referred to by a series of let-

ters. This series of letters is called the "hazard assessment code" and is

identified in CHRIS and HACS for each chemical considered; currently data is

contained on 900 compounds. Each path eventually leads to one or more points

of hazard evaluation. By indicating which calculations must be performed and

providing generalized methods of making the desired calculations, CHRIS and

HACS allow one to progress along the appropriate path and determine the poten-

tial hazard presented by a chemical discharge.

Each branch (or path) of the tree represents a particular assessment

estimation route which describes the behavior of a particular type of chemical

under a given set of user specified accident conditions. Since the properties

of a chemical may vary with ambient conditions (i.e., temperature), and in

some cases, depending upon the chemical spilled, various types of hazards are

possible for a given set of accident conditions (e.g., gas or liquid release),

some chemicals may follow more than one route down the tree. These alterna-

tives have been reflected in the hazard assessment codes given in CHRIS and

HACS. Each scenario or possible situation for which an assessment may be de-

sired makes up a subset of the total hazard assessment code given. At pre-

sent, HACS accepts only one subset of these alternatives (defining a single

branch) at a time, producing the hazard assessment for that subset. It is

important that the user recognize that a number of computer runs (one for

each possible subset) may be required to fully assess all the hazards which
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may be presented by the spill of a given chemical under particular conditions.

d. Hazard Assessment

Once the identity of the discharged chemical and the associated hazard as-

sessment code have been established, the appropriate hazard assessment calcu-

lation procedures can be carried out.

Within CHRIS, the hazard assessment is made manually with simplified cal-

culations utilizing graphs and tables. Corresponding to each letter in the

hazard assessment code is a calculation procedure displayed in graphic or

tabular form. Some procedures are generalized and can apply to several chemi-

cals whereas others are specific for an individual chemical.

In HACS, however, the calculation procedures are embodied in a set of

specific computer programs for estimating discharge conditions and chemical

behavior. Each program contains one or more mathematical models[12,13) for

the calculation procedures along the hazard assessment tree, and the individual

models contained within HACS are also identified by similar one or two letter

codes. In the present configuration, those models applicable to discharges

of the hydrazine fuels include: (A) release or discharge model; (P) concen-

tration of water-miscible liquid or solid for a discharge into a lake, river,

or estuary; (Q) pool fire model for soluble liquids which have a boiling

point greater than ambient; (R) for vapor evolution from a chemical discharge

into water; and (S) for vapor dispersion in support of model R. The work de-

scribed in this report addressed the refinement and enhancement of the model

for the concentration of a miscible chemical in water (P).

HACS provides estimates of hazards in the following manner: The system

first begins by accepting user input which provides identification of the

chemical substance which was spilled, discharge conditions, marine conditions,

and environmental conditions.
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To obtain detailed chemical specific properties, the current models auto-

matically interface with a separate data base containing information on 900

chemicals. Since this file contains only the quantitative data required to

operate the simulation models, it is a subset of the chemical data given in

CHRIS. Each chemical is identified by a 3-letter code which is entered by

the user to retrieve the desired physical property data. The codes for the

hydrazine fuels are: (DMH) unsymmetrical dimethyl hydrazine; (HDZ) hydrazine;

and (MHZ) methylhydrazine. Physical properties for these chemicals are re-

corded as data constants or empirical functions of temperature.

Some properties, not measured in the laboratory, have been estimated using

techniques which have been proven acceptably valid for similar chemicals.

The techniques were selected and utilized by R. Reid, co-author of the stan-

dard reference, "The Properties of Gases and Liquids" by Sherwood and Reid[14,

15,16]. Properties are arranged in alphabetical order by chemical code (the

three-letter recognition code assigned to each chemical) and all properties

pertaining to a given chemical are contained in one logical record, automatic-

ally available to HACS for conducting a hazard assessment.

Since not all items used in the file apply to each chemical, a data quality

or type scheme is used. Each data item in the file, for each chemical, has a

code assigned with it to indicate whether the value entered is exact, an es-

timate, or not applicable. The properties for a given chemical are accessed

by specifying the recognition code for the desired chemical. This is the

only input required by the user to obtain the required physical and chemical

properties associated with the discharged chemical. However, the data type

scheme provides a means for allowing data entered by the user to override
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values that would otherwise be selected from the property file. Thus more ac-

curate chemical data, if available, can readily be substituted, or effects of

variations in physical properties can be investigated.

If HACS requires additional data that has not been provided by the user

or obtained from the chemical properties file, the system automatically re-

trieves nominal values from an internal default file. The default file is

used to (a) define the characteristics and units of measure of all input items

and computed results and (b) provide reasonable estimates or default values for

each item to enable hazard assessments to be made under conditions of limited

data availability.

Overall control of the input operations is provided by the user input pro-

cessor portion of the HACS system which accepts and stores user input data in

optional systems of measure, provides limit tests for the reasonability of in-

put data and estimated computed hazard levels, coordinates the internal use

of data and computed values according to a data item quality hierarchy, and

provides overall control of the assessment computation sequence (for example,

allowing single runs, or iterative computations for sensitivity analyses).

This portion of the system also contains all generalized software used for

producing output reports and plotted displays of model outputs.

On completion of the input processing step, HACS begins the estimation

or assessment calculations. This process is the execution of a sequence of

mathematical models, specified by the user according to a path of the hazard

assessment tree, to obtain information such as the concentration of the dis-

charged material at a specified location and time after the onset of a spill.

If flow rates are known, or if other information (such as pool diameters)

that normally would be calculated by MACS models is available from field
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observations, the execution of assessment models may be selectively omitted

by submitting user inputs to override (i.e., replace) information which would

otherwise be calculated by the model. HACS contains an internal data priority

or hierarchy scheme which provides decision logic to permit the user to over-

ride values which would otherwise be calculated as model outputs. This capa-

bility also allows the user the option of not omitting the execution of a

particular model while at the same time overriding all or part of the output

of the model which might normally be passed as input to a subsequent model.

In this event, HACS will execute the model for which overriding output values

have been provided, display the calculated results, and then substitute the

override values for use as may be required in subsequent calculations. This

enables the user to compare calculated results with information available from

independent sources or on-scene observations and to make qualitative assess-

ments of the relative reasonability or accuracy of these values.

When the execution of the models specified for a particular hazard assess-

ment scenario has been completed, the system produces textual reports, and, if

desired, optional tables and/or plotted output displays. The system output

identifies the spilled chemical, restates the discharge, environmental and

marine conditions, and reports the hazard assessment. The output enables the

user to validate input data quickly and accurately. The system can plot ther-

mal radiation, concentration, or other variables (e.g., pool radius, tempera-

ture of liquid remaining, and volume of liquid remaining) as a function of

location and/or time, as appropriate. The objectives of the system are to

obtain and display estimates of the dispersion of a chemical or the effects

of that dispersion in the environment as a function of distance and time in

terms of the extent to which flammable or toxic limits may be exceeded. The
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subjective interpretation of the potential hazards as a consequence is not in-

cluded within the scope of the system.

The development of HACS has proceeded through several evolutionary stages,

initially encompassing the encoding of the analytical models developed for

use with CHRIS, then continuing through the development of extended computer

simulation models, i~ternal file structures, and output display capabilities.

The existing version of HACS has been placed in operation by the U.S. Coast

Guard, and at the present time further development of the system is being

focussed on two areas. First, the basic assessment models are being refined

to reflect advances in modeling techniques and the needs of users requiring

information in real world situations. Second, the development of a fully in-

teractive terminal interface for HACS has been initiated to provide a dialog,

by means of remote terminal, between the user and the system as the operations

of input and calculation proceed. This interface is being developed under the

control of, and integrated with, the internal default data definition and pri-

ority scheme to enable the system to automatically guide users through the

input requirements, selectively display prompts, and respond to user direction

during a calculation sequence.

4. TYPES OF SPILL ENVIRONMENTS

When a water miscible liquid is spilled on a water surface, mixing takes

place, thereby diluting the liquid. The mixing is caused by molecular dif-

fusion in calm water and mass convection (turbulent diffusion) in streams,

rivers, estuaries, and the sea. Mixing may take place preferentially in one

direction, depending on the flow conditions, flow geometry, water density gra-

dients, and the like. Because of the predominance of certain types of mixing

phenomena in different regions of the navigational waters, the spill
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environments are broadly classified as: lakes, non-tidal rivers, tidal rivers,

estuaries or salinity intrusion regions of tidal rivers, and open sea[12].

In non-tidal rivers the main agency for mixing is stream turbulence. In

tidal rivers, estuaries, and also in the open sea, wave action becomes quite

important in addition to the stream or current velocity. In estuaries and

other regions where a density stratification of water due to salinity is like-

ly to be found, mixing caused by the density-driven circulation can become ex-

tremely important. However, since the velocities involved in these circula-

tions are small and the area influenced by these flows is generally large,

only long-time effects are important. For assessing the hazards caused by a

relatively infrequent spill (even though the tonnage of the spill itself may

be large) the effects of salinity-driven mixing can be ignored[12].

In later sections of this report, detailed descriptions are given of the

nature of the turbulent dispersion processes predominating in these different

regions, methods available for describing these processes and the feasibility

for inclusion in a generalized spill model of this type. For some cases, such

as large lakes and regions of the open sea, quantitative descriptions requir-

ing data unique to a specific spill location are not readily available for use

in a generalized model.

In general, the receiving water bodies are treated as three-dimensional

non-isotropic volumes, that is, turbulent dispersion is assumed to occur at

different rates along the principal coordinate axes selected for the water

body. Where appropriate, applicable methods for obtaining or computing values

of these dispersion coefficients are presented, and, where necessary, simpli-

fying assumptions are suggested and incorporated in the computerized version

of the model. However, the form of the theoretical expressions as implemented
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continue to reflect the non-isotropic nature of the dispersion processes, so

that different values of the turbulent dispersion coefficients can readily be

used in place of internally computed values should suitable alternate general-

ized methods of computation become available.

The predominant types of receiving water bodies then are distinguished

for the purpose of modeling by the predominant nature of the motion of the

water body:

" Still Water - in which different dispersion currents may occur

in different directions, but the water body is characterized by

the absence of bulk motion of the receiving fluid (thus the re-

ference to still water). Also, as implemented the geometry

presently incorporated for the still water case assumes that the

boundaries of the water body are located far from the location

of the spill so that unconfined dispersion occurs in three direc-

tions. The model therefore is only strictly appropriate for

spills occurring in large lakes, or regions of open sea, far

from shore, and in the absence of significant wind, wave action,

or induced currents.

" Non-Tidal Rivers - in which the characteristics of the water body

are non-isotropic, with turbulent dispersion occurring at different

rates in different directions, and where bulk fluid motion of the

receiving water body occurs in one direction (downstream) at a

uniform rate. In many cases the influence of turbulent diffusion

in the longitudinal direction is commonly considered to be negli-

gible with respect to the bulk fluid motion. Also, in addition,

the river cross section is assumed to be bounded by channel banks
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and bottom so that the lateral spread of the chemical in the

water may be confined. The longitudinal (downstream) direction

is assumed to be unbounded.

& Tidal Rivers - in which the same configuration is assumed as for

a non-tidal river with the addition of a sinusoidal tidal veloci-

ty component superimposed on the non-tidal river velocity.

a. Water Body Coordinates and Geometry

(1) Still Water

The coordinate system used for spills into still water (lakes and open

sea) is shown in Figure 2. The origin of the coordinate system is at a point

on the surface of the water body, thd x and y axes lie in the plane of the

water surface and the positive z-axis is downward so as to form a right-

handed orthogonal coordinate system. Since the dispersion is unconfined, the

region of potential interest is given by all values of x and y, and values of

z > 0 (for depth).

The origin of the coordinatesystem is taken at the location of the spill

so that the coordinates of a point in the still water system also specify

position relative to the spill. This is not the case for river system coor-

dinates.

(2) River System Coordinates

Figure 3 identifies the coordinate system (x,y,z) used for spills into

both non-tidal and tidal rivers and illustrates the assumed river channel

geometry. The river channel is assumed to be rectangular in cross-section,

having a constant width w and a constant depth d. The origin of the river

coordinate system is taken at the centerline of the river on the surface.

The half-width of the river, the distance from the centerline to either bank,
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is denoted as b. In river system coordinates, the positive x axis gives down-

stream distance, positive z gives depth below the surface and y is cross-stream
q

so as to form a right-handed coordinate system.

For non-tidal rivers, the bulk fluid motion is assumed to occur in the

x-direction, at a constant uniform cross-sectional velocity given as u. For

tidal rivers, an additional sinusoidal tidal velocity is superimposed on the

non-tidal velocity.

The location of a spill in a river is taken to be at the surface

(x = 0, z = 0) at a point in the channel offset from the centerline by a dis-

tance given as a. Positive values of the offset a correspond to spill loca-

tions in the positive y direction. Since the coordinates of any position in

the river, given in river coordinates, do not also specify position relative

to the spill location (unless a = 0), a transformation is required for the

general case of spills occurring at offsets from the centerline.

b. Observation Point Coordinates

In this context the observation point refers to the location (time and

distance) in the coordinate system of the receiving water body at which the

concentrations resulting from a spill of a chemical are to be obtained. Al-

though occasionally absolute time may be used in the body of this report to

substantiate or clarify derivations, the time at which the concentration at

the observation point is desired is always specified by the elapsed time from

the start of the spill.

(1) Transformation from Spill Coordinates to Water Body Coordinates

Solutions of the governing diffusion equation express the concentration

of a spilled chemical in terms of the distance from the spill location and

generally in terms of elapsed time from the start of the spill.
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For still water, since the origin of the coordinate system is taken at

the spill location, the coordinates of an observation point relative to both

the water body system and the spill are identical, and the still water coor-

dinates (x,y,z) may be directly substituted for the corresponding spatial coor-

dinates in the diffusion equation solutions.

For river system coordinates, solutions of the diffusion equation express

concentrations in the receiving water body, in general, in the form c(a,8,y,t)

where the origin of the spatial coordinates (a,a,y) is taken at the spill loca-

tion on the surface of the river. The direction of the coordinate axes are

assumed such that the positive a-axis is along the downstream direction, the

positive y-axis is downward, and the positive a-axis is cross-current so as

to form a right-handed coordinate system. The form c(x,y,z,t) expresses con-

centrations in the river with reference to a fixed point in the river geometry,

while c(a,8,yt) expresses the concentration with respect to the spill origin

in the water moving with the current.

Application of this equation to spills into rivers of rectangular cross-

section first requires a transformation from the spill-centered coordinates

a, a, y to the river system coordinates x, y, z which reference the spill loca-

tion to the channel geometry. Second, the concentrations expressed in spill

coordinates as c(a,8,y,t) usually represent unconstrained flow, that is, con-

centrations of the pollutant are given for values of the coordinates a, $, Y

increasing without limit, and it is necessary to impose constraints arising

from the boundary conditions, for flow in rivers, at the channel surface,

banks, and bottom. The method of applying these constraints is described in

the section on the non-tidal river model.
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The transformation between the spill-centered coordinates (a,ay) and

the river system coordinates is obtained from the definition of the river sys-

tem coordinates as:

X 0. a X

y = a + a or, y - a

z y yz (2)

Thus, solutions obtained from the diffusion equation relative to spill-centered

coordinates in the form c(a,a,y,t) are transformed to concentrations relative

to river system coordinates by simple substitution yielding c(x,y-a,z,t).

c. Coordinate Constraints

For spills in still water, the coordinates (x,y) of an observation point

may be positive or negative, while the z coordinate (depth) must be greater

than zero. Values of elapsed time less than zero should yield concentrations

of zero at all locations. Although x, y, z, and t may take on large values,

limits should exist beyond which computed concentrations should be zero; the

values of these upper lImits will, in general, depend on the behavior of the

dispersing chemical.

Since the river system geometry is more complex, additional constraints

are required. The location of the spill must be contained within the river

channel;

-b < a < b (3)
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Symmetry could be used to restrict the allowed values of the offset, a, to

only positive values of y; however, this is not necessary. The y coordinate

of the observation point must also similarly be constrained to lie within the

channel banks:

-b < y < b (4)

The observation point must be located at or below the surface, but at or above

the channel bottom:

0 < z < d (5)

The coordinate of the observation point in the longitudinal direction, x, will

have upper and lower limits depending on the behavior of the dispersing chemi-

cal and the type of model used. In some cases, at very short times after the

start of a spill, some concentrations may occur for small negative values of

x. As for spills in still water, both x and t may take on large positive

values, but should also have finite upper limits beyond which only zero values

of concentration can be obtained to within available numerical accuracy. For

values of elapsed time less than zero, concentrations at all locations should

also be zero.

The dimensions of the river channel, the half-width b (or the width w),

and the depth d must be greater than zero. Depending on the specific formu-

lation of the river models, it may also be necessary to constrain the bulk

fluid flow such that the velocity u is non-zero; however, some river solutions

of interest may degenerate without difficulty to still water models.
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(1) Confined or Unconfined Dispersion

For the lake or still water model, the spill is assumed to occur in a

region of water far from shore so that the effects of the shore or bottom in

confining the spread of a chemical in water may be neglected. In the case of

spills in non-tidal rivers, however, the channel banks or bottom may act to

restrict the dispersion of the chemical and give rise to different regimes or

sub-environments for inclusion in the models.

For the initial stages of a spill into a non-tidal river, at a point on

the surface of the water sufficiently far removed from either bank, the spread

of the chemical will occur in a nearly unconfined manner (such that the effects

of the channel banks may be neglected). During the initial stages of uncon-

fined dispersion, the spill model utilizes a three-dimensional formulation of

the dispersion equations to obtain values of the concentration at any point in

the river cross-section; this form of the concentration equation is commonly

referred to as a near-field model, and applied for times close to the start of

the spill when the effects of channel confinement are negligible.

Depending on the relative depth and width of the river, and the location

of the spill point with respect to the channel geometry, at some time after

the start of a spill, the effects of the channel boundaries become more sig-

nificant and the mixing will tend to become more or less uniform in either the

horizontal direction, the vertical direction, or both. At some later time,

complete mixing across the cross-section of the river can be assumed, and a

simplified model, based on this assumption, can be used to obtain the cross-

sectional average concentration. Such a model is referred to as a far-field

approximation, or one-dimensional model, since the average concentration is

assumed to be a function only of time and longitudinal distance from the spill
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point. The primary advantages of such a model are that the computations are

significantly simplified for regions far removed from the spill point, and

analytical approximations for very large times and distances are readily de-

veloped.

For the intermediate region of interest, between the near-field and far-

field extremes, a two-dimensional model could be postulated based on uniform,

or nearly uniform cross-sectional mixing in one cross-sectional direction

but not the other, with appropriate boundary conditions specified to govern

the limits of applicability of the model. However, the effects of the channel

banks and bottom may also be directly incorporated in the three-dimensional

or near-field model by a method of superimposing contributions from virtual

spill sources to satisfy the boundary conditions at the channel limits. This

is the method that has been utilized for the spill model so a separate two-

dimensional spill model is not required. In fact, if a sufficiently, large num-

ber of virtual sources were included, the near-field model could also be used

for large times or distances in place of the far-field model.

Details of the application of virtual sources and the specification of

the transition between the near-field and far-field models are presented in

the section describing non-tidal rivers.

5. TYPES OF CHEMICAL RELEASE

The dispersion of a chemical in water is affected by the initial condi-

tions at the start of the release and whether the discharge takes place over

an extended duration. Releases are characterized as point sources or distri-

buted sources to indicate the initial spatial distribution of the released

chemical. Relatively simple mathematical expressions are readily obtained for

point sources in which a finite amount of chemical substance is initially
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introduced into an infinitesimally small volume of the receiving water body;

these models have a disadvantage in that the estimated concentration at the

spill location has an infinite value initially and will exceed the density

of the spilled chemical for some time after the start of the spill. Distri-

buted sources, on the other hand, refer to releases which take place over a

finite dimension, which may be a line (l-D), area (2-D), volume (3-D), or any

combination of these. In a later section of this report the effect of the

initial source distribution on the resulting concentration profiles is illus-

trated. The second fundamental characteristic of the spill process is whether

the spill of the entire amount of substance occurs instantaneously, or con-

tinuously over some finite duration. Commonly, continuous spills are assumed

to take place over long durations, and the initial rise time as the dispersing

chemical spreads through the receiving water body is usually neglected. Thus,

most solutions obtained for continuous spill conditions represent steady-state

concentration distributions where, subject to the conditions of the start and

cessation of a release of finite duration, the steady-state concentration at

any observation point x, y, z is independent of time. The third subject con-

sidered here is the nature of the chemical degradation or decay process which

may take place as the spilled chemical is dispersed in the receiving water

body. Although this behavior is not, strictly, a condition of the chemical

release, the governing continuity (or mass balance) partial differential equa-

tion can readily be transformed to obtain concentrations in terms of a fixed

rate constant and an initial amount of spilled chemical. Also, applications

based on the principle of conservation of mass are simplified if the total mass

of a chemical dispersing in the environment, as a function of time (but not

distance), can be expressed in terms of the initial chemical release.
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a. The Instantaneous Point Source

[Text of the following six paragraphs appearing in brackets was abstracted
j

from a discussion given in reference[17] pertaining to dispersion in air; al-

though the context has been modified for the purpose of this report, much of

the concept and text have remained unchanged.]

[The instantaneous point source is the conventional approximation to the

type of release associated with a very short venting of material, such as

might be associated with an explosion, tank car derailment or similar occur-

rences of short duration. The term instantaneous point is a mathematical

simplification since even a small, rapid explosion will have finite time and

space dimensions. The slug, or mass of spilled chemical, once formed, moves

away from the source with a speed and direction determined by the prevailing

bulk fluid velocity of the receiving water body (as in the case of a river).]

In still water the mass of the spilled chemical remains centered about the spill

location (only turbulent dispersion or molecular diffusion takes place and

this simplified behavior is not discussed further).

[The mean speed and direction of the slug can be expected to change

from the original values during its travel as the pattern of river currents

in which it is embedded changes with time.] Since specification of river

current variations is not practical within the objectives of a generalized

spill model, a limiting assumption is employed that the river flows with a

constant cross-sectional velocity so that the center of mass of the spilled

slug moves downstream, along a longitudinal line from the spill location,

at a constant rate equal to the river velocity.

[As the slug moves, it will expand about its center owing to the ac-

tion of turbulent fluctuations. If an idealized slug is embedded in a
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uniform turbulent field in which all the turbulent elements are smaller

than the dimensions of the slug, the entire mass of spilled chemical will

be carried downstream in a uniform manner. The slug will grow in size as

its edges are mixed with the water by turbulence. This growth is accom-

panied by a proportional decrease in concentrations within the slug.]

[If the slug is originally embedded in a field of turbulent elements

that are considerably larger, the movement of the slug will occur mainly

by bulk transport driven by the turbulent elements, with relatively little

dispersion or decrease in concentration within the slug. If the slug is

instead embedded in eddies of approximately the same size, diffusion will

be quite rapid and the concentration within the slug will decrease rapidly.]

[The downstream distribution of the spilled substance after it has

been dispersed is frequently expressed in terms of exposure, or the time

integral of the concentration as the slug passes the observation point.]

It is of interest to note the application of instantaneous release

phenomena in the field of nuclear engineering. [Although the so-called

"hot-cloud" accident, an instantaneous release of all the nuclear and

chemical energy of a reactor to the atmosphere, is no longer considered

credible because of reactor-containment features, other possibilities for

generating sources of this kind exist. Some examples are the short-term

controlled release of fission products from a contained accident, explo-

sive accidents occurring during nuclear-fuel reprocessing, accidental

criticalities, launching-pad accidents involving nuclear (or chemical)

rockets, and non-nuclear explosions of all kinds.]
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b. The Continuous Point Source

[Text of the following three paragraphs appearing in brackets was ab-

stracted from a discussion given in reference[17] pertaining to dispersion in

air; although the context has been modified for the purpose of this report,

much of the concept and text have remained unchanged.]

[Continuous point sources give good approximations to tank venting from

small holes, fissures or pipes. The approximation given by the point source

for the true source configuration becomes increasingly better as the distance,

at which the concentration is observed, becomes large compared with the dimen-

sions of the source.]

[A continuous release may be considered to be made up of an infinite

number of slugs released sequentially with a vanishingly small time inter-

val between slugs. Initially each slug moves with the river current at

the moment of release. The quantity of material released is usually ex-

pressed in terms of a release rate and the downstream material distribution

is usually expressed in terms of average concentration over the period of

release. Linear dimensions of the dispersing material perpendicular to the

longitudinal axis, running downstream from the spill site, are often given

in terms of the standard deviation of the concentration distribution since

the average cross-sectional distribution, in the absence of significant

boundary effects, is usually close to a normal curve with boundaries at

infinity.]

(Since the plume from a continuously maintained point source expands

both laterally and vertically with downstream distance from the source, the

center-line concentration along the downstream axis from ;he spill point
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will drecrease continuously with distance. The rate at which this decrease

occurs will depend on the magnitude of the turbulence.]

Further detailed discussion is given in this reference[17] with respect

to time-averaging and the variations in wind velocity and direction which are

particularly significant for airborne phenomena. For the purpose of the water

dispersion model, an adequate concept of a continuous release is that of a

series of an infinite number of instantaneous releases, creating a plume in the

downstream direction of a dispersing chemical mass. Concentrations are reduced

with distance from the spill in both the longitudinal and cross-stream direc-

tions; however, for long duration events, the concentration obtained at any

observation point is a steady state value, and not a function of time.

c. Distributed Sources

[Text of the first three paragraphs following and appearing in brackets

was abstracted from a discussion given in reference[17] pertaining to

dispersion in air; the text has remained substantially unchanged.]

[Although instantaneous and continuous point sources have been exten-

sively utilized in modeling or describing a broad range of diffusion phe-

nomena, a number of other source configurations have received attention also.

The instantaneous line source is a fairly common type that can be approxi-

mated by a continuously emitting, rapidly moving system, such as a crop-

spraying aircraft. Such a line is usually thought of as extending to

infinity in both directions so that along-line diffusion may be neglected,

and the decrease of concentration with travel distance is entirely ex-

plained by diffusion in the vertical and along-wind directions.]
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[Another source type, the continuous line source, may be approximated

by a busy highway or a line of closely spaced vents. Since the release

is continuous, the sampling time is germane.] Line sources are often as-

sumed in modeling water dispersion from sewage outfalls.

[The continuous area source, although as yet of minor importance in

nuclear problems, is receiving increasing attention in the urban air-pollu-

tion field. A city, with its multitude of pollutant-emitting sources, is

the most common and characteristic representative of the area source.]

(1) Principle of Superposition

The distributed sources, which may also be instantaneous or continuous,

are distinguished from the point sources by a spatial dimension or distri-

bution at the release location. Depending on the nature of the release this

variation may be assumed to take place in one, two, or three dimensions. In

some situations, such as the discharge of sewage from a fixed system of

discharge pipes, the geometry of the discharge distribution may be obtained

or known with some degree of accuracy. In other cases, however, such as

associated with the accidental and possibly violent release of a chemical

in large quantities, there will be considerable uncertainty in determining

the initial geometry of release. Also, it should be noted that at large

distances from the location of a spill, the effects of the initial distri-

bution will become diminished, and the resulting concentrations will approach

those produced from a point source. However, it is the benefit of obtain-

ing model representations in which the concentrations at the spill loca-

tion remain finite and are susceptible to arbitrary initialization that

prompts continued interest for simplified cases.
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As the discussion in the preceding section implied, the bahavior of a

continuous point source release can be modeled by integrating the contribu-

tions of a series of instantaneous point sources over time, applying the prin-

ciple of superposition since the diffusion equation is linear. Thus, any

arbitrary continuous release rate behavior may be assumed (whether or not

justified by observational data), although the nature of the integration may

not lead to closed form solutions.

In an analogous manner, the contributions from a series of instantaneous

sources with origins at different locations may be integrated with respect to

the spatial dimensions to develop expressions for concentrations from instan-

taneous distributed sources of any arbitrary configuration. Finally, these

expressions may then be integrated with respect to time-varying release condi-

tions to obtain concentration functions for continuous distributed sources.

(2) Virtual Sources

Since in many cases of practical interest the integrations required

to obtain superimposed solutions are not readily carried out, distributed

sources can frequently be approximated by assuming a point source to be

located at some distance removed upstream from the location of the distri-

buted source. The offset distance may either be arbitrarily specified, or

determined such that at the time the slug from the virtual source reaches

the actual spill location, some characteristic of the dispersing chemical

from the virtual source can be related to a characteristic of the dLstri-

buted source. Elapsed time from the start of the distributed spill is then

given as the elapsed time from the start of the virtual spill, less the

travel time from the location of the virtual spill to the location of the

actual spill.
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(3) Modified Solution

Since there may be considerable uncertainties in determining the configura-

tion of a distributed spill and evaluating the resulting integrals may be quite

complex, an alternate approximation may be taken. This method, illustrated by

example in Section II, paragraph 3.d, essentially entails adding an artificial

term to the denominator of the concentration equations for an instantaneous

point source, such that the initial concentration at the spill location may

be set to any arbitrarily desired value. The initial condition still retains

the nature of a point source, that is, initial concentrations at locations

away from the origin are zero, so that an initial spatial distribution is not

obtained. Also, as a result, conservation of mass is not maintained by this

method of solution; that is, integration of concentration with respect to spa-

tial coordinates will not yield the total mass of chemical spilled instantan-

eously until some time after the occurrence of the spill. This could, however,

be considered as an alternative to the representation of an instantaneous

spill.

d. Chemical Degradation on Release

The form of the continuity or governing diffusion equation provides for

limited modeling of non-conservative effects such as decay or degradation.

The rate of loss is assu.ied to be proportional to the concentration of the

substance, and the factor of proportionality is taken as a decay or rate con-

stant, k, having dimensions of (time)- I .

Solutions of the diffusion equation for the Gaussian model give the re-

sult, for an instantaneous release, that the concentration distributions de-

pend on the total mass of substance in the diffusing media, given in the

form:
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M(t) M(O) e-kt (6)

where

M(O) = total mass of chemical, released instantaneously into

the environment at time t = 0

M(t) = total mass of substance remaining in the environment after

an elapsed time t from the release

k = decay factor or rate constant for overall degradation of

chemical in environment

t = elapsed time from release.

This results in a description of the time-dependent degradation pro-

cess that is simply related to the elapsed time from release and is a

usual limitation of a Gaussian model. The influences of chemically inter-

acting sources or source components of formation reactions involving

several primary or secondary pollutants, or the photochemical effects are

normally beyond the scope of these models[18].

The ratio of the total amount of substance in the diffusing media at

any time to the amount initially present can be written in non-dimensional

form, letting the ratio be denoted by a, as:

a(t) M(t) e-kt (7)
M(O)t so



where values of the exponential function a(t) vary from a(O) 1 to 0 as t be-

comes very large; values of a(t) are plotted in Figure 4 for values of kt from

0.0 to 3.0.

If no decay or degradation is assumed to take place, then for k 0 0, the

value of a(t) is 1.0 for all values of time; therefore, the total amount of

substance in the environment is constant and equal to the amount originally

released at time t = 0.

For non-zero values of k, decay occurs rapidly over a short range of

values of kt. It is interesting to observe that the concentration distribu-

tions are proportional to the total mass in the environment. The ratio varies

from 1.0 for kt = 0 to approximately 0.05 for kt = 3.0 (only 5 percent of the

mass originally released remains at kt = 3). Thus, for large values of k, the

time over which finite concentrations may exist will be limited.

Half the mass originally released remains at a time t1 /2 given by:

1 -kt1/2
/L2)tl 12 e (8)

so that

ln(2) . 0.693 (9)1/2 k k

where t1/2, the time for one-half of the original amount of substance to decay,

is known as the half-life. If half-life data is available, the appropriate

rate constant for use in the spill model is given by:
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--- --- ~ ~------------ 11lo ,

k 0.693 (10)tl1/2

where the units of the decay constant are the reciprocal of the units in which

the half-life is given assuming that the data approximates a first order decay.

Reduction of substance in the environment may be the result of more than

one decay process. If separate degradation processes (such as oxidation, bio-

degration, hydrolysis, and photolysis) are estimated in terms of separate rate

constants, the overall decay coefficient k is obtained as the sum of the indi-

vidual rate constants. The half-life of the material is obtained as ln(2)

divided by the sum of the rate constants. If the degradation processes are

described by separate half-lives, then conversion to individual rate constants

is required before the summation.

As discussed in greater detail in Section I, paragraph 2, half-life es-

timates for the degradation of hydrazine fuels in the aquatic environment ap-

pear to be on the order of 10 to 1000 hours. Taking a half-life of 100 hours

gives a nominal value for the decay coefficient of 6.93 x 10- 3 hours or

1.15 x 10- 4 minutes. At this value, an elapsed time of approximately 430 hours

would be required to reduce the total amount of a spilled substance to 5 per-

cent of its initial mass.

However, experimental studies[19] have concluded that slow degradation

rates occur in the absence of added catalysts, and, as a result, that hydrazine

should be assumed to be conservative in modeling aqueous spills. Furthermore,

to the extent that decomposition in water does occur, many of the reaction pro-

ducts may also be harmful; since the model does not have thL capability of in-

cluding reaction products, further justification is suggested for the
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conservative approach to ignore the separate reaction products and use a decay

coefficient of zero.

e. Conservation of Mass

(1) Instantaneous Releases

Where the actual elapsed time of release, from the time the spill

starts to the time the discharge ceases, is short with respect to the move-

ment of the spilled chemical in water, the discharge of the chemical can

be assumed to occur instantaneously. This is modeled as a release of a

fixed mass of substance, M, which occurs at time t = 0 (t is elapsed time

from start of spill).

In the absence of chemical degradation processes, the total quantity

(mass) of a substance introduced into the environment as an instantaneous

release is defined as:

M(t) = 0, t < 0

M(t) = J[(0), t > 0(n

where M(t) denotes the total quantity of mass in the environment. Since

the resulting concentration distributions are directly proportional to the

quantity of mass, for Gaussian distributions, it can be seen that this

gives concentration values of zero for values of elapsed time t less than

zero, as would be expected.
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Modeling the effects of degradation or decay processes in the aquatic

environment assumes that the overall degradation occurs exponentially,

giving for the instantaneous release:

M(t) =O, t < 0

-kt
M(t) = M(O) e , t > 0 (12)

where k is the overall decay rate constant and has units of (time)- 1.

-kt
Since e = 1 for either k = 0 or t = 0, only the latter expression in

Equation (12) for the total mass is necessary, since it correctly reduces to

the conservative case with k = 0.

At any time t conservation of mass will hold if the integral of the con-

centration distribution, in time and space, over the spatial dimensions of the

diffusing water body, is equal to the total mass of dispersing substance in

that water body, given as a function of time in the form above.

The expression for the total mass M(t) in the aquatic environment can

also be written in terms of the half-life of the chemical using:

1n 2 t
k = -- and t (13)

S1/2 t1/2

to obtain

M(t) M = M • 2- (
2 2
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where the term 8 is used here to denote the ratio of elapsed time to the chemi-

cal half-life and M(0) is written simply aq M. This provides a useful means

for estimating the time scale of interest for a dispersing chemical initially

released instantaneously. A few values of the term 2- a tabulated below:

_ 2-8

0 1.0

1 0.5

2 0.25

3 0.125

4 0.0625

5 0.03125

6 0.015625

7 0.0078125

show that after each interval of elapsed time equal to the half-life of the

chemical, the total amount of dispersing mass in the environment is reduced

by 50 percent, and that the mass remaining after seven multiples of the half-

life is less than 1 percent of the mass orginally released. Figure 5 illus-

trates the time history for the total mass of chemical in the aquatic environ-

ment for different instantaneous release conditions.

(2) Continuous Releases

When the actual elapsed time of release is large with respect to the de-

cay or movement of the spilled chemical in water, the discharge of the chemi-

cal is modeled using the rate of release of the substance instead of the total
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(a) Instantaneous release, no decay (k =0)
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(b) Instantaneous release with decay (k > 0)

Figure 5. Total Dispersing Mass for Instantaneous Rel es
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quantity released, M. Since the method of solution employs superposition of

the effects of a series of instantaneous releases, consideration of any func-

tional form for the time history of the continuous release is feasible, at

least theoretically. However, the resultant numerical integration to describe

an arbitrary time-varying release would significantly increase the complexity

of the model, and substantial uncertainty exists in the degree of accuracy

with which these variations can be determined for the types of releases con-

sidered for this model.

A simplifying assumption is introduced that a continuous spill is assumed

to occur at a constant rate. The spill or discharge is assumed to start at

elapsed time t = 0, and continue until a later time tmt. The discharge rate

is taken as a constant, M (mass/time), during this interval, and zero other-

wise. Transient effects at the start and cessation of the spill are not

modeled.

Given these assumptions, the total amount of substance discharged by a

continuous release to the environment, Q(t) (units of mass), is modeled as a

function of elapsed time by:

Q(t) = 0, t < 0

Q(t) = M t, 0 < t < t
-- mt

Q(t) = 0, t > tmt (15)
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If the total quantity released during the spill, Q(t mt), is denoted

by M for consistency with the total mass released from an instantaneous

source, then the duration or release time for a continuous source is ob-

tained from:

M
mt (16)

(a) Conservative Substance

In the absence of assumed decay or chemical degradation processes, the

entire amount of substance introduced continuously will remain in the environ-

ment. For use in the mass balance, this gives the time history for the total

mass of chemical substance in the aquatic environment as:

M(t) =0, t < 0

M(t) =St, 0< t< tmt

M(t) t tmt,  t > t mt (17)

so that the total dispersing mass increases linearly with elapsed time,

until t reaches a value of t after which time M(t) has a constant value

of M t mt* If the total mass spilled either instantaneously or continuously

is the same, then in the absence of decay, for times greater than tmt, the

total dispersing mass in the environment from a continuous spill is the

same as that from an instantaneous spill.
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(b) Decay Processes

The expression for the total amount of substance remaining in the

environment, resulting from a continuous release when decay or degradation

occurs in the environment, is obtained by treating the continuous release

as a series of instantaneous releases. Two cases are of interest: one

for observation times during the release interval and the other after

the spill has ceased. (Observation times prior to the start of the spill

correspond to zero mass.)

At time t, the total mass of chemical in the water will depend on the

total quantity that has been released from the stert of the spill at t = 0

up to the current time t. Considering any elapsed time T within this range,

the incremental amount of material released during a small interval of time

dr is given by M dr.

Considered as an instantaneous release, this incremental mass will decay

in the environment over time, contributing to the total mass at time t an in-

cremental amount given by M dT e . Limits are implied in that the con-

tribution is zero if T > t, T > tmt and T < 0.

For values of time less than tmt, the total quantity of substance in

the environment is obtained as the sum of the contributions from each of

the infinitesimal instantaneous releases occurring over the interval 0 to

t, or the integral:

M(t) f ek(t) dr, 0 < T < t, t < tint (18)
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This integral is evaluated to give:

M(t) [1 e - k t J t <t (19)kf - t to

When the elapsed time of interest, t, is greater than the time for

the continuous release to take place, tmt, the contributions of the infin-

itesimal instantaneous releases at values of T > tit are zero, and the

integral simply becomes:

M(t) = MtA ek(t) dT, t > tmt (20)

This is evaluated to yield:

M(t) = e - e k  , t > tt (21)

Due to the appearance of the decay coefficient in the demoninator, neither of

these expressions for the total mass directly simplifies to the previous equa-

tions obtained for conservative substances, Equation (17) ; however, series

expansion of the exponential terms can be used to demonstrate the consistency

of these expressions in the limit as k-0.

