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Chapter 5. LANCHESTER ATTRITION-RATE COEFFICIENTS

5.1. General Considerations.

For applying any kind of LANCHESTER-type combat model to study a

particular hypothesized combat engagement in a defense-planning study, one

must be able to predict the rates at which weapon systems would inflict and

sustain casualties. In other words, one must be able to compute a reliable

numerical value for the loss rate of each and every weapon-system type on

the battlefield. This capability is essential for utilizing LANCHESTER-

type models of warfare in combat analyses. Thus, in this chapter we will

consider methods for predicting LANCHESTER attrition rates and, in par-

ticular, the coefficients that portray these rates.

Two approaches that have been developed and used to predict loss

rates for LANCHESTER-type combat models are based on using

(Al) an analytical submodel of the attrition process for the

particular target type1

and (A2) a statistical estimate based on "combat" data generated by

a detailed Monte Carlo combat simulation2

Ja this chapter we will examine each of these approaches in detail. For

now, however, let us say a few general words about each of them.

S. BONDER (15] has called the first approach (Al) the use of a

freestanding or independent analytical model, since this type of analytical

model can be run independently of any detailed Monte Carlo simulation of

the same combat process. The basic conceptual idea is to develop an

analytical expression for every required kill rate by considering a single

firer engaging a "passive" target (i.e. one that doesn't fire back) and

then to "tie all the attrition rates together" with a LANCHESTER-type

model. One designs such a model to use the same types of inputs as used

1



by Monte Carlo simulations of the the same combat process. Hopefully, the

freestanding analytical model will predict similar outputs in an efficient

and easily interpretable manner. An example of such an independent analyti-

cal model is the BONDER/IUA differential model, which was first used in

the United States in 1969 (15], and the many subsequently enrichL|. versions

of it (see Section 1.3 above). BONDER and FARRELL [17] have reported ex-

cellent agreement between outputs from the BONDER/IUA model and a cor-

responding Monte Carlo simulation.

The second approach (A2) has been called by BONDER [15] the use of

a fitted-parameter analytical model. The basic idea here for predicting

LANCHESTER attrition-rate coefficients is to statistically estimate the

parameters of the loss rate for each type of weapon system from the output

of a high-resolution Monte Carlo combat simulation. This idea is ap-

parently due to G. CLARK (24] and is schematically shown in Figure 5.1.

Thus, the fitted parameter analytical model must be used in conjunction

with a Monte Carlo simulation (or appropriate data from the actual process .

The data or outputs of the simulaticn are used to fit one or more free

parameters in the analytical model so that the analytical model will (at

least) duplicate and (hopefully) predict results comparable to those ob-

tainable from the simulation model. The COMAN model [24] is an example

of such a fitted parameter model. Encouraging results have been reported

[36]. Such a model is built on a physical basis with only a minimum num-

ber of parameters to be estimated (in contrast to statistical regression

functions).

Both the above general approaches (Al) and (A2) for predicting LAN-

CHESTER attrition-rate coefficients, however, in some sense make use of

the general principle that the loss rate is equal to the reciprocal of

2
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the expected time for a target to be killed. The details of both approaches

should be more readily comprehended if we will keep this principle in mind.

Let us therefore provide a motivation for this principle. We start by

considering combat between two homogenous forces. Assuming that the loss

rates only depend on the numbers of combatants and not time explicitly,

we may model the attrition process with the following deterministic LAN-

CHESTER-type equations of warfare

dx

t -A(x,y) with x(O) - x,
(5.1.1)

I ýy -B(x,y) with y(O) - yo,dt

where x(t) and y(t) dentze, respectively, the X and Y force levels

at time t. Here we find it convenient to represent, for example, the

actual number of X combatants, which is a nonnegative integer, with the

real number x(t). Let us assume that there are no replacements and

withdrawals, and then A and B are the attrition rates of the X and

Y forces, respectively.

If we want to statistically estimate the loss rates in the model

(5.1.1) from Monte Carlo simulation output data (i.e. casualty data generated

by a (pseudo-) random process), we must consider a stochastic version of

(5.1.1) in which casualties occur randomly over time. It is now con-

venient to consider the restriction that the force levels are really non-

negative integers and to model the combat attrition process as a continuous-

parameter MARKOV chain. Letting M(t), a random variable 4, denote the in-

tegral number of X combatants alive at time t (with corresponding

realization denoted as m) and similarly for the Y force, we then have

the following so-.called forward KOLMDGOROV equations (see Chapter 4) for

the evolution of the state probablities for 0 < m < m0 and 0 < n < no

e.

- -



dP_ (t,m,n) = P(t,•+l) A(m+l,n) + P(t,m,n+l) B(m,n+l)dt

{A(m,n) + B(m,n)} P(t,m,n), (5.1.2)

where P(t,m,n) - P[M(t) - m, N(t) - nIM(O) - m0, N(O) - no] and we have

adopted the convention that, for example, A(m,n) - 0 for m > m0  or

n > n0 . From this stochastic model, we find that (see Chapter 4 above)

1
EXY]T A(m,n) (5.1.3)

where TXy, a random variable, denotes the time required for the Y force

to kill an X combatant (i.e. the time between two successive X casualties)

and E[T] denotes the expected value of T. For the case o0 equal casualty

rates that are independent of the numbers of combatants (i.e. A(m,n) - B(m,n)

- X - constant), (5.1.3) becomes the well-known result for casualties oc-

curring to a Poisson stream

E(I 1E[T],

or

. _ 1 (5.1.4)

where T denotes the time between the occurrences of successive casualty

events and i - E[T].

The reader may be familiar with this well-known result (5.1.4), and,

in any case, the more general version (5.1.3) should provide a heuristic

motivation for cartain subsequent results in predicting attrition-rate

coefficients. Thus, in statistically estimating loss rates from simulation

output data, we should expect to use statistics about the times between

casualties. Furthermore, BONDER's freestanding analytical model approach

5
5



is also conceptually based on (5.1.3): one develops a model for T...

analytically computes E[Txy], and takes A(x,y) I/E [TKy]. Therefore,

(5.1.3) should in some sense be taken as a general principle that is es-

sential for understanding subsequent developments in this chapter.

6
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5.2. Attrition-Rate Coefficients for LANCHESTER's Equations of Modern Warfare.

Let us now consider the determination of numerical values for the attzi-

tion-rate coefficients in a particular combat model. We accordingly con-

aider "al*d-fire" combat betweetx two homogeneous forces and assume that

target-acquisition timna are constant (independent of the number of enemy

targets). tis combat situation may be modelled with the following IAN-

CHESTER-type equations for modern warfare5 (see Section 2.11 for a further

discusrion of the military circumstances hypothesized to yield them)

dx ay with x(O) -Xo,
dt

{-in-ay(5.2.1)

A - -bx with y(O) - yo,
dt

where for a particular battle a and b are positive constants called

LAUMHESTER attrition-rate coefficients (see Figure 5.2). Edch of these

attrition-rate coefficients in such a combat model rep- sents the f re

effectiveness of one side's weapon system against enemy targets, For

example, a is the rate at which one Y firer kills X targets. The

dimensions of a are (number of X casualties)/(time x number of Y

firers). Thus, a is indeed a rate and has the dimensions of reciprocal

time.

Before discussing a simple analytical model for determining numerical

values for the LANCHESTER attrition-rate coefficient in particular mili-

tary engagements, let us point out a very important relation between the

daily casualty rate (expressed as a fraction of the side's current strength)

of a homogeneous force and such a LANCHESTER attrition-rate coefficient.

We will show that for the model (5.2.1), for example, the LANCHESTER

7
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Figure 5.2. LANCHESTER attrition-rate coefficiemts a and b

(here assumed to be constant) for LANCHESTER-type

equations of modern warfare. The coefficient a

represents the fire effectiveness of the weapon-

system type used by the Y force in the operational

circumstances of the battle under consideration.

More precisely, a is the rate at which one Y

firer kills X targets.

8



attrition-rate coefficient a is the slope of the plot of fractional casual-

k ties per unit time versus a certain force ratio. Let us acccrdingly con-

sider, for example, X's fractional casualties per unit time. From the

first of equations (5.2.1), we obtain

'' fractional casualties~ a - v, (5.2.2)
"x d• per unit time

where u denotes the force ratio of X to Y, i.e. u - x/y, and v

denotes its reciprocal, i.e. v - y/x.

In Figure 5.3 we have plotted X's fractional casualties per unit time

as a function'of a certain force ratio. The force ratio that we have used

is the quotient of the attacker's strength (here, force level) divided by

that of the defender and have denoted it as A/D, since most combat analyies

use this ratio A/D and consequently we will be able to more easily relate

the simple LANCHESTER-type model (5.2.1) to them. The solid line in

Figure 5.3 represents X's fractional casualties per unit time as a function

of the force ratio A/D when X defends and Y attacks. It is a straight

line through the origin with a slope equal to the value of the LANCHESTER

attrition rate coefficient a as the reader can see by referring back to

(5.2.2). Thus, we have developed an important relation between fractional

casualty rate and the LANCRESTER attrition-rate coefficient. Finally, the

dashed line (which is a hyperbola) in Figure 5.3 represents X's fractional

caaualties per unit time as a function of the force ratio A/D in the other

case in which X attacks and Y defends. Similar curves for daily

casualty rates are commonly used to assess casualties in currently opera-

tional large-scale ground-combat models (see Section 7.13).

Let us now return to our discussion of numerically determining the

9
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FORCE RATIO, A /D

Figure 5.3. Relation between X's casualty rate (expressed as a

fraction of his current force level x(t)) and the

force ratio (expressed as the ratio of the attacker's

force level to that of the defender) for LANCHESTER's
equations of modern warfare (5.2.1). (NOTE: In the

bottom legend of the above figure, A denotes the
attacker's force level, and D denotes that of the

defender. ]
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LANCHESTER attrition-rate coefficients a and b for the model (5.2.1).

In general, we may think of, for example, the LANCHESTER attrition-rate

coefficient a as being given by (cf. (5.1.3) above)

a (5.2.3)

where TXY again is a random variable (frequently abbreviated r.v.) and

denotes the time for an individual Y firer to kill a single X target.

Justification for using (5.2.3) is given in the next section (Section 5.3).

As we discussed in general terms in Section 5.1 above, such a LANCHESTER

attrition-rate coefficient may be predicted for particular military

engagements by using

(W1) an analytical submodel Involving physically measurable

weapon-system characteristics of the attrition process

for an individual friendly firer engaging a single enemy

target,

or

(W2) a statistical estimate based on "combat" data generated

by a detailed Monte Carlo combat simulation.

In the remainder of this section we will discuss the first way (W1),

while the second way (W2) is discussed in Section 5.15 below.

In the simplest case (a more complicated one is considered below),

the LANCHESTER actrition-rate coefficient is simply given by, for example,

a - vY P , (5.2.4)

where v denotes Y's firing rate, and P SSKx denotes Y's single shot

kill probability against X. This simple expression (5.2.4) is usually

hypothesized to apply to "aimed-fire" combat when the following conditions

11
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hold:

(Cl) negligible target-acquisition time,

(C2) statistical independence among firing outcomes,

and (C3) uniform rate of fire.

The reader can probably best appreciate the intuitive plausibility of the

expression (5.2.4) by noting that a represents the average number of

kills per unit time by a single Y firer, \y denotes his rate of fire,

and (on the average) he kills a given fraction of an X target with each

round fired denoted by PSSKXY'

As we see from (5.2.3), the LANCHESTER attrition-rate coefficient

is the reciprocal of the average time for an individual firer to kill

an enemy target. Let us therefore consider a simple model for the time

to kill a target. If we let T, a r.v., denote this time for a firer to

kill an enemy target, then T is given by

T - Ta + Tk~a (5.2.5)

where Ta denotes the time to acquire a target, and Tkja denotes the

time to kill an acquired target.

Again, in the simplest case (as above, assuming: (A!) a uniform rate

of fire, and (A2) statistical independence among firing outcomes) we have

E[fkT i " tkl 1 (5.2.6)

SSKwhere v denotes the firing rate, and P SSK denotes the single-shot kill

probability. The reader may find the following intuitive justification

for the average time to kill an acquired target (5.2.6) to be helpful:

6"I/SK represents the average number of rounds to kill6, while 1/v

12
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represents the average time between rounds, and consequently their product

is the average time to kill an acquired target E[Tka].

Thus, if we let

E[T ] - t , (5.2.7)
a a

then our simple model for the time to kill a target yields

1
E[T] - t + (5.2.8)a ) P SSK '

and consequently, for example,

a- y (5.2.9)
E[Tkyl

where E[1 I Y taxY + l/(vYPSSK xy). Thus, we see that (5.2.4) is just

the special case of (5.2.9) in which t - 0.ay

Let us finally note that, strictly speaking, (5.2.8) holds only when

(Al) and (A2) are satisfied [i.e. there is (Al) a uniform rate of fire,

and (A2) statistical independence among firing outcomes]. There are,

however, many weapon systems and engagement circumstances under which

these asstmptions are not at all appropriate. Consequently, S. BONDER

has developed an expression more complicated than (5.2.8) for target en-

gagement ,delled by MARKOV-dependent fire. He developed this expression

for the i.iw.ysis of tank operations in which it is very important to con-

sider MARKOV dependence. We will examine BONDER's work in the section

following the next one.

(1
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5.3. Justification of General Expression for Attrition-Rate Coefficients

for LANCHESTER's Equations of Modern Warfare.

In this section we present Justification for taking an attrition-

rate coefficient for LANCHESTER's equations of modern warfare (5.2.1)

as the reciprocal of the expected time for an individual firer to kill a

target, e.g.

a ,(5.3.1)
E [TnJ

where T is a random variable (abbreviated r.v.) denoting the time for

an individual Y firer to kill an X target and E[T] denotes the

expected value of T. BONDER and FARRELL (17] (see also [28; 88; 89])

have based their approach for determining attrition-rate coefficients

for a wide spectrum of weapon-system types on this definition (5.3.1).

It is therefore of considerable interest to inquire as to what Justification

there is for basing the calculation of LANCHESTER attrition-rate coefficients

on (5.3.1). We have already provided heuristic Justification of (5.3.1)

in Section 5.1 above, and here we will consider several more rigorous

justifications.,

All justifications of (5.3.1) known to this author are ultimately

based on the following basic hypothesis.

BASIC HYPOTHESIS: Combat is a complex random process, and

the LANCHESTER-type equations (5.2.1) are an approximation

to the mean course of combat.

14



If we assume that real-world combat attrition may be modelled

as a continuous-parameter MARKOV chain corresponding to (5.2.1), then

the probability distribution for the numbers of combatants satisfies

(5.1.2) with, for example, A(m,n) - an. Here, m is the realization of

an integer-valued r.v. M(t) denoting the number of X combatants

at time t, and similarly for n and N(t).* In this case, the times

between casualties for each side are exponentially distributed, and (5.3.1)

holds exactly. In other words, (5.3.1) holds exactly for exponentially-

distributed times between casualties. Let us finally observe that as

long as there is "negligible" probability that either side is annihilated,

then the mean course of combat may be taken to be given by (see Section 4.1?

above)

dm -

dt an with ;(0) - mo

(5.3.2)

dun -bi with n(0 - nodt0

where m(t) denotes the average X force level at time t, i.e.

m(t) - E[M(t)], and ;(t) denotes the average Y force level at time t.

Both BONDER (11] and BARFOOT [3] base their determinations of

an expression for the LANCHESTER attrition-rate coefficient on consider-

ing the mean course of combat corresponding to (5.2.1) to be given by

15
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dm _-

dt an with mr(O) m0 ,

(5.3.3)

dt

where a denotes the expected value of the rate at which an individual Y

firer kills X targets and similarly for i. This definition of the

LANCHESTER attrition-rate coefficient as [cf. (5.3.2)], for example,

- rate at which a single Y1
a - a - E Lfirer kills X targets (5.3.4)

implies an underlying distribution for the attrition-rate coefficient (as

stressed by BONDER [14; 15]). No particular distribution for the times

between casualties has been assumed here, though. In his original paper

[i1 BONDER took the LANCHESTER attrtion-rate coefficient to be given by

a - E[l/TIY] but could not obtain explicit results for it. BARFOOT [3]

then pointed out that there are two possibilities for computing a, the

average rate at which a single Y firer ills X targets: namely,

(P1) arithmetic mean, a - E [ j;

and (P2) harmonic mean, a - 1
E[TXy]

Furthermore, BARFOOT has argued that the harmonic mean is more appropriate,

since we should think of the probability distribution function for an

15
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attrition-rate coefficient as representirg the fraction of targets

killed at each rate. Thus, BARFOOT (3] has justified (5.3.1) for

any distribution of the times between casualties.

Following BONDER and FARRELL7 [17], let us now give a more

rigorous justification8 of (5.3.1). As above, we consider combat in

which the initial numbers of X and Y combatants, denoted as m0 and

nos are sufficiently large to insure that there is a "negligible" prob-

ability that their side will be annihilated during our examination of

the battlefield. Let us now focus on a single Y weapon system. We

will make no assumption about the distribution of timj' between kills,

but we will assume that each individual Y weapon system kills enemy

targets according to an attrition process in which the times between kills

are independent and identically distributed random variables (so-called

i.i.d. random variables). In the parlance of the theory of stochastic

processes, such an attrition process is called a renewal process (e.g.

see PARZEN [58, Chapter 5] for further details). Let OW(t) be a r.v.

denoting the number of X casualties produced by a single Y weapon

system, and let n (t) denote its expected value, i.e.

nX(t) - E[NX(t)] , (5.3.5)

the expected number of X casualties produced by a single Y weapon

system in (0,T]. Let us now introduce AnX(At,t) defined by
c

An(tt) n (t + At) n nW7 (5.3.6)C c c

17



which is the expected number of X casualties produced by a single Y

weapon system in the time interval9 (t, t + At). For exponentially

distributed times between kills, we have that (e.g. see PARZEN [58, p. 177])

AnX(At,t) At (5.3.7)c UT

where UT denotes the average time for a single Y firer to kill an X

target, i.e. UT " E(Txy]. For any other distribution for the times

between kills, (5.3.7) holds only asymptotically in the sense that

-X At
l An (At,t) - t . (5.3.8)t -. - c UT

The above result (5.3.8) is usually known as BLACKWELL's theorem (see

PARZEN [58, p. 183]). Assuming now that each Y firer acts independently

and identically, we find that for the entire Y force

[ number of kills by Y a (.t
E force in (t, t + At) U UT (5.3.9)

which holds exactly for exponentially distributed times between kills and

only asymptotically in the same sense as (5.3.8) for any other distribution.

LANCHESTER's equations for modern warfare (5.2.1) with "large enough"

numbers of combatants suggest that [cf. (5.3.2)]

-Am- E rnumber of kills by Y 1. anAt . (5.3.10)

Lforce in (t,t+At) J

18



Comparison of (5.3.9) and (5.3.10) suggests taking the LANCHESTER

attrition-rate coefficient to be the reciprocal of the average time for

an individual firer to kill an enemy target, i.e. (5.3.1) has been

Justified.

More generally, BONDER and FARRELL [17] take an attrition-rate

coefficient for a specific range r in heterogeneous-force combat to

be given by, for example,

a ij(r) - E[Txijr]

where E[TxiY Irn denotes the expected time for a single Y firer

of type j to kill an enemy target of type i, given that the range between

the firer-target pair is r. Again, this definition of an attrition-rate

coefficient for heterogenous-force combat is equivalent to the harmonic

mean for the attrition rate of a single combat system when this single-

system attrition rate is viewed as a random variable at range r.

r
19
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5.4. BONDER's Model for MARKOV-Dependent Fire.

For many weapon systems and engagement circumstances modelled

by (5.2.1), the extremely simple analytical model (5.2.4) for prediction

of numerical values for the LANC{ESTER attrition-rate coefficient is

totally inadequate. Ideally one should analyze the engagement process

for each particular target type by each particular weapon-system type to

predict such attrition-rate coefficients. BONDER and FARRELL (17] have

developed general methodology for predicting attrition-rate coefficients

for a wide spectrum of weapon-system types. Basically, their approach is

founded upon calculation of the LANCHESTER attrition-rate coefficient as

the reciprocal of the expected time to kill a single target, e.g. (5.3.1)

above. Hence, central to their developments is the analysis and modelling

of the time to kill a target.

To facilitate such analysis BONDER and FARRELL [17] have classified

the engagement of particular target types by different weapon-system types
10

according to the taxonomy shown in Table 5.1. Weapon-system types are

first classified according to the mechanism by which they kill particular

target types (i.e. their lethality characteristics) as being either impact-

11to-kill systems or area-.lethality systems . Within each of these two

categories BONDER and FARRELL further classify weapon-system types accord-

ing to how they use firing information to control the system's aim point

and their delivery characteristics, i.e. the firing doctrine employed.

Expressions have been developed for LANCHESTER attrition-rate coefficients

corresponding to the weapon-system classifications tagged with asterisks *

in Table 5.1.

20
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TABLE 5.1. Classification of Weapon-System Types for the Development

of LANCHESTER Attrition-kate Coefficients for the Model

(5.2.1).

Lethality Mechanism

(1) Impact

(2) Area

Firing Doctrine

(1) Repeated Single Shot

(a)* Without Feedback Control of Aim Point

(b)* With Feedback on Immediately Preceding Round

(MARKOV-Dependent Fire)

(c) With Complex Feedback

(2) Burst Fire

(a)* Without Aim Change or Drift in or Between Bursts

(b)* With Aim Drift in Bursts, Aim Refixed to Original

Aim Point for Each Burst

(c) With Aim Drift, Re-aim Between Bursts

(3) Multiple Tube Firing: Feedback Situations (la), (lb), (1c)

(a)* Salvo or Volley

(4) Mixed-Mode Firing

(a) Adjustment Followed by Multiple Tube Fire

(b)* Adjustment Followed by Burst Fire

Indicates that analysis of this category has been performed by BONDER
and FARRELL [17).
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A large class of weapon systems (e.g. tanks firing at tanks,

anti-tank weapon systems firing at tanks, etc.) may be classified as

MARKOV-dependent-fire weapons, i.e. the outcome of the firing of a round

by the weapon system depends on only the outcome of the immediately pre-

ceding round. For such weapon systems and an impact-to-kill lethality

mechanism 12, BONDER [11; 14] has developed a general expression for the

LANCHESTER attrition-rate coefficient1. His expression applies when the

following assumptions hold:

(Al) MARKOV-dependent fire with parameters p,, P(hlh), and

P(hjm)

(A2) geometric distribution for the number of hits required

for a kill with parameter P(KIH).

Here p1 denotes Prob[hit on first round], P(hlh) denotes the conditional

hit probability Prob[hitlprevious round hit], P(hjm) denotes the con-

ditional hit probability Prob[hitlprevious round miss], and P(KIH)

denotes the conditional kill probability Prob[kill targerlhit target].

It is well known (e.g. see PARZEN [57, pp. 129-132]) that the three hit

probabilities pl, P(hlh), and P(hjm) completely describe MARKOV-dependent

fire in contrast to the situation with statistical independence between

the outcomes of any two rounds fired in which case only a single hit prob-

abiltty, denoted simply as p, completely describes the process.

As above let us denote the time for the firer to kill a target as T

(a r.v.). Then, BONDER [11; 14] has developed that

22
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TABLE 5.11. Factors Included in Expression for LANCRESTER Attrition-Rate

Coefficient for Single-Shot MARKOV-Dependent-Fire Weapon

Systems with a Geometric Distribution for the Number of Hits

Required for a Kill.

Time to acquire a target, ta

Time to fire first round after target acquired, t 1

Time to fire a round following a hit, th

Time to fire a round following a miss, t M

Time of flight of the projectile, tf

Probability of a hit on first round, p1

Probability of a hit on a round following a hit, P(hlh)

Probability of a hit on a round following a miss, P(hlm)

Probability of destroying a target given it is hit, P(KIH)

23
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(th + tf)
E[T] - t + ti - th +

(t +t f) m +-tf [1 P(hlh)J + P(h jh) - pl , (5.4.1)+ 'P(hTm) P(KIH) +

where all the variables are defined in Table 5.11. The corresponding

LANCHESTER attrition-rate coefficient (see Section 5.3 above) is then

the reciprocal of (5.4.1)13, i.e. for the nomogeneous-force model (5.2.1)

we have, for example,

a 1TX (5.4.2)

where T (a r.v.) denotes the time for an individual Y firer to kill

a single X target. (5.4.1) is the general expression15 for the expected

time to kill a target with MARKOV-dependent fire and a geometric distri-

bution for the number of hits required for a kill. It may be developed

(see the next section) by considering the time required for an individual

firer to engage and kill a single enemy target. We will see in Section 5.10

below how this complex expression reduces to very simple ones in special

cases, e.g. E[T] - 1/(VPsSK) for a uniform rate of fire, statistical

independence between rounds, and negligible time of flight and targat-

acquisition time.

Together (5.4.1) and (5.4.2) allow us to estimate attrition-rate

coefficients for a homogeneous-force FIF LANCHESTER-type attrition process

[i.e. force-on-force combat attrition modelled by equations (5.2.1) above],

and consequently one may consider using such a model to operationally

24 ,
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analayze combat between two homogeneous forces. In such an operational

model or its extension to heterogeneous forces (see Section 7.7), we would

want to consider variable attrition-rate coefficients to model temporal

variations in fire effectiveness when, for example, the range between

firers and targets changes appreciably during battle. We will discuss

below in Section 5.11 the variables upon which such attricion-rate

coefficients (indirectly) depend, with some typical range dependencies

being given in Section 5.12. Moreover, this attrition-rate-coefficient

model given by (5.4.1) and (5.4.2) is a general one in the sense that it

allows a uniform treatment of both area-fire as well as direct-fire weapons

(see Section 5.13 below and also BONDER [11, p. 231] for further details).

Furthermore, we note that the MARKOV-dependent-fire assumption has been

naturally motivated, since BONDER's model for MARKOV-dependent fire arose

in the analysis of armored operations (e.g. see BONDER [9; 11], BONDER

and FARRELL [17], or KIMBLETON [49] for further details). For example,

in the analysis of tank main guns it is usually assumed (e.g. see BONDER

[12, p. II-11]) that the result of the previous round is observed before

the next one is fired. If the round fired misses the target, the tank

gunner will make an appropriate adjustment; if a hit is obtained, the

same gun setting will be used again.

Finally, let us briefly discuss data sources for BONDER's model

(5.4.1). All the input data for this model is shown in Table 5.11.

Data is available for all these inputs from a variety of sources:

ballistics-laboratory tests, military field experiments, troop exercises,

further submodels, etc. A detailed discussion of such data sources is

is given in, for example, (54, pp. 16741681 and [28, pp. 173-174]. We

25
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should add, however, that all such experimental data is for systems

under simulated combat conditions and not for actual combat.
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5.5. Derivation of BONDER's Result for the Expected Time te Kill a

Target (Approach Based on the Exact Distribution of Time to Kill).

In this section we will derive BONDER's expression (5.4.1) for

the expected time to kill a target, which applies under the following

conditions:

(Cl) MARKOV-dependent fire,

(C2) geometric distribution for the number of hits to kill,

(C3) deterministic event times (i.e. ta, ti, th, tm, and tf

are all assumed to be deterministic quantities 16 ).

BONDER's result (5.4.1) is particularly significant because it is the

basis for estimating weapon-system kill rates in a variety of operational

models that are fairly widely used in defense planning today (see

Section 7.9 for further details). The combat-modelling approach of

S. BONDER and his associates at VECTOR RESEARCH, INC. basically de-

composes the battlefield into unit and subunit engagements, which are

essentially further decomposed into a series of one-on-one duels between

opposing weapon-system types. For each type of firer-target pair, one

must perform a detailed analysis of a single firer engaging a passive

(i.e. one that does not return fire) target and compute the weapon-

system type's kill rate according to (5.4.1) and (5.4.2), e.g. see

BONDER and FARRELL [17], TAYLOR [80, Section 5.5; 81, Section 6.6],

Section 7.9 of the book at hand, or [28; 88; 89]. Thus, (5.4.1) is

a key result in the force-on-force combat-modelling business (see

also [84; p. 16-2]).

27
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Before we derive (5.4.1), though, let us briefly examine the

shortcomings (i.e. limitations) of BONDER's approach to estimating

weapon-system kill rates based on the logical analysis of a single

firer engaging a single passive target. Besides assuming that the

above stated conditions (Cl) through (C3) hold, BONDER's approach

possesses the following limitations:

(l) no consideration of interactions between firer and

target,

(L2) cumulative damage assumed to be negligible,

(L3) precludes situations of both group firers and group

targets.

The first limitation (Ll) is a direct consequence of BONDER's general

approach of considering a firer engaging a passive target. In reality,

there are interactions between firer and target, e.g. the firer may

"duck" and degrade his firing effectiveness when the target returns

fire. The second limitation (L2) is due to the assumption of a geo-

metric distribution of hits to kill. In reality, a target may be

partially killed by the first hit and "finished off" by a second one.

However, BARFOOT [3, pp. 890-892] (see also KIMBLETON [49, pp. 704-705])

has indicated how to overcome this shortcoming. The last limitation (L3)

may in some sense be considered to be an elaboration and extension

of the first limitation. In particular, the infantry fire fight,

for example, has been characterized as being a group-target/group-firer

environment (_ee STOCKFISCH [72; pp. 72-73]; also (83; p. 2-42]),
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and it is extremely questionable whether the attendant combat inter-

actions can be captured by any methodology based on consideration of

"a single firer engaging a passive target.

Thus, we will now derive (5.4.1) by analyzing the process of

"a single firer engaging a single passive target and following S. BONDER's

18(11] original analysis path , which included determining the probability

distribution for the number of rounds necessary to achieve z hits,

PNIZ(n~z), where N (a r.v. with realization n) is the number of rounds

fired, Z (a r.v. with realization z) is the number of hits achieved,

and PNIZ(nlz) denotes a conditional probability mass function. In

some sense, this approach might be called a "brute force" approach,

due to the laborious direct computation of the conditional expectation

E[NIZ - z] by means of its definition as In-i npNIZ(nlz). We will

later (see Section 5.6 below) present a much simpler and more general

approach for developing not only E[NIZ - z] but also E[T] (see

Section 5.8). Our review here of BONDER's original approach for deter-

mining E[T] will let the reader appreciate the simplicity of our aew

approach. Finally, BONDER's original approach is limited to consider-

ation of only deterministic event times (i.e. ta, ti, tho tn,, and tf

are all assumed to be deterministic quantities), but our new approach

will be able to handle stochastic ones (see Section 5.8 below).

Accordingly (following BONDER (111), we consider the process

by which a single firer engages and kills a siiigle passive enemy target.

We conceptualize this process as consisting of the following sequence

of events from target acquisition to destruction:
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(El) The sequence begins with target acquisition which takes

t minutes to occur.
a

(E2) The first round is then fired and arrives in the target

area (tI + tf) minutes later.

(E3) If the fi-st round misses, the next round will arrive

(t + tf) minutes after the first.

(E4) If the first round hits the target and more than one hit

is required (i.e. z > 1), the next round will arrive

(t'h + tf) minutes later.

(E5) The above sequence of firing after hits and misses is

continued until the final hit, which destroys the target,

is obtained.

The above conceptual target-destruction-process model is consistent

with the assumption of MARKOV-dependent fire in which the outcome of

the previous round is observed before the next one is fired.

For the above conceptual model of a single firer engaging a

single passive target, we will now compute the average time for the

firer to kill a target, E[T]. This important result will be obtained

by accomplishing the following steps:

(Sl) development of mathematical model for the time to obtain

z hits T (a r.v.),
z
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I
(S2) computation of the expected value for T , i.e.

zzE[T z I= E[TjZ =z] which is the expected time to kill the

target given that z hits are required for a kill,

(S3) computation of the unconditional expectation E[T] from the

conditional expectation obtained in step (S2), i.e.

E[T] p : (z) E[TIZ - z] . (5.5.1)
z1l

Here, pZ(z) denotes the probability mass function for the number of hits

to kill (assumed to follow a geometric distribution in BONDER's develop-

ments). The reader should note that the conceptual approach taken here

for determining the time to kill a target is to decompose the killing

process into a hitting process and a process of killing the target

19with hits . For a geometric distribution of the number of hits to kill,

we have

PZ(z) -{1 - P(KIH) z-1 P(KIH)}. (5.5.2)

Let us now carry out the above three computational steps (Sl)

through (S3) for obtaining E[T]. We will see that this computation

will require us to use the expected number of rounds to obtain z hits,

E[NIZ - z], which will be subsequently derived below. Turning to the

first computational step (Sl), we consider the above sequence of events

(El) through (ES) to kill a target and focus on the time to obtain z

hits, T , which is a r.v. In this case, the number of hits z is

considered to be a parameter (realization of the r.v. Z). Observing
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that there are (z-l) rounds fired after immediately preceding hits

and (Nz - z) rounds fired after immediately preceding misses because

the target is assumed to be destroyed by the rz-h hit, we may mathematically

express our model as

Tz - ta + (t1 + tf) + (th + tf)(z-l) + (tm + tf)(Nz - z) (5.5.3)

where the first term on the left t corresponds to (El), the seconda

(t1 + tf) corresponds to (E2), the th-rd (th + tf)(z-1) to (E3),

and the fourth to (E4). Thus, we have completed step (Sl).

Turning now to step (S2), we write (5.5.3) in the more con-

venient form

Tz - ta + t1 - th + (th - tm)z + (t + t f)Nz , (5.5.4)

and take its expected value to obtain

E[T] n t5 + t1 - th + (th - tm)z + (tim + tf) E(Nz], (5.5.5)

or

E[TIZ z] - ta + t1 - th + (th - tm)z + (t + t f) E[NIZ-z], (5.5.6)

It should be noted that (5.5.6) has been obtained without our making

any assumption about the r.v. N, i.e. (5.5.6) holds in general. We

could at this point uacondition the conditional expectation (5.5.6)

and obtain
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a t + tI - h + (th t E[Z] + (tm + tf) E[N] (5.5.7)

but we will not follow this course of development any further here,

since we wish to follow BONDER's original analysis path. Here E[N]

denotes the average number of rounds required to kill the target. Thus,

(5.5.7) is an important result that relates the expected time to kill a

target to the expected number of rounds required to kill the target

and the expected number of hits required to kill. Only deterministic

event times, cf. condition (C3) above, are required for it to hold.

Again, it should be noted that (5.5.7) has been obtained without our

making any assumptions about the random variables N and Z. Return-

ing now to BONDER's original development path, we again consider (5.5.6)

and substitute for E[NIZ - z]. It will be shown below that for MARKOV-

dependent fire

E[NIZ(-P .1- P(hzh)i (z-l) (5.5.8)
z + p(hlm)+ P(h m)

Substituting (5.5.8) into (5.5.6), we obtain

E[TTZ-z- t + t - th + (t + tf) P(hIh)-p"

S[1 - P(hlh)) (559
+ (th + tf) + (tm + tf) P(hjm) Z (559)

We are now ready to execute step (S3). Assuming a geometric

distribution for the number of hits to kill [i.e. (5.5.2) holds], we may

uncondition (5.5.9) by multiplying both sides of it by pZ(z) and
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and summing over z from 1 to -, whence follows (5.4.1), since

cc 00

7 pZW I and I zpz(z) - K . (5.5.10)
z-1 z=l

The reader should observe how the conditions (Cl) through (C3) have

entered into the above development of (5.4.1).

It remains for us to derivL the result (5.5.8) for the conditional

expectation E[NIZ - z]. To derive this key intermediate expression,

we assume MARKOV-dependent fire and execute the following two tasks20

(Ti) develop expression for the distribution of the number

of rounds to obtain z hits pNIZ (nlz)

(T2) compute the desired conditional expectation E[NIZ - z]

by "brute force," i.e.,

*0

E[NIz-z] zI nPNIZ (nlz) (5.5.11)
n-i

To develop the distribution for the number of rounds to obtain

z hits (with the sequence of firings ending in a hit), it is convenient

to split the probability that N rounds are required to obtain z

hits into two parts as follows

PNIz(nlz) - P[N - nIZ - z]

- P[N - nIZ - z with bit on first roundi

+ P[N - n1Z - z with miss on first round] , (5.5.12)
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which holds because the outcome of the first firing is either a hit

or a miss. This split will be seen to he convenient in light of sub-

sequent combinatorial arguments. For convenience we will also write

(5.5.12) as

PNIZ(niz) - pz(nI-) + pz(nIM) , (5.5.13)

where pz(nIH) denotes the first of the two probabilities on the

right-hand side of '.5.5.12) and pz(nIM) denotes the second.

We will now focus on the development of the probability pz(nIH).

To develop this probability, we consider the sequence of evwnts, denoted

as SH# in which the following occurs:

Irk the first r, firings, the event hit occurs everytime;

In the next 81 f~rings, the event miss occurs everytime;

In the next r2  firings, the event hit occurs everytime;

In the next r2 firings, the event miss occurs everytime;

In the next ak_ firings, the event miss occurs everytime;

In the last rk firiags, the event hit occurs everytime.

We observe that for the joint occurrence of the above events

k k-I
ri - z and 9 s- - n - z (5.5.14)

i-i i-i

where ri and si are positive integers for all i > 1. The prob-

ability of the joint occurrence of the above events, denoted as
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P(SH occurs], is obtained according to the MARKOV-dependence assumption

by multiplying together the probabilities of all the individual firing-

outcome events. Hence

rl-1 sl-i r2-1 s2-1 rk-1
P[SH occurs] -plu (i-u)(l-v) vu (l-u)(l-v) vu (5.5.15)

or

rl+r2+'2 +rk-k k-i S1+s 2+" +sk-l-(K-l) k-i
P[SH occurs] -plu (i-u) (l-v) v , (5.5.16)

where for convenience te have introduced

u - P(hlh) and v - P(htm) . (5.5.17)

Using (5.5.14), we may write this latter probability as

z-k k-l n-z-k+i k-I
P[SH occurs] upu (1-u) ( n-v) v . (5.5.18)

Now the above probability holds for any particular sequence of events SH

in which there are z hits and (n-z) misses. Furthermore, the z hits

occur in k strings of one or more hits between which there are sandwiched

(k-i) strings of one or more misses. Thus, to compute the probability

P (nid) we must consider the number of ways in which such an SH can

occur with z hits and (n-z) misses. Now
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number of ways|in which such

\an SH can occtur

/ number of ways in number of ways in whichjwhich k strings | (k-i) strings of one
of one or more hits X or more misses can . (5.5.19)
can contain exactly contain exactly (n-z)
z hits / misses /

Also (cf. Lemma 5.5.2 below)

/numbe of ways in ~
which k strings (z-1
of one or more hi - (5.5.20)
can contain exactly k-lz hits/

where (z) denotes the binomial coefficient z:/{(z-k)! k! } and k!
k

denotes "k factorial" - I i for k > 1. Similarly
i-i

number of ways inwhich (k-1) strings n-z-i
of one or more misses - (5.5.21)
can contain exactly (k-2
(n-z) misses

Hence

(number of ways in z-1 n-z-i
which such an SH (5.5.22)can occur (k-1 \k-2

and thus
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P[N - nIZ - z with hit on first round]

( P(SH occurs] , 
(5.5.23)k-l/ k-2

or

PIN nIZ - z with hit on first round]

""i-k-i \+k-2

Such an outcome can occur for all values of k such that 1 < k < z. It

follows that

pluZ- 1 for n - z

PZ (ni) p z ( z-1) (n-z) uz-k(l_u)k-lvk- (l_v)n-z-k+1
I k-2 k-l\ k-2/

for n > z , (5.5.25)

since (n-z1) .0 for k - 1 and n > z (i.e. it is impossible to have

(k-1) strings of one or more misses sandwiched between k strings of one

or more hits when n > z and k - 1). In a similar fashion it may be

shown that

S(n IM) lP l )()•l uz-k(((u)lk-lvk(1v)n-z-k (5.5.26)
k-i k-l ~-1

Substituting (5.!.20) aad (5.5.26) into (5.5.13), we obtain the

desired distribution PNIZ(nlz) for the number of rounds to obtain z hits
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0 for n < z,

SZ-1 for n - zpl

PNIz(n1z) " l 2 1 zk-2 u-k(l-u)k-ii (lV)nzk+i (5.5.27)
PNIZ(njz ki 2 \k-1/\k-2/

+ (l-P z /z-i\n-z-l\ uz-k(l-u)k-v k (-v)n-z-k

1k-i k-I/\ k-i

for n > z

where the reader should recall that u and v are conditional hit prob-

abilities defined by (5.5.17). Thus, we have completed the first task

(TI) for deriving E[NIZ - z].