(c) Long Duration Continuous Spills

If the value of tmt is very large so that the continuous spill occurs

at a constant rate for a long time, the total mass of the substance in the

environment given by
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M(t) = .1- e (22)

approaches a steady state value, for large observation times, of:

lim M(t) = (23)

For small values of time the equation gives M(O) = 0 so the total mass of

the dispersing chemical increases gradually from 0 to the limit value of

M/k. This mass time history is illustrated by writing:

Ni M -kt
M(t) = M- M e (24)

and, observing the behavior of the decaying exponential term from Figure 4,

it can be seen that the total mass in the environment reaches 95 percent of

its steady state value at kt v 3.0.

Since the decay coefficient can be written in terms of the half-life,

at kt = 3.0, then

3.0 = kt = ttln 2 (25)
tl/ 2

so that t = 4.3 t1 /2. This indicates that if the duration of a continuous

release is greater than four times the half-life of the discharged sub-

stance in the aquatic environment, then the total amount of dispersing
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mass in the environment has approximately reached the steady state value,

which is also the maximum attainable value, at the given release rate of

or equivalently, k t1/2/in 2 at the given release rate.

Writing the expression for the total mass M(t) dispersing in the aquatic

environment in terms of the half-life and the ratio 8 of elapsed time to half-

life gives:

M(t) = M t/ 2  - 2 (26)

so that the value of M(t) can be expressed in terms of k, tl/ 2 , and 8.

Selected values are tabulated below and illustrated in Figure 6.

tfit/ M(t)/M tl/

0 0.0

1 0.721

2 1.082

3 1.262

4 1.353

5 1.398

6 1.420

7 1.431

For very large values of 8, the steady state value of M(t) is obtained as

1.443 k t1 /2. Therefore, for long duration releases, the maximum quantity

of mass dispersing in the environment is constant and depends only on the

release rate and half-life but is independent of the duration of the release.
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Figure 8. Total Diqiersing Mass for Continuous Releases
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(b) Continuous release of long duration with decay (k > 0)

Figure 6. Total Dispersing Mass for Continuous Releases (Continued)
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(c) Continuous release of short duration with decay (k > 0)

Figure 6. Total Dispersing Mass for Continuous Releases (Concluded)
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(d) Sh-)rt Duration Continuous Spills

If the observation time t is large with respect to the time at which

the continuous spill stops, tmt, then writing the expression for the total

mass of the discharged substance in the environment as:

- k m -k(t-tmt)  > tm ( 7M(t) e >(7

shows that the behavior for t > t is that of a fixed amount of mass
r -kt

M L - e m remaining in the environment at the end of the continuous

discharge, all decaying exponentially from the moment the spill stops accord--k(t-tmt)

ing to e • This decay behavior is analogous to that for an instan-

taneous release, except that the total quantity of mass from a continuous

release that is decaying for t > tt has dispersed to some extent, and the

time history of the release results in a larger residual mass than that re-

maining at the same time from an instantaneous discharge:

-ktmt

M(t mt) M e (Instantaneous) (28)

i -tt

M(tmt) M tm • ktemt (Continuous) (29)

Considering the residual mass as a function of the total mass discharged,

so that M trot is equivalent to M, it can be shown that the two expressions

are only approximately equivalent for values of ktmt less than 0.5.
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As the duration of the spill, tmt, becomes small the continuous re-

lease expression for the quantity of dispersing mass, M(t), correctly ap-

proaches zero.

Writing the expression for the total dispersing mass M(t) as a function

of half-life and the ratio a of elapsed time to half-life gives, for time

after the release has stopped:

M(t) = 1 /2  1 - 2 mtmt (30)

tm

2

where t-t and ; t Since the first part of this expressionwher Bmt = 1/2 _Bt

simply gives the total dispersing mass at t tm, this can be denoted as

M(t ) to yield:
It

M(tm)

M(t) 7 0at (31)

2

which can easily be seen to be in the same form as the similar expression

[Equation (14)] for an instantaneous release. This behavior is illustrated

in Figure 6(c). Note that the abscissas of Figure 6(a) and (c) are not

scaled since the relationship between tmt and t1 /2 is arbitrary.

As for instantaneous releases, at any time t conservation of mass will

hold if the integral of the concentration distribution, in time and space,

over the spatial dimensions of the diffusing water body, is equal to the
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total mass of dispersing substance in that water body, given as a function of

time in one of the forms above.

(e) Instantaneous Behavior of Continuous Release

In the preceding subsection, the analogous expressions for the total

quantity of dispersing mass suggests that for observation times sufficiently

greater than the duration of a continuous release, the release can be con-

sidered as an equivalent instantaneous release of source strength M tmt.

Use of the instantaneous equations, in the region of these observation times,

would enable the model to depict the concentration time history at the

observation point as the equivalent slug passes rather than just the

steady state value for the continuous case (since rise time effects are

ignored).

The criteria that has been suggested and used previously[12] is

that if the elapsed time is greater than five times the spill duration an

equivalent instantaneous release is assumed. However, it has also been sug-

gested that other criteria may be more appropriate and it has been shown

above that the total quantities of dispersing mass are roughly equivalent

only for a small range of values of kt mt. For the case of a flowing river,

the instantaneous description may be more appropriate than the continuous

description when the advection length of the spill (t mt/u) is comparable to,

or smaller than, the diffusion width of the spill (Ny4t or %zet)[20].

Thuso the selection criteria may require further refinement to more adequately

include the effect of the values of x, u, e and e , in addition to t and
y z

tmt (where e and e are turbulent dispcrioa coefficients).y
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Further, the method utilized contemplates changing the nature of the as-

sumed release condition as elapsed time varies for any spatial coordinates of

the observation point. It appears from this that discontinuities may be in-

troduced as a result of the transition between the continuous and instantane-

ous descriptions.

f. Summary of Discharge Equation

Summarized in Table 3 from preceding subsections are the expressions de-

fining the total quantity of dispersing chemical mass in the environment as

a function of time from a release occurring at t = 0.

These expressions for the total quantity of dispersing mass as a func-

tion of time are illustrated in Figures 5 and 6. The important character-

istics resulting from the assumed release conditions are summarized below:

(1) Instantaneous Release, No Decay

e The total mass discharged to the environment is M.

e The maximum value of the total mass dispersing in the environ-

ment is M, reached at t=O and constant thereafter.

(2) Instantaneous Release, with Decay

e The total mass discharged to the environment is M.

* The substance decays in the environment according to a rate

constant of:
ln2

k, or k = 2 (32)
tl/ 2

or, according to a KIf-life of:

- In 2

/2or tl/ 2 = k (33)

where t is in units consistent with k and
1/2

In 2 = 0.69315.
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" The maximum value of the total mass dispersing in the environ-

ment is M, reached at t=O.

" The time required for the dispersing mass to be reduced to

1 percent of its maximum value in the environment is:

2 in 10 2 in 10
k In 2 l/2  (34)

and the total mass remaining in the environment at that time

is 0.01 M, where in 10 = 2.30259.

(3) Continuous Release, No Decay

* The total mass discharged to the environment is M t , or M.

a This quantity is released at a rate M for a duration of tt o

* The maximum value of the total mass dispersing in the environ-

ment is M, reached at time = tmt and constant thereafter.

(4) Continuous Release, With Decay

a The total mass discharged to the environment is M tmt, or M.

* This quantity is released at a rate M for a duration of tmt.

* The substance decays in the environment according to a rate

constant of:

k, or k = 'a 2 (35)tl1/2

or according to a half-life of:

t or t In2 = -- 2 (36)

o For releases of very long durations at this rate of release

and substance half-life, the largest possible quantity of

total mass dispersing in the environment is:

M(t) = M t - 1.443 M tl/ 2  (37)
1/2 In 21/

under steady state conditions as shown in Figure 6b.
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* For continuous release conditions of fixed duration, the maximum

amount of total mass dispersing in the environment is:

M(t) = k 1 - e -k t(38)

and this occurs at time tot as shown in Figure 6c.

" The total time required for the dispersing mass to be reduced

to I percent of its maximum value in the environment is:

2 In 10 + tmt (39)

and the total mass remaining in the environment at that time

is 0.01 M(t mt).

mt
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SECTION II

THE DIFFUSION EQUATION AND ELEMENTARY SOLUTIONS

1. THREE-DIMENSIONAL DIFFUSION EQUATION

The general three-dimensional diffusion equation describing the movement

of a chemical mass in a receiving water body is given as:

__ c 3c _cac + u a+ V-+W a
at ax 3y az

a + a e + e - kc (40)

The spatial coordinates x, y, z are taken to form the usual right-handed system,

and the components of the bulk fluid velocity along these axes are u, v, w,

respectively. The concentration, c, determined by this equation is obtained

as a function of spatial coordinates and time, i.e., c = c(x,y,z,t), given in

units of mass per unit volume.

The governing diffusion or continuity equation is based on a material

balance and determines the resulting movement and depletion of a chemical mass

introduced into a receiving water body.

ac
The rate of change of the mass per unit volume with time, t , is governed

by the migration of the mass within the fluid volume and the production or

depletion of the chemical mass by reaction occurring within the fluid. The

reaction term in the above equation is given as -kc so that only first order

processes proportional to the concentration are included. The constant of

proportionality is given by a rate constant, k, and the sign of the term is

negative for net depletion of the mass by chemical decay or degradation in the

aquatic environment.
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The remaining terms in the diffusion equation reflect the migration

of the mass within the fluid volume according to three fundamentally dif-

ferent types of transport.

Convection or advection describes the movement of the chemical in the

water produced as a result of the bulk flow or movement of the receiving

water body and is governed by the terms:

ac ac + c (41)

where the velocities u, v, w describe the bulk flow of the receiving water

body in three dimensions and are, in the general sense, time-dependent to

describe both the spatial and temporal motion of the fluid. For river

bodies of practical interest, the predominating effect of bulk flow occurs

in the longitudinal direction (x), and the cross-current velocity components

in v and w are neglected.

The remaining terms of the diffusion equation:

ax eJ ) + ax eya)+y(ez ) (42)

are used to describe the migration of the chemical mass in the fluid volume

according to two entirely different means, yet governed by the same form

of the equation: molecular diffusion and turbulent dispersion. In the

case of laminar fluid flow the diffusion terms account for the migration

of the mass as a result of concentration gradients (molecular diffusion).

If turbulence is present, the diffusion terms account for the migration of
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the mass as a result of the turbulent motion of the receiving water body.

The coefficients used to describe each type of migration are vastly dif-

ferent, as are the resulting movements. In general,molecular motion takes

place on a microscopic scale, compared to the macroscopic scale of tur-

bulent motion. The spread of any pollutant in a body of water in the en-

vironment takes place in a flow field that is almost certainly turbulent,

and the effects of molecular diffusion are usually negligible with respect

to turbulent motion.

The presence of a concentration gradient in the receiving water body

results in a migration or diffusion of the chemical mass that tends to

eliminate the gradient. This migration, which results from the molecular

motion and occurs independently of pressure or temperature gradients,

gravitational or other body forces, or bulk fluid motion, is observed as

molecular diffusion. In general, the molecular diffusion coefficient,

written as D, is often taken as a constant and non-isotropic variations

assumed to be negligible so that the diffusion equation is written using

e = e = e = D (43)
x y z

Mass transfer in turbulent fluid motion is essentially a mixing pro-

cess and is represented in the diffusion equation by the turbulent dis-

persion coefficients ex, e yand ez. Under non-isotropic conditions, tur-

bulence-induced migration will occur at different rates in different coor-

dinate directions, and the values of the coefficients in each principal

direction may differ by several orders of magnitude. The magnitude of the
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turbulent dispersion coefficients are usually many times larger than molecular

diffusivity.

a. Turbulent Dispersion Coefficients

Estimation of turbulent dispersion coefficients in natural water bodies

is a topic which has generated an extensive literature with proposed formulas

based on fundamental theories of mixing by random motions, dimensional analysis

and/or similarity theory, and empiricism. For practical dispersion modeling,

the most successful formulas are based on a mixture of similarity theory and

empirical studies. An example of this approach is the mixing length hypothesis

used to estimate dispersion coefficients, e, in boundary layers. Similarity

theory indicates that:

e = Ul (44)

where U,, known as the shear velocity, is generally assumed to be proportional

to the velocity far from the boundary (U) and 1 is the mixing length, which

is proportional to the distance to the boundary (db). Empirical studies, which

may be laboratory- or field-based, establish the proportionality coefficients

relating e to observable properties of the flow field, U. and d b The methods

used to compute the turbulent dispersion coefficients in three dimensions (e

ey, e ) are described in the separate sections of this report pertaining to
y z

each model.

b. Transformation of Diffusion Equation

The generalized three-dimensional form of the diffusion equation governs

the behavior of the concentration as a function of spatial ciordinates and time:

c(x,yz,t). If the concentration is written as the product of two functions:

77



c(x,y,z,t) q(x,y,z,t) ekt (45)

substitution in a diffusion equation for c, which contains a reaction term, will

lead to a similar diffusion equation for q in which the reaction term disappears.

This follows since

Dc =q e -kt (46)
ax ax

a- ( -L ( x -?~a) e kt (47)ax ea ax x

and so forth for the coordinates y and z, and

_c - s e-kt kq e- kt e-kt ( kq) (48)
at at at

Noting that the exponential e-kt appears with each term and can be factored

out, the resulting equation of q contains the term -kq on both sides and these

cancel, leaving the usual diffusion equation in q, but for a conservative mass

(k-0).

Therefore, if a solution of the diffusion equation for a conservative

substance, q(x,y,z,t), can be obtained, then the solution for concentrations

of a substance which decays in the aquatic environment at a rate k is obtained

simply as the product of the function q and the exponential e - k t . This prin-

ciple is assumed throughout much of this report in many discussions where the

rate constant k is ignored for simplicity. Strictly speaking, this analogy only

applies for instantaneous point source solutions since for solutions developed

by superposition or integration, such as for continuous releases, the form of
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this exponential factor will change.

c. Conservation of Mass

Conservation of mass requires that the mass of a chemical substance in the

receiving body, in the absence of any additional sinks or sources, remains con-

stant. The total chemical mass in the water body is obtained as a function of

time by the integral of the concentration over the entire volume of the trans-

porting fluid:

M(t) = c(x,y,z,t) dV (49)

Where additional sources (introduced by continuous releases) or sinks

(associated with chemical degradation in the aquatic environment) are present,

conservation of mass is re-stated slightly as: the total mass introduced into

the transporting fluid, less the amount of that substance degraded by reaction,

is equal to the total amount of substance being transported in the receiving

fluid, as a function of time.

The principle of conservation of mass is applied to determine the value of

constants in solutions of the diffusion equation for different types of fluid

volumes. Also, since discharge rates, quantities, and degradation processes

are relatively easy to quantify, under the imposed assumptions and constraints,

conservation of mass principles using volume integrals can often be used to

develop useful characterizations of the more complex concentration distribution

behavior. In particular, application of volume integrals leads to simplified

expressions which can be used to determine the average concentration within a

region of interest as a function of time.
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d. Remarks

In this abbreviated overview, the form of the diffusion equation as given

in the discussion of molecular diffusion and turbulent dispersion may suggest

that these types of motion are both governed by the same terms in the equation.

This is not the case, although the form of the governing equation is the same

[Equation (40)] for each type of motion in the absence of the other. For

further information, reference[18] gives a brief but especially clear derivation

of the form of the conservation equation containing both molecular diffusion

and turbulent dispersion terms and shows the similarity in the governing equa-

tions that is observed if one process is neglected with respect to the other.

Reference[73] gives a review of toxic spill modeling.

This subsection has given a brief and very simplified presentation of a

complex topic to establish the basis from which the spill models have been

developed. There are substantial and significant assumptions inherent in this

formulation that are entirely beyond the scope of this report to even briefly

describe. Isolated examples include the nature of chemical reactive processes,

relative contributions of turbulent and molecular migration in different water

body regions, water body stratification, thermal gradients, density gradients,

and related effects of concentration gradients.

2. ONE-DIMENSIONAL DIFFUSION IN FLUID AT REST

In order to provide a basis for the characterization of the concentration

distributions that are obtained from the more complex three-dimensional sol-

utions of the diffusion equation under different boundary and initial condi-

tions, the fundamental characteristics of these solutions are first described

using simple one-dimensional illustrations. Where applicable, detailed defini-

tions of functions or operations required for the evaluation of the three-

dimensional solutions are also given.
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One-dimensional diffusion, for example using x as the spatial coordinate,

is associated with concentrations which are not dependent on the remaining

spatial coordinates (y and z). This represents diffusion along the axis of

a pipe or duct with uniform conditions across the section. Further assuming

that the transporting fluid or receiving water body is at rest so that the

velocity components of bulk fluid motion (u, v, w) are zero, then the govern-

ing partial differential equation becomes:

ac - (e )-kc (50)

where the concentration c is to be obtained as a function of x, t, c(x,t),

and the diffusion or dispersion coefficient, e , where the coefficient isx

assumed to be a constant. No distinction need be made at this stage as to

whether the diffusion of a released mass in the fluid is molecular or turbulent

in nature. The general form of the one-dimensional equation given above in-

cludes the reaction term, -kc, to account for decay of the diffusing mass in

the transporting fluid.

3. INSTANTANEOUS SOURCES

a. Point Source

(1) General Solution

In the absence of decay (k=0), the well-known solution to the one-dimen-

sional diffusion equation is given in the form:

bx
2

c(x,t) a e (51)
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where a is a constant to be determined from conservation of mass.

Since

2 bx 2

a c 2ab t e , and (52)

a2 3/2 1 t 2 1br ] bx
ac a 2bx2  e (53)

at 2t 3/2 1]t

substitution into the diffusion equation (50) shows that the partial differ-

ential equation is satisfied for b = 1
4 e

x
(2) Conservation of Mass

For one dimension, conservation of mass is written as a line integral

along a volume having a constant unit cross section in the y-z plane to give

for the total mass in the cross-sectional duct:

4e tm c(x,t) dxX dx (54)

where the mass m is in lower case to signify mass per unit area. Evaluation

of the integral using a transformation, x results in:

2 /x

The evaluation of the above integral utilizes the definition of the error

function, erf(t), where:

erf(t) - 2 I e-e d& (56)
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and corresponding limit values are erf(-) = 1, erf(O) 0. Additional infor-

mation on the nature and computation of the error function is given in a fol-

lowing section.

The remaining constant in this one-dimensional solution of the diffusion

equation can now be expressed in terms of the total mass in the system as:

m
a = (57)

where the total mass, m, of the chemical in the transporting fluid is taken

to be time-invariant.

(3) Initial and Boundary Behavior

Substitution of the expressions for the constants a and b gives this one-

dimensional solution in its final form, which can be written as:

2
x
4e tc(x,t) m e X (58)

Note that the exponential term x indicates that the concentration distribution

is symmetrical, in spatial coordinates, about the origin at xO, and that the

form of this distribution is Gaussian.

For large values of t, the concentration c(x,t) vanishes for all values

of lxi, as it also does for very large values of jxj if t # 0. The behavior

in the limit as t-*O is such that the concentration is zero for all values of

lxi > 0, but not at x = 0.

(a) Characterization of Instantaneous Point Source

At x-0, the concentration is obtained as a function of time in the form:
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c(ot) m (59)

so that in the limit as t-0, the initial value of the concentration at the

origin becomes infinitely large. Since, according to the principle of con-

servation of mass, the total mass in the fluid is constant and equal to m,

the behavior of the concentration at the origin can be characterized as a

fixed amount of mass being introduced into a volume (or length in the one-

dimensional case) which becomes vanishingly small as t-O. The measure of this

length is the term,2e t appearing in the above equation and which is defined

as the standard deviation of the Gaussian function, discussed in the next

subsection.

Mathematically, the behavior of the concentration at the origin as t-0

becomes proportional to the Kronecka delta function and thus the description

as an instantaneous (trO) point (x-0) source applies.

This behavior of an infinitely large concentration at the origin in the

limit as t-*O, taken with the principle of conservation of mass, is a character-

istic of the diffusion of a finite amount of substance introduced initially as

a point source in an infinitely small volume of fluid at the origin, then

spreading out to give a distribution of finite concentrations for non-zero

values of time. Methods applicable to the integration of point source con-

centrations over a finite initial volume, for distributed sources, are discussed

in a separate subsection of this report; since conservation of mass applies and

the initial volume is taken at time t-O to have a finite shape, the singularity

is removed by these methods.

(4) Gaussian Distribution

The form of the concentration distribution, for t > 0, for this simplified
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one-dimentional example: 2
x
4et

m 4ext
c(x,t) = e

; ext (60)

is the Gaussian or normal curve having a maximum value, which decreases as

time increases but remains located at the origin x = 0. Methods of develop-

ing solutions to the diffusion equation for substances in a moving fluid,

such as a river, basically involve applying a linear coordinate transforma-

tion such that the Gaussian distribution, centered about the point of maxi-

mum value, is simply translated in the direction of the fluid flow with the

same velocity as that flow.

The terms in the distribution given above are defined with the type of

units of measure as:

c(x,t) = concentration at a particular distance and time, in

mass/volume

m = total dispersing mass, mass per unit area

x = distance

t time

e = diffusion or dispersion coefficient, area/time
x

2 :
The x term in the exponent shows that the distribution is symmetrical

about the origin, that is, that

c (-x, t) c (+x, t) (61)
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2
The variance of this distribution is given by a = 2 e t and thex

standard deviation, a, or integral multiples such as 2o, is used as a mea-

sure of the width of the distribution (or the spreading of the substance).

In terms of the standard deviation, the one-dimensional concentration dis-

tribution is written as:
2

x

2 2
mx (62)

c(x,t) - m e

which is the more familiar form of the Gaussian curve. The standard devia-

tion is a function of time given by ax  . ext and has units of length.

At the origin, x = 0, the value of the concentration c(O,t) depends

on the reciprocal of the standard deviation, scaled by the constant terms

m and4 :

c(0,t) • C 7r i 1 (63)
m ax

hence the behavior of c(O,t) w as t-0.

For selected values of ax = 1, 2, and 3, Figure 7 shows the resulting
x

distributions over x. With each increase in a the maximum value at the

origin decreases as - and the distribution spreads out over x.
x

(a) Distribution of Mass

The degree of spreading of the mass m can be determined by integrating

with respect to the spatial coordinate x to give:

2

*/44 2 aI~ 22
m(x,t) c(&,t) dt - (64)
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where m(x,t) gives at time t the total amount of substance contained within

the interval -x to +x. Evaluating the integral gives:

m(x,t) m erf( -) (65)

so that for x - a, m(a,t)/m = .068, and for x = 2a, m(2,t)/m = 0.95. That

is, for the latter example, at time t, 95 percent of the mass m is contained

within an interval of width 4a (since the interval is bounded by -2a to +2o).

Sample illustrations are given in Figure 8 for several different values of a.

Considering any multiple of the standard deviation as a characteristic

length, expressed as no, the one-dimensional expression for the concentration

can be written as:

2
x 

2c(xt) n m e2 a (66)
.7 no

Since the characteristic length, no, appears in the demoninator, the

behavior of c(O,t)- - at small values of times can be interpreted as an effect

of the characteristic length having an initial value of 0.

(5) One-Dimensional Solution with Decay

If the mass m decays with a rate constant k, the solution for the one-

dimensional instantaneous point source is given by:
2x

ct) m x -kt
c(Xt)- e 2 e (67)

where tbe solution for a conservative mass (k - 0) is multiplied by a decay

term, -e and ox =J2ext. Differentiating with respect to x and t then
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substituting into the partial differential equation for one-dimensional dif-

fusion with decay shows that the equation is satisfied by this solution.

For conservation of mass, the mass integral:

x 2 2

m(x,t) c(t,t) d ffi e - k t  e x d (68)

=j 4 a x 1 T j_
is evaluated as earlier to give:

m(x,t) = m e kt er ( (69)

In the limit as x- the value of the error function approaches 1 so

the total quantity of dispersing mass is given as a function of time by

-kt
m , e

(6) Behavior of Instantaneous Point Source Solution

The concentration estimated by the instantaneous point source solution

(for one dimension) of
2

x
2

c(x,t) e(70)

corresponds to a distribution of the constant mass m in time and space of

m(xt) - m -(71)

where ax 2xt As both x and t become large, the concentrations c(x,t)
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approach zero, and earlier subsections showed that, for t 0, the concentration

is zero for all x except at the origin where the initial concentration is in-

finitely large. This subsection summarizes some additional expressions useful

for characterizing the nature of the concentration and mass distributions

between these limits.

(a) Time History at the Origin (x = 0)

Since for any value of time, the location of maximum concentration along

the line occurs at the origin, x - 0, then the time history at the origin can

be used to determine the total elapsed time during which concentrations above

a specified limit can be expected to exist anywhere in the environment.

The concentration at the origin is given as a function of time by:

m m

c(Ot) = = (72)

and as t ranges from 0 to =, the concentration ranges from - to 0. The time

at which a specified concentration occurs at the origin is simply obtained as:

2m (73
41 ex c (0, t)

x

The elapsed time required for the concentration at the origin to be reduced

from the initial infinite value to the density, p, of the spilled chemical is

denoted as t and is obtained by substituting c(O,t) -p:
P

2
tp 4 2 (74)
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At this value of time, the chemical mass will have dispersed according to

m(x,t ) m -ef(75)

but 95 percent of the mass will be contained within a distance of

x= ± 2.772e-  t • Substituting for t gives, in terms of the density of thep P

chemical,

x + 1.386 m + 0.782 2 (76)P - p

which gives the width of the 95 percent distribution as 1.564 E for whichP

the concentration at the origin is equal to the density. If the entire mass

were initially distributed about the origin at a constant concentration equal

to the density then the width of the distribution would be M; the GaussianP

solution gives for the fraction of mass contained within this interval 
at time

t :

p

m 2ptp) (77)
2 - )erf 0.79

m

Thus, at the elapsed time for which the concentration at the origin is reduced

to a value equal to the density, the Gaussian distribution still retains 79

percent of the mass within an interval that would correspond to an initial

distributed discharge of m at a constant concentration equal to the density (p)

of the chemical.

At any time t, the concentration distribution has a maximum value at the

origin, with decreasing values for all lxi > 0. If a lower limit can be

specified for the concentration, CLO such that concentrations less than CL are
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not considered hazardous, then the maximum duration for which concentrations

at any point in the environment may exceed CL is given by the elapsed time for

the concentration at the origin to reach C This value of elapsed time, denoted
L

at tL, is given by:

2
m

tL = 2  (78)
4ff e CL

x L

(b) Time History at Point x

Since the concentrations at all values of Ixj > 0 are initially zero and

are zero for very large values of time, at any point x, at some time after the

spill occurs, the concentration observed increases to a maximum value, then

decreases as further dispersion takes place. The maximum concentration, at a

fixed value of x, occurs when -L = 0 which for Equation (60) is
at

2
t X or e t 0.5 x (79)
max 2 e x maxx

The concentration at this time and location is determined by substituting into

Equation (60):

-1/2
c(x,tmax) me= 0.24197 _ (80)

These two expressions together define coordinates along the envelope of maximum

concentration as a function of x, giving the maximum concentration at a location

and the time at which it occurs.

Figure 9 gives an illustrative plot of the values of te peak concentration

(expressed as c(x,tmax)/m) and the arrival time (expressed as ex tmax) as a

function of distance from the origin of the spill. This indicates, for example,
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that the peak concentration at a distance x = 0.5 is approximately 0.48 meter,

and the concentration reaches that value at this location t a time of 0.125
e xas shown in Figure 9.

Near the spill site, very large concentrations occur at short times after

the start of the spill. Very far from the spill site, the peak concentrations

reach only small values at long times after the spill has occurred. Limits on

expected concentrations can be used to estimate the times and distances over

which concentrations of interest will exist and thus determine bounds on time

and distance scales.

The expression for the maximum concentration at x, Equation (80), is readily

rearranged to determine the maximum distance from the spill location at which

concentrations of any specified value will exist:

1

me2
x c(x' ) (81)

F~r ~x'max

The time at which the concentration reaches this value at x is given by
2

=(2 x e so that the upper limits on the values of x and t are determinedmax (e

if c(X,t max) is given as the minimum concentration of interest.

Near the spill site the peak concentrations will exceed the density of

the spilled chemical. The coordinates on the envelope corresponding to a

concentration equal to the chemical density can be obtained in term- of the

density as:

m 1
x = -n P (82)

where the numerical value of e is not to be confused with exand
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2
tm

max 4ire ° e P2  (83)

x

At distances greater than this value of x, the concentration will not

exceed the density at any elapsed time greater than zero. At locations

closer to the spill point than this value of x, the concentration will be

greater than the density from time t = 0 to an elapsed time less than the

value of t given above.max

Since at any location x the concentration increases with elapsed time

from the start of the spill to a maximum value, then gradually decreases,

the time history of the concentration at a particular point is of interest

as is the length of time at that location for which a given concentration

level will be exceeded. The concentration at any point x is determined by

substituting Equation (79) into Equation (60):

2x tx- 
max

= m 4ext 1 m l 2t
c(x,t) e - - - e (84)

and this distribution is illustrated graphically in Figure 10. Initially

the concentration rises rapidly from zero. (for lxJ > 0) to the maximum value,

then, for larger times, is reduced more gradually until returning to zero

for large values of elapsed time. For small values of time, the argument

of the exponential (tax is large since t varies from zero to t, and the

concentration profile is strongly influenced by an exponential rise from

the value of 0 to the maximum value. For times greater than tmax , the argu-

ment of the exponential is increasingly reduced so that the exponential

term approaches its limiting value of 1.0 asymptotically, and the reduction

of concentration for times greater than tmax closely follows the behavior of
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1

The time of arrival and duration at a specific observation point of con- -
centrations in excess of a specified value are not readily obtained in a closed

form solution; however, this information can be interpolated from graphical

displays of the concentration time history at the observation point.

(c) Extent of Hazard

By inverting Equation (70) for concentration, the distance at which a

specified concentration exists at any aprticular time can be obtained:

x = 2 a ln fft 4 e t ln [ (85)
x C2 Taxc(x,t) x 2 c(x,tF x

Figure 11 illustrates the type of profiles produced from this equation by

setting c(x,t) to a particular hazard level and then computing values of

distance x over a range of elapsed times. The peak of the hazard profile shown

in Figure 11 corresponds graphically to the maximum value of x over which

the particular hazard level will exist. For distances less than x this maximum

hazard extent, the profile shown in Figure 11 can be used to obtain the elapsed

times during which the concentration at a particular distance will exceed the

particular hazard level.

The maximum distance reached by the hazardous concentration is obtained

from Equation (80) as:

2
x 2 m (e - 2.718 ...) (86)

2 c (x,t) 7r e

and the time at which this distance is reached is obtained from:

98



.0 Go

(0

LR
0

C;

c; a a

99



2
2 m (87)

4 c (x,t) ?T e e
x

Since the concentration c(x,t) is the maximum value reached at that location
2

x, over time, the relation t = ( -- is also satisfied.
(2 e X)

For large values of time, the chemical mass will continue to spread

until the concentration everywhere along the line is reduced to values less

than the specified concentration. The point at which this occurs is determined,

from the time history at the origin, when c(O,t) is equal to c(x,t). This

gives the maximum elapsed time for this profile in terms of the specified

concentration as:

2
t* m (88)

4 n e c 2 (x,t)
x

where t* is the time of distribution for location x to experience a concen-

tration more than c(x,t). Substitution of this value in the expression [Equa-

tion (85)] for distance as a function of time and concentration shows that the

argument of the logarithm goes to one, giving a distance x = 0. Since the

concentration at this origin is always a maximum, concentrations greater than

a specified concentration cannot exist beyond the time that the concentration

at the origin reaches this value.

For very small values of time, the argument of the logarithm becomes

infinitely large, with possible attendant numerical difficulties; however,

in the limit as t 0, the value of x also approaches zero.

Plotted displays of the hazard extent profiles, prepared for a specific

hazardous concentration level, give the total time during which the concen-

trations in the environment exceed the hazard level, the maximum distance
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for which this occurs and, for smaller distances, the time period during which

that level is exceeded.

(d) Computation of Arrival Times and Durations

Given the expression for concentration as a function of time and distance,

if the time a specified concentration occurs at a given location is desired,

the equation can be transformed but the required values of time appear as the

roots of a transcendental function. Numercial methods can be applied to obtain

solutions, and techniques such as Newton's method are efficient, given appro-

priate starting values.

Since the maximum concentration and time of occurrence, tmax, can be

computed for any location x, the arrival times exist at x only for specified

concentrations less than the maximum value. This leads to a further condition

that one root, ti, of the transcendental function must be in the range

0 < tI < tmax while the other root t2 must be greater than t max . In some cases,

writing the transcendental equation in terms of the specified concentration,

and the maximum concentration at the value of x, an expression can be obtained

in which the time-dependent terms are isolated. Since the form of the transcen-

dental expressions involving time are then independent of any particular spill

conditions, further investigation of this topic could produce very useful results

if a direct numerical representation of the inverse transcendental function

could be developed.

Since other types of concentration profiles can be used for graphical

interpolation of this information, and, since the iterative approach used for

standard numerical solutions would require substantial additional computations,

solutions to these types of transcendental functions have not yet been incor-

porated in the spill model.
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(e) Behavior for Non-Conservative Chemical

Where decay or degradation of the chemical in the environment is as-

sumed to occur, the reduction of the dispersing mass takes place exponential-

ly, as determined by the value assumed for the rate constant,k. Equivalent

expressions for the behavior of the one-dimensional instantaneous point

source solutions are briefly summarized in the following paragraphs.

The time history of the concentration at the origin is given by:

c(O't) "= 2 xt -kt (89)

which gives the concentration as a function of both elapsed time, and the

total amount of mass in the environment which is also a function of time:

-kt
m e . As a result of the introduction of the exponential decay term,

this expression is not readily inverted to yield an equation for elapsed

time,t,in terms of the concentration c(O,t). The substitution

c(O,t) = q(O,t) e- k t yields an equation in which time can be expressed as

a function of q(O,t) so that a first approximation can be made by solving

for the time at which q(O,t) reaches the values of c(O,t); the actual time

at which the concentration reaches the value c(O,t) will be less since the

decay has,in effect,been ignored.

At any location x, the maximum concentration occurs when Lc- 0 whichat
leads to:

ex e 2  k

+ (90)
max X X x
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and the concentration at that time and location is obtained by substitution

of this value in the equation for c(x,t).

The time history of the concentration at a location x is given by:

2x
_ m x e -kt

c(x,t) - e e (91)

The distance at which a specified concentration exists at any particular

time is obtained as:

2 rm ] k 2
x 4 e t In - 4 e kt(92)

x 2 c(xt) xt x(

For values of t > 0, this expression is zero for

kt im

2 c (x, t) 77  (93)

By analogy to the case where k f 0, this distance x is zero when the concen-

tration at the origin c(0,t) has decayed to a value equal to c(x,t), and

the time history at the origin can be used to determine the time range for

the computation of maximum hazard distances for any particular concentration.

The maximum distance over which concentrations exceeding the specified level

2
is obtained by substituting the value of t into the expression for x 2

max

(7) Error Function

(a) Definition

The error function, written as erf(x), conmonly appears in solutions

developed from the diffusion equation and is defined as:

103



err"x) 2
erf (x) e dt (94)

Since the error function gives an integral of the Gaussian or normal dis-

tribution, further information is usually found in standard reference

texts on probability and statistics. A particularly detailed analytical

study, pre-dating widespread use of computers, is given by Rosser[21], and

Ng and Geller[22,23] have compiled especially useful tables of integrals

of the error function. The following subsection is limited to a brief des-

cription of the form of the function, its behavior,and a method of numerical

evaluation.

(b) Characteristics

Since the error function of x is defined by the integral from 0 to x

for negative values of x,it follows that:

erf ffxi )= e dt (95)

and using the transformation a = -t, that

erf(-Ixl) = e dB (96)

Thus, the error function for negative values of x is a mirror image of the

function for positive values, in the form erf(-x) = -erf(x). The value of

the function at x - 0 is 0, and values for x > 0 are illustrated in Figure

12. As can be seen from the figure, the value of the error function
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rises very rapidly, over a short range of x, to a value asymptotically

approaching 1.0. At x = 2.0, for example, the value of the error func-

tion is approximately 0.995.

Since

(o 2
J - t dt (97)

it can be seen that

lim [erf(x)] = +1 (98)

and

lim [erf(-Ixl)] = -1 (99)

(c) Approximations

(i) For large values of the error function argument, an asymptotic expansion

is used to obtain:

V x e (1 -erf(x)) nu I + E (l)m 13.(2-) (100)
m=l (2x

In the limit as x becomes large,

2
lim [%r'x eX (1 -erf(x))] - 1 (101)
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which reduces to an approximation for the error function behavior at large

values of the argument:

2
-x

erf(x) = 1- e (102)

(ii) For error function arguments very close to 1, an approximation for the

value of the error function can be obtained by writing

2 tfl+6 _t2

erf(x) = erf(l + 6) = e dt (103)

then introducing the approximation to give:

erf(l+6) = 2 dt + e 1 dt
NAf +l (104)

which reduces to:

26

erf(l + 6) = erf(l) + - , 6 << 1 (105)

where erf(l) is approximately 0.8427.

(iii) The same approximation may be used to write for very small arguments

of the error function:

2 6 t 2 2f6 d
erf(6) 2 e dt ,2d (106)
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which gives

erf (6) nu-6 for 6-*0. (107)

(d) Numerical Evaluation

Since erf(-x) -erf(x), one can write for erf(x) in the range -~< x < w

-tI

erf(x) = 2f e- dt, --o< x < 0 (108)

erf(x) = 2 2- dt, 0 < x < (109)

Hastings' [24] approximation gives for the error function written as:

erf(x) = OW) e-t dt, 0 < x <(10

the numerical approximation in the form:

W(a, Ti +a 2 1 + a 3 7 + a 4 T + a 5 r) iC) 11

where

q(x) is the value of the error function integrand evaluated at x, and

0 X is used to signify the numerical approximation to 0(x) (-erf(x)].
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The variable n is defined as:

l (112)
l+p x

where the value of the coefficient p is given by Hastings as p = 0.3275911.

The value of n ranges from 1 at x 0 to 0 as x-*-.

Since

2
2 (x) = 2e(113)

the values of the coefficients a1 to a5 in the approximation may be pre-

2 2
multiplied by the constant - to give transformed coefficients bI  al.

and so forth, reducing the approximation to:

2

I - (b1rq + b 2 
n 2 + b 3

n 3 + b4 
4 + b5 n 

5 ) e- x  (114)

Finally, for numerical efficiency the approximation can be written in

the form:

2
(x) - (b I + n (b 2 + n (b3 + n (b4 + n b5 )))) e- x  (115)

for the range 0 < x < .