For accomplishing the second task (T2), it is more convenient

to consider the characteristic function for' pNIZ(niz), denoted as

ONIz(S), i.e.

- ns 0 eisn PNjZ(nlz) (5.5.28)

where i - v-E, than it is to compute E[NIZ - z] directly by (5.5.11).

The desired conditional expectation E[NIZ - z] is then given by

1 d__~ZO

E[NIZ - z] - ( (0) • (5.5.29)

to compute 0N4z(s) we begin by splitting it into two summations E

and Z Pi.e.

ONIZ(s) - l + Z2 (5.5.30)

39

4,



where

1- eiSZuZ-1

(5.5.31)

and

k2 - / ( : n:I) eis uz-k(l-u)k-lvk(1-v)n-z-k (5.5.32)
21nnz+l kl-A k-i / k-I

We will now concentrate on simplifying the expression (5.5.31)

for E1 . Interchanging the order of summation in (5.5.31), we obtain

I isz z-1£I "p1  e u
+ uZ-k vl~)k-i n - elSnl vn-k+l .

+ 7 uzv(l.-u)kl e71-
k-2 (k-l1 n-z+l / k-2

(5.5.33)

lie will now concentrate on evaluating the last summation in (5.5.33). To

this end, let us denote this summation as Sk, i.e. for k - 2, 3, ...

Sk - ( eisn (l-v)n-z-k+l . (5.5.34)
n-z+l \ k-2

For subsequent manipulations, it is convenient to introduce

m - n - z - 1 and j - k - 2 , (5.5.35)

and then write (5.5.34) as
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S k "T1  , (m) eis(m+z+1)(l-v)m-J (5.5 .36)

or, simplifying, for j - 0,1,2...

T = e us(zk-) [e is(1-v)m-] , (5.5.37)

since (m) - 0 when m < J. It is then convenient to further introduce

2 m-J and rearrange (5.5.37) into

eis(z+k- J is i
T ae [e (1-v) . (5.5.38)

=-0

Let us now recall that the-binomial theorem says that for lxi < 1

(l-x)-n I + nx + n(n+1) X2 + x2 ,"2

or
00 'n-1+k k

(l-x)-n - xn (5.5.39)
-0i n-1

Let us now temporarily assume that P(hlm) > 0. It follows that leiS(l-v)( < 1,

and consequently (5.5.38) may be written as

is (z+k-l)
- e , (5.5.40)

{ is- -e+1

or, equivalently,
is (z~k-l)

Sk - - (5.5.41)
S{1 -es (1-v) k-l
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Using (5.5.34), we may write (5.5.33) as

z1 pl u 1 eJsz + k(-1 _u ]k Skj,

whereupon substitution of (5.5.41), for Sk yields

El = PIe u 1 + [ k]I k-2 (- u1-eSlv}

which by introduction of z - k-i may be more conveniently written as

Zi = pie u() e~~lu
E-0 \Z/ Lu{l - eis -(1)-) (5.5.42)

Again recalling the binomial theorem, i.e. for integer n we have
(i x) •n n k

"(1 + x)n _ n x , we may rewrite (5.5.42) to obtain Z in its final

form

=p eisz U + e isv(l-u) z-1 (5.5.43)
1 (1- eis (l-v)}

It may be similarly shown that

(l-p,) is(z+l)v eis v(lu) -
E (2 . . . v __ u + is (5.5.44)

{1 - e (l-v)} {i - es(l-v)}

Substituting (5.5.43) and (5.5.44) into (5.5.30), we obtain

our desired result for *NJZ(s), namely
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is i -
isz pl-e (pl-v) u eis (U-v) z-

ONZ()= eus-i (5.5.45)
l - e (1-v) l-e (l-v)

Let us observe that (as it should) *NIz(0) - 1, since pNIZ(nIz) is a

probability mass function and consequently C=0 PNIZ(nlz) - 1.

For the computation of the conditional expectation E[NIZ - z] by

(5.5.29), it is convenient to split ONIz(S) into three multiplicative

iszfactors ei, F1 (s), and F2 (s) as follows

oNIz(s) - eisz F1 (s) F2 (s) (5.5.46)

where sp-eis(pl-v)

1 - eis (-v)

and

F2 (s) = u - e is(u-v) z-(5.5.48)
1 - eiS (l-v) 

5

For future purposes, we observe that

NIZ (0) - F1 (0) - F2 (0) = 1 . (5.5.49)

Because of the multiplicative representation of *Ngz(a) (5.5.46), it is

convenient to obtain doNIz/ds from its logarithmic derivative

d{In *NIz(S)l/ds, which is given by

d 1 dFl 1 dF 2
ds f *NIZ(S) - iz + F1 (s) ds (s) + F2 (s)ds (5.5.50)
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Consequently, we find that

(s) dF (s) dF

( iz z(8) + F1 (s) 1 (s) + F2 s 2 (s)N-- INZ~s " NIZ FI1(S) ds- F 2(s) ds

where

dF (S) e is 2P) (5.5.52)
{l - is (1-v))

and

dF- - (z-1) I i is V(L u - e.s(u-v) z-2

s [l-e is (- 2 - eS(l-v) (5553)

It follows from (5.5.49) that

d -N Z( z (z-l)(l-u)

d (a N iz +v) -u (5.5.54)

since

d__ Fl(0) - i (5.5.55)

and

d F (0) - i (z-l)(l-U) (5.5.56)
ds 2 v

Recalling (5.5.29), we see that

(l-p 1) ___

E[NIZ-z] - z + V + (z-l) (1-u) (5.5.57)

and thus by (5.5.17) we have proved (5.5.8) for P(hjm) > 0. It should be

clear, however, that (5.5.8) holds for P(hla) > 0.
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I
Finally, it remains to justify (5.5.20). Thus, we consider the

number of ways in which k strings of one or more hits can contain exactly z

hits. It is obvious that this number is the same as the number of ways to

obtain z hits on k targets with each target being hit at least once.

Moreover, the problem of determining this number has exactly the same

mathematical structure as the classic occupany problem of probability theory

(see FELLER [35, pp. 36-371), when we agree to treat the hits as indistinguish-

able. To set the stage for proving (5.5.20), let us consider the somewhat

simpler problem of determining the number of ways to obtain z hits on k

targets without requiring that each target be hit at least once. To this

end, we state and prove the following lemma.

LEMMA 5.5.1: The number of ways to obtain z hits on k

targets (without requiring that each target be hit at least

once) is given by z+k-1

PROOF. Consider z hits distributed among k targets. Use the symbol *

(star) to represent a hit and the symbol I (bar) to represent a target's

boundary. Any stars contained within two bars between which no further

bars lie represent the hits on a target. Thus, !**ii***I*I would repre-

sent 6 hits on 4 targets with the first target having 2 hits, the second 0

hits, the third 3 hits, and the fourth 1 hit. In general, (k+l) bars are

required to represent k targets. The desired number of ways for obtaining

hits is determined by considering the number of possible arrangements for

the above symbols. In all such arrangements, however, the first and last
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symbols must be bars, and accordingly there are z stars and (k-i) bars

remaining to be arranged. Thus, the desired number of arrangements is

determined by considering the number of ways to select (k-i) places out

of (z+k-l), which is well known (e.g. see FELLER [35, pp. 32-35]) to be

given by the binomial coefficient

nk-I) nIl Q.E.D.

We are now ready to prove (5.5.20) in the following equivalent form.

LEMMA 5.5.2: The number of ways to obtain z hits on k

targets with each target being hit at least once is given by

PROOF. Introducing the star and bar symbols as used above in the proof of

Lemma 5.5.1, we consider the number of possible arrangements for these

symbols. Again, the first and last symbols must always be bars, and

consequently there are z star3 and (k-l) bars remaining to be arranged.

However, this time the requirement that each target must receive at least

one hit imposes the additional condition that no two bars can ever be

adjacent to each other in such arrangements. We may conceptualize this

situation by moving and placing each of the (k-I) arrangeable bars above

the star to its left. In other words, we would consider I****** as
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II I

*******. Since the last star receives no bar [recall that the first and

last of the original (k+l) bars have been omitted from further consideration

because they are fixed and consequently not arrangeable], there will be

(k-i) stars with bars over them out of a total of (z-l) stars available

for such arrangements. Thus, the desired number of arrangements is determined

by considering the number of ways to select (k-i) places out of (z-l),

which is given by the binomal coefficient

(::D Q.E.D.
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5.6. A Simple Derivation of the Expected Number of Rounds Necessary to

Obtain z Hits.

In this section we will present.a vty simple derivation of a general

expression for the expected number of rounds to obtain z hits, denoted

above as the conditional expectation EENIZ - z]. In the special case of

MARKOV-dependent fire, our general expression reduces to BONDER's result

(5.5.8), which was a key result in the development of the expected time

tc kill a target with MARKOV-dependent fire in Section 5.5 above. The

approach that we will use here is particularly significant, since it readily

leads to other important more general results [e.g. see (5.8.1) b~low].

Let N1 (a r.v.) denote the number of rounds fired to obtain the

first hit, and let Ni (a r.v.) for i > 2 denote the number of rounds

st th
fired after the (i-l)-t hit to obtain the i- hit. We then have the follow-

ing very simple model for the number of rounds to obtain z hits N (alsoz

a r.v.)

z
Nz N1 + 1 Ni . (5.6.1)

"i"z

The above result (5.6.1) is a particularly transparent model for N . It
z

follows that

z
E[N] - E(N1] + 2 E[N . (5.6.2)

1-2

*"Let uu again denote E[N ] as E(N!Z - z] and assume that the randoma

"variables Ni, i - 2,3,...,z, are identically distributed. Let us also

introduce N as a random variable having the same distribution as thes

random variables Ni for i > 2. It follows then that
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I
E(NIZ - zI - E[N1 ] + (z-l) E[N s (5.6.3)

We have therefore proved the following important lemma.

LEMMA 5.6.1: Let the random variables Ni, i - 2,3,...,z,

be identically distributed. The conditional expectation for

the number of rounds to achieve z hits, E[NIZ - z], is then

given by (5.6.3), where N denotes a random variable having5

the same distribution as the random variables Ni for i > 2.

It should be noted that there is no assumption about MARKOV dependence

for (5.6.3) to hold, only that the random variables Ni, i - 2,3,.. .,z,

be identically distributed.

For t__e case of MARKOV-dependent fire, it may be shown (and we will

do so below) that

(l-p 1)

E[NI] 1 + +P 1 (5.6.4)

and

E[N l + 1 + P(hlh) (5.6.5)

Substituting (5.6.4) and (5.6.5) into (5.6.3), we obtain BONDER's expression

for MARKOV-dependent fire (5.5.8).

It remains for us to develop the expressions (5.6.4) and (5.6.5).

We begin by observing that the rar.Jom variable N has the distribution

SPl for n- 1 ,

PN I (n) - (5.6.7)

(l-Pl)(4-P(h9m)}n-2 P(hIm) for n > 2
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and similarly the random variable N has the distributions

{P(hjh) for n- 1,
N a (n) {l-P(hjh)}{l-P(hjm))n-2 P(hjm) for n > 2. (5.6.8)

Direct computation now yields

1(-Pl) P(hjm) )"E[N] 1 P 1+ 11 - P(hlm)- a .2n{1 - P(hlm}- (5.6.9)

Let us now observe that for 0 < lxi differentiation of the geometric series

(=0 x)n M 1 (5.6.10)

yielda

Sn(l-x) n-1 1 (..1
nnl x

and (for future purposes)

•. ~nl)(lx)n-2 2
=-n(n-1)(l-) .2 (5.6.12)

n -2 x

It follows that for 0 < lxi

2n( -x)n- I (5.6.13)
n-2 x
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Let us now temporarily assume that P(hjm) > 0. Our desired result (5.6.4)

for E[NI] now follows by using (5.6.13) to simplify (5.6.9). It should

be clear that (5.6.4) holds for P(hlm) > 0. The expression (5.6.5) for

E[N ] follows similarly.
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5.7. The Number of Rounds Necessary to Kill a Target (General Derivation).

It in of considerable interest to also compute the expected number

of rounds necessary to kill a target E[N]. Our development here is

particularly significant because it suggests a way tc compute both the mean

and the variance of the time to kill a target under '-ery general conditions.

These important new results are given in the next section.

Assuming that the random variable Z is Independent of Ni for all

i > 1 and then taking the expected value of (5.6.3), we accordingly obtain

E[N] - F[N11 + {E[Z] - 1} E[N s (5.7.1)

where Z denotes the random variable that the z-h hit kills the taiget.

We have therefore proved the following important lema.

LEM?4 5.7.1: Let the random variables Ni, i - 2,3,...

be identically distrib'uted and assume that the number

of hits required to kill the target, a random varioble

denoted as Z, Is independent of the random variables

Ni for all i > 1. The expected number of rounds to

kill a target, E[N], is then given by (5.7.1), where Z

denotes the random variable that the zth hit kills the

target and N denotes a random variable having the sames

distribution as the random variables Ni for i > 2.
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£t should be noted here that no assumption has been made about the specific

nature of the distribution of the number of hits to kill a target. In other

words, (5.7.1) applies under much more general circumstances than just for a

geometric distributiou of the number of hits to kill a target. However, if

we do assume YAPMOV-dependent fire and a geometric distribution for the number

of nits to kill, then we may substitute (5.6.4) and (5.6.5) into (5.7.1)

to obtain

1 1 + P(him) - P(h1h)"E[N] - m) 1 + P(K H) (5.7.2)

since we have for a geometric distribution of the number of hits to kill

1

E[Z] - P(-- (5.7.3)

Finally, it should be noted that (5.7.2) and (5.7.3) may be substituted into

(5.5.7) to yield 1ONDER's result for the expected ýime to kill a target.

Ihe above approach of considering N as a sum of random variablesz

(5.6.1) is particularly significant, since it allows us to also compute

higher moment& for N (and consequently also for N). We will accordinglyz

now compute the variance oZ the number of rounds to kill a target, denoted

as var[N], which gives us some idea of the variability in the average number

of rounds to kill a target E[N]. We will begin by computing the conditional

variance var[NI Z- z]. Here we will assume
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(AI) the random variables Ni, i - 1,2,3,..., are not

only independent of one another, but they are also

independent of the random variable Z representing

the number of hits required to kill the target,

and

(All) the random variables Ni, i - 2,3,4,... , are

identically distributed.

It then follows from (5.6.1) (e.g. see PARZEN (57, pp. 405-407]) that

var[NIZ-z] - var(NI] + (z-l) var[N ] . (5.7.4)

We have therefore proved the following companion result to Lemma 5.6.1

LEMMA 5.7.2: Assume that (AI) and (AII) hold. The cond'.tional

variance for the number of rounds to achieve z hits,

var[NIZ-zI, is then given by (5.7.4), where N is as defineds

in Lenma 5.6.1.

For the case of lYRKOV-dependeut fire, it may be shown (and we will

do so below) that

{1-p 1}{1 + Pl - F(him)}
var[N1 ] - 2 (hm) (5.7.5)

and

var[N] {1 - P(hjh)}{l + P(hlh) - P(hlm)). (5.7.6)
P 2 (him)
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It should be noted that for independent fire, i.e. p1  F(hlh) = P(hlm),

(5.7.5) and (5.7.6) both reduce to the well-known result for the geometric

distribution, namely var[number of rounds for first hit] - (l-pl)/p.2

Substituting (5.7.5) and (5.7.6) into (5.7.4), we find that for MARIOV-

dependent fire the conditional variance for the number of rounds to achieve

z hits is given by

(P(hlh) - pI)(P(hlh) + p1 - P(him)}
vatr[NIZ-z] -

p2(him)

+ z{l - P(hlh)}{l + P(hlh) - P(hlm)} (577)
P 2(hlm)

which for independent fire reduces to var[NIZ-z] - z(l-p1 )/p2

It remains for us to develop the expressions (5.7.5) and (5.7.6).

We begin by computing EN2 1.Direct computation yields EN2 1- nl n2PN (n),W[e] E[PN1

or by (5.6.7)

E(N!] 2 1P1 + (l-pl)P(hlm) [. n(n-1) {l - P(hx1m)}n-2
1 In-2

+ -1 7 n{l - P(hlm)}n-], (5.7.8)+l -P(hi'm)} -
n-2 2

whence substitution of (5.6.12) and (5.6.13) into (5.7.8) and some algebraic

manipulation yields

E[N2 P 2 (hlm) + {l-pj1 {2 + P(hlm))
p[2(h - . (5.7.9)

CP 2(hjm)
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Substituting (5.6.4) and (5.7.9) into var[N1 ] - E[N2] 2 E2[N we easily

obtain our desired result (5.7.5). The expression (5.7.6) for var[N may

be developed in a similar way.

To compute the unconditional variance var(N] from (5.7.4), we

observe that there is an important formula (e.g. see PARZEN [58, p. 55])

expressing the imconditional variance in terms of the conditional variance,

namely

var[N] - EZ[var[NIZ]] + var z[E[gz]] (5.7.10)

where E z[-I] explicitly denotes that the expected value is being computed

with respect to the r.v. Z and similarly for var,[.]. Again we will

assume that assumptions (AI) and (AII) hold. From (5.7.4), we see that the

expected value of the conditional variance EZ[var[NIZ]] is given by

Ez[var[NIZ]] = var[NI] + {E[ Z]-l} var[N s] . (5.7.11)

From (5.6.3), we see that the variance of the conditional expectation

vart[E[NIZI] is given by

varz[E[NIZ]] - var[Z] E 2[N . (5.7.12)

Substituting (5.7.11) and (5.7.12) into (5.7.10), we obtain the following

expression for the variance of the number of rounds to kill a target
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var[N] - var[NI] + {E[ZI-1} var[N s] + var[Z] E2 [N s (5.7.13)

We have therefore proved the following important lemma.

LEMIIA 5.7.3: Assume that (AI) and (AII) hold. The variance

of the number of rounds to kill a target, var(N], is then

given by (5.7.13), where Z and N are as defined inS

Lemma 5.7.1.

For the special case of MARIDV-dependent fire and a geometric distribution

for the number of hits to kill, (5.7.13) becomes

(u-p 1 )(u + p1 - v)

var[N] - 2

v

2
{ (l-u+v) + 2w(u-v) (l-u+v/2) - wv} (5.7.14)

(Wv)
2

where u - P(hjh), v - P(hlm), and w - P(KIH). This important result (5.7.14)

is equivalent to one obtained by KIMBLETON [49] by other means in a much

less explicit form.
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5.8. General Results for Time to Kill a Target.

In this section we will extend the approach used in the previous section

(for developing the mean and the variance for the number of rounds to kill a

target) to develop new important results for the time for a single firer to kill

a single passive enemy target. Specifically, we will use a very transparent,

simple model to obtain very general expressions for the mean and variance of the

time to kill a target. As the reader undoubtedly knows by now, such results are

very significant because they provide a basis for estimating weapon-system kill

rates in detailed operational LANCHESTER-type models of combat attrition, and

our new results allow such kill rates to be estimated under more general conditions

than before. Additionally, the simple direct approach used to obtain these new

important results is significant in its own right, since it appears to be

applicable in other related cases of interest.

Thus, the main result of the section at hand is to show that under fairly

general circumstances the expected time to kill a target, E[T], is given by

E[T] - E[Ta] + E[Tfr] - E[T h] + {E[Th] + E[Tf]} E[Z]

+ {E[Tm] + E[Tf]} (E[Z] {E[Ns - 11 + E[N1 ] - E[Ns) , (5.8.1)

where

T (a r.v.) denotes the time to acquire a target.a

Tfr (a r.v.) denotes the time to fire the first round after the

target has been acquired,

Th (a r.v.) denotes the time to fire a round following a hit,
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I
T (a r.v.) denotes the time to fire a roun, following a miss,
m

Tf (a r.v.) denotes the time of flight of the projectile,

N1  (a r.v.) denotes the number of rounds f:red to obtain the first hit,

N (a r.v.) denotes the number of rounds fired to obtain any hitS

subsequent to the first one (and measured from the

occurrence of the last hit),

and

Z (a r.v.) denotes the number of hits required to kill the target.

Also, a somewhat less explicit and more complicated result for the variance of

the time to kill a target is given by (5.8.11), (5.8.20), and (5.8.28) below.

For the special case of MARKOV-dependent fire and a geometric distribution

of the number of hits to kill, the above general result for the expected time

to kill a target reduces to 2 1

{E[ThI + E[Tf]}E[t] - E[Ta] + E[ Tfr] - E[Th] + P(KIH)

S+ Tf] i - P(hJh)] + P(hlh) - pj (5.8.2)+ P(hlm) P(KIH)

which the reader will easily recognize as (5.4.1) with the deterministic event

times ta, t1, th, tM, and tf replaced by the expected values of the corre-

sponding randota variables.

Let us now turn to the development of (5.8.1) for the expected value

of the time for a single firer to kill a single passive enemy target and

the variance of this tima. We will again covsider the conceptual model (given

in Section 5.5) of the process by which a single firer engages and kills a

59

J

i - _*



single passive enemy target. It consists of the sequence of events (El)

through (E5) given above in Section 5.5. For this model we will compute the

average time for the firer to kill a target, E[T], by executing the two

following steps:

(Sl) relate expected time to kill a target to the expected times to

obtain the first and subsequent hits and to the expected number

of hits to kill (see (5.8.6) below],

(S2) develop submodel for the expected times to obtain the first and

subsequent hits [see (5.8.15) and (5.8.23) below].

The variance of the time to kill, var[T], will be obtained in a similar (but

much less explicit and more complicated) manner. The basic idea behind

developi-g these results is to decompose an event time of interest into the

sum of a random number of component event times and to compute the appropriate

momeuts along the lines as done in Section 5.7 above. For the development of

these results, we will let T1 (a r.v.) denote the length of the time interval

from the time at which the last target was killed until the first hit is

obtained on the 'target at hand, and Ti (a r.v. for i - 2, 3, 4, ... ) denote

h. length of the time interval from the time at which the (i-l)st hit was

thachieved until the i-t hit is obtained on the target. We will then assume

that
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(Al) the random variables Ti, i - 1,2,3, , are all independent

of the random variable Z representing the number of hits

required to kill the target,

(A2) the random variables Ti, i M 2,3,4, ... , are all identically

distributed,

and (A3) the random variables Ti, i - 1,2,3, ... , are all independent

of one another.

Let us now carry out the above two computational steps (Si) and (52)

for obtaining E[T] and vart[T]. Accordingly, we turn to the first computa-

tional step (Si) and consider [cf. (5.6.1) above] the following model for the

time to obtain z hits, T (a r.v.),

z

Tz - T1 + I Ti , (5.8.3)
i-2

where z denotes a previously-specified positive-integer number (i.e. it is

a positive-integer-valued deterministic parameter upon which the rev. is con-

ditioned). Here (as elsewhere) we have adopted the convention that 1z2

for z < 2. The above result (5.8.3) is a particularly transparent model

for T . It follows that
z

z
ET = zI - E(T] + I E[T i , (5.8.4)

i-2

Denoting E[T z as E[TIZ - z] and recalling assumption (A2) above, we may

f" then write
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E[TIZ - z] - E[TI] + (z-l) ET s] , (5.8.5)

where T denotes a r.v. having the same distribution as the random variabless

Ti for i > 2. Recalling assumption (Al), we multiply both sides of (5.8.5)

by pz(z) and sum from I to o to obtain the expected value for the time to

kill a target

E(T] E(TI] + fE[Z] - 11 E[T s] . (5.8.6)

To compute var(T], we observe that (cf. Section 5.7 above or

PARZEN (58, p. 55])

var(T] - Ez(var[TIZI] + varz[E[TIZ]] (5.8.7)

Now it follows by arguments similar to those used for the development of

(5.7.4) above that

var(TIZ] - var[T1 ] + (z-l) var[T s] , (5.8.8)

whence

Ez[var[TIZ]] -var[TI] + {E(ZI - 11 var[Ts] . (5.8.9)

Here, assumption (A3) is needed for (5.8.8) to hold. We also observe that

(5.8.5) yields [cf. the development of (5.7.12) above]
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vaz[ (E[TIZ]] - var[Z] E 2[T s . (5.8.10)

Substituting (5.8.9) and (5.8.10) into (5.8.7), we obtain the following expres-

sion for the variance of the time to kill a target in terms of the variance

for the time to obtain the firsZ hit T1 and that for the time to obtain any

subsequent hit T
5

var[T] - var[TI] + (E[Z] - 1} var[T s] + var[Z] E 2 [T . (5.8.11)

We have therefore proved the following important lemma.

LEMMA 5.8.1: Assume that (Al) and (A2) hold. The eipected time

to kill a target, E[T], is then given by (5.8.6), where T (a r.v.)

denotes the time to obtain the first hit, T (a r.v.) denotes the

time between any two subsequent consecutive hits, and Z (a r.v.)

denotes the number of hits required to kill the target. If we

additionally assume that (A3) holds, then the variance of the time

to ktll a target, var[T], is given by (5.8.11).

The reader should note that the above results for the time to kill

a target are expressed in terms of the moments for the time to obtain the first

hit and the time between any two subsequent consecutive hits, and not in

terms of the basic event times for the sequence of events (El) through (E5)

in the conceputal model of Section 5.5 (i.e. the r&aidom variables Ta, Tfr,

Th, Tm, and Tf). Accordingly, we now turn to the second computational step
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(S2) mentioned above and consider the following model for the time to obtain

the first hit, Tit

T1 a + (T fr + Tf) + (N1 -1)(Tm + Tf) , (5.8.12)

where N1  (a r.v.) denotes the number of rounds fired to obtain the first hit.

We will now assume that

(AI) the random variables Ta' Tf, Tfr, and Tm are all independent

of the random variable N1 representing the number of rounds

fired to obtain the first hit,

and (A2) the random variables Ta, Tf Tfr, and T are all independent

of one another.

To compute the expected value of Ti, we consider the time required

to fire n rounds T n (here n may be considered to be a realization of

H1 ) and obtain from (5.8.12)

T1n T + (Tf + Tf) + (n-l)(Tm + T•) , (5.8.13)

and hence

E[T 1 IN1 - n] - E[Ta] + E[Tfr] + E[Tf] + (n-l) {E[TmI + E[T f1 , (5.8.14)

where E['r•] has bee•. denoted as E[TI1N1 - n]. Using argument~s similar to

those use-1 above, we may uncondition E[T IN - n] to obtain
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E[T] E[T a] + E[T fr + E[Tf + {E[NI -1 } {E[T] + E[Tf] . (5.8.15)

To compute var[Tl], we first observe that

var[TI -NE (var[T IN I] + varN [E[T INI] , (5.8.16)1 N1  11N1 1 1

From (5.8.13) and assumption (A2) it follows that

var[Tl1N1 a n] - var(Ta] + var[Tfr I + var[TfI + (n-i) (var[Tm I + var(Tf]}, (5.8.17)

whence

EN [var[T1 IN 1] var[T a + var(T frI + var(Tf] + {E[N 1.-l}{var(T I+var[T f]} (5.8.18)

Here, assumption (A) is needed to Justify obtaining (5.8.18) from (5.8.17).

Also, (5.8.14) yields

var N (E[T 1 IN - var[N1 ] (E[Tm] + E[Tf]} 2 . (5.8.19)

Substituting (5.8.18) and (5.8.19) into (5.8.16), we obtain the following

expression for the variance of the time to obtain the first hit

var[TI] - var[Ta + var(Tfr] + var[Tf] + {E[N] - 1l}{var(T m + var[Tfif

+ var[NI] (EtTm] + E[Tf] 2  (5.8.20)
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We have therefore proved the following important lerina.

LEMIA 5.8.2: Assume that (Al) holds. The expected time to

obtain the first hit on a target, E[TI], ie then given by (5.8.15).

If we additionally assume that (12) holds, then the variance of

the time to obtain the first hit on ut target, var[T1 ], is given by

(5.8.20).

We have now completed the first half of step (S2). This computational

step is completed by repeating the above calculation procedure for the time

between any two subsequent consecutive hits on the target Ta, which has

the same distribution as Ti for i > 2. Here we will merely sketch develop-

ments, since the details are completely analogous to thosE given above for

T1 . We will now assume that

(Al) the random variables TfV Th, and Tm are ill independeut

of the random variable Ni (for i > 2) tepresenting the

number of rounds fired after the (i-l)-hit to obtain

ththe i- hit,

and (12) the random variables TfV Th, and T are all independent

of one another,

Simiiar to the above, it may be shown that the following model (for i > 2)

66

•-1 i " • i•=-'----------. - - . .. .. . .. . ..



1 Ti Th Tf + (N.-l)(T + Tf) (5..21)

leads to

E[TiINi - nj - E[ThI + E[Tf] + (n-.l) fE[Tm] + E[Tf]}, (5.8.22)

and consequently

E[Ts] - E[Th] + E[TfI + (EINs - l}{E[Tm I + E[Tf]}, (5.8.23)

where we have taken the liberty of replacing Ti and Ni by their equivalents

T and N . We now turn to the variance. In general, we have for i > 2S S

var[T ] - EN [var[T3. INi]] + var11 [E[Ti N i]] . (5.8.24)

It is easily shown that

var[T iIN, n] - var[ThI + var[Tf] + (2-l) fvar[Tm I + var[Tf]1, (5.8.25)

EN [varfT IN I var[Th] + var[Tf] + {E[E[Ni]-l}{var[T m] + var[Tf]} , (5.8.26)

and

varN [E[T iNI]N var[Ni {E[T] + E[Tf]2 2 (5.8.27)

whence (again, replacing Ti by Ts and Ni by N) follows
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var[Ts] - var[Th] + var[Tf] + {E[N] - lW{var[T m] + var[Tf]}

+ var[N] {E[T + E[T fi2 (5.8.28)

and the following important lemma.

LEMMA 5.8.3: Assume that (Al) holds. The expected time to obtain

any subsequent hit on a target (where this time interval is measured

from the occurrence of the last previous hit), E[T s, is then given

by (5.8.23). If we additionally assume that (A2) holds, then the

variance of the time to obtain any subsequent hit on a target,

var[T s], is given by (5.8.28).

We are now ready to develop our final results for E[T] and var(T].

Substituting (5.8.15) and (5.8.23) into (5.8.6), we obtain the desired final

result (5.8.1) for the expected time to kill a target. Because of the com-

plexity of corresponding terms for the variance of the time to kill a target,

we will not present here one final expression for var[T] in terms of the

fundamental operational variables appearing in (5.8.1), but we will let

var[T] be given by (5.8.11) in terms of var[T1 1 and var[T s, which in

turn are expressed in terms of the fundamental operational variables by

(5.8.20) and (5.8.28). Thus, to compute var[T] one must first use (5.8.20)

to compute var[T1] and (5.8.28) to compute var[Ts] and then use (5.8.11)

to combine these intermediate results into the final desired result for

var[T]. It remains for us to reconcile the three different sets of assumptions

used to develop Lemmas 5.8.1, 5.8.2, and 5.8.3, upon which the final results

for E[T] and var(T] are based. In particular, if we assume that the random
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variables Ni for i - 1,2,3,.. are independent of one another, then assump-

tion (11), (X2), (XI), and (X2) imply that assumption (A3) holds (i.e. the

random variables Ti for i - 1,2,3,... are independent of one another).

Thus, all these above assumptions may be merged into the following consolidated

set:

(Al) the random variables Ta, Tf, Tfr, and Tm are all independent

of the random variable N1 representing the number of rounds

fired to obtain the first hit,

(i2) the random variables Tf, Th, and Tm are all independent of

the random variable Ni (for i > 2) representing the number

st thof rounds fired after the (i-l)- hit to obtain the i-= hit,

(A3) the random variables Ni for i - 1,2,3,... are all independent

of the random variable Z representing the number of hits re-

quired to kill the target,

(A4) the random variables Ni for i - 2,3,4,... are all identically

distributed (let N denote a random variable having the same

distribution as these random variables),

(A5) the random variables Ni for i - 1,2,3,... are all independent

of one another,

and (A6) the random variables Ta, TfV Tfr, Th, and Tm are all independent

"of one another.
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We are now ready to summarize the final results of this section for the mean

E[T] and the variance var[T] of the time to kill a target. We do this with

the following theorem.

THEOREM 5.8.1: Assume that (Al) through (A4) hold. The expected

time to kill a target, E[T], is then given by (5.8.1). If we

additionally assume that (ý5) and (A6) hold, then the variance of

the time to kill a target, var[T], is given by (5.8.11), with (in turn)

var[TI] given by (5.8.20) and var[T I given by (5.8.28).

The above result (5.8.1) for the expected time to kill a target holds

under the very general conditions described by assumptions (Al) through (A4).

Moreover, there are some special cases of particular interest to the combat

modeller. In particular, for MARKOV-dependent fire (with stationary transition

probabilities), we have shown that (see Section 5.7)

{E[N1 ] - 11 = •Ph ' (5.8.29)

and

EN 1 - P(hh) (5.8.30)E[s]-1- P(hlm) "

For a geometric distribution of the number of hits to kill, we have

E[Z] - 1 . (5.8.31)

Thus, for MARKOV-dependent fire and a geometric distribution of the number of

hits to kill, (5.8.2) then follows from (5.8.1). We leave it as an exercise
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for the reader to verify that assumptions (AIl) through (A6) are satisfied

in this case. Finally, we could also use in this special case (5.7.5) and

(5.7.6) to compute var(T] by means of (5.8.11), (5.8.20), and (5.8.28).

71

' .... -bl: i tY -,= ,



5.9. Development '3f Expected Time to Kill a Targft as Mean State-Recurrence

Time in Continuous-Time Semi-FARKOV Process.

In this section we present a third approach for developing the

expected time to kill a target. It is based on conceputalizing the process

by which a single firer engages a single passive target as a so-called

continuous-time semi-MARKOV (or MARKOV-renewal) process and invoking a

result by BARLOW [4, p. 53] for the mean recurrence time for a state in

such a stochastic process with an imbedded ergodic MARKOV chain (i.e. the

system can be in any one of a finite number of states after a sufficiently

long lapse of time). Although our approach based on considering the

expected value of the sum of a random number of random variables is undoubtedly

the simplest and most transparent one for deriving attrition-rate-coefficient

results for homogeneous-force combat, the state-recurret.ce-time approach

may have greater applicability for heterogeneous-force combat, and it

does form the basis for determining numerical values for attrition-rate

coefficients in the VECTOR series of combat models22 of VECTOR RESEARCH,

INC. 128; 54; 89; 90] (see also Section 5.16 below).

The state-recuirence-time approach may be considered to have

received its ini etus from BARFOOT [3], who in 1969 (besides first proposing

that an attrition-rate coefficient be defined as the reciprocal of the

expected time to Kill a target) presented aa alternative (to BONDER's

[11]) method for deriving an expression for the expected time for a single

firer to kill a target. BARFOOT considered that the target could be in

one of, in general, m states (to obtain a result like BONDER's [11] for

the time to kill a target, one of three states: killed, hit (but not killed),

and missed (and not killed)], transitions between these states would
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occur from the impacts of rounds in the target area, and this target-

destruction process formed a MARKOV chain. FARRELL [17, pp. 136-137] then

observed that if the target-destruction process could be conceputalized

in such a way that every state has some probability of eventually occurring,

then one can invoke a known result on mean state-recurrence time from the

theory of semi-MARKOV processes to determine the expected time to kill

a target.

Loosely speaking, a semi-MARKOV process (SMP) is completely described

by a matrix of transition probabilities for an imbedded MARKOV chain (MC)

and a matrix of distribution functions for the "wait" in a state before going

to another state. For a continuous-time MC, the "wait" in a state is

exponentially distributed, while the SMP considers more general distri-

butions for waiting times (e.g. see BARLOW [4], SINLAR [22], COX and MILLER

[30, p. 352], or ROSS [59; 69]). For such a SMP, BARLOW [4, p. 53] (see

also ýINLAR [22, Theorem 6.12] or ROSS [59, Theorem 5.16]) proved the

following important result.

THEOREM 3.9.1 (BARLOW [4]): Consider a semi-MARKOV process

(with J states SI, $2P ' , S) in which all states

communicate. The mean recurrence time for state Si, denoted

as I i, is then given by

1 (5.9.1)

where 1i denotes the unconditional mean wait in state S

and w is an element (corresponding to state S ) of the

stationary distribution of the imbedded MARKOV chain. It follows

that
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i M iPiJ (5.9.2)

and

U- k- 1 Pjkjk (5.9.3)

where Pij is the transition probability that the system goes

from state Si to state S when such a change does occur, and

1 k denotes the mean time that the system remains in state S

before it transitions to state Sk.

It should be noted that no assumption at all is made here about the distri-

bution of waiting time in state S before the system transitions to

state Sk.

Let us now show how BARLOW's result (Theorem 5.9.1) may be used to

develop the general result (5.8.2) for the expected time for an individual

firer to kill a single passive enemy-target type with MARKOV-dependent

fire [a special case of which is 3ONDER's result (5.4.1)]. After developing

results for this Important special case, we will outline how this approach

may be used to determine the expected time to kill a target under more

general circumstances (e.g. under conditions of several target types with

different priorities for their engagement).

To develop (5.8.2), we consider a single firer trying to engage and

kill a single type of target. We assume that all the assumptions required

for (5.8.2) (and given in Section 5.8) hold. Let us focus on the target.

it can be
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t
(1) undetected,

(2) hit,

(3) missed,

or (4) killed.

When a target has been killed, search immediately begins for a new target.

We now seek to define the system states so that the conditions requisite

for invoking BARLOW's theorem (i.e. Theorem (5.9.1) are met (in

particular, given any starting state, after sufficient lapse of time the

system could be in any state). Thus, the "killed" state cannot be absorbing.

To accomplish such a defining of system states, we observe that the follow-

ing two situations are mathematically treated the same: (I) a new target

immediately appearing upon the destruction of the currently engaged target,

and (II) the same target being repeatedly killed. Thus, we will. define

the following three system states:

S1 - killed state (which lasts from the destruction of the

previous target until the first round has been fired at

a new target),

S2 - hit state (in which the target has been hit but not killed

by the last round fired),

and S3 - missed state (in which the target has been missed and not

killed by the last round fired).
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These states and the corresponding transition probabilities for changes

in system state are shown in Figure 5.4. The transition probabilities for

the imbedded MARKOV chain are given by

Pl1  p lP(KIH), P2 1 - P(hlh) P(KIH), P3 1 - P(hlm) P(KIH),

P1 2 " plfl-P(KIH)I, P22 ' P(h!h){I-P(KIH)}, P3 2 - P(hlm){I-P(KIH)}, (5.9.4)

P13 ' p1 , P23 ' l-P(hlh), P3 3 - l-P(hlm),

Furthermore, the expected wait in each state is independent of the next

state visited and given by

I = E[Ta] + E[Tfr] + E(Tf]

U2 " E[Th] + E[Tf] , (5.9.5)

and P3 " E(TmI + E[Tff]I

where all the subscripted T's are as defined in Section 5.8.

With the above definitions, all states communicate, and the expected

time to kill a target is Just the expected time between visits to state Si,

i.e. the mean recurrence time 1 of state S . Hence, the expected time

to kill a target E[T] is given by

E[T]-L - 3 1 W (5.9.6)
11 ff1r 1

E[T =gll=• J1 "j-i

where the stationary probabilities are given by the ayetem of equations
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pI P(KIH)

s1 (Look for New Target)

S2h P.m {P(mrn) m1- PINt)

{~~)I-P(KIH)} P (MIh) (i)I-PM)

HIT II MISSED
(but Not Killed) 1-P(hlh) (and Not Killed)

Figure 5.4. System states ard transition probabilities used in

alternate derivation of expected time to kill a

target by invoking BARLOW's [4] result for mean

recurrence time of semi-MARKOV process with

imbedded ergodic MARKOV chain.
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3
it - Wipij for j - 1,2,3. (5.9.7)

i-I

From (5.9.6) we see that what we need for computing the mean recurrence

time for a target being killed 11 is not the stationary probabilities

Wi for j - 1,2,3 themselves but the ratios n h/W for j - 1,2,3.

Accordingly, let us define

r •(5.9.8)
j Wi

We may then write

E[T] - L11 " 41 + r 2 u 2 + r 3 it3 , (5.9.9)

where r 2 and r 3 are determined by the linear system of equations

(P22 - l)r 2 + P3 2 r 3 - -P12

1 (5.9.10)
P2 3 r 2 + (P 3 3 -1)' 3 " -P 1 3

The reader should recall here that only two of the three equations (5.9.7)

are linearly independent, since 73. 1. Solving (5.9.10), we

find that
P12(1 - P3 3 ) - P12P32

2- (_P22) (1-P 3 3 )-p 2 3 p 3 2

and (5.9.11)

P13(1 - P22) + P12P23
'3 (l-P 2 2 )(l-p 3 3 ) - P23P32
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Substituting (5.9.4) into (5.9.11), we find that

{1 - P(KIH))'2 " P(KJH) '

and

1 P[i - P(hTh)] + P(hlh) - p1
r3 =P(h•m- P(KIH)

whence follows (5.8.2) from substitution of (5.9.5) and (5.9.12) into (5.9.6).

In general, the above approach may be used to develop an expression

for the expected time to kill a target E[T] in any firing process with

a set of J distinguishable states Si, S2P ... P S* as long as the

following assumptions hold:

(Al) the process makes transitions at distinct points in time,

(A2) given that one is in state Si. the probability of transition

to state S does not depend on any history of the process;

we let p1J denote the probability of transition to state

S from state Si. i.e.

- system in state system in state 1j S after transitionISi before transition]

(A3) given that one Ls in state Si, the mean wait before a

transition to state S depends only on the specification

Sof these two states; we let Uij denote the mean wait in

state Si before a transition to state Si.
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(A4) no matter where the system starts, every state has some

probability of eventually occurring,

and (AS) the states are so defined that the expected time interval

between successive entries into state S1 corresponds to

the expected time between casualties.

In essence, this approach may be applied to any target-destruction process

23that can be modelled as a semi-MARKOV process . Let us now introduce

the ratio r - WJ/Wl" The expected time to kill a target E(T] is

then simply the expected time between the occurrences of two successive

casualties Zi1 and is given by

J

E[T] - + • r4i (5.9.13)J=2 J'J

where r 2, ... , r3  are determined by the linear system of equations

J

2 (PJ - i1j)ri " -Plj for j - 2,...,J, (5.9.14)

and 85j denotes the KRONECKER delta defined as - 1 for i - j and

- 0 otherwise. Here we should recall that assumption (A4) guarantees that

we can always solve the linear system of eqtuations (5.9.14) (e.g. see

FELLER [35, pp. 356-362] or PAAZEN [57, p. 265)). If the vj are not

directly available, they may be obtained from the v by using (5.9.3).
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5.10. Special Cases of BONDER's General Expression for the LANCHESTER-

Attrition-Rate Coefficient.

We began our examination of the analytical modelling of a LANCHESTER

attrition-rate coefficient (i.e. approach (Al) of Section 5.1] by consider-

ing in Section 5.2 some very simple models for such coefficients in the

case of aimed fire and an impact lethality mechanism, and then we progressed

to much more complicated models for the time to kill a target [namely,

BONDER's result (5.4.1) for MARKOV-dependent fire and our more general

ones (5.8.1) and (5.8.2)]. Thus, we started by presenting without justifi-

cation results for a couple of very simple analytical submodels for a

LANCHESTER attrition-rate coeffinient under conditions of "aimed" fire,

and we subsequently developed a fairly general model for the expected

time to kill a target and obtained a general result for this model.

At this juncture it now seems appropriate for us to show how the earlier-

obtained simple results may be viewed as special cases of these later-

obtained, more general results. In particular, we will show how BONDER's

result for the expected time to kill a target with HARKOV-dependent fire

(5.4.1) simplifies and yields (under the appropriate circumstances) a

simple result like (5.2.4) for the LANCHESTER attrition-rate coefficient.

We will also examine an analogous simplification that yields that "aimed"
24

fire can lead to an FT target-type-attrition process when a model

proposed for target-acquisition times by H. BRACKNEY (20] is considered.

In preparation for developing these results, though, let us briefly review

how the different results that we have developed for varying degrees of

generality are related to one another.

The most general result that we have developed to the expected

time for an individual firer to kitl a single enemy passive target is
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given by (5.8.1), which holds for assumptions (Al) through (A6) of Section 5.8.

The operational conditions corresponding to these assumptions are more general

than MARKOV-dependent fire and a geometric distribution of the number of hits

required for a kill with random event times. When we do assume MARKOV-

dependent fire and a geometric distribution for the number of hits to kill,

however, our most general result (5.8.1) simplifies and we obtain (5.8.2),

which still contains random event times. BONDER's result (5.4.1) is a

special case of (5.8.2), i.e. it is the special case in which all event times

are deterministic. In turn, (5.2.8) is a special case of BONDER's result

(5.4.1), and (5.2.4) corresponds to a special case of (5.2.8), i.e. the

special case in which the time to acquire a target is negligible with

respect to the time required to destroy an acquired target and is taken to

be equal to zero.

Let us now consider more systematically the simplification of

BONDER's general result (5.4.1) in some special cases of tactical interest.

Other such special cases (and ones that we will not examine here) are to

be found in BONDER and FARRELL [17, pp. 106-107] and also [88, p. 28].

We begin by listing assumptions that are more restrictive than those used

to develop (5.4.1) but are yet of tactical interest (see [88, p. 28] for

a further discussion):

(Al) statistical independence among firing outcomes, i.e.

P1 "P(hlh) - P(him) - PSSH;

(AW) "uniform" rate of fire, i.e. t 1  th - tm - t v
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(A3) negligible time of flight for projectile, i.e. assume that

tf - 0;
/

and (A4) target-acquisition time negligible, i.e. assume that t - 0.
a

If we take assumption (Al) to hold, i.e. independent fire instead of MARKOV-

dependent fire, then BONDER's general expression reduces to

(t + tf) (th-.tm)

E[T] t +PS-K +(HK) tI th + f+ h (5.10.1)

where PSSK PSSH P(KIH) denotes the single-shot kill probability. If

we additionally take assumption (A2) to hold, i.e. uniform firing rate,

then this lasý result further reduces to

E[TI-t + (tt + tf) (5.10.2)a PSSK

which may also be written as

(1 + •tf)
E(T] - t + ( (5.10.3)a vp SSK

where v denotes the firing rate (assumed uniform). If we additionally

take assumption (A3) to hold, i.e. negligible projectile flight time, then

this last result further reduves to

SE[T] =t + 1 (5.10.4)
a vPSSK
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which is the same as (5.2.8) above. If we additionally take assumption

(A4) to hold, i.e. negligible target-acquisition time, then we finally

obtain

1
E[T] - , (5.10.5)

SSK

which is equvalent to the LANCHESTER attrition-rate coefficient being given

by, for exmnple, (5.2.4), i.e. the kill rate of a single weapon system is

equal to the product of its firing rate times the (single-shot) kill prob-

ability of each round. We stumarize the above results with the following

lemma.

:.QMMA 5.10.1: Assume that assumptions (Al) through (A2) above hold.

BONDER's general expression for the expected time to kill. a target

(5.4.1) then reduces to (5.10.4), with the LANCHESTER attrition-

rate coefficient being given by, for example, (5.3.1) [i.e.

a - 1/ftay + 1/(vYPSSKXY)M. If we additionally take assumption

(A4) to hold, i.e. t a 0, then (5.10.4) reduces to (5.3.0.5) and

the LANCHESTER attrition-rate coefficient is given, for example,

by (5.2.4).

Thus, we have shown that the simple models that we initially considered

may be viewed as special cases of much more general ones.

Along the same lines, let us now consider a target-acquisition-

time model proposed by H. BRACKNEY [20] and see V ,i "aimed" fire can lead

to an FT target-type-attrition process when target-acquisiLi'n times are
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target-type-force-level dependent and are the constraining factor in the

attrition process. Following BRACKNEY [20, p. 32], let us accordingly

replace assumption (A4) above by (X4).

(A4) the mean time to acquire a target is inversely proportional

(let k denote the constant of proportionality) to the

target density, i.e. t - k/p where p denotes the densitya

of targets in the target area A that is searched.

In analytical terms, assumption (A4) yields that, for example,

E[T x. (5.10.6)

where T (a r.v.) denotes the time required for a Y firer Zo acquireaxy

an X target, AX denotes the area occupied by X targets (and searched

by Y firers), x denotes the X force level within this region, and

denotes a constant of proportionality for this model of the time for a

Y firer to acquire an X target. The above considerations lead to the

following interesting result.

LDIMA 5.10.2: Assume that assumptions (Al) through (A3) and (A4)

hold. The expected tLme for a, for example, Y firer to kill an

X target is then given by

fE[T] k- X 1 (5.10.7)
VYPSSKxy
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This last lemma haa the following important consequence: if the

time to acquire targets is the constraining factor in the target-attrition

process, then one has approximately, for example,

E[Cx ] -_ >> ,(5.10.8)k~x _ _ssx

XY X V Y PSSKXy

which yields that the LANCHESTER attrition-rate coefficient may be taken

under such circumstances to be given by

a- = , (5.1o.9)

where a - l/(kYAX). Consequently, the rate of change of the X force

level under these circumstances would be given by

dx . -jxy (5.10.10)
dt

Thus, we have shown that when BRACKNEY's target-acquisition-time model is

used and target acquisition is the constraining factor on the rate of

attrition, "aimed" fire yields an FT target-type-attrition process. Thus,

both "area" fire against a target type and also the above situation for

"aimed" fire may be hypothesized to yield the same target-type-attrition-

rate equation, and this situation was the reason why we introduced in

Section 2.12 our classification scheme for homogeneous-force LANCHESTER-

type attrition processes (and which we have adapted just above to a single

target type's attrition).
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One can use BRACKNEY's above target-acquisition-time model (5.10.6)

with the general expression for the expected time to kill a target (5.8.1)

and its various derivatives which we have discussed above to develop some

interesting consequences. In particular, the assault of an X force

against a Y force's defensive position may be hypothesized to yield FIFT

LANCHESTER-type attrition equations. A convenient place to begin this

development is to observe that the conditions of Lemma 5.10.2 (i.e. assump-

tions (Al) through (A3) and (A4) being satisfied] yield the following

LANCHESTER-type equations

Idt - - l (vyPSSxxT with x(0) - x0S+(5.10.11)

x with y(O) - 0y

Limiting cases of these equations provide some important insights into the

dynamics of combat. Such limiting cases may be generated by considering

the relative size of the time to acquire a target in relation to the

time required to kill an acquired target. BRACKNEY (20, pp. 32-331 con-

sidered the two limiting caces of (I) when the tire to acquire is

negligible, and (II) when it is the dominating term. He further reasoned

that a combatant's search time (i.e. the time to acquire an enemy target)

is negligible when the enemy rushes through an open area and assaults his

position. Furthermore, he postulated thac a combatant's search time

is the dominating term in the expression for the time to kill an enemy

target when the enemy remains under cover in their defensive positions.
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Consequently, BIACKNEY (20, p. 33] argued that force-on-force attrition

for the assault of an X force against a Y force's defensive position

could be modelled by

dx
dt- _ -YYPSSK y with x(O) - x0 9

(5.10.12)1 y =_--•Z- with y(O) - yo 5dt kXAy

which are readily recognized by the reader as the equations for an FIFT

LANCHESTER-type attrition process. This model (5.10.12) was proposed by

BRACKENY [20, pp. 32-33] and used, for example, by SCHAFFER [65, p. 4881

to study sieges in guerrilla-warfare operations (see Section 7.6 below).

Furthermore, when both sides remain in their (covered) defensive positions

(a situation that BRACKNEY [20, p. 361 termed a fire duel), BRACKNEY

argued that force-on-force attrition could then be modelled by

L dx 
with x(o) = x0

(5.10.13)

- _ with y(O) - y
dt kx%8
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5.11. Variables Upon Which Attrition-Rate Coefficients Depend.

It is intuitively obvious (and born out by empirical evidence)

that, in general terms, the fire effectiveness of a weapon system depends

on the target type engaged and the environmental circumstances of the

engagement 25. Thus, a numerical value for a LANCHESTER attrition-rate

coefficient depends on both the characteristics of the firer's weapon

system and also those of the target. However, this dependence of a

LANCHESTER attrition-rate coefficient on firer-weapon-system-type and

target characteristics is not direct but indirect through the operational

variables (e.g. time to acquire a target, hit probabilities, etc.)

upon which such an attrition-rate coefficient directly depends. Conse-

quently, it seems appropriate for us to consider that an attrition-rate

coefficient depends on two types of factors:

(TI) direct factors,

and (T2) indirect factors.

Let us now examine more closely this distinction between direct and

indirect factors by considering the special case of the LANCHESTER attrition-

rate coefficient for an impact-to-kill system under conditions of MARKOV-

dependent fire and a geometric distribution for the number of hits required

for a kill. Similar remarks will, of course, apply to a LANCHESTER attrition-

rate coefficient corresponding to other circumstances. To return to the

case at hand, we again focus on an impact-to-kill system with MARKOV-

dependent fire and a geometric distribution for the number of hits to kill.
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As we have seen above in Section 5.4, the direct factors upon which the

LANCHESTER attrition-rate coefficient depends correspond to the variables

appearing in (5.4.1) (see also Table 5.11). Howevcr, each of these vari-

ables, e.g. p or P(hjh), themselves in turn depend on other operational

factors in the tactical environment. For example, the hit probabilities

depend on such variables as range (i.e. distance) between target and firer,

tactical posture of the target and/or firer, etc. We will refer to such

variables as the indirect factors upon which a LANCHESTER attrition-rate

coefficient depends. Table 5.111 lists some indirect factors upon which

the LANCHESTER attrition-rate coefficient may depend. This list is not

meant to be exhaustive, but it should be considered to be suggestive of

functional dependencies that should be considered in modelling force-on-

force combat interactions.

For many weapon systems, the range (i.e. distance) between firer

and target has a very significant effect on weapon-system fire effectiveness.

In such cases (as stressed by BONDER [9-11; 13]), if the range between

firers and targets changes appreciahly during the course of an engagement,

then use of constant attrition-rate coefficients in a LANCHESTER-type

model can yield quite misleading results (see Section 6.2 for further details).

BONDER has consequently emphasized the importance of explicitly considering

in LANCHESTER-type combat analyses such range dependence of weapon-system

fire effectiveness, especially for mobile weapon-system types. Thus, in

many tactical situations of interest we should consider, for example,

that for the model (5.2.1) the LANCHESTER attrtion-rate coefficients a and

26
b explicitly depend on range , i.e
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TABLE 5.111. Indirect Factors Upon Which LANCHESTER Attrition-Rate

Coefficients Depend.

1. Range Between Firer and Target

2. Effects of the Battlefield Environment (e.g. Visibility Conditions,

Target-Background Contrast, etc.)

3. Target Posture

4. Firer Posture

5. Terrain

6. Target Movement

7. Firer Movement

(
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a a W(r) and b 0 8(r) (5.11.1)

where r denotes the range (i.e. distance) between firers and targets.

Thus, we should consider LANCHESTER attrition-rate coefficients to be at

least (and probably primarily) dependent on the range between firers

and targets.
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5.12. Some Typical Range Dependencies for the LANCHESTER Attrition-Rate

Coefficient.

As we have Just discussed above, the range (i.e. distance) between

firers and targets is one of the principal indirect factors upon which a

LANCHESTER attrition-rate coefficient depends. It is intuitively obvious

(and born out by empirical evidence) that the fire effectiveness of a

weapon system is strongly dependent on the range between firer and target.

Based on their examining predicted numerical values of the LANCHESTER

attrition-rate coefficient for specific weapon systems with widely differ-

ing characteristics and how these values varied with range, BONDER and

FARRELL [17, pp. 196-2001 have considered a number of functional forms for

range-dependent attrition-rate coefficients in "aimed-fire" combat, e.g.

for combat modelled by (5.2.1). The functional forms considered by BONDER

and FARRELL may be classified as:

(Fl) power dependence

(F2) exponential dependence upon range,

(F3) cosine dependence upon range,

(F4) piecewise-constant dependence upon range.

We will accordingly call such attrition-rate coefficients as follows:
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(Cl) power attrition-rate coefficient

e
Sp (r) -I (5.12.1)

0 for r < re -

(C2) exponential attrition-rate coefficient

r) - for 0 <r < r e

aE(r) - (5.12.2)

0 for re < r

(C3) cosine attrition-rate coefficient

0-- + cos(re/ for 0 < r < r
a c(r) M -- -- (5.12.3)

0 for re<r,

(C4) piecewise-constant attrition-rate coefficient

a 0 for 0 < r < r
a (r) - (5.12.4)

0 for r < r
e -

Here re denotes the maximum effective range of the firer's weapon sys-

term, a0 and I are positive constants, and v is a nonnegative con-

stant.
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The first two above functional forms for range-dependent attrition-

rate coefficients are shown in Figures 5.5 and 5.6. In Figure 5.5 we have

plotted the value of the power attrition-rate coefficient ap(r) given by

(5.12.1) versus the range between firers and targets. As we can see from

Figure 5.5, the constant p is used to model the range dependence of the

attrition-rate coefficient ap (r). For values of V > 1, the attrition-

rate coefficient ap (r) is a convex function of r on [O,r e,

i.e. the plot of ap(r) versus r "flexes downward." We have accordingly

chosen to call P the "shape" parameter, since it controls the shape of

the plot of ap(r). In Figure 5.6 we have similarly plotted the exponential

attrition-rate coefficient aE(r) given by (5.12.2) versus range. In this

case, the constant a1  is used to model the range dependence of a E(r).

However, this attrition-rate coefficient a E(r) is a concave function of

r on [O,r e, i.e., the plot of a E(r) versus r "flexes upward." Also,

we observe that a E(r) - linear dependence on r as a1 - 0, and we have

similarly chosen to call a1  the "shape" parameter.

Still another model for range dependence of such an attrition-rate

coefficient is an exponential fall off in fire effectiveness of the form

aED(r) - a0e (5.12.5)

where a1 > 0. We call call the attrition-rate coefficient aED(r) given

by (5.12.5) the exponentially-decaying attrition-rate coefficient. It is

plotted versus range in Figure 5.7. As Figure 5.7 shows, it has a range

dependence somewhat similar to the attrition-rate coefficient a (r).p

r In other words, aED(r) is a convex function on [0,r R as a (r) is for
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0.6

POWER

ATTRITION - 0.4-

RATE

COEFFICIENT 0.2-

0.0
0 500 1000 1500 2000 2500

Ronge r (meters

Figure 5.5. Variation in fire effectiveness (measured in kills/minute
per firer) with range for the power attrition-rate
coefficient ap(r), which is analytically given by (5.12.1),
for several different values of the "shape" parameter p.
The maximum effective range of the weapon-system type is
denoted as re and for this example re = 2000 meters.
Also, in this example the weapon-system kill rate at zero
force separation (range) ap (O) - a0 . 0.6 X casualties/(unit
time x number of Y firers) has been held constant, and the
"shape" parameter v has been varied (i.e. curves plotted
for i - 1/2, 1, 2, 3, and 4).
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0.6 a 1 80.004

EXPONENTIAL

ATTRITION- 0.4 0 * 001

re

0 500 1000 1500 2000 2500

Range r (meters )

Figure 5.6. Similar to Figure 5.5, variation in fire effectivenss with

range for the exponential attrition-rate coefficient a E(r),

which is analytically given by (5.12.2), for several differ-

ent values of the "shape" parameter a . Again, the maximum

effective range of the weapon system is given by r - 2000e

meters. Also, the weapon-system kill rate at zero force

separation (range) aE(O) - a0 has again been held constant,

and the "shape" parameter a1  has been varied.
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P > 1. Although (5.12.5) implies that the wapon system theoretically

has an infinite maximum effective range, for all practical purposes the

weapon system becomes "ineffective" (i.e. it ceases to kill) when

a 1r > 12, since then ED(r) is less than 10-5 times its value at

r - 0 (cf. the curve labeled a, - 0.004 in Figure 4.7 for ranges

greater than 1500 meters).
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5.13. Attition-Rate Coefficients for Area-Fire Weapons.

The above attrition-rate-coefficient results [in particular, (5.4.1)

and its generalizations (5.8.1) and (5.8.2)] apply to weapon-system types

that direct their fire at individual targets that are vulnerable to only

27the impact of a projectile fired by the weapon system . Let us refer to

this nituation as "aimed" fire against an impact-sensitive target. Many

times, however, a weapon system will engage a target or complex of targets

not by aiming its fire at an individual target but by directing its fire

into only the general area thought to be occupied by the target or targets.

Let us refer to this latter situation as "area" fire (cf. Section 2.11 above).

It is for this type of firing mode that we will now consider the determina-

tion of LANCHESTER attrition-rate coefficients. Furthermore, such "area"

fire may be directed at both fragment-sensitive and also impact-sensitive

28targets . As far as combat modelling is concerned, the former is far more

the important case, since it may be considered to conceptually model

artillery engaging enemy dismounted-infantry troops (i.e. those not in

protective vehicles) dispersed in tactical formations. An example of the

second case (i.e. "area" fire against impact-sensitive targets) would be

small-arms fire against poorly located enemy dismounted-infantry troops.

This latter tactical situation has been considered in guerrilla-warfare

settings by DEITCHMAN [31] and SCHAFFER [65] (see Chapter 7 for further

details). Thus, a number of important tactical situations may be modelled

by area fire.

Let us accordingly consider combat between two homogeneous forces

(denoted as X and Y) in which force-on-force attrition occurs at a

rate proportional to the number of enemy firers (at least on the surface
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it appears to do so) but in which each side uses "area" fire. For the

sake of placing something concrete before the eyes of the reader, we will

focus on the attrition of the X force caused by the Y firers. According

to the assumptions just made, we may write

- a -ay , (5.13.1)

dt

with
1

a- E[T xy 1 (5.13.2)

where T (a r.v.) denotes the time required for a Y firer to kill an

X target. For "area" fire, however, the expression for the expected time

to kill a target takes a different form than that for "aimed" fire, i.e.

E[T] is no longer given by (5.4.1).

The simplest model for E[TI in the case of "area" fire involves

29
adapting (5.4.1) to this case . This adaptation may be accompllshed by

conceptualizing the target-destruction process in the following manner:

an "area" target is acquired, and "area" fire is directed at it; if a round

lands in the target area, the target may be killed; otherwise it is not

damaged. Thus, t would represent the time to acquire the "area" target,a

and other quantities in (5.4.)) would be analogously redefined. However,

since an area target is usually not reacquired after every kill of one of

its elements, we should replace ta by ta/N, where nK denotes the

number of elements killed per acquisition of such an area target. Thus,

we would have

(
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t (• + tj
"E[T] -A+t -+h 4. h

n K 1 h Z:iare

(tm + tf) [1 - Pa+e1 
(5.13.3)Pae(him) P(,- Haa "area "areal'

area arararaa

where

t denotes the time to acquire an area target,
a

aK denotes the number of kills per acquisiticn,

t tf, th, and tm are defined similarly as for "aimed" fire

in Section 5.4,

parea, P area(hlh), and P (him) denote MARKOV-dependent prob-

abilities for hitting the area target,

and P(KIH area) denotes the probabilLt;, that we kill a target element

given that we "hit" the area targer.

Here, P(KIH area) depends on the lethal area (see [84, Chapter 15]) of the

30
weapon system's projectile

Moreover, there is a special case of the model discussed in the

previous paragraph that merits further examination and discussion. To this

end, let us make the following assumptions (cf. those made in Section 5.10)

concerning the above adaptation of (5.4.1), namely (5.13.3):

(Al) statistical independence among firing outcomes, i.e.

pares = Parea(hlh) a Parea (him) SSarea
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(A2) "uniform" rate of fire, i.e. tI M th W tm and we will

denote this common value as t - l/v;

and (A3) ne• igible time of flight for projectile, i.e. assume that

t f 0.

In this case, (5.13.3) reduces to

t
E[T] - a + a (5.13.4)n K varea

K SSK

where v - 1/tv denotes the operational firing rate of the weapon syst-am

and P area - P area P(KI1H ) denotes the single-shot-kill probability for
SSK SSH area

destroying a target element with one round. It is implicitly assumed here

that multiple kills are impossible (i.e. at most only one target element

can be killed with any one round). Furthermore, when ta/nK is negligible
area y

compared to I/(vPssK ), then Y's attrition-rate coefficient in (5.1.3.1)

may be approximated by [cf. (5.2.4) above]

a area (5.13.5)
Y SSKXY

where Parea denotes the single-3hot-kill probability for a Y firerSSKXy

engaging an X area target.

Moreover, there are a couple of special cases for the LANCHESTER

attrition-rate coefficient (5.13.5) that we should consider. When a weapon

system emplom__"area" fire and emy argets defend a constant area (see
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Table 2.XIX for a more precise list of the associated assumptions), the

expression for the LANCHESTER attrition-rate coefficient may be given in an

even more explicit form (i.e. one depending on more basic measurable

operational quantities) and depends (among other things) on the vulnerable

area of the target (denoted as aV) and the lethal area of the projectile

fired by the firer's weapon system (denoted as aL). In general, a

rather complicated expression is obtained for such an attrition-rate coefficien.

(e.g. see BONDER and FARRELL (17, pp. 141-162]), but this expression may be

stated in a particularly simple form in special cases under the appropriate

simplifying assumptions, e.g. for "small-arms fire" when aV >> a and for

"fire from a weapon of great lethality" when aL >> av. Thus, two cases

in which a simple expression is obtained for an attrition-rate coefficient

for "area" fire and a constant-area defense are as follows:

(Cl) small-arms fire (i.e. aV >> aL),

and (C2) fire from weapons of large lethality (i.e. aL >> av).

A more precise description of the operational conditions that we have

in mind is given in the first five assumptions listed in Table 2.XIX.

Assuming that ta/ilK is negligible, we may take, for example, the

attrition-rate coefficient a to be given by (5.13.5) if we assume that

the attrition-rate of the X force is given by (5.13.1).
_area

For small-arms fire (i.e. a. >> aL), we may calculate P area
SSKXY

for use in (5.13.5) by considering a "lethal dot" being randomly placed
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into a large region (of area A.) that contains x "vulnerable circles"

(each of area avx). Under these circumstances and the assumptions31 that

a Y firer directs his fire into the region actually occupied by the X

targets and that his fire is uniformly distributed over the region into

which it is directed, the probability that a target is hit, denoted as

parea is given by the ratio of the total vulnerable area of all the targetsSSH 9

divided by the area of the region into which fire is directed (see

Figure 5.8), i.e.

xax
area- AX (5.13.6)

It follows that

xaV P(IH) K
parea X (5.13.7)

SSK 
A

where P(KIH) denotes the probability that an X target is killed by a

Y projectile when it is hit. Thus, when P(KIH) - 1.0, the attrition

rate of the X force is given by

d..x . aX

dt Ax vy xy, (5.13.8)

which is the result [with P(KIH) included] given in Table 2.XIX.

For fire from weapons of large lethality (i.e. aL >>av), a slightly
_area b

different analysis is required. In this case, we may calculate P aa by
SSKXy

considering a "lethal circle" being randomly placed into a region that contains
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Figure 5.8. Conceputalization of target-destruction process for

"area fire" by small arms. In this case a » > a L2

i.e. the vulnerable area of a target is much larger

than the lethal'area of a round. The above diagram

considers X to be the target and Y the firer.
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3. randomly placed "vulnerable dots." We assume that these dots are so

placed that the "lethal circle" covers at most one of them per throw.

Furthermore, the probability of covering one of these x "vulnerable dots"

in the region of area AX is the same as the probability of covering one

such dot randomly placed in a region of area AX/x. This latter prob-

ability is simply given by the ratio of the total lethal area to the

total area of this equivalent region (see Figure 5.9), and hence

parea xa•

SSSK = " (5.13.9)

In the above formula, It is assumed that a "hit" on a target will kill the

target. The fcrmula is easily modified to model the case in which each

such "hit" (i.e. the covering of a "vulnerable dot" by a "lethal circle")

has a probability less than one of killing such a target. Finally, for

the above case of fire from weapons of large lethality, the attrition rate

of the X force is given by

dx a__
dt AX y Vxy, (5.13.10)

which is a result first apparently given by WEISS [91, p. 83] and later

used by both DEITCIHMAN [31, pp. 821-8221 and SCHAFFER [65, p. 470] in

the modelling of guerrilla warfare (see Chapter 7). The small-arms-fire

result (5.13.8) may be considered to be a particularization of (5.13.10)

in which the lethal area of a Y round is taken to be the vulnerable

area of an X target (see DEITCHMAN [31, p. 822]).
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A/x

Figure 5.9. Conceptualization of target-destruction process for
"area fire" by weapons of large lethality. In this

case aL >> aV, i.e. the lethal area of a round is

much larger than the vulnerable area of a target,

and the target density is reflected by considering

an equivalent process taking place in a region of

area AX/x. The above diagram considers X to

be the target and Y the firer.
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There is, however, another (more general) approach for developing

the above kill-rate result for "area" fire (5.13.10). This other approach

is based on the equivalence of expected target coverage to kill prob-

ability, and it considers the expected number of survivors by conceptually

replacing all the targets by a single equivalent target and computing the

probability of destroying this equivalent target (i.e. see (5.13.14)

below]. This approach is particularly significant, since it is essentially

the one used by BONDER and FARRELL [17, pp. 141-162] to develop attrition

rates for multiple-tube-firing cases (for both volley and salvo fire).

We will now present this important alternate development of attrition

rates for area-fire weapon systems.

A fundamental precept upon which target-coverage analysis (i.e.

the theoretical analysis of damage to targets by indirect-fire weapons

[e.g. see HESS [4311) is based on the equivalence of expected target coverage

to kill probability 32. It is simply stated as follows.

FUDAMENTAL PRECEPT OF TARGET COVERAGE: The probability

of killing a randomly located point target is equal to the

expected coverage of a population of objects when the popu-

lation density is distributed in the same manner as the

point target.

If we let F denote the average fraction of targets killed and PK denote

the probability of killing the point target, then the fundamental precept

of target coverage may be stated in analytical terms as
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F PK ( (5.13.11)

This result may be considered to be equivalent to thinking of the status of

the point target as a BERNOULLI random variable and scaling up the expected-

fraction-killed result for this single target to that for the entire target

population. Implicit in this fundamental premise is the assumption that

the exact locations of individual targets in the target area are not known.

In this sense, we may take (5.13.11) to be a static mathematical statement

of "area" fire which we will now convert into the dynamic result (5.13.10)

by a series of logical arguments.

We begin by considering a homogeneous X force receiving area fire

from a homogeneous Y force and computing the expected number of survivors.

By the fundamental precept of target coverage, this number is given by

x(t) - {l - P Ct)1xo (5.13.12)

where P (t) denotes the cumulative kill probability of the entire Y
K

force engaging a single randomly placed X target for a period of time t.

Taking the logarithmic derivative of (5.13.12), we find that

dx d Xd- " x d Zn{l - P (0). (5.13.13)
dt dt K1 t)1

Assuming independence between the outcomes of any two rounds (recall

Assumption (A3) of Table 2.XIX], we also have that
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P YW - (l- P XSK) , y (5.13.14)

where v denotes the firing rate of a single Y firer and P denotes
Y SSK

the single-shot kill probability for a single Y firer engaging a single

X point target. From (5.13.14), we readily deduce that

d_ ZnI-PXYt) nl xdt Zn(1 - P y(01 - yn(1 - PSK) (5.13.15)
TtK Y ~ SSK~

whence follows

dx y {Zn(l - PrK )}xy (5.13.16)
dt Y SSK

by substitution of (5.13,15) into (5.13.13). The reader should regard

(5.13.16) as the fundamental attrition-rate equation for area fire. Com-

parison of (5.13.16) with, for example, (5.13.1) reveals that we may consider

the LANCHESTER attrition-rate coefficient for such area-fire weapons to

be given by

KY

aa-v {In(l - P SS)}x, (5.13.16)
Y SSK

which should be compared with BONDER and FARRELL's [17, pp. 150-154] result

for area-fire weapons (see also [54, p. 170] or [28, p. 1761). Furthermore,

KY is a good approximation 3 3 to In(l -XY when PY E [0, 0.2],
SSK -SSK SSK

and in this case we approximately have

a Vy PSSK x. (5.13.17)
YSSK
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Returning to our criginal problem of modelling the force-on-force attrition

of a homogeneous X force receiving "area" fire from an opposing homogeneous

Y force, we observe that the probability that a single Y firer kills

a single randomly-placed target is equal to the probability that a "lethal

circle" of area aLY covets a "vulnerable dot" randomly placed within

the region of area AX (under, of course, the assumption that a »>> aV X

Hence

S .am - (5.13.18)
Xxy

PSSK AX

and (5.13.10) follows from (5.13.16) whenPsXY P < 0.2.
SSK -

BONDER and FARRELL (17, pp. 141-162] have used the basic idea of the

above approach34 based on the fundamental precept of target coverage to

develop an expression for the attrition-rate coefficient corresponding to

firer by indirect, area-fire weapons. Their expression includes all the

55
factors shown in Table 5.IV. It holds under the following set of assumptions

(Al) no delivery bias exists--no aiming error, target-

location error, or intentional offset,

(A2) centers of impact (p,q) of the damage patterns are

distributed about a mean center of impact (p,q)

according to a circular-normal distribution; for con-

venience, let (p,q) - (0,0) and the standard deviation

be norrualized to unity; the probability density function

for the delivery error is then

b(pq) T exp{-(p2 + q2)12},
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TABLE 5.IV. Factors Considered in Attrition-Rate Coefficients for

Indirect, Area-Fire Weapons by BONDER and FARRELL [17].

Weapon aiming and ballistic errors

Target location errors

Weapon firing rate

Volley damage-pattern radius

Target distribution

Target radius

Target posture

Probability that the target Is destroyed given it is covered

by damage pattern
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(A3) the target is a circle of radius Rt centered at the

origin; two mathematically equivalent types of targets

are considered:

(Ti) a circular, homogeneous, area target centered

at (0,0) with radius Rt,

(T2) a point target (,n) of uniformly uncertain

location in the area of radius Rt; the target

density function W(Q,n) is then I/(wR )
t

over the target area and zero elsewhere,

(A4) the damage pattern is a circular cookie-cutter of radius

R p; let d(Q,n;p,q) denote the damage function, which is

then given by

IX for (p-0)2 + (q-n)2 < R2

d(Q,n;p,q) -

0 elsewhere,

where d(Q,n;p,q) is the probability that a point target

at (Q,n) will be killed by a damage pattern with center

of impact at (p,q); damage is either all or nothing (killed

or not killed)--no cumulative damage is considered,

and (A5) the weapon system employs a constant firing rate v.
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BONDER and FARRELL [17] (see also [54, p. 1701 or [28, p. 176]) have stated

that when the above assumptions hold, an approximation to the attrition-

rate coefficient for a, for example, Y firer engaging an opposing X

force with such an area-fire-weapon-system type is given by

a n vy{2fn(l - XS1)}x , (5.13.19)

where R
1

Si - f P(R ,r)r dr (5.13.20)
Rt

P(Rr 2-exp -1 dp dq , (5.13.21)
(p-0) 2+(q-n) 2 <R2  "

-- p

and r denotes the distance from the point target located at (E,n) to

the mean center of impact at (0,0), i.e. r2 . E2 + n 2. The function

P(R ,r) is called the circular coverage function and plays a prominent

role in target-coverage analysis (e.g. see SNOW [70], HESS [43], ECKLER

[33], or ECKLER and BURR [34]). It is well-known to be also given by

P(R ,r) - er /2 fRp xex /2 10 (xr)dx , (5.13.22)
0

where 1o(X) denotes the modified BESSEL function of the first kind of

zero order (see HESS [43] or ECKLER and BURR [34] for further details).
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BONDER and FARRELL (e.g. [28, p. 176]) have stated that in general

the expression (5.13.18) is a good approximation to the attrition rate

of a single weapon system "if Rp >> Rt, or when Rt is less than the

standard deviation of the center of impact of the damage pattern, or

when the number of volleys is small." Further details are to be found

in [28; 54].
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5.14. Results for Other Related Weapon-System Types.

We have developed abuve expressions for the LANCIESTER attrition-rate

coefficient under the following two different sets of circumstances:

(51) MARKOV-dependent fire with an impact-lethality mechanism,

and (02) an area-lethality mechanism.

In the first case we have developed our results under fairly general circum-

stances [see (5.8.1) and assumptions (Al) through (A6) in Section 5.8 above].

There are, however, a number of additional operational circumstances and weapon-

system types for which it is convenient to have other LANCHESTER-attrition-

rate-coefficient results available, especially for building and exercising

a complex operational combat model in which a wide spectrum of weapon-system

types is to be played. For example, three different types of weapon-syEtem

fire (cf. BONDER and FARRELL's taxonomy of weapon-system types reproduced

here as Table 5.1) are permitted in VECTOR-2 [28, p. 170] (see also [86; 87])

(1) MARKOV-dependent fire at a specific target,

(2) repeated-burst fire at a specific target,

and (3) area fire (not directed at any specific target).

Consequently, we will present in this section LANCHESTER-attritAion-rate-

coefficient results for some other related weapon-system types of tactical

interest. Complete derivations of these results will not be given, however,

( since results previously derived above may be Invoked for their develcpment.

117

- ---. . - F ~ - -- /i1,.



Thus, we will give results for the following additional weapon-system

types/operational circumstances of tactical interest:

(Ti) MARKOV-dependent fire with chance of killing target on a miss,

(T2) burst fire-

(a) one long burst,

(b) mixed-mode firing doctrine [repeated-single-shot-MARKOV-

dependent fire until first hit obtained after which there

is an immediate switch to burst fire (one long burst)],

(c) repeated-burst fire [multiple (short) bursts independently

fired].

In each of the above cases, we will give the appropriate expression for the

expected time to kill a target, with the LANCHES1ER attrition-rate coefficient

(as usual) being obtained as the reciprocal of this quantity (recall Section

5.3 above). The first type of weapon-system fire (Ti), i.e. MARKOV-dependent

fire with kills on misses, applies to weapon-system types that fire rounds

with fragmentation effects at targets with exposed personnel. In such cases

it is quite possible to achieve a system kill when a projectile misses the

target weapon system but detonates and kills the personnel by fragmentation

effects. Thus, a miss may cause a kill, and the usual expression for

MARKOV--dependent fire (5.8.2) (which only allows a target to be killed by

being hit) must be modified to accommodate this fact. The second type of

wsapon-system fire (T2), i.e. burst fire, is characteristic of automatic

weapons used by Infantry and sometimes mounted on armored-personnel carriers
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or other vehicles [e.g. the vehicle rapid-fire weapon system (VRFWS) or the

secondary armament on a tank]. In particular, infantry doctrine calls for

automatic weapons to be fired in repeated short bursts, and the LANCHESTER

attrition-rate coefficient must again be modified for automatic weapons to

accommodate this fact.

We will first consider the case of MARKOV-dependent fire with chance

of killing on a miss, which is a further generalization of MARKOV-dependent

fire considered above in Section 5.8. Let x assume that assumptions (Al)

through (A6) of Se(.cio:t 5.8 hold, and we will additionally assume that there

is a coltstant probability, denoted as P(KIM), that a miss kills the target.