For negative arguments (values of x), the same form of the approxima-

tion can be applied by using:

109



4*(x) - *( l) , for X < 0. (116)

Using the values of the coefficients a1 to a5 as tabulated by Hastings,

2
pre-multiplying by the factor produces the values of the scaled coefficients

as:

b1 = +0.2548 2959 2

b2 = -0.2844 9673 6

b3 = +1.4214 1374 1

b4 = -1.4531 5202 7

b5 = +1.0614 0542 9 (117)

At the origin, xf0, the variable nwl and the approximation to the error func-

tion reduces to:

0*(xfi0) = 1 - (b1 + b 2 + b 3 + b 4 + b 5 0 (118)

from which the condition is obtained that

5
Sbi = 1.0 (119)

For the values of the coefficients tabulated above, the sum of the coeffi-

cient values is obtained as 0.9999 9999 9.
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Finally, the maximum value on the error curve given by Hastings for

the approximation is 1.5 x 10- 7 . For large values of x, the function should

approach a value of 1, and the term (1 - erf(x)), for large x, should ap-

proach zero. When used in dispersion equations, this term appears as a pro-

duct in expressions also containing terms becoming increasingly large as x

increases. In practice, the different accuracies and rates of convergence

of numerical approximations can lead to unstable products deviating from

the asymptotic limit of 0. These effects can be compensated for, in part,

in the computation of the error function value, by setting the function value

to 1 when that limit is reached within the accuracy of the numerical approxima-

-7
tion. That is, if 11.0 - erf(x)l < 1.5 x 10- , then erf(x) is taken to be

exactly 1.0.

(e) Alternate Formulations

(i) Frequently as noted above the error function terms appear in solutions

of the diffusion equation in the form 1-erf(x) which is the complementary

function to the error function and is written as erfc(x). For values of

x > 0, Hastings approximation for erf(x) can be modified slightly to ob-

tain a direct approximation to erfc(x) in the form:

erfc(x) = l-erf(x)

2
= (b 1 + r (b 2 + n (b3 + n (b4 + n bs5 e -x (120)

To simplify the notation, the polynomial can be written as P(b,n) so

that the approximations become:
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2

2

erfc(x) = P(b,n) ex , x > 0 (122)

A particular advantage of the form of the expression for the approximation

to erfc(x) is that a decaying exponential term is isolated as a factor of the

approximation. This term then becomes available for combination with increas-

ing exponential terms which, for certain conditions, appear in solutions to

the diffusion equations, and operates to alleviate numerical instabilities
x -x2

associated with computations in the form e • e in the limit as both x

and x2 become large.

At x=O, the variable n=l and the polynomial

5
P(b,l) = bi = 1 (123)

i=1

and for large values of x, n-*0 and

P(b,O) = 0. (124)

In the limit as x becomes large, compensation for the maximum value in

the error of the computation of the error function is applied such that if

-7jP(b,n)j < 1.5 x 10- , then P(b,n) is taken as exactly 0.0 to give the limit

value for erfc(x) as x-*. Note that this assumes the exponential term has been

factored out, since the limit condition is more correctly applied to erfc(x).
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For negative values of x,

erfc(x) - erfc(-lxl) f 1 -erf(-lxl) (125)

so that

erfc(x) 1 + erf(IxI) , x < 0 (126)

and the substitution of the approximation produces the result:

2

erfc(x) 2.- P(b,) e- x  (127)

where x < 0 and n is evaluated for lxi.

(ii) Although the value of the error function is limited, Ierf(x)l < 1.0,

for all values of the argument -- < x < -, difficulties can arise in the com-

putation and representation of the argument value, particularly if the function

value is required in the form:

z = erf (128)

and in the limit cases x or x 2-0.

Thus, an alternate form of the error function computation can be used,

first examining the values of x1 and x2 then setting the value of the error

function as follows:

lim erfr- 1, x >>x 2  (129)
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lim erf =I 0, x2 >> x (130)

Limit values in the event both x and x2 become very large or very small

can also be set but depend on the rate at which each approaches the limit.

Where the ratio xl1/x 2 is finite, the usual form of the approximation is used.

(8) Limits of Numerical Representation

For use in computations, numerical values are represented and manipulated

on computer systems in a variety of forms depending on the type of value and

the architecture and word structure of the computer system. Since these

numerical representations have finite limits, in turn, limits are implied on

the range of computations that can be performed using these values. The most

significant effects of these limits on computations arising in the use of the

spill models are briefly summarized below. Reference is made to manufacturers'

publications[25] for complete information regarding the details of representa-

tion and storage of different types of numerical values; examples below are

illustrated using limits appropriate to the CDC 6600 series computer.

Real, single precision data constants or values are written using scien-

tific notation as in + n.nE + S where the coefficient or base, indicated as

n.n, is multiplied by a power of 10, as indicated by E±S which denotes 0

This notation corresponds to the internal representation with separate provision

made for the sign, coefficient and exponent. In external or printed form the

value of the exponent depends on the magnitude of the number and on the location

of the printed decimal point; for internal use, storage conventions are standard-

ized using normalized coefficients (e.g., + O.nn...) so that the value of the

exponent depends only on the magnitude of the number.
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Since the CDC 6600 has a large word length, the number of decimal digits

that can be carried for the coefficient of a real number is also quite large

(approximately 14). Other machines commonly used for scientific computa-

tion typically have smaller word lengths and correspondingly reduced pre-

cision in the number of digits that can be carried. For increased accuracy,

real values can be stored in more than one computer word (for example, as

in double precision); under most schemes of storage this increases the num-

ber of digits that can be represented but not necessarily the range of the

magnitude of the value.

For the CDC 6600, limit values of a real constant or variable are stated

as +0, -0 or as having a magnitude in the range 10- 2 9 3 to 10 +322; the +0

values arise as special cases in the representation of exponent values.

Use of constants or variables which have values near these limits or com-

bine in such a way that resulting computations may be required to exceed

these limits will lead to overflow or underflow conditions. The results

of subsequent computations may not always be predictable, and since the

computer system response and/or recovery is dependent on the system archi-

tecture and software, automatic recovery procedures may not in general, be

as desired (e.g., run termination), nor consistent among machines of dif-

ferent manufacture.

Since the physical processes corrresponding to the spill model lead

to interest in behavior at limit conditions, such as the time history of the

concentration at the location of a spill or the maximum distance over which

a concentration at a specified level may exist, the equations employed may

be required to perform computations, at or near these limits, which are

115



highly susceptible to overflow or underflow conditions. Thus, for selected

use in these computations, and for assisting in establishing allowable

ranges for user specified variables, inclusion of a generalized method of

detecting and recovering from the use of very large or very small numerical

values is desirable.

The allowable magnitude (absolute value) of a real variable can be

monitored by specifying the values of two exponential limits in parametric

form, a and b, such that the value of any real variable x can be constrained

to be within the precision of the computer by:

x =0 (131)

or

Ix , > 0- a

1xI < l0 b  (132)

For each computer, the values of a and b depend on the characteristics of

floating point or real value storage and therefore are machine dependent

parameters within the spill model. The use of these limits to test and

control values of individual variables is not always feasible, and the prin-

cipal application lies in their use to determine the maximum allowable

range for a dependent variable, given a pre-specified range of an independent

variable.
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(a) Exponential Function

The computation of the value of the function x = ey is subject both to

limitations in the accuracy of the numerical approximation employed for

the form of the exponential and in the limiting value, x, of the function

that can be returned as governed by the internal representation for storage

of the computed value on the particular computer system. Unfortunately,

in this case, in common use the argument of the function is usually tested

before the computation is attempted, resulting in an automatic error condi-

tion or termination if the computed value would exceed the storage limits.

For the CDC 6600, the allowable arguments or values of y are defined

to be in the range:

-675.84 < y < 741.67 (133)

Since the magnitude of the computed result is constrained, for the CDC 6600,

as:

10-293 < I < 10+322 (134)

the limit values for the exponential function argument can be seen to re-

sult from:

10-293 < ey < 10+322 (135)
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or

-293 in 10 < y< 322 in 10 (136)

The limiting value parameters, a and b, are especially useful to provide for

overriding overflow/underflow detection and response in machine-dependent

computations by setting values of exponential function as follows:

ey =0 , if y < (-a) in 10
e

ey = 10 b , if y > (b) In 10 (137)e

For cases in which the exponential function argument is itself a function

of several variables, these limits can also be applied to infer ranges of

values of dependent combinations of these variables for which, given a pre-

specified range of an independent variable, values obtained for the exponential

function will be defined.

It should also be noted that as usually formulated, the argument of the

exponential function is normally dimensionless, so that changing the units

of measure of individual terms will not substantially affect the limit at

which the function computation fails. However, when the argument is obtained

as a function of several other variables, the units of measure may have an

effect if the computations to obtain the argument are performed so that inter-

mediate results do depend on physical units. An example is the computation
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2

2 2

of the argument for e 2 o where X is non-dimensional and may be evaluated
2a

by 2or (x x) In the latter expression, the units in which x
2 a" a (2 • a a)'

and a are given could affect the computation since the dimensional quantities

2 2
x and a are formed first.

(b) Other Functions

In addition to limitations arising from numerical representationsas

described above, other limit conditions which are present include those as-

sociated with the definitions of mathematical functions such as the square

root, for which a real result is defined only if the argument is greater

thanor equal to zero. For this example, in cases where an argument value

is determined by a series of computations, it is possible that very near the

limiting value of zero the series of computations may yield a very small

negative number even though analytically the limit value may appear to be

approached correctly. Therefore,where computations are expected to be per-

formed in a general manner using values derived from user specifications

under limited constraints, special tests for limit conditions applicable

to arithmetic functions are required to avoid interruption or failure of

these computations.

b. Distributed Source

With an instantaneous point source, the solution to the diffusion equa-

tion gives a distribution over time and space of a finite mass that is in ef-

fect initially concentrated in an infinitely small volume at the spill origin.

These solutions then have a drawback in that infinite concentrations are ob-

tained initially at the spill location, and for some time, and distance close
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to the spill, concentrations obtained from these models will exceed the density

of the spilled chemical. In addition to this undesirable conflict with physi-

cal behavior, the singularity does not allow initial values of concentration

at the spill origin to be specified and does not reflect the initial finite

volume of the space occupied by the spilled substance. Specification of the

initial value of the concentration is especially useful to provide flexibility

for modeling both spills of pure or undiluted substances (introduced at con-

centrations equal to the liquid density), as well as for releases of diluted

quantities which may be assumed to occur directly into the transporting fluid

or indirectly, for example, as if originally introduced into flowing drains

or run-off ditches.

Several methods may be applied to develop expressions for the concentra-

tion distributions which, although based on the instantaneous point source

solutions, exhibit finite behavior at the origin. In this and following sub-

sections, alternate methods are described and characteristics of the resulting

solutions are illustrated by simple examples.

(1) General Solution by Principle of Superposition

The general solution to the instantaneous point source problem which

satisfies both the partial differential diffusion equation and conservation

of mass is written for the one-dimensional case, with no decay, as:
S22- x x

202 4et
c(x,t) - m e x m e x (138)

and gives the concentration at (x,t) produced by an instantaneous source of

fixed strength m located at the origin x - 0.
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If the source m, in the instantaneous point source solution, is replacea

by a source having a strength f(C) dC and located at a spatial coordinate

, then the corresponding concentrations, from the point source solution,

are given by:

(x-C)
2

2
2 2

c(x,t) e x (139)

where the subscript p is used to denote point source concentrations, and

the exponential term is written in terms of the distance between the loca-

tion of the observation point, x, and the location of the equivalent instan-

taneous point source, F.

The method of integral solutions for distributed sources follows by

taking the function f(C) to have some finite distribution over the spatial

coordinate, and represented by a series of point sources of strength

f( ) dE. Since the diffusion equation is linear, the solution for the dis-

tributed source is obtained by summing the concentrations for each of these

point sources so that the total concentration at the observation point x is

given by the integral of the point source concentrations over the range of

the function f():

(X-0 2
Cr 

2

Cd (x,t) f( e x d (140)

where the subscript d is used to denote distributed source concentrations.

Since for the general case the function f(E) may be arbitrarily defined the

limits of integration in the above are taken to extend over the entire
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range of the spatial coordinate. The integral is evaluated using a trans-

formation, a = (x+ or x + a to obtain:

c d (x,t) 
= + a d (141)

The direct result of the transformation is to cancel the term Gx7 which

appeared in the demoninator of the instantaneous point source solution and
1

produced the singularity since-- as t- 0. At time t = 0, the source
ox

term in the above integrand, f(x + B ax I2), reduces to f(x) since

0x = 2xt - 0, and the resulting initial concentration distribution be-

comes:

c d(xO) = .) f 00 e- da (142)

Using the definition of the error function, the value of the integral

is obtained as - so the initial value of the concentration distribution

is obtained as:

Cd (xO) = f(x) (143)

Thus, for a distributed instantaneous source, superposition yields a solu-

tion in which the initial value of the concentration distribution can be

specified and, for finite values of f(x), remains finite.

The above integral solution for c d(x,t) is entirely general in that

it has been shown to satisfy the desired initial condition c d(xO) f(x)
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for any arbitrary spatial distribution of f(x). This result is quite useful

although for different types of initial distributions the evaluation of the

integral expression, particularly in three dimensions for situations of prac-

tical interest, can be very compex unless simplifying assumptions are applied.

(2) Solution for Fixed Source Level

For the type of instantaneous spill conditions of interest, one appro-

priate distribution of initial concentration assumes a constant value, c09
o

distributed symmetrically about the spill origin over an interval -b < g < b

with values of zero elsewhere. Substitution in the general integral ex-

pression gives:
(x-)2

c 2 a 2

c(x,t) 0 e x d (144)

The limits of integration are taken over the interval -b to +b since the

contribution by values of f(C) outside this range is zero. The subscript

d on the distributed source concentration is omitted.

Using the same transformation as before, x + 8 leads to:

b-x

c(x,t) =e (145)
Jb-x

and evaluating the integral in terms of the error function gives the re-

sult:
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[ (b x
c(xt) [erf +x + erf (146)

For values of x such that lxI < b the arguments of both error function

terms are positive so that the initial value for t- 0 is obtained for a -0

as

c
c(x,O) 0 - [1 + 1] = c o, jxj < b (147)

For values of x such that Ixi > b, the arguments of the error function

terms take on opposite signs so that the initial value in this range is

obtained as:

c(x,O) = c [+1 -1] = 0, IxI > b (148)

The total mass introduced into the system is given by c 0 2b; conservation

of mass is satisfied then if:

2 cb =f c(x,t) dx (149)

and substitution gives for the concentration integral:

c(xt) dx cfOD erf ax;20dx + cerf ((10)
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First writing the integral over a finite interval -a < x < a and
b+x b-x

using the transformations z = and z = gives

b +a

c(x,t) dx c o x erf(z) dz (151)

-a b- a

The integral of the error function is evaluated using:

erf(z) dz - z erf(z) + -z (152)

leading to the following expression for the distribution of mass over the

interval -a to +a:

(b+a)
2

1 r a  (b+a) b + a + 2 a 2

c i a c~~)dx (b ) erf (a~.. 1~ e 2

(b-a) 
2

2
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This expression gives the generalized result for the mass distribution as

a function of time over any interval -a to +a for the distributed instan-

taneous source of constant initial strength. In the limit as a -, the ex-

ponential terms vanish and the error function values become:

erf( + 1a (154)

erf(b - a ) -I (155)

so that the mass integral reduces to

L: c(x,t) dx = co a4 ~F2 b + ) + (bbc)](156)

and therefore the total mass in the transporting fluid is conserved.

(3) Behavior of Particular Solution

The particular solution obtained for the illustrative case of a mass

initially uniformly distributed over the interval -b to +b at a concentra-

tion of c was:

0C

c(x,t) = R erf G + erf (157)
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This solution was previously shown to satisfy the desired initial con-

dition as t -0. For very large values of x, the error function terms approach

opposite limits and the concentration c(x,t) vanishes.

The distribution is symmetrical in x, such that c(x,t) = c(-x,t) and

is everywhere proportional to the initial concentration c (although theo

solution for an instantaneous point source is obtained in a form proportional

to the total dispersing mass). For values of IxI < b, the concentration is

given by the sum of two error function terms. For values of IxI > b, the

concentration is given by the difference between two error function values,

both of which approach an asymptotic limit of 1 for large argument values.

Especially in this latter case, the form of the solution as written is

very likely susceptible to numerical instabilities.

Figure 13 gives representative concentration distributions for the

instantaneous distributed source. The illustration gives values of the

ratio for selected values of a 2 - 1, 2, and 3; the half-width of

the initial distribution, b, was assigned a value of 1.

As can be seen from this figure, the distribution is symmetrical in x,

with a maximum value that is finite, remains at the origin, and decreases

with time. For small values of time, the distribution is shorter, broader,

and rises more sharply to the maximum value than the Gaussian function. For

larger values of time, the distribution tends to flatten and approach the form

of the Gaussian. The concentrations everywhere are proportional to the ini-

tial concentration c which can, for this type of model, be specified as anyo

initial value.

(a) Time History at Origin

The concentration at the origin, x - 0, is given as a function of time as:
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C( c erf (158)
e rf 2) = c rf xb

and in the limit as t-o0 the value of the error function becomes 1.0 so that

the initial value of the concentration is obtained as c . Since the value
0

of the error function is approximately equal to one for values of the argu-

ment greater than 2, it can be seen that the concentration at the origin

will remain approximately at the value c for values of:0

b b2> 2, or t < (159)
2.eTT 16 e

The maximum value of the concentration distribution along the x axis

occurs at the origin for all values of elapsed time greater than zero; at

t = 0, the maximum value of c is distributed over -b < x < b.

At large values of time, the error function argument becomes small,

and the approximation

erf(6) = (160)

can be used to give:

2 cb
c(o,t) = 0 (161)
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Since 2 c b gives the total mass released, it can be seen that the behavior

of the distributed source approaches that of a point source for large

values of time. The small argument approximation for the error function is

roughly accurate up to argument values of 0.4; thus, it can be concluded that

the behavior at the origin of the distributed source is approximately the

same as for a point source for values of elapsed time:

b < 0.4, or t > e (162)

For large times, the approximate expression for the concentration at the

origin can readily be inverted to obtain elapsed times at which the concen-

tration at the origin will be reduced to any specified value. Substituting

the limit of elapsed time for which the approximation is valid into the ex-

pression for concentration gives the condition that the elapsed times will

be approximately accurate if the concentration c(O,t) is specified such

that:

c(O,t) < 0.45 c (163)0

For shorter times, concentrations can be computed as a function of time

using the error function expression and interpolation used to determine

the elapsed times to any specific concentration at the origin.

(b) Time History at x = - b

At an observation point x - ±b, one of the error function terms in the

concentration expression [Equation (157)] vanishes, leaving:
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C
c(Ibl, t) = -erf b (164)

For small values of time, the error function value is approximately 1, and
C

the initial value of the concentration is obtained as -. This is inter-

preted as the mid-point between the initial values c(b ,0) = c and
0

c(b ,0) = 0.

For large values of time, the small argument approximation is applied

for the error function, giving:

2b c
c(IbI,t) = (165)

which is the same limit value obtained for the concentration at the origin,

reflecting the nature of the spreading or flattening of the concentration dis-

tribution at large times.

(c) Time History at Point x

Since the initial condition is specified that the concentration over

the interval -b < x < b is equal to c , and the concentration is zero for

all other values of x, then as the mass is dispersed, the concentrations

first increase from zero for locations away from the initial zone, then

decrease at some later time as the distribution tends to approach zero.

Within the initial zone, -b < x < +b, the peak concentrations occur at t-0,

at a value of c, and decrease for all elapsed times t > 0. For all other

values of x, the time at which the concentration reaches a maximum is de-

termined by satisfying the condition _ - 0.
at
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Using the definition of the concentration,

c(x,t) erf b x + erf b (166)
22

(2 [erf(22ex3)

and the derivative of the error function:

2
a 2 -z az (167)erf(z) - e -

leads to

(x)2 2
_ (b-x)

o~ 0 (b + x) e ex + (b -x) e x (168)
at - 1 t 3 / 2

Expanding the exponential terms, factoring out common terms and setting

ac = 0 give a condition for a maximum concentration as:

at

bx + bx
2et 2et

(x + b) e x max _ (x - b) e x max W 0  (169)

which gives

bx
e t

e xmax x- x > b (170)

According to this equation, the value of the exponential function is close

to 1 if x is much larger than b (or for large values of time), and a first
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order approximation gives

bx x - b
e t x + b (171)

x max

and solving for t yields
max

t x (x + b)max 2 e (172)
x

which reduces to the same expression obtained for the instantaneous point

source since x >> b. The similar behavior at long distances between the

point and distributed sources is again observed.

At values of x closer to b, solving directly for tmax gives

bx/ex

max in (x + b) - In (x - b)

and it can be seen that t m 0 as x-b.max

The envelope of maximum concentrations can be obtained by selecting

values of x, computing the corresponding times to the maximum concentra-

tion, and then substituting the values of the (xt) pairs in the error func-

tion expression to compute the value of the concentration.

The concentration time history at any point x can also be simply ob-

tained by computing the concentration as a function of the value of x and

a range of values of time. Since the maximum concentration occurs at a

time, t, the time interval of interest for the concentration history

is given by intervals both preceding the following tmax' Approximate
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limits for the range of elapsed times to be considered can be taken from the

time history of the concentration at the origin, selecting times corresponding

to concentrations both greater and less than the maximum value which occurs

at the location x. The lower limit of time may also be taken as 0 or some

intermediate value between 0 and t
max

(d) Extent of Hazard

For the instantaneous point source, it was possible to obtain an analyt-

ical expression for distance as a function of time and a fixed concentration,

allowing for the computation of the distance x (as a function of time) over

which concentrations would exceed a specified hazard level.

Since an equivalent analytical result is not readily obtained for the

distributed source, the alternative is to use the concentration equation (166)

to obtain, for various elapsed times, the distribution over x of maximum con-

centrations. For each value of elapsed time, interpolation can then be applied

to bracket the specified concentration level and determine the range over which

it exists. Since the maximum concentration over all values of x occurs at the

origin, the maximum time for which the hazard exists anywhere in the aquatic

environment is given by the time over which the concentration at the origin

exceeds the specified level.

(e) Solution for Non-Conservative Chemical

The method of obtaining a solution for the distributed source proceeds

by integrating the concentrations from a series of point sources over the

spatial coordinate range of the distributed source function. Since for a

-kt
point source the decay is introduced through an exponential 

factor, e ,

which does not affect the integration, the result for an initially constant

distribution over -b < x < b of a decaying chemical is simply:
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The time history at the origin becomes:

c(0,t) = c ekt erf (175)

and since the error function remains approximately constant at a value of
b 
2

1.0 f 16 e the concentration at the origin now experiences immediate
x -kt

reduction according to the behavior of e-k

Since the concentration at any location x is obtained as the product
-kt

of the exponential e and the concentration distribution for k = 0, the

condition for the maximum value of the concentration at x is given by:

= -ktCk>0(x,t) ck=(x,t) e (176)

and the derivative of c k>(x,t) with respect to time is zero at:

Sck=O(x,t)

t - k ck=O(x,t) = 0 (177)

and the maximum concentration at x has a lower value and occurs at an earlier

time than if k = 0, as expected.
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(4) Observations

If the volume or length for the one-dimensional example, within which

an instantaneous spill is initially contained can be described, then super-

position of concentration distributions from a series of instantaneous

point source releases yields an integral solution for the concentrations

from a distributed source. These concentrations remain finite in the

vicinity of the spill, and thus initial values for the concentration at the

spill origin may be specified to be cursistent with physical behavior.

As the chemical mass is dispersed in the transporting fluid, turbulent

mixing will dissipate the effects of the initial mass distribution so that

at sufficiently long times the concentrations should approach a Gaussian

distribution, becoming independent of the initial mass configuration. The

results obtained for the example one-dimensional case exhibited this be-

havior. Also, the distributed source modeled by this integral approach

satisfies conservation of mass and presents a reasonably realistic con-

centration distribution within the overall assumptions of the model.

Except for highly idealistic cases, however, the integrals involved,

especially in two or three dimensions,are extremely difficult to carry out,

and numerical methods will usually be required. This is a significant

disadvantage considering that the numerical integrations must be performed

repetitively for different coordinates of the observation point and elapsed

times.

A second disadvantage is the apparent uncertainty of an ability to

reasonably assume and describe the geometry of the initial mass distribu-

tion, particularly considering the influence of environmental conditions
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and the nature of the discharge (accident, explosion, etc.) for the situa-

tions of interest in this context, although for other types of discharges

the discharge distribution can be quite precisely known. In turn, near the

spill location the concentrations obtained from the distributed source solu-

tion are significantly dependent on the assumed geometry and thus subject

to the same uncertainties. Two alternate approaches for adapting Gaussian

models to estimate finite concentration behavior in the locale of a discharge,

with less dependence on the geometry of the initial mass distribution, are

described in the two following subsections.

c. Virtual Source

Since the instantaneous point source produces a concentration distribution

that does not provide for finite initial concentrations at the spill location

nor an initial finite distribution in spatial coordinates of the dispersing

mass, the method of virtual sources is sometimes utilized. Simply, the instan-

taneous point source solution continues to be utilized, but translations in

time and spatial coordinates are employed to delay the point source solution

until some set of desired characteristics have been reached; this intermediate

point in the Gaussian distribution is then taken to be the initial condition

for the spill being modeled. The transformation is taken in time or, in the

case of a moving river, the river velocity, and the time delay which are used

to obtain an equivalent upstream offset for the location of the virtual source.

Since the dispersion coefficients, a in one-dimension or a and a
x x' y z

in three dimensions, convey measures of the extent of spreading of the dis-

persing mass, the modeling accuracy obtainable will depend on the degree to

which the volume described by ax, a y, and a after the time of delay is ap-

propriate for the type of release and description of the initial volume. If
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r]
the dispersion coefficients are equal, constant concentration values will lie

on a spherical surface; the dispersing mass is visualized as being contained

within a spherical volume which increases in size with time. If the disper-

sion coefficients are unequal, the volume shape is given as a three-dimension-

al ellipsoid. Further, if there are significant differences in the values

of the dispersion coefficients in the axis directions, then the shape of the

ellipsoid may become considerably distorted. The fastest growth occurs in

the direction in which the dispersion coefficient is greatest, and if suf-

ficiently distorted, the representation may be more appropriate for line or

area sources but not volume sources. In any case, the shape of the volume

within which any desired fraction of the total dispersing mass is contained

after any elapsed time is directly dependent on the values of the dispersion

coefficients.

(1) Determination of Delay Time

For an instantaneous point source, the Gaussian distribution gives con-

centrations at the center of the dispersing mass in the form for one-dimension:

c(Ot) = m (178)

in which c(O,t)- - as t -0. To obtain a solution in which the initial value

of the concentration is desired to be a value co, the elapsed time at which

the Gaussian distribution reaches this value:

2m
td 4 2 (179)

47re c
x 0
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defines the delay time for the virtual source. That is, if t is used to mea-

sure elapsed time from the start of the modeled spill, then the appropriate

elapsed time from the start of the virtual spill is t + td. Then the form

of the Gaussian distribution is used with this substitution, i.e., c(x,t+td)

is used to obtain the concentration at (x,t). Note that the resulting dis-

tribution is still a point source solution; however, the location of the

point has been translated to x = 0, t = -td' out of the time frame of

interest.

The nature of the distribution obtained from a virtual source assumption

is described by the characteristics of the Gaussian distribution at an elapsed

time equal to td. Since the effects of the initial distribution of spilled

mass are diminished over time by turbulent mixing, and concentrations should

approach a Gaussian distribution as time increases, the virtual source gives

a good method of obtaining finite initial conditions since it is by defini-

tion Gaussian.

(2) Behavior of Solution

For the one-dimensional case, the concentration distribution for a

virtual source is given by:

2x
4 e (t+td)mx d

c(x,t) = 4 (180)
42V N2 e d(t+td

where t gives the elapsed time from the start of spill being modeled and

td gives the delay time from the start of the virtual spill to t =0.
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(a) Mass Distribution

Since the distribution of mass is determined by integration over the

spatial coordinate, the expression is obtained from the point source solution

by substituting t + td:

m(x,t) = m - erf (2 x - (181)

At time t = 0, the mass has an initial distribution determined by x =N/2 ex t d

such that 68 percent of the mass is contained in an interval of width 2a
x

and 95 percent of the mass is contained in an interval of width 4a
x

The maximum concentration is c at x = 0. Expressing td in terms of

c gives the following for the initial average concentration:

0.68mInitial average over interval of width 2 = 0.85 c (182)x 21 2 ex tdo

Initial average over interval of width 4a 0.95m = 0.60 c (183)X 4V 2 ex tdo

(b) Time History at Origin

The concentration at the origin is given as a function of time by:

c(Ot) m (184)

-;27- 2 ex (t+td)

Since td can be written in terms of the initial concentration, c , expressing
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the elapsed time t as a multiple of tdo t - s • td where s > 0, leads to

the simplification:

c
c(Ot) 0 >0 (185)

As t varies from 0 to -, s has the same range and the concentration varies

from c to 0.
0

Inverting the equation gives:

(O-t) 1 2 (186)

which, since t = s - td, expresses the time at which the concentration at

the origin reaches a specified value of c(0,t). As the concentration at

the origin is reduced, the time s at which any particular concentration is

reached approaches the same value as for an instantaneous point source re-

lease. The maximum duration during which concentrations will exceed a par-

ticular hazard level, for any value of x, is obtained by computing the

value of s corresponding to the desired concentration.

(c) Time History at Point x

For the virtual source solution, obtained as a time-delayed point source

solution, the initial concentrations along the spatial coordinate are non-zero,

being given by:

141



2 2x x
m 4 e t d  4 e td

c(x,0) = e -- c e x (187)
2 2 x t d o

The initial concentrations become small as x increases in value above

N2 e td.

For elapsed times greater than zero, the maximum concentration, at a

fixed value of x, is determined from:

Dc = C(X,t) x 1 0 (188)at (t+td )  4 e x (t+t d  -2 =0(18

Since the virtual source gives a delayed Gaussian curve, for a region near

the location of the spill, the maximum concentration would have occurred

(for the Gaussian during the delay period) at a time t < 0, and it can be

seen from the above that for small values of x the derivative is negative.

At time t = 0, the derivative is zero for x -- ex td, and therefore for

values of x < N ed, the maximum concentration occurs at time t 0 and

is given by

2x

4 e td
c(x,t ) c e x<2 edxd tmax 0 (189)

For locations x > 2 -e d the maximum concentration occurs at a time t
max

given by

2tm x 2 - t (190)
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The concentration at this time and location is:

-1/2
c(xtmax )  e m 0.24197 x e td

maxx > (1127TX

which is the same value as obtained for the instantaneous point source.

Thus,at distances greater thanf2 e td ' the maximum concentration level

reached from a virtual source is the same as if an instantaneous point source

were assumed but it occurs at a time td earlier.

These equations give the coordinates on the envelope of maximum concen-

tration as a function of distance as:

for 0 < x <V'2 etd t 0

2
x

4 e td

c(X, max ) c 0 e x d (192)

2fo >V_- x td

x t d ,  max 2 e dx

-1/2
c(X,tx = m * e (193)

max X2

and are plotted in Figure 14 for an example using ex td f 0.25, together

with an equivalent point source envelope for comparison. It can be seen

that the effect of the virtual source is to translate the elapsed time by

e td, and for distances close to the spill (x <
7 Tetd) the maximum

x dx
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concentration behaves as a decaying exponential distribution, becoming equal

to the point source values at x =N2e x td .

To compare the virtual source and point source envelopes, Figure 14
c x max )

gives the concentration as the ratio • '; the initial concentration,
m

c , is expressed in terms of m by:

0m

c 0 m (194)
o 4 x td

The concentration at the point on the envelope at which the virtual

source and the point source curves meet is obtained as:

-1/2
c(xt ) V me2 et (195)

maxx

The equations for the concentration envelope can readily be inverted

to obtain maximum distances in terms of specified concentrations:

tonc> - / c e 2 , the specified maximum concentra-0 c(~max ) 0

tion c( max occurs at time t = 0, and at a distance given

by

c ]1/2

xtd (Xma x )  (196)
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-/2
For c(xt m) < c e the specified maximum concentration

c(X, max ) occurs at a distance of

C(xt 0 o 2 ex td -1/ 2  (197)x = (X~ma x ') -J  xt

2
and the time at which this occurs is given by tmax 2 2Xe td'

x

Limits on expected concentrations can be used to estimate the times and

distances over which concentrations of interest will exist and thus determine

bounds on time and distance scales.

Since the concentration variation, at any location x, with time is ex-

pressed using a Gaussian distribution with time T = t + td9 the concentra-

tions occurring at point x will behave as shown in Figure 10 for the point

source solution, with a translation of the time axis such that t = T - td'

The concentration values indicated in Figure 10 remain at the same level,

but the entire curve is translated in time by an amount td so that the con-

centration at t = 0 is greater than zero. It can be seen that. for values

of x close to the spill site, the translation will move the time for which

the maximum point source concentration occurs to a value of t < 0.

(d) Extent of Hazard

By inverting the equation for concentration, the distance at which a

specified concentration occurs can be obtained as a function of concentra-

tion and time:
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x 2 4 e(t + td in c/c(xt) , c(x,t) < c (198)x = ex~ + t ) • n + t/t d -o

These distances are defined for times such that the argument of the logarithm

is greater than or equal to 1, which gives a constraint on time for any

given concentration as:

c

t<td [cot 1] (199)c2(xt)

At the limit of elapsed time, the specified concentration occurs only at

the spill location, and the distance x is equal to zero.

(e) Solution for Non-Conservative Chemical

Where decay or degradation of the chemical in the environment is as-

sumed to occur, a decay term is applied to the concentration distribution

for the virtual source, giving:

2
x

4 e (t + td )
m x d -kt (200)c(x,t) = e e(0)

2 2 ex(t+t d )

and the mass distribution over an interval of 2x, centered at the spill lo-

cation, becomes:

m(x,t) = m e-kt erf ( x ) (201)
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In this formulation the mass m is introduced instantaneously at time t = 0,

and has an initial distribution determined from the Gaussian at time t = td

such that the concentration at the spill location is c . A larger equivalento

mass is associated with the start of the virtual spill so that the decay

over the interval td gives the total mass m at t = 0.

The time history of the concentration at the origin is given by

-kt
c(0,t) f m e (202)

2 i e (t + t d )
x d

and at t f 0 the initial value is

c(0,0) m C (203)
27N--2 ex td 0

For the maximum concentration at any location x, the derivative of the con-

centration with respect to time gives:

ac x 1 -t

ffi ex(t + t) 2(t + t) k c(x,t) (204)

At time t f 0, the derivative is zero for

22
x 2 e td + 4k e t- (205)x dxd

and the width of the interval over which the maximum concentrations occur
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at t = 0 is extended by the presence of the decay term. For larger values

of x, the time the maximum concentration occurs, t max , can be obtained from:

i e e 2

1 x + 1+ + xk (206)
t + t x2 x2 F1 etmax X X x

and the corresponding value of concentration is obtained by substituting

the values of x and t = t in the equation for c(x,t).
max

The distance at which a specified concentration exists as a function

of time can be obtained from:

x = 4 ex(t + t d in M -kt (207)

2 c(xPt) 0VT e (t + t )
Ix d

For values of t > 0, this expression is zero for

e kt m (208)2 c (x, t)N~Te

and this gives the condition determining whether the concentration has the

value c(xt) at a location x > 0 at the value of time specified.

d. Modified Source

The concentration distribution from an instantaneous point source is

given as:
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2
x

c (x, t (209)27r V2 e t
x

where the initial concentrations are zero for lxi > 0, but infinite at x = 0.

Conversely, the virtual source distribution given by
2

X
ctx j =m 4 e (t + td)

c(xt)e x (210)
F27TV 2 ex(t + td)

gives an initial distribution of non-zero concentrations for lxI > 0, and

a finite initial value of c at x = 0.
0

(1) Form of Solution

Characteristics of both forms of solution can be combined by using

a modified form of the distribution written as:

2
4 e tm x

c(x,t) =m e e (211)
'fZT V2 e_(t + td)

For values of lxI > 0,this gives the point source behavior that the

initial concentrations are zero. However, at the origin, x = 0, the ex-

pression also gives a finite initial value of the concentration:

c(O,0) f m (212)
S72 etd

which applied to the virtual source.
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It can be seen that, in this modified solution, the concentration can

be visualized as resulting from the distribution of the mass m over an inter-

val of length proportional toV2 e (t + td). The point source produces in-

finite concentrations at the spill location as a result of this length van-

ishing as t-0. However, in the modified solution the length has a value,

2 greater than zero at t = 0, and the concentration at the originex t d , rae

remains finite as t- O.

Since initially the concentrations at all other values of x are zero,

it can be inferred that this form of the solution does not satisfy conser-

vation of mass. This is verified by integrating over the spatial coordinate

x to give:

m(x,t) (213)

where m(x,t) gives the total mass in an interval about the origin -x to +x.

The total mass distributed along the line is obtained for x w as a func-

tion of time:

m(t) m , t s (214)
S1+1

+s

so that conservation of mass is not satisfied, although as s becomes large,

m(t) -*m. The time parameter, s, is tabulated below for a range of values

of the ratio m(t)/m:
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m(t)/m s

0.1 0.010

0.2 0.042

0.3 0.099

0.4 0.190

0.5 0.333

0.6 0.562

0.7 0.961

0.8 1.778

0.9 4.262

0.95 9.256

0.99 49.250

For values of s < 1 or t < td, the total amount of mass rises rapidly as

s varies from 0 to 1, that is, from 0 to m(t) ="-2m/2 at s = 1. Further in-

crease for larger values of s occurs much more slowly, so that m(t) does not

reach 95 percent of m until t = 9.256 t . Conservation of mass states that

the total amount of mass discharged remains constant in the environment in

the absence of any sources or sinks; therefore, the solution behaves as if

a time-varying discharge takes place.

The concentration distributions for the point source and the modified

source can be compared by writing these equations in terms of the initial con-

centration of the modified source to obtain:
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2
x

for the point source, c(x,t) = te 4 (215)

2
x

and, for the modified source, c(x,t) = de X (216)
St+ td

Letting t = s t and x = r a where a = et and s and r are non-d x x x

dimensional parameters greater than zero gives the concentrations in the

form:

2r

Point source, 0 e (217)

2r

Modified source, e 2 (218)

These expressions are plotted in Figure 15 for values of s = 0.5, 1.0,

1.5, and 2.0, and for r ranging from 0 to 3.0. Both solutions exhibit similar

behavior, and the point source solution gives concentrations that are every-

where greater than those from the modified source. In Figure 15(a), where

s = 0.5, it can be seen that the point source gives a concentration estimate

about 41 percent greater than c at the origin, and concentrations greater0

than c over a distance r of approximately 0.8.

Since the form of the concentration expressions contains the same de-

pendence on distance, x, the ratio of the concentrations is constant for

all values of x. The magnitude of the ratio depends only on elapsed time

t:
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c(x,s td) for modified sourced -~(219)
c(x,s td) for point source s + 1

Values of this ratio, plotted in Figure 16, show a very rapid increase

from 0 at t - 0, where the point source concentration is infinite, to a

value of 0.707 at s - 1, then gradually increasing, approaching a limit

value of 1 as s becomes large.

(2) Determination of Delay Time

The modified solution gives an expression for the time history at the

origin which can be inverted to solve for the delay time td in terms of the

concentration at x - 0, t = 0:

2
= m (220)td 4 n e c(0,0)

x

and the value of td can be computed to obtain any desired initial concen-

tration condition at the origin.

If the value used for c(0,0) is very large, td will be small and the

solution obtained from the modified source will give a closer approximation

to a point source at smaller values of elapsed time. From Figure 16, at a

value of s = -- = 4.5, the ratio of concentrations is approximately 0.904,
td

and reducing td will reduce the value of t at which this ratio is reached.