Then the expected time to kill a target is given by 3 6

EfT] - E[Ta ] + E[Tfr ] + E[Tf]

{E[Th] + E[Tf]}{I-P(KIH)}{[1-P(KIM)][P(hjm)-pl] + pl

+ P(hlm) P(KIH){-P(KiMi)-+P(KIM) {1-P(hlh)[1-P(KIH)]}

{E[TmI+E[Tf1){l-P(KIM)}{l-P(hjh)+[P(hlh)-P 1 ] P(KIH)}

+ P(him) P(KIH) {I-P(KIM)}+P(KIM){I -P(hlh)[I-P(KIH)I}' (5.14.1)

which is a generalization of (5.8.2) given above and consequently is the most

general result given in this monograph for MARFOV-dependent fire. The above

expression (5.14.1) is readily developed by invoking Section 5.9's approach

of considering the mean first-passage time for the killed state in a con-

tinuous-time semi-MARKOV process: one simply replaces the transition prob-

abilities (5.9.4) by the following
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P1 3 " PxP(KIH),

P12 PIl - P(KIH)},

P1 3 ' (1-p 1 ) (1 - P(KIM)},

P21 " P(hlh) P(KIH)

P22 m F(hlh) {1 - P(KIH)I,

P23 " {1 - P(hlh)}{l - P(KIM)I,

P3 1 - P(hjm) P(KIH)

P32 ' P(hlm) (1 - P(KIH),

P3 3 ' {l - P(hlm)1{l - P(KIM)}, (5.14.2)

and substitute (5.9.5), (5.9.11), and (5.14.2) into (5.9.9) to obtain the

desired result for the expected time to kill a target.

Let us now turn to the case of burst fire. We will consider weapon-

system types that employ impact-lethality projectiles and have the capability

of burst fire. BONDER and FARRELL [17, pp. 107-108] have pointed out that

such weapon-system types can fire in a number of modes37

(Ml) repeated-single-shot-independevt fire,

(M2) repeated-single-shot-MARKOV-dependent fire,

(M3) burst fire (one long burst),

(M4) mixed-mode fire (repeated-single-shot-MARKOV-dependent fire until

first hit after which there is an immediate switch to burst fire

(one long burst)],
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and (M5) repeated-burst fire [multiple (short) bursts independently

fired].

Modes (Ml) and (M2) arc special cases of BONDER's model of MARKOV-dependent

fire discussed in Sections 5.4 and 5.5 above, while mode (M5) is conceputally

the same as mode (Ml), and consequently results for the expected time to kill

a target may be obtained for them by involing, for example 38 , (5.4.1).

In particular, VECTOR-2 (28, pp. 174-175] uses the following result for

repeated-burst fire [multiple (short) bursts independently fired]

E[T] - t + tB + PSBK (5.14.3)
a 1 a P Js

where

t is as previously defined,a

B denotes the time to fire the first burst after the decision

to engage the target has been made,

t denotes the time between the firings of any two successive bursts,s

p1
SBK denotes the probability of killing the target with the first burst,

and Ps denotes the probability of killing the target with any sub-
SEBK

sequent burst.

The simplest model for PSBK is to assume that all rounds within the burst

are independently fired, and then
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B nPSBK -1- (- SSK) , (5.14.4)

where n denotes the number of rounds in the burst and PB denotes the
3SK

single-shot hit probability for imy round in the burst (and is assumed to be

the same whether the round follows a hit or a miss).

For the mixed-firing mode (M4), using arguments similar to those

employed in Section 5.5, BONDER and FARRELL [17, pp. 108-113] have derived

the following expression for the expected time to kill a target

E[]-t+ tI + tf + (tm + t) !Pl

a~~ ~ 1 fPSfSK(jT

+ 1 - P(KIH) [th + tf + tb B , (5.14.5)
PSSK

where

tat tip tf, th, tm, Pi, and P(KIH) are all as previously defined

in Table 5.11,

P(h 1 1m) denotes the conditional probability of a hit following a

miss before the first hit has been obtained,

tb denotes the time between the firings of any two successive rounds

in the burst-fire model,

and B - B P(YIH) denotes the probability of killing the target
d SSK SSH

with any one round in the burst-firing mode and PB SHdenotes the

corresponding hit probability.
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Here BONDER and FARRELL [17, p. 109] have assumed that the hit probability

for any round in the burst is the same whether it follows a hit or a miss.

Mode (M3), firing one long burst, may be obtained as a special case of mode

(M4) by assuming

(Al) the time to fire every round except the first is tb, i.e.

th = tm = tb;

(A2) after the first round, the hit probability is constant, i.e.

P(h Im) - SB1PSSH;

and (A3) only the time of flight for one round need be considered.

It follows that under these conditions the expected time to kill a target

with one long burst is given by, i.e. (5.14.5) reduces to

1 - p1 P(KIH)1

E[T] - t + t1 + tf + tb (5.14.6)EIT ta B P(KIH)

which, if the first-round hit probability is the same as that for any sub-

sequent round, further reduces to

E[T] - t + t1 + t +t (5.14.7)

where PSSK " P P(KIH) and P P- = B
SK SH SSH SSH*
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Let us finally note here that data sources for not only all the

attrition-rate-coefficient expressions given in this section but also all

those given elsewhere in this chapter have to be discussed in the docu-

mentation on, for example, VECTOR-2 [28, pp. 173-175]. The interested

reader is directed to such places for further information about data sources

for computing numerical values for LANCHESTER attrition-rate coefficients.
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5.15. Maximum-Likelihood Estimation of Attrition-Rate Coefficients.

In the introductory section of this chapter we saw that there are two

general approaches for determining numerical values for LANCHESTER attrition-

rate coefficients:

(Al) use an analytical submodel of the attrition process to compute

the desirod numerical value,

and (A2) use "combat" data to compute a statistical estimate of it.

In the previous sections of this chapter we have considered in detail the

former approach based on using an analytical submodel, and in this section

we will briefly consider the statistical-estimation approach, which pre-

supposes the availability of (either actual39 or simulated) combat data

(recall Figure 5.1). In actual applications some type of "simulated-combat"

data (generated, for example, by a high-resolution Monte Carlo combat simu-

lation) is invariably used.

In this latter quasi-empirical approach, one uses the "combat" data

to compute statistical estimates of the attrition-rate coefficients (and

sometimes parameters contained in the coefficients). In general, there are

four principal statistical methods for computing such point estimates

(e.g. see BHAT (7, pp. 370-3711 for further details): (a) maximum-likelihood

estimation, (b) method of moments, (c) BAYES estimation, and (d) method

of least squares. Of these four methods, however, only the first one has

had any significant application in combat analysis (e.g. seee CLARK [24],
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(36, pp. 3-1 thrc dh 3-10], ANDRIGHETTI [2], STOCKTON [73], or GRAHAM [39]).

AccordLngly, we will consider only the maximum-likelihood-estimation approach,

which determines attriticn-rate-coefficient parameters from an appropriate

set of "combat" data by selecting their values to maximize the so-called

likelihood function corresponding to this data. Out approach here will be

to consider a simple example first, before examining more general (and com-

plicated) cases.

Consider now that we have run a Monte Carlo combat simulation and

have recorded the times at which casualties have occurred (and also the type

of each casualty). Let us run this stochastic simulation until a total of

K casualties have occurred. The total time that the simulation will have

been run is a random ,variable that we will denote as TK (with realization

t K). Let us also denote (for k - 1,2,...,K) the time (a r.v.) at which

ththe k:- casualty occurs as Tk (with realization t k). We will start the

battle at t - 0 by setting t 0 - 0. Our main assumption is that we will

consider that our "battle" data represents a sample from the MARKOV-chain

analogue of the deterministic LANCHESTER-type equations

d a with x(0) - x0
(5.15.1)

j - -b with y(0) - y( 1
dt

i.e. in the corresponding continuous-parameter MARKOV chai-L the transition

(casualty) probabilities are given by Prob[X casualty in small interval

of length At] - aAt and Prob[Y casualty in At] - bAt.

Let M(t) (a r.v. with realization m) denote the number of X

combatants at time t in the above stochastic combat model, and let N(t)
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I
(a r.v. with realization n) denote the number of Y combatants at time t

(see Figure 5.10). Furthermore, let us introduce the r.v.'s CX and

(with realizations c and cY) defined by

1 iif the kth casualty is an X
x combatant,

0 otherwise,

and

S1 if the kth casualty is a Y

y combatant,
Ck=

0 otherwise.

X Y x YFocussing now on the realizations ck and Ck, we have ck ck 0 with

cX + c - 1. For future purposes, we will let cTX denote the total numberck k Tk

of X casualties, i.e.

x K
" T Y . k (5.15.2)k-1

and, similarly,
KY MK Y

"CT I • c , (5.15.3)
k=l

with (of course)

K YC + cT = K (5.15.4)CT T

Eurthermore, although we will not need them right now, let us denote m(tk)
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M~t,•N(t )

m n

Figure 5.10. Schematic of combat interactions for stochastic

battle corresponding to the deterministic LANCHESTER-

type equations (5.15.1) for CIC attrition process.

Here a denotes the casualty rate of the X force

caused by the entire Y force.
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as mk (i.e. mk is the realization of the number of X combatants just

after the occurrence of the k!•casualty) and n(tk) as nk. In other words,

there are mk X combatants and nk Y combatants "alive" during the interval

[tk, tk+I) for k - 0,1,..., K-i.

X X Y YUsing the data t1, ... 1t, c 1, ... , cK, C1, ... , CK, we will now

develop statistical estimates, denoted as a and b, for the continuous-time

MARKOV-chain analogue of the LANCHESTER-type model (5.15.1) by the so-called

method of maximum-likelihood estimation. The observant reader will notice

that in this case the casualty streams are nothing more than two superimposed

POISSON processes, and consequently a and b will turn out to be given by

expressions equivalent to well-known results for the maximum-likelihood

estimator of a POISSON parameter. In very general terms, the maximum-likelihood-

estimation approach choses (based on the available data) the formulas for

the computation of a and t so that they give the greatest probability to

the observed combat outcome (see KENDALL [48, p. 178]). This maximization

is effected by considering the so-called likelihood function, which (in simple

terms) gives the probability of the observed realization of the stochastic

attrition process. The likelihood function, in turn, is constructed out of

the density functions for the times between casualties, since we should con-

sider the above combat data to be a random sample from these times. For

our stochastic attrition process, we may summarize the above maximum-likelihood

method as follows:

(SI) determine the probability density function (p.d.f.) for the

time to an X casualty (also that for the time to a Y

casualty),
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(S2) construct the likelihood function (i.e. the density

function for the observed sequence of events),

(S3) determine the values of the parameters a and b that

maximize the likelihood function (denote these maximizing

values as a and b).

We will ncw carry out the above three steps (Si) through (S3) to

determine maximum-likelihood estimators a and 6 for the LANCHESTER attrition-

rate coefficients for the continuous-time MARKOV-chain analogue of (5.15.1).

For step (SI), we consider the time to an X casualty from the occurrence

of the last casualty and develcp its p.d.f. For our constant-attrition-rate

coefficient continuous-time MARKOV-chain attrition model, the times between

casualties are exponentially distributed (see Section 4.7 above). Thus, if

we let S denote the time between any two consecutive casualties, then the

p.d.f. for this nonnegative random variable is given by

f s(s) - (a + b) e(a+b)s (5.15.5)

We now need to convert this p.d.f. for S into one for the time to the

occurrence of an X casualty from the occurrence of the last casualty (a r.v.

denoted as S X). This may be accomplished by multiplying (5.15.5) by

P[X casualtylcasualty occrs] (5.15.6)a + b '(.56
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I
which is just the probability that an X casualty occurs before a Y

one (see Section 4.7 above). Thus

f S(s) - PCX casualtylcasualty occurs) fs(s)

or

x (a+b)s (5.15.7)

Similarly

sy) "be-(a+b)s (.5.15.8)

We now turn to step ($2). To construct the likelihood function,

we observe that casualties have occurred at times tI, t,2  tK'
x y

there being a total of c x X casualties and cT Y casualties withT

X Y thcT + c - K. Consider now the occurrence of the k: casualty, which repre-

sents a transition from battle state (mk_], nk-l) to (mk,nk). If it

is an X casualty, there would be a contribution to the likelihood

thfunction of (i.e. the p.d.f. of the population from which the k- sample

of the time between casualties is drawn would be)

a exp[-(a-'b) {tk - tk-l}] ; (5.15.9)

while if it is a Y casualty, there would be a contribution to the

likelihood function of

b exp[-(a+b) {tk - tkll] . (5.15.10)

x x
Introducing the variables ck and Ck, however, we may write the
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th
contribution from the occurrence of the k-t casualty to the likelihood

function in both the above cases simply as

X Y

aCk bck exp[-(a+b) (tk - tk-l}] (5.15.11)

X
since (5.15.11) reduces to (5.15.9) when ck 1 1 and to (5.15.10) when

xV
ck f 0 (i.e. when c - 1). By the memoryless property of our continuous-k k

time MARKOV-chain attrition model, the times between casualties are indep-

pendent random variables, and hence the likelihood function for the observed

sequence of events is simply the product of all the independent contributions

(5.15.11), i.e.

x Y

K Ck Ck

L(a,b) H 1 a b exp[-(a+b) {tk - tk 1l]
k-1

or (from (5.15.2), (5.15.3), and a little manipulation]

X YcT c

L(a,b) - a b cT exp[-(a+b)tk] , (5.15.12)

where L(a,b) denotes the likelihood function depending on the parameters

a and b.

Finally, we reach step (S3), the determination of the estimates

a and b from maximization of the likelihood function (5.15.12). However,

instead of maximizing the likelihood function L(a,b) itself, one usually

maximizes its logarithm, since both maximum values occur at the same point

and the logarithm form is more tractable. Hence, we consider
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In L(a,b) - cTX In a + c Y In b - (a+b)tK (5.15.13)

The maximum-likelihood estimates a and b are then the values of a and

b that solve the problems

maximize in L(a,b) , (5.15.14)
a,b

where

CT + c Y- K.
TT

From (5.15.13) we see that the two-dimensional maximization problem (5.15.14)

[with (5.15.13)] factors into two one-dimensional maximization problems. Let

us now focus on determining the maximizing value for a. Computing

Xa T
aL --- tK , (5.15.15)

we find from aL/at - 0 that

X
cT
-a_ t K -0 , (5.15.16)

yielding
x

A C Ta - - (5.15.17)
tK

22
which is the desired maximizing value for a, since a In L/aa (a) < 0.

Similarly, differentiating (5.15.13) with respect to b and equating to

zero, we oLtain
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Y
b -T (5.15.18)
tK

The estimates given by (5.15.17) and (5.15.18) are the maximum-

likelihood estimates for the LANCHESTER attrition-rate coefficients a and

b in the continuous-time MARKOV-chain analogue of (5.15.1). They are also

intuitively appealing, since the casualty process can be considered as being

composed of two POISSON processes, the X-force casualty process and the

Y-force casualty process. The equations (5.15.17) and (5.15.18) then give

the estimates of the LANCHESTER attrition-rate coefficients a and b
x Y

from CT occurrences of an X casualty and cT occurrences of a Y

casualty in time tK9 which is the time for K total casualties to occur.

Let us now consider the same maximum-likelihood-estimation problem

for the MARKOV-chain analogue of deterministic FIF LANCHESTER-type

equations, i.e.

dx
d--r -ay with x(O) -x 0 ,

(5.15.19)

j . -bx with y(O) - yodt

Here the transition probabilities for the continuous-time MARKOV-chain

attrition process are given by PCX casualty in At] - anAt and

P[Y casualty in At] - bmAt, where m and n denote realizations of the

random variables M(t) and N(t), the numbers of X and Y combatants

at time t. In this case, for step (SI) we find that

fSx(s) - ane- (an+bm)s (5.15.20)
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I
and

f S(s) - bme(an+bm)s (5.15.21)

Step (S2) then yields that the occurrence of the kth casualty at tk makes

a contribution to the likelihood function of

X Y
Ck k

(ankI) (bmkl) - exp4-(an,_1 + bmkl) {tk - tkl}l]

whence the likelihood function itself is given by

X YK ck ck

L(a,b)- TI (ank_I) (bmk_I) exp[-(amk_,. +bmk_l) {tk- tkl}-] (5.15.22)
k-I

Computing the natural logarithm of the likelihood function

K K~
Xnm I1)

Xn L(a,b) - I Ck kn(an.kl) + c Xn[b
k-i k-i

K
- 1 (ank_l + bmk_I) {tk - tkk , (5.15.23)
k-l

we find in step (S3) that

XLn L CT K
9a a L T - nk-ltk - tk1}1 (5.15.24)

k-i

whence, setting the above derivative equal to zero, we obtain the maximum

likelihood estimate

Xc T
a - f (5.15.25)

[k-i nk-l tk - tk-l}

Similarly,
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Y
,K (5.15.26)

",k-l 'k-l{tk - tk-l1

The above results for maximum-likelihood estimates of attrition-

rate coefficients are characterized by their simplicity, i.e. explicit

results are easily written down. Let us now show that for nonautonomous

LANCHESTER-type combat, thist will always be true when the attrition-rate

parameters appear linearly. To see this, let us consider the continuous-

time MARKOV-chain analogue o:! the nonautonomous LANCHESTER-type equations

fdx_
dt A(xy) with x(O) - x0 ,j (5.15.27)

.dt - -B(x,y) 
with y(O) - yo "

In this case, the forward KOLMOGOROV equations for the stochastic evolution

of combat are given by (5.1.2), and the infinitesimal transition prob-

abilities are given by P[X casualty in At] - A(m,n)At and P[Y casualty in At]

- B(m,n)At. As usual, ta and n are realizations of M(t) and N(t), the

numbers of X and Y at time t in the stochastic battle (see Figure 5.11).

We will now consider the special case in which the attrition-rate parameters

appear linearly in A(m,n) and B(m,n). When the attrition-rate coefficients

a and b appear linearly in the attrition rates A and B, we may write

A(m,n) - aga(mn), and B(m,n) - bgb(mn) . (5.15.28)

In this special case of interest, calculations similar to those given

above yield that
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A (m, n)
MMt) _ _ _ N(t)

B8(m, n)

Figure 5.11. Schematic of combat interactions for stochastic

battle corresponding to the deterministic

nonautonomous LANCHESTER-type equations (5.15.27).

Here A(m,n) denotes the. casualty rate of the

entire X force with m combatants caused by

the entire Y force with n combatants.
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x
CTi = T (5.15.29)

kn l a( k-l'nk-l) (tk -tk-11

and
Y

C T, (5.15.30)
k-.1 gb(mN-l' nk_1) ltk'tkI}

Thus, when the parameters to be estimated appear linearly in the attrition

rates, very simple estimates result. Furthermore, all our previous results

are just special cases of this one. We have presented these special cases

first, however, in order to show the reader the basic idea of the maximum-

likelihood method without his being overencumbered with notation the

first time.

In all the above developments, we have had the same stopping rule

th
for collecting our combat data: data was collected until the K- casualty

occurred. Let us now suppose, however, that we collect data (or run our

"combat experiment") for a specified length of time tf or until one side

or the other has been annihilated. Again, let us say that K casualties

have been observed at times ti, t 2 , ... , tK. We have then that

tK tf , (5.15.31)

K K-

KC no (5.15.32)
1 k -<mO k

k-l k-l

and (5.15.2) through (5.15.4) again hold. Here mo and no denote the

initial numbers of X and Y combatants. Furthermore, we will now con-

sider the general continuous-time MARKOV-chain attrition-process model

(5.1.2) (again, see Figure 5.11), with infinitesimal transition probabilities

P[X casualty in At] - A(m,n)At and P[Y casualty in At] - B(m,n)At.
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In this case, there will be an additional contribution to the likelihood

function of

exp(-{A(mK,nK) + B(mK,nK)){tf- tKY] , (5.15.33)

when t f > tK, i.e. when neither side is annihilated before tf, Accord-

ingly, the likelihood function for the observed sequence of casualties

is given by

.[ x yKck ckL = K {A(mklak_ 1)} {B(mk_,a-l'n c k)

k-l

x exp[-{A(mkl,nkl) + B(mk.l'nk-l)}{tk-tk-11

x exp[-{A(mK,nK) + B(mK'nK)}{tf-tK}] , (5.15.34)

where (5.15.2) through (5.15.4), (5.15.31), and (5.15.32) hold. The

nataral logarithm of the likelihood function is then given by

K K
In L - [ ck In A(mk l,n1 + c ckZnB(mkl,nkl)

k-i k-I

K
- [ {A(n._2,nk_) + B(mk l )}{tk - tkl}

k-l

- {A(mK.nK) + B(mK,nK)I{tf - ti , (5.15.35)

and hence when (5.15.28) holds we find tnat
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c
.. cT

a = K+ 8 (5.15.36)
"k-i ga(mk'-l'nk-1)( tk-tk-l}

and y
CT (5.15.37)

- gmk-l '_,nk-l){ tk-tk-11

where tK+l - tf. We also have that tK - tf if and only if either

or Ck a no, i.e. if and only if either side is

annihilated before tf* Thus, we see that the maximum-likelihood estimate

of a LANCHESTER attriton-rate coefficient depends (slightly) on the circum-

stances under which the combat data has been collected, although for the

stochastic analogue of (5.15.1) we have that, for example,

a - (total number of X casualties)/(total length of time that battle has

been observed).

If we had J replications of the "combat experiment," we would

redefine our notation as follows:

tj- time of occurrence of ! casualty in J- replication,
k caubr fXcobtn s dualyin -replicationl

k - number of X combatants "alive" during the interval

ti, .k+l)

ni number of Y combatants "alive" during the interval

(ti, t1

k' k+l

and K - total number of casualties on both sides for the I_

replication of the battle.

It then follows [say for the second stopping rule and the model (5.1.2)
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with (5.15.28)] that, for example,

(CT)all replications
a-J-l~k 21. ga(k nk _) {tw; t 0-l (5.15.38)

where (Ca denotes the total number of X casualties
whee (T) all replications

for all replications of the "combat experiment."

We will wrap up this section by briefly sketching historical develop-

ments and possible future trends in the use of maximum-likelihood estimation

of attrition-rate coefficients in combat analysis. This approach has been

intimately related with the idea of hierarchy of models (see Section 7.20)

in which the output data from, for example, a high-resolution combat model

of small-unit operations is used as input data to a low-resolution combat

model of large-unit operations (again, refer to Figure 5.1).

Although the concept of a hierarchy of combat models has apparently

been on the minds of a number of military OR workers in the United States

since at least about the mid-1950's, recent interest in the United States

and an accompanying analytical framework apparently dates from the Ph.D.

thesis of G. Clark (24] in 1969 (see also [25]). He developed a satellite

model [called the COMAN (CObat ANalysis) model] that must be used40 in

conjunction with a high-resolution combat-simulation model (usually Monte

Carlo type) in order to interpolate/extrapolate the results of the higher-

resolution model (in terms of numbers and types of casualties for a

given force mix or mixes) to other force mixes not explicitly evaluated

by the high-resolution model. The COMAN model was a stochastic LANCHESTER-

C. type heterogeneous-force combat model (i.e. the continuous-time
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MARKOV-chain analogue of certain de.-erministic heterogeneous-force

LANCHESTER-type equations) and involved the following two modifications

of the then existing LANCHESTER combat theory (see CLARK [24, pp. 139-1641

for further details):

(Ml) incorporation of weapon-system target-acquisition

capability into the model through introduction of the

probabilities that a target is unacquired by an enemy firer,

and (M2) introduction of target priorities.

The former modification (MI) was implemented through the introduction of

target-acquisition probabilities, which then were used to modify (i.e.

degrade) the inherent kill capabilities of weapon-system types, while

the latter modification (M2) was implemented through the input of two

target-priority lists (every weapon-system type on a particular side had

the same target-priority list) and the modelling of the engagement of

41target tyres with priorities . Let us now examine in greater detail how

this former aspect [i.e. modification (Ml)] was handled. For siuplicity,

we will consider a constant-parameter homogeneous-force version of

CLARK's COMAN model.

CLARK's (24, pp. 157-158] basic idea for incorporating weapon-system

target-acquisition capabilities into the LANCHESTER paradigm42 may be

seen by considering the MARKOV-chain model (5.1.2) (see Figure 5.11 again)

with total-force kill rates given by
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A(m,n) = a{l - (pxy)m}n , B(m,n) - b{l - (p.x)n}m (5.15.39)

where

a denotes the kill rate for a single Y weapon system having

acquired targets at which to fire,

a specific X target is unacquired
PXY " P [by an individual Y firer

and b and pYX are similarly defined for the X force.

Here, for example, a denotes an acquisition-independent attrition-rate

coefficient and represents the "inherent" kill capability of a single Y

firer in the sense that it is his kill rate when one or more enemy targets

are available for him to fire at (i.e. there are acquired targets at which

he can fire).

The total-force kill rates (5.15.;)) may be developed in the follow-

ing manner. One assumes that the total-force attrition rate for each side

is equal to the sum of the individual firing-weapon kill rates for the

opposing force. Interactions due to multiple firers attacking a single

target are neglected by this assumption. Consider now, for example, a

single Y firer engaging X targets of which there are a total of n

at time t. The probability that this firer has one or more X targets

at which to fire is given by 1 - (pxy)m, whence it follows by the above

additivity assumption that the Y-force kill rate A(m,n) is given by

(5.15.39). Furthermore, it is readily shown that when targets are easy

to acquire (e.g. pKY is near 0), then A(m,n) is very near3y given by
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an (i.e. the X-force attrition rate is proportional to only zhe number of

enemy firers as in LANCHESTER's equations for modern warfare). Also, when

targets are difficuit to acquire (e.g. pXY is near 1), then A(m,n) is

very nearly given by amn (i.e. the X-force attrition rate is proportional

to the product of the numbers of firers and targets as in LANCHESTER's

equations for area fire). Thus, we should think of (5.15.39) as a general

attrition-rate model that incorporates weapon-system target-acquisition

capabilities into the model and reduces to those corresponding to LANCHESTER's

classic formulations in the above two important limiting cases. From an

examination of DYNTACS43 data CLARK [26] fou.'d that the probability of a

target being unacquired is quite sensitive to the nature of the terrain

profile between the opposing forces. This terrain profile can change abruptly

and cause the target-acquisition probabilities to appear as almost discon-

tinuous functions of battle time.

CLARK's idea of the COMAN model was adopted by the Research

Analysis Corporation (RAC), which later became part of General Research

Corporation (GRC), and evolved44 into COMANEX (COMAN EXtended), which (like

COMAN itself) was composed of two basic sub-programs: the pre-processor

and the simulator (see CLARK [24] or [36] for further details). Figure

5.12 shows how these programs were used, with CARMONETTE serving as the

high-resolution model.

Data for weapons characteristics, combat environment, mission,

etc. for a particular mix of opposing forces were input into CARMONETTE.

CARMONETTE was then run for a specified number of replications of the

battle. The computer program then output (for each replication) a
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COMANEX Extrapolation Process

e! !

HTR PRE -PROCESSOR

MIXES OFSIMULATORN WTAPONS TO

KILLER /CASUALTY MATRICES BY TIME PERIOD

Figure 5.12. Implementation of the COMANEX model (from [36]), which

ias an example (apparently the first to be developed in

the United States) of the fitted-parameter analytical

model (see Figure 5.1). The COMANEX model was composed

of two basic sub-programs: the pre-processor and

the simulator, with CARMONETTE serving as the high-

resolution model for generating input data to the

pre-processor.
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time-sequenced casualty history, with the time at which each casualty

occurred (as well as the casualty type and the killer type) being given.

This output was, in turn, input into the COMANEX pre-processor. This

pre-processor massaged the data and output a set of values for LANCHESTER

attrition-rate coefficients, which represent the kill rates fcr each

firer/target combination on the battlefield. The values for these

attrition-rate coefficients were then stored in the COMANEX simulator

to be subsequently used in predicting the outcomes of battles involving

force mixes "close" to the original mix (i.e. mixes involving the same

types but different numbers of weapons).

The force mixes to be analyzed were then specified and input into

the simulator. In practice, for test purposes, the first such mix was

usually the original one from which the values for the LANCHESTER

attrition-rate coefficients were determined. The simulator was exercised

for up to 100 replications of the battle. It output the expected results

of the battle in the form of killer/casualty matrices which listed the

number of casualties (averaged over all replications) by time period,

for each of the target types, and for each of the killer types. After

it was verified that the simulator indeed reproduced the results of the

original CARMONETTE run, the remaining force mixes were processed, and

their expected outcomes were listed (again in the form of killer/casualty

matrices). COMANEX was used in this fashion in a number of analyses for

the U. S. Army (e.g. see (32]).

Later the same general idea was used by a U. S. Army systems-

analysis agency called TRASANA (TRADOC Systems ANalysis Activity) with a

few further modifications in the form of COMANEW [COMAN (N)EW].
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Target priorities and target-acquisition probabilities were eliminated

and replaced by heterogeneous-force allocation factors (see Section 7.7),

and also ammunition expenditure was explicitly considered (see GRAHAM

(39] for further details). Quite encouraging results have been reported.

Future trends would appear to be centered around the use of

further additional functional forms for attrition-rates in this satellite-

model approach. The theory of this approach has now been rather fully

developed, and the author anticipates that future activities will be

centered around computational work and that further computational results

will be reported, especially as to which functional forms for LANCHESTER-

type attritiun rates give the "best" results. It is surprising, however,

that there have been so few resultn reported so far about which forms

for LANCHESTER-type equations are at least not inconsistent with simulated

combat results generated by high-resolution Monte Carla simulations.
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5.16. Attrition-Rate Coefficients for Heterogeneous-Force Combat.

The modern battlefiald contains many different weapon-system types

that operate together with complementary capabilities as "combined-arms

teams." For example, there might be both mounted and dismounted infantry,

infantry with rifles, infantry with machine guns, tanks, different types of

anti-tank weapon systems, artillery, mortars, other types of fire-support

systems, etc. Since each of these various different weapon-system types would

generally inflict and sustain casualties at different rates, when one wants

to model the attrition process for combat between such combined-arms teams,

one is obliged to keep track of the number of each type of casualty and

consider combat between heterogeneous forces.

For such heterogeneous-force combat, the natural generalization of the

homogeneous-force FIF deterministic LANCHESTER-type attrition process may

be written as (see Section 7.7 for further details)

dxi n 0

d-- -l Ajyj with xi(O) - xi

(5.16.1)

dy m0
dt I B with yx(0) ( Y0

i-wh

where xi(t) (for i - 1,2,...,m) denotes the number of the i17 weapon-system

type of the X force at time t, B denotes the rate at which one Xi firer

kills Y targets45, and the quantities y (t) (for j - 1,2,...,n) and

Aij are similarly defined for the Y force (see Figure 7.11). Here (as

in Section 7.7) we will always let the subscript i refer to the X force
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(and take on the Jntegez values 1 through m) and the subscript j refer to

the Y force (and take on the integer values 1 through n). We will call

a nonnegative quantity such ds, for example, Aij d heterogeneous-force

LANCHESTER attrition-rate coefficient. It represents the fire effectiveness

of a Y firer againar Xi targets and denotes the rate at which a typical

Y firer kills Xi targets in the opposing heterogeneous enemy force (see

Figure 5.13). BONDER and FARRELL (17] (see also Section 5.3 above) have

argued that one should take such a heterogeneous-force LANCHESTER attrition-

rate coefficient to be given, for example, by

Aij - ] , (5.16.2)ij [Tx yj
ii

where E[TX y ] denotes the expected time for a single Y firer to kill
ii

an Xi target. As we have stressed above, the development of credible

methodology for computing numerical values for such LANCHESTER attrition-rate

coefficients has greatly facilitated the use of LANCHESTER-type combat models

as viable defense-planning tools.

Heterogeneous-force attrition-.rate coefficients such as Aij and

B j in the model (5.16.1) reflect a much greater complexity in the attrition

process than do homogeneous-force attrition-rate coefficients such as a and

b in the model (5.2.1): besides being complex functions of weapon-system-

type capabilities and target-type characteristics, the attrition-rate

coefficients Aij and Bj, also depend on additional operational factors

such as the distribution of target types, relative rates of target-type

acquisition for the various different types of firer-target pairs, procedures
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Figure 5.13. Schematic showing notation con~Tention for subscripts

on attrition-rate coefficients in heterogeneous-force

combat. Our convention is that the first subscript
denotes the target type and thu second subscript
denotes fiter type, e.g. Ai denotes the rate at

A ii

which a typical Yj firer kills Xitar gets in
the opposing enemy force.
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I
and priorities for assigning weapon-system types to target types, etc. In

other words, not only must one consider how a given weapon-system type causes

attrition to a particular engaged-enemy-weapon-system type (as one does in

modelling homogeneous-force-on-force combat attrition), but also one must

account for different such pairings occurring at different times and places

on the battlefield and also possible changes in these pairings over time.

Thus, attrition-rate coefficients for heterogeneous-force combat must reflect

much greater complexities of the attrition process than those for homo-

geneous-force combat. It is of fundamental importance, though, that all

approaches known to this author for modelling heterogeneous-force attrition-

rate coefficients take homogeneous-force results [e.g. (5.4.1)] as key

"building blocks" for constructing their heterogeneous-force results. Thus,

although there will occasionally be some minor modifications, we will use

(in the appropriate way) all the above homogeneous-force-attrition-rate-

coefficient results for developing heterogeneous-force attrition-rate

coefficients.

It is convenient for modellins attrition-rate coefficients (e.g. see

BONDER and FARRELL [17, pp. 15-16] or CHERRY [21, pp. 6-7]) to reflect such

complexities of heterogeneous-force combat as discussed above by partitioning
46

the attritionprocess into four distinct subprocesses 4

(SPl) the fire effectiveness of weapon-system types firing at

live targets,

(SP2) the allocation process of assigning weapon-system zypes to

target types,
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(SP3) the inefficiency of fire when weapon-system types engage

other than live targers,

and (SP4) the effects of terrain on limiting firing activities of

weapon-system types and on the mobility of the systems.

Two general ways in which these effects have been included in LANCHESTER

attrition-rate coefficients are as follows: to model such a coefficient as,
47

for example,

(WI) Ai - 0ijfljaij , (5.16.3)

or (W2) A M F~ ( all other variables describing the (5.16.4)or (W2) ij i= Fij i' acquisition and engagement of targets)' (.64

where

*ij denotes the allocation factor (the fraction of Y assigned

to engage Xi)

aij denotes the "inherent" single-firer weapon-system kill rate

(the rate at which one Y firer type kills Xi target types

when it is engaging only them),

fY denotes a factor aggregating the effects of all other variables

that are not included in the "inherent" single-firer kill rate

aiJ and modifying the effectiveness of an individual Y

firer type against Xi target types,
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FY denotes a function that yields the attrition-rate coefficient for a Y

firer type engaging Xi target types (with arguments as indicated),

and CLj denotes the conditional single-firer weapon-system kill r&tE

(the rate at which one Yj firer type kills acquired X

target types when it is engaging them).

The reader should note the distinction between the "inherent" single-firer

kill rate a j (the rate at which one Yj firer type kills Xi target types

when it is engaging only them) and the single-firer kill rate against acquired

targets aej (the rate at which one Yj firer type kills acquired Xi

t-arget types when it is engaging only them). In other words, aij -, ij when

the time to acquire a target is equal to zero. The "inherent" single-firer

kill rate for a particular firer-type/target-type pair ajj may be calculated

by using data for the pair together with the appropriate attrition-rate-

coefficient formula given above. For the reader's convenience, we have

summarized in Table 5.V the conditions under which such formulas have been

developed and have also cited the equation number for each such formula given

above. The conditional single-firer kill rate (i.e. the single-firer kill

rate against acquired targets) for a particular firer-type/target type pair

OiJ may then be calculated by setting the time to acquire a target equal to

zero in the appropriate expression for aij. For example, the conditional

single-firer kill rate for a weapon-system type using MARKOV-dependent fire

and an impact-lethality mechanism is given by

1 {E[Th] + E[Tf]}
a i- E[T fr] [Th' +i P(KIH)

+ {E[TJm + E[Tf]} D (1 - P(hlh)] + P(hth) -p (5.16.5)
POWlm P(KIH)p 1 (165

153

-A-,-' •. . . • . . . • - •. .. •'I



TABLE 5.V. Summary of Conditions Uuder Which Expressions for LANCHESTER

Attrition-Rate Coefficients Have Been Developed, With Equation

Number of Each Expression Given.

(Cl) MARKOV-dependent fire and impact-lethality mechanism (5.8.2)

(C2) MARKOV-dependent fire and lethality mechanism by which a target

can be killed not only by a hit but also by a miss (5.14.1)

(C3) burst fire and impact-lethality mechanism (5.14.2) or (5.14.3)

(C4) multivolley fire and area-lethality mechanism48 (5.13.3) or

(5.13.19).
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where all symbols are as defined in Section 5.8.

Before providing a few selective detailed results on the modelling

of heterogeneous-force-attrition-rate coefficients Aij in the two general

forms (5.16.3) anid (5.16.4), we will present a brief overview of this entire

49
field4. The model (5.16.3) and the corresponding form of (5.16.4) [namely,

Au - f•iYfiji] have received by far the widest use. Let us note here

that the heterogeneous-force model presented in Section 7.7, i.e. (7.7.3),

corresponds to (5.16.3) with f Y - 1. In other words, in Section 7.7 we
ij

have developed a heterogeneous-force model with50

Aij - *ijaij . (5.16.6)

The modelling of attrition-rate coefficients Aij by the expression (5.16.3)

has been used in operational models such as (at the battalion level of combat)

BONDER/IUA [18] and its many derivatives (e.g. AIRCAV [85], BLDM[5], AMSWAG [41],

FAST [19]) and (at the theater level of combat) IDAGAM [1; 67] (see also

TAYLOR [74-78; 79, pp. 797-800]). The modelling of attrition-rate coefficients

Aij by the expression (5.16.4) and its special form

Au = gcii (5.16.7)

has been used in operational models such as (at the battalion level of combat)

COMAN [24; 25] and its derivatives COMANEX [36; 73] and COMANEW [39] (see

also R. M. THRALL et al. [82]) and (at the theater level of combat) the
Y

VECTOR series of models [28; 54; 86; 87]. Here giJ denotes a factor
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Y
(similar to f in (5.16.4)] aggregating the effects of all other variables

that are not included in the conditional single-firer kill rate a J and

modifying the effectiveness of an individual Y firer type against XI

target types. COMAN and its derivatives have used (5.16.7), while VECTOR has

used the nonlinear form (5.16.4).

We will now provide a few selective detailed results pertaining to the

above brief overview. In the BONDER/IUA [18] and its many derivatives such

as AIRCAV [85], BLDM [5], AMSWAG [41], and FAST [19], the first three sub-

processes (SPI) through (SP3) given above are incorporated into an attrition-

rate coefficient such as Aij as follows (see also Section 7.7):

Aij - iijaij (5.16.8)

where •'j and aij are as defined after equation (5.16.3) and (5.16.4),

and I denotes the intelligence factor (the fraction of those Y*
ij

allocated against Xi who are actually engaging live Xi target types). This

intelligence factor, however, has not been considered in any applications at

least through 1975 (see CHERRY [21, p. 7]), i.e. IY - 1.0 for all i and j

and hence (5.16.8) reduces to (5.16.6). A submodel based on target-acquisition

considerations is used to calculate the allocation factors *iJ. The pro-

cedure used in the original version of BONDER/IUA is similar to that used

51in AMSWAG and discussed below . In the AIRCAV and BLDM models the factors

were calculated based on parallel acquisition of targets52 and a target-prioity

list (inwhich more than one type of target was allowed to be tied at the

same level of priority to a firing weapon-system type). In actual computation,
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an algorithm based on a simplifying approximation was used to compute

numerical values for such allocation factors (see [85, pp. 29-32] or [5,

pp. 111-6 through 111-81).

In the AMSWAG [41] model attrition-rate coefficients are modelled as

Aij - *iPjUjaij (5.16.9)

where U denotes the fraction of the firer-type Y that are unsuppressed.

Submodels are used for

(a) the suppression factor U [41, pp. 15-17],

and (b) the fire-allocation factor * [41, pp. 18-21].

We will now discuss in detail the fire-allocation submodel used in AMSWAG.

The following factors influence which target types will be engaged by

a particular firer type in AMSWAG and what allocation of fire they will

receive
5 3

(FI) target-type priority,

(F2) range to target,

(F3) intervisibility,

(F4) round choice,

and (F5) target-type acquisition.
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In AMSWAG each firing weapon-system type has its own target priority scheme

which allows different target types to have the highest priority at various

ranges. An example of one such firer-type target-priority scheme is shown in

Figure 5.14. It is assumed that a firer type will attempt to allocate its fire-

power against the enemy target type currently having the higher priority, with

the closest target not necessarily having the highest priority (see Figure 5.14).

However, if two potential targets are of the same type, the one at the shortest

range always has the higher priority. Besides being an important factor in

target priority, the range (distance) between firer and target also determines

firing feasibility, i.e. no firing event can take place beyond the specified

maximum effective range of the firing weapon-system type. Moreover, no target

(regardless of priority or proximity) can receive any fire allocation if line

of sight from the firer to that particular target (i.e. intervisibility) does

not exist. However, if line of sight does exist, the fact that a target is

seen either partially exposed or fully exposed does not affect either the

target's priority or its allocation.

The availability of ammunition of the appropriate type also influences

the allocation of fire in AMSWAG: a proper round choice must exist before a

firer type can allocate its fire against a particular target types. Round

choice is modelled for each firer-type--target-type combination by a table

of first and second choices of rounds at both short and long ranges, plus a

threshold range used to determine whether the current firer-target range

will be classified as either short or long (see Table 5.VI). If for some

reason the first choice of roumd type cannot be fired, the model tries to

carry out the firing event with the second-choice round type. If neither

round type can be fired, the target type receives no allocation of fire
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during this time interval. [Here the term time interval refers to the fact

that the battle has been segmented into a large number of small time steps

(i.e. intervals) for computational reasons as per the numerical inte-

grat:Lon of the LANCHESTER-type attrition equation" (see Appendix E, especially

Figure E.1).] Currently in AMSWAG, there are two reasons why a particular

round type might not be used: (1) the particular firer type does not have

available that type of round, and (2) the firer is moving and that type of

round cannot be fired from a moving platform. Thus, a target type will

receive an allocation of fire only when all the following conditions have

been met:

(Cl) the firer type has not allocated more thau ninety-eight

percent of its firepower;

(C2) the target type is the highest priority target type that has

not already received an allocation;

(C3) the target type is within the maximum effective range of the

firer type;

(C4) line of sight exists;

and (C5) a proper choice of round type exists.

Finally, targtt-acquisition probabilities determine ia the following way

exactly what the allocation by a firer type against a particular target

type will be when all the above conditions have been met. The cumulative
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thdetection probability for each firer type (say the it-) against each target type

(say the j--.) is computed at each time step since the existence of intervisibility.

If we let Pij denote this cumulative detection probability, then in such an

"expected-value" model as AMSWAG p is interpreted as representing the

th tfraction of the i-ýh firer type that has detected the j-tl__ target type. Then

th ththe fraction of fire allocated by the i-! firer type against the J- target

type cannot exceed Pij times the unallocated portion of the firer type's fire.

A firer type continues to allocate its fire until it runs out of target types

or has allocated more than ninety-eight percent of its firepower (see HAWKINS

[41, p. 21] for further details).

In IDAGAM (1; 67] attrition-rate coefficients are also modelled by

(5.16.6), but completely different submodels are used to compute the "inherent"

single-firer kill rate a j and the allocation factor *iJ than are used

in BONDER/IUA. The "inherent" single-firex kill rates are computed according

to the heterogeneous-force version of (5.2.4) (but at a much lower level of

resolution than that of a fire fight considered in BONDER/IUA), while a sub-

model based on the concept of a "standard force" (see SHUPACK [67, pp. 45-491

for further details) is used to determine the allocation factors. Tlese are

computed, for example, for the Y force by

SF I atl_

*ij " m S (5.16.10)SF JXL(t)

) SP
i-l

where xSF denotes the ntimber of Xi weapons in a standard force, SF

denotes the fraction of Y weapons that would fire at Xi targets if X
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were the standard force, xi(t) denotes the number of Xi weapons in the

sector (or geographical region of interest), and the 6ummation extends over

all weapon-system types iu the sector. Thus, the allocation factors used in

IDAGAM are internally computed based on what the allocation of fire by each

weapon-system type in the given force would be against each opposing weapon-

system type in a standard force and corrected by the relative force compositions.
SF SF

Both xSF and 1i are externally determined and are inputs into IDAGAM.

Thus, the fraction of fire allocated by a weapon-system type against an enemy

weapon-system type in an opposing force is roughly proportional to what would

be allocated against the standard force but modified by the relative force

composition of the actual opposing force. The denominator of (5.16.10)

insures that I i 1.0.

As noted above, both the COMAN model [24; 25] (and its derivatives

COMANEX (36] and COMANEW [39]) and the VECTOR series of models (28; 54; 86; 87]

(in particular, VECTOR-2) use the conditional single-firer kill rate aij

to calculate the attrition-rate coefficient A ij. COMANEX [73] considers

target priorities and computes attrition-rate coefficients according to

H

Au - (px) 11 - (px) aij (5.16.11)

where

S[ a specific X target is unacquired 1
Px L by an individual Y firer J

x denotes the number of X1  targets, and xi denotes the number of

surviving X weapon-system types of higher priority than X Let us now

introduce Si denoting the set of Indices of all target types having a
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higher priority than Xi. It follows that x• -0k E Si xk" The parameters

PX and aij are calculated as maximum-likelihood estimates from simulated

combat data gemerated by a high-resolution Monte Carlo simulation such as

CARMONETTE [36] (see Section 5.15 for further details). For a closely related

alternative approach, see THRALL et al. [82, pp. 99-104]. COMANEW computes

attrition-rate coefficients according to [cf. (5.16.6) above]

Aij - ,ij aij 9 (5.16.12)

where both factors (i.e. *P and a ) are estimated from simulated combat
ii ii

data by the maximum-likelihood method (see [39] for further details).

VECTOR-2 [28; 54] also considers the conditional single-firer kill

rates axj and uses different formulas to compute the attrition-rate coeffic-

ients Aij according to whether the target-acquisition process is done in

series with or in parallel with the killing of acquired targets 54. Thus, the

two major factors determining the numerical value of an attrition-rate

coefficient in VECTOR-2 are

(Fl) the acquisition and selection of targets,

and (F2) the conditional single-firer kill rate against acquired

target types, aij1

The acquisition and selection of targets in VECTOR-2 is conceptualized as

consisting of the following three processes:
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(P1) the line-of-sight process, which determines whether a given

target type is visible or not to a particular firer type,

(P2) the target-acquisition process, which determines the time for

a firer type to acquire a particular target type,

and (P3) the target-section process, which represents how a particular

target type is selected for engagement from among those

acquired.

The interaction of these three processes depends on whether target acquisition

is done in series or in parallel. In both cases each firer type orders all

opposing enemy target types into a priority list, which the model uses to

determine which target types are to be engaged first.

In serial acquisition in VECTOR-2 the acquired target type of highest

priority is engaged by a particular firer type until it has been destroyed

or until line of sight has been lost. At this time the serial acquirer

must acquire a new target. Moreover, past acquisitions are not remembered

by the serial acquirer. Also, in searching for a new target, the timeliness

of acquisition is given consideration through a series of search-cutoff

times. When there are m target types, the selection of the next target

thtype involves a sequence of (m-1) search-cutoff times. Prior to the k-

cutoff time (where k < m), the observer looks for only target types of

priorities 1 through k and ignores any lower priority targets. If the

observer has not acquired a target by the (m-l)st cutoff time, he will
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then engage the first target acquired (regardless of its priority). Once a

target is acquired in serial acquisition, it cannot be preempted by a higher

priority target, and only its destruction or loss of line of sight can cause

fire to be shifted away from it. In parallel. acquisition search for new

targets continues even during the engagement of acquired targets. When the

target has been destroyed, a higher priority target type has been acquired,

or line of sight has been lost; fire is instantaneously shifted to the

highest priority acquired enemy target type. A parallel acquirer does

remember all past target-type acquisitions. It should be noted here that these

two different conceptual models of target acquisition lead to two completely

different expressions for the LANCHESTER attrition-rate coefficient: the

attrition-rate coefficient for serial acquisition may be developed using the

mean-first-passage-time result given in Section 5.9 for a continuous-time-

semi-MARKOV process, while that for parallel acquisition may be developed by

straightforward probability arguments.

The following is a summary of the assumptions made in VECTOR-2 con-

cerning target-type acquisition and selection in maneuver-unit combat (28;

pp. 53-54]:

(Al) the time to acquire a target, given that it is continuously

visible, is an exponentially distributed random variable with

parameter XijV where i is an index denoting the weapon-

system type of the target and j is an index denoting the

weapon-system type of the firer;
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S
(A2) the line-of-sight process between a pair of opposing weapon-

system types is an alternating MARKOV process with two states

-- visible and invisbile;

(A3) the line-of-sight process for an observer-target pair is inde-

pendent of that for all other pairs;

(A4) there are two modes of acquiring targets; an observer using

the parallel mode acquires targets continuously, even while

engaging other targets; an observer using serial acquisition

can acquire only between engagements of targets;

(A5) when an observer in the parallel mode acquires a target of

higher priority than the one being engaged, he shifts his fire

instantanteously to the target of higher priority;

and (A6) an observer in the serial mode selects a new target whenever he

loses line of sight to the previous target or the previous

target is killed (the model assumes that the firer can perfectly

distinguish between active and killed weapon systems and never

engages killed systems); there is a sequence of cutoff times

to limit the time spent searching for certain target types,

thsuch that prior to the n-- cutoff time only weapon-system

types of priorities 1 through n are eligible as targets.
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Thus, the target-acquisition-and-selection process transforms a Y

thweapon-system type's (say the j-h) kill rates against acquired X target types

(a j for i - 1,2,...,m) into an achieved kill rate against a particular enemy

target type (say the i-=-) Aiu that accounts for target priorities and the

various competing activities in which a single firer may be engaged over time.

Moreover, the amount of attrition actually assessed against a force is limited

by a tactically acceptable maximum attrition rate (see [28, pp. 54-55] for

further details). We will now give attrition-rate-coefficient results for

the two cases

(CAI) serial acquisition of targets,

and (CA2) parallel acquisition of targets.

For the former case (CAl), it is additionally assumed for the derivation of

an expression for Aii that the time to kill an acquired target is exponentially

distributed (with parameter aij, where i is an index denoting the weapon-

system type of the target (here X i) and j is an index denoting the reapon-

system type of the firer (here Y )]. Also, in VECTOR-2 the ma•ii£um number of

weapon-system types in a maneuver element is currently 11, i.e. within a homo-

geneous portion of the battlefield m - n - 11 where m and a are X-

and Y-force integer index limits appearing in (for example) summations below.

For serial acquisition of targets in VECTOR-2, the heterogeneous-force

LANCHESTER attrition-rate coefficient Aij is taken to be given by
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A - ij 11 (5.16.13)Aij m s 1 1

E[TkiI+ 1
k-l j + 1ij A kj

where

Fa group-i target (here X i) being fired upon a acquired
hi W p by a group-j firer (here Y ) will be destroyed by that

firer before either line of sight is lost or the target

is destroyed by another firer.

P p r a group-J weapon which employs serial acquisition acquires ]L and selects a group-i target type when it selects a target

E[Tia] - expected time on a given acquisition that a group-J weapon spends
ij asacquiring and selecting a group-i target [here Tij - 0 if the

acquisition is of a non-group-i target; also if Tas > 0 for

some i, then T a 0 for all other i],

ii
1

expected time that a group-j weapon firing at a group-i target
a iJ requires to achieve a kill, i.e. the single-firer weapon-system

kill rate against an acquire target [it should be recalled that

the corresponding time to achieve a kill (a r.v.) has been assumed

to be exponentially distributed with parameter aij],

- expected time that a weapon system in group i spends in the visible
state (for a weapon in a group J) each time that it enters that

that state [it is assumed that the corresponding time (a r.v.)

is exponentially distributed with parameter uij],

-corresponding value for the invisible state,

nilj
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and - expected time for any firer other than the single group-j firer
A ij in question to kill a particular target in group i.

In somewhat simpler words, Pij denotes the selection probability of an X i-type

target by a YJ-type firer, and h ij denotes the corresponding destruction

probability. The above expression (5,16.13) was developed by taking the

LANCHESTER attrition-rate coefficieat to be the reciprocal of the expected time

to kill a target and then by involing BARLOW's [4] mean-first-passage-time

result for a continuous-time semi-MARKOV process [e.g. see (5.9.13)], and

consequently in VECTOR-2 the target-destruction process has been conceputalized

in such a way that this latter result could be invoked (see [28, pp. 55-67]

for further details). We will now give expressions for all the remaining

computed quantities in (5.16.13) (again, see [28] for further details). Accord-

ingly, we have

hi aii (5.16.14)
iii

and

PIJ

CO -1 CO I1CO COCo~t~lJ 1- • i(tCOlj) ex { - 1- RijNij[tl 0 lJ - COl~]

m-i £+1 2

1 RN -( N CORIjNIj • k,j tk+lPJ} ep kJ k+l,jtRJ}
Z-I-I k-l k-0

x --I ([exp(-Zjt2 )] -[exp(-Z jt+ , 1 j)]} (5.16.15)

where
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I [ observer in group J (here Yj has a target in group I

(here X) under surveillance at time t after initial of search

D~jt= - (t) ,

CO

t - cut-off time for an observer in group J searching for targets to

exclusively engage acquired targets of priority classes 1 through I

(i.e. a target of priority class I + 1 will not be engaged in

acquired before tCO < CO (see Table 5.VII; also KARR [47,
IJ I+l,J

pp. 32-331),

N1j - expected number of currently surviving group-I targets within range

of a group-J firer,

R in (5.16,16)
IJ n ii + U

S expected time for a weapon in group J (here Yj) to detect a visible

target in group I (here X1 ) [it should be recalled that the corres-

ponding time to detect (a r.v.) has been taken by assumption (Al)

to be exponentially distributed with parameter XlIj]

and

Z Ii RkjNk. (5.16.17)
k-l

Here the two conventions have been followed that (1) a summation over an

empty index set is always taken to be equal to zero, and (2) a product taken

over an empty index set is always taken to be equal to one, e.g. 10 Tk -k-l k

f and 11-0I Tk 1 1. Also, the complement of a cumulative distribution function
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TABLE 5.VII. Rules for Target Selection by Serial Acquirer

in VECTOR-2.

Priorities of Targets Priorities of Targets
to be Engaged to be Engaged if
Immediately Upon Previously Acquired

Time Acquisition and Still Visible

Co1
(O,lj]

CO 2tlj

(t COt)C 1
lJ' 23 , __

CO 3
2J

CO CO(tl2 J t 3 J) 1, 2, 3.o . o 1 2.. , .. , ,

COCO CO

(t M-2,J' tm-l,J) 1 , 2, . . ,m-1

t Co
m-l,J

(tCO 1, 2, ... , r-i,
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like (for example) D W(t) has been denoted as DI (t), and we then (of

course) have D5j(t) 1 -- D ICt). Let us observe that 0 < N i( x1,

The target types have been indexed in such a way that XI denotes the

highest priority target, X2 denotes the next highest, etc. It remains for

us to give an expression for DI (t) in order that PIi as given by

(5.16.15) may be computed: the following expression has been developed for

D i(t) (see (28, pp. 62-63] for further details)

DIJW

D1j (t)

1 - i- R1j Rexp(-Rjt) - exp[-(PI, + + Aij)t]I ] . (5.16.18)

IJ IJ

Returning no-; to the computation of the LANCHESTER attrition-rate coefficient

A i by (5.16.13), we see that it remains for us to Si, e expressions for the

asexpected time to acquire and select a target E[TIj] and the single-firer
kill rate of Xi-type targets by other than YJ-type firers A ij. The follow-

ing expression has beer. developed for E[TsIj (see (28, pp. 65-66J for furcher

dctails)

(
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aa

CO CO - CO CO COt D (t a 5 iDT(t'_ilj) exl,{ R ij~iu tr1 1  tj4J]

Bl (tC exp{

L-I-i k-O k-0O

X (z CO + 1) (Z "CO (Z tCO + 1) CO (5.16.19)2 2 t+ exp(-ZL.1tt+l }.( .
zWJ

Finally, the following approximation has been developed for A and is used

in VECTOR-2

n
A ij(C + t)- A Ait(t) fL(t) (5.16.20)

z~j

where

n

fz(t) - yL(t)/{ k Yk(t)} - fraction of tctal Y weapons exclusive of group j

k•J that Y weapon" of group L comprise.

Here, the fact that the differential-equation force-on-force attrition model is

numerically integrated by discretizing time into time steps (see Appendix E)

has been used to develop this approximation, -ith the riah:-nand side of

(5.16.20) being evaluated at the old time step and the left-hand side being

taken ac the new one. In way of suary, the computation of Aij for weapons

that employ serial acquisition requires the following inputs: aiJ, IAJi' nij'

Si J ' N 1j ' y J ' a n d t C ,

The interested reader can find the derivaticn of the above serial-

acquisition attrition-rate-coefficiant results skeeched in (28, pp. 55-68j
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(see also KARR [47, pp. 38-44]). It will be instructive, however, for us to

briefly consider the development of the expression (5.16.15) for P i, the

probability of selecting a target from target-type group I. This probability

is given by

CO (- CO CO - lCO
PT D1 (tI_1,J i F a (t I-, -t (t

iIi

CO
-i z+lj 4 -CO - ( t - O )

+ n f kfl 5 ((t k) a (t t M
-I-I O k-I k lJkJ Ta

1-2 -O Ci CO (t CO

IT T (t - t•) Dk+l,j( t }pij(ti 0 ,J dFa (t- ti...), (5.16.21)

k-0 Tk+l,J Ti

where

T a - the time (a r.v.) for in observer in group i to acquire a
ij

target in group J, with cumulative distribution function

F (t) - P[T a < tj.
Tij

The fiLst term on the right-hand side of (5.16.21) represents the probability
CO

that a target in group I (here XI) is tnder surveillance at time t C ,

and tnat no higher priority target was ever under surveillance at a time
CO

before tI 13 at which time it would have been engaged, while the second term

represents the probability that a target in group I was acquired at some time t

after t Co and that neither a higher priority target nor a lower priority

one was ever under surveillance at a time before t at which time it would

f have been engaged.. It follows from assumptions (Al) through (A3) above

that
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F (t) - i exp(-RijNijt) , (5.16.22)Tij

whence substitution of (5.16.22) into (5.16.21) yields (5.16.15). The
as

expression (5.16.19) for E[TsI] may be developed in a similar fashion.

Finally, it is worthwhile to observe here that n j/((n + ij) gives the

probability that a target of type i is visible. Recalling that Xij denotes

the rate of acquisition of a group-i target by a group-j observer, we then

immediately see the just:ification of (5.16.22).

For parallel acquisition of targets in VECTOR-2, the heterogeneous-

force LANCHESTER attrition-rate coefficient Aij is taken to be gi-ien by

AJ Q- , ' (5.16.23)

where

rat a random poir.t in time a given group-j (here Y ) weapon

Quj - P employing parallel acquisition ir firing at a group-i (hereJ

L i ) target.

We further have that Q - S and

XY X i_ IiYi-i

Q .S TI, U1  S Y for 2(<i <m, (5.16.24)
k-

writh ijl

w it 1 1 (5.16.25)
S•( + -i. ) (ij y + Xij)

where
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[at a random point in time a group-i (here Xi target is

S k•, P p available to a group-j (here Y ) firer, i.e. a target is
ij available and has been detected.

The above expression for SiK has been by considering the alternating-renewal
ii

visibility process for a Xi-type target (see [28, pp. 68-70] for further

details).

Finally, let us give a brief overview of the data-base requirements

for computation of attrition-rate coefficients in E•CTOR-2. Current values of

the following parameters are required for the calculation of attrition-rate

coefficients at each time step:

(P1) number of survivors in each weapon-system-type group;

(P2) conditional single-firer kill rate, a or 8ji;

(P3) acquisition rate for each weapon-system type in each observing

55 KY Y
and observed group , 55 or X .'ii or i'J

(PQ) rates for the alternating-MARKOV-renewal line-of-sight process,

1iJ and n

IPM) fraction of targets within range for every pair of firer

type and target type;

and (P6) rate of fire for each weapon-system type.

( 2.77



The parameters (P1) are obtained from other parts of VECTOR-2, while (P6) is

an external-user input. Parameters (P2) through (PS) are internally computed

in the model. These computations involve more detailed input data from the

following four classes (see [28, pp. 70-71] for further details):

(DCl) scenario data expressing differences in force employment

(e.g. between armored, mechanized, and dismounted infantry

units); such data reflect the initial geometry and maneuver

patterns of forces and the making of such tactical decisions

as, for example, when to mount and dismount infantry into APCs,

(DC2) movement data consisting of the speed of each weapon-system

type (indexed on terrain trafficability),

(DC3) line-of-sight data consisting of the rates of entering and

leaving the visible state in each of the terrain visibility

classes,

(DC4) weapon-system-performance data (including the firing rate for

each weapon-system type) used to compute the conditional single-

firer kill rate, acquisition rate, and the fraction of the

target group within range for each firer-type/target-type pair.

From the above brief sketch, the reader undoubtedly senses that the data-base

requirements for VECTOR-2 are rather demanding. In fact, upwards of 350,000

pieces of input data are required for its running (see BONDER [16, p. 36]),
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S
and many man-months of effort are involved in the use of this much data in

such a complex operational model, e.g. the time required to acquire the

input data, the time required to structure this data into the model's input

format, the time required to run the model, and the time required to analyze

and evaluate the model's results (see [6] for further details).

17
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FOOTNOTES for Chapter 5

1. Methodology for the prediction of LANCHESTER attrition-rate coefficients

from weapon-system performance characteristics has been developed by

S. BONDER (11; 14] and others (namely, BARFOOT (3], BONDER and FARRELL

[17], and KIMBLETON [49]). In particular, BONDER [11; 14] has given

an analytical expression involving various weapon-system performance

parameters for the so-called LANCHESTER attrition-rate coefficient,

i.e. coefficient of the attrition rate for a FIF process. This ap-

proach (in contrast to that of G. CLARK discussed in Footnote 2) does

not -nvolve the complimentary use of a high-resolution Monte Carlo

combat simulation. Thus, we may say that we have a "freestanding"

analytical model in the sense that it is complete in itself and does

not require the complimentary use of a Monte Carlo simulation.

Furthermore, RUSTAGI and SRIVASTAVA [62] have given results con-

cerning the maximum-likelihood estimation of the MARKOV-dependent-

fire parameters in BONDER's [11; 14] attrition-rate expression. Thus,

experimental firing data can be used to generate maximum-likelihood

estimates of the parameters in LANCHESTER attrition-rate coefficients

and consequently of the coefficients themselves. However, these

maximum-likelihood estimates require information about the outcome

of each and every round in a sequence of firing trials. Consequently,

RUSTAGI and LAITINEN [61] have given results for the moment estimation

of the parameters, which is applicable when only partial information

is available on the observed firing sequences.

2. Methodology for the maximum-likelihood estimation of LANCHESTER

attrition-rate coefficients from Monte Carlo simulation output data
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has been developed by G. CLARK (24]. His basic idea is to use a com-

bat analysis model (COMAN Model) in conjunction with a high-resolution

Monte Carlo combat simulation.

3. Unfortunately, the historical combat data base does not contain informa-

tion about the times between casualties, which is needed for the basic

estimation procedure (cf. Figure 5.1). Furthermore, it is unlikely

that it ever will although such experimental data is recorded under

simulated combat conditions by the U.S. Army Combat Developments

Experimentation Command (CDEC) at Fort Ord, California. We must bear

in mind, however, that CDEC data is not real combat data.

4. As usual, random variables are denoted by, capital letters, while

their realizations are denoted by the corresponding lower-case letters.

5. The reader should recall that these equations were also called in

Section 2.12 Lanchester-type equations for a FIF attrition process.

6. If N, a r.v., denotes the number of rounds required to kill a tar-

get [i.e. N denotes the trial on which the target is (first) killed),

then

E[N] - 1

SSK

when there is statistical independence between the outcomes of any

two rounds fired, since the N obeys a geometric probability law, i.e.

Prob (N -n] - PSSK (1 -P )n

( which is well known to yield an expected value of 1/P SSK for N.
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7. Although our basic idea for this justification is taken from BONDER

and FARRELL (17], our development here differs from theirs in several

essential aspects. For example, BONDER and FARRELL did not point out

that (5.3.1) holds exactly for exponentially-distributed times between

kills.

8. As pointed out previously by the author (see TAYLOR [81, p. 47]),

this justification is not universally accepted and is apparently some-

what controversial. Moreover, there apparently has been some computa-

tional evidence against the appropriateness of (5.3.1).

9. Since we asnume that limAt- 0 P[X casualty in (t, t + At)] - 0,

it follows that the expected number of X casualties in (t, t + At]

is the same as in (t, t + At).

10. A more appropriate taxonomy than that shown in Table 5.1 would appear

to this author to be

Aimin Doctrine

(1) "Aimed Fire"

(2) "Area Fire"

Firing Doctrine

Lethality Mechanism,

where aiming doctrine would refer to how aim points ara selected,

firing doctrine would refer to how consecutive rounds are related to

one another (i.e. how they are correlated), and lethality mechanism
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would be as defined by BONDER and FARRELL [17, pp. 86-87] (see main

text above). Under aiming doctrine, "aimed fire" would refer to the

situation in which fire is aimed at particular targeta, while "area

fire" would refer to the situation in which fire is directed into

only the general area thought to contain targets (see Section 5.13

for further discussion). BONDER and FARRELL's classification of

firing doctrine would be retained, except that the term firing doctrine

would now refer to how consecutive rounds are related to one another.

As a colleague (LTC Richard S. Miller, USA, of the Naval Postgraduate

School) has pointed out, weapon systems with an area-lethality

mechanism (see main text) almost always engage their *argets with

"area fire." Thus, for weapon systems with an impact-lethality

mechanism (again, see main text), one might be tempted to omit the

aiming-doctrine portion of the above proposed alternate taxonomy.

However, weapon systems with an impact-lethality mechanism frequently

are fired in the "area-fire" mode, for example, when engaging very

poorly located targets (cf. VON NEUMANN [88] or WEISS 190]).

11. Strictly speaking, the lethality mechanism of a weapon system's

projective also depends on the target's vulnerability, and consequently

we should speak of the weapon-target damage mechanism (L.e SNOW and

RYAN [71, p. 5] or WEISS (89, p. 7] for a further discussion). It

is convenient, however, to simply refer to this as the weapon's

damage (or lethality) mechanism. Furthermore, terminology Is far

from uniform in this field, and different authors frequently use

the same word with quite different meanings. For example, the

U. S. Army's Engineering Design Handbook (84, p. 15-9] says that
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"vulnerability is ordinarily a term used for the case where actual

hits are obtained on targets such as tanks and aircraft. Lethality,

on the other hand, refers primarily to the case where lethal or

incapacitating fragments, for example, are projected over an area

on the battlefield to incapacitate personnel." This terminology

should be compared with that used by BONDER and FARRELL [17, pp.

86-87] and also with that used by us above. Mo eover, SNOW and RYAN

[71, p. 2] classify targets as being either (1) impact sensitive,

or (2) fragment sensitive; and projectiles are usually classified

as being either (1) nonfragmenting, or (2) fragmenting. The

weapon/target-damage-characteristics taxonomy outlined in the pre-

ceding sentence would yield a four-fold classification scheme for

weapon/target-damage mechanisms (e.g. a fragmenting projectile fired

against an impact-sensitive target [an example of which would be an

artillery shell fired against tanks]).

12. Other categories of weapon-system types have been analyzed and other

expressions for the LANCHESTER attrition-rate coefficient developed

by BONDER and FARRELL [17] (see also Table 5.0).

13. However, we give below in Section 5.8 an expression that applies

under even more general conditions: namely, (Cl) identical probability

thdistributions for the number of rounds to achieve the i- hit for

i > 2, and (C2) any arbitrary distribution for the number of hits

to kill.
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14. As noted above in Section 5.3, BONDER [11] originally took the

LANCHESTER attrition-rate coefficient to be given by E[l/T], e.g.

a - E[l/Txy]. Subsequently, BARFOOT [31 has suggested that a more

appropriate expression for the LANCHESTER attrition-rate coefficient

under constant battle conditions (e.g. at a constant range) is the

so-called harmonic mean of the rate at which a single firer kills

enemy targets, i.e. l/E[T]. This latter definition is ii better

consonance with our introductory comments made in Section 5.1

(cf. (5.1.3)). BARPOOT based his arguments for the use of I/E[T]

on the fact that the harmonic mean of a set of rates yields a more

appropriate estimate of the average rate than does the arithmetic

mean (see Section 5.3 above and [3, p. 894]). It should also be

pointed out that the definition of, for example, a as E[l/TXY] is

not analytically tractable (i.e. explicit analytical results apparently

are not obtainable and numerical methods must be employed) whereas

the definition of a as l/E[TXY] does yield explicit analytical

results. Thus, the harmonious mean of the rate of target attrition

is superior on both theoretical and also computational grounds to

the arithmetic-mean attrition rate in LANCHESTER combat theory.

15. In (5.4.1) all the subscripted event times, e.g. ta, are taken to
ia

be fixed deterministic quantities. We show below in Section 5.8 that

(5.4.1) also holds for the average values of these times taken to

be random variables. Although this result is intuitively obvious,

its proof has not apparently heretofore appeared anywhere, and we

have used a simple new approach to prove this important result.
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16. We will show in Section 5.8 below that (5.4.1) also holds for the

average values of these times taken to be random variables (see also

Footnote 15 above).

17. By saying logical analysis, we are emphasizing here that there has

not been any empirical verification of BONDER's model for the LANCHESTER

attrition-rate coefficient. Furthermore, considering the nature and

quality of available historical combat data (see McQUIE [51], McQUIE

et al. [52], or HUBER, LOW, and TAYLOR [45]; also see Section 7.21

below), such empirical verification against real combat data does not

seem to be possible.

18. Originally BONDER [11] tried to compute E[l/T] (see Footnote 14 above).

Here we have taken the liberty of integrating together the ideas of

BONDER [11] and BARFOOT [31 (e.g. see BONDER [14] or BONDER and

FARRELL (171).

19. The readec should recognize this decomposition a6 an application of

the general modelling principle of factoring a complex syster.i problem

into simpler problems (see MORRIS [55, p. B-711] for a further

discussion).

20. Here we are again following BONDER's [11) (see also BONDER (12, Vp.

111-4 through III-111) development based on determination of the

distribution of the number of rounds required to obtain z hits

PNIZ(nIz). A more general result that reduces to the distribution

of the number of rounds to obtain z hits (5.5.21) was developed
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earlier by GNEDENKO (38, pp. 138-139] (see also RUSTAGI and

SRIVASTAVA (62, p. 1223] and RUSTAGI and LAITINEN (61, pp. 918-919]).

In Section 5.6 below we present a simpler, more general approach

that does not involve determination of this complicated distribution.

21. Although justification of this important result, which is a special

case of our more general result (5.8.1), apparently appears here for

the first time, the statement of an equivalent result does appear

elsewhere (e.g. see (28, p. 171] or [54, p. 1651). However, no

proof of this result is given in (28] or (54], but in such places

the reader is referred to BONDER and FARRELL [17] for its development.

The author, however, could not find any such development in [17],

only a development for deterministic event times (cf. Section 5.5

above) and an accompanying statement that when the event times are

random variables, "expressions for the LAPLACE-STIELTJES transform

of the time to kill may be obtained" [17, p. 132] (see also KIMBLETON

(49, p. 704]).

22. For a critique of the determination of attrition-rate coefficients

in VECTOR-2 (which is essentially the same as that in VECTOR-O and

VECTOR-l), see KARR [47, pp. 31-47j, who has discussed their develop-

ment in terms of "an important limit theorem for semi-MARKOV processes

(cf. SINLAR [23, Theorems (10.4.3) and (10.5.22])." KARR (47, p. 39]

has pointed out that except for this limit theorem, none of the

results given in SINLAR [22; 50] are required for such developments.
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23. So far our discussion has more or less parelleled that given by

FARRELL [17, pp. 136-137]. We now will depart from FARRELL's develop-

ment by expressing results in terms of the ratios of stationary

probabilities r -Mj/ l"

24. Here we mean that target-type attrition occurs at a rate proportional

to the product of the numbers of firers and targets (cf. the convention

adopted in Section 2.12 for two-sided LANCHESTER-type attrition

processes).

25. See WEISS [89, pp. 708]. See also HAYWARD [42] for a very closely

related discussion in a slightly different context. HAYWARD has pro-

posed the organization of variables upon which combat effectiveness

depends into three categories: those that relate to (Cl) capabilities,

(C2) environment, and (C3) mission.

26. An early discussion of such a model with range-dependent attrition-

rate coefficients appears in WEISS [91, p. 88]. WEISS's model was

apparently later elaborated upon by BONDER [9].

27. See Footnote 11 above.

28. Strictly speaking, the vulnerability of a target also depends on the

nature of the attacking weapon system's projectile (for further

details, see [84, p. 15-2] and also Footnote 11 above).
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g 29. The explicit statement of this approach apparently first api.eared in

BONDER [11, p. 231], although it had appeared implicitly in earlier

work by WEISS [89; 911.

30. In actuality (as discussed in Footnote 11 above), the lethal area

also depends on the target's vulnerability and this may change over

time. Consider, for example, artillery being fired at dismounted-

infantry troops. For modelling purposes, the lethal area of an

artillery round is usually taken to depend on the posture (e.g.

standing, kneeling, prone, or in foxholes) of the infantry soliders,

and this may change over time (see [84, pp. 15-9 through 15-13] for

further details; also BONDER and FARRELL (17, pp. 154-155]).

31. The formula (5.13.6) given in the main text is readily modified if

the region occupied by the X targets does not coincide with the

region perceived by the Y firers to contain them and into which

their fire is directed. Furthermore, one must then consider the

probability that a round fired at the perceived region lands in

the region actually containing the X targets.

32. This concept goes back at least to WEISS [90, p. 6]. It underlies

essentially all analytical computations of the expected number of

kills for indirect-fire weapons (e.g. artillery), although it is

usually not explicitly stated (e.g. see GRUBBS [40, p. 1022]).

For a lucid explicit statement of this precept, see McNOLTY

[50, p. 1028].

(
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33. By considering TAYLOR's formula with LAGRANGE's form of the remainder

(e.g. see COURANT and JOHN [29, pp. 446-449]), one can readily show

that for x E [0, a] with 0 < a < 1

-n(l - x) - -x - R,

where 0 5 R : (1/2) {a/(l-a)) 2. It follows that -x is a good

approximation to Zn(l-x) when x E [0, 0.2], with a maximum error

not greater than 1/32 at x - 0.2. However, by considering the

geometric series 1 1 n , one can show that R(x) . fx udu

which yields the better error bound 0 5 R 5 (1/2)a 2/(1-a). Hence,

for x E [0, 0.2] the maximum error occurs at x - 0.2 and is

actually not greater than 1/40.

34. However, BONDER and FARRELL's [17, pp. 141-162] development is quite

different than that given here. The use of the fundamental precept

of target coverage and how it is related to "area" fire is never

explicitly mentioned by them.

35. These assumptions are taken from BONDER and FARRELL [17, pp. 143-144

and p. 149] (see also [54, pp. 169-170] or [28, pp. 175-176]).

36. The corresponding expression used in models built by VECTOR RESEARCH,

INC. such as, for example, VECTOR-2 apparently contains an algebraic

error, since it does not simplify to the known result (5.4.1) for

MARKOV-dependent fire when there is zero probability of a kill by a

miss. Moreover, slightly different assumptions were taken to hold

for this expression's development: namely, the time to fire being
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the same on all subsequent rounds, and the probability of a kill

given a miss on the first round taken to be not necessarily the

same as the probability of a kill given a miss on any subsequent

round (e.g. see [28, pp. 172-173] for further details). The latter

assumption may be readily incorporated into our expression for the

expected time to kill a target and (5.14.1) accordingly modified,

but we have not presented these results here because they are so

complex.

37. The first four modes (Ml) through (M4) were explicitly given by

BONDER and FARRELL [17, pp. 107-108], while the last is implicit in,

for example, VECTOR-2 [28, pp. 174-175].

38. For simplicity, we have chosen to invoke the result for the expected

time to kill a target for the case in which all the subscripted

event times are deterministic (cf. Footnote 15 above). We could have,

of course, chosen to particularize more general results, e.g., (5.8.2)

which has random event times.

39. In reality, actual historical combat does not (and probably cannot)

supply the required data inputs. Therefore, in practice one must

use data generated either by combat field experimentation or by a

high-resolution Monte Carlo combat simulation. Moreover, one must

always bear in mind that such data is not real combat data and of

unsubstantiated validity. However, in the combat-modelling business

there unfortunately is no better data available than such simulated

( data (see McQUIE et al. (52] and HUBER, LOW, and TAYLOR (45] for

further discussions).
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40. Usually the cost of such use is only a very small fraction of that

for the detailed (i.e. high-resolution) model. For example, COMANEX

has been reported (73] to take only about 0.003 of the computer time

required by CARMONETTE.

41. A simple model of target-type engagement based on the assumption that

there is a constant probability that a specific enemy target is un-

acquired by an individual firer in a specific time interval was used

by CLARK [24, pp. 156-158]. This assumption simplified considerably

the expression obtained for the probability of engaging a particular

enemy target type. Otherwise, concepts used in the analysis and

modelling of priority queues (see, for example, MORSE [56, pp. 121-137]

or SAATY [63, pp. 348-352; 64, pp. 231-242]), e.g. whether service for

high-priority units is preemptive or nonpreemptive,. must be used (as

they are in, for example, VECTOR-2 [28]).

42. Here we mean a lucid simple example of the approach of using differ-

ential equations to model the force-on-force combat-attrition process.

43. Here we mean output data from DYNTACS (e.g. see [81 or [27]), which

is a high-resolution Monte Carlo simulation of armored combat at

battalion level.

44. The main changes were that the COMANEX model was deterministic and

a matrix of target priorities (i.e. each weapon-system type had its

own target-priority list) were used (see STOCKTON [73] for further

details).
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45. It is not assumed here that Bji is constant. In fact, for present

purposes one need not make any assumption about the variables upon

which Bji depends, i.e. no particular functional dependence is

assume here.

46. Our list here follows the discussion of BONDER and FARRELL [17,

pp. 15-16].

47. Throughout the rest of this section we will always focus on Aij,

with B being symmetrically determined.

48. Since equation (5.13.18) does not contain a time for target acquisition

(i.e. it is implicitly assumed that the time to acquire a target is

equal to zero), it applies to both aij and also uij"

49. At least to the extent that available literature and model documenta-

tion permit. As we have discussed in Chapter 1, documentation of any

combat model (particularly its underlying methodology) is generally

quite bad, and much work that is done is never documented for

"1exterul consumption" [44; 66] (see Footnotes 17 and 23 of Chapter 1

for 'Lurther details). Furthermore, essentially all of the major

developments reported in this section have never been published in

the open literature.

50. The first place where such a fire-distribution model appears [although

not explicitly in the form of (5.16.6)] is the remarkable RAND

research memorandum by GIAMBONI, MENGEL, and DISHINGTON [37, pp. 3-4]
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(s__e also MENGEL [53]). The first place where allocation factors

explicitly in the form given by (5.16.6) have appeared is (to the

best of this author's knowledge) in SISKA, GIAMBONI, and LIND [68,

p. 12] and in the open literature in ISBELL and MARLOW [46, p. 76]

(see also WEISS [91, pp. 94-95]).