(3) Behavior of Solution

A preceding subsection described the distribution of mass associated

with the modified source and showed that conservation of mass is not satisfied
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for this solution, although the total quantity of dispersing mass approaches

a constant at large times. Other characteristics of this form of the solu-

tion are described in the following paragraphs.

(a) Time History at Origin (x = 0)

The concentration at the origin is given by

m

c(Ot) = (221)
2i-2e x(t +I td)

and this value is the maximum concentration over all values of x at this

value of time. The constant td is determined by the desired initial value

of concentration at t - 0, co, and using this value, the equation for con-

centration can be used to solve for the elapsed time at which any given

value of concentration is reached:

t [ c 2__ 1t c0 (222)d c2(O't)

Figure 17 shows the ratio c(O't) as a function of the ratio
c o  t d

(b) Time History at Point x

Since the concentrations given by the modified solution are initially

zero for all values of Ixi > 0 and are zero for very large values of time,

at any point x, at some time after the spill occurs, the concentration ob-

served increases to a maximum value and then decreases as further disper-

sion takes place. The derivative with respect to time is:
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[r et 2  2(t +td)] c(x,t) (223)

and this is zero at t xwhere:

2 2
t x 4e -+ 3c- x2 + e t d  (224)

x x

This equation for the time at which the maximum concentration occurs

reduces to the same expression as for a point source when td = 0. For the

modified solution, the maximum concentration at any location x occurs at a

later time than for a point source. The magitude of this concentration

is obtained by substituting the values of x, t in the equation for c(x,t).
max

The envelope of maximum concentrations is determined by the values of

t xand c(x,t x) as a function of x. Figure 18 gives a sample envelope

ca (x 0(23

for ex td = 0.25, together with an equivalent point source envelope for com-

parison. The ti at which the mximum occurs for the modified source is

delayed, and the maximum value, initially less than that for a point source,

approaches the point source value as the distance increases.

(c) Extent of Hazard

Using the concentration equation to solve for distance in term of

e x  xtt

moiidsltotemxmmconcentration and elase timeio led to:r a

is 4baie exsusttngtevls 3 x, t inhequ io fr c(x,t) <c(25
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This expression is almost identical to that for a virtual source, and the

same constraint applies, that is,c
t < td 2 0 (226)

c2(x,t)

(d) Solution for Non-Conservative Chemical

An exponential decay factor is added to the modified source solution,

giving
2

x

x -kt (227)c Xt e e(27

x2n2 ex(t + td)

and the mass distribution over an interval of 2x, centered at the spill lo-

cation, becomes:

m(x,t) = m e-kt -t erf( 4pext) (228)

For the maximum concentration at any location x, the derivative of the con-

centration distribution with respect to time gives:

x2 1 c(x,t) (229)

t 4 etx 2 2(t + t d  J
ac

The distance x at which -L 0 is expressed in terms of the time as:
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2 t2x f +k t (230)

4 ex 2(t + t d)

For a given value of time and location as computed above, the concentra-

tion is obtained using the equation for c(x,t).

The distance x at which a specified concentration exists as a function

of time can be obtained from:

x 2 4 e t n - kt (231)
x d(t + td ) c(x,t)

For values of t > 0, this expression is zero for

ft ekt em (232)+ td e T2 ex c(xt)

and this gives the condition determining whether the concentration has the

value c(x,t) at a location x > 0, at the value of time specified.

e. Approximate Analysis

A characteristic of the Gaussian distribution obtained for the instantane-

ous point source is that the length of the spreading of the dispersing mass is

proportional to the standard deviation of the distribution. In an earlier

subsection, it was shown, for the one-dimensional case, that 68 percent of the

mass is contained within an interval, centered about the spill location, of 2a,

and 95 percent of the mass in an interval of 4a. Since the standard deviation

is a function of time, this characteristic can be used to treat the dispersing

mass as if it were contained within a fixed length (1-D) or volume (3-D)
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which increases in size over time. The dimensions of the length or volume are

taken to be proportional to the standard deviations.

The ratio of the total mass to the length or volume gives the average

concentration within the length or volume as a function of time. Since the

maximum of the Gaussian distribution occurs at the spill location and con-

centrations are initially zero for all jxI > 0, the average concentration

during the early stages of dispersion will tend to give only a crude es-

timate of the distribution. However during the later stages of the dis-

persion, the Gaussian distribution becomes flatter and the average con-

centration can give a more realistic representation.

In particular, since the concentration obtained from a Gaussian or

similar distribution is a function of the distribution of the dispersing

mass, considering the mass to be evenly distributed over an interval or

length will underestimate the peak concentration in the interval and over-

estimate the distance over which concentrations at the average value will

exist. The overestimation will be diminished as the concentrations are

reduced. An approximate analysis is useful therefore to obtain an upper

bound for the distance over which concentrations in excess of any specified

hazard level may exist, as well as a rough estimate of the magnitude of

those concentrations.

Although this type of analysis has not been incorporated within the

water dispersion model due to the potential significance in limit analysis,

a few considerations are discussed in the following paragraphs. The one-

dimensional simplification does not enhance the characterization, and this

discussion deals with three dimensional volumes.
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In three dimensions the Gaussian distribution is characterized by the

standard deviations along each coordinate axis:

ax =  et y = a z e et. The dispersing mass can then be char-
V2 x y y z

acterized in terms of certain fractions of the spilled material being contained

within a volume (ellipsoid) where the lengths of the semi-axes of the ellip-

soid are taken in proportion to the standard deviations of the distribution.

Conservation of mass can be used to express the fraction of total mass

as a function of distance, from the origin of the dispersing mass, where

distance is expressed in terms of the standard deviations. In practice,

the resulting volume integrals are not readily evaluated and further simpli-

fications may be necessary. Taking the standard deviations as proportional

to the lengths of the semi-axes of the ellipsoid, the volume (cut by the x-y

plane for a spill at the surface of the water) is given by:

N 4 (233)
3 x y z

where N is a constant of proportion determined from conservation of mass

such that the amount of mass contained within the volume is expressed in

terms of the total quantity discharged: M(V) = r M, r giving the frac-

tion of total mass contained in V(t). The average concentration over this

volume is obtained as:

M(V) 3 r • M (234)
V(t) 2 N a a a
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The lengths of the semi-axes of the ellipsoid, x Fi , oa and

ohiN give the distance from the center of the dispersing mass for which
z

this average concentration is determined. For a one-dimensional distribution,

the equivalent value of r/N ranges from 0.39 for a semi-axis length of

0.2a to nearly 0.24 at 2a, and the approximate model will require calibra-

tion to determine an appropriate value of this ratio for the particular ap-

plication. Since the peak concentrations, given by the Gaussian distribu-

tion, occur at the location of the spill, and are also inversely proportion-

al to the product of the standard deviations, these values can be obtained

as a function of time by a simple scaling of the average concentration.

Conversely,the average concentrations can be scaled to obtain the distances

for any desired fraction of the peak concentration.

For spills into moving water, the average concentration is obtained in

a volume, centered at the center of mass of the spilled chemical but being

translated in the direction of bulk fluid flow. The distances ax, a y, and

o are measured relative to the center of mass of the spill, and a linearz

translation is required to obtain distances in a coordinate system fixed

relative to the moving water.

In the case of a river or similar body of water, where the dispersion

of the spilled mass is constrained by flow boundaries such as the channel

banks or bottom, the average concentration is computed over an ellipsoid

volume only in ti.. initial stages of unconfined dispersion. As the volume

increases in size, further increase in size along one or more directions
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will become confined. As this occurs, the form of the expression for the

volume, V(t), is changed and adaptation for the geometry of the particular

water body is required.

For non-conservative substances, decaying or degrading over time ac-

cording to a rate constant k, the total mass used to obtain the average con-

centration is M e kt where M is the amount initially discharged.

4. CONTINUOUS SOURCES

Continuous spill models are characterized by a time-varying release

of the spilled chemical, and continuous discharge conditions are described

in Section I. As is the case for the instantaneous spill models, there

are a number of different formulations possible for the continuous models

and some of these are described in the following paragraphs using the one-

dimensional case for simplicity. In general, the continuous spill modeis

are expressed in terms using integrals of instantaneous spill solutions

with respect to time; closed form solutions are not as readily obtained

and numerical integration techniques are often used. Also the integral

method permits solutions to be developed for any arbitrary time-varying dis-

charge; however, in the following sections a constant discharge rate, m,

over a finite duration, 0 to tmt , has been assumed.

a. Point Source

The method of obtaining a continuous point-source diffusion formula from

solutions of the diffusion equation for instantaneous point sources proceeds

according to the principle of superposition. The continuous release is re-

garded as being composed of an infinite number of overlapping instantaneous
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releases. That is, at any spatial position the concentration is given by

the sum of the concentrations at that position from each of the instantane-

ous releases, with suitable adjustments in the difference between time of

observation and time of release to account for the different release times

of each instantaneous release. Mathematically, this corresponds to integra-

tion of the concentration for an instantaneous release with respect to time,

where the integration limits are chosen depending on the duration of the

continuous release.

Except for simplified cases, this integration is not analytically con-

venient because the values of a, in general, depend on t, and for spills into

moving bodies of water, on spatial coordinates since the origin of the cen-

ter of the dispersing mass is translated by the water velocity (e.g.,

x - x = u(t - t ) in the case of one-dimensional flow). As a practical

matter then, for one-dimensional bulk flow along the x-axis, diffusion along

the x-axis is usually neglected by comparison with the gross transport along

the x-axis by the mean water velocity u.

(1) Concentration Equation

For the one-dimensional case, the concentration resulting from an in-

stantaneous point source is given by:

2
x
4e t

c(xt) = e (235)

x

where m is the quantity of mass instantaneously discharged at x = 0, t - 0.

For a continuous discharge at a constant rate, m, the quantity discharged
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over a small interval of time dr is mdr, and this increment of the discharge

is modeled using the instantaneous point source equations. The total con-

centration, resulting from the continuous discharge over a period of time

0 to T, is then obtained by summing the contributions from each of these

infinitesimal instantaneous sources, resulting in the integral expression

for the continuous discharge:

2
xfo •  4 e (t-r)

c(x,t) =  s e x dT (236)

The elapsed time of the instantaneous point source solution is writ-

ten as t-T to give the elapsed time from the incremental instantaneous spill,

mdr, at time T to the observation time t, measured from 0 at the start of

the continuous discharge. The limits of integration are written from the

start of the continuous spill to a later timer 
s

The value taken for the upper limit of integration depends on the nature

of the discharge and the value of the observation time t:

If the continuous discharge is assumed to emit indefinitely,

then the limit of integration T becomes .

If the continuous discharge is assumed to occur for a finite

duration, tt, then the limit of integration is taken as

T= t for all observation times t < t m and T t fors mt, s mt

all observation times t > t t
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The integral is evaluated using a transformation

.=  x (237)

where 8 is defined by equation (237) as a transformation variable and is not

to be confused with previous use.

This gives

dT xd6 (238)T- ex a2 8

and the integral becomes:

c(xt) = ff s s e a (239)2 77e e-xa

where

=0 x a x (240)

Integration by parts gives:
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s 2
s _2 d_1 e- 2  2 sd

e $2 - - e8 edS

f2 8 fa2 2 2

=- ea2 -2 as e-a2d +2 a0eOa2d (241)= -- e- I e8  d8 + 2241'

a aJ 08ofs0

where the integral from 80 to 8s has been written in terms of the difference

between two integrals, assuming 8s > 80 which is only true if x > 0. If

written for the case x < 0, the signs on the last two terms are reversed.

The integrals on the right hand side are error functions, so the ex-

pression for the concentration is obtained as:

2 _2

c(x,t) AT m -eF-Oe s

+ -- erf(SO )  erf(a s  X-> 0 (242)

(a) t < t

The continuous discharge is assumed to occur over an interval of time

from 0 to tmt. If the observation time t is less than tmt, then the upper

limit of integration, T., is equal to t. At this limit, 8 , erf(8 s )-I

and the equation for the concentration becomes:

2x
4 ext

c (xt0 e x + m _____x 1 (243)
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(b) t > t

When the observation time exceeds the duration of the continuous spill,

then the upper limit of integration T is equal to t since the contribution

of the instantaneous point sources after tmt is zero. For Ts = tmt

X 
(244)

and the concentration is given by:

2 2x x
4 ext 4 e (t-t

c(xt) = _i 11 exe e - t -tmte mt

+ mx erf (2 x / erf x j2 e (245)

(2) Conservation of Mass

The total quantity of dispersing mass is obtained from the integral of

the concentration over the distance x. Noting that the integration of the

point source solution introduced a condition that lxi > 0, the mass dis-

tribution, over an interval of width 2x, centered at the spill origin is

written as:

m(x,t) = 2 c(8,t) d8 (246)
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Using the definition

S182 1 8 -282

B erf(a8) dO - 2 erf(aa) - erf(a8) + ea (247)
4a2  2aT

the concentration integrals can be evaluated to give:

m(x,t) - + - erf

2
x

mx 4 e t x2

+e - t < t (248)
- e - 2e ' mt

2 e

and,

m(x,t) = m + erf

2 2
x x)e ex t  x t- t4mte-4e > tt (249)

+( r er e txt

In the limit as x-*, it can be seen that the first expression correctly

reduces to lim m(x,t) = t, and the second gives lim m(xt) n tm
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(3) Behavior of Solution

The concentrations at the origin are obtained as:

c(O,t) =m- t t < t (250)' ex mt

C (0,t) [=nit --m t > tmt (251)

and the maximum value occurs at t = t to give:
mt

c - mV't (252)

x

Initialy, the concentration at the origin is zero and then increases dur-

ing the entire duration of release.

For values of x > 0, it can also be seen that if the duration of the

release is very long, the solution for t < t produces concentrations which• mt

continually increase at all locations. The behavior of the one-dimensional

solution for this source is very different from the behavior of the three-

dimensional distribution in which steady state values are approached for

large values of time.

5. METHOD OF DEVELOPING THREE-DIMENSIONAL SOLUTIONS

Solutions to the one-dimensional instantaneous point source problem were

obtained in the form:
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2
x

2 2

c(x,t) a e x o (253)
x

and conservation of mass was applied to evaluate the coefficient a over

the volume of the transporting fluid, giving a = Solutions to the

partial differential diffusion equation, for a non-isotropic transporting

fluid, are obtained in two or three dimensions as products of one-dimen-

sional solutions. For example, the form of the concentration distribution

for dispersion in a three-dimensional body of still water (u = v = w = 0),

for a conservative substance (k = 0), from an instantaneous point source at

the origin of the spatial coordinates on the surface of the water body, is

obtained as the product of three one-dimensional instantaneous point source

solutions:

2 2 2
x y z

S2 222o 20 2o

c(x,t) = A • e x e y z(254)
x y z

where,as beforethe constant coefficient A is determined from conservation

of mass in the transporting fluid (and is found to be proportional to the

total quantity of dispersing mass). Evaluation of the derivatives of this

expression and substitution in the appropriate three-dimensional form of

the diffusion equation demonstrates that this solution satisfies the govern-

ing partial differential equation. Since the basic form of the three-dimen-

sional solution is very similar to the one-dimensional example described

earlier, the behavior of the concentration distribution is also similar in
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many ways. However, the dispersion occurs much more rapidly since the pro-

ducts -1 -1 -1 -3/2 -1/2
d a • G give a function of time of t as opposed to tx y z

for the one-dimensional case.

Since the integral of the concentration over the spatial volume leads

to expressions requiring multiple integrations of error function arguments,

conservation of mass (to determine the appropriate value of the coefficient

A) is usually applied to an infinite or semi-infinite transporting volume.

If physical boundaries, such as river channel banks, are present, solutions

for confined flow are obtained by a method of imaging or using virtual

sources to construct solutions by summing contributions from solutions

for unconfined flow.

As was illustrated in the one-dimensional example, the principle of

obtaining concentrations resulting from an instantaneous source distributed

over a finite initial volume involves integration over that volume of the

contributions from a series of instantaneous point sources. Except for

very simply shaped volumes, it is extremely difficult to obtain closed form

representations for these integrals.

For spills into bodies of water in which the velocity of bulk fluid flow

is not zero, the center of mass of the spilled chemical experiences a bulk

translation in the direction of fluid flow, and turbulent dispersion continues

to occur relative to the moving center of mass. Thus, the transition from a

still water model to a model for moving water requires only a simple mathe-

matical transformation. For a spill into a non-tidal river, with flow in

the direction of the x-axis at a constant velocity u, the center of mass

at any time t is displaced from the original location by a distance ut.
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If the coordinate x is referenced to the original spill location, then the

separation along the x-axis between any observation point (at x) and the cen-

ter of the dispersing mass becomes a function of time given by x - ut, and

the form of the concentration distribution for an instantaneous point source

release is immediately obtained as:

(x-ut)2  y z

2 2 2202 2a 2a
c(x,t) A e 1 x e y e z-e • e •-e (255)

x y z

Solutions for continuous releases in two or three dimensions for point or

distributed sources are obtained using the principle of superposition by in-

tegrating contributions from appropriate instantaneous sources over time.

In reference[17] mention is made of earlier work in 1955 comparing vari-

ous initial volume-source distribution functions with the initial Gaussian

distribution. The conclusions from that study, although in reference to at-

mospheric dispersion, were that the Gaussian initial volume leads to much

simpler diffusion equations and that it is conservative; that is, it leads to

downwind concentrations slightly greater than for other volume-source distri-

butions that were considered. Since the same equations are used for the formu-

lation of the water dispersion models, these conclusions apply in this case

as well.
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SECTION III

MODELS FOR STILL WATER

1. INTRODUCTION

The model for the dispersion of a spilled chemical into a lake or ocean

is based on simple three-dimensional diffusion in an unconstrained three-

dimensional water body characterized by the absence of a bulk flow velocity

component. The model does not include effects of thermally stratified layers

in the water Body, nor directly incorporate effects of wind or thermally

induced currents. The water body is assumed to be non-isotropic, and the

model is formulated assuming constant, but different, turbulent dispersion

coefficients in each of the principal directions. Methods of developing es-

timates for the values of the turbulent dispersion coefficients are described,

and the model is formulated to accept user provided input data if available.

In the absence of user values, a method of automatically providing estimates

of turbulent dispersion coefficients is developed using scaled values of

molecular diffusion coefficients for diffusion in an ideal fluid.

2. GENERAL SOLUTION

As shown in Section II, the general form of the solutions to the dif-

fusion equation in three dimensions is obtained as a product of three one-

dimensional distributions:

2 2 2X -- y.. z
2 2 22o 2o 2o

c(x,y,z,t) eA e x e y L z

x y z
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where A is a constant to be determined from conservation of mass, and the

standard deviations are:

a

CY = Y e

r = 2 e t (257)7, z

The dispersion coefficients e , e y ez may, in general, be different in dif-

ferent directions, although often horizontal dispersion is assumed to be

isotropic so that e = e .y

The form of the concentration distribution given above applies for an

instantaneous point source in the absence of decay (k = 0). It can be veri-

fied by substitution that this form of the concentration distribution satis-

fies the three-dimensional partial differential diffusion equation applicable

for this type of water body (u v = w = 0) and for any value of the coef-

ficient A:

5t 9x ex ax +ay y y +z (ez) (258)

The decay coefficient, k, has been taken as zero only for simplicity in de-

veloping the form of the concentration distribution; subsequently, a decay

term will be applied to the total quantity of dispersing mass.
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Conservation of mass requires that, in the absence of any sinks or

sources, the total mass of a conservative substance dispersing in the en-

vironment at any time t be equal to the total mass of substance, M, origin-

ally released instantaneously at the spill location (x = 0). The total mass

is obtained as the integral of the concentration over the volume of the re-

ceiving water body. Since the still water model assumes that the dispersion

is unconvined, in the horizontal directions, the distances x and y extend

infinitely in both directions from the spill location. The spill is assumed

to occur on the surface of the water body, and the z coordinate (depth) ex-

tends from the surface (x = 0) to an infinite depth. This gives for the

mass contained within a rectangular volume of length 2x and width 2y, cen-

tered at the spill location, and depth z below the surface:

2 2 2
X y z

z y x 2 2 2A 20 c 2

M(x,y,z,t) A 0 -- hI bi e i e Y e 2 dx dy dz (259)
x y z

The volume integration is simplified as a result of the rectangular

shape, that is, the measure of length of the volume in each coordinate direc-

tion is independent of the values of the two remaining coordinates (this is

not the case for example if the volume of an ellipsoid, intersected by the

plane of the water surface, were used, with lengths of the semi-axes pro-

portional to ax, a , a ). Since the terms in each integrand are uncoupled,
x y Z

the evaluation of each integral proceeds directly using, from the defini-

tion of the error function:
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2 2JdT 2 e x dT > a erf( x (260)

This gives for the mass distribution:

M(x,y,zt) - a 7r a 0 erf
x yz x Vo

a erf() 2ro erf-z - (261)
\4 a =2 zz

y

The standard deviations cancel, leaving the result:

M(xYZt) = A(2rr)3 / 2 erf x erf/ erf( .y/ z- (262)
2 (v~aeK2L~ a

which gives a general expression for the total mass contained in the volume

z • 2y • 2x as a function of time.

As the dimensions of the volume are taken to be increasingly larger,

the error function values approach the limit of 1, giving for the total mass

in the system:

A (2)3/2
M = lim M(x,y,z,t) = A(27) (263)

x4

where M is the amount of chemical initially introduced instantaneously at

the spill location. The limit value reached for M(x,y,z,t) is not a func-

tion of time, satisfying mass conservation. The constant coefficient can

now be determined in terms of the value of M as:
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A ()31'2 (264)
(21r)3/

and the concentration distribution becomes:
2 2 2
x y z
2 o2 2c~~~~)=2. 2 o 2 o

c(x(yzq)t) 3/2 2 - e x e Y e z (265)

(27r) a a ya

Substituting the expressions for the standard deviations in terms of

time and the dispersion coefficients gives the final form of the concentra-

tion equation for an instantaneous source as:

x2  y 2 - z2
M4et 4et 4et

c(x,y,z,t) ff- e x e Y e (266)
3/2 3/4 (7)3 ex ey ez t

Further simplification, not taken here, can be introduced if the water

body is assumed to be isotropic: e = e = e • The above form of the solu-
x y z

tion will produce infinite initial concentrations at the spill origin due

3/2
to the appearance of t in the denominator; however, these values will be

rapidly reduced in time because of the value of the exponent, 3/2.

To obtain a solution for a non-conservative mass, decaying exponential-

ly with a rate constant k, the mass M in the above formulation is replaced

by Me
- k t

3. INSTANTANEOUS SPILL MODEL

The Gaussian distribution obtained above gives the expression for the

concentration distribution produced by an instantaneous release of a finite
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quantity of mass M at t = 0 and x = y = z - 0. The Gaussian distribution,

however, cannot account for the initial volume distribution of the spilled

mass, with the result that very large concentrations in excess of the den-

sity of the chemical will be obtained for small values of time and distance

about the spill point.

The values computed from the Gaussian distribution can be artificially

constrained such that c(x,y,z,t) is less than the density p of the sub-

stance. However, it would be useful if a method could be adapted that would

permit solutions for specified intital values of the concentration at the

spill location.

Referring to Section II, the method of obtaining an integral solution

for a distributed source appears promising, but the uncertainty of specify-

ing the initial geometry of the volume is a disadvantage, as is the diffi-

culty of evaluating the integrals which involve coupled terms for the most

reasonable and realistic volume shapes. For this model, the non-zero ini-

tial concentration distribution produced by the method of virtual sources

could be unrealistic in application if the initial concentrations far from

the spill location reach too large a value. Although conservation of mass

is not satisfied for the initial stages of dispersion, the modified source

solution appears to be the preferred alternative and is incorporated in the

model below. The discrepancy in the conservation of mass is roughly equiv-

alent to an implied time dependency of release, which is not altogether un-

reasonable, and is also roughly analogous to the loss of mass in the point

source solution if the computed concentrations are artifically constrained

to be less than a limit value. The modified source solution also has

another advantage in that, by manipulating the specified initial concentration
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value, the resulting distribution can be brought as close to that for a

point source as desired.

The concentration at the origin from the instantaneous point source

solution can be written as:

C000t3 /2M (267)

c(2,,Ot) = 1(21)3/2 ax a y z

so that the denominator can be expressed as the volume of an ellipsoid cut

n half by the water surface (V abc) where the lengths of the semi-

axes of the ellipsoid are given by 2.277 a, 2.277 a, and 2.277 q . For

very small values of time, the standard deviations are small, giving the

effect of distributing the fixed amount of spilled mass M over a very small

volume, producing large initial values of concentration at the origin.

A modification, adapted from Section II, sets a lower limit, Vo, for

this volume, and the concentration at the origin is written as;

c(O,0,O,t) = M (268)
1 (27r)3/2a a a V

xy z o

The denominator now can be considered to represent a volume which has an

initial vlue V and increases in size with time in proportion to t 3/2 As
0

time increases, the additional term V will become negligible so that the0

concentration distribution will approach that for a point source. This for-

mulation is slightly different than the one-dimensional case described in
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Section II in that the initial volume is separated here, and the one-dimen-

sional case provided the modification by means of a delay time. At t - 0

and for large values of time, each formulation gives the same result. For

small values of time, however, the method used for the three dimensional

spill model gives a slower rate of growth for the volume terms, thus pro-

ducing larger values of concentration.

The value of the initial volume V is determined from a specified ini-o

tial value of concentration at the spill location, c(0,0,0,0) = c :

Ho

V (269)
o c

0

Incorporating a decay term and writing the concentration equation in terms

of the dispersion coefficients give the final form of the equation for in-

stantaneous spills into still water as:

2 2 2

M e-kt 4 e t 4 e t 4 e tc(x,y,z,t) = /-32 e xe Y e z(270)

4 r)V e e- t + M/c
x y z o

For a given set of spill conditions, the terms M, k, ex, e y e and c

are constants; the independent variables of the concentration distribution

are x, y, z, t. To simplify the form of the equation, the following terms

are introduced:
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* - 4 e (271)

2 x + +4 z (272)r =4e
x Y z

and with V M/c , the concentration equation simplifies to
0 0

2-1
M -kt -r t

c(r,t) 3/2 e e (273)
st +V

0

In this form, it can be seen that the three-dimensional instantaneous

spill model differs from the one-dimensional case by the exponent of the

time in the denominator (the one-dimensional case gave t1/2).

This equation gives concentrations that have a finite value, c = M/V ,

at r = t = 0, are zero for all other values of r at t = 0, and are zero

at all values of r as t -. The following paragraphs give analyses of the

behavior of the distribution between these extremes.

a. Time History at the Origin

Since, for any value of elapsed time, the maximum concentration through-

out the water body occurs at the spill location, the time history at the ori-

gin can be used to determine the total elapsed time during which concentra-

tions above a specified limit can be expected to exist anywhere in the en-

vironment.

At the spill location, x - y - z - 0 which give r - 0, and the ex-

pression for the concentration at the origin as a function of time becomes:
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ekt
c(rOt) - c(Ot) t3/2 + V(274)

0

As t ranges from 0 to m, the concentration ranges from the initial

value at the origin, co = M/V° to 0. Due to the presence of the decay term,

this equation is not readily inverted to obtain elapsed time as a function

of specified concentration level c(O,t). Plotting concentration versus

time will, however, give a readily interpreted means of determing the maxi-

mum time over which concentrations in excess of any limit value will exist

in the environment:

If the decay term is omitted, the equation can be inverted and gives:

t M 1 [H Vo2/3 (275)
s2/3 c(0,t)

Since the decay reduces the total mass of dispersing substance more rapidly,

the value of time obtained from this expression (with k = 0) is greater

than the elapsed time (with k > 0) over which concentrations in excess of

c(0,t) are sustained. The values of time obtained for k - 0 are useful to

identify upper limits for values of time in cases with k > 0.

b. Time History at Point r

Since the concentrations at all values of lxi > 0, IyI > 0, IzI > 0 are

initially zero, and are zero for very large values of elapsed time, then at
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any location (x, y, z), at some time after the spill occurs, the concentra-

tion observed increases to a maximum value and then decreases as further dis-

persion takes place. The maximum concentration, for coordinates of an obser-
_c

vation point at x, y, z giving a fixed value of r, occurs when - 0 forat
Equation (273) which leads to:

r [ k - 3,s t + c(r,t) (276)at 2 2 (s t32+ Vo

This expression, equated to zero, is not easily solved for values of time,

although it could be graphically displayed. Instead, a simplification is

examined for V - 0, k = 0, and in this case, the condition ac = 0 occurs0 at
at

2 2
t = 2 r 2(277)

for any particular value of r. The influence of non-zero values of k and

V make it difficult to interpret the actual time of maximum concentration0

from this value. However, the expression for -L can readily be solved forat
2

r:

r Mt 2 [k + 3(s t/+ (278)2 (s t 3 / 2 + Vo

For any value of time, this equation can be used to compute r which then

gives the coordinates of an observation point where the maximum concentration
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occurs at the specified value of time. The value of the maximum concentra-

tion is obtained by substituting the values of r and t into the equation

c(r,t). The time scale over which t is varied can be estimated from the

time history of concentration at the origin.

At an observation point defined by r, at the time the concentration

reaches a maximum value at r, the nature of the Gaussian distribution is

such that the concentrations for all values of r beyond the observation

point are less than the maximum value at r. Hence, the value of r also

gives the maximum distance from the spill location at which concentrations

in excess of the maximum at r can exist. The corresponding values of c(r,t)

and r together give a profile of the maximum hazard extent. Although these

are not readily inverted to use for specific values of c(r,t) or r, the form

of the equation permits generating these values using t as the independent

variable.

Since at any location, given a specific value of r corresponding to

the observation point, the concentration increases with elapsed time from

the start of the spill to a maximum value, then gradually decreases, the

time history of the concentration at the observation point is of interest

as is the length of time at that location for which a given concentration

level will be exceeded. The concentration at the observation point is given

as a function of time by the equation for c(r,t). The time of arrival and

duration at r of concentrations in excess of a specified hazard level can

then be obtained by interpolation from a graphical display of the time his-

tory. The requested hazard level should not be greater than the maximum

concentration at the observation point, or, conversely, the location of the
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observation point should not be beyond the maximum extent of concentrations

in excess of the hazard level.

In the above discussion, the spatial coordinates x, y, z were represen-

ted for simplicity as

2 2  2 2
r+ + z (279)

r W-_e 4e 4ex y z

and cases of interest include behavior along the x, y, z axes as well as at

a specific observation point (x, y, z). For example, if y = z = 0, then
2

r x and the concentration distribution becomes
x

2
x

Me -kt 4e t

c(x,t) M t3/2 e x (280)
st +V

0

Families of concentration curves can be obtained showing the concentration

distribution along the x-axis (or any other axis) at different times. The

maximum value attained on each curve will also lie on the envelope of the

maximum concentrations for the particular value of x.

Other computed results may be similarly obtained for values of r selec-

ted along other coordinate axes.

c. Extent of Hazard

The equation for the concentration c(r,t) can be inverted to solve for

the equivalent distance at which a specified concentration will exist as a

function of time:
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r 2 t { in 1
- kt2  (281)Sc(r,t) •(s t + V 0

By setting c(r,t) to a specified hazard level, different values of time can

be used to express the distance over which concentrations exceed this value

as a function of time. The character of the Gaussian distribution indicates

that values of r2 will initially increase with time until a point on the

concentration envelope is reached; then the values of r2 will be reduced

until the time that the specified concentration exists only at the spill loca-

tion (r2 = 0). Since the spill is modeled as an instantaneous source, one

root of this equation occurs at t = 0 for all values of r. The maximum dura-

tion of the spread in excess of the specified hazard level is obtained as

the second root and is obtained from:

in M 3/2- kt = 0 (282)c(r,t) • (s t3/ + Vo )

and it can be seen that this is equivalent to the equation given earlier ex-

pressing the concentration at the spill location as a function of tme.

Given the time the concentration at the origin reaches a particular

hazard level, intermediate values of time can then be used to compute the
2

distance r over which the concentrations exceed the hazard level.

2In the absence of decay, the equation for r becomes:
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r ff t • in (283)
[c(r,t) (s t3/ 2 + Vo)

The maximum duration (kf0) over which concentrations in excess of c(r,t)

exist anywhere is given using the equation for the time history at the origin

as:

-2/3
t 1s--1 V (284)

d 2/3 0 24

2which gives r = t • in(l) = 0. For a given value of c(r,t), the maximum
Dr

value of r occurs at a value of time such that fi 0 which leads to:

I3 t V = 3s3/2

in 3/2  7t3/ 2 (285)
c(r,t) (s 3 + v0  2 (s + V(8

Substitution of the equation for c(r,t) enables a solution of this
2

equation for the distance r as a function of time, which, however, is

independent of c(r,t). The solution in that form gives the value of r at

which a maximum concentration, not necessarily the desired hazard level,

is reached as a function of time. As a result, interpolation between values

of r, computed for times between 0 and td2 will yield the maximum extent for

the specified hazard.
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Plotted displays of the hazard extent profiles, prepared for a specific

hazardous concentration level, give the total time during which the concen-

trations in the environment exceed the hazard level, the maximum distance

for which this occurs and, for smaller distances, the time period during

which that level is exceeded.

4. CONTINUOUS SPILL MODEL

The method of obtaining solutions for the continuous release spill

conditions involves integrating the instantaneous point source solutions

with respect to time over the duration of release. General application of

the principle of superposition for arbitrary release rate conditions is dis-

cussed in Section II.

a. Integral Equation

The still water model assumes that the release rate, M, is constant.

The spill starts at elapsed time t = 0 and stops at a later time, tmt. To

apply the principle of superposition, the appropriate instantaneous point

source equation for three dimensions, with decay, is given by:

2 2 .2
-x ~y z

e-kt 4et 4et - e

c(x,y,z,t) = 4(11 e t3/2 4e x e y e z (286)

x yz

In Section III, paragraph 2, it was shown that this form of the solu-

tion satisfies both the governing partial differential equation and con-

servation of mass throughout the receiving water body.
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Considering the quantity of mass, M, discharged instantaneously, as a

component, M dr, of the mass being discharged continuously, the continuous

spill model is obtained by adding the concentrations at the observation

point from all the incremental releases. Since this gives an integral over

time, the equation is simplified using the notation from the preceding sec-

tion:

s=4 (T) 3/2e e e (287)

2 2 2r2 x +__y +z_£_ (288)
4e 4e 4e 

(28
x Y z

to obtain
2r

Ts -k(t-T) e/(t-T)
c(r,t)= s dT (289)

S (t-,I2

where (t-T) is used in the instantaneous source integrand to give the

elapsed time from the release of an incremental quantity A dT, at time t,

to the observation time of interest, t. It should be noted that the dimen-

sions of r are (time)1/2 .

The upper limit of integration is written as Ts since the actual limit

to be used depends on the relative values of the observation time, t, and

the time the spill stops, tmt. If t is less than tmt, the integrand gives

the incremental contributions from the continuous release for the complete

history of the release from t = 0 to t, and the limit Ts is given by t. If

194



t is greater than tmt, then for values of T greater than tmt, at which time

the spill ceases, the incremental releases do not contribute to the concen-

tration distributions; the upper limit T then becomes tmt,
5

(1) Numerical Evaluation

The evaluation of the integral expression in equation (289) can be

carried out numerically. For values of t < tmt the upper limit of inte-

gration Ts is given by t and the portion of the integrand given by

2
r

e (290)

(t - 3)

becomes equal to 0/0. Using a series expansion, it can be shown that as

r-t, in the limit, the value of the integrand approaches 0. It is necessary

to use the limit value and not attempt to compute the value of the integrand

at T = t. Also, if r is taken as zero, i.e., observation point at the spill

location, then for time t < tmt, the integrand becomes infinite as T-t and

the solution obtains an infinite concentration at the spill location for all

values of time less than tmt. Therefore, the numerical integration is car-

ried out only for values of r > 0. In addition, the form of this integral

expression does not contain any adjustment to restrict the concentration at

the spill location to finite values, so for values of r > 0, concentrations

greater than those from modified solutions will be obtained.

(2) Analytical Evaluation

The integral for the concentration in equation (289) is transformed
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:= r
using ' - to obtain:

2
k r2

- 0 e

c(r,t) 2 js e 2d (291)

r (22

where r andts rt - s

To complete the square for the expression in the exponent, the follow-

ing relations are written:

2!

+ = 2 + +_ 2 rk (293)
2

2 +-k2r2 _ 2 rN (294)

and it can be seen that the sum of these terms is equal to twice the magnitude

of the exponent in the integrand. Substitution gives the integral as:

°- !e2 r~ ( ) + e-2 r()2" e d (295)
srt I, 2!- ek d

The integrand now contains two separate terms in the form of integrands

of the error function. Forming the derivative of the error functions:
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71

rf d (296)

e =Ve

d [erf () e- ( r d E (297)

_ 2

-- IT

then multiplying the first expression by e 2 r , the second by e_2 V and

summing gives:

e 2 r ik d [erf (~+ irN7)J+ e-2 r kFd [erf ( r -___

+ 2 -2 r, k e - ) (i+ r L k d (298)

Both exponentials on the right-hand side are equal to the term in the original

integrand, and this expression becomes.

e 2 r fikd [erf ( + -?r '] + e 2 r JiJ d [erf ( ~ )l
2 2

2 kr 2

e 2(1 + r'*/i7 ) (299)
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2 k r
2

The right-hand side reduces to 4 e d which is in the form

of the original integrand. Substitution then yields the following integrable

form for the concentration:

c(rt) 2 rJn e d [erf + + e 2  d erf -

(300)

Integration gives the complete analytical expression for the concentra-

tion as:

C(r,t) =;sr e [Lrf + _ -_erf +~ 0 _

+ e-2 r %k [erf ( ) erf -A j (301)

The remaining step is to substitute the values -of the limits C0 and

s for the two cases of interest, t < timt and t > tmt.

(a) t < mt

When the observation time t is less than the duration of the continuous

release, the upper limit of the original integral, T , is equal to t. This
S

gives E and & . Substitution of these values for the error func-

tion arguments gives:
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erf (s + rVs/ 1 (302)

s ( s (304)

erf (0 - =0i erf

and the concentration distribution for t < t~ becomes:2rrf[ _rf(Iz E)J

+ Er (306)

t- k
adthe stnedntateo distribution can be o mbtiedcfoms sltinb

takin th limi as06)~

lrn c (r,) 0 c (r) Ln sr e- (307)
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The first term in the expression for the concentration:

e 2r[k ef +kt(308)

has an analytical limit of zero as either r or t becomes large, although for

large values of r, the form of the product is not numerically stable. From

Section II, paragraph 3.a (7).(e), the modified numerical approximation for

the error function is obtained as:

2
erf(x) = 1 - P(b,n) e for x > 0 (309)

1

where q is given by 1+ and varies from I to 0 as x ranges from 0 to .

The polynomial P(b,n) is obtained from Hasting's approximation and ranges

in value from 1 at x 0, to 0 as x-w.