51. SMOLER [69, pp. 10-111 has pointed out that both the detection and

fire-allocation submodels in AMSWAG contain several features that

are at variance with military experience and judgment. He has con-

sequently proposed an alternative fire-allocation procedure [69,

pp. 31-36].

52. For a detailed discussion of parallel acquisition, see the below

discussion on VECTOR-2.

53. Our discussion here is drawn from HAWKINS [41]. Also, see Footnote 51

above.

54. See KARR [47, pp. 31-47] for a critique of the determination of

attrition-rate coefficients in VECTOR-2, which in this respect is

essentially the same as VECTOR-O and VECTOR-l. See also Footnote 22

above.
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55. Here X denotes the acquisition rate of a Y -type observer against
ij ~ YX J

Xi-type targets, while X denotes that ,of an X -type observer againstii

Yi-type targets. In our previous discussion of heterogeneous-force

LANCHESTER attrition-rate coefficients above, e.g. 3ee (5.16.16), it

was not considered necessary to be absolutely precise, and for
co

simplicity's sake we used the symbols XiJ, Rij' toij etc. without

superscripts.
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Chapter 6. HOMOGENEOUS-FORCE MODELS

6.1. Introduction

The classic LANCHESTER theory of combat assumed constant attrition-

rate coefficients for its combat models . A so-called attrition-rate co-

efficient (see Chapter 5) in such a model represents the fire effectiveness

of a weapon-system type against a particular target type, i.e. its effective

firepower. All the models that we have considered previously in this book

have had constant attrition-rate coefficients. Time-dependent attrition-

rate coefficients are used to model temporal variations in firepower on

the battlefield. This chapter considers LANCHESTER-type combat between

two homogeneous forces with temporal variations in each combatant's fire

effectiveneso.

In general, we may model such combat with the following LANCHESTER-

type equations for x, y > 0 [the first equation, for example, becomes

dx/dt = 0 for x- 0]

dx = - G(t,x,y) with x(O) - xO,
dt (6.1.1l)

dy = - H(t,x,y) with y(O) - yo,dt

where x(t) and y(t) denote, resepctively, the X and Y force levels

at time t. For cases of no replacements and withdrawals such as we will

consider here, G and H are the attrition rates of the X and Y fqrces,

respectively. As we have seen in Section 2.12 for constant attrition-

rate coefficients, various different military situations have been hypo-

thesized to yield different functional forms for the attrition rates

G - A(x,y) and H - B(x,y). We will consider time-dependent versions of such

4'• attrition rates A(x.y) and B(x,y) in this chapter.
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We emphasize analytical results2 for obtaining insights into the dy-

namics of combat for the following three types of time-dependent attrition

processes (see Section 2.12 for explanation of notation):

(P1) FIF,

(P2) FTIFT,

(P3) (F+T)I(F+T).

Let us recall that, for example, an attrition-rate coefficient in a FIF

LANCHESTER-type model is different from and related to different physical

quantities than one in an FTIFT model. Moreover, the analytical results

that we present here allow one to study these particular variable-coefficient

models almost as easily and thoroughly as LANCHESTER's classic constant-

coefficient ones.

S. BONDER's (4; 5; 7; 10] pioneering work on methodology for the

evaluaticn of military systems (particularly mobile systems such as tanks,

mechanized infantry combat vehicles, etc.) provides a motivation for in-

terest in variable-coefficient, deterministic, LANCHESTER-type combat

models such as we consider in this chapter. BONDER [61 has pointed out

that in many cases (for example, in the case of mobile weapon systems)

the validity of the assumption of constant attrition-rate coefficients

is seriously open to question (see also BONDER [4; 5; 7]). Two signi-

ficant LANCHESTER-theory developments of the 1960's that have generated

interest in time-dependent attrition-rate coefficients have been the de-

velopment of methodology for

(Dl) the prediction of LANCHESTER attrition-rate coefficients

from weapon-system-performance data by S. BONDER [6; 8]

and others3 V

(D2) the (maximum-likelihood) estimation of such coefficients

from Monte Carlo simulation output by G. CLARK [13].
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Both these developments and others4 have generated interest in variable-

0 coefficient homogeneous-force models of the general form (6.1.1) and have

facilitated their use (and that of corresponding heterogeneous-force models)

in defense-planning studies.

How do temporal variations in each combatant's fire effectiveness af-

fect the outcome of battle? When is the outcome significantly influenced

(or even changed) by such temporal variations? These are important ques-

tions for the military operations research worker to answer. We will try

to answer them (at least in a few specific cases) by considering several

specific instances of a LANCHESTER-type combat model with time-dependent

attrition-rate coefficients. Thus, we begin with a specific example of

such a model, S. BONDER's model of a constant-speed attack on a static

defensive position in which the fire effectiveness of each side's weapons

is range dependent (i.e. it depends on the range between firer and target).

In this model, we will assume that both sides use "aimed" fire and

target acquisition times are negligible. Consequently, we will model

attrition as a variable-coefficient FIF LANCHESTER-type process (i.e.

use variable-coefficient LANCHESTER-type equations of modern warfare).

Consideration of this model will (1) suggest several classes of time-

dependent attrition-rate coefficients that are of tactical interest, and

(2) show that temporal variations in such coefficients may have a really

big impact on battle outcome.
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6.2. BONDER's Constant-Speed-Attack Model.

In this section we will consider S. BONDER's (4; 5; 7] model of a

constant-speed attack on a static defensive position in which the fire

effectiveness of each side's weapon system is range dependent (i.e. it

depends on the range between firers and targets). This model will moti-

vate our interest in certain functional forms for time-dependent attrition-

rate coefficients that we will consider subsequently in this chapter.

Let us accordingly consider "aimed-fire" combat between two homo-

geneous forces and assume that target-acquisition times do not depend on

the number of targets. We further assume that one force attacks at con-

stant speed the other force's static defensive position. Assuming that

the fire effectiveness of each side's weapon system is range dependent,

BONDER hypothesized (see Section 2.12 for a further discussion on physical

assumptions) that such an engagement could be modelled by the following

LANCHESTER-type equations for x and y > 0 [the first equation, for

example, becomes dx/dt - 0 for x - 0]

S- -(r)y with x(t-O) - x0,

(6.2.1)

-- (r)x with y(t-O) - yo,
dt

where x(t) and y(t) denote, respectively, the X and Y force levels

at time t, r denotes the range between the opposing forces, and a(r)

and 8(r) denote range-dependent attrition-rate coefficients (see Section

5.12).

Range is related to time by

r(t) - r 0 - vt, (6.2.2)
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3where r0 denotes the opening range of battle and v > 0 denotes the con-

stant attack speed. For example, let us consider the constant-speed attack

of a mobile homogeneous Y force against the static defensive position of a

homogeneous X force (see Figure 6.1). The basic idea emphasized in BONDER's

model (6.2.1) is that force separation, i.e. range between the opposing

forces, changes over time, and the fire effectiveness of, for example, a

single Y firer, denoted as a(r), depends on this force separation (see

also WEISS [61, pp. 87-88]).

For the combat situation modelled by (6.2.1) we can take either time

t or range r as the independent variable in our differential combat model.

In our work we have found it to be more convenient to take time as the inde-

pendent variable. In other words, observing that r - r(t), we see that we

may eliminate range r from the attrition-rate coefficients a and 8,

i.e.

a(r(t)) - a(t) and 8(r(t)) - b(t), (6.2.3)

to obtain time-dependent attrition-rate coefficients, and thus the model

(6.2.1) may be converted into

dxd-" - a(t)y with x(0) -

(6.2.4)

d _ b(t)x with y(O) - y0.dt

Thus, any model such as (6.2.1) with range-dependent attrition-rate coef-

ficients can always be converted into one with tii~e-dependent ones.

As we have seen in Section 5.6 above, in many cases of tactical in-

( terest we may model the fire effectiveness of Y's weapon system as a
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function of range with the power attrition-rate coefficient.

I r

ca(r) - (6.2.5)

0 
for r < r,

where r denotes the maximum effective range of Y's weapon system and

P > 0. Here u is used to model the range dependence of Y's power

attrition-rate coefficient and is called the "shape" parameter (see

Figure 6.2). We may similarly model the fire effectiveness of X's

weapon system as a function of range with the power attrition-rate

coefficient

for 0< r <r

8(r) - (6.2.6)

0 for r8 r,

where r 8  denotes the maximum effective range of X's weapon system and

V > 0. As we have discussed in Chapter 5, the parameter values chosen for

the models (6.2.5) and (6.2.6) depend on both the kill capabilities of the

weapon system (as functions of range) and also the vulnerabilities of the

two target types.

Let us also consider another range-capability model that will turn out

to be in some sense equivalent to the above model, although this equivalence

will certainly not be obvious at this moment. Thus, another relevant model

for the fire effectiveness of Y's weapon system as a function of range

is given by the exponential attrition-rate coefficient

-ul
a(r) - a 0 e 1 (6.2.7)

where a0 denotes the kill rate of a single Y system at zero force separa-

tion and a1  is a positive constant that is used to model the decline in
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weapon systems (as functions of range) and also the vulnerabilities of the

two target types.

Let us also consider another range-capability model that will turn

out to be in some sense equivalent to the above model, although this equiva-

lence will certainly not be obvious at this moment. Thus, another relevant

model for the fire effectiveness of Y's weapon system as a function of

range is given by the exponential attrition-rate coefficient

-•ir

a(r) - 0 e 1 (6.2.7)

where a denotes the kill rate of a single Y system at zero force

separation and al is a positive constant that is used to model the

decline in kill rate with increasing range and is called the "shape"

parameter (see Figure 6.3). Although the Y weapon-system type

theoretically has an infinite maximum effective range according to

(6.2.7), its fire effectiveness is essentially equal to zero for large

values of force separation. Similarly, we have for the X weapon-system

type -Blr

8(r) - 80 e • (6.2.8)

In any case, irrespective of such a theoretical property for the maximum

effective ranges of the wvapon systems, the range-dependent attrition-rate

coefficients (6.2.7) and (6.2.8) will in many instances give a good fit

to each weapon system's kill rate between the opening range of battle and

the final one.

As we have discussed in general terms above, we may use (6.2.2) to

eliminate range r from the range-dependent attrition-rate coefficients

in the model (6.2.1). Doing this for the range-dependent attrition-rate
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ATTRITION 0.4

RATE
COEFFICIENT al 0.001

a(r) 0.2 01 a 0.002

0.0OO
0 500 1000 1500 2000 2500 3000 3500

RANGE r (METERS)

Figure 6.3. Dependence of Y's exponential attrition-rate coefficient

a(r) - a0 exp{-c1 r} on range and the "shape" parameter

aI with the kill rate at zero force separation (range)

a(O) - a0 held constant. Although the Y weapon-system

type theoretically has an infinite maximum effective

range according to this model, its fire effectiveness

is readily seen to be essentially equal to zero for

large enough values of force separation.
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coefficients (6.2.5) and (6.2.6), we obtain the time-dependent-coefficient

model (6.2.4) with general power attrition-rate coefficients.

a(t) - k a(t+C) , and b(t) - k.(t+C+D)v, (6.2.9)

where

ka a r a and kb - '0 (6.2.11)

We will call C the starting parameter, since it allows us to model (with

P and v > 0) battles that begin within the maximum effective range of

the Y weapon system (see Figure 6.2). We will call D the offset para-

meter, since it allows us to model (again, with p and v > 0) battles

between opposing weapon systems with different maximum effective ranges,

i.e. opposing weapon systems whose maximum effective ranges are "offset"

(see Figure 6.4). We observe that C and D > 0 if and only if

r, L r > rO. C - 0 me.ns that the battle begins within the maximum

effective range of the Y weapon system, while D > 0 means that the

maximum effective range of the X weapon system is greater than that of

the Y system.

In a similar fashion, we may use (6.2.2) to eliminate range r from

the range-dependent attrition-rate coefficients (6.2.7) and (6.2.8) in the

model (6.2.1) and obtain the time-dependent-coefficient model (6.2.5) with

exponential attrition-rate coefficients

( at Xbt

a(t) - k ae , and b(t) - kbe , (6.2.12)
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where

S-akr0 -81r0
ka O k b0 ,• B 1 re 0 (6.2.13)

S- a1v, and X b a 81 v " (6.2.14)

We close this section with some illustrative numerical results from

BONDER's constant-speed-attack model. Let us therefore examine the contant-

speed-attack model. We will consider the constant-speed attack of

a mobile homogeneous Y force against the static defensive position of a

homogeneous X force (see Figure 6.1). We assume that combat attrition

can be modelled by (6.2.1) with range-dependent attrition-ra4e coefficients

(6.2.5) and (6.2.6). The dependence upon range of the attrition-rate coef-

ficient c(r) (which represents the fire effectiveness of the Y weapon

system) is shown in Figure 6.2. Let us assume that the attacking 'Y force

initially numbers 30 and attacks at a constant speed of 5 miles per hour.

We assume that the defending X force initially numbers 10. We will see

that exactly what will happen in such a battle is quite sensitive to the

variations in the kill rates of the opposing weapon systems with range.

In Figure 6.5 we have plotted force-level trajectories for three dif-

ferent battles, denoted as battles (A), (B), and (C). These force-level

curves have been developed from analytical results to be discussed subsequently

in this chapter, but at this point in time we are not quite ready to discuss

how we have developed them. In these battles both types of opposing weapon

systems have the same maximum effective range, i.e. r. - r 8 - res and the

battle begins at this range, i.e. r0 . re . For these battles

we have held constant the kill rates at zero force separation, i.e.

a- a(O) and Bog and have varied in these three battles the manner in

which a(r) and S(r) depend upon range, i.e. for 0 < r < re the
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Figure 6.5. Force-level trajectories of X and Y forces

for three different battles [denoted in the

figure as (A), (B), and (C) and explained in

the main text] with each side's fire effective-

ness modelled by the power attrition-rate
coefficients for r 0 - r - r, - re - 2000 meters,

0 0 a e
CO - 0.06 X (casualties/minute) per Y firer,
8o - 0.6 Y (casualties/minute) per X firer,

v - 5 mph, x0 - 10, and yo - 30. The symbol x

denotes the end of a force-level trajectory due

to annihilation of the enemy force. i
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attrition-rate coefficients are given by the following expressions in each

of the three battles:

(A) constant-constant: a(r) - a0 and 8(r) - 0,

(B) linear-linear a(r) - a 0 (1-r/r) and 8(r) - %0(l-r/re),

2(C) linear-quadratic: a(r) - a 0 (l-r/re) and 8(r) - 80 (l-r/r e)

In other words, in battle (C) (the linear-quadratic case) the term "linear"

denotes that c(r) (the fire effectiveness of the Y weapon system type)

varies linearly with range, while the term "quadratic" denotes that 8(r)

varies quadratically with range. In battle (A) both attrition-rate coef-

ficients are constant, and thus in this case we have assumed no variation

in fire effectiveness with range for either weapon-system type.

We see from Figure 6.5 that battle outcome is quite sensitive to

the variation in weapon-system kill rate with range: in battle (A) the

attacking Y force is annihilated at a range of about 750 meters, while in

battle (C) the defending X force is annihilated before the attackers have

approached within 100 meters of the defender's position. Figure 6.5 shows

us the inadequacy of using constant attrition-rate coefficients in battles

with appreciable variations in force separation to model the kill rates of

weapon-system types whose true capabilities actually vary appreciably with

range. The ccnstant-coefficient results can be quite misleading for such

battles. We also see from Figure 6.5 that we can use the initial trend of

battle to forecast battle outcome only when we know how the fire effective-

ness of each weapon-system type depends on range. If the reader will com-

pare results for the three battles, the truth of this statement should be

clear. We finally note the "compounding" effect of casualties over time:

a small advantage in range capability rapidly "grows in its effect on

force-level trajectories," and such a small difference can have a large ef-

fect on battle outcome.
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Figure 6.6 shows similar force-level curves for the same battle-parameter

values except that the battle begins at an opening range of 1250 meters, i.e.

r0 a 1250 meters, instead of 2000 meters as it did for Figure 6.5. The force-

level curves corresponding to the constant-coefficient case, i.e. battle (A)

in Figure 6.6 with r 0 - 1250 meters are exactly the same for the same time

intervals (but not range intervals) as those shown in Figure 6.5 with

r 0 2000 meters. Other force-level trajectories decay faster in Figure

6.6 than they do in Figure 6.5 because the "intensity" of combat is greater,

i.e. as a function of time the attrition-rate coefficients are larger here

than for Figure 6.5. Again we see that batUle outcome is sensitive to the

range dependence of the attrition-rate coefficients. From comparing the

force-level curves shown in Figure 6.5 with those in Figure 6.6, we see that

the differences between battles (A), (B), and (C) are smaller when the open-

ing range of battle r 0  is much less than the maximum effective range of

the two opposing weapon-system types. In fact, when re - +-, the force-

level trajectories converge to the classic constant-coefficient ones (see

BONDER [7, p. IV-33] for a further discussion).

Thus, we see that the range dependence of weapon-system kill rates

has a very significant impact on battle outcome for BONDER's constant-speed-

attack model. We have reached this conclusion after examining three specific

battles, denoted as (A), (B), and (C) in Figures 6.5 and 6.6 and classified

according to the combination of two attrition-rate-coefficient range de-

pendencies (e.g. linear-quadratic). In these figures each different battle

is represented by a separate force-level curve. Moreover, it will be in-

structive for us to examine further parametric variations in attrition-rate-

coefficient range dependencies. It will be convenient, however, to identify

battles in a slightly different manner: we will denote exponent combinations

for the attrition-rate coefficients (6.25) and (6.26) as P:v, where P
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Figure 6.6. Force-level trajectories of X and Y forces for

an additional three different battles modelled
with the power attrition-rate coefficients for the
same parameter values chosen for Figure 6.5 except

that the opening range of battle r 0  is given by
r0- 1250 meters (still with r - r 8 - re -2000 meters).
The symbol conventions are also the same as in Figure 6.5.
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denotes the exponent for the Y weapon-system-type kill rate a(r) and

v denotes the exponent for the X weapon-system-type kill rate 8(r).

Accordingly, further battle results for a wider variety of exponent

combinations in BONDER's constant-speed attack modelled with (6.2.1) and

the attrition-rate coefficients (6.2.5) and (6.2.6) are shown in Figures

6.7, 6.8, and 6.9. In Figure 6.7 we have expanded the range of exponent

combinations from those for the battles shown in Figure 6.5. Furthermore,

battles are identified differently in these figures (i.e. Figures 6.7, 6.8,

and 6.9) than they wiere in Figures 6.5 and 6.6. For example, battle (C)

with the linear-quadratic range-dependent attrition-rate coefficients is

now denoted simply as 1:2, i.e. M - 1 and v - 2 for the coefficients

(6.2.5) and (6.2.6). As in Figures 6.5 and 6.6, we have held a 0 -(O)

and B0 constant for these computations, i.e. the kill rates at zero force

separation are the same for all these battles.

Figure 6.7 further shows us that the nature of a force-level trajectory

is quite sensitive to the particular combination of exponent values P and

v and that these exponents are additional parameters that help determine

who wins and who loses. Returning to the constant-speed attack of a mobile

Y force against the static defensive position of a defending X force,

we see that, for example, for u - 1 (i.e. the kill rate c(r) of the

attacker's weapon system varying linearly with range) a battle may have

quite different outcomes depending on the value of v: the reader should

contrast the force-level trajectories denoted as 1:0, 1:1, 1:2, and 1:3 in

Figure 6.7. We also see that we can use the initial trend of battle to

predict battle outcome only when we know the nature of the dependency of

each weapon-system type's kill capability on range; the results shown in

Figure 6.7 should make this clear. For example, compare the outcomes for

the curves denoted as 1:2, 2:2, and 3:2. We also note the "compounding"
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Force separation r (meters)
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Y force 2
levely(t) 2

3:1 020

Figure 6.7. Results for BONDER's constant-speed-attack model when

both sides' weapon-system types have the same maximum

effective range: force-level trajectories of X and Y

forces for different battles corresponding to different

combinations of the exponents p and v in the power

attrition-rate coefficients for r 0 - r r - W- re -2000 meters,

a0 " 0.06 X (casualties/minute) per Y firer, 80 - 0.6 Y

(casualties/minute) per X firer, v - 5 mph, x0 - 10, and

YO - 30. Each exponent combination is expressed as

u:v in the figure, and the symbol x denotes the end of

a force-level trajectory due to the annihilation of the

enemy force.
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Figure 6.8. Further results for BONDER's constant-speed-attack

model when both sides' weapon-system types have the

same maximum effective range: force-level trajectories

of X and Y forces for different battles corresponding

to different combinations of the exponents p and v

in the power attrition-rate coefficients for the same

parameter values chosen for Figure 6.7 except that

r0 - 1250 meters. The symbol conventions are also the

same as in Figure 6.7.
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Figure 6.9. Further results for BONDER's constant-speed-attack model

when both sides' weapon-system types have the same

maximum effective range: force-level trajectories of

X and Y forces for different battles corresponding

to different combinations of the exponents p and v

in the power attrition-rate coefficients for the same

parameter values chosen for Figure 6.7 except that

r- 1250 meters and r - r8 - r - 1500 meters.

Again, the symbol conventions are also the same as in

Figure 6.7.
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effect over time: a small advantage in range capability can eventually

materially affect battle outcome.

In Figure 6.8 we have similarly expanded the range of exponent combi-

nations for the battles shown in Figure 6.6, i.e. all battle parameters are

the same as for Figure 6.7 except that r 0 - 1250 meters instead of 2000

meters. Similar to the case shown in Figure 6.6, the force-level curves

shown in Figure 6.8 with r 0 - 1250 meters are similar to those shown in

Figure 6.7 with r 0 - 2000 meters except that as a function of time they

decrease faster in Figure 6.8 for V and v > 0 because the "intensity"

of combat is greater, i.e. as a function of time both attrition-rate coef-

ficients are larger here than in Figure'6.7. Figure 6.9 shows similar

force-level curves for the same parameter values except that r - ra -

r 1500 meters. Observing that for p > 1 we have a(r;r a) < a(r;r )

if and only if ra < rC, we may consider that the "intensity" of combat is

less intense for the engagements depicted in Figure 6.9 than for those

shown in Figure 6.8.

Figure 6.10 shows the effect of increasing maximum effective range of

the defender's weapons, i.e. that of the X force (cf. Figure 6.1), when

each weapon-system type's kill rate is assumed to vary linearly with range

(see Figure 6.4). For the family of battles depicted in Figure 6.10, we

have held the opening range of battle constant at r 0 - 1250 meters and the

maximum effective range of the attacking Y weapon system constant at

r M 1500 meters. Both attrition-rate coefficients vary linearly with range

(i.e. V - v 1 in (6.2.5) and (6.2.6)], a0 and B0 have been held con-

stant, and r has been varied. The force-level curves in Figure 6.10

quantitatively show the benefit from increasing the long-range kill capability

of the defender's weapon system: more attacker casualties occur earlier
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Figure 6.10. Results for BONDER's constant-speed-attack model when

opposing weapon-system tynes have different maximum

effective ranges: force-level trajectories of X

and Y forces for various different maximum effective

ranges of the X-force-weapon-system type for linear

attrition-rate coefficients with r0 - 1250 meters,

r - 1500 meters, and the same values of the other parameters

(i.e. mo, B0, and v) listed in the legend of Figure 6.7.

The symbol x has the same meaning as in that figure.
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in the battle, and these are then magnified over time by Lhe "compounding

nature" of the LANCHESTER-type equations (6.2.1). Again, these numerical

results nave been generated from analytical results that are given later

in this chapter. However, using an analogue computer, BONDER and FARRELL

[10, pp. 296-367] have developed extentive parametric results for this model.

The important thing to glean from all these battle examples is that

variations in weapon-system kill rates with range in mobile operations

(equivalently, temporal variations in fire effectiveness over the course of

a battle) have a significant impact on the battle's outcome. Consequently,

we should use time-dependent attrition-rate coefficients to model temporal

variations in fire effectiveness when, for example, the range between firers

and targets changes appreciably during battle.

As noted above, we have generated all the force-level curves shown in

Figures 6.5 through 6.10 from analytical results, i.e. infinite-series

solutions, to be subsequently developed in this chapter. However, we could

have equally well generated them by a step-by-step niumerical integra-

tion of a finite-difference approximAtion to our differential-equation combat

model. We can, of course, always numerically do this for a specific set of

battle-parameter values. However, the structure of combat results is not

at all evident from such specific numerical evaluations, but it may be de-

duced from further analysis of the analytical results. Of course, before

we embark on an analytical examination of force-level trajectories for the

model (6.2.4), we should consider what information one wants to extract from

the model.
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6.3. Information to be Obtained from the Model.

As we have discussed many times above, our goal in this book is to

help the reader to obtain insights into the dynamics of combat from rela-

tively simple combat models rather than enriching such models in details

(see W. T. MORRIS (291 for a lucid discussion of the process of such en-

richment). Consequently, both our research and also the developments of

this chapter have been guided by this goal of obtaining insights into the

dynamics of combat.

We will emphasize extracting as much operational information as pos-

sible from the model with a minimum of effort. What information should we

seek to obtain? Although the specific information to extract from any com-

bat model depends, of course, on the purpose of the OR study, we have used

the questions shown in Table 6.1 to guide our efforts. We have tried to

make the extraction of such information from variable-coefficient homogeneous-

force models almost as easy as obtaining it from LANCHESTER's classic c on-

stant-coefficient models. As we have just seen in the previous section, such

variable-coefficient combat models are required when there are appreciable

temporal variations in fire effectiveness during a battle.

In the rest of this chapter we will present analytical results for

time-dependent FIF, FTJFT, and (F+T)I(F+T) attrition processes. S. BONDER

(10, pp. 30-31] has stressed the importance of analytical solutions to such

models for developing insights into the dynamics of combat by explicitly

portraying the relation between various factors in the combat attrition pro-

cess and the surviving numbers of forces and also for facilitating sensitivity

and other parametric anrlyse" (see BONDER [9]). Consequently, we will con-

sider developing and analyzing solutions to variable-coefficient differential

models for FIF, FTIFT, and (F+T)j(F+T) combat.
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Table 6.1. Information to Extract from Combat Model.

(QI) Who will "win"*the engagement? Be annihilated?

(Q2) How do the force levels change over time in the battle?

(Q3) How many survivors will the winner have?

(Q4) What force ratio is required to guarantee victory!

(Q5) How long will the battle last?

(Q6) How do changes in the initial force levels and weapon-system

parameters affect the battle's outcome?

(Q7) What will be the casualty-exchange ratio?

(Q8) Is concentration of forces a good tactic?
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Most of these developments for analytically investigating variable-

coefficient LANCIIESTER-type combat have only recently appeared in the litera-

ture. In particular, the theory of variable-coefficient FIF combat is now

essentially almost as complete as that for LANCHESTER's classic constant-

coefficient equations for modern warfare. In other words, it is now almost

as easy to extract information (recall Table 6.1) from these variable-

coefficient LANCWESTER-type r•ombat models as it is from the corresponding

constant-coefficient ones.

C 229

______ _____
1. -, LL

4 - -



6.4. The Special Case of Quasi-Autonomous Equations.

Before elaborating upon general results concerning analytical solutions

of LANCHESTER-type equations with time-dependent attrition-rate coefficients,

let us consider a very important special case that bridges the gap between

constant-coefficient and variable-coefficient models. As stressed by S.

BONDER [10, pp. 30-31], analytical solutions to LANCHESTER-type equations

are important for developing insights into the dynamics of combat by ex-

plicityly portraying the relation between the parameters of the attrition

process and the numbers of survivors. Unfortunately, it is generally im-

possible to express the solution to such a system of equations with time-

dependent attrition-rate coefficients in terms of any of the classic "ele-

mentary" functions of mathematics 5, e.g. exponential functions, hyperbolic

functions, etc. Thus, we are grateful when constant-coefficient results

may be used in some sense for analyzing combat modelled with time-dependent

coefficients.

Let us therefore note that any homogeneous-force model of the form

dX - -h(t) A(x,y) with x(O) - x0,

(6.4.1)

-h(t) B(x,y) with y(O) - Y0'
dt

may be transformed into the autonomous system of differential equations

(i.e. the right-hand sides of the differential equations do not contain the

time parameter)

dd - -A(x,y) with x(T-0) - x0,

(6.4.2)

dy -B(x,y) with y(r-O) - yo,
dT
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e by the substitution

t
T f h(s)ds, (6.4.3)

0

where we assume that the integral exists. Thus, the model (6.4.1) with time-

dependent attrition-rate coefficients may be transformed into a constant-

coefficient one by a transformation of the battle's time scale. We will say

that such LANCHESTER-type equations are quasi-autonomous.

We have already encountered in Section 3.6 an important example of

such quasi-autonomous equations for an FIF attrition process, namely

dx - -a(t)y and dy - -b(t)x, (6.4.4)
dt dt

where

a(t) ka h(t), b(t) - kbh(t), (6.4.5)

h(t) > 0 for all t >_ 0, and ka and kb are positive constants. The

substitution

t
T - /kakb f h(s)ds, (6.4.6)aD0

then transforms (6.4.4) with (6.4.5) into

dT La Y and 5 x, (6.4.7)
dD a

whence , for example,

k a

x(t) - x0 cosh - YO sinh T, (6.4.8)
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which may be written as

x(t) x cosh (Va(t)b(t) t) - yo /a(t) sinh (/-a(t)b(t) t), (6.4.9)0 btt

where va(t)b(t) denotes the average intensity of combat, i.e.

it/a(t)b(t) . f Va(s)b(s) ds. (6.4.10)
0

Finally, we note that for combat modelled with the quasi-autonomous equations

(6.4.4) and (6.4.5) a "square law" still holds 7

k -x - ka (y - y 2). (6.4.11)
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6.5. General Force-Level Results for Variable-Coefficient LANCHESTER-

Yn Equations of Modern Warfare.

Let us consider the following LANCHESTER-type equations for a

FIF attrition process with time-dependent attrition-rate coefficients

dx = -a(t)y with x(O) w xo,

(6.5 .1)

-( w -b(x)x with y(O) - yo

These equations may be hypothesized to model combat under either of the

following two sets of circumstances (cf. Sections 2.2 and 2.11 above):

either (Sl) beth sides use "aimed" fire and target-acquisition times

do not depend on the number of targets [611,

or (S2) both sides use "area" fire and a constant-density defense

[12 1.

Mathematically, we assume that the attrition-rate coefficients

a(t) and b(t) are defined, positive, and continuous for t0 < t < +

with t0 < 0. For convenience, we introduce the notation that

a(t) E L(toT) means fT a(t)dt exists (and is given by a finite
t0

quantity). From our assumptions about a(t) it follows that a(t)
T

L(toT) implies that ft a(t)dt - + -V and similarly for b(t). We
0

also assume that both a(t) and b(t) E L(toT) for any finite T.

It follows that, for example, a(t) A L(to,+ -) implies that

iT a(t)dt - + •. We will further take a(t) and b(t)
limT 41 + - St0

(..• to be given in the form
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a(t) = ka g(t) , and b(t) k k h(t) , (6.5.2)

where k and kb are positive constants chosen so that a(t)/b(t)

k ka/kb when g(t) a h(t). In other words, ka and kb are basically

"."scale factors," which are useful for the parametric study of battle

outcomes as related to various system parameters.

We will now introduce some useful notation for two important

parameters of such "aimed-fire" battles with time-dependent attrition-

rate coefficients (6.5.1). In Chapter 2, we considered the FIF

attriton process with constant attrition-rate coefficients and found

out that the force-level trajectories depended on the following three

quantities: (1) the initial force ratio u0 - x0 /y 0 , (2) the intensity

of combat I - / , and (3) the relative fire effectiveness R - a/b,

where a and b denote constant attrition-rate coefficients. With

these constant-coefficient results in mind, we introduce for the model

(6.5.1) the intensity of combat I(t) and the relative fire effective-

ness R(t) defined by

I(t) - Va(t) b(t) and R(t) - a(t)/b(t) . (6.5.3)

We similarly introduce the combat-intensity parameter A I and the

relative-fire-effectiveness parameter A R defined by

A /=ka , and xR = k/kb" (6.5.4)

Before considering the representation of solutions to (6.5.1),

let us establish an important mathematical property of such solutions:
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all solutions to (6.5.1) with both a(t) and b(t) > 0 for all t > 0

and also with both x 0 and yo > 0 are nonoscillatory in the sense

that x(t) and y(t) can have at most one zero for t > 0. To see

this, we multiply the first equation of (6.5.1) by y, the second by

x, add, and integrate to obtain

x(t) y(t) - x0 y0 - f {a(s) y 2(s) + b(s) x2 ()}ds , (6.5.5)
0

whence follows the assertion by recalling that on physical grounds we

must have (and therefore we will assume that) both a(t) and b(t) > 0

for all t > 0 and also that both x 0  and yo > O.

THEOREM 6.5.1: All solutions to (6.5.1) are non.-

oscillatory in the sense that at most one of the

force levels x(t) and y(t) can ever vanish in

finite time.

As we have discussed in Section 2.2 above, we should "turn off" the

combat model (6.5.1) when either side is annihilated [cf. (2.2.2)1.

For many purposes, however, it is convenient to "let the equations run

for all t > 0." Theorem 6.5.1 then tells us that if, for example, the

xX force is ever annihilated (i.e. there is a finite t such chat

X(ta) - 01, then y(t) > 0 for all t > 0. This property is usefula -

for developing force-annihilation-prediction conditions for the model

(6.5.1). Furthermore, it does not hold for all differential combat

models.

( We will now show how the well-known constant-coefficient results

(2.2.11) for the force levels as functions of time, i.e. x(t) and
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y(t), may be generalized to the model (6.5.1) for battles with time-

dependent attrition-rate coefficients. The basic idea is to construct

the solution out of certain generalizations of the classic hyperbolic

functions. Thus, the X force level as a function of time, x(t), may

be represented as (see TAYLOR and BROWN (53])

x(t) - xo{Cy(o) Cx(t) - sy(o) Sx(t)}

- V'7__ (Cx(0) Sx(t) - Sx(0) Cx(t)} (6.5.6)

where the hyperbolic-like g~neral LANCHESTER functions (GLF) Cx(t)

and S x(t) are linearly independent solutions to the X force-level

equation

d2x 1 da dx a(t) b(t)x 0 (6.5.7)
dt2 7a6t) t FdtF

with initial conditions

Cx(to) 0 l , sx(to) - 0

(6.5.8)

{l/a(to)}dCx/dt(tO) - 0 , {i/a(to)}dSx/dt(to) -1// .

Here to0  0 denotes the largest finite time at which a(t) or b(t)

ceases to be defined, positive, or continuous. We will set to - 0

if no such finite time exists.

In a similar fashion, the Y force level as a function of

time, y(t), may be represented as
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y(t) - yo{Cx(0) Cy(t) - Sx (0) S y(t)

x0
- . {(c(0) Sy( ) - Sy(O) c¢( M , (6.5.9)

R

where the hyperbolic-like GLF C (t) aqd S (t) are linearly inde-
y y

pendent solutions to the Y force-level equation

-2 
___ db l - a(t) b(t)y - 0 (6.5.10)

with initial conditions

CY(t 0 ) = 1 , Sy (t) 0 (6.5.11)

{I/b(t 0 )}dCy/dt(t 0 ) - 0 , (i/b(t )}dSy/dt(t /'x-

0 Y 00 Y 0 R

It may be shown (and we will do so below) that

C X(t) C (t) - SX(t) Sy(W ) - 1 , (6.5.12)

whence (6.5.6) and (6.5.9) are readily seen to satisfy the initial

conditions to (6.5.1).

It is often convenient to view the above GLF as solutions to the

following two systems

dCX a(t)( z with C (to) i

dt -Y x 0
SdR (6.5.13)

d-T- b(t) C with S(t)-0

( dt R XY y0 0
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and the dual system obtained by making the substitutions X ÷ Y, Y -0X,

a(t) ÷ b(t), b(t) 0 a(t), and XR * l/XR in (6.5.13)

dCy
S/ R b(t) S with Cy(t) -0

(6.5.14)

dSdSX a(t)
dt V7- with S X(t)0-0

R

Equation (6.5.12) is now a trivial consequence of (6.5.13) and (6.5.14).

Thus, the X and Y force levels may be constructed from the

GLF, which we may consider to be the basic "building blocks" of all

analytical results for the differential combat model (6.5.1). In other

words, once we have determined the GLF defined by (6.5.7), (6.5.8),

(6.5.10), and (6.5.11) (or, equivalently, by the two systems (6.5.13)

and (6.5.14)), we can, for example, construct the X force level x(t)

by means of (6.5.7).

Thus, it remains to discuss the calculation of the hyperbolic-

like GLF. Two approaches that may be used to calculate the hyperbolic-

like GLF from their definitions are as follows:

(Al) method of succesive approximations,

and (A2) infinite-series methods.

The infinite-series methods essentially consist of assuming an infinite

series of a given form with undetermined coefficients and then deter-

mining these coefficients (see, for example, INCE [23], KAMKE (24 ],

MURPHY (32], or RAINVILLE [35]). We have primarily used, however,
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f successive approximations in our work (see, for example, TAYLOR [431),

and we will now further discuss this approach.

We will now illustrate the method of successive approximations

by developing an expression for the hyperbolic-like GLF C Xt). From

(6.5.13) we find that C X(t) satisfies the following VOLTERRA integral

equation

t Sl1

C x(t) - 1 + f a(s 1 )ds, f b(s 2 ) Cx(s 2 )ds 2  (6.5.15)
t 0  to

We may also write that

2 s3
Cx(S 2 ) ( 1 + f a(s 3 )ds 3  5 b(s 4 ) Cx (s 4 )ds 4

to to

which we may then substitute into the right-hand side of (6.5.15) and

recursively continue. Doing this, we find that we may write

00

C X(t) - Fn (t), (6.5.16)
n-O

where F0 (t) - 1 and for n > 0

t s
Fn (t) - f a(s)ds f b(r) Fn-l(r) dr . (6.5.17)

to to

It may be shown that F (t) < (i/n.)f{f a(s) B(s)ds}n , whence the
a t 0

infinite series (6.5.16) converges uniformly and absolutely on S

for S - [O,T] with T finite. In a similar fashion we may show

that
t00

S -W f a(s){ I Gn(s)}ds , (6.5.18)
R to n-0
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where GO(t) -1 and for n > 0

t s
Gn(t)- f b(s)ds f a(r) Gn-l (r)dr . (6.5.19)

t0 t0
Example 6.5.1. If a(t) - k ah(t) and b(t) - kbh(t) with h(t) > 0

for all t > -, then CX(t) - cosh r and SX(t) - sinh r, where

T(t) -/7 ft h(s)ds.

Example 6.5.2. If a(t) ka (t + C)P and b(t) = k b(t + C)' with

C > 0 and both p and v > -1, then

C tL( )2k (t + C) k(p+v+2)Cx(t) =r(q) +_ _722/ k' .~ )
k-0 t + "q)7

and
S I 2k+lk(+v+2)++l

Sx(t) =r(p) + 21 (t + C
k=0 + V + 2/ k! r(k +1 + p)T

where p - (?. + 1)/(u + v + 2) and q - l-p.

Before leaving the topic of time solutions to (6.5.1), let us

record here some further important properties of such solutions. First

of all, if the reader compares, for example, the X force level

(6.5.6) with the corresponding constant-coefficient result (2.2.9), he

will see that it is more complex. TAYLOR and BROWN (53] have shown

that (6.5.6) only simplifies for t0 < 0 when

a(t)/b(t) klaki - CONSTANT * (6.5.20)
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since only then does a so-called algebraic addition theorem (see below)

hold between the hyperbolic-like GLF.

THEOREM 6.5.2 (TAYLOR and BROWN [53]): For t0 < 0,

one can further simplify (6.5.6) if and only if

a(t)/b(t) - ka/kb k CONSTANT (constant ratio of

attrition-rate coefficients).