Letting n = I this form of the error function approxi-

+ p t + It)
mation is substituted to yield:

e 2r W[ - erf ( + )]= e2 r 4 kP(b,nr) e

2
_ r - kt

= P(b,n ) e (310)
r

In this form the exponential e2 r has been removed, and the entire expres-

sion is obtained in the form of a stable decaying exponential.
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By substitution, the preferred form of the concentration equation for

t < t is obtained as:

2

t -2 r - [1 e fffit) 7 P(b,nr) e t+ e - erf ( -kt (311)

c(r,t) 2 r

In the limit as r -O, the concentration at the spill location is given by:

lim c(r,t) 2 sr1- erf + 1 - erf (- )(312)
r-O 

2sr

Since erf(- Jikt) =-erf(\iE), the error function terms cancel, giving

the concentration at the spill location to be independent of time and infinite

as M . This suggests an appropriate modification of the continuous dis-
s r

charge equations, in a form similar to that used for the instantaneous release

case, giving the equation for the concentration at the spill location as:

c(0,t) = lim c(r,t) lim M (313)
r-O r-*O +

The modification term is written as V and has dimensions of volume per unit
0

time. The value of V is determined from a specified concentration at theo

origin, c(rf0,t) = c , which gives V = M/co .o o

The concentration field for r > 0 is then described by:

[ 2
r-kt= M/2 Pb r ) et -2 v - e fr1

c(rt) s r + P(bn r e+e-k (314)
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which remains finite for all values of r, decreasing as r increases. As the

values of r increase, the effect of the term V is diminished and the distri-0

bution field of a continuous point discharge is approached. Specifying

large values of c will reduce V and,in turn, reduce the difference between

the modified distribution and the point source values for smaller values of

r.

(b) t > t

When the observation time t is greater than the duration of the con-

tinuous release, the upper limit of the original integral, "E., is equal to

t * This gives .and . Substitution of the value fortmt Thi ges0 an s Vt - tmt

4 in the appropriate error function arguments in the concentration equation
s

gives:

erf ( + - erf r (315)
s ~ ~ t ts tt

erf (4 - = erf -~ rtt (316)S S\t _ tro

and the concentration distribution for t > t becomes:

t) 12 rWF _ tm

+e( r . - +-t te tr

t [t t
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As t becomes large, it can be shown that 
the concentrations vanish. For

large values of r, however, the first 
term exhibits the same type of insta-

bility as before, and terms in the error function arguments become 
infinite

at t = tmt. Expanding the first term using the error 
function approxima-

tion polynomials gives, for

C - trt (318)

= r +4iki (319)

f2 r -

2 ~ 21

=e .7b rt )e - e

=e2 r N7{ P'8l) - P(b,Tn~) M2

2 r

t -kt mt mt(320)

= P(b,n) e e - P(b,n ) e e

which is substituted to obtain the preferred form of the concentration equa-

tion. In addition, the same singularity is present at r=O, and the modifica-

tion term V is inserted. These give:
0
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2
2 r
Lr -kt t - t mt -k (t- t mt)

c (r,t) M/2 P(brI e *
- e -P(br) e e k

s r +r

+e rf (t t  -Nk- Ft-t m)- erf -N~k ) (321)
mt

r
In the limit as r-0, the argument of the error functions, at small

values of r, is very large so that as t t the above equation gives the

same distribution for all values of r > 0 as the equation for t < t mt. At

very small values of r, as the time t increases beyond tmt, the argument

r rapidly becomes small, leading to a different form of the expression
J- _tmt

for the concentration at the spill site.

(3) Concentration at Spill Location

The integral equation giving the concentration at an observation point

x,y,z, is determined by summing the concentrations at that point from a series

of infinitesimal instantaneous releases occurring over the duration of the con-

tinuous release. If the observation point is taken at the origin, the fol-

lowing expression is obtained:

fT -k(t-T)S Me

c(rO,t) 3/2 dT (322)

O2S (t-T) 04
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inwhich is equal to t if t < t , or is equal to t if t > t • Sincenwhh smt mt mt

the concentration at the origin is initially infinite for an instantaneous

release, similar behavior is indicated for the continuous release.

Using a transformation C -- k4 (t - T) gives the integral in the form:

c(r-O,t) = 2 s Cs e- 2 d (323)

with C0 =%,'s =kl - rTs. Since 0 >  
,s9 the order of integration is

reversed, then integration by parts gives:

c(r=0,t) 2 A e- E2 1 _ 4 Jk o e- E dF (324)

The remaining integral is obtained using error functions for integrals

over the ranges 0 to 0' and 0 to s' giving the concentration at the spill

location in the form:

-2 22 M i -s _ 1
c(r=O,t) = --2 -k~ s e s- 10 e0

+ 2M '4VVTr [erf( ) erf(E) (325)
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If the observation time t is less than the duration of release, tmt, then

the original upper limit of integration T is equal to t. This gives thes

value of Cs as zero, and the concentrations at the origin expressed by this

equation are infinite for t < t M

For values of t > tmt, the upper limit of integration T s is equal to

tmt, and substitution gives:

2~Ot AMe - k ( t - t mt  e -kt]

c(r0O,t) = ! ___

-t -tmt "tt

+ j [e)rf t- ) - erf (#k) (326)

If the decay coefficient is zero, this equation reduces to the same result

derived for a conservative substance.

For values of t > tt, this equation gives c(r=O,t)- - as t --tat. For

large values of t, using the approximation for large arguments of the error

function shows that the concentrations identically reduce to zero.

To compensate for the behavior as t- t m , the termVt - tat is factored

out, and a constant term added to the denominator to give c(r,t) = c as

r->,O. This gives the result:
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-k\? ?~+t-tE L ~mt) -ktt
c[(r=O,ft) 2 e ( t__ e

s (327)

(4) Steady-State Distribution

If the continuous discharge emits indefinitely, the concentrations at

different distances from the spill location will reach constant steady-state

values. For any discharge of finite duration, the concentrations will ap-

proach, but not exceed, steady-state values as the duration increases. Thus,

the steady-state concentration distribution gives the maximum concentrations

that can be reached for a continuous discharge at rate M.

The steady-state distribution is obtained from the concentration equa-

tion, Equation (306), in the range t < tmt, in the limit as t - as;

c(r) f !- L e- 2 r' (328)
sr

The concentration distribution is written as c(r) to indicate steady-

state behavior. The steady-state distribution gives infinite concentrations

at the spill location, r=0. At values r > 0, the steady-state concentrations

diminish rapidly according to I e- 2 r'-k. It can be seen that the steady-r

state distribution is proportional to M and that as r -0 the reciprocal of
s r

this term produces infinite concentrations at the spill location, so the
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equation is written as:

c(r) M e-2 rx (329)s r++ o

For a continuous discharge, emitting indefinitely, with decay, it can

be seen from the discharge equations given in Section I that the total quan-

tity of mass dispersing in the environment is constant, given by M/k. The

apparent distribution of a fixed amount of substance over a volume vanish-

ing to a point at the spill location is analogous to the instantaneous point

source behavior.

The steady-state equation can be used to obtain values of the concentra-

tion at different distances from the spill location, using the coordinates

of the observation point (x, y, z) to obtain the appropriate value of r for

each point. The equation is not readily inverted to obtain r in terms of

c(r), so interpolation is required to determine the maximum hazard extent

for a given hazard level.

Since the steady-state distribution gives an upper limit for indefinite

discharges, the integral expression for a finite discharge should be used to

obtain the concentration time history at any location to assess the relative

magnitude of actual concentrations to the steady-state values.

b. Evaluation for Conservative Chemicals

In the absence of decay (k=O), the integral expression for the concen-

tration as a function of time and distance becomes:
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2r
(t-T)

c(r,t) s 3 d

s (t-T) 3 / 2  (330)

The concentration distributions obtained from this expression are simpler

to evaluate than using the general equations for non-conservative substances,

give an upper limit of concentrations, and provide limited independent veri-

fication of the formulation of the equations for non-conservative chemicals.

Applying the transformation:

r
(331)

obtains

c(r,t) = 22 d
s r O(332)

r r

where 0 s t-T

The limits of integration are separated to give:

c(r,t) = e- 2 d - 2kf e-&2 d(s r fs r f(333)

and the evaluation is completed using the error function to obtair:
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c(r,t) =ffi r -[erf(%)] (334)

This expression can then be evaluated by substituting the values of the limits

and C s for the two cases of interest, t < t and t > t .

(1) t< tmt

For t < tmt, then Ts = t. The upper limit Es =C and the error func-

tion erf(E s) = 1, giving:
5

c(r,t) = s  - erf(r (335)

The steady-state distribution can be obtained from this solution by taking

the limit as t-*:

lim c(r,t) = c(r) Afi sr(s r (336)

Since the steady-state distribution gives infinite concentrations as r -0,

the equation is modified as before to obtain:

c(r) = sr + (337)

The equation for c(r,t) can be seen to be expressed in terms of the

product of the steady-state value and a function of r and t which varies

from 0 to 1. In the limit as r-0, the equation gives infinite concentra-
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tions at the origin, and a similar modification is:

c(r,t) = s r (338)r 
0

In the limit as r O this expression gives lir c(r,t) - = c , and as

r-*O 0

t-* the steady-state distribution is obtained. 0

(2) t > t

For t > t , then T = t and the concentration is obtained frommt s mt

Equation (334) as:

C(r,t) bE Lerf (' r .) - erf(~) (339)

As t becomes large, the error function terms approach zero and the concen-

trations vanish. Also, for large values of r, the concentrations become

small. The numerical instability observed for k > 0 does not occur.

For very small values of r, as t -tmt, the value of the first error

function term approaches 1 giving at time t

c(r,t )[= - erf --- (340)
mt sr t

which is the same equation as obtained for t < tmt. For finite concentrations

at the origin, this equation for t > tmt is written as:
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c(r,t) serf erf (341)
_S r - - tm t

For r > 0 and t I- tt, the argument of the first error function is very
mt,

large, giving the asymptotic value of 1 for all r as t- tmt. At t = tmt

and as r -O,the concentration should be obtained as c . However, as t in-0

creases beyond tt, for very small values of r, the argument of the first

error function rapidly becomes small, giving the behavior near the spill

site as:

c(r,t) = 2M (32sL t tot M:

where the unmodified solution obtains concentrations independent of r and

having infinite values as t-t Combining the fractions, the expression

is limited to c(r,t) = c as t-t by writing:
o mt

c(0,t) -- t (343)

s trt - tmt + 2 M ftE/C

(3) Steady State Distribution

In the absence of decay, the solution obtained for the concentration

distribution is given by:

c(rt) = I [1 - erf()] (344)
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for t < tmt In the limit as t- then also tmt, and the concentrations

are obtained for a source emitting continuously at a steady rate. As t -,

the value of the error function term goes to zero, and the following steady-

state concentration distribution is obtained:

c(x=y z) M (345)s r 2 2 2

2 7T/e x"  e e +y + _
y z ey ez

At any distance, x, y, zor r, this expression gives the maximum con-

centration that will be attained for an infinitely long continuous release

of a conservative substance.

Since the conditions of a release of finite duration and of a non-

conservative substance both act to produce smaller concentrations, the steady-

state value represents a maximum value but not necessarily an accurate es-

timate of the expected value. The major advantage is that a simple analytical

expression is obtained relating maximum concentration and distance so that

the general area of hazard extent can be approximately, but quickly, determined.

As might be expected since the continuous source solution was obtained

by integration of an instantaneous point source solution, for very small dis-

tances from the spill location very large concentrations will be est-mated.

Since practically the concentrations at the spill location should remain

finite, at some specified value co, a modification is applied to the steady-

state equation to obtain:
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c(x,y, z) = (346)
27 y2 2

lex
xYzje e e 0

x y z

where the notation V is used for the additional term since the dimensions
0

are (volume/time). The value to be used for V is obtained from the initial0

value c as:

M (347)
0 C0

As the distance from the spill location increases, the effect of the modifica-

tion will be diminished. The estimated concentrations will be less than,

but approaching, those values obtained from the continuous point source

solutions.

(a) Extent of Hazard

For illustration, setting y = z = 0, gives the following expression for

the steady-state concentration as a function of distance x:

C) =(348)
27Tx y z + V0

This is readily solved for the distance x, giving:

M - c(x) V
0 (349)

2 7r c(x) NIT e z

2 z
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This equation obtains the maximum distance x, over which concentrations

greater than,or equal to,c(x) will exist under the conditions of steady-

state continuous release, no decay, and values of c(x) less than c and

greater than zero.

The effect of the value of V can be seen to reduce the maximum dis-

tance x over which concentrations will exceed c(x). By manipulating the

specified initial value c , different values of V will be obtained; if c
0 0 0

is very large, the values of x obtained from this equation will increase

toward the point source solution values.

5. EVALUATION OF DISPERSION COEFFICIENTS

Turbulent mixing in lakes and in much of the shallower ocean areas is

controlled by local wind forcing. Horizontal spreading may be more or less

uniform, but vertical turbulent dispersion may be strongly diminished by

ambient density stratification. As a result, the water body cannot be

treated as a homogeneous media, dispersing a pollutant equally in the hori-

zontal and vertical directions. However, it is difficult to obtain quanti-

tative estimates for the horizontal dispersion coefficients, although ex-

perimental and theoretical work does suggest a somewhat more definitive

formulation for estimates of vertical dispersion coefficients.

The nature of the water body stratification and methods for obtain-

ing estimates of the turbulent dispersion coefficients are describe,' in the

following sections. In cases where insufficient data is available or es-

timates cannot be made, the following subsection describes the computation

of molecular diffusion coefficients. Under proper scaling, which is also

difficult to determine, the diffusion coefficients can be ":ed in the ab-

sence of definitive descriptions for the particular water body.
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a. Turbulent Dispersion

(1) Water Body'Stratification

Lakes and reservoirs display seasonal temperature cycles that have sig-

nificant effect on the diffusion of a spilled chemical.

In temperate zones, lakes are in an isothermal condition in the spring,

that is, the water temperature is approximately uniform throughout the

depth of the water body. By about late March, the water near the surface

begins to warm so that by summer, the lake has become stratified and mixing

does not readily occur among the layers.

The upper layer of the lake is known as the epilimnion and contains

warmer water at an approximately uniform temperature. The epilimnion is

well-aerated and well-mixed. Below the epilimnion is a usually narrow layer,

the metalimnion, in which the water temperature decreases rapidly with

depth. The thermocline is the point within the metalimnion at which the

temperature gradient is a maximum. Below the metalimnion, the lower stra-

tum is the hypolimnion in which the water remains cold throughout the year.

The hypolimnion is stagnant, receiving nutrients expelled by the biota in

the epilimnion and contains mostly anaerobic forms of life.

Sometime during the fall, as the lake begins to cool, the upper regions

cool most rapidly. The density of the surface water increases above that

of deeper water, and significant mixing occurs throughout the epilimnion

as the surface water is caused to sink. Toward late fall, the lake has

again reached an isothermal condition, with uniform temperature and density

throughout. In this state, surface winds are particularly significant and,

during this period of instability, can exert sufficient influence to cause
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complete turnovers of the lake water. This condition exists throughout the

winter and into the spring when the heating process again occurs to establish

the stable thermal stratifications.

In contrast to lakes in temperature zones with seasonal thermoclines,

oceans have both permanent and seasonalthermoclines. The permanent thermo-

cline exists from the equator north or south to about 60ON or S latitude.

Further north or south the entire water column is cold. The maximum depth

of the permanent thermocline occurs in the vicinity of 300 to 350 N or S

latitude; depths are shallower at the equator. The uppermost region of the

water layer in which rapid decrease in temperature occurs lies within the

first several hundred feet to not more than about 1,000 feet from the sur-

face. The seasonal thermocline is caused by temperature increases during

the warmer months at shallower water depths, occurs in the temperate and tro-

pical zones, and may lie at depths not greater than 500 feet.

The rate of turbulent dispersion is strongly influenced by the density

gradients within the receiving water body. Near a thermocline, in a layer

in which temperature changes occur rapidly with depth, the turbulent dis-

persion coefficients are low. Higher values of the coefficients occur at

depths both above and below this layer; however, the hypolimnion has dis-

persion rates that are one or two orders of magnitude smaller than those

found in the epilimnion[26]. For spills on the surface, the thermocline, in

effect, acts as a constraint, limiting the extent to which dispersion to

greater depths occurs.

(2) Vertical Dispersion Coefficient

Experimental evidence indicates that the vertical rate of turbulent

dispersion in the water region below the surface and above the thermocline
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is related to the density gradient. Large density gradients reflect a stable

water column, and low turbulent dispersion coefficients. As the density gra-

dient becomes smaller, the turbulent dispersion coefficient increases.

An empirical expression[27] relating vertical diffusivity to the

density gradient, which generally agrees well with available field data,

is given by:

0
-4

e - (350)
z Q

where e is the vertical dispersion coefficient in cm 2/second, and Q isz

-1
the density gradient in units of m . Available data suggests values of

the turbulent dispersion coefficient in this region of the water body in

the range 0.1 to 100 cm 2/second, where values at the low end of this scale

occur at the thermocline. Because of the temperature variation, the coef-

ficient of vertical dispersion is actually a function of depth.

The density gradient Q is given, in terms of the density, by

0 1 dp (31
p dz

The stability of the water column, and therefore the density gradient, can

be expressed by the Brunt-Vaisalla frequency:

N = " (352)

218



where g is the gravitational constant and the dimension of N is time

Near the surface of the water body, the density gradient may become ex-

tremely small, and the relationship between the vertical turbulent dispersion

coefficient and the density gradient becomes invalid. In this case the dis-

persion is governed by wind and wave action. Figure 19 reproduces a diagram

appearing in reference[27] suggesting a relationship between the vertical tur-

bulent dispersion coefficient at the surface and the sea state. This figure

shows values of the dispersion coefficient at the surface in the range of 100

to 300 cm 2/second, up to two orders of magnitude greater than the values at

the thermocline.

Kullenberg, et al[28] have shown that vertical diffusivity can be re-

lated to the stratification of water, current shear, and wind speed such that

e=c2N72

z Idq/dzl (353)

where c is a constant, W is the wind speed, N is the Brunt-Vaisalla frequency,

and ldq/dzl is the absolute value of the vertical current shear. For con-

stant winds of 4-5 m/sec, the vertical mixing in the top 20 meters can be

shown(28l to be:

e = c 108 2 -w-2 jdqldzi (354)
z

where the constant c ranges from 2 to 8, W2 is the mean square of the wind

speed, N 2 is the mean of the Vaisalla frequency, and ldq/dzl is the mean

shear. The value of c will tend toward the lower value for lakes and range

to the higher value for oceans.
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Figure 19. Relationship of Vertical Dispersion Coeff icient to Sea State
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For smaller or more variable winds, a different relationship will hold

due to the fact that mixing is now more dependent upon local processes than

upon winds. The source of energy is now due to kinetic energy fluctuations.

To express this, Kullenberg, et a1[291 found that:

-4 -2 -2 -

e 4.1 x 10 q (N) dq/dzj (355)z

-2 2 -2
where q U + V , the current fluctuations. According to Kullenberg, this

relationship can be applied to the hypolimnion.

Unfortunately, these expressions require data which cannot be expected

to be available for the intended use of the spill model. An alternative

formulation[30], which does not incorporate the effects of stratification,

has been given asi

w3

e = 2.75 X 10 4 - (356)
z g

where W is the wind velocity at the surface of the water and g is the gravi-

tational constant. Values obtained for e for several different wind speeds~z

are given below:
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Wind Speed Dispersion Coefficient

Miles/Hour cm/sec e cm 2/sec= ez

0 0 0

5 223.5 3.

10 447.0 25.

15 670.5 84.

20 894.0 200.

25 1117.5 391.

Different methods of obtLining vertical dispersion coefficients have been

compared[301 under ranges of typical environmental conditions and were

found to yield comparable values for e . The above expression is preferredz

for the water dispersion model due to the simplicity of obtaining an estimate

of the dispersion coefficient from the wind velocity.

However, if the wind velocity ib quite small, then the dispersion coef-

ficient computed using the wind velocity may be less than that even at the

thermocline. In this case the value of the dispersion coefficient can be

contrained to be greater than some multiple of a computed molecular diffusion

coefficient.

The water dispersion model as presently implemented assumes that the

dispersion coefficient e does not substantially vary with depth, and a con-z

stant value is used. This is a reasonable assumption for mixing occurring

in the upper layer of the water body but becomes more approximate as the

dispersion spreads to greater depths.
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The effect of the presence of a thermocline can be modeled by assuming

an impenetrable boundary, with a user value to specify the depth to the

thermocline. Inclusion of a virtual source term in the model would be re-

quired to reflect the spreading mass back into the upper layers of the

water body. At present, the dispersion model does not include a thermocline

boundary, and model calculations indicating dispersion occurring to depths

over several hundred feet should be viewed quite cautiously.

(3) Horizontal Dispersion Coefficient

In lakes and on the continental shelf, horizontal turbulent dispersion

is nearly isotropic, that is, e = e , and these regions (excluding shallowx y

parts of the ocean dominated by tidal currents) exhibit several hy-

drodynamic similarities, including the fact that most of the kinetic energy

of currents is derived from wind forcing. As a result, expressions for

horizontal diffusivity can be applied in both regions, however, estimates

of the coefficient values are difficult to obtain.

Theoretical work by Csanady [31] has showed that the horizontal dif-

fusion coefficient, ex , can be taken as:

e JZ4 3 (357)
x 1/3

L

where i' = characteristic eddy velocity fluctuation

L = length scale of the turbulent eddies

and X length scale characterizing the size of the diffusing cloud
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This expression can also be written as:

e = a L4 / 3  (358)
x

2/3

where a is a dissipation parameter of units cm per second and L is a

measure of the spreading, usually taken as 4 ax. Experimental data suggests

that the values of a are in the range of 102 to 10- ft2/3/second, although

compensation for the effects of shear currents suggests that the lower

value of 10- may be most appropriate[271.

Csanady later showed that the standard deviation, a, is proportional

to the eddy velocity fluctuation, the time and the length such that:

2 c0, t)3/L (359)

The strong relationship between the diffusion time, t, and the variance

2.
o is interesting due to the fact that t may vary over four orders of magni-

2
tude, creating a variation in a over 12 orders of magnitude. On the other

hand, the effect of variation of the turbtlent intensity indicated by p'
2

on a appears to be relatively slight.

Experimental research by Okubo [32] has shown the relationship between

2
a and t to be slightly different from Csanady's theoretical equation.

Okubo found that

2 2.3
a t (360)
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which differs slightly from the t3 shown by theory, and indicates that the

1.3
dispersion coefficient e is proportional to t . It should be noted that

x

this only expresses a relationship between e and time or dispersion length,x

but not an equation for use in computing ex.

An alternative solution has been suggested by Schwab and Katz [33].

Based on experimentation in Lake Michigan, they describe lake diffusion in

terms of a second order partial differential equation. Although their model

may be sound, its complexity would require a prohibitive amount of computer

time.

Csanady[31] suggests that in a nearly homogeneous field, plume

growth may actually be somewhat slower than suggested by this formulation

and may be satisfactorily computed using a constant diffusivity. Based on

evidence from the behavior of sewage plumes in the early stages, a value

on the order of 103 cm /second is indicated.

Horizontal dispersion in water bodies categorized as still water occurs

by turbulent dispersion in the absence of any bulk horizontal movement of

the receiving water body. If wind-driven or offshore currents are present,

the still water assumption does not apply since the water velocity component

must be incorporated in the governing partial differential equation. In

this case, the concentration pattern is distorted by a projection along

the direction of the wind velocity or prevailing water current. Where

significant currents exist, the turbulent dispersion of the chemical in

the current direction is usually neglected in comparison to the bulk trans-

port of the dispersing chemical by the prevailing current.
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b. Molecular Diffusion

With molecu) r diffusion, the spreading of a substance is driven by

the existence of concentration gradients and the water is assumed to be

isotropic so that the diffusion rates are equal in each direction. However,

once an estimate of the diffusion coefficient, DAB, is obtained, different

multiples of this value can be applied to develop different estimates of

the dispersion coefficients ex, e y, and e .

(1) Estimation Equation

The molecular diffusion coefficient of the -pilled chemical in water

is computed using the Wilke and Chang[34] method discussed by Reid and

Sherwood[14], and the equation is written as:

D0 7 0- 8  M) 1/2 T

7.4x10 V06 (361)

where,

D = mutual molecular diffusion coefficient of solute A at very
AB

low concentrations (infinite dilution) in solvent B, in units

of cm 2/second

= molecular weight of solvent B (taken as 18.02 for water)

T = absolute temperature, OK

B = viscosity of solvent B, centipoise
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V molal volume of solute A at its normal boiling temperature,
VA

3cm /g mole

= dimensionless association factor of solvent B (taken as

2.6 for water)

Substituting the constants for water as the solvent gives the result:

DAB= (7.4 x 108) V(2.6) (18.02) 6

D0  =5.06 x 10 - 7  T (362)ABBPVA0. 6  32

'B VA

The coefficient, D., represents a limiting diffusion coefficient at infinite

dilution of solute A in solvent B, and Reid and Sherwood discuss temperature,

concentration, and other effects in subsequent sections. Other forms of

the estimation equation are described, such as:

o 14.0 x 10- 5
12 1.1 0.6 (363)

'B VA

which does not include a direct temperature term.

(2) Viscosity Computation

For use in the Wilke and Chang equation, viscosity of water as a func-

tion of temperature, at atmospheric pressure, may be obtained using an
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empirical equation referenced in the Chemical Engineers' Handbook[35]:

1 2.1482 t - 8.435) + J8078.4 + (t - 8.435)2 - 120 (364)

which is further referenced as having originally been obtained from Bingham

("Fluidity and Plasticity," p. 340, McGraw-Hill, New York, 1922).

Selected values for the viscosity of water in centipoise (cp) tabulated

in the Chemical Engineers' Handbook, and listed as having been obtained from

this equation include:

w 1.7921 cp @ t = 00C

1.0050 cp @ t = 20*C

0.6560 cp @ t = 40*C

0.4688 cp @ t = 60*C

0.3565 cp @ t = 80*C

0.2838 cp @ t = 100 0C

Although the viscosity values are tabulated in units of centipoise, a

sample calculation using the equation with temperature in units of 0C indi-

cates that in the form written, the equation actually gives values of vis-

cosity in units of poise. Since 1 poise = 100 centipoise, the form of this

equation for use with the Wilke and Chang equatiot is:

-0.021482 (t 8.435) + 4+ (t - 8.4 2 1.20 (365)11w
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where,

1w = viscosity of water in centipoise at temperature tw

t = water temperature, in 0Cw

Although viscosities of water can be obtained outside the temperature range

0 to 100*C, practical considerations indicate that the water temperature

should probably be constrained to lie at least within this range, or an

even narrower range, say 0 to 40*C (or 32 to 104 0F).

It is noted that the data on which this empirical equation is based

were not recently obtained (1922 or earlier), and, for example that the vis-

cosity given at 20*C is 1.005 cp versus the standard subsequently adopted

for water of 1.002 cp at 200 C. However, this equation has the advantage

over other estimating methods[36] of being given in a single form over the

range 0 to 100*C, the computation is relatively simple, and the accuracy is

well within any limits implied by the uncertainties of a spill environment.

(3) Molar Volume (Mathias Equation)

From the Chemical Engineers' Handbook, Fifth Edition[37], the molar

liquid volume, Vb, at the normal boiling point of the solute may be obtained

from (page 3-229):

M 1
Vb = lb f lb (366)
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if p1 at tb is known, and where:

M = molecular weight

lb = density of the solute at its normal boiling point (tb ),

gm/cm
3

3
b = molar density at boiling point, g mole/cml1b

3
Vb =molar liquid volume at boiling point tb, cm /g mole

Perry[371 then gives the Mathias Equation from the Second Edition of

Reid and Sherwood[15] as:

P + Pv P lb (2- Tr)/( 2 - Tbr) (367)

where p1 and p v are liquid and vapor molar densities, respectively, and

3
Plb = molar density at boiling po!t,_g.mo1e/cm

T = reduced temperature, 0K
r

= T/T , where T = temperature, and T = critical temperatureC c

Tbr = T b/Tc where Tb is the normal boiling point

Perry indicates an average error resulting from this equation of approximately

2 percent up to T near T .c

For pv << pl, the equation reduces to:
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(2 - T) (2T - T)r -c

Pl lb (2- Tbr) lb (2T - T) (368)

and in this form can be used to estimate either p1 or plb if the other quan-

tity is known at T or Tb, respectively.

For use with the Wilke and Chang equation, the molar volume at the

normal boiling point can be obtained as:

(a) If the density of the solute at the boiling point is known:

v M ,l gm/den
Vb = ' b = density at boiling point in gm/cm (369)

lb I

31
Vb in cm /g mole

M in gm/g mole

(b) If the density of the solute is known at a temperature t:

i 1 1(2- T) M (2- (30Vb r.... (370)
b lb Pl (2-T) p' (2 -Tb

where,

o' density of solute at temperature t (
0 C), in gm/cm 3

t = water temperature in 0C
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If the density of the spilled chemical at the boiling point, but not

at water temperatureis available, the molar volume used in the Wilke Chang

equation should be taken simply as

Vb = - (371)
Plb

and the Mathias equation need not be used unless it is necessary to provide

for computations when the density at tb is not known. If the molar volume

is obtained directly from the density of the spilled chemical at its normal

boiling point, then data for the critical temperature and boiling point of

the solute are not required.

(4) Summary

Summarizing the preceding, the molecular diffusion coefficient of the

spilled chemical in water, based on the Wilke and Chang method is given by:

D = 5.06 x 10- 7  M (372)
wA

where TW is the temperature (absolute, *K) of the receiving water body.

The viscosity of water obtained from Bingham's expression is:

0.021482 [(TW - 8.435) +807. +(w-8452] - 1.20(3)

where TW, the temperature of the receiving water body, is in units of *C.
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Finally, assuming that the density of the liquid chemical at its normal

boiling point is known, the molar volume is given simply as:

M
VA  --- (374)Plb

To simplify the resulting computation, these equations are re-written

slightly to give:

(VA) 1 lb (375)
A r V A M

T= (T - 8.435) (376)w w

w = 1 = 0.021482 T' +18078.4 + T1 (377(;4w)r 11wI Tj

DB= (5.06 x 107) (TW + 273.2) (0.) (VA) 06 (378)
AB W w r (A~r

where TW is used ccnsistently in units of 'C.

In the above form, the computation of the molecular diffusion coeffi-

cient requires data for the temperature of the receiving water body, the

molecular weight of the spilled substance, and its density at its normal

boiling point. Since for a given scenario these are all constants, the

diffusion coefficient is a derived constant needed to be computed only once

for a particular set of spill conditions.
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For the water dispersion model, the molecular diffusion coefficient

computation is required only in the case of spills into still water, for

use in estimating approximate values of turbulent dispersion coefficients

in the absence of any other information. The additional data required for

the diffusion coefficient computation are not otherwise required for use

within the model.

The equations used are straightforward and should not, under normal

operation,be susceptible to numerical problems. The diffusion coefficient

will be a positive quantity for all positive values of () and (VA ) rand

for values of TW greater than -273.2°C. (VA)r is positive for all positive

values of M and plb" and the equation used for (pw)r gives positive values

over the temperature range 0°C to 100°C.

Adequate constraints then include:

If M < 0.0, use M = Mdefault

If lb 0.0, use Olb = (01bdefault

Reasonable limits for the water temperature are probably 0°C to 40°C, al-

though to allow for conceivable situations a somewhat broader range is

suggested, say, -100 C to 500C.

c. Amplification Factors

Molecular diffusion occurs at a much slower rate than turbulent dis-

persion, and thus the molecular diffusion coefficient D obtained by the
AB
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preceding calculation may be several orders of magnitude smaller than the

values of the turbulent dispersion coefficients ex, e ,and e .x y z

Preliminary work to calibrate the concentrations obtained using scaled

values of the molecular diffusion coefficient to estimate turbulent disper-

sion suggest that scale factors on the order of 103 are indicated. Accord-

ingly, the estimates obtained from molecular diffusion for the turbulent dis-

persion coefficients, in the absence of any other data, are given as:

3 oe = 103
x AB

e = 103 D
y AB

e = 10 Do (379)
z AB

Considering the nature of the turbulent dispersion occurring in stra-

tified bodies of water (reviewed in a preceding section), the use of e = ex y

is appropriate. However, in the presence of significant density gradients,

a smaller relative value may be more appropriate for the vertical dispersion

coefficient e , and further calibration for individual spill situationsz

may be desirable.
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SECTION IV

MODELS FOR NON-TIDAL RIVERS

I. INTRODUCTION

Dispersion of a spilled chemical into a non-tidal river can be viewed

as equivalent to dispersion in still water, subject to the influence of two

additional factors: (1) the bulk fluid motion of the river current and (2)

the constraints imposed by the banks and bottom of the river channel. Section

I identifies the river system coordinates and channel geometry.

Considering only the influence of the river motion, the flow is assumed

to be uniform across the cross-section of the river, in the direction of the

positive x axis, and the velocity is given as u. The center of mass of the

dispersing chemical is transported downstream by the bulk fluid motion, mov-

ing with a velocity u so that the distance moved in time t is given by ut.

Relative to the center of mass of the spilled substance, the coordinates

become stationary, and the dispersion behavior of the still water case applies.

Thus for spills into large rivers, far from shore, at times close to the

start of the spill, insight into the character of the concentration distri-

bution can be obtained from the still water behavior, adding a component ut

to downstream distances to account for the bulk flow.

About the center of mass of the spilled substance, the initial concen-

tration distributions are Gaussian so that for times greater than zero, the

concentrations decrease with distance from the center of mass but have some

value at all distances. However, at very large distances, the concentrations

are very small. Conservation of mass can be applied to define a region of

the water body or volume centered about the center of mass of the spilled
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substance, within which some fixed fraction, for example, 95 percent, of the

total dispersing mass is initially contained.

As the elapsed time from the start of the spill increases, the volume

containing the dispersing chemical both moves downstream with a velocity u

and grows in size. The growth continues until either a channel bank or the

river bottom is encountered. Further growth in that direction is impeded,

and the nature of the concentration distribution is modified. The model

assumes that these boundaries are impenetrable; thus, the amount of substance

contained in the portion of the volume that would have grown beyond the chan-

nel banks or bottom is reflected back into the river channel. The method

of obtaining the additional contributions to the concentration in the river

channel of the reflected amount of substance involves summing concentration

distributions from additional virtual spill sources or images located outside

the boundaries of the river channel.

The model for the dispersion of a spilled chemical into a non-tidal

river is based on three-dimensional diffusion during the initial stages of

spreading, and on one-dimensional diffusion for the later stages when the

spreading has been confined by the river banks and bottom. The water body

is assumed to be non-isotropic, and the model is formulated assuming con-

stant, but different, turbulent dispersion coefficients in each of the prin-

cipal directions. Methods of developing estimates for the values of the

turbulent dispersion coefficients are described, and the model is formulated

to accept user-provided input data if available. In the absence of user

values, appropriate equations for automatically providing estimates of the

turbulent dispersion coefficients are employed.
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2. STAGES OF DISPERSION

The river channel banks and bottom act to confine the distribution of

a spilled substance and give rise to different stages of dispersion. Ini-

tially, except for spills very near to a bank of the river, the dispersion

is essentially unconfined and three dimensional spreading occurs. During

this stage the dispersion is described by near-field models. The distri-

bution of the spilled chemical mass increases until at some time after the

start of the spill, the confining effect of the channel bottom or one or

both banks becomes significant. Generally, the influence of these constraints

will first cause the concentrations to become more or less uniformly distri-

buted along one of the lateral directions, usually depth, and further spread-

ing during this stage of transition acts to even the distribution across

the remaining direction of the cross-section, usually width. At some later

time, the spilled substance becomes more or less evenly distributed across

the entire river cross-section. Models based on this assumption and formu-

lated to estimate the further distribution of the spilled chemical in time

and downstream distance, x, are referred to as far-field models. This sec-

tion describes the bases for the formulatiods of the different types of models,

and methods for establishing transition criteria between the near-field

and far-field regimes.

Differences between models for the different stages of dispersion

include the formulation of the governing partial differential equation, the

assumptions made regarding chemical behavior, and the methods of solution.

Generally, reducing the dimensions of the spreading also reduces the complex-

ity of the concentration equations and simplifies the necessary computations.

The assumptions made in each case and the methods of solution do not ensure
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continuity of concentrations from one stage to another. This is not, how-

ever, a significant disadvantage since differences in regions of transition

should be considered as reflecting the appropriate assumptions for each

stage. A forced matching would be artificial and tend to obscure the signi-

ficance of solutions obtained for each stage.

Since the different stages of dispersion reflect the physical behavior

of a dispersing chemical mass, models of the dispersion in each stage, if

properly formulated, should tend to estimate concentration behavior similar

to that of the next stage at large times or distances. Thus, concentrations

obtained from a 3-D model, if boundary effects of the river channel are

included, will become more or less uniformly distributed across the river 4

cross section, exhibiting the type of behavior assumed for the one-dimen-

sional case. Depending on the complexity of three- or two-dimensional models

and required data, and the relative advantages or disadvantages of the

assumptions and estimated accuracy of a one-dimensional model, a trade-off

is involved in determining whether to investigate one-dimensional behavior

separately if accurate three-dimensional formulations are employed. Gen-

erally, there are advantages, but a three-dimensional model can provide quan-

titative descriptions of one-dimensional spreading, so the incorporation of

one-dimensional analyses does not add anything that is inherently absent in

a three-dimensional analysis.

a. Three-Dimensional Behavior

When a chemical is spilled into a stream or river, its behavior depends

on a number of factors. These include the physical and chemical properties

of the chemical, the flow conditions in the river, and the location and
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nature of the release. If the area of the source of the spill is small in

relation to the size of the river, the dispersion of the chemical will be

in all directions. In this phase, the dispersion is three-dimensional, and

concentrations are obtained from the following form of the three-dimensional

partial differential diffusion equation:

_c a a (ex -) +-L (ey) + z ) -kc (380)Tt+uT x a y a~y ;z 3

where the bulk flow of the river body occurs in the x direction at a constant

uniform velocity u, and e , e , e are the dispersion coefficients in eachx y z

of the x, y, z coordinate directions.

The three-dimensional equation is used to describe the nature of the

concentration distribution near the spill location; hence, solutions are re-

ferred to as near-field equations. The concentrations in this region are

significantly dependent on the location of the spill, manner of release, and

a range of other local effects. As the distance from the spill location in-

creases, the concentrations obtained from the near-field equations tend to

become evenly distributed over the cross-section of the river, and localized

effects of the spill conditions are reduced.

Since the cross-sectional variations of concentration are significant

during this early stage of spreading, descriptions of the shape of the river

cross-section and the river velocity distribution across the cross-section

are necessary. The current model approach assumes a rectangular channel

cross-section of constant width and depth and a constant river velocity,

uniform over the river cross-section.
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b. Two-Dimensional Behavior

In most open channels, the depth is much less than the width so that

at some time after the release, the substance is well mixed vertically without

being completely mixed horizontally. In this case, the dispersion of the

chemical is continuing in only two directions. The integral of the concen-

tration over the depth of the river gives a product of an average concentra-

tion as a function of x, y, and t (but not z) and the river depth d. Substi-

tution of this result in the three-dimensional diffusion equation leads to

the following two-dimensional equation:

ac + u = -d + d - kc (381)at ax d 3x x d3y y a

where the concentration c is a function of x, y, t. A similar equation can

be obtained for the concentration if the uniform distribution occurs first

across the width, instead of the depth, of the channel; however, this situa-

tion usually does not apply for river channel configurations of practical

interest.

The concentration distribution during this stage of spreading is still

significantly iffected by localized spill conditions, particularly the spill

location (illustrated by a spill near a bank of a broad, shallow river).

The influence of local effects continues to diminish, however, as the distance

from the spill location increases.

Generally models of three-dimensional distributions necessarily treat

boundary conditions at the river banks and bottom and thus can be used

during this stage of dispersion as well. Also the transition to

one-dimensional spreading provides a much greater simplification, and as
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a result, two dimensional models do not appear to have received extensive

attention.

c. One-Dimensional Behavior

Over a longer period of time and at larger distances from the spill

location, the chemical also becomes fully dispersed horizontally, and fur-

ther dispersion continues only in the longitudinal, x, direction. The

transition through the stage of two-dimensional spreading results in the

dispersing mass becoming approximately uniformly distributed over the entire

cross section of the river channel. The integral of the concentration over

the cross-sectional area gives a product of the area, A, and the cross-

sectional average concentration as a function of x and t (but not y or z).

Substitution of this result in the three-dimensional diffusion equation leads

to the following one-dimensional equation:

cc + u = 1 - kc
t ax A x x ax (382)

where the concentration c is a function of x and t, and gives the average

concentration over the cross-section of the river channel. This one-dimen-

sional equation is often referred to as the one-dimensional Fickian model

because it is based on Fick's theory of diffusion.

For one-dimensional models, the turbulent dispersion coefficient ex

is replaced by an effective longitudinal dispersion coefficient E which

represents not only the dispersion represented by ex, but also the dispersion

of the chemical due to the differential velocities and concentrations across

the river channel. It can be seen that if the formulation of the effective
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longitudinal dispersion coefficient E is different than ex , the concentra-

tion distributions will be different, giving rise to a discontinuity between

concentrations computed by one-dimensional and three-dimendional models.

Since the basic model assumptions differ, it is not necessarily advisable

to artificially remove the discontinuity if three-dimensional and one-dimen-

sional models are applied to the same spill scenario.

Since the distribution across the cross section occurs at longer dis-

tances from the spill location, the equations describing the concentration

distribution are referred to as far-field models. During this stage, local-

ized effects at the spill location have become substantially diminished;

further one-dimensional distribution is essentially independent of the spill

location relative to the river channel banks.

Focus on the one-dimensional region of spreading, whether by means of

separate one-dimensional models or application of three-dimensional models

at long range, is particularly justified when the resulting model has poten-

tial application in developing information useful for responses to accidental

discharges. Model results would be more useful in this type of situation

if sufficient time were available to obtain and utilize the results; there-

fore, it is most likely that these results would be applied during far-field

stages of spreading.

(1) Fickian Model

The model developed from the one-dimensional diffusion equation gives

concentration equations in the form of Gaussian distributions and is referred

to as a Fickian model because of the form of the equation. This form of the

model has been incorporated in the water dispersion model and is described
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in detail in a following section of this report. There have been recent

developments in modelling approaches that suggest more accurate or appropriate

techniques may be applicable; however, the Fickian model has an advantage

in that it is readily used.

(2) Modified Fickian Model

When the distance from the release of a pollutant to the observation

point is sufficiently long, then the dispersion has entered the "Taylor"

period and the one-dimensional Fickian model can be used. However, the

length of time preceding the Taylor period may be long. Nordin and Sabol[381

have shown that for a portion of the Mississippi River downstream from its

union with the Missouri River, the length of time is on the order of 90

hours.

Cheng[39] showed that by modifying the one-dimensional Fickian model,

a one-dimensional model can be used to predict dispersion before the dis-

persion has entered the Taylor period. Cheng and Liu[40] showed that even

within the Taylor period, the Fickian model fails to accurately predict dis-

persion in three ways: first, the Fickian model shows the peak concentra-

tion of the pollutant to be inversely proportional to\Wwhen, in natural

streams, the attenuation is much faster. Secondly, the Fickian model shows

that the standard deviation is proportional to the square root of t, when,

in fact, it has been shown that the exponent lies between 0.42 and 1.0.

Finally, the Fickian model gives a Gaussian distribution of concentration

versus time when data has showed that the distribution is more skewed than

the Gaussian distribution describes. These differences have led to further

developments in modeling dispersion in the one-dimensional stage.
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An alternate approach to dispersion modeling was introduced by

Taylor[41]. Taylor's method approaches the diffusion problem from a

Lagrangian viewpoint, following the particles as they flow through the

field. Since particle motion is random, any attempt to follow particle mo-

tion must be based on the statistical properties of random motion. Taylor's

theory measures the radius of inertia, a , of an initially concentratedx

cloud of fluid particles after their simultaneous dispersion from a common

origin. The radius in the x direction is:

a'(t) = 2u2jt (t - T') R T') dT' (383)

-'2where u, is the mean of the squared fluctuation component of the velocity
x

in the x direction and

u' (t) u' (t + T)
RJ',)- = (38S4)

This approach leads to a modified description of one dimensional behavior,

obtaining concentrations using a Pearson-type-Ill distribution. A preliminary

analysis for this type of model has been formulated, but further description

has not been included in this report since several refinements are required

to permit practical use.

d. Determination of Transition

During the initial stages of an instantaneous release, the dispersion

of a spilled chemical is relatively unaffected by the presence of confining

channel banks and bottom. With the form of the Gaussian solutions, the

245



amount of substance contained within any distance from the center of mass

of the spilled chemical is determined by the standard deviation of the dis-

tribution. Demarcation of zones of transition between the different stages

of dispersion is based on the elapsed times at which significant or observable

concentrations occur at a boundary surface, and these times are obtained

from the standard deviations of the Gaussian distribution.

Considering a spill location on the surface of a river of half-width

b and depth d, at an offset, a, from the centerline of the river, the dis-

tances from the spill location to each boundary are:

Distance to bank (y = +b) = b - a

Distance to bank (y = -b) = b + a

Distance to bottom = d

In the initial stages of dispersion, spreading occurs until the con-

centrations near one boundary become observable. Based on the distribution

of mass about the center of a Gaussian distribution, this condition can be

expressed in terms of a multiple of the standard deviation, considering the

dispersing chemical to be contained within an expanding ellipsoid having

the lengths of the sexqi-axes as ax, ay, and a . From Section II, paragraph

3.a.(4), it was shown that for a one-dimensional distribution, 68 percent

of the total mass is contained within a distance of a about the center of

the dispersing chemical, and 95 percent is contained within a distance of

2a. Since a = et, the Lime a particular distance is reached is readily
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obtained and related to the total quantity of mass dispersing from the spill

site.

Letting the multiple of the standard deviation be written as n, the

first channel constraint is reached at the earliest time given by:

a)2  2 2 2

(b - n a = 2 n e tY Y

2 2 2 2(b +a) =n a =2n e t
y y

d2 2 2 n2
d n a 2n e t (385)

z y

The earliest time obtained for lateral dispersion will be given cor-

responding to the bank closest to the spill location. These times are de-

pendent on the dispersion coefficients e and e , and the dimension of the
y z

river channel b = w/2 and z. In most surface water bodies the horizontal

spreading (e ) will be much faster than the vertical dispersion (ez)
y z

however most rivers of practical interest are much wider than deep.

For times greater than the smallest of the above, the effects of the

first confining boundary becomes significant and the dispersion no longer

occurs unconstrained in three directions. As further spreading occurs, the

distribution grows until a second and a third channel boundary are reached.

The time this occurs can be taken in proportion to the largest of the above

values, although a substantial degree of mixing across the cross-section

will actually be achieved earlier as a result of reflectims from boundary
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surfaces. Beyond this time, further distribution can be considered a func-

tion of longitudinal distance x, and the far-field equations can be used.

This gives the maximum time for which unconfined dispersion occurs

as the minimum of:

(Ibi - lal)2 d 2
__

2 and 2 (386)
2n e 2n e

y z

and the minimum time at which the uniform conditions appropriate to the

far-field model are reached as the maximum of:

(jbi + al) 2  and d2  (387)
2 2

2n e 2n eyz

For values of n between 1 and 2, the coefficient-- 2lies between~2n

0.125 and 0.50. A value of 0.3 has been assumed; however, lower values cor-

responding to n = 1 could be used to restrict the time over which unconfined

three-dimensional spreading occurs and higher values corresponding to n = 2

for the well-mixed condition. The water body will not be thoroughly mixed

until the longest of these times, at which stage a one-dimensional model can

be applied. A three dimensional model could continue to be used if terms

for boundary conditions are included. Since the river spills are assumed

to occur at a location, a, offset from the river centerline, the minimum

time obtained above could be virtually the time of spill; to adequately

model the initial stages for such a spill, it is necessary to include the
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boundary terms in the three-dimensional equations and to set the transi-

tion to a one-dimensional equation using a maximum time.

When information about the relative location of the spill is not known

or unavailable, the distances in the above equations are taken to be propor-

tional to the characteristic dimensions of the water body. Further methods

to determine the appropriate constants of proportionality for the time at

which one-dimensional behavior may be assumed are described in the following

paragraphs.

The equation used to calculate the distance from the source of the re-

lease at which one can begin to use I-D models was first presented by H.B.

Fischer in 1967[42]. Fischer measured the length of the convective period,

the period in which the two-dimensional equation describes the dispersion,

in order to determine the length of time that must pass after the release

of the substance before the Fickian model can be used.

The time scale which was used to measure the convective period was

derived by estimating the time required for cross-sectional mixing TE (the
E

Eulerian time scale) and by evaluating the Lagrangian time scale, T'. Using

dimensional analysis of cross-sectional nixing, he found that,

2
TE = - (388)

where e is a mixing coefficient for the section and k is a characteristic

length. For two-dimensional flow, the average value of the vertical mixing

coefficient, based on the distribution of shear and the Reynolds analogy,

is
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kdU(

e (389)
z 6

where k = von Karman constant

d = characteristic depth

U = = shear velocity

Substitution gives the equation for TE in the approximate form:

TE =6d (390)

Fischer further found that the Lagrangian time scale:

T 0.404d (391)
L kU,

Putting TL in terms of TE yielded:

T = 14.8T (392)TEL

In natural streams, lateral mixing is the most important factor within

the Eulerian time scale. Elder[431 presented an equation for lateral mixing

for two-dimensional flow where e is the lateral mixing coefficient:

Y
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e f d U, (393)y

where a = 0.23.

Substituting into the expression for TE gives:

TE = 0.23 R Uh (394)

where d is replaced by the hydraulic radius, Rh.

The Lagrangian time scale for two-dimensional flows in natural streams

can now be calculated as:

V = 0.30 2(
S Rh U*

Most recent research has found that Elder's value for a is too low.

A more precise value would be 0.84. This value was given by Cheng[39] in

a paper in which the values of a were given for five rivers. The range of

values was from 0.357 to 2.0 with the average being 0.84.

It is well known that the value of a is dependent upon the curvature

of the river. Several investigators (Yotsukura, et al, [4] Sayre and

Yeh[45]) have found that values for a range from 0.6 in the curving reach

of the Mississippi River to 10.0 for a sharp bend. Both Fischer[46] and

Yotsukura and Sayre[47] have suggested equations to predict the value of

e for the river curvature. However, as Yotsukura and Sayre[4 7] point out,y

the results from present equations are, as yet, imprecise.
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To measure the length of the convective period, the period before which

the 1-D model can be successfully used, Fischer[42] used the dimensionless

time factor t' = In order to identify the end of the convective period,T
three criteria were used. First, the concentration distribution over any

cross section must approach the steady-state profile. Secondly, the variance

should grow linearly, and thirdly, the concentration should decay as predicted

by the diffusion equation. These three criteria were satisfied when t > 6.

If the onset of the I-D phase is at six times the Lagrangian time scale, by

changing from a time measurement to a length measurement, the distance from

the source of the release to the point where a 1-D model can be used is:

2I
1.8 Z U

L > (396)Rh U

3. NEAR-FIELD INSTANTANEOUS SPILL MODEL

The general form of the solutions to the diffusion equation in three di-

mensions is obtained as a product of three one-dimensional distributions, to

describe the concentration distribution relative to the center of mass of the

spilled chemical. For a spill into a moving river, having a bulk fluid

velocity, u, in the longitudinal direction, x, the center of mass of the

spilled chemical is translated a distance ut in time t so that the longitudi-

nal coordinate relative to the center of mass becomes x - ut, where x is

measured from the spill origin.

a. General Solution

Applying this transformation to the distribution along x, the three-

dimensional product of distributions for an instantaneous point source is ob-

tained as:
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(x-ut) 2 y2 z2

S2 221 2o 1 2a 2a
c(x,y,zgt) A e x e y e Z (397)

x y z

where A is a *constant to be determined from conservation of mass, and the

standard deviations are:

ax = 2 et
x x

a =2 Tet
y y

CY IF _e t (398)
z z

The dispersion coefficients e9 e e, and e zwill, in general, have different

values in each direction.

The form of the concentration distribution given above applies for an

instantaneous point source, in the absence of decay (k=O). Solutions for

non-conservative substances (k>0) are obtained by the inclusion of the term

e -tas an additional product. It can be verified by substitution that

this form of the concentration distribution satisfies the three-dimcnsional

partial differential equation applicable for this type of water body (u>O,

v -'w =f 0) given in Section IV, paragraph 2.a. Also, the form of the con-

centration equation itself reduces to the still water equation as the bulk

transport velocity u becomes small. However, the dispersiOLL coefficients

are computed as functions of u, so the model does not identically reduce to

the still water case.
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Conservation of mass requires that, in the absence of any sinks or sources,

the total mass of a conservative substance dispersing in the environment at

any time t be equal to the total mass of substance, M, orginally released in-

stantaneously at the spill location (x=0). The total mass is obtained as the

integral of the concentration over the volume of the receiving water body.

Since the river model provides for dispersion constrained by the river channel,

a method of superposition or imaging is used to construct solutions for con-

strained flow from unconstrained distributions.

For unconstrained dispersion, the spill is assumed to occur on the sur-

face of the water body, and the z coordinate (depth) extends from the sur-

face (z=0) to an infinite depth. The lateral dimension y is initially as-

sumed to vary from 0 in each direction (an offset of the spill location

from the river centerline is introduced later but does not affect this

analysis). The mass integral is expressed about the center of the spilled

chemical mass, using the longitudinal coordinate transformation x = x - ut.
m

This gives for the mass contained within a rectangular volume of length 2 xm

and width 2y, centered about the center of the moving chemical mass, and depth

z below the surface: 2
x 2 2

m y z

A ff 2
M(xM,y,z,t) = Ox ay az e Y e d xm dy dz

(399)
m

Since the coordinate transformation from x to x yields an equation for them

mass distribution that is identical to the still water case, the mass dis-

tribution is obtained directly from Section III, paragraph 2, substituting

x inX ut, as:
m
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M(xVy.,z~t) =A (2w~) 3' erfjx t) erf(2~ erf (400)

which gives a general expression for the total mass contained in a volume

z * 2y - 2 (x - ut) as a function of time; the volume moves downstream at a

velocity u, so the distance x in this equation is constrained: x > ut.

As the dimensions of the volume are taken to be increasingly larger,

the error function values approach the limit of 1, giving for the total mass

in the system:

A ()3/2

M = lim M(x,y,z,t) A (2n3 (401)

where M is the amount of chemical initially introduced instantaneously at

the spill location. The limit value reached for M(x,yz,t) is not a function

of time (a conservative chemical was assumed for simplicity), satisfying

conservation of mass. The constant coefficient A is now obtained in terms

of the spill quantity M as:

Af 2 M 3/2(402)
(27r)

Substituting this result, incorporating the decay term, and expressing

the standard deviations in terms of the dispersion coeff. cients, gives the

general form of the concentration equation for an instantaneous release in

a non-tidal river as:
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2 2 2(x-ut)2 y z
c(xypzpt) 4M 4 ext 4 e t 4 e t -ktc=xy(zt)3/2°  e 3/2 e e Ye ze (403)

4 ex y z

This equation expresses concentrations in a contaminant zone, identified as

containing concentrations in excess of a hazard level, which moves downstream

at the current velocity u, increases in size until the maximum extent of

spreading of the hazard level is reached, and then, while still moving down-

stream, decreases in size until the zone collapses back to a point. The

equation describes a point source behavior, and it can be seen that the

term t3/2 in the denominator will produce infinite initial concentrations

at the spill origin.

The concentration equation above applies to unconfined dispersion for

a spill located on the surface at the centerline of the water body. Before

the equation can be applied, the effect of the spill location offset and

the channel constraints need to be incorporated.

b. Boundary Conditions

Section I, paragraph 4, describes the river system coordinates and channel

geometry. The concentration equations obtained for unconfined flow describe

concentration distributions relative to the center of mass of the spilled sub-

stance, and Section I, paragraph 4. (1), describes the transformations between

spill coordinates (,8,y) and water body coordinates (x,y,z).

For spills into non-tidal rivers, at the surface (x=0, z=0) at a point in

the channel offset from the centerline by a distance given as a (positive a

corresponding to an offset in the positive y direction), two transformations

are required:
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x= x- ut

=y- a

Y= z (404)

These give the concentration equation in the form:

(x-ut)2  _(y-a)2  z2

M4et 4et 4et-k

c(x,y,z,t) = 3/2 t3 1 2 e e e e (405)4 e e
x y z

Since conservation of mass was applied to this form of the equation,

the concentrations obtained apply to all values of the coordinates (a,6) or

(x,y) and values of y and z greater than zero, that is, dispersion uncon-

fined by channel banks and bottom. This implies unlimited permeability of

the banks and bottom to the pollutant in the river. The treatment of ad-

sorption and penetration is most complex, and the nature of the variations

and interactions of chemical behavior and channel conditions cannot be

reasonably incorporated in a generalized model of this type. Thus,a simpli-

fying assumption is made that no dispersion of the pollutant occurs through

the banks or bottom of the river. Generally,this assumption tends to be

conservative leading to higher estimates of concentrations in water than

might actually occur. Also, later release or dissolution of adsorbed pol-

lutant may contribute to longer durations of residual concentrations than

estimated by the model.
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The boundary conditions to be applied then are such that no transfer

of the pollutant occurs across the river surface (z=O) or through the chan-

nel banks (y = ±b) and bottom (z=d). Since conservation of mass has been

applied, the (initial) boundary condition at the surface is satisfied. For

simplicity in the following derivation, the concentration equation is sum-

marized using abbreviated notation as:

c(x,y,z,t) = f(x) g(y) h(z) (406)

where

2
(x-ut)

M 4 et
f(x) 4 n3/2 e 3 /2 e e (407)

x y z

2
y
4et

g(y) = e y (408)

24 e~t

h(z) = e (409)

Only the dependence on the spatial coordinates is retained in the notations

for f(x), g(y) and h(z) since this is required for the adjustment to satisfy

the boundary conditions.

For the spill located at an offset, a, from the center of the river

channel, the function g is initially taken as g(y-a). At times t > 0, the

concentration distribution in each direction is Gaussian, and concentration

values will exist at long distances from the spill location. These will in-

crease in time to a maximum and then decrease. In particular, the Gaussian
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distribution will give non-zero concentrations beyond the channel banks and

bottom so that conservation of mass within the river channel will not be

maintained. Considering first the channel bottom at z=d, the concentrations

on the bottom, at any time t, are obtained as:

c(x,y,d,t) = f(x) g(y-a) h(d) (410)

The boundary condition of no transfer across the channel bottom is

obtained by providing a second or image spill source located at a distance

d symmetrically below the channel bottom to produce concentrations at the

bottom surface of equal magnitude to those produced by the primary spill

source. Spill coordinates relative to the location of this first image

source are given by

c =X

= Y- a

y f z - 2d (411)

and the concentrations in the river channel are summed to give:

c(x,y,z,t) = f(x) g(y-a) h(z) + f(x) g(y-a) h(z-2d) (412)

As a new source,however, the image at a = x, 3 = y-a, y = z-2d produces

concentrations at the surface of f(x) g(y-a) h(-2d),and a second image
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source, located above the surface, is required to maintain the boundary

condition of no transfer across the surface. This second image, located

at an equal distance above the surface as the first image is below it, that

is,at z = +2d, produces concentrations to reflect the distribution from

the first image about the surface and the resulting concentrations in the

river channel are summed to give:

c(x,y,z,t) f(x) g(y-a) h(z) + f(x) g(y-a) h(z-2d)

+ f(x) g(y-a) h(z+2d) (413)

Since the second image now produces concentrations at the channel bot-

tom of f(x) g(y-a) h(3d), this process can be repeated indefinitely, lo-

cating image sources alternately below the bottom and above the surface at

coordinates z = +2d, -2d, +4d, -4d, +6d, -6d, and so forth to give

c(x,y,z,t) = f(x) g(y-a) h(z) + I .h (z-2nd) + h(z+2nd) (414)

n=i

However, as the distance from the origin increases, the contribution of each

additional image source to the concentration of the pollutant in the river

channel becomes increasingly small and, for a first order approximation, only

the first two image sources are retained to give:

c(x,y,z,t) = f(x) g(y-a) [h(z) + h(z-2d) + h(z+2d)] (415)
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Next, the spill at (O,a,O) and each of the image sources at (O,a,2d)

and (O,a,-2d) contribute to concentrations at the river channel banks,

y = ±b, and the boundary conditions at the banks are satisfied by locating

additional image sources to reflect the concentrations about each bank.

First, for the primary source, the boundary condition at the left bank

(y = +b) is maintained by locating an image at an equal distance on the op-

posite side of the bank or at y = 2b-a. The boundary condition at the

right bank (y = -b) is maintained by locating an image at an equal distance

from the primary source, but on the opposite side of the bank at y = -2b-a.

Since each of these new image sources will disturb the boundary conditions

at the opposite banks, additional images can be indefinitely located, for

repeated reflections about each bank, at coordinate locations y = -4b+a,

4b+a, -6b-a, 6b-a, and so forth. As before, considering only a first or-

der approximation requires images located at y = 2b-a and y = -2b-a, for

each source and image at z = 0, z = +2d and z = -2d so that summing the con-

tributions from the source and each first order image gives for the concen-

tration in the channel:

c(xyzt) = f(x) •[g(y-a) + g(y-2b+a) + g(y+2b+a)]

• [h(z) + h(z-2d) + h(z+2d)] (416)

If the spill source is located in the center of the channel at a = 0,

the image sources become symmetrically distributed at y = +2b, -2b. As

the value of a approaches either bank at ±b, the distance between the source
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location and the image reflected about that bank approaches 0, and there-

fore the distance between the reflection of both this image and the source

about the opposite bank approaches zero. Thusfor these limit cases (a = ±b),

the accuracy of the first order approximation is somewhat diminished since

there will be one second order term having the same value as the smallest

first order term. For insight into the conditions under which higher order

image terms may be neglected, further discussion is given in reference[20].

At the channel banks and bottoms, the reflection of the dispersing

chemical by the image sources will distort the movement of the dispersing

chemical, and, after the initial stages of unconfined dispersion, de-

pending on the cross-channel position of the spill origin, the location of

maximum concentration may shift away from the original position of the

center of the moving spill mass. Also for spills at an offset a > Oit can

be seen that the concentration distribution does not remain symmetrical in

the cross-section about the axis y = a.

c. Model Equation

Incorporating the image source terms and substituting for the abbreviated

notation give the form of the concentration equation for instantaneous

point source spills into non-tidal rivers as:

(x-ut) 2

M 4e t kt
c(x,y,z,t) = 3/2 3 1 2 e e

2 (y-2b+a) _ (y+2b+a)2

4et 4et 4et
Y +e y +e Y

L 2 2 'z (z-2d) (z+2d)

4e t et 4e t
e + e + e J (417)
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where M is the mass of pollutant released, x, y, z are the downstream, cross

stream, and vertical depth coordinates, t is elapsed time from the start of

the spill, u is the mean stream velocity, 2b=w the mean width of the stream,

d the depth, a represents the location of the spill point on the surface,

ex, ey, and e are the respective turbulent dispersion coefficients, and k

is the decay coefficient representing the degradation of chemical due to
chemical reaction or biological assimilation. Since in this form the boundary

conditions at the surface, channel banks, and bottom are generally approx-

imately satisfied, the equation applies, to within the first order approxi-

mation, for all values of x, y, z and could be used even for large values

of x instead of assuming a uniform cross-sectional distribution.

d. Determination of Dispersion Coefficients e , e , e
x y z

Turbulent dispersion in rivers depends on river geometry and flow rates,

and equations for the dispersion coefficients previously obtained [12]

are given by:

Dispersion Very Wide Rivers For Narrow Rivers
Coefficients (w/d > 100) (w/d < 100)

ez 0.067 U R , 0.0 6 7 U d 0.067 U Rh

e 0.1 e 0.1e

e 0.1 e 0.23 U*R
y26
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where

d = mean depth of flow, meters

w = mean river width, meters

R h = hydraulic radius, meters

U = shear velocity, meters/second
2

e , ey, e = turbulent dispersion coefficients, meters /second

The width-to-depth ratio w/d n 100 is assumed to be the upper limit for the

side banks of the r'ver to have any influence on the transverse velocity

distribution. However, Holley et al[48] have used w/d , 600 for estuaries

in the tidal regions. For the vertical dispersion coefficient, if the width-

to-depth ratio is large, the hydraulic radius is approximately equal to the

river depth; this simplification is indicated but not required for computa-

tion.

Recent investigations appear to suggest that the transverse dispersion

coefficient e may be significantly underestimated by these equations, and
y

for wide rivers e should be larger with respect to e than presented.yz

(1) Effect of River Curvature

Elderf43l presented an equation for lateral mixing for two-dimensional

flow where e is the lateral mixing coefficient:
Y

e d U (418)
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where the coefficient a was given as 0.23. Most recent research has found

that Elder's value for a is too low. A more precise value would be 0.84.

This value was given by Cheng[ 39 ] in a paper in which the values of a were

given for five rivers. The range of values was from 0.357 to 2.0 with the

average being 0.84.

It is well known that the value of a is dependent upon the curvature

of the river. Several investigators (Yotsukura, et al,[44] Sayre and Yeh

[45]) have found that values for a range from 0.6 in the curving reach of

the Mississippi River to 10.0 for a sharp bend. Both Fischer[46] and

Yotsukura and Sayre[4 7 ] have suggested equations to predict the value of

e for the river curvature. However, as Yotsukura and Sayre[471 point out,Y

the results from present equations are, as yet, imprecise, and empirical

methods to obtain appropriate values of a are not available.

As a result, the dispersion coefficient e is assumed to be obtainedY

using a value of a = 0.84, and this should be a reasonably good estimate of

an average coefficient over a region of several bends. However,the value

of a will increase within a bend of a river. For spills into a curved

river channel, values of a on the order of 3.0 could be more appropriate

for use in the near-field equations. Values of a of about 0.3 would apply

for spills into relatively straight channels.

The distribution of mass from an instantaneous spill is modeled by

Gaussian functions where the distance covered by the dispersing mass is

proportional to the standard deviation a = et. Thus, larger values of

the coefficient a will contribute to a faster rate of dispersion and hence

more quickly reduce the concentrations. Use of smaller values of a, appropri-

ate for straight channels, will therefore tend to give conservative results.
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(2) Reformulation of Equations

Based on the above, the expression for e is revised, and it appears
y

that a distinction between narrow and wide rivers is no longer appropriate.

Retaining the coefficient,a, the equations for the turbulent dispersion co-

efficients are written as:

e = 0.067 U RP (419)

e = 0.1 e (420)
x z

e a U R (421)
Y h

where a nominal value of 0.84 is assumed for a.

(a) Hydraulic Radius

The hydraulic radius, R, appearing in the computation of the turbulent

dispersion coefficients is defined as the cross-sectional flow area of a

river divided by the wetted perimeter and has the dimensions of length.

For w = river width, and

d = river depth

the hydraulic radius is given by:

R cross-sectional area - w • d (

h= wetted perimeter = d + w + d (422)
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and this can be written as:

Rh = wd W 2w (423)= d •2 + w/d = w•2 + w/d(4)

From this, it can be seen that for very wide rivers, as in the case of

w/d > 100, the definition of the hydraulic radius gives Rh Iv d, and for very

narrow rivers where w/d is small, R. lu w/2. Approximate values of the coef-

ficient in the expression for the hydraulic radius are tabulated below for

a range of width-to-depth ratios selected to illustrate these limit condi-

tions:

Width-to-Depth Hydraulic Radius, R
Ratio, w/d hydraulicRadius,

0.001 Rh = 0.0005 d = 0.50 w

0.01 Rh = 0.005 d =0.50 w

0.10 R = 0.048 d = 0.48 w

1.00 Rh = 0.33 d 0.33 w

10.0 Rh = 0. 8 3 d = 0 . 0 8 3 w

100.0 Rh = 0.98 d = 0.0098 w

1000.0 R = 0.998 d = 0.001 w

(b) Shear Velocity

The shear velocity, U , is given by:

U* = o/= 3.115 n u//6 m/s (424)
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where

T = wall shear stress,
0

p = density of fluid,

n = manning roughness factor, and

u = average velocity of cross section

(c) Manning Roughness Factor

The Manning formula relates the mean velocity to the hydraulic gradient:

1.486 2/3 1/2 1.486 1/6R s - R Rs (425)n h n

where

u = mean velocity

R h = hydraulic radius

s = hydraulic gradient

n = coefficient of roughness

In typical use, u is in units of feet per second, Rh in feet.

For natural stream channels, values of the Manning factor are:

0.020 Smooth earth or firm gravel

0.030 Clean, straight bank, full stage, some stones

and weeds

0.040 Winding, some pools, and shoals
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0.055 Winding, some pools, shoals and stony sections

0.070 - 0.125 Sluggish reaches, very deep pools, very weedy or

obstructed with debris

(3) Computational Use

The preceding equations give the dispersion coefficients in units of

m2 /second, and for use in computations in CGS units, conversion of the coef-

ficient values is required.

The turbulent dispersion coefficients (ex, e ,and e ) are computed as

functions of the spill scenario data items d, w, u,and n. Thus,these coef-

ficients are themselves constant for any particular assessment run and need

only be calculated once at the start of a run. Thereafter, the coefficients

can be treated as if they were, in fact, data items entered by the user.

If both d and w are zero, the expression for the hydraulic radius will

fail. Also, the result obtained for e will be unpredictable if either orz

both are negative. Since neither situation is realistic, a constraint should

be included such that

if w < 0.0, w = wdfal

if d < 0.0, d = ddefault

The coefficient e will be zero if u or n are zero. Since these are physicalz

quantities, a constraint is required to prevent negative values. This de-

pendence of the dispersion coefficients on the river velocity u limits the

application of the model to moving water bodies. If values of the dispersion

coefficients are obtained independently of this computation, then the river
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model with the adjusted dispersion coefficients could be used to model lake

or ocean behavior with u = 0. Taking the distance to the river banks as very

large, the channel bottom can be used to model the effects of stratification

in lakes or the ocean.

The Manning roughness factor must also be greater than zero.

4. FAR-FIELD INSTANTANEOUS SPILL MODEL

According to the criteria established in Section IV, paragraph 2.c, at

distances sufficiently far from the spill location, the discharging chemical

can be considered to have become uniformly distributed across the cross-section

of the river channel. Further dispersion takes place longitudinally and is

described by a one-dimensional model. The form of the governing partial dif-

ferential diffusion equation, for constant river cross-section and longitudinal

dispersion coefficient, becomes:

ac +2 (426)+. u Le- = E---c- kc
at a x 2

where c is the cross-sectional average concentration as a function of dis-

tance from the spill location x, and elapsed time from the start of the

spill, t. The characteristics of the solution to the one-dimensional diffu-

sion equation are extensively described in Section II of this report.

a. General Solution

Referring to Section II, the general form of the solution to this equa-

tion can be written directly as:

(x-ut)
2

a 4Et -kt
c(x,t) -e e (427)
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where a is a constant to be determined from conservation of mass and E is

the longitudinal dispersion coefficient. It can be verified by substitu-

tion that this form of the concentration equation satisfies the diffusion

equation.

Conservation of mass requires that the integral of the concentration

over the volume of the water body is equal to the total quantity of substance

in the environment. Because both the concentration and the total mass are

related in the same manner to the exponential decay term (k), this factor

can be ignored and conservation of mass stated more simply in terms of a

conservative pollutant: the total mass dispersing in the water body at any

time t is equal to the total mass initially spilled, M. This gives the

equation:

M = JJJ c(x,t) dx dy dz = f. c(x,t) dx -JJ dy dz (428)

The integral over the dimensions of the water body in the y and z

directions is simply the cross-sectional area of the river channel and is

denoted by A. Substituting the form of the concentration equation then

gives:

0 (x-ut) 2
M A _ a 4Et

M= A a e dx (429)

where the exponential decay term is ignored. The integral is evaluated

using the definition of the error function to obtain:
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M =2 a AJ d 2 a A (430)

Solving for the constant a gives:

M
a -= (431)2 A NF,

Finally, substituting the value of the constant a in the general equa-

tion for c(x,t) gives the result:

(x-ut)
2

c(x,t) M e 4Et -kt (432)2

This solution applies for all values of x, -- < x < -, and for t > 0. It

can be seen that for large values of x or t, the concentration approaches

a limit value of zero.

b. Determination of Longitudinal Dispersion Coefficient

Over the past quarter century, many empirical equations have been sug-

gested by various investigators to predict the value of the longitudinal

dispersion coefficient. The following review focuses on those most pertin-

ent equations that either have influenced future investigators or have been

shown to estimate values to within a small order of magnitude from observed

data.

Taylor[4 1], as the earliest investigator, showed that for flow in

a long, straight circular pipe, the value of the longitudinal dispersion

coefficient, E, is:
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E = 10.11 U r (433)

where U is the shear velocity and r is the radius of the pipe.

Elder's[43] investigation in 1959 showed that for open channels:

E = a U d (434)

where a has the value 5.93 and d is the depth of flow. Various investi-

gators, such as Krenkel[49], and Yotsukura and Fiering[50] found differ-

ent values for a; the former finding a = 9.1 and the latter showing

a = 13.0.

Reference[12] utilized Elder's equation, noting that for wide

rivers, w/d > 100, the hydraulic radius is approximately equal to the depth,

to obtain

E = B n u 5/6 E~nu~h(435)

* u/3./16na1/

where U 3.115 n, and

d R h (436)

A value of B = 63 was used with MKS units to obtain E in m /second.

For narrow rivers, w/d < 100, reference[12] expressed the form

of the longitudinal dispersion coefficient from Elder's equation using the

characteristics of the velocity distribution as:
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E = 0.3 ub (437)

but suggested that in this range a nearly constant relationship between

E adw, and could be assumed, and that

E = 225. U Rh (438)

could be used as an approximation to eliminate the need for knowledge of

the velocity profile distribution.

By investigating the relationship between lateral velocity variations

and the longitudinal dispersion coefficient, Fischer[42] obtained an equa-

tion which showed the importance of the lateral variation of the longitu-

dinal velocity and the minimal effect of the lateral diffusion. Although

Fischer's equation had important theoretical implications, it was too com-

plex for practical use.

Jain[51], however, used Fischer's equation to develop his relation-

ship. Based on Fischer's equation, Jain found that

22
E = UW (439)

z

where

u = cross-sectional average value of the velocity

w - channel width
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e = lateral diffusion coefficient
Z

5. = coefficient ranging from 10 to 10- . The method forJ

calculating a. is described by Jain[511.J

In 1974, McQuivey and Keefer[521 predicted E by a simple equation

using only bulk flow properties. They proposed that

E = 0.058 Q  (440)
SW

where Q is the discharge, S is the energy slope, and W is the channel width.

In 1975, Fischer[53] published a new equation in a discussion of

McQuivey and Keefer's article. Fischer proposed that

22
E=0.011 " w (441)

dU

where u is the mean velocity, w is the channel width, d is the mean depth,

and U is the shear velocity.

According to Liu[54], none of the previous equations are accurate

within one order of magnitude. In response, Liu showed the following formula

to be able to predict E within a factor 6. Based on the best fit of cer-

tain data, Liu found that

E = BQ 2  (442)

U *3
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where R. is the hydraulic radius, and

, .5

8 f 0.18 (u (443)

Christensen [551, in a discussion of Liu's paper, re-evaluated the

dimensionless parameter 8 based on the relationship between the two dimen-

sionless parameters, a and 8. By equating Elder's equation with Liu's

equation, Christensen showed the relationship of a to 8 to be as follows:

* 8u2W3

ad U =- - (444)
UA

letting h f h A A

m W

a W 8 u!() 2  
(445

h
By looking at Liu's mean values for a and - , Christensen found that:

2W

8 = 0 .4 1  )(446)

Liu and Dieter (561 later modified their constant to 0.4, which pre-

dicted that value of E within a factor of 4.

Using the modified Fickian theory and analyzing a larger set of data,

Cheng[39] found that the coefficient should be 0.5 so that
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U*A2

E =0.5 U3 (447)

where d replaces R as the mean depth flow, U is the shear velocity and A is
hI

the cross-sectional area.

This equation appears to give the most accurate value of the dispersion

coefficient. One study shows that for natural streams, this equation predicts

the true value of E within a factor of 2.5. Of all equations discussed this

far, it appears to be the most accurate.

5. NEAR-FIELD CONTINUOUS SPILL MODEL

The method of obtaining solutions for the continuous release spill

conditions involves either integrating the instantaneous point source solu-

tions with respect to time, over the duration of release, or developing a

steady state equation for long duration releases by applying the conserva-

tion of mass principle. General application of the principle of superposi-

tion, giving continuous release solutions as integrals of instantaneous re-

lease equations, for arbitrary release rate conditions is discussed in Sec-

tion II. The integral approach to obtain an equation for the concentration

in a non-tidal river from a continuous spill closely parallels the similar

formulation for spills into still water, and the form of the equations is

quite similar.

a. Integral Equation

The non-tidal river model for continuous discharges assumes that the

release rate, M, is constant. The spill starts at elapsed time trO, and

stops at a later time, tt. To apply the principle of superposition, the
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appropriate instantaneous point source equation for three dimensions, with

decay, is given in Section IV, paragraph 3.c, as:

(x-ut) 2

M 4ext -kt
c(x,y,z,t) = 3/ 3 2e e

4 (s) e3/2Vex e e t3/2

(y-a)2 (y-2b+a)2  (y+2b+a)2 1
F 4y-)t 4et 4et

e Yt +e +e e

z 2  (z-2d) 
2  (z+2d) 

2

S4 t 4et 4et I

e z + e z +e z (448)

where M is the mass of pollutant released instantaneously, x, y, z are the

downstream, cross stream and vertical depth coordinates, t is elapsed time

from the start of the spill, u is the mean stream velocity, 2b=w the mean

width of the stream, d the depth, a represents the location of the spill

point on the surface, ex , e y, and e are the respective turbulent diffusion

coefficients and k is the decay coefficient representing the degradation of

chemical due to chemical reaction or biological assimilation. Since in this

form the boundary conditions at the surface, channel banks and bottom are

generally approximately satisfied, the equation applies (to within the first

order approximation) for all values of x, y, z and could be used even for

large values of x instead of assuming a uniform cross-sectional distribu-

tion.
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Considering the quantity of mass, M, discharged instantaneously, as

a component, HdT, of the mass being discharged continuously, the continuous

spill model is obtained by adding the concentrations at the observation point

from all incremental releases. The elapsed time t in the above concentra-

tion equation for an instantaneous release gives the time after a release

occurring at t=O. For use in the integral expression for continuous dis-

charges, the incremental instantaneous release occurs at time t where T

varies from 0 (start of release) to tmt, and the instantaneous concentra-

tion equation for an incremental release of MdT is used with (t-T) substi-

tuted for t.