Let us now give an example of how such an algebraic addition theorem

helps us to simplify (6.5.6). Consider a constant-coefficient battle

that begins at t - t . Equation (6.5.6) then yields

I t
x(t) - x/ic t1 cosh Vi- t - sin /a t1 sinh "a tj

- Y0vb cosh t1 n t - sinh/F t cosh t l,

(6.5.21)

which simplifies to

c(t) - x cosh /a (t-t) -t sinh /a (t-tI) , (6.5.22)

due to the well-known algebraic addition theorems for the ordinary

hyperbolic functions, e.g. cosh(u-v) - cosh u ccosh v - sinh u sinh v.

As we have seen above in Section 6.4, when the ratio of

attrition-rate coefficients is constant, i.e. (6.5.20) holds, we can

transform the X force-level equation into one with constant

coefficients by a transformation of the independent variable t. As

we have seen, this situation leads to particularly convenient results.
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In this respect, TAYLOR and BROWN have proved the following result.

THEOREM 6.5.3 (TAYLOR and BROWN [531): A necessary and

sufficient condition to be able to transform the X force-

level equation (6.5.7) by a transformation of the inde-

pendent variable t into a linear second-order ordinary

differential equation with constant coefficients is that

1 d1 d £n R(t) - CONSTANT (6.5.23)

In this case the desired substitution is given by

t
T - K f /a(s) bTiT ds , (6.5.24)

t
where f ... ds denotes an indefinite integral and K is

an arbitrary constant conveniently chosen.

Finally, the reader may be interested in the author's assess-

ment as to just how difficult it is to develop analytical solutions

to such LANCHESTER-type equations for modern warfare when there are

temporal variations in fire effectiveness. Figure 6.11 shows the

author's subjective estimate of such difficulties.
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6.5. Force-Annihilation-Prediction Conditions

it is important for the military operations analyst to have a

clear understanding of how the initial force ratio and weapon-system-

performance parameters interact to determine a battle's outcome. For any

particular battle, we can always, of course, determine its outcome by

explicitly computing the force-level trajectories and plotting them over

time: the loser is simply the side that first reaches its battle-termi-

nation condition (see Section 3.3). The force-level trajectories may be

generated either from the analytical results discussed in the previous

section or more simply by numerical integration of the differential

equations. This approach, however, is time consuming and by itself

provides no understanding about the parametric dependence of battle out-

come on the initial force levels and weapon-system-performance parameters.

Moreover, as work by BONDER and FARRELL (10 and TAYLOR [43; 53] unfortu-

nately shows, even the analytical (i.e. infinite-series) solution to

variable-coefficient equations generally provides by itself (i.e. without

explicitly computing force-level trajectories) little information about

battle outcome because of its complexity.

Moreover, fraquently the military operations analyst may only

want to determine who is going to "win" a battle without having to spend

the time and effort of explicitly computing the force-level trajectories.

It is therefore of interest to develop battle-outcome-prediction (or

victory-prediction) conditions that help one obtain insights into the

dynamics of combat by explicitly portraying the relation between the

various factors in the combat-attrition process and battle outcome.

Specifically, one would like to have a (hopefully) simple expression that
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relates battle outcome to the model's parameters. Thus, the military OR

analyst is interested in developing battle-outcome-prediction conditions.

Battle outcome, however, depends on the battle-termination model chosen,

and modelling battle termination is a somewhat controversial topic as

we saw in Chapter ?.

Although we are well aware that engagement termination is a

complex random process for which it is by no means certain that force

levels are the significant variables (.see Chapter 3), we will consider

two types of battle-termination conditions in this section:

(Tl) battle terminated by one side's force level reaching

its "breakpoint" value while the other side's force

level has always been above its breakpoint value

(force-level-breakpoint battle),

and (T2) battle terminated by the force ratio first reaching

either of two given "breakpoint" force ratio values

(force-ratio-breakpoint battle).

Moreover, in both cases we will only consider deterministic breakpoints

here (see Section 3.4 for a further discussion), and we will accordingly

refer to these engagements with deterministic battle-termination

conditions as

(El) fixed-force-level-breakpoint battle,

and

(E2) fixed-force-ratio-breakpoint battle.
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The first type of battle-termination condition (Ti) and the

corresponding engagement with deterministic breakpoints (El) have been

discussed in Section 2.8 and Chapter 3 above, and thus it remains to

discuss battle-termination-condition type (T2) and the corresponding

engagement model with deterministic breakpoints (E2). Let us as usual

denote the force ratio x/y as u. Then for a fixed-force-ratio-
X

breakpoint battle, we denote the "breakpoint" force ratio as UBp when

X terminates the battle (i.e. tries to "break off" the engagement),
Y

and as uBp when Y terminates the battle. The idea here is that,

for example, X will decide to "break off" the engagement when he

perceives a certain very unfavorable force ratio against him. These

"breakpoint" force ratios then satisfy 0 < u X < u0 < uY < +
uBP 0 Bp --

Corresponding to a fight until the annihilation of one side or the
x Y

other is the case in which uBp - 0 and uBP = + -. Such a "fight-to-the-

finish" may consequently be examined under either of the above two battle-

termination conditions (Ti) and (T2). BONDER and HONIG [11] have pointed

out, however, that force annihilation may not always be the best criterion

for evaluating the outcomes of simulated military operations. See BONDER

and FARRELL [10, pp. 192-242] for a detailed LANCHESTER-type analysis of

an attack scenario for with other "end of battle conditions" play the

principal role. Nevertheless, it is of considerable interest (especially

for developing insights into the dynamics of combat) to be able to easily

predict the occurrence of force annihilation.

Thus, as we have discussed in Section 2.8 above, battle outcome

depends on not only the dynamics of combat but also the battle-termination

model considered. Consequently, we will generally obtain different

victory-prediction conditions for the above two types of engagements:
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(El) fixed-force-level-breakpoint battle, and (E2) fixed-force-ratio-

breakpoint battle. Moreover, it turns out that there are two different

kinds of battle-outcome-prediction conditions that have been developed

for the model (6.5.1):

(A) exact force-annihilation-prediction conditions

(necessary and sufficient for the occurrence of

force annihilation),

and

(B) simple approximate battle-outcome-prediction conditions

(sufficient, but not necessary, for the occurrence of a

particular type of outcome).

The first type of condition is essentially developed from results on

the representation of solutions to (6.5.1), see equations (6.5.6) and

(6.5.9) above. In retrospect, the author feels that the main value of

(6.5.6) is that it may be used to develop these force-annihilation-

prediction conditions. The second type of battle-outcome-prediction

condition may be developed from considering the equation satisfied by

the force ratio.

We will see that so-called higher transcendental functions, unfortu-

nately, are usually involved (i.e. for t 0 < 0 and a(t)/b(t) 0 CONSTANT)

in the "exact" force-annihilation-prediction conditions. On the other

hand, no higher transcendental functions are usually involved in the

"simple approximate" battle-outcome-prediction conditions for a fixed-

force-ratio-breakpoint battle, but many times one is unable to predict the

outcome, i.e. there is a "gap" in this type of condition.
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Concerning exact force-annihilation-prediction conditions, the

author (52] (extending earlier results by TAYLOR and COMSTOCK (58]) has

developed the following general result.

THEOREM 6.6.1 (TAYLOR [521): The X force will be

annihilated in finite time in LANCHESTER-type combat

modelled with (6.5.1) if and only if

YO R ma

where F(Q) is given by

Cx(O) - QSx(O)
F(Q) - .Cy(0) - Sy(0) (6.6.2)

QCYTO-) - SY (0)

Neither side will be annihilated in finite time if and only

if

* x.•

IrV F(Q < YO < V<- F (QmOn) (6.6.3)R max -yo-- R 'mn

where

Sx(t) 1 1 ______

llim . .I - a(s)ds (6.6.4)t -.+00 . 7 7 * 2664Xa Q I-- tO {Cx(S)}2
t++o ~ max R t0  (C(s1

and

s_(t) , rt bs
lim - Qmix R f 2 (6.6.5)

t +o0 tR t0  {C 2
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We always have Qmin Qmax with Qmin < Qmax' with

0* < if and only if both a(t) + b(t) E L(t 0 ,+-o).
'miri % ax

The deterministic inequality (6.6.1) is the generalization of

the well-known constant-coefficient force-annihilation-prediction condition

given in Section 2.2 above (recall Proposition 2.2.1). We will call the

parameters %a and Qmin defined by (6.6.4) and (6.6.5) in Theorem

6.6.1 the parity-condition parameters, since parity between the two forces

(i.e. neither force annihilated in finite time) may be associated with them

[see (6.6.3) above]. As (6.6.1) shows us, force-annihilation prediction

may be expressed in terms of the following three parameters:

(PI) the initial force ratio, u0 = Xo/yo,

(P2) the relative-fire-effectiveness parameter, X R = k a/kb

and (P3) the partity-condition parameter, Q * or Rnin"

As Theorem 6.6.1 tells us, different parity-condition parameters are in-

volved in the prediction of annihilation of the X force and in that of

the Y force. These two parity-condition parameters are functionals depend-

ing on only the attrition-rate-coefficient functions a(t) and b(t)

[see, (6.6.4) and (6.6.5) above]. Depending on the boundedness of the

total cumulative fire effectiveness of both sides (i.e. the integrability

of the attrition-rate coefficients over the interval [top+-)), however,
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the values of these two parameters Q and Q may not be the same
min max

[i.e. Qmin < max with min < max if and only if both a(t) and

b(t) E L(t 0 ,+o-)]. Thus, unless both a(t) and b(t) E L(t 0 ,oe), only a

single parameter, denoted simply as Q , is actually involved in force-

annihilation prediction.

Let us now give a physical interpretation for the parity-condition

parameter. TAYLOR and COMSTOCK [58, p. 355] have pointed out that we may

consider Q to be the initial Y force level that leads to a draw8

in the following fight-to-the finish (i.e. parity exists between the two

forces) against an X force of "unit strength"

dEx a(t) Ey with EX(to;Q) - 1

R (6.6.6)

dE- - R b(t) EX with Ey-O;Q) = Q 9

where Ex(t;Q) and Ey(t;Q) are so-called subdominant solutions which

play the role of decreasing exponentials for the X and Y force-level

equations. Let us denote any Q E [Q as Q . It follows from

(6.6.3) and (6.6.6) that

EX(t;Q*) and Eý(t;Q*) > 0 for all finite t > to. (6.6.7)

*

Considering (6.6.6) and (6.6.7), we may think of Q as "the Y-force

equivalent of an X force of unit strength," since neither force is annihilated

in finite time.
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Let us now consider two examples of LANCHESTER-type battles for

which the parity-condition parameter may be explicitly analytically

determined. The first example shows the possibility of the existence of

a finite range of values for the initial force ratio x 0 /y 0  such that

neither side is ever annihilated in battle, while the second analytically

determines the parity-condition parameter for a very important specific

case of attrition-rate coefficients (namely, power attrition-rate coefficients

with "no offset" modelling, for example, combat between two opposing

weapon-system types with the same maximum effective range). Further examples

and use of such results in tactical analysis is given in Section 6.9 below.

Example 6.6.1. Consider combat modelled by (6.5.1) with the following

attrition-rate coefficients

4.

a(t) - k ah(t) , and b(t) - kh(t) . (6.6.8)

We assume that h(t) > 0 for all t > -•, and then to - 0. It follows

(see Sections 6.4 and 6.5) that C -(t) Ct) - cosh T and S X() - S yt)

- sinh r, where T(t) - TI f h(s)ds. Denote lim r(t) as M. It
0 t=

follows that

1 - "e2n < (6.6.9)Qn 1 + e-2n Qi
~max

Thus,Qmin x if and only if M < +- if and only if h(t) E L(O,+o-).

Theorem 6.6.1 tells us that X will be annihilated if and only if
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x0 ( ln)

Furthermore, neither X nor Y will be annihilated in finite time for

-- Y x0 < + e-2
*"XR (1- e 2

n Y R 1-e2n

Example 6.6.2. Consider combat modelled by (6.5.1) with the following

power attrition-rate coefficients with no offset

a(t) - k a(t + C)P, and b(t) - k (t + C)", (6.6.10)a a

where C > 0. It follows that t 0 - -C. As we saw in Section 6.2 above,

these coefficients may be taken to model, for example, the constant-speed

attack of a mobile force against the static defensive position of an enemy

force in which each side's fire effectiveness varies as a power of the

range between the two opposing forces. These particular coefficients

(6.6.10) model combat between two opposing forces armed with weapon systems

with the same maximum effective range, i.e. set D - 0 in (6.2.9). The

assumption that both a(t) and b(t) E L(t 0 ,T) for any finite T > to

yields that we must have V and v > -1, and consequently both a(t)

252

._I_ •-•o-a" i.w.- l t "t



and b(t) f L(t 0 ,+oo) so that Q - %a " Considering (6.5.7),

(6.5.8), (6.5.10), and (6.5.11), one may show that (see [53, p. 521)

Gx(t) - r(q)( + )P (t + C) I(T) , (6.6.11)

Sx(t) - r(p) +• + 2) (t +C) (T) ,(6.6.12)

C(t) - r( 2) (t + C)(v 1)/2I (T) , (6.6.13)y + vp) + 2) q
and

Sy(t) - r(q) + (t + C) (v+)/2 (T) (6.6.14)
Y+v+ 2/)66.4

where X I a , I (T) denotes the modified BESSEL function of the first

kind of order p (e.g. see LEBEDEV [27, p. 108], OLVER [34, p. 60], or

WATSON [60, p. 77]), p = (+l)/(I+v+2), q - 1 - p, and

(t + C) ('+'+2 )/ 2
T(t) - X- 1 (6.6.15)

v{( +v+ 2)/2}

Hence,

1 - lm Sx(t) r(p) ( + lim ) p (T) (6.6.16)
Q t+@ c(t) r (q) t÷+ +Xv+ 2 t I_ T)
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We observe that p and v > -1 implies that 0 < p, q < 1 and also

that T ) + - as t - + -. Using the so-called asymptotic representation

for modified BESSEL functions of the first kind (e.g. see OLVER [34, p. 269]),

one may show that on the real line lim {I (0)/I (W)} 1 for all real

values of a and 8 . It follows from (6.6.16) that

Q f Iq x I \p-q (..7
r(p) + v + 2 ' (6.6.17)

and hence [from (6.6.11) through (6.6.14) above]

* ,v/ {' •(TO) - I (To)]"
F(Q ) - C(11-0/2 {I-(To). 1P(T , (6.6.18)

I q ( 5

where T denotes T(O). At the expense of some mathematical obscurity,

the expression (6.6.18) may be written in the somewhat simpler form

F(Q*) '- qp(~ I a )qp X( (6.6.19)P + v+ 2 A(y a (6..Y9

where A (•) denotes the generalized AIRY function of the first kind of

(nonintegral) order a (see SWANSON and HEADLEY [42, pp. 1401-1402]),

a- (v-i)/(.+l), 8" (u-v)/(v+l), Ex [I /( 0+l)]2Pc•I , and

y- [I/(V+l)] 2q C"4 l. Theorem 6.6.1 then tells us that the X force

will be annihilated in finite time if and only if

x0 (I x1 + \'+ q-o qPAa(•X)

X0 X p qv+ 2,)- X ) (6.6.20)
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which for to - 0 simplifies to

Xo < /X_ XI q-p r(p) (6.6.21)

YO R + v + 2 r(q)

Concerning simple approximate battle-outcome-prediction conditions,

the author [45] (see also TAYLOR and PARRY [59]) has shown that under the

appropriate conditions x0 /y 0 < /a0/b0  implies that the X force will lose

a fixed-force-ratio-breakpoint battle in finite time. Here a0 denotes

a(O) and similarly for b0 . A fight-to-the-finish is, of course, just

a special case of such a battle. More precisely, we have

THEOREM 6.6.2 (TAYLOR [453): Assume that b(t) f L(O,+-)

and that R(t) - a(t)/b(t) is nondecreasing. Then for

LANCHESTER-type combat modelled with (6.5.1),

•0 < 0(6.6.12)

implies that the X force will lose a fixed-force-ratio-

breakpoint battle in finite time.

PROOF. Introducing the force ratic u - x/y, we find that it satisfies

the Riccaci equation (see Appendix A.3)

du2T" b(t)u2 
- a(t) with u(O) - 0 x0 /y 0 . (6.6.23)
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Let u +(t) R(tr) - i(t)/b(t) denote the positive root of the quadratic

equation b(t)u2 - a(t) - 0, and observe that du/dt < 0 for any positive

u < u+(t) (see Figure 2.7). The assumption that R(t) is nondecreasing

++then'yields that u +(t) is nondecreasing. It is readily shown that

du/dt(O) < 0 and u (t) nondecreasing imply that du/dt(t) < 0 for all

t > 0 (e.g. see Section 2.2 above or TAYLOR and PARRY [59, pp. 526-527]).

Consequently, when (6.6.22) holds and R(t) is nondecreasing, it follows

that du/dt(t) < 0 for all t > 0. It then remains to be shown that X's
10

breakpoint force ratio is reached in finite time. Observing that

a0 < + and b0 > 0, we find that under the stated conditions

du 2 b(t) 2 _ a b(t) dudtU=b(t) {u2 - ) -<-0 bu -()

dt - b 0 00 0 b0 - 1 dt

Thus,
u~) U du dt(i k du(0

U(t) ) dt < u0 + (0) t b(s)ds (6.6.24)
0 dt - dt

whence b(t) A L(O,+-) implies that u(t) goes to UBp in finite time.

Q.E.D

The above proof of Theorem 6.6.2 is particularly important, since it may

be extended to more general models, e.g. (6.13.1) (see Theorem 6.13.3 below).

Moreover, the role of the assumption that b(t) A L(0,+4) in guaranteeing

that the battle is driven to termination is clearly shown in the above

proof.
1 1

By considering LIOUVILLE's so-called normal form (see INCE (23,

p. 271], fcr the Y force-level equatiou, the author [45, p. 197] has

also developed the following complementary result
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THEOREM 6.6.3 (TAYLOR [45]): Assume that

T
0 < R(O) < +- and that lir f /a(t)b(t) dt +o.

T÷+ to0

T
Let r(t) = f Va(s) b(s) ds,

to

_____1/4G(T) (- , and Q(T) - [R(t)] (6.6.25)

where Q'(T) denotes dQ/dT. If G(T) < 0 for all

T > 0, then

x 0 , ao
x0> _(I + C) (6.6.26)

implies that the Y force will be annihilated in finite time.

Here e denotes (l//i•j)[d/dt Zn{a(t)/b(t)} 1 / 4 ]. Furthermore,

if dR/dt > 0 for all t > 0, then Y will lose a fixed-force-

ratio-breakpoint battle in finite time.

The deterministic inequalities (6.6.22) and (6.6.26) show us the comple-

mentary nature of Theorems 6.6.2 and 6.6.3: if the initial force ratio

u0 M x0 /y 0  is below a certain critical value, Theorem 6.6.2 predicts

that Y will win a fixed-force-ratio-breakpoint battle; while if u0

exceeds a second critical value, Theorem 6.6.3 predicts the X will win.

Example 6.6.3. Again we consider combat modelled by (6.5.1) with the

power attrition-rate coefficients with no offset (6.6.10) and C > 0.

4 Without loss of generality, we may assume that U > v and then
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dR/dt > 0 (i.e. R(t) is nondecreasing). Theorem 6,6.2 then yields that

Y will win a fixed-force-ratio-breakpoint battle in finite time if

< C (6.6.27)

In preparation for invoking Theorem 6.6.3, we compute

(' 21I ) (pt'v+2)/2

T(t) - 2• + 2 / (t+C) (6.6.28)

and

G(T) - (v-;)(ji + 3v +4 (6.6.29)
4(i + v + 2) T

We observe that G(r) < 0 for all T(t) > c(0) and also co> 0 if

and only if p > v. Hence, Theorem 6.6.3 yields that X will win a

fixed-force-ratio-breakpoint battle in finite time if

x 0 > C (1-v)/ 2 + .-.Ž? - (v+l) (6.6.30)

YO ýk b4kb

The complementary nature of Theorems 6.6.2 and 6.6.3 is clearly shown by

the victory-prediction conditions (6.6.27) and (6.6,30). However, these

deterministic inequalities also show us that these simple approximate victory-

prediction conditions fail to predict the outcome of battle when

k a(-v)/2 - (0 <(-v)/2 + (-V) (6.6.31)

258

/



Further results and examples are given in TAYLOR [39].

Let us now elaborate further upon the general nature of the victory-

prediction conditions given in Theorems 6.6.2 and 6.6.3. Our examination

will also yield that there is a "gap" in these victory-prediction conditions:

for a certain given range of values for the initial force ratio, we cannot

forecast the outcome of battle. To see the complementary nature of these

conditions, we observe that under the appropriate conditions, Theorem 6.6.2

yields (for dR/dt > 0 always)

X Ca
Y will win if -O--0 , (6.6.32)

YO b0

while Theorem 6.6.3 yields (for G(T) < 0 always and e0 > 0)

X will win if -0 > (1 + ) 0 (6.6.33)

Moreover, for many attrition-rate coefficients of tactical interest (e.g.

the power attrition-rate coefficients with no offset), we have that

dR/dt > 0 if and only if G(r) < 0 if and only if 0 > 0, although

these if-and-only-if statements do not generally hold. In such cases,

though, we observe that for

FaO < (1 + C0) (6.6.34)

we cannot predict by this approach who will be the loser of a fixed-force-

ratio-breakpoint battle. Thus, there is a "gap" in these simple approximate

battle-outcome-prediction conditions (see Figure 6.12).(i
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The significant thing to note about the simple approximate

victory-prediction conditions (6.6.32) and (6.6.33) is that although they

are rather strong sufficient conditions, they are very simple: they

involve only simple functions of the initial conditions and initial values

of the attrition-rate coefficients plus assumptions about the behavior

over time of the attrition-rate coefficients. No "special" mathematical

functions are involved, although this is not true for the exact force-

annihilation-prediction conditions given in Theorem 6.6.1 except for the

special case in which a(t)/b(t) = CONSTANT. However, as shown by both

(6.6.34) and Figure 6.12, there is a "gap" in these simple approximate

victory-prediction conditions. The price of removing this "gap" is the

introduction of higher trandscendental functions (see, for example,

TAYLOR and COMSTOCK [58, p. 350]). Furthermore, "exact" results with

no such gap in victory prediction are apparently only possible for a

fight-to-the-finish in which one side or the other is to be annihilated

(see also Sections 3.5 and 3.6 above).
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6.7. Parametric Dependence of the Parity-Condition Parameter.

We have seen in Section 2.2 that for a LANCHESTER-type FIF

attrition process with constant attrition-rate coefficients, Y will win

a fight-to-the-finish in finite time if and only if

S< a.(6.7.1)

Thus, when there are no temporal variations in fire effectiveness, anni-

hilation of a force depends on only two relative factors, namely: (I) the

initial force ratio u0 a x0/yo, and (II) the relative fire effectiveness

R - a/b. Theorem 6.6.1 generalizes (6.7.1) to homogeneous-force combat

modelled by (6.5.1) with the temporal variations in fire effectiveness.

It tells us that, for example, the annihilation of the X force depends

on the following three factors

(Fl) the initial force ratio, u0 - x0/•,

(F2) the relative-fire-effectiveness parameter, Ak - ka/k b,

and (F3) the parity-condition parameter, Q " max

when there are temporal variations in fire effectiveness. The first two

factors, (Fl) and (F2), are clearly relative ones, and explicitly depend

on certain given parameters in our combat model.

How does the parity-condition parameter Q depend on the input

parameters to our simple combat model (6.5.1)? This is an important
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question for the military OR worker to answer, since its answer will

help him to better understand how force-level and weapon-system-performance

factors interact to determine the outcome of battle. In our examination

here we will show that for time-dependent attrition-rate coefficients

the outcome of battle no longer depends on just relative factors but that

the intensity of combat generally also influences -he battle's outcome.

Specifically, we will determine on which input parameters of the model

(6.5.1) the parity-condition parameter depends for the special case of

unlimited firepower for one or both sides, i.e. either a(t) f L(O,+oa)
* *

or b(t) i L(O,+o-). In this case %mn "max' and we will denote this

common value simply as Q . Theorem 6.6.1 then takes the following

form.

THEOREM 6.7.1: Assume that either a(t) A L(O,+oa) or

b(t) A L(O,+4o). Then the X force will be annihilated

in finite time if and only if

X 0 C5 c(0) - Q*S ()
R (0) --O (6.7.2)

*
where the parity-condition parameter Q is unique

and given by

lim S X(t) I 1 00 a(s)ds
t (t / tf" {C-(8)i2 :0(6.7.3)

We also have that
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lrn S y (t) Q, f b(s)ds (6.7.4)t ir = " (t6 R7.4)Y 8)
~ (0to {Cy (S)}

Also, neither side will be annihilated in finite time if and

only if the inequality sign in (6.7.2) is replaced by an

equality sign.

We will henceforth in this section assume that either

a(t) • L(0,+4) and/or that b(t) 0 L(O,+-). For determining the

parametric dependence of the parity-condition parameter Q , it is con-

venient to introduce a new independent variable s defined by

t
s(t) - K AX f g(a) do, (6.7.5)

to

where the parameter K is to be chosen to simplify the form of J(s)

given by (6.7.7) below. We denote s(O) as so, and then so > 0

if and only if to _ 0. The substitution (6.7.5) transforms the X force-

level equation (6.5.7) into the normal form (e.g. see KAMKE [24]).

d2xd 2 - J(s)x - 0 (6.7.6)
ds2

where the so-called invariant J(s) of the normal form is given by

J(s) - h , (6.7.7)
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and t - t(s) via (6.7.5). We also define the normal-form hyperbolic-like

GLF cx(s) and sX(s), which satisfy (6.7.6) with the initial conditions

cX(0) - 1, c'(O) - 0, and S0 (0) - 0, yo) 1, (6.7.8)

where (for example) c'(s) denotes dc x/dS. It follows that

C x(s) - Cx (t(s)) , and s x(s) - KS x(t(s)) , (6.7.9)

where t - t(s) by the inversion of (6.7.5). The corresponding Y functions

(see TAYLOR [51] for further details) are analogously defined to satisfy

c y(s) - Cy(t(s)) and sy(S) - (1/K) Sy (t(s)).

It then turns out that the parity-condition parameter Q may

only depend on the combat-intensity parameter AI as the following theorem

shows.

THEOREM 6.7.2 (TAYLOR [511): The parity-condition parameter

Q does not depend on the relative-fire-effectiveness parameter

AR but may depend on the combat-intensity parameter A V It

is independent of AI if and only if the ratio of attrition-

rate coefficients is constant, i.e. a(t)/b(t) - CONSTANT.

The above theorem may be proved by considering the differential equation

satisfied by the quotient s x/Cx (see TAYLOR [51] for further details).

It is also worth noting that the force-annihilation-prediction condition

(6.7.2) may be written in terms of the normal-form hyperbolic-like GLF

as
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x0  x(s Z *)sx(S)
-- R X 0 X 0 (6.7.10)YO K Z cy(s 0) - sy(s 0 )

,

where the modified parity-condition parameter Z is given by

Z - Q /K . (6.7.11)

We also have that

lm _ - 1 (6.7.12S)
s-*+-c () Z*

*

By choosing K in (6.7.5) in the right way, we can sometimes factor Q into
*

two terms, one of which (i.e. K) depends on XI and one (i.e. Z ) that

does not. Theorem 6.7.3 shows us when this factorization is probable.

THEOREM 6.7.3 (TAYLOR (51]): The modified parity-condition parameter

Z of (6.7.10) is independent of the combat-intensity parameter X

if and only if the invariant J(s) of the normal form is of the

form J(s) - sa. In this case, the parameter K depends on the

combat-intensity parameter XI and is free from X I if and only

if a(t)/b(t) is constant.

TAYLOR [51] has also shown that when the invariant J(s) -s

Z* 2p-1 r (6.7.13)
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I with p 1/(2 + a). In this case

cx(s) s )(S), S p(s) p (1-2p)H (S),

(6.7.14)
S" F (S), and s y(s) p(2p-1)Hq(S)

where q - l-p, S(s) 2ps 1/( 2p), and F and H denote LANCHESTER-

CLIFFORD-SCHLAFLI functions of order v (see Section 6.9 below). TAYLOR

has also shown that when h(t) - CI{g(t)}l with C an arbitrary constant

[recall (6.5.2)], then the modified parity-condition parameter Z* can be

chosen to be independent of the combat-intensity parameter XI if andAt

only if either g(t) - (t-t 0 )" or g(t) - e a. This latter result

also implies that the same mathematical functions may be used tc analyze

"aimed-fire" combat modelled by (6.2.4) with both the power attrition-rate

coefficients with "no offset" (6.6.10) [i.e. set D - 0 in (6.2.9)] and also

the exponential attrition-rate coefficients (6.2.12).

Theorems 6.7.2 and 6.7.3 show how the parity-condition parameter Q

depends on the combat-intensity parameter X1 and the relative-fire-effective-

ness parameter AR' In contrast to the classic constant-coefficient results,

we saw that battle outcome (i.e. force annihilation through Q ) depends

on XI unless the ratio of attrition-rate coefficients is constant, i.e.,

a(t)/b(t) - constant. It is doubtful that one would ever have learned about

such dependence merely by numerically determining the parity-condition

parameter (see the next section). Thus, our theoretical investigation here

has yielded some important insights into the dynamics of combat that would

( be otherwise difficult to perceive.
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6.8. Numerically Determining the Parity-Condition Parameter

The result (6.7.3) suggests a numerical procedure for approximately

determining the parity-condition parameter Q in those cases for which

explicit analytical results are not available: we may approximate the
, A A^/ct A

parity-condition parameter Q by Q l/SX (/C (t)}, where t is

a "suitably large" value of t. In other words, we may estimate Q

simply by picking a large value for t (we denote this selected large

value by t), computing Sx(t) and Cx(t), and then forming their ratio.

Our estimate of Q is then given by Q - 1/fSx(t)/C x(t)}. The only

problem is that we do not know right now how large to take t for

"satisfactory" estimation of Q : there is an estimation error Q -Q(),

which depends monotonically on t, and a priori we do not know how large

this error is. In this section we give a bound on the magnitude of this

error, and this error estimate allows the goodness of approximation to be

easily evaluated in many cases of interest.

In actual practice we have found it more convenient to numerically
,

determine the modified parity-condition parameter Z defined by (6.7.12).

Our idea is to use knowledge about the modified parity-condition parameter

Z corresponding to one pair of attrition-rate coefficients, denoted as

a(t) and b (t), to numerically determine Z for a related pair, a(t)

and b(t). With this in mind, let us denote cX(s) corresponding to

a(t) and b(t) as cx(s;a,b), and similarly for sX and nX - SX/C¢.

In other words, we will now write

nX (s;a,b) - .X(s;a,b)/cX(s;a,b) (6.8.1)
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In this notation, we may write (6.7.12) asg

1rn nX(s;a,b) - 1 1 (6.8.2)
s-1-+0 Z [a,b]

where Z [a,b] denotes that the modified parity-condition parameter is a

functional (i.e. a function for which the independent variables themselves

are functions), depending on only the attrition-rate coefficients a(t)

and b(t).

The relation (6.8.2) suggests that we should estimate Z [a,b] with

Z defined by

Z(s;a,b) - 1/nX (s;a,b) , (6.8.3)

where s denotes a suitably chosen value for s. It may be shown that
n x(s;a,b) in a strictly increasing function of s so that the larger we

x

take s in (6.8.3), the better our approximation becomes. How large should

we take s for "satisfactory" estimation of Z ? What is the error made

by taking Z(s;a,b) as an estimate of Z [a,b]? The answer to this latter

question involves comparison with known results for Z and helps us to

determine how large to take s. Theorem 6.8.1 (an error estimate for our

approximation) tells us exactly how large to take s.

THEOREM 6.8.1 (TAYLOR and BROWN [51]): Assume that b (t) < b(t)

for all finite t < t . Let f E(s) denote the fractionil error

made in the estimation of Z [a,b] by Z(s;a,b), i.e.
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fC(s) = Z(s;ab) - Z [a,b] (6.3.4)
Z (a,bI

Then

0 < fE(s) < {l/Z [a,bl] - nk(s;a,bI)} Z(q;a,b) (6.3.5)

Thus, we have presented a method for numerically determining Z [a,bJ:

we simply pick a large value for s (and denote the selected value es s),

compute s x(s) and c X(S), and then compute the estimate Z(s;a,b) accord-

ing to (6.8.3). Theorem 6.8.1 allows us to know the accuracy of our approxi-

mation, which can be improved by takl.ng s larger. AccordingIv, we can

numerically determine Z (a,b] to any specified degree- of accuracy once

Z [a,bI] is known. Moreover, exact analytical results for the modified

parity-condition parameter Z have been obtained for only the two cases of

attrition-rate coefficients considered in Section 6.5 above: namely, (I) a

constant ratio of attrition-rate coefficients, and (II) power attrition-rate

coefficients with "no offset." We will now show how to use the latter known

results to numerically determine (by comparison with the known results via

Theorem 6.8.1) the parity condition parameter in a very important related

case.

We will now apply the above theory to the analysis of battles modelled

by LANCHESTER-typt equations of modern warfare (6.5.1) with power attrition-

rate coefficients with "positive offset," i.e.

a(t) - k a(t + C)' and b(t) - k b(t + C + D)v , (6.8.6)
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with C > 0 and D > 0 (cf. (6.2.9)]. Irn order that a(t) E L(t 0 ,T) for

any finite T > t0 we must have 11 > -1, and hence a(t) j L(0,+o) so

that Theorem (6.7.1) holds. If we choose K - i/(1 + 1)]2p-1, then it

follows from (6.7.5) that the modified time variable s is given by

SW - 17 )) (t + C)" (6.8.7)

and the invariant J(s) of the normal form (6.7.6) simplifies to

J s;ab) - J(s;-y,'v) - ss (1 +Y- (6.8.8)

where p - (L+1)/(u + v + 2), a - 1/(p+l), 8 - (v-u)/(j+l), and

S- D [AI/(÷+I)]2/(J+•+2). Here we have denoted the invariant corresponding

to the attrition-rate coefficients a(t) and b(t) as J(s;y,j,,), since

we may take y, p, and v as a basis for generating the four parameters a,

8, y, and v that explicitly appear in the right-hand side of (6.8.8).

Fvrthermore, we will denote the normal-form hyperbolic-like GLF that correspond

to J(s;y,Utv) as cx(s;y,u,v) and sx(S;yUv).

We can now use the known results for the power attrition-rate

c~efficients with "no offset" (6.6.10) tn assure that Z [a,b] - Z (y,u,v)

is numerically determined to within any specified degree of accuracy. Let
T - F /H 1- denote the quotient of two LANCHESTER-CLIFFOPD-SCHLAFLI (LCS)

functions (see the next section). Then the following theorem tells us

exactly how large to take s for the estimation of Z (y > O,p,v) by

Z(s;y,v,v) to any desired degree of accuracy.

(
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THEOREM 6.8.2 (TAYLOR and BROWN [51]): For a battle modified

by LANCHESTER-type equations of modern warfare (6.5.1) with

power attrition-rate coefficients with "positive offset" (6.8.6),

if we estimate Z (y,p,v) with Z(s;y,p,v) defined by

Z(s;y,uV) - l/nx(s;y,0,v) , (6.8.9)

then bounds on the fractional error made in this approximation

are given by

o f• < Pq-P r(p) - T (S) Z(s;y,••,•) (6.8.10)

Er (q) q (..0

1/(2p)
where q - l-p, S(s) a 2ps/ , and nrx(s;y,u,v) denotes the

quotient of two normal-form hyperbolic like GLF for the attrition-

rate coefficients (6.8.6), i.e. rY x(s;y,14,\) - Sx(S;y,W,v)/cx(S;y,•,V).

Also, S denotes S(s), and fE(i) denotes the fractional error

defined by (6.8.4).

In order to numerically determine the modified parity-condition

parameter for the offset power attrition-rate coefficients (6.8.6), we must

use knowledge about how quickly the limiting value (i.e. Z [a,b1 1) of a

hyperbolic-tangent-like function of a related pair of coefficients [denoted

as a(t) and SI(t)], power attrition-rate coefficients with "no offset"

(6.6.10), is reached as its argument increases without bound. In Figure

6.13 we see that this limiting value, denoted as Z* (p,,)) - Z [a,b 1 ],
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is quite quickly reached, and consequently (recall Theorem 6.8.2) Z(s;Y,4,v)
*^

has essentially converged to Z (y,p,v) when s - 10.0 (see TAYLOR and BROWN

[51] for further details). Results generated by this numerical procedure

for the power attrition-rate coefficients with "positive offset" (6.8.6)

with u - 1 and v - 2 are shown in Figure 6.14.
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6.9. Application to General Power Attrition-Rate Coefficients

In this section we will give analytical results for combat modelled

by variable-coefficient LANCHESTER-type equations for modern warfare (6.2.4)

with the general power attrition-rate coefficients (6.2.9), which we rewrite

here as

a(t) - k (t + C)", and b(t) - kb(t + C + D)V. (6.9.1)a

Physical motivation for the use of these coefficients as well as the

relation between their parameters k, a9b, C, and D and those of the range-

dependent attrition-rate coefficients a(r) and 8(r) in BONDER's constant-

speed-attack model) may be found in Section 6.2 above. Thus, the parameters

ka, kb, C, and D may ultimately be related to the performance and operational

characteristics of the two opposing weapon-system types.

Within the context of BONDER's constant-speed attack corgidered in

Section 6.2, both C and D > 0 if and only if r. r, > ro, the maximum

effective range of X's weapon-system type is greater than that of Y which

is in turn greater than the opening range of battle rO. Also, on physical

grounds we should have p and v > 0, i.e. the weapon-system kill rates

increase with decreasing force separation. The only restrictions (besides

the general ones discussed in Section 6.5) that we place on these parameters,

however, is that both C and D > 0, since it makes more physical sense to

consider a slightly different form for the coefficients in other cases.

Formally all our mathematical results hold in these other cases, though.

Analytical results have been developed for the following two special

cases of general power attrition-rate coefficients (6.9.1):
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(CI) power attrition-rate coefficients with no offset, i.e.

S D - 0 in (6.9.1),

and

(C2) power attrition-rate coefficients with positive offset and

a nonnegative integral exponent for X's kill rate, i.e.

D > 0 and v - n (a nonnegative integer) in (6.9.1).

Although general analytical results have not been obtained for the attrition-

rate coefficients (6.9.1), the above two special cases may be used for many

such battles of tactical interest. Within the context of BONDER's constant-

speed attack, power attrition-rate coefficients with "no offset" allow one

to model combat between two weapon-system types with same minimum effective

range but different range dependencies for each system's fire effectiveness,

while power attrition-rate coefficients with "positive offset and integral X

exponent" allow one to model such combat between two weapon-system types

with different maximum effective ranges for a mildly restrictive case of

range dependencies for X's weapon-system type.

Let us first consider the case (Cl) of power attrition-rate

coefficients with no offset, i.e.

a(t) - k a(t + C)u, and b(t) - k.0(t + C)" (6.9.2)

with C > 0. In order that both a(t) and b(t) E L(t 0 ,T) for any finite

T > to, we must have both W ard v > -1, and then both a(t) and

b(t) A L(0,4-). As we saw in Section 6.5, the X and Y force levels

x(t) and y(t) may be expressed in terms of hyperbolic-like GLF, which

for the above coefficients (6.9.2) are given by (TAYLOR and BROWN [53; 54])
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Cx) F F(T) Sx(t) G la /•1-2p H (T),

(6.9.3)

C (t) -F (T) S (t) - (x /la)2 p- H (T)Yp ' Iq '

where a - • + v + 2, p - (4+l)/a, q - l-p, and

T(t) - (2Xi/a)(t + C)/ (6.9.4)

Here F (•) and H (ý) denote LANCHESTER-CLIFFORD-SCHaFLI (LCS) functions 1 2

of order a and may be represented for a # 0, -1, -2,... as the infinite

series
F(•)- r(a) • " ( "I/2)2

k-0 {k! r(k+a)}

and (6.9.5)
H (•) - r(a) (&/2 )2(k+a)

( k-O 1 0 P(k+a + W)}

In other words, the X force level x(t) is given by13

x(t) - xoF p(T ) F q(T) - Hq (t) H p(T)}

- - ) qpR Fq (T 0 ) H (T)- Hp(Tr) Fq(T)} (6.9.6)OVR(q0 p p '

where T denotes T(O). We finally observe that for both p and

v > -1 it follows that both p and q ( (0,I).