Next, it can be seen that the instantaneous equation consists of the

sum of a number of similar terms, and the following short-hand notation is

introduced:

s = 4(r) 3/2 ,ex ey e (449)

2 (y-a) 2  (y-2b+a) 2 2 (y+2b+a) 2

1 4e y 2 4 e y 3 4 e 4y y y

2 z2  2 (z-2d)2  2 .(z+2d)2  (451)
1 4 e '2 4 e '3 4 e

z z

Substituting idt for M, (t-T) for t and the above notation, the concentra-

tion equation for an instantaneous release of a quantity Hdt at time T is

written, for time t > T, as:
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{x-u(t-r) }
2

id T 4 e x(t-r) -k(t-r)
c{x,y,z,(t-)} = 3/y e e

3 a 2 3 2j
s- t--tm

e I (452)

The concentration is zero for t < T. Expanding the exponential term

in x, and combining similar terms in t- gives the above equation as:

xu (P 2+4e k)
2ex 4 e x (t-T)

C{XDyZ,(t-T)} =  T 3/2 x

s(t--)

x2 3 3 (2i+y )

4 e (t-T) -

e e (453)

i=l j=l

Introducing further notation that:

2 u +4ek
2 x (454)

=4 e

x

and

2 x 2  2 2 5)

r = + + (455)rlj 4 e x i
x
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The concentration equation for the instantaneous discharge integral finally

is obtained in the form:

2
3 3 Xu 2 i

cfx~y,z,(t-T)1 = xe t-T) e(t-T) dT (456)
s(t-T)3 / 2

i-l

The integral equation for the concentration at time t from a continuous

discharge starting at time t=O is then obtained by integrating this equa-

tion with respect to T from TriO to some upper limit T •

The upper limit of integration is written as Tr since the actual limit

to be used depends on the relative values of the observation time, t, and

the time the spill stops, tmt. If t is less than t mt, the integrand gives

the incremental contributions from the continuous release for the complete

history of the release from t-0 to t, and the limit T is given by t. Ifs

t is greater than tmt, then for values of T greater than tmt, at which time

the spill ceases, the incremental releases do not contribute to the concen-

tration distributions; the upper limit s then becomes tmt.

Since the integration is over time, the order of the integration and

summation can be reversed to yield the integral equation for the concentra-

tion in a non-tidal river from a continuous discharge as:

2
xu 3 3 T r

2x f W(-)e(t-T)
g - e e e dT (457)s m J (t-r) 3/2

ill j=l 0
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for t > 0. The concentration c(xy$z,t) 0 for t < 0.

b. Analytical Evaluation

The form of the integral in the concentration equation is denoted

by I, and the transformation E i is used to obtain:

2 2

2 2

r _2 e e d (458)
rij f

0

where 0 
=  and =r

To complete the square for the expression in the exponent, the follow-

ing relations are written:

E + r + 2 r W (459)

2 i

+ = - 2 riW (460)

and it can be seen that the sum of these terms is equal to twice the mag-

nitude of the exponent in the integrand. Substitution gives the integral

as:

E s 2r f + e' -2rl]j a
1j e2ri j  e + e e d&(461)

0

282



The integrand now contains two separate terms in the form of derivatives

of an error function. Forming the derivative of the error functions:

derf(+1) e + rj2= (1 - ri w )d (462)

d erf~ .L) =2 e - 49W~ + rijW)d (463)

2r ijm -2r ij
then multiplying the first expression by e the second by e and

summing gives:

2 [erf E+ fu d Lerf E - =

2 erijw e( +k1) -( 1 qw ) d~

+ 2 - 2rij We- ( + dE(464)2 -2r e( 2

Both exponential terms on the right hand side are now in the form of the ex-

ponentials in the modified integrand; however, an additional term, w

E2
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appears in the product. The exponential terms on the right hand side (r.h.s.)

are expanded to give:

r2 w2 r2 w2

(r.h.s.) (e2e - f )( ee ~ + dAt)]d

2 2 (465)
r"10

e_2 2

The right hand side then further reduces to-. e d& which

is in the form of the original integrand. Substitution then yields the fol-

lowing integrable form for the integral I:

i ~ E - 1 F I 8~ 2rij d L -ii] 2ri~j [erf (-kLi }(466)e ij d [rf (t + + e w3 d r 46
r ij c 4 E

Integration then gives the analytical equation for I as:

-)E e 2rij [rf + erf +S2r ij le s &S / 0 to

+ /j-2rjW [erf E - t 0  (467)
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The remaining steps are to substitute the values of the limits C0 and Cs for

the two cases of interest, t < tint and t > trt, then to evaluate the sums

of the integrals over the indices i and j to satisfy boundary conditions

at the river channel banks and bottom.

(1) t< trt

When the observation time t is less than the duration of the continuous

release, the upper limit of the original integral, T , is equal to t. This
5

gives

0 r  and (468)

Substitution of these values for the error function arguments gives:

erf + r ) -1 (469)

erf t 0+ erf + (470)

erf -rij 1 (471)

0r Es - Is

and the value of the integral I for t < trt becomes:
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-2 Wr

iii

+-- 2 rij - erf \ +ii W 43

(a) Numerical Instability

The first term in the equation for the integral I:

e 1 - erf + W (474)

has an analytical limit of zero as either ri, or t becomes large, although

for large values of r, differences in convergence rates of the numerical

approximations of the exponential and error functions give a product of

these terms that is not numerically stable. From Section II.3.a.(7).(e),

the modified numerical approximation for the error function is obtained as:

2
erf(x) = 1 - P(b,) e- x  for x > 0 (475)

where n is given by and varies from 1 to 0 as x ranges from 0 to .

The polynomial P(b,n) is obtained from Hasting's approximation, and ranges

in value from 1 at x=0 to 0 as x

Letting = 1ij I this form of the error function

1 +p\ +
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approximation is substituted to yield:

e2 - er( + W= e 2ri P(b,nij) w

2
rij 2

2-P(b, ) e t (476)

2r..w

In this form the exponential e 13 has been removed, and the entire expres-

sion is obtained in the form of a stable decaying exponential.

By substitution, the preferred form of the equation for the integral

I is then obtained as:

2
2rr

I P(b,n
2rij ij

+ e -ijw I - erf r-  - w (477)

(b) Concentration Equation

Using the expression for the integral I, the entire equation for the

concentration as a function of time and distance is obtained by summing over

the indices i and J, by substitution in the equation:

xu 3 3

M 2ex
c(x,y,z,t)= - e X I (478)

s Il

i-l j=l
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where the term I is a function of rij.

(c) Limit Behavior

In the limit as the distance from the spill location becomes small,

the values of the distance terms r .will approach limit values determinedii

by the dimensions of the river channel, and the location of the spill rela-

tive to the channel center line, and one of these terms will become zero.

The corresponding value of the integral I for rij +0 then behaves as

I = $r1 I- erf (.\P) + 1 - erf (-W ) (479)

Since erf (-wVft) = -erf (-h0f), the error function terms cancel, giving

the result:

I =fi - (480)
rij

and the contribution to the overall concentration distribution of this

term is:

xu

Ac e=x I for x-*0. (481)s rlii s r ij

Thus the concentration as rij 40 is independent of time and infinite.

This suggests an appropriate modification of the continuous discharge equa-

tion, in a form similar to that used previously, that is, adding a term to

the denominator such that the concentration at the origin is constrained to
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be equal to a pre-specified value. Alternatively, the concentrations com-

puted from the equation containing the singularity can be constrained so as

not to exceed the pre-specified value.

(d) Longitudinal Dispersion Neglected

If the longitudinal dispersion coefficient, ex, is considered to be

vanishingly small in the formulation for the concentration as a function of

time and distance, it can be shown that the value of the integral I, taken

as a function of time, reduces to one of two values, both of which are in-

dependent of time. Thus the condition of neglecting the longitudinal dis-

persion reduces the time dependent concentration equation to the steady

state case.

The limit values obtained as e -0 are:
x

7r -2rjw r
I =--e for -a< wt (482)ri.

1= 0 for il > Wt (483)

That is, neglecting the longitudinal dispersion e gives a steady statex

solution such that, at any fixed point rii the concentration is zero forr

all values of time less than i . The concentration distribution then has

a discontinuity, rising immediately to the steady state value for times
r '

greater than •

(e) Steady State Equation

For a continuous discharge which emits indefinitely, the concentration
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distribution which results is obtained by taking the limit as t-).. Denoting

the steady state value of the integral I as I . taking the limit as t be-
ss5

comes large reduces the error function terms to give:

e-2rij 
ss rij (484)

The complete steady state concentration distribution is then given by:

xu 3 3
2e

c(Xyz) = s e ss (485)

i='l j=l

XU 3 3

c(x,y,z) = e 2 x 1 e (486)

iri

where s, rij and w are as defined previously, and the longitudinal dispersion

e has not been neglected.

(i) Negligible ex

If the longitudinal dispersion coefficient is considered to be vanish-

ingly small, the corresponding form of the steady state concentration dis-

tribution can be obtained by substituting the expressions for s, rij and w,

then taking the limit as e -0.x

Using

s= 4()3/2 ex eye z  (487)

and rearranging terms, gives for the steady state concentration distribu-

tion:
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3 3 xu
S2 1 e -2ri

c(xqyqz) 4 e e (488)

i=l j=l

2 X2 2 2
Using ri. + + Y., the term in the denominator can be written

i 4e i
x

as:

1/2

Sr -x- x  + .2 j(489)x rij 4e i '

1/2

x ri x + e + e y (490)x j e 4 x i x

which in the limit as e -0 reduces to
x

4e2 1/2

2 u+4e k 2 4e k 4e k
Next, using w 4e x 4 thenwX x u2 u

For e small, the approximation 1+ 1 + 2 to give for
u u

I 2ek

W - u (1+ xk ) (491)

Similarly for r..,

4e • 1/2

r x + +-- ( + 2)j (492)
2ij9
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F 4e 2/r x --- 8 + Y (493)

Combining terms then gives for the exponential terms in the concentration

equation:

___ 2x [ 2 2 ( 2Y)] ( h ) uAxu xu + + Y + 2
2e -2r..w 2e 2e x2
ex 3 -e Xe (494)

Expanding the right hand side simplifies the expression to:

xu A 2ek( 2

2e -2r w x S +
ex u x i x i

e e e e e (495)

and in the limit as e becomes small, the last exponential term on thex

right becomes unity.

Substituting the above limit values gives the equation for the steady

state concentration when the longitudinal dispersion coefficient e is van-
X

ishingly small as:

xk 3 32+Y2

c(x,y,z) e u e x(496)
2 Tr x 'e-ye z

i=l j-l
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(2) t > mt

When the observation time t I' greater than the duration of the con-

tinuous release, the upper limit of the original integral I, Tr, is equal
ri• ri

to tt. This gives ^ and =. Substitution of the valuet 0 t s T:m
for s in the appropriate error function arguments of the expression for

the integral I gives:

/r.
e + erf - + w (497)

mt

and the equation for the integral I becomes:

2r. e F ( + W ttt erf( + w )

+ 2e ij F r.2 \irli
-2 e w er - %F- erf -(499)

The equation for the concentration is the same as for the case t < t except
mt

that the above value of I is used.
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As t becomes large, the error function terms in the integral I vanish,

and thus the concentrations also become zero. For large values of rj, how-

ever, the first term in the integral expression exhibits the same type of

instability as before, and for computational use the error function terms

are replaced by appropriate expressions from Hasting's approximation. Also,

the expression as written for I cannot be used at the spill location

r. -0 without a modification, described previously, such that the concentra-

tion at the origin remains finite.

c. Alternate Derivation of Steady State Equation[181

The form of the concentration distribution equation for a spill into

a non-tidal river, in which the longitudinal dispersion coefficient e isx

neglected, may also be derived in a simplified manner. It is assumed that

the distribution in any y-z plane perpendicular to the flow along the x

axis is Gaussian so that the function
2 2

y z

2a
2  202

F = e Y e z (500)

is used to obtain scale factors between concentrations at (x,0,0) and at

(x,y,z). This scale function has a value of unity along the x axis, values

less than I for y > 0 and z > 0 at any x, and determines the ratio of the

concentration at any location to the concentration at the location of the

x axis in the y-z plane:

c(x~y,z,t) = F (501)
c(x,0,0,t)
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At any location, or instant of time, the standard deviations are determined

by the dispersion coefficients and time so the function F may in general

depend on both time and distance.

Conservation of mass, when the longitudinal dispersion e is neglected,x

then requires that the flow rate of substance through any plane perpendicular

to the x-axis remains constant, and equal to the rate at which the substance

is discharging, M. Since the discharge rate M is assumed to be constant

with respect to time, then conservation of mass for e negligible requires
x

that the flow rate at any location x also be independent of time. However,

a and a may be taken as functions of distance x.y z

The incremental flow rate through an element of area dA normal to the

x axis at a location x,y,z is given by c(x,y,z) u dA.

The integral of this rate over the area, by conservation of mass, is

equal to the discharge rate A, which gives the following:

k= f c(x,y,z) u dA (502)

Substituting the function F to express the concentration at (x,y,z)

in terms of the concentration at (x,0,0) gives:
2 2
y Z

M f 2o 2  2a2

f f u * c(x,0,0) e Y e z dy dz (503)

0 -0

where the integral is evaluated over a semi-infinite area extending for all

values of y, and values of z > 0. For simplicity, the image sources to ac-

count for the river channel constraints and the decay terri are omitted.
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Since the value of the integral is constant over time for any location x,

the standard deviations a and a are obtained as functions of distance,y Z

x, by substituting t = ? in
U

,FU x
a0 F ~ (504)

-2ex

a =V2e t z (505)
z z NUT

The expression for conservation of mass then becomes:
2 2

zU yu

4e x 4e x
u • c(xO,)f e z d e Y dy (506)

The integrals are evaluated using the definition of the error function

to obtain:

u-c(x00)(~ ) ( ~ x 37 (507)

Simplifying and solving this equation for c(x,0,0) gives:

c(x,0,0) = (508)
2 n x f'eye z

This result is then substituted in the concentration ratio using the

Gaussian distribution F to obtain the final form of the equation for the
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concentration at any point x,y,z:

2 2_ U ZU

4e x 4ezx
c(XyZ)= e e (509)2 Tr X~yez

It can be seen that this equation has the same form as that derived

from the more general time dependent concentration equation in the limit

as the longitudinal dispersion coefficient e vanishes. This equation givesx

the concentration as a function of spatial coordinates x,y,z only and not

time. The values of c(x,y,z) are in fact the steady state concentrations

resulting from a continuous discharge of infinite duration with the addi-

tional assumption that the longitudinal dispersion e is neglected. Since

the concentration is obtained independently of time, the initial period at

any location x,y,z during which the concentration increases from 0 to the

steady state value (rise time) is also neglected in this formulation. Thus

this approach gives the result that c(x,y,z,t)=0 for t < and
u

c(x,y,z,t) = steady state value for t > - at any location x. For a con-
u

tinuous discharge of a finite duration tmt, the steady state distribution

can be somewhat crudely applied to estimate the concentration at a loca-

tion x during the time interval t = x to t = ' + t . For times less than
u u mt

or greater than - + t , the concentration at the point x is taken as zero.
u u mt

It should be noted that the above form of the concentration equation

is similar to equations used for vapor dispersion.
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d. Cross-Sectional Variation of Steady State Concentration

Incorporating the first order image terms gives the complete equation

for a continuous discharge into a non-tidal river, under steady state con-

tions, as:

kx
_ _ _ U

c(x,y,z) 
e

2 T x eye z

u(y-a) 2 u(y-2b+a) 2 u(y+2b+a)
2

[4 xe +e 4xe 4xe l

uz2 u(z-2d) 2 u(z+2d)2
4 x e 4 xe 4 xe

e z+ e x + e Y (510)

For the special case of a spill at the centerline of the river, afO,

the two functions in the above, one in y and one in z, expressing the cross-

sectional variation in concentration, have the identical form. That is, if

a function G is defined as:

Suy-2b)
2  u(y+2b) 2

4xe 4xe 4xe
G(y,e ,b) - e Y + e Y + e Y (511)

then, for a-0, the equation for the concentration can be written as:

kxHu
c(x,y,z) 2 e • G(y,e ,b) • G(z,ezd) (512)

2 r xe298
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The function G contains three exponential functions, one corresponding

to the source location at y=O (and z=0) and two to each of the two first

order image reflections. As the distance from the spill location increases,

the relative contribution from each of these terms will vary depending both

on the distance from the spill point and the position in the channel cross-

section relative to the spill location (at the origin) at which the concen-

trations are computed.

At large distances from a continuous spill, under steady state condi-

tions, the concentration is expected to be uniform across the channel cross-

section and independent of the cross-channel 
position selected for observa-

tion. Implications of this assumption are illustrated by examining selected

variations in the values of the function G(y,e ,b) for the special, and

symmetrical, case of a spill at the river centerline.

ub
2

4 x e b

Letting = e Y and selecting values of y at 0, - and b gives:
'2

G(0,eyb) = 1 + 4 + 4  (513)

1 9 25

G k'ey)= 4 + a4 + 6 4 (514)

G(b,eyb) f  + + B9 (515)

where 8 varies from 0 to I as x varies from 0 to -. Computed values of

these functions are given in Table 4 for the range of 8.
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For observations along the centerline of the river (y=O), downstream

from the spill, the function C(O,e ,b) has an initial value of 1.0. Lit-

tle effect is initially caused by the image sources since for small values

of 8,4 << 1, so that the function value remains essentially constant at

I until 8 reaches values of 0.3 to 0.4. For longer distances, the effects

of the image sources become significant and the function value increases to

3 over the range 8 = 0.4 to 8 = 1.0.

For observations along the channel bank (y=b), downstream from a spill

occurring at the centerline of the river, the function G(b,ey,b) has an

initial value of 0. The value of the function increases almost linearly

for values of 8 up to approximately 0.6. Over this range, the contribution

of the image reflection about the opposite bank (at y = -b) is very small;

due to symmetry, the source term and the image reflection about the bank

y=b each contribute equally, with values equal to 8, so the linear varia-

tion predominates. Above 8 = 0.6, the influence of the far image reflec-

tion becomes more pronounced, and the function value increases to 3 over

the range 8 = 0.6 to 1.0.

At the point in the channel mid-way between the centerline and the

bank, for a spill at the centerline, the difference in relative distances

between the observation point and each source or image location creates

three different zones of influence for values of the function G(d,e ,b).

Initially the value is zero, and the effects of the source term (8 1/4) pre-

dominate so the function value quickly rises to 0.56 for 8 = 0.1. Over

the interval from 8 = 0.1 to 8 = 0.5, the contribution of both the source

term and the image reflection about the near bank at y=b are significant,

and the value of the function increases, at a reduced rate from 0.56 to
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1.06. Above values of 8 near 0.5, the effects of the image reflection

about the far bank become significant and together with the other terms

cause a more rapid rise to a final value of 3.0 at 8 = 1.0.

Finally it can be observed that the ratio of the function G (and

therefore also concentration at the surface) at the bank to the value along

the centerline rises nearly linearly from a value of 0 to a value of nearly

0.9 at 8 = 0.5. For distances beyond 8 = 0.5, this ratio increases much

more slowly until the final value of 1.0 is reached only at the limiting

value of 8 = 1.0.

(1) Variation with Depth

Since for the special case of a spill at the centerline of the river,

the concentrations obtained from the complete steady state equation have the

same functional variation in z as in y, so the behavior of the cross-sec-

tional variation of the function G(z,e ,d) is, except for the different
z

parameters of the function, identical to the behavior of G(y,ey,d). The

resulting concentration at any point in the cross-section however is de-

termined by the product of these functions, so the final concentration dis-

tribution behaves accordingly.

(2) Concentrations at Limit Values

The criteria for the distance required for complete mixing to take

place is given as

2 2
x 0.3 b 2u  or x =0.3-- -u  (516)

c e c e
y z
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That is, for values of x < x , the near field approximation is used to com-C

pute c(x,y,z). For values of x > x , uniform cross-sectional distribution

is assumed and only cross-sectional average concentrations are computed as

c(x). At this limit, the corresponding value of 0 computed from

ub2

4x e

c  e C (517)

is obtained as 8 = 0.43, and the corresponding values of the function G arec

approximately:

G c(0,ey,b) = 1.07 (518)

Gc(IIeyb) = 0.97 (519)

G c(b,eyb) f 0.86 (520)

Thus the concentrations are:

kxu c

C(Xc,0,z) = 2 x Me e • 1.07 • G(z,ezd) (521)

kx
b u c

C(Xc,-,z) f e • 0.97 • G(z,ezd) (522)
c2 27rx -.F- O
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kxcu
C(Xcb,z) = e • 0.86 • G(z,e ,d) (523)

It should be noted that since the cross-sectional variation in concen-

tration obtained from the near-field solution is dependent on the product

G(y,e ,b) • G(z,e ,d), then the near field solution approaches a uniform dis-

tribution only at the limit = 1. Also, referring to Table 4, and comparing

the relative concentrations across a cross-sectional segment, the limit con-

dition could be extended to values of B of approximately 0.6, or x approxi-
ub2  c

mately 0.5 
-2

e

y

(3) General Conditions

Depending on the river channel configuration, either transverse or

vertical mixing will occur at a faster rate than the other, that is, for

ub2

x > 0.3 - transverse dispersion is assumed to be approximate-

y
ly uniform, and

for

x > 0.3 u d
-

2
, vertical dispersion is assumed to be uniform.

e
z

In the preceding discussion, the spill location was assumed to be at

the centerline, at an equal distance from each bank. Taking the critical

distance x as a function of the distance between the spill location and
c
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the farthest bank gives, for spills located at an offset a from the river

centerline the criteria

x = 0.3 u(b-a)2  u(b+a)2x,03O. 3 (524)
c e e

y y

In order for the limiting value x to be applied as a criteria for
c

approximate uniform mixing both transversely and vertically, then the largest

value of x should be selected:
c

x = MAX{O3 ud2  0.3 u )b (525)
e e eI ez  Y Y

6. FAR-FIELD CONTINUOUS SPILL MODEL

According to the criteria established in Section IV.2.d and IV.5.d, at

distances sufficiently far from the spill location, the discharging chemical

can be considered to have become uniformly distributed across the cross-

section of the river channel. Further dispersion takes place longitudinally

and is described by a one-dimensional model.

To obtain the appropriate solution for a continuous discharge, the

principle of superposition is applied, obtaining the concentration distri-

bution for a continuous discharge by integrating, over time, the concentra-

tions from a series of instantaneous discharges.

The approximate concentration equation for an instantaneous discharge

was obtained in Section IV.4 as:

(x-ut)
2

c(xt) M 4Et -kt (526)
2A VirV e e
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and was shown to satisfy both conservation of mass and the one-dimensional

diffusion equation of the form:

a _ ac a2c
ac + u - = E c _ kc (527)
at ax ax2

In the above equation c is the cross-sectional average concentration

as a function of distance from the spill location x, and elapsed time from

the start of the spill, t. The characteristics of the solution to the one-

dimensional diffusion equation for both instantaneous and continuous re-

leases are described extensively in Section II of this report.

a. Integral Equation

To apply the principle of superposition, the incremental quantity of

mass released instantaneously is written as MdT. The time that this quantity

is discharged is taken to be T, and the elapsed times in the instantaneous

equation are written as (t-T) instead of t.

Substituting Mdr for M, and (t-t) for t, then the equation for the far

field concentration from a continuous discharge can be written as the integral

with respect to T of the instantaneous equation:

T {x-u(t-T) 
2

Mds tt - 4E(t-T) e-k(t-T) (528)

o 2A Trj\(-)

where the continuous discharge starts at time tf0. As with the near field

continuous model, the upper limit of integration is written as T since the

actual limit to be used depends on the relative values of the observation
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time, t, and the time the spill stops, tm. If t is less than tt, then

Ts 
ff t. If t is greater than tmt, then T f tmt. In the above formulation,

the concentration is taken to be zero for all t < 0.

b. Analytical Evaluation

Expanding the exponential term in x, combining similar terms in (t-T)

and factoring out constants, gives the expression for the concentration as:

xu 1 2

i e -T -(u2+4kE) (t-T)
c(xt) f e 4E(t-) e 4E d. -  (529)

2 2 x

Letting Q2 u + 4kE, and applying the transformation X =

N 4Et-T)

leads to:

xu - ti 2 1

c (x,t) M e2  x s e- 2  2 d (530)
2AV7FrVE eE

x x
where and . In this form the integral is quite

similar to the concentration integral expression obtained for the near field

case. For the near field solution the integrand was found to be composed

of the sum of the derivatives of two error functions, and the solution for

the far-field case is similarly obtained.

Letting 8 denote 2, and forming the derivatives of the error func-

tions, as for the near field equations, gives the relations:
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Multiplying the first expression by e and expanding the exponential

term on the right hand side 
gives:

e 2 d r f + e d - -dd

d [erf 2 E 2 2 - 2 (53 )

where the last term is in the same form as the integrand in the concen-

tration integral.

Multiplying the second 
error function derivative 

by e
- 8 and expand-

ing the exponential term 
on the right hand 

side similarly leads 
to:

2 

8 2

e- 28 d /er r 2 e- & 2  20 Je -2  -d

e e d - e 2 d (534)

Next, taking the 
difference of these 

equations (instead of the sum

as for the near field 
case), and multiplying 

' gives
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82

e e 2= d rf a

e -- d rf + (535)

This result gives the integrand of the concentration equation as a sum

of two derivatives of error functions, and the closed form expression for

the concentration integral can be written directly as:

XlU

c(xt) e2E x

2A _7 _ VrE

erf -!- erf (536)/ 48 +

Combining terms, replacing 8 and , substituting the limits of integra-

tion and changing the signs of the error function terms gives the general

form of the concentration equation as:
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AM- O ~x /X+Q(t-T)
cxt) 2E T eE Ier(K~~t er

2A- e e /rf =t erf (t-s

-e 2E Ler f (.:)t er - (537)

The remaining step is to substitute the value of the limit T for the twos

cases of interest, t < tmt and t > tmt.

mt

When the observation time t is less than the duration of the continuous

release, the upper limit of the original integral, T , is equal to t. This
s

gives

x-K2 (t-T)
erf ( s) =1 at T = t (538)

x4g(t-Ts 
s

1= S 1 at = t (539)

and the equation for the concentration becomes
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Mt M2E[2E_

-e 2E erf(~..± xii (540)

for 0 < t < tmt. The concentration c(x,t) is zero for t < 0.

(a) Numerical Instability

At very large times or distances, the equation for the concentration

approaches an analytical limit of zero. However, as was the case with the

near-field solution, for very large values of x, differences in convergence

rates of the numerical approximations of the exponential and error func-

tions give a product of these terms that is not numerically stable. For

numerical computation, the results of section II.3.a.(7).(e) should be

applied to express the first error function term in the modified form using

Hasting's approximation. This leads to an expression for the concentra-

tion in which all exponential terms have negative exponents, and the numeri-

cal instability is removed.

(b) Steady State Equation

For a continuous discharge which emits indefinitely, the concentra-

tion distribution which results is obtained by taking the limit as t-+a.

For the case t < tmt, the limit values of the error function terms become:

lim erf ( x+Qt =3 (541)
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lir erf x-t - (542)

and the equation for the steady state concentration distribution becomes:

x (Q-u)
it 2E (543)c(x) = e

Since 0 = u2-I+4kE, then Q > u, and the steady state concentration

profile is obtained as a decaying exponential function in x; the numerical

instability appearing in the time dependent equation for c(x,t) is temoved.

Expanding the term in the exponent as:

x(2-U) u 2+4kE - u 2L [u + E u (544)TE 2E 2Eu 2/4k

it can be seen that if the longitudinal dispersion coefficient E is very

much smaller than u 2/4k, then the following approximation can be applied:

(1 + 2 "k +' 2 Ak (545)
u /4k

and, for this condition, the exponent becomes

2E ' u + U ) u] + E (546)
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2
Since E << - then

4k

+1 E
u 2 2 (547)

and neglecting the second term gives Q = u. The steady state concentration

distribution for this case is then given by:

u u2
c(x) e E << (548)

(c) Limit Behavior

Depending on the magnitude of the terms M, A, 0, the steady state

concentration is not limited, i.e., the density of the chemical may be

exceeded. For computational use, the concentration profile should either

be scaled or constrained so as not to exceed the chemical density as an

upper limit.

The far field equations are also constrained or limited to distances

x > x at which the condition of uniform cross-channel mixing can bec

assumed.

a (d) Maximum Hazard Extent

The steady state equation gives the maximum concentration reached at

a location x for a continuous discharge which emits indefinitely. For a

discharge of finite duration, the steady state equation gives an upper

limit which can be very approximately used to estimate the maximum concen-

tration at any location x, and has the advantage that the simple form of

313



the equation is readily inverted to express a maximum hazard extent, x, in

terms of a specified hazardous concentration CH:

2E / \(4x = Q---l C A (549)

or

2
x in if E << 4- (550)

k C,,Au4k

For the special case of no decay, k=0, the steady state concentration dis-

tribution reduces to a constant

c(x) k=0 (551)
Au

and thus inversion to obtain a coordinate for a specified hazard level is

inappropriate.

(e) Arrival Time and Duration

With the far field equation, as the chemical is dispersed downstream,

the concentrations in downstream water increase with time until the steady

state value is reached, for a discharge which emits continuously. As the

chemical moves downstream, a relationship exists between elapsed time and

downstream distance in the form:

x = Qt + n\4/'t (552)
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where n is taken as an integer value greater than 1. In particular, at a

given downstream location x, a rise in concentration will not be appreciable

until time increases beyond a value that satisfies the equation:

x = Ot + n 4f (553)

As an approximate guide for use in scaling concentration profiles,

the earliest time of arrival at a given location x can be estimated from

x
t . For continuous discharges which stop after a duration tmt, the

duration of the concentration history at an observation point x is also

t mt and the maximum elapsed time of interest is then very approximately

m+t
0 mt*

(2) t>t

When the observation time t is greater than the duration of the con-

tinuous release, the upper limit of the original integral expression for

the concentration, T , is equal to the duration of the discharge, t .

Substitution of this limit in the general form of the concentration

equation directly leads to the result:

c(xt) M Ee 2Eerf I erf
2E 2 (x+ t ( ____ mt)

e2E F1t x-Qt -. (- f -- -erf int K(554)
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As the elapsed time t becomes very large with respect to the duration

of the release tmt, the error function terms cancel, and analytically the

concentration vanishes. However, the same type of instability in products

of exponential and error function terms occurs. Also, caution must be used

in evaluating the error function terms for t approximately equal to tmt due

to the appearance of the term t-tmt in the denominator.

316



SECTION V

MODELS FOR ESTUARIES AND TIDAL RIVERS

1. INTRODUCTION

In Section IV, the dispersion of a spilled chemical into a non-tidal

river was shown to be conceptually similar to a spill into still water,

subject mainly to the influence of two additional factors introduced by

the flowing river: the bulk fluid motion of the river current and the con-

straints imposed by the banks and bottom of the river channel. Similarly,

the dispersion of a spilled chemical into a tidal river or estuary is

analogous to the behavior of a spill into a non-tidal river, subject to the

additional influence of the oscillatory behavior of the bulk fluid flow,

and the effect of salinity intrusion.

Models for two types of water bodies are considered. The constant

density regions of an estuary where salinity intrusion is minimal are

designated as tidal rivers. In these regions the spill behavior is sub-

ject only to the single additional influence of the oscillatory bulk fluid

flow. For t the sineadthe river system coordinates and channel geometry

are the same as those for a non-tidal river as identified in Section I. On

the other hand, estuaries designate saline regions where both tidal action

and the density gradiant driven circulation are significant.

The behavior of a dispersing chemical will be influenced in addition

by variations in the velocity distribution, wave and wind generated tur-

bulence, channel irregularities and other factors. After a spill, the

size of the dispersing mass increases, passing through different stages from

an initial three-dimensional distribution to eventually a more or less
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uniform distribution across the channel cross-section. In non-tidal rivers,

resulting from width to depth ratios commonly much greater than one, an in-

termediate stage of dispersion is usually reached based on the assumption

of uniform dispersion across the depth of the river channel. However, in

regions of salinity intrusion, density stratification effects may instead

cause uniform spreading across the width of the channel to occur first. In

practical application, the differences in possible local effects in the im-

mediate vicinity of the spill location, and the difficulty of determining

reliable estimates of the diffusion coefficients e . e . and e for three-x y z

or even two-dimensional spreading restrict the development of these general-

ized models to one-dimensional behavior. Except for regions very close to

the spill, use of concentrations obtained as cross-sectional averages ap-

pears adequate for the types of situations of interest and one-dimensional

models are assumed.

a. Tidal Velocity

In tidal rivers and estuaries, the tidal component of the bulk water

body fluid motion is superimposed on a non-tidal fresh water component.

While in non-tidal rivers, the bulk transport of a spilled chemical occurs

in only one direction, the oscillatory bulk fluid movement of tidal rivers

and estuaries contributes to movement both downstream and upstream.

The velocity of water in tidal rivers is dependent on the non-tidal

rate of discharge of the water in the river and the superimposed effect of

the rising and falling tides. The non-tidal component of the water velocity

is denoted by uf, and is the same as the velocity used for the non-tidal

river. This outflow stream velocity can be estimated by determining the

stream velocity of the river at an upstream location which is not affected
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by tidal action. Alternatively it can be estimated from the Tidal Current

Tables by subtracting the maximum flood current velocity from the maximum

ebb current velocity.

The amplitude of the superimposed sinusoidal tidal flow velocity is

denoted by ut, and values can be obtained for the region of concern by re-

ferring to the Tidal Current Tables for the region and computing the aver-

age of the maximum ebb and flood current velocities. The units of measure

of u are the same as for uf.

Since the superimposed tidal flow velocity, ut, of a tidal river is

both along the direction of flow velocity of a river, uf, during falling

tide and opposite to the direction of the flow of the river during rising

ride, the total flow velocity of a tidal river denoted by u(t), can be

represented by:

u(t) = uf + ut sin {a (t-)1 (555)

where t is elapsed time from the start of the spill, and 6 is the phase

lag or time to the next highwater slack tide (high tide). The value of

the phase lag might range from 0 to 12 or more hours.

Denoting the tidal period, the time period from one high tide to the

next or from one low tide to the next, by t , the value of a in the above

is obtained as:

2r (556)
t
p
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and the tidal river velocity representation becomes:

u(t) = uf + ut sin L (t-6) (557)

where the river velocity u(t) is a function of time. Depending on the

relative magnitudes of uf and ut , the river velocity u(t) will change in

magnitude over time, and may also change in sign if ut > uf representing

movement both downstream and upstream.

b. Types of Models

From Section IV.2.c, the form of the diffusion equation assumed to

govern the distribution in a tidal river or estuary is given by:

ac 1 E Ac-+u ----- ( (558)
t x A ax ax

where the concentration c is a function of downstream distance from the

spill location, x, and time t, and gives the average concentration over the

cross section of the river channel. Since a cross-sectional average is

obtained, this result is independent of the relative spill location (offset)

across the channel width.

As with non-tidal rivers, the dispersion coefficient e has been re-x

placed by an effective longitudinal dispersion coefficient E which repre-

sents not only the dispersion represented by e but also the dispersion ofx

the chemical due to the differential velocities and concentrations across

the channel. In the above form of the dispersion equation, the longitudinal

dispersion coefficient may be taken to be a function of both time and dis-

tance: E(x,t).
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Most existing tidal river models are one-dimensional and in general

these include tidally averaged models and intratidal or real-time models.

The tidally averaged models are useful only when the dispersion time is

much greater than the tidal period, and treat the tidal oscillations as

part of the large scale longitudinal dispersion. This leads to using a

constant outflow velocity uf; the governing concentration equation is the

same as for a non-tidal river with the exception that tidally averaged

longitudinal dispersion coefficients are used.

Intratidal or real time models treat the tidal flow to be advective,

with longitudinal dispersion having time scales that are much shorter than

a tidal cycle. Hence, the tidal river velocity is assumed as a function of

time u(t) and concentration equations are obtained as solutions of the

above partial differential equation.

2. MODELS FOR ESTUARIES

a. Introduction

Estuaries differ from rivers and natural streams because of oscillatory

tidal advection and gradient induced circulation due to salinity differences.

Except for the lower reaches of an estuary, one dimensional models adequate-

ly estimate dispersion by averaging over the cross-sectional area. The

form of the differential equation governing the mixing and dilution of the

pollutant is obtained from:

ac + u(t) ac I a A(x,t) E(x,t) -kc
at ax A(x,t) x E t (559)
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and this can be re-written as:

A(x,t)c + Q(x,t)c - A(x,t) E(x,t) Lc-k A(x,t) c (560)at ax =ax

where

c is the concentration as a function of time t and distance x,

A(x,t) is the cross-section area,

Q(x,t) is the discharge,

E(x,t) is the sectionally averaged one dimensional longitudinal

dispersion coefficient, and

k is the chemical decay rate constant

To obtain estimates of the pollutant concentration, it is assumed for

the above formulation that data describing A(x,t) and Q(x,t) are available,

in addition to the dispersion coefficient E. The solution for c(x,t) is

then obtained for the specific initial and boundary conditions. For simpli-

fication, concentrations can be obtained using either a tidally averaged

approximation or an intratidal approximation. Tidally averaged models are

the simplest and involve treating the tidal oscillations as part of the

large scale longitudinal diffusion. Intratidal models treat the tidal flow

to be advective, with longitudinal diffusion having time scales that are

much shorter than a tidal cycle.

b. Tidally Averaged Model

The tidally averaged model is obtained in the same form as the one-

dimensional river or natural stream model. The governing differential

equation is obtained as:
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ac c a2 c
2+uL= E-- kc (561)t ax x

where

c is the time and sectionally averaged concentration,

u is the constant fresh water velocity, and

E is the longitudinal dispersion coefficient

Solutions of this equation are obtained in the form:

(x-ut)
2

c(x,t) M 4Et -ktc =x_) e e (562)

where M is the amount of chemical assumed to be discharged instantaneously.

The form of this equation is the same as that obtained for the far field

approximation of a spill into a non-tidal river.

In order to evaluate the longitudinal dispersion coefficient E, Hetling

and O'Connell[57] found in their studies on the Potomac River that the fol-

lowing empirical equation could be used:

4/3
E = 1680. u0  (563)

where

E is the sectionally and tidally averaged one dimensional longi-

tudinal dispersion coefficient, and,

u0 is the maximum tidal velocity (in knots)
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This equation is appropriate for calculations that are allowed to

vary within one order of magnitude, and is expected to generally produce

conservative results. Experimental data, if available, could instead be

substituted directly into the concentration equation.

c. Intratidal Model

Considering the tidal flow to be advective, with longitudinal disper-

sion having a time scale much shorter than a tidal cycle, leads to the

following form of the diffusion equation:

~~ ~ (x _cx x

Q(x)- Ax Exx)c (564)

where the averaged concentration c depends upon

Q(x), the time averaged discharge

A(x), the tidally averaged flow area, and,

E(x), the time averaged longitudinal dispersion coefficient

Thatcher and Harleman[581 have found that the longitudinal dispersion

coefficient can be approximated using the correlation:

K

u- = f (ED) (565)

where

u 0 = maximum flood velocity at the entrance to the estuary,

L - length of the salinity intrusion region of the estuary,

K - dispersion parameter, and,

ED a estuary stratification parameter
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The dispersion parameter K can be approximated by:

K f 0.00215 u0 L E
0 2 5  (566)

0 D

The estuary stratification parameter or estuary number can be approxi-

mated by:

2
P F2

E = D (567)
Qftp

where

P = volume of water entering the estuary in flood tide (tidal
T

prism)

Qf fresh water discharge, volume/time

t = tidal period, and
p

F = densimetric Froude number at the entrance to the estuary,
D

obtained as a function of the change in density over the

entire length of the estuary

The correlation leads to an approximation for the longitudinal dis-

persion coefficient:

_K S + 77 n u 5/6 (568)
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where K is defined above and:
a V

s = dimensionless one-dimensional salinity gradient,
so

s = local salinity

so = salinity at mouth

0

x = dimensionless ratio of distance from mouth (x) to length

of estuary (L)

i = Manning roughness factor

u = average velocity, and,

Rh = hydraulic radius

Since the variables in this formulation are specific to the individual

estuary, each situation and locale provides a unique environment that must

be evaluated separately and a generalized solution of the differential equa-

tion can not be obtained without recourse to numerical methods. In addition,

the requirement for extensive site specific data to obtain estimates of the

longitudinal dispersion coefficient restricts the application of these equa-

tions for genetal use under emergency spill conditions.

3. MODELS FOR TIDAL RIVERS

a. Introduction

For spills into the constant density regions of an estuary, designated

as tidal rivers and where salinity intrusion is minimal, the differential

equation governing the mixing and dilution of the pollutant is given by:

a ~ac + u(t) c I a A(x,t) E(x,t) a - kc (569)
at ax A(x,t) 3x x
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where the velocity of the water in the tidal region, u(t), is assumed to

have a sinusoidal variation, as described in Section V.l.a, and the concen-

tration c is obtained as a function of x and t. Since this is a one-dimen-

sional equation, the results obtained are based on the assumption of a uni-

form distribution of the pollutant concentration throughout the cross-section

of the river. Thus the concentrations will only be approximately correct

for elapsed times sufficiently long after the start of the spill for uniform

cross-sectional mixing to have occurred.

For practical application in a generalized model intended for use in

different environmental settings under emergency conditions, it is not pos-

sible to obtain descriptions of the channel geometry, A(x,t), and the longi-

tudinal dispersion coefficient, E(x,t), as functions of time and distance.

Assuming constant average values, the governing differential equation for

the tidal river model becomes:

ac + u(t) c = E ac (570)
at ax ax 2

The river system coordinates and channel geometry (d = depth, w = width)

are taken to be the same as for a non-tidal river (Section I.4.a). Chemical

decay or degradation on release is denoted by the decay constant k.

Two tidal river sub-models are considered in the following sections

depending on the type of release: instantaneous or continuous. The instan-

taneous model is obtained as a solution of the above differential equation.

The continuous release model is obtained, using the principle of superposi-

tion, by integrating the concentration equation for an instantaneous

release.
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b. Instantaneous Spill Model

Except for the sinusoidal variation of the bulk motion of the receiving

water body, the differential equation for the concentration distribution

in a tidal river has the same form as the equation for a discharge into a

non-tidal river. For the non-tidal river, the solution for an instantaneous

release is obtained as a Gaussian distribution, the center of mass of which

is translated downstream at a rate equal to the constant river velocity u.

This is equivalent to a coordinate translation in the downstream direction

of x-ut.

For the case of a spill into a tidal river then the concentration dis-

tribution is obtained as a Gaussian distribution, written in general form

as:

b[x-f(t-T) 
]2

c(x,t) a E(t-T) -k(t-T) (571)c~~)= e • e(5)

E t-T)

where

c(x,t) gives the concentration at a location x and time t,

T gives the time the discharge occurs,

t-T gives the elapsed time from the start of the discharge,

a,b are constants to be determined, and

f(t-T) is a function of the sinusoidal river velocity governing

the bulk motion of the dispersing mass
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Usually this equation is written for t representing elapsed time from

the start of the discharge so that the term T does not appear (i.e., is

equal to zero). This form of the equation is more convenient however for

expressing the integrand to obtain solutions for continuous releases.

For an instantaneous discharge occurring at time T, the concentration

is given by the above equation for t > T and c(x,t) = 0 for t < T.

(1) Determination of Constants

(a) Use of Governing Equation

Substitution of the general form of the concentration equation into

the governing partial differential equation leads to the following result:

c(x,t) f(2-4b) bx-f(t-) (t-)

+ 2b(t-T) (x-f(t-T)) (df(t•) - u(t) = 0 (572)E d

Since this must hold for all values of x and t, as t -t, the term in

brackets reduces to:

(1-4b) * (0 = 0 (573)

For the equality to hold for any value of x, the constant b in the con-

centration equation is obtained as b = Using this value, the above equa-

tion reduces to:
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c (xt) df(t-T) _ u(t) 0 (574)2E(t-T) x-~-)• dt

At any time t > T, for any value of x, this equation is satisfied for:

f(t-T) = u(C) d (575)

T

(b) Conservation of Mass

The second constant in the concentration equation is determined from

conservation of mass where the integral of the concentration over the volume

of the water body is equal to the total quantity of substance in the en-

vironment. Because both the concentration and the total mass are related

in the same manner to the exponential decay term, this term can be ignored

and conservation of mass stated in terms of a conservative pollutant: the

total mass dispersing in the water body at any time t is equal to the total

mass initially spilled, M. This gives the equation:

M = fjlffc(x,t) dx dy dz = fm c(x,t) dx * ff' dy dz (576)

The integral over the dimensions of the water body in the y and z

directions is simply the cross-sectional area of the river channel and is

denoted by A. Substituting the general form of the concentration equation

then gives:

- b[x-f(t-T) ]2

a E(t-T) dx (577)

330



where the exponential decay term is ignored. The integral is evaluated

using the definition of the error function to obtain:

e Aa d -A (578)

1*
Substituting b =1 and solving for the constant a gives:

a = -- (579)

(c) Summary

Substituting the values for the constants a, and b, in the concentra-

tion equation gives the resulting equation for an instantaneous spill in

the form:

[x-f(t-T) 
2

c (x, t) M e 4E(t-) *-k(t-T) (580)
2A, (T -T)

where

f(t-T) = u( ) d& (581)

and the sinusoidal velocity of the tidal river is given by:

u() u + ut -t (C-6) (582)
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Evaluating the integral expression for f(t-T) gives:

f(t-i) = uf(t-T) C I cosf7 (t-6)J- cosI -Th (T-6) (583)

For use only with an instantaneous spill, the formulation of the above ex-

pressions can be simplified somewhat by taking r = 0 to obtain:

[x-f(t)]
M 4Et -kt

c(xt) = e • e (584)

f(t) = uft - cosl - cos Jj (585)f 1T- (585)

where t is taken as elapsed time from the instantaneous discharge. The

instantaneous equations are used with T > 0 however to develop the concen-

tration equation for a continuous discharge. The location of the spill is

taken as x=O. Note that for times t < T, the concentration c(x,t) = 0.

(2) Determination of Longitudinal Dispersion Coefficient

The method of computing the longitudinal dispersion coefficient, E,

is obtained from reference[12], and gives reasonably accurate values

for well defined straight channels. The results are not applicable to

multi-channeled or island-studded estuaries. It is also assumed that the

non-tidal water body velocity component, uf, is much smaller than the

tidal component, u •t

332



First, effective transverse and vertical dispersion coefficients are

defined as:

*i

E = 6 d U (586)v

where

E = dispersion coefficient predominently affected by verticalV

velocity gradients in m 2/second

d = river depth in meters

U = shear velocity in meters/second

and

Et = 0.011 Ev (587)

2 7v

where

E = dispersion coefficient primarily influenced by transverse
t

velocity variation in m 2/second

u = amplitude of tidal velocity in m/secondt

= velocity deviation from uniform conditions

t = tidal period in seconds
p

b = half width (w/2) of the river in meters

The term in brackets is reported as ranging from 0.01 to 0.04; the

mean value of 0.025 is used to give:

/u t \

Et = (0.011) (0.025) t- E b ) v(588)
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The value of the longitudinal dispersion coefficient E is taken as

either Et or Ev. To determine which of the two dispersion coefficients to

use, two characteristic time ratios are defined:

t
T fi 2 p  

(589)
v d/ez

where

T ff= diffusional time ratio for vertical spreadingv

t ff= tidal period in seconds
p

d = river depth in meters

e 2e = vertical turbulent dispersion coefficient In m /secondz

and

t

p
Tt  2 (590)

y

where

Tt diffusional time ratio for transverse spreading

b = half-width (w/2) of river in meters

e = transverse turbulent dispersion coefficient in m 2/secondY

If T < 1, then the dispersion coefficient E is given by E . If
v v

Tv > 1 (and Tt < 0.1), then Et is calculated, and if Et > E then E - E

Otherwise E = Ev
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It should be noted that for T > 1, the coefficient E is taken as
v

the largest of Et or E , and that the ratio E t/Ev may be very large. Re-

ference[121 indicates that a maximum value of about 11 for E t/Ev has

been reported for several estuaries.

(a) Shear Velocity

The shear velocity, U , for the non-tidal river case was given as:

1/6
rn/= 3.115 u/ m/second (591)

where

To = wall shear stress

p = density of fluid

n = Manning roughness factor

Rh= hydraulic radius

u = average velocity of cross section for the non-tidal river

For use with the tidal river case, the velocity term is replaced by

the mean oscillating flow velocity. The oscillating river velocity is

given as a function of time by:

2ir
u(t) = uf + ut sin 1- (t-6)f t t(592)

p

The mean oscillating flow velocity, denoted by um , is obtained by

integrating the oscillating velocity component over one-half the tidal

period:
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t

t 6+ 2u
u -k = sin 2m2- (t-6) dt (593)

Evaluating the integral gives:

t u t 11 u t
u m2 =_it 2- O sinEdO i t P

m 2 t 2 T (594)

The mean oscillating flow velocity, um, is then obtained as:

2 u
t

U 7- (595)

Substituting this e;pression then gives the equation for the shear

velocity in the form for use with the tidal river model as:

U = 3.115 n ( Rh , rn/second (596)

The equation for the hydraulic radius is obtained from the non-tidal

river model section, and is given by:

w~d

Rh =2d+w (597)

Values of the Manning roughness coefficient are tabulated in the non-

tidal river model section.
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(b) Turbulent Dispersion Coefficients

The computation of the characteristic time ratios, Tv and Tt, requires

the values of the vertical and transverse turbulent dispersion coefficients,

e and e y, respectively. The equations for these coefficients are the same

as given for a non-tidal river, that is:

e = 0.067 U Rh (598)

and

e 0.1 e if > 100

y z d (599)

or

e =0.23 UR ifw < 00 (600)

where e and e are in m 2/second. Since the formulation of the shear velocityy z

differs, the actual values of e and e will differ from the non-tidal
y z

river case even though the same equations are used.

(c) Limitations

The formulation of the expressions for the longitudinal dispersion

coefficient E is based on the assumption that uf << ut. Also, the selection

of the dispersion coefficient based on the values of characteristic diffu-

sional time ratios examines only values normally expected for most tidal

channels, and the diffusional time ratio for transverse spreading is not

utilized.
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c. Continuous Spill Model

A continuous discharge is assumed to occur at a rate M(t) over a period

of time from t=O to t=tmt at which time the discharge stops. The concen-

tration produced by an incremental discharge, occurring at time T, is given

as a function of time by the instantaneous equation:

[x-f(t-T) 
] 2

Ac(x,t) = M(r) dT 4E(t-) -k(t-T) (601)
2A AFT j( t- T)

where c(x,t) is taken as zero for t < T. The complete concentration dis-

tribution produced by the continuous discharge is obtained by summing or

integrating the contributions from each of the incremental instantaneous

releases. Since the release is assumed to be of finite duration, this gives

two cases of interest: t < tm and t > tt

(1) t < t

When the observation time is less than the duration of the release,

the incremental instantaneous discharges are integrated over T = 0 to

T = t to obtain the expression for concentration from a continuous discharge

which starts at time t = 0:

C(xt) 4E(t-) e-k(t-T) dT (602)f~~t 2A~f__ eTV e dt(02

0
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for t > T. The integrand is taken to be zero for t < T and t < 0. The

spill rate A(T) appears in the integrand as a function of time, and in

general a variable rate could be used if the integral is evaluated numer-

ically. For practical application however a constant rate of release is

assumed.

The exponential term, f(t-T), is obtained from the general equation

for the instantaneous release as:

f(t-t) = uf(t-x) - UtP2 cos Lr (t-6)- cos Lp (T-6) (603)
f27r jt j

(2) t > tint

When the observation time is greater than the duration of the continuous

release, the resulting concentrations at time t are obtained by integration

of the instantaneous distribution for releases from T = 0 to T = t . The

expression for the integrand does not change.

The spill model uses a numerical integration algorithm to determine

the value of either of these integrals for selected values of x and t.
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SECTION VI

REVIEW OF MAJOR ASSUMPTIONS

Because of the complexity of the chemical spill process, the uncertain-

ties and variabilities associated with spill conditions and the nature of the

environment in the vicinity of the spill, and the difficulties inherent in

describing these phenomena, the analysis and implementation of the water dis-

persion model have necessarily been based on numerous assumptions. The de-

gree of sophistication that has been attempted has been carefully considered,

and assumptions or limitations introduced to enable the models to be applied

to a class of non-chemical specific discharges in a range of environmental

settings. Also, these models are intended for use in real or threatened emer-

gency spill situations, in addition to routine assessments for contingency

planning, and thus the input data required is restricted to that information

that can be readily observed, estimated, or assumed from on-scene observa-

tions or reports; use of extensive, detailed site specific data is precluded.

Major assumptions and/or limitations that are incorporated in the model

have been discussed in the text and are summarized for review in the follow-

ing paragraphs.

Heat sources and heat sinks are neglected, and the assumption is made

that the initial temperature of the spilled chemical and the receiving water

body are nearly equal. Any initial unequal temperatures would ultimately

come to equilibrium at a temperature very nearly equal to the temperature

of the water into which the spill occurs because of the comparatively large

thermal capacity of a river, lake, or ocean into which a spill may occur.
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During the initial stages of dispersion, the difference in the temperatures

of the spilled chemical and the receiving water could affect the rate of

dispersion. The significance of this assumption depends on the type of chem-

ical and relative temperature ranges at which these are transported.

Temperature differences may also give rise to buoyancy effects. Studies

of these effects have been reported in the literature, many of which deal

with thermal discharges from power plants or waste water discharges through

submerged outlets or distributed outfalls. In these cases, the discharge is

lighter than the receiving water. The movement of the discharge as it rises

creates secondary induced turbulent currents, and the rate of dispersion and

manner in which it takes place are effected. The water dispersion model

described in this report assumes that the spill occurs onto the surface of

the waterway, and the effect of buoyancy has not been incorporated. Thus the

model strictly is most appropriate for those liquids that are neither signif-

icantly lighter nor denser than the receiving water. The model may also be

applied for the dispersion of solid particles, if these are neutrally buoyant

or if the settling times are large in comparison to the dispersion.

Chemical degradation in the aquatic environment has been modeled by a

first order rate constant process. Additional effects of chemical reactions

or phase changes during dispersion have not been incorporated. Phenomena

associated with chemical reactions which were neglected include resulting

dispersion of the products of reaction and thermal effects from the heat of

reaction. The most significant model assumption may be that no vapor is

liberated, and that, other than a first order decay, the entire mass of

spilled chemical is dispersed. The model assumes the chemical is fully

soluble in water (miscible in all proportions) and that all the discharged
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chemical goes into solution with water. A separate model was developed for

use in HACS to estimate vaporization rates; however, the resulting reduction

of the mass dispersing in water has not been incorporated. This assumption

leads to estimates of concentrations in water that are conservative.

Stratification of the receiving water body and the interaction with

density or buoyancy effects have not been included, although the receiving

water body is considered to be non-isotropic, with different but constant

dispersion coefficients along each axis. Thermal layers in lakes and oceans

are known to exist at some depths, at some or all different times of the

year, depending on seasonal temperature variations. These horizontal layers,

when present, can act as confining boundaries by significantly inhibiting

dispersion to greater depths, reflecting the dispersing chemical and limit-

ing mixing to occur in the upper portion of the water body. Modification

of the still water model to incorporate confining boundaries, using the

method of imaging or virtual sources, would not present significant diffi-

culty, provided that depths to these boundaries could be estimated.

Strictly, the models apply to spills of large quantities that occur

under assumed instantaneous or continuous discharge conditions. For contin-

uous discharges, the rate at which the chemical is released is assumed to be

constant. An analysis of the continuous release model has formulated an

approach in which a variable mass release rate can be modeled. However, as

implemented, the model is limited to a constant release rate since for the

purpose of expected use it was assumed that inadequate information would be

available to accurately characterize a variable rate.

River channels are modeled as having a constant rectangular cross-

section, and for non-tidal rivers, a constant cross-sectional average river
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velocity has been assumed, For tidal rivers, the tidal effect has been mod-

eled by a sinusoidal velocity imposed on the non-tidal component. Velocity

variations caused by winds, storms, local channel obstructions, and similar

effects have not been included. The boundaries (banks and channel bottom) of

the river channel have been assumed to be impenetrable to the dispersing mass,

and only first-order image sources have been included to model the effect of

confined dispersion.

In regions near to the source for a continuous discharge into a river,

the additional longitudinal travel due to longitudinal dispersion is neglected

with respect to the bulk motion of the dispersing mass in the direction of

river travel. This assumption is strictly applicable to rivers in which the

rate of longitudinal diffusion is small with respect to the movement with the

river velocity; however, all but the most slowly flowing rivers will give

reasonably good agreement with this assumption.

At distances far from the location of a spill into a non-tidal river, a

simplifying assumption is made that the dispersing mass reaches a uniform

cross-sectional distribution, and further dispersion occurs in a one-dimen-

sional manner in the direction of river flow. While the assumption is rea-

sonably consistent with the expected behavior of the mass at large distances

from the spill, and introduces some simplicity in the model formulation, the

resulting difference in the modeling equations may cause a disconti uity in

concentration estimates between the near and far regions. Since the model

incorporates, to a first order, the boundary effects in the region near the

spill site, concentrations reached at long distances from the spill location

should be expected to approximate those obtained by one-di,,cnsional analysis,

and as a result the one-dimensional analysis is not essential. The model does
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not currently include provision for automatically forcing a match between

these near- and far-field equations, and the results obtained should instead

be interpreted in terms of the type of dispersion being modeled.

Although some of these assumptions and limitations have greater effect

than others, it is generally concluded that the assumptions lead to a simp-

lified, but reasonably realistic, model with which estimates of concentra-

tion distributions can be obtained on the same order of accuracy as the

accuracy to which the required model inputs are available.
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SECTION VII

SENSITIVITY ANALYSES

Extended sensitivity analyses could not be conducted within the time

available for this project, and the discussion that follows is based on the

results of previous studies [12], [20). Since these studies utilized earlier

versions of the water dispersion model, the observations reported here should

be considered as preliminary. Also, sensitivity analyses generally utilize

perturbations of selected variables about a set of nominal values for all

independent and dependent variables. Because of the complexity of the models

and the effects of different combinations of independent variables, different

behavior can be observed about different sets of nominal values. A more

effective approach to determining the relative effects of different independ-

ent variables on the resulting concentrations is to assess the behavior of

the analytical formulation of the model, as has been done in the body of this

report, identifying the regions of different behavior and describing the man-

ner in which independent variables affect limit conditions.

The concentration distribution obtained in water is primarily a function

of a spatial position, time, geometry of the water region, spill mass or dis-

charge rate, river channel roughness, characteristics of the transporting

fluid flow (non-tidal velocity, tidal period, phase lag and amplitude), and

decay coefficient. The concentration predicted is directly proportional to

the quantity of mass spilled (or rate of mass spill); that is, a 1 percent

change in mass spilled causes a I percent change in concentration. The

dependence of the maximum concentration on the velocity and the geometry is

more complicated.

345



In the case of a river (non-tidal), the maximum concentration predicted,

close to the spill point, at a particular instant is inversely proportional

to the square root of the velocity cubed; that is, a 1 percent change in the

velocity causes a 1.5 percent change in concentration. For tidal rivers,

approximately the same results also hold. However, the velocity considered

should be the tidal velocity instead of the stream velocity.

The dependence of the concentration on the geometry is very complicated.

The rougher the surface of the channel, the greater is the turbulence and the

smaller the concentration. The concentration is also inversely proportional

to the cross-sectional area for large distances from the point of spill. For

1.25
shallow rivers, the near-field concentration varies as (depth) ; that is,

for a 1 percent change in depth, the change in concentration is -1.25 percent.

The far-field concentration varies inversely with depth; that is, for a I

percent change in depth, -1 percent change in the concentration results, with

the other parameters remaining the same.

Chemical degradation in the aquatic environment is incorporated using

-kt
exponential decay factors, e , and depending on the value of the rate con-

stant and the range over which kt is small (such that e-k t 1 1) or large, the

effect on the resulting concentrations will either be negligible or signifi-

cant. Increasing the decay coefficient decreases the concentration of the

dispersing mass.

For discharges into rivers, the location of the center of the dispersing

chemical mass, and hence, the point of maximum concentration, is directly

dependent on the river velocity. Also, an increase in the river velocity

causes the turbulence level to increase with a consequent increase in the
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shear velocity. For one-dimension dispersion, this increases the dispersion

coefficient which, in turn, causes a corresponding concentration decrease.

Water temperature and also possibly river channel roughness, when com-

pared to other variables, appear to have only minimal effect on concentration

for the particular model assumptions and limitations (e.g., neutral buoyancy).

The river depth and width affect the concentration of a dispersing mass

in a manner such that the greater the depth or width, the smaller the turbul-

ence level in the river, and when the turbulence level in the river is small,

the shear velocity is also small. However, at the same time increasing either

the depth or width increases the hydraulic radius of the river, so that the

effect of these changes on values of dispersion coefficients computed as a

function of the product of the shear velocity and hydraulic radius would be

to either increase or decrease the coefficient values.

As demonstrated by example for conservation of mass, expressions of the

form Nlxt indicate the degree of spreading in the particular coordinate

direction from the center of the dispersing mass. The spreading of the dis-

persing mass will occur more rapidly in directions of larger dispersion co-

efficients; this spreading will cause concentrations to be reduced more

rapidly in these directions but also accompanied by a more rapid movement

to greater distances. It is also noted that differences in the method of

computation of dispersion coefficients, for different river width-to-depth

ratios, or for one-dimensional or three-dimensional spreading, will, in

general, cause concentratioin discontinuities at ti e transition.

Since the maximum conc, nt-ration is obtained at the spill location in

still water, or at the initial origin of the spill translated by a distance

determined by the bulk velocity of fluid flow, the relationship between this
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point and a point chosen for observations will significantly affect the con-

centrations obtained at the observation point. Increased concentrations will

occur as the observation point is taken at distances closer to the center of

the dispersing mass. At observation points removed from the center of this

mass, concentrations will increase with increases in elapsed time until a

certain time at which the concentration at the observation point reaches a

maximum. After that time, further increases in time will result in decreasing

concentrations. The maximum concentration reached at an observation point is

a function of the distance of the point from the center of the dispersing

mass, and the maximum values are reduced at greater distances.
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SECTION IX

NOMENCLATURE

Dimensions or units are shown to define the type of quantity. Actual

usage will vary and these quantities may be converted to different units.

In some cases, variables listed below may also appear in miscellaneous nota-

tion for limits of integration and dummy arithmetic function arguments.

a = spill location, offset on the surface from cm

the center of the river (positive value in

direction of positive y-axis)

collection of constant coefficients in gm-sec/cm
3

concentration equation

parameter, limiting exponent for nd

numerical representation

dissipation parameter cm 2/3/sec

half-width of interval containing cm

dispersing mass

a. - coefficients in Hastings' approximation nd1

of error function (i=1,5)

2
A = cross-sectional area of river channel; cm

also given as A(x,t) and A(x) for tidally

averaged flow area

collection of constant coefficients gms

in concentration equation
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b= half-width of river channel (w/2) cm

collection of constant coefficients in sec/cm 2

concentration equation

parameter, limiting exponent for nd

numerical representation

interval over which instantaneous source cm

is distributed in one-dimensional system

b. transformed or scaled coefficients in ndI

Hastings' approximation of error func-

tion (i=1,5)

c= concentration of pollutant at specified gm/cm 3

time and location; may also be steady

state concentration or function of one

to three spatial coordinates

- cm 3

c average concentration for uniform dis- gm/cm

tribution over particular volume of

receiving water body

0 initial concentration 
gm/cm

3

o3

cH = specified hazardous concentration gm/cm3

cL - lower limit for ccacentrations of gm/cm 3

interest

d= depth of river channel cm
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2D = molecular diffusion coefficient cm /sec

D 0 = molecular diffusion coefficient cm 2/sec
AB

e = constant, 2.718... nd

2

e = turbulent dispersion coefficient cm /sec

in longitudinal direction

2
e = turbulent dispersion coefficient in cm /sec

lateral direction

e = turbulent dispersion coefficient in cm 2 /secZ

vertical direction

2
E = effective longitudinal dispersion cm /sec

coefficient, constant; or variable as

E(x,t)

2
E(x) = time averaged longitudinal dispersion m /sec

coefficient

ED  = estuary stratification parameter nd

Et  = dispersion coefficient primarily m 2/sec

influenced by transverse velocity

variations

2
E = dispersion coefficient predominantly m /sec

affected by vertical velocity gradients

erf(x) = error function, 2 -j d nd
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erfc(x) = error function complement, 1 - erf(x) nd

f(t) = function of sinusoidal river velocity cm

for tidal rivers

f() = source strength per unit length in one gm/cm 3

dimensional system

F = Gaussian distribution function nd

FD  = densimetric Froude number at entrance nd

to estuary

2g = gravitational constant cm/sec

G = function defined as collection of nd

exponential terms in concentration

equation for non-tidal rivers

h = depth of river flow, also h cmm

-1/2
= value of integral expression in con- sec

centration equation; also, steady state

value = ISS

k = first-order decay coefficient sec

K dispersion parameter cm 2 /sec

I = length scale characterizing the size cm

of diffusing substance

L length scale of turbulent eddies cm
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length of the salinity intrusion region cm

of the estuary

m total mass in one-dimensional system, gm/sec2

as amount released instantaneously, m,

or as a distributed function m(x,t)

m constant release rate of discharging gm/cm -sec

pollutant in one-dimensional system

M = total mass of chemical released gm

instantaneously at time t=O, also M(O)

M(x,y,z,t) = mass distribution in space and time gm

M(t) = total mass of substance remaining in gm

environment after elapsed time t from

release

M = molecular weight gm/g-mole

= constant pollutant discharge rate gm/sec

= molecular weight of solvent B gm/g-mole

n = Manning roughness factor 
ft1 /6

integer value or fractional multiplier nd

N = Brunt-Vaisalla frequency = 
sec -1

constant of proportion nd

= mean of Vaisalla frequency sec-1
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p coefficient in Hastings' approximation nd

of error function

P(b,n) = polynomial term in error function nd

approximation

PT = volume of water entering estuary in cm3

flood tide (tidal prism)

q concentration as a function of time and gm/cm 3

position for a conservative substance

q2 u2 + v 2, current fluctuations cm2 /sec2

Q = discharge, also Q(x,t) cm3/sec

Qf = fresh water discharge, volume/time cm 3/sec

Q(t) = total amount of substance discharged gms

by a continuous release to the environ-

ment

3
Q(x) = time averaged discharge cm /sec

r = scale factor or fractional value nd

pipe radius cm

2 2 2
transformation, X + + Z-- sec4e 4e 4ex y z

22 x 2 2r = transformation, -+ + y sec
x

R i hydraulic radius cm

s = scale factor nd
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transformation, 4() 3/2cm /sec

s = local salinity ppm

0

s = dimensionless one-dimensional salinity nd

gradient 
s--
s

0

s = salinity at mouth ppm
0

S = energy slope nd

t = time; elapsed time from start of spill sec

temperature °c

td  elapsed time required for the concentra- sec

tion at the spill location to reach a

specified value; delay time

tmt = total elapsed time from start to stop sec

of a continuous discharge

t = tidal period sec
p

t = water temperature cw

t1/2 = half-life sec

t = time required for Gaussian distribution secpI
to produce concentration at spill location

equal to density of discharged substance

T = absolute temperature 0k

Tb  = normal boiling point 0c
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Tbr = ratio, Tb/T c  nd

T = critical temperature Oc,*kC

T = reduced temperature (T/T ) ndr c

Tt = diffusional time ratio for transverse nd

spreading

T = diffusional time ratio for vertical ndV

spreading

T = water temperature 0cw

u = constant uniform cross-sectional river cm/sec

velocity, or variable or constant re-

ceiving water body bulk flow velocity com-

ponent in x-direction

U = shear velocity cm/sec

u = maximum tidal velocity knots
0

uf = non-tidal component of water velocity cm/sec

u = mean oscillating flow velocity cm/secm

u = amplitude of superimposed sinusoidal cm/sec
t

tidal velocity

v = receiving water body bulk flow velocity cm/sec

component in y-direction

3
V = volume of receiving water body or portion cm

of water body
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3
V = initial volume cm

0

V = molal volume of solute A at its normal cm 3/g-mole
A

boiling point

V b molar liquid volume at normal boiling cm 3/g-mole

point of solute

w width of river channel cm

receiving water body bulk flow cm/sec

velocity component in z-direction

W = wind speed cm/sec

W2 = mean square of wind speed cm /sec 2

x= longitudinal or downstream coordinate cm

relative to river centerline at surface

0

x = dimensionless ratio of distance from nd

mouth to length of estuary

x = limit distance for near field approxima- cm
c

tion; critical distance

y = lateral or cross-stream coordinate cm

relative to river centerline at surface

z = depth coordinate (positive is down) cm

relative to river centerline at surface
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Greek Symbols

= longitudinal spatial coordinate relative cm

to spill location

coefficient in longitudinal dispersion nd

coefficient equation

a(t) = decay function given as ratio of total nd

mass at time t to initial mass

= lateral spatial coordinate relative to cm

spill location

transformation variable (various)

ratio of elapsed time from discharge nd

to half-life of discharged substance

coefficient in longitudinal dispersion nd

coefficient equation

$1,2,3 transformation variables sec1/2

= coefficients in longitudinal dispersion nd

coefficient equation

Bmt = ratio of discharge interval (tmt) to nd

substance half-life

y = vertical spatial coordinate (positive is cm

down) relative to spill location

= transforration variables secl/ 2
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= phase lag (time to next high water sec

slack)

small number nd

= variable of error function approximation nd

B = viscosity of solvent B cp

9.. = transformation variable in error function nd

approximation

E = transformation variable nd

= characteristic eddy velocity fluctuation cm/sec

P w = viscosity of water at temperature tw cp

= dummy variable for transformations and (various)

integration

= lower limit of integration (various)

s = upper limit of integration (various)

= constant, 3.14159... nd

3
p= density of discharged substance gm/cm 3

p1  liquid molar density g-mole/cm 3

r 3

Plb = molar density at boiling point g-mole/cm

' I = density of solute at its normal boiling 
gm/cm

3

Olb ,

point

Pv = vapor molar density g-mole/cm3
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= standard deviation of Gaussian dis- cm

tribution; also given as a xa y, az

for three-dimensional distributions

-l
27/t for use in tidal velocity expression sec

p

elapsed time variable sec

9

T = wall shear stress N/m
0

= dimensionless association factor of nd

solvent B

w =(x) function to be represented by numerical nd

approximation (i.e., error function where

x is a dummy argument)

0*(x) = numerical approximation of function (x) nd

'(x) = error function integrand evaluated at x nd

2
2 u -1

W= transformation, u-+ k sec

x

= water body density gradient cm 1

2 ~22

2 = transformation, u + 4kE cm 2/sec 2
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APPENDIX A

OVERVIEW OF CHRIS COMPONENTS

1. INTRODUCTION

The Chemical Hazard Response Information System [2,8,9,10], known as

CHRIS, and the Hazard Assessment Computer System[ll] component of CHRIS, known

as RACS, were developed by Arthur D. Little, Inc. for the U.S. Coast Guard

to provide a systematic, simplified approach to identifying the appropriate

processes governing a given chemical release and methods for estimating

the hazard. One of the spill models originally formulated for use within

CHRIS and HACS addressed the estimation of hazards caused by the accidental

spill of a toxic chemical, miscible with water, on different types of re-

ceiving water bodies. Since this previous work formed the basis for the

development of the spill model as described in this report, this appendix

contains brief summaries of the components of CHRIS to provide additional

background on the relationship of the individual water dispersion model to

the approach for hazard estimation embodied in CHRIS.

CHRIS is designed overall to provide timely information essential for

proper decision-making by responsible Coast Guard personnel and others

during emergencies involving the water transport of hazardous chen-cals.

A secondary purpose is the provision of certain basic non-emergency-related

information to support the Coast Guard in its efforts to achieve improved

levels of safety in the bulk shipment of hazardous chemicals. CHRIS con-

sists of four reference guides or manuals, a regional contingency plan, a
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hazard assessment computer system (HACS), and an organizational entity lo-

cated at Coast Guard Headquarters. The four manuals contain chemical data,

hazard assessment methods, and response guides. Regional data for the entire

coastline are included in the Coastal Regional Contingency Plans. The head-

quarters staff operates the hazard assessment computer system and provides

technical assistance on request by field personnel during emergencies. In

addition, it is responsible for periodic update and maintenance of CHRIS.

2. A CONDENSED GUIDE TO CHEMICAL HAZARDS, CG-446-1[8]

This handbook, designated CG-446-l, Condensed Guide to Chemical Hazards,

contains information to facilitate early response decisions during emergency

situations. It is a compact, convenient source of chemical-related informa-

tion with specific reference to bulk-shipped hazardous materials. The guide

is intended primarily for use by port security personnel and others who may

be the first to arrive at the site of an incident and need readily available,

easily understood, descriptive information about the hazardous nature of the

chemical and the situation confronted. It will assist those personnel in

quickly determining proper, responsible actions that must be taken immediately

to safeguard life and property and to reduce, insofar as possible, further

contamination of the environment. The guide contains precautionary advice on

the chemical and its characteristic physical and biological hazards so that

field personnel can assess the threat as a prerequisite to determining subse-

quent large-scale action.

Since the Condensed Guide to Chemical Hazards s tho oiiv component of

CHRIS that will be initially available at the scene of an accident, it in-

cludes a list of on-scene information needs that the Hazard Assessment Handbook
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(CG-446-3) and HACS require as inputs. The on-scene information needs of the

Hazard Assessment Handbook and HACS are listed in the Condensed Guide to Cher.-

ical Hazards (CG-446-l) as questions which must be answered and relayed to the

user of the handbook or HACS as soon as possible.

3. HAZARDOUS CHEMICAL DATA, CG-446-212]

The Hazardous Chemical Data Manual, CG-446-2, is intended for use primar-

ily by the On-Scene Coordinator's (OSC) office and the Regional and National

Response Centers. It contains detailed, largely quantitative chemical, phys-

ical, and biological data necessary for formulating, evaluating, and carrying

out response plans. The Hazardous Chemical Data Manual contains the hazard

assessment code, which is essential to selecting the appropriate calculation

procedures for the hazard assessment and lists the needed physical and chem-

ical property data which are required to perform the hazard assessment calcu-

lations in CG-446-3.

4. HAZARD ASSESSMENT HANDBOOK, CG-446-3[9]

The Hazard Assessment Handbook contains manual methods for estimating

the rate and quantity of hazardous chemicals that may be released under dif-

ferent situations. It also provides the means of predicting the threat that

the chemicals present after release. It includes methods for predicting the

resulting potential toxic, fire, and explosion effects by providing procedures

for estimating the concentration of hazardous chemicals (both in water and in

air) as a function of time and distance from the spill.

5. RESPONSE METHODS HANDBOOK, CG-446-4[l0]

The Response Methods Handbook, CG-446-4, is a compendium of descriptive
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information and technical data pertaining to methods of responding to threat-

ened or actual spills of hazardous chemicals. The document has been written

specifically for Coast Guard OSC personnel who have had some training or ex-

perience in pollution and hazard response. Emphasis has been placed on exist-

ing or prospectively available methodology. As new methods become available,

the response handbook will be updated to include these new approaches.

In an actual emergency, an assessment of the likely extent of hazard,

using the Hazard Assessment Handbook and/or HACS, will be used in the choice

of the appropriate response methods suggested in the Response Methods Hand-

book.

6. DATA BASE FOR REGIONAL CONTINGENCY PLAN

The information in this data base is predominantly for use by OSC person-

nel. It contains data pertinent to a specific region, subregion, or locale.

It will provide detailed information on resources that might be threatened

and the availability of response equipment. Examples of such information

include an inventory of physical resources and personnel; vulnerable or ex-

posed resources (critical water-use areas); potential pollution sources,

geographical and environmental features; cooperating organizations; and rec-

ognized experts with identified skills. A good deal of this regional-specific

information is in the form of Regional Contingency Plans.

7. HAZARD ASSESSMENT COMPUTER SYSTEM (HACS)llj

HACS is perhaps best described as the computerized counterpart of the

CHRIS Hazardous Chemical Data Manual (CG-446-2) and Hazard Assessment Hand-

book (CG-446-3). It enables personnel at Coast Guard Headquarters to quickly

obtain more detailed hazard evaluations than may be possible by means of
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CG-446-3. Graphic output displays the relationships among spill concentra-

tion, thermal radiation, location, and time. This information may then be

transmitted to field units and elsewhere by facsimile. Furthermore, HACS can

be used for emergency discharge advance planning and the development and test-

ing of improved hazard assessment methods.

Of concern is the evaluation of, and response to, any dangerous condition

precipitated by accidents involving discharged chemicals which has, as a po-

tential foreseeable consequence, harm or injury to life and/or property. A

chemical discharged (or spilled) on water can create a hazard because of its

flammability, its toxicity, or both. As the spilled material disperses and/

or becomes diluted, the hazard normally decreases and disappears. It is

important to know how far and fast the danger of fire or poisoning can spread

and at what point the chemical ceases to be hazardous.

The processes of dispersion, evaporation, combustion, and the like, which

are associated with the chemicals of concern, are quite complex and depend on

many variables, not the least of which is the nature of the chemical itself.

HACS offers a systematic and convenient approach to estimate the type and

extent of hazard. The hazard estimate is given in terms of distance and times

over which a toxic or flammable concentration of a given chemical may exist in

water and in air, and the minimum safe distance between the spill site and

people or combustible materials, should the chemical ignite and a fire ensue.

*HACS presently contains all necessary physical and chemical property data to

permit hazard assessments to be performed for 900 commonly shipped chemicals.

a. Related Systems

The Hazard Assessment Computer System is comprised of a specific set of
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assessment models, chemical specific data and an overall system structure to

provide data control and output displays. Two separate computer programs are

used to define and produce independent displays of the chemical-specific data.

Also to assist in obtaining the compound recognition code used to reference

data for a particular chemical, a separate set of indices have been produced

which enable a user of HACS to obtain a compound recognition code for a

chemical given either the compound name or a synonym.

374

& _



INITIAL DISTRIBUTION LIST
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