The LCS functions Fa and H form a fundamental system of

solutions to
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d2a • I ) F - 0, (6.9.7)

d&2 \ ~ /d&

with Wronskian W(Fa( H I) = (W/2)1-2 . Further mathematical properties

are given in Table 6.11, and the reader is directed to TAYLOR'and BROWN [54]

for further details. It is convenient to introduce an additional LCS

function T analogous to the hyperbolic tangent and defined by

T ( H_ ()/F(•) (6.9.8)

It follows that T (ý) is a strictly increasing function of ý on [0,+o-)

with T (0) - 0 and

a

lim T (Q) - a)(699)
+ r(a) (

Tabulations of these LCS functions are given in Appendix D for cases

corresponding to a wide variety of tactical situations14 (see also TAYLOR

and BROWN [55; 56]. A representative tabulation of the hyperbolic-like
LCS functions F (x)W H1,(x) and T ax) for a - 3/5 is shown in

Tables 6.111 and 6.IV. We observe from Table 6.IV and (6.9.9) that the

limiting value of T3 / 5 (x) as x - + - is quickly reached, with three-

decimal-place agreement by x - 4.5.

The X force will be annihilated in finite time if and only if 1 5

q-px _0_( _ {F (T 0 H (TO ) r(q)/r(p)}

YO r(q) /R F () ) r(p)/r(q) . (6.9.10)

It is readily shown that F (a) -- H1. (E) r(a)/r(l-a) > 0 for all
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TABLE 6.11. Properties of the LCS Functions F (•) and H (c).

1. dF /d& - (&/2)1-2 H (O)

2. dHa /d& - (&/2)2a-I F (O)

3. F a(ý) F 1(a) - H (C) H_(•) - 1 for all ,

where a is not an integer (including zero)

4. F(0)-1

5. H (0) -0 for a > 0

6. dF /dx(O) - 0

7. ((ý/2)1-2a di /d&} -.

8. F 1 / 2 ( ) - cosh &

9. H1 / 2 (ý) - sinh ý
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a E (0,1) when • > 0 is finite. Also, neither side will be annihilated

in finite time if and only if the inequality sign in (6.9.10) is replaced

by an equlaity sign. When C 0 G, (6.9.10) reduces to

Xo ( Xl q-P
Sr(q R (6.9.11)

The time to annihilate the X force, denoted as ta is determined by' a'

x(ta) - 0, and it follows that
a

X xOF (T 0 ) + YO V0/R (XI/•)q-P H2(TO)

(xH) aO - (6.9.12)a)) x qO(T0 ) + y0Vr RR (XI/)q-p F a(T0 )

or

Si2/a
X T1 - P 0F (T0) + R (XI/Oq-PH ( -C. (6.9.13)

ýq [xOH q (T0) + Y0 V3 R I/a)PF q (T 0) .

We will now examine a couple of numerical examples to show the use

of the above analytical results for developing insights into the dynamics

of combat. These examples illustrate the use of the LCS functions Fa,

Hl a, and Ta for analyzing "aimed-fire" combat modelled by the power

attrition-rate coefficients with "no offset" (6.9.2). Consider BONDER's

constant-speed-attack model, which we have examined in Section 6.2 above.

All the force-level trajectories shown in Section 6.2 for battles in which

the two opposing weapon-system types have the same maximum effective range

(i.e. Figures 6.5 through 6.9) were developed by using (6.9.6) or the

2283
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analogous result for y(t). Let us now focus on the prediction of battle

outcome from initial conditions without explicitly computing the force-

level trajectories (cf. questions (Ql), (Q4), and (Q5) of Table 6.1). We

will consider combat situations modelled by the input data and computed

parameter values shown in Table 6.V. The reader should observe from

Tables 6.IV and 6.V the predicted agreement between r(l-a)/r(m) and the

limiting value of T (x) as x + + - (recall (6.9.9)] for a - q - 3/5.

We will now consider two cases: (I) r 0 = 2000 meters, and (II) r 0 = 1250

meters.

When r 0 = 2000 meters (see Figure 6.5 above), we have C - 0 and

-o = 0. The maximum time that the battle can last is t m 14.91 minutes,max

since at this time the attacking Y force reaches its final objective

(i.e. the defensive position of the X force). We will now consider the

qualitative behavior of the 1 - 1, v - 2 X-force-level trajectory

denoted as curve (C) linear-quadratic in Figure 6.5. The inequality (6.9.11)

tells us that the X force cau be annihilated if and only if x0/y 0 < 0.420.

By (6.9.12) the annihilation Lime of the X force is given by T (T(t X))
q a

3.544 x0 /y 0 . For x0 - 10, yo - 30, we have T (T-• ) 1.18122 so that
q a

from Table 6.111 (using linear interpolation) we obtain rx - 1.009. Hence,
a

(6.9.4) yields tx - 14.24 minutes and ra = 89.8 meters. Further resultsa a

are given in Table 6.VI.

When r 0 . 1250 meters (see Figure 6.6 above), we have C - 5.5923

minutes, To M 0.0975, and t - 9.32 minutes. In this case (again,max

for 4 M 1, v - 2), X can be annihilated if and only if x0 /Y0 < 0.382.

with from (6.9.12) the arnihilation time of the X force given by

T T( " (3.5656• + 0.223)/(0.156M + 1.004), where p x /yO. Some
q a 0 0 028
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I
TABLE 6.V. Particulars for the Numerical Examples for Combat Modelled

by the Power Attrition-Rate Coefficients with No Offset

(6.9.2).

1. Input Data

p 1, v - 2

a - 0.06 X casualties/minute/(a single Y firer)

80 - 0.6 Y casualties/minute/(a single X firer)

r r8 - 2000 meters

v - 5 miles/hour

2. Computed Parameter Values

k - 4.023 x 10-3 X casualties/(minute)p/(a single Y firer)a

kb = 2.698 x 10-3 Y casualties/(minute)v/(a single X firer)

p - 2/5, q - 3/5

r(p)/r(q) - 1.48951

D2O
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further numerical results are given in Table 6.VIII. Again, these parametric

results should be contrasted with the single L4 - 1, V - 2 X-force-level

trajectory [denoted as curve (C) linear-quadratic] shown in Figure 6.6.

Let us next consider case (C2) of power attrition-rate coefficients
16

with positive offset and integral X exponent, i.e.

a(t) - k a(t + C) , and b(t) - kb(t + C + D)n, (6.9.14)

with C > 0, D > 0, and n a nonnegative integer. We also assume that

p > -1, and then both a(t) and b(t) f L(0, +-). As we developed in

Section 6.5, the X and Y force levels x(t) and y(t) may be expressed

in terms of hyperbolic-like GLF so that once we have determined the latter,

we can compute the force-level trajectories. Using the method of successive

approximations (see Section 6.5), one can compute that for the above

coefficients (6.9.14) we have the following offset power LANCHESTER functions

(-r/2 )2k nk iJ (..5

Ct) -t r(q) k! r(k + q) nk A (6.9.15)

Sx(t) r(p) )2(k) nk(T/2 7 (6.9.16)

k !O r(k + p + j) 4 k '

c(t) r (P) (T/2)2k n 6j (6.9.17)Cy~ I ~~kO k! r(k + p) I CO

and

2q Ou (T2 ) 2(k+q) n (k+l)sCt) - \-$- r(q) I rk. +q12 ) _ j (6.9.18)S()k !O r(k + =
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S
TABLE 6.VI. Annihilation of the X Force as a Function of the Initial

Force Ratio for the Coefficients with No Offset (6.9.2)

with r 0 - 2000 Meters.

(xo/Yo) t (minutes) r (meters)
0_ _ a _-a

0.333 14.24 89.8

0.250 11.61 443.2

0.200 10.19 633.2

TABLE 6.VII. Annihilation of the X force as a Function of the Initial

Force Ratio for the Coefficients with No Offset (6.9.2)

with r 0 = 1250 Meters.

(x 0 /Y0 ) t X(minutes) r X(meters)
a a

0.333 10.63 t

0.250 7.56 235.9

0.200 6.17 422.8

t - 9.32 minutes and xf - x(r - 0) 1.35.
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where o - i + n + 2, p = (p+l)/O, q l-p, 6(t) - D/(t + C), T(t)

is again given by (6.9.4), and the offset coefficients A, B k9 C k' and

Dk are given in Table 6.VIII. In this table

n n!( ) 22• (n-Z)!

denotes the usual binomial coefficient. We observe that p > -1 and

n > 0 imply that both p and q E (0,1).

We may use Theorem 6.7.1 (which is a special case of Theorem 6.6.1)

to predict force annihilation. Unfortunately, we have not been able to
* *

analytically compute the parity-condition parameter Q - Q (D,p,n) for

the offset power attrition-rate coefficients (6.9.14), but it may be

numerically determined by the method given in Section 6.8. For such

determinations as well as for analyzing force annihilation, though, we

have found it more convenient to use the normal-form GLF [e.g. see (6.7.9)]

than to use Cx(t), SX(t), Cy(t) and S (t). Thus, we introduce the

modified time variable s defined by (6.8.7) which we rewrite as

s(t) - [Al/(11+I)] 2  (t + C)"+I (6.9.19)

with so 0 s(O) - [i/( 11+I)] 2 p C()1+l), and obtain [cf. (6.7.9)] the normal-

form hyperbolic-like GLF. Thus, we obtain the normal form offset power

LANCHESTER functions, for example

Cs(s) r-(q) (S/2 )2k nk i , (6.9.20)

x kwOkt 1'(k+q) K.0 )

and
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TABLE 6.VII. The Offset Coefficients for the Offset Power LANCHESTER

Functions (6.9.15) through (6.9.18).

0
A0 - 1, and for k > 1

j k(k-p) In (n Jzfr0<j<nAk (k-J/a) (k-p-j/a) £Af 0 P q--

0
B0 0 1, and for k > 1

B 1 -- k(k-Ip) j ( n) BJ j Y o 0<j n"k (k-j/a)(k+p-j/a) k-i for < < nk

0
C00 -1, and for k > 1

_ _n 
kJ- i

C . £0 I ( p nk-i ) for 0 < J < nkk -(k-j /a ) L Z (k+p-l+( _T)/la)

0 n -
n D J-Z

DJ . k(k-p-$-1 n ___k-1

"k (k-p-i-j/o) 2 (k+(Z-J)/a) for 0 < j < n(k+l)

NOTES: We hai•• adopted here the convention that 4, PB, and C - 0
q k k

for < < 0 or J > nk. Also, D - 0 for j < 0 or j > n(k+l).
k
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" (sp (S/2)2(k+p nk i J
Sx(S) . -p (p)k! 0 k! r(k+p+l) 1 0 • B, jk (6.9.21)

where S(s) -
2 ps /(2p), A(s) = Y/sa, a - l/(p+l), and the offset parameter

y is given by y /(P[+11/)]a D. We may use these normal-form power

LANCHESTER functions to predict force annihilation by means of (6.7.11)

after the modified parity-condition parameter Z - Z (y,p,n) has been

determined. Numerical results (see TAYLOR and BROWN [57] for Z ) are

shown in Figure 6.14 for two sets of values for the exponents in-the

coefficients (6.9.14): (I) p - 1, n - 1, and (II) 1 - 1, n - 2. The

time to annihilate the X force, denoted as ta, is determined by

x(tX) X 0, and hence
a

{x 0cy(s 0 ) + y0(/XV•R/K)Sx(a
n(s(t")) 0 , (6.9.22)

a {x 0 Sy(S 0) + y0( R!K)cX(S0)}

where n x(s) - c x(s)/Sx (s) and K [ i/(-+l)]

We will now consider a couple of numerical examples for analyzing

"aimed-fire" combat modelled by the power attrition-rate coefficients with

"positive offset and integral X exponent" (6.9.14). As above, we will

consider BONDER's constant-speed-attack model. All the force-level

trajectories shown in Section 6.2 for battles in which the two opposing

weapon-system types have different maximum effective ranges (i.e. Figure 6.10)

were developed by using the above analytical results. Focusing now on

the prediction of battle outcome, we will consider combat situations
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modelled by the input data and computed parameter values shown in Table 6.IX.

We will now consider two cases: (I) r 0 = 1500 meters, and (II) r0

- 1250 meters.

When r 0 M 1500 meters, we have C - 0 and so - 0. The maximum

time that the battle can last is t - 11.18 minutes, since at this timemax

the advancing attackers (i.e. the Y force) overrun the defensive position

of the X force. In this case Z (y,p,n) - Z (0.32,1,1) - 1.381, so that

(6.7.10) tells us that the X force can be annihilated if and only if

x0/yo < 0.264. By (6.9.22) the X-force annihilation time is given by

n (s(t )) - 2.739 x0/y0. For x0 - 10 and yo - 50, we have 'x(s ) X 0.54772
X a 00 0a

so that by techniques similar to those used above for the previous examples,

X Xwe find that s - 0.771. These computations for determining s involve
a a

generation of tables of sx, CX, and 1 X for y - 0.32 and Vu n - 1.

Hence, (6.9.19) yields that tX . 10.25 minutes and r - 125.7 meters.
a a

Further results are given in Table 6.X.

When r 0 M 1250 meters (see Figure 6.10 above), we have C - 1.864

minutes, so - 0.0255, and t - 9.32 minutes. In this case X can bemax

annihilated if and only if x0/y0 < 0.281, with the X-force annihilation

time given by nx(s - (1.001P0 + 0.0 0 9)/(O.1 2 7p0 + 0.366), where

P0 x 0o/Y 0 ' Numerical results are given in Table 6.XI. Finally, these

parametric results should be contrasted with merely computing a force-level

curve for a particular set of values for battle parameters (e.g. compare

them with, for example, the single X-force-level trajectory for

ra - 2000 meters shown in Figure 6.10).

A few final remarks about the results of this section seem to

be in order. We have given results that allow one in principle to study

the variable-coefficient model (6.2.4) with the general power attrition-rate
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TABLE 6.IX. Particulars for the Numerical Examples for Combat Modelled

by the Power Attrition-Rate Coefficients with Positive

Offset and Integral X Exponent (6.9.14).

1. Input Data

V0 -V 1

a0 - 0.006 X casualties/minute/(a single Y firer)

$0 - 0.6 Y casualties/minute/(a single X firer)

r - 1500 meters, r 8 - 2000 meters

v - 5 miles/hour

2. Parameter Values

k - 5.364 X 1)-3 X casualties/minute/(a single Y firer)a

kb - 4.023 x 10-3 Y casualties/minute/(a single X firer)

p - q - 1/2

D - 3.728 minutes, y - a.320 (casualties minutes) 1 /2
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TABLE 6.X. Annihilation of the X Force as a Function of the Initial

Force Ratio for the Coefficients with Positive Offset (6.9.14)

with r 0 - 1500 Meters.

t X (minutes) rX (meters)
0 a a

0.250 14.09 t

0.200 10.25 125.7

0.167 8.80 319.4

t tma- 11.18 minutes and xf - x(r - 0) 2.48.maxf

TABLE 6.XI. Annihilation of the X Force as a Function of the Initial

Force Ratio for the Coefficients with Positive Offset

(6.9.14) with r 0 W 1250 Meters.

(Xo/Yo) tXa (minutes) r (meters)
0__ a a -

0.250 10.87 t

0.200 8.17 154.4

0.167 6.93 320.4

tt mx- 9.32 minutes and x f x(r - 0) - 1.74.
max 2
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coefficients (6.9.1) almost as easily and thoroughly as one can study

LANCHESTER's classic constant-coefficient model (2.2.1). In practice,

though, the details for such variable-coefficient combat models are

generally rather complicated as we have seen above. Furthermore, except

in special cases (e.g. a constant ratio of attrition-rate coefficients)

the solution to such variable-coefficient LANCHESTER-type equations for

modern warfare, unfortunately, apparently cannot be represented in terms

of any of the "elementary" functions of analysis but requires the intro-

duction of new transcendents defined by infinite series. Moreover, such

infinite-series solutions by themselves provide little insight into the

dynamics of combat and, in fact, as we have seen above require a fairly

high degree of mathematical proficiency just to understand, let alone to

use. In the next section we will therefore give a simple approximation

to such solutions.

Finally, we note that the above results for power attrition-rate

coefficients with no offset (6.9.2) may be used to analyze "aimed-fire"

combat modelled by (6.2.4) with exponential attrition-rate coefficients

(6.2.12). This may be seen by observing that the substitution
t At

s - f a(a)do - (k a/a )e a transforms the X force-level equation
.00

(6.5.7) into the normal form (6.7.6) with invariante J(s) - KsV, where

K - (kb/ka)(Xa/ka)V and v - (XbiXa) - 1.
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6.10. The LIOUVILLE-GREEN-LANCHESTER Approximation.

As we have seen above, the analytical solution to variable-coefficient

LANCHESTER-type equations of modern warfare generally involves so-called

higher transcendental functions with which most OR workers are quite un-

familiar. In this sect~on we will give a simple approximation that involves

only "elementary" functions and requires no advanced mathematical theory to

apply. We call our approximation (6.10.1) to the solution of LANCHESTER-type

equatibns for modern warfare (6.5.1) the LIOUVILLE-GREEN-LANCHESTER (LGL)
17

approximation. Error bounds, i.e. bounds for the errors in the approximate

solutions, are given in terms of simple a priori estimates that are both

realistic and also easy to evaluate. These error bounds are based on new

theoretical results by the author (see TAYLOR (471) for the theory of the

LIOUVILLE-GREEN (LG) approximation18 and do not require knowledge of the

exact solution.

Let us make the additional assumption that the attrition-rate coefficients

a(t) and b(t) are twice differentiable for t0 < t < +- . Then our

approximation to the solution of the X force-level equation (6.5.7) is given

by

x(t) L- [ J {x, cosh(T-To) - (y 0,oR + xoe ) sinh(T-T0 )}, (6.10.1)

where ý(t) denotes the LGL approximation, R0 denotes R(O), e' denotes

E(0), e(t) f {l/[41(t)]}d Xn R/dt, T0 denotes T(O), and

r(t) - ft /aT()b(s) ds. This approximation was developed by the author
t0

(see TAYLOR [47]) by transforming the X force-level equation (6.5.7) into

LIOUVILLE's normal form (see INCE [23, p. 2711) with the first derivative

of the dependent variable removed
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d2X
dX.- { + F(T)}X - 0 (6.10.2)

dT2

by means of the substitution T - ft '7~s) b*s ds and x(t) -

1/40X(T)[R(t)/Ro0  In (6.10.2) we have that

F(r) - P"(T)/P(T) , (6.10.3)

where P(T) - [R(t)]-1/4 and P'(T) denotes dPidT. Heuristically, if the

appropriate fractional power of the relative fire effectiveness R(t)

- a(t)/b(t) is "slowly varying," then from (6.10.3) we would expect that

IF(T)i << 1 so that the term F(T) is "negligible" in (6.10.2). The LGL

approximation (6.10.1) comes dropping this term, and Theorem 6.10.1 gives us

bounds on how "negligible" it is.

What is the error made in using (6.10.1)? This is an important question

for any OR analyst who wishes to use such an approximation. It is important

for him to know the accuracy of the approximation (6.10.1) and especially

to know when it is particularly accurate or inaccurate. The following

theorem gives a priori error bounds for the LGL approximation.

THEOREM 6.10.1 (TAYLOR [47]): Error bounds for the LIOUVILLE-

GREEN-LANCHESTER (LGL) approximation (6.10.1) to the solution

of LANCHESTER-type equations of modern warfare (6.5.1) are given by

Ix(t) - i(t)I < x0 Kje(t) < x0 K.Ue(t) , (6.10.4)
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where
Khee2{, K+ Io0 1) + (yo/xO) 0 o, 

(6.10.5)

J - I for 1 - (y0 /xo) AR/W < cO

and then K + c Y0 /X0 ) /0 Rr0 , (6.10.6)

J - II for -1 - (yo/xo) RO < O <1- (yo/xo) v¶

and then K -2 , (6.10.7)

J-III for co <- 1- (y 0 /x 0 ) R/0

and then K 1 - e0 - (y 0 /x 0 ) 7R90 > 0 , (6.10.8)

and

et)- FR(t)/4 {exp(2 f IF(a)lIdo) - D} sinh(T-T 0 ) (6.10.9)

The sign of the error is determined by the sign of F(T). As long as

x(t) > 0, it follows that

F(T) > 0 fpr all T > TO implies that x(t) > x(t)

with the last inequality being reversed when F(T) < 0 always.
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Example 6.10.1. For combat modelled by (6.5.1) with the power attrition-

rate coefficients with no offset (6.9.2), the LGL approximation to the X

force level is given by

x(t) - (1 + tiC) (i-v)/4 I cosh(T-T0

- [y0 /R C(p-v)/ 2 + (x 0 (,-v)/( 4 X1 )} C- snh(T-T (6.10.10)

where

T(t) - (i/6) XI(t + C) , (6.10.11)

and 6 - (1 +v+ 2)/2. For the error estimate (6.10.4) of Theorem 6.10.1,

we have

1/ IF(a)Ida - i-vl ( 3Ou + v +4) c-6- (t + C)-
2 32X 1 6

Also, it may be shown that F(T) > 0 for all T > -O > 0 if and only

if >v.
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6.11. HELUtBOLD's Modification of LANCHESTER's Equations

Based on consideration of historical combat data, HELMBOLD [18] has

proposed a modification of LANCHESTER's equation for "modern warfare" to

account for inefficiencies of scale for the larger force when force sizes

are grossly unequal (see Section 2.12 for further details). His basic

idea is to modify relative force-attrition (or fire-effectiveness)

capability by a multiplicative factor depending on only the force ratio,

and for temporal variations in fire effectiveness, his proposed modification

would read

dx - E( y with x(O)x

dt (6.11.1)

dy - -b(t) E (Y) x with y(O) - yo

"where Ex and EY denote the fire-effectiveness-modification factors

that model the inefficiencies of scale. HELMBOLD argued that these fire-

effectivenss-modification factors should satisfy the following three

requirements:

(RI) Ex(u) - EY(u) - E(u) (i.e. the same inefficiencies of

scale for each side),

(R2) E(u) is an increasing function of its argument,

(R3) EG) - 1.
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HELMBOLD then considered the special case in which E(u) is a
c

power function, i.e. E(u) - u with c > 0. In this case, (6.11.1)

becomes

dx -a(t) (-) . y with x(O) - x0dt "y

(6.11.2)1-W

dd -b(t) - (Y) x with y(O) - yo,

where we will call W the "WEISS parameter" (see Section 2.12). It

follows that W - 1 - c. We will refer to (6.11.2) as the equations for

HELMBOLD-type combat. These equations are particularly significant

because a simple generalization of them gives a much better fit to

casualty-rate curves used in several important contemporary large-scale

combat models than does LANCHESTER's classic model of modern warfare

(2.2.1) (see Section 7.11 below). As for the case of constant attrition-

rate coefficients (see Section 2.12 above), the substitution p- xW

w
and q - y transforms the nonlinear combat model (6.11.2) into a

linear one, namely

dt -W a(t) q with P(O) - xO

(6.11. 3)

-W b(t) p with q(O) y Yo

Hence, all the results for variable-coefficient LANCHESTER-type equations

of modern warfare (see Sections 6.5 through 6.10 above) also apply to the
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equations for HELMBOLD-type combat (6.11.2). Moreover, it may be shown

that for Ex(u) - E.(u) - E(u) if x and y are "separated" in E(x/y),

i.e. if E(x/y) - F(x)/G(y), then the only form for E(u) satisfying (R2)

and (R3) above such that we can obtain a linear model, i.e. the attrition

rates proportional to only the "numbers" of firers, by a transformation

of only the dependent variables is given by E(u) - uC with c > 0. Thus,

the only combat model of the form (6.11.1) [with Ex and Ey satisfying

(Rl) through (R3)] transformable into a linear model like (6.11.3) is

given by (6.11.2) when E(x/y) - F(x)/G(y).

In the case of constant coefficients, (6.11.2) becomes

Sdx x1-l-W
d=--a• (2) • y with x(O) - Y

(6.11.4)1-W

tt=-b • (Y-) 1 "W- x with y(O) - yo,
dt x

where a and b denote constant attrition-rate coefficients. The state

equation for (6.11.4) is given by (see Section 2.12 for details)

2W 2W 2w wb(xo0 .. x) a(y 0  - y) for W 0

and (6.11.5)

b tn(x 0 /x) - a i.n(yo/y) for W - 0

Thus, for the case of constant attrition-rate coefficients, the equations for

HELMBOLD-type combat yield the square law when W - 1, the linear law when

W - 1/2, and the logarithmic law when W - 0. Hence, we should think of
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(6.11.4) as a general combat model which contains many of the classic homo-

geneous-force combat models as special cases (see Section 2.12 for further

details).

We will find it very instructive for future developments (see Section

7.11 below) to examine casualty rates (expressed as a fraction of each side's

current strength) for the above model of HELMBOLD-type combat (6.11.4).

Considering X's fractional casualties per unit tLme, we obtain from the first

of equations (6.11.4)

I1 x X's fractional casualties a WI-.... - av ,(6.11.6)

x dt per unit time / uW

where u denotes the X-to-Y force ratio, i.e. u - x/y, and v denotes its

reciprocal (cf. Section 5.2).

In Figure 6.15 (cf. Figure 5.3) we have plotted X's fractional casualties

per unit time versus the force ratio v - y/x (denoted in the figure as A/D)

for the case in which Y attacks and X defends. As in Section 5.2 above,

for the force ratio we have used the quotient of the attacker's strength (here,

force level) divided by that of the defender (denoted as A/D), since most

combat analyses use this ratio A/D and consequently we will be able to more

easily relate such LANCHESTER-type models to them.

In Figure 6.15, W - 1 corresponds to the case in which X's casualty

rate is proportional to only the number of enemy firers, and (in the symmetric

case in which Y's casualty rate has the same functional form) consequently

the corresponding attrition model is given by LANCHESTER's equations for

modern warfare (2.2.1), which yield the square law. We observe (see also
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Section 5.2) that in this case (i.e. W - 1) X's fractional casualties per

unit time are directly proportional to the force ratio A/D when Y

attacks and X defends. Referring back to the first of equations (6.11.4),

we see that W - W corresponds to a more efficient use of the attacker's

firepower for force ratios v - A/D - y/x > 1 than does W - W when

1 > W1 > W2 , since the attacker's fire-effectiveness-modification factor

for W - W1 (i.e. %(x/y) - (x/y)1-W1] is greater than that for W - W2

when y/x > 1. Figure 6.16 shows the same type of plot when X is the

attacker and Y the defender. In this case, the casualty-rate curve

corresponding to the square law is a hyperbola (see also Section 5.2).

Similar curves for daily casualty rates (but not expressed in terms of

differential equations) are commonly used to assess casualties in currently

operational large-scale ground-combat models (see Section 7.11). Consequently,

by studying analytical representations of these curves, we can obtain some

valuable insights into the dynamics of combat as portrayed by such models

(e.g. se!ee Section 7.14) below.
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6.12. The General Linear Model for Combat Between Two Homogeneous Forces

In this section we will briefly examine the general linear-differ-

ential-equation model for combat between two homogeneous forces. Special

cases of this general model will be examined in more detail in subsequent

sections of this chapter.

Thus, we consider the following LANCHESTER-type equations for

x and y > 0

( - -a(t)y - B(t)x + r(t) with x(0) - x0 ,

(6.12.1)j -b(t)x a (t)y + s(t) with y(0) -(612

dt Y

where x(t) and y(t) denote the X and Y force levels at time t,

and a(t) and b(t) denote LANCHESTER attrition-rate coefficients, which

represent the fire effectiveness of a single firer on each side. The

coefficients a(t), 8(t), r(t), and s(t) have different physical inter-

pretations, depending upon the context in which the model (6.12.1) is

viewed. Thus, there are several different sets of physical circumstances

to which the model (6.12.1) may be hypothesized to apply, and we will

now discuss several possibilities.

The term r(t) in the first of equations (6.12.1) can model

either (A) the replacement rate of the X force (with a negative value

representing a net continuous withdrawal of the X force), or (B) the

attrition [with r(t) < 0] of the X force from exogenous fires (not

subject to attrition) at a rate not dependent on X's force level.

Similar remarks apply to s(t). For simplicity, however, we will consider
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only the first possibility here, and we will consequently refer to r(t)

and s(t) as replacement rates. Within this context, two different

tactical situations may again be hypothesized to yield the above

equations (6.12.1) (cf. Figure 2.15 of Chapcer 2):

either (Sl) "aimed-fire" combat between two homogeneous forces with

"operational" losses and with continuous replacements,

or (S2) "aimed-fire" combat between two homogeneous primary

forces (or infantries) with superimposed effects of

supporting fires not subject to attrition and with

continuous replacements for the primary forces (see

Figure 6.17).
f

In the second case (S2), it is assumed that each side uses "aimed" fire

and that target-acquisition times do not depend on the number of enemy

targets (see Section 6.5 for a further discussion). The supporting

weapons are assumed to employ "area" fire against enemy infantry (see

WEISS [61] for a more thorough discussion of assumptions). In this case,

determination of numerical values for the attrition-rate coefficients

a(t) and 0(t), modelling the supporting fires, follows along the lines

discussed in Section 5.7. In the simplest instance we then have that,

for example, c(t) - aL U v~uo/AY, where the X force's artillery is

denoted as the U force with force level u(t), a denotes the

lethal area of a single U artillery round, vU denotes the U firing

'rate per tube, u0  denotes the U force level (which is constant because
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the U force suffers no losses), and A denotes the area of the region

occupied by the Y force.

Mathematically, we make the following assumptions about the attr!ticn-

rate coefficients and replacement rates in the model (6.12.1-.

(Al) a(t) and b(t) are defined, positive, and continuous

for t0 < t < + - with to <0

(A2) (t) and B(t) > 0 for to t < '00,

(A3) a(t), b(t), a(t), $(t), r(t), and a(t) C L(to,T) for

any finite T.

We place no further restrictions on the replacement rates r(t) and s(t),

and thus negative values are possible for them. We further assume that

a(t) and b(t) are given in the form (6.5.2), and we then introduce for

the primary weapon systems the combat-intensity parameter AI and the

relative-fire-effectiveness parameter AR defined by (6.5.4).

No results have previously appeared in the literature for the

general model (6.12.1) with variable attrition-rate coefficients. We will

now show that (6.12.1) may be transformed into a simpler canonical form

to which results for variable-coefficient LANCHESTER-type equations of

modern warfare (6.5.1) may be applied. Thus, the model (6.5.1) is

basic for studying a wide variety of combat situations (cf. also Section

6.11 above). The substitution
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t t
p(t) - x(t) exp{f 0(s)ds} , q(t) - y(t) exp{f c(s)ds} (6.12.2)

0 0

transforms (6.12.1) into

- -A(t)q + R(t) with p(O) - x0
dt

(6.12.3)

dq -B(t)p + S(t) with q(O) - y(13
dt

where
t

A(t) - a(t) exp{f (s(s) - a(s)]ds},

and 0(6.12.4)

B(t) - b(t) exp{- f [B(s) - c(s)Ids},
0

t
R(t) - r(t) exp{f 8(s)ds}

0
and (6.12.5)

t
S(t) - s(t) exp{f a(s)ds}

0

The transformation (6.12.2) is motivated by looking for an "integrating

factor" for, for example, the first equation of (6.12.1), as writing

dx/dt + 8(t)x - -a(t)y + r(t) suggests to us.

As we have seen above, we may consider equations (6.12.3) to

model "aimed-fire" combat between two homogeneous forces with continuous

replacements. However, there is another very important set of circum-

stances that leads to similar equations of this form. Consider aimed-fire
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combat between two homogeneous forces modelled by LANCHESTER's equations

of modern warfare (6.5.1). In this model the state variables x(t)

and y(t) are the numbers of combatants that are effective on each side.

Furthermore, consider now a fixed-force-level-breakpoint battle. If we

introduce new state variables X(t) and Y(t) defined by

X(t) - x(t) - xBP and Y(t) - y(t) - YBP ' (6.12.6)

where xBp and YBP denote the X and Y force-level breakpoints,

then (6.5.1) is transformed into (for X(t) and Y(t) > 0)

(dX -aWt)Y - w(t) with X(0) - x0 -dt 0 xBP

(6.12.7)

dt b(t)X - v(t) with Y(0) - YO - YBF (

where w(t) - a(t)yBP and v(t) - b(t)x B. These equations (6.12.7)

are of the same form as (6.12.3), and thus we see that the equations

(6.12.3) may also be taken to model force attrition "above a unit's break-

point." We observe that for the transformed force-level variable X,

X - 0 corresponds to the X force reaching its breakpoint.

The force-level trajectories x(t) and y(t) for the model

(6.12.1) [equivalently, (6.12.3) or (6.12.7)], moreover, no longer possess

a very important mathematical property that is possessed by all solutions

to (6.5.1) with a(t) and b(t) > 0 for all t > 0 and x0  and

Y0 > 0: namely, all solutions to (6.12.1) are no longer nonoscillatory
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in the strict sense that x(t) and y(t) can now have more than one

zero. This mathematical property is troublesome and makes analysis of

battles modelled with (6.12.1) much more difficult than analysis of

those modelled with (6.5.1). This nonoscillatory property is further

discussed in Section 6.15 below.

The X force level as a function of time, x(t), for the general

model (6.12.1) may be represented as

t
x(t) -.exp- f $(,)ds]

0

S[xO{CQ(o) CP(t) - SQ(O) SP(t)} - y0/3XR {CP(0) SP(t) - Sp(0) CP(t)}

+ Z(s) {C (S) S (t) - S (s) C (t)}dsa(s) P (6.12.8)

where Z(t) - -A(t) S(t) + dR/dt - {R(t)/A(t)}dA/dt, and the hyperbolic-

like GLF C pt) and S p(t) are linearly-independent solutions to the

P force-level equation (6.13.3) that satisfy the initial conditions

(6.13.4). The GLF C Q(t) and S Q(t) are similarly defined. The above

result is readily developed by considering (6.12.3) and applying well-known

results for inhomogeneous ordinary differential equations (e.g. see

HILDEBRAND [19, pp. 29-30]). Further analysis of the general model

(6.12.1) is beyond the scope of our present investigation, but we will

now consider some important special cases.
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6.13. Combat with Supporting Fires

An important special case of the general linear combat model (6.12.1)

is that in which there are no replacements, i.e. r(t) and s(t) = 0, and

in this case our combat model becomes (again, for x and y > 0)

= -a(t)y - 8(t)x with x(O) - x0
dt

(6.13.1)

dy -b(t)x - z(t)y with y(O) - ydt

As discussed in the previous section, two different tactical situations

that may be hypothesized to yield the above equations (6.13.1) are

(cf. Figure 2.15 of Chapter 2):
1

either (Sl) "aimed-fire" combat between two homogeneous forces with

"operational" losses (see BACH et al. [1])

or (S2) "aimed-fire" combat between two homogeneous primary forces

(or infantries) with superimposed effects of supporting

fires not subject to attrition (see TAYLOR and PARRY [59])

(see Figure 6.18).

For convenience, we will refer to (6.13.1) simply as modelling combat with

supporting fires and hence follows the name of this section. The modelling

of the attrition-rate coeffcients in (6.13.1) is discussed in Section 6.12

aiove, with further details to be found in Chapter 5.
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3 For our analysis of the LANCHESTER-type model (6.13.1) of combat

with supporting fires, we make the following mathematical assumptions about

the attrition-rate coefficients

(Al) a(t) and b(t) are defined, positive, and continuous

for t0 < t < + - with to < 0 ,

(A2) a(t) and 8(t) > 0 for to.< t < + o,

(A3) a(t), b(t), a(t), and 8(t) E L(t 0 ,T) for any finite T.

We further assume that a(t) and b(t) are given in the form (6.5.2), and

we then introduce for the primary weapon systems the combat-intensity parameter

xI and the relative-force-effectiveness parameter XR defined by (6.5.4).

The X force level as a function of time, x(t), for the model (6.13.1)

may be written as (see TAYLOR (49])

t
x(t) - [exp{- f 0(s)ds}]

0

x [X0 (CQ(O)Cp(t) - SQ(O)Sp(t)} - yoV R{Cp(0)Sp(t) - Sp(O)Cp(t)}], (6.13.2)

where the hyperbolic-like GLF C p(t) and S p(t) are linearly-independent

solutions to the P force-level equation

2 1 da ddt- a(t) b(t)p - 0 (6.13.3)
d2 2 a(t) dt dtdt2

with initial conditions
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C p(t 0 ) 0 , Sp(t 0 ) 0 0

(6.13.4)

(i/a(t 0 )} dC /dt(t 0 ) - 0, {1/a(to)}dSp/dt(to) - i/•R

The GLF C Q(t) and S Q(t) are similarly defined (see TAYLOR [49] for further

details). Finally, we observe that the above result (6.13.2) is a special

case of (6.12.8).

The above force-level results are readily developed by observing

that the substitution (6.12.2) transforms (6.13.1) into

d -A(t)q with p(O) - x0dt

(6.13.5) -

d -B(t)p with q(O) -y ,dt

with
t

A(t) - a(t) exp{f [8(s) - a(s)]dsl
0

and (6.13.6)
t

B(t) - b(t) exp{- f [B(s) - a(a)]ds}
0

From (6.13.5) we see that all the results for LANCHESTER's equations of

modern warfare (6.5.1) may be used in our study of combat with supporting

fires as modelled by (6.13.1). Then, for example, the X force level

x(t) as given by (6.13.2) follows from this observation. Let us also

observe that from (6.13.3) the transformed "force-level" variable p(t)

satisfies
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d2
d 1t d t)d (6.13.7)

dt 2  A(t) dt dt

which may be written in the equivalent form (6.13.3). In a similar vein,

TAYLOR [49] has developed the following results that describe the behavior

of the model (6.13.1):

RESULT 1: At most one of the two force levels x(t) and y(t)

can ever vanish in finite time.

RESULT 2: If either A(t) ý L(O,+ro) or B(t) V L(O,+-), then

the X force (with supporting fires) will be annihilated

in finite time if and only if

j C (0) S-(0)

O IA *C Q(0) - S Q(0)

where lim {S (t)/C (t)} - i/A . Also, neither

side will be annihilated in finite time if and only if

the above inequality sign is replaced by an equality

sign.

RESULT 3: If a(t) S 8(t), then

t
x(t) - [exp{- f 0(s)ds}J

0

x [o(CY(O)Cx(t) - sy(°)Sx(t)} - YoN {CX (O)Sx() - Sx(0)Cx(t)) ],

and the X force (with supporting fires) will be

.C annihilated in finite time if and only if (6.6.1) holds.

317



Further results and a discussion of their significance is to be found in

TAYLOR [49]. In particular, Result 3 says that when each side's supporting

fires are always equally effective [i.e. a(t) =8(t)], their effects cancel

out and the battle's outcome in a fight-to-the-finish is the same (alLhough

the vtctor suffers greater losses) as when they are not present.

Thus, we see that the combat model with supporting fires (6.13.1)

may be transformed into LANCHESTER's equations for modern warfare (6.5.1) so

that all the results for the latter (see Sections 6.5 through 6.10 above) may

be invoked. In particular, one is interested in developing battle-outcome-

prediction conditions (recall Section 6.6). Exact force-annihilation-

prediction conditions for the model (6.13.1) are readily developed by a

translation of Theorem 6.6.1 to the txensformed equation (6.13.5), and a

special case of such conditions appears as Result 2 above. We will now con-

sider simple approximate battle-outcome-prediction conditions for this model.

Example 6.13.1. For constant coefficients in the model (6.13.1), we have

CP(t) - exp[t(8-a)/2] {cosh 6t + [(a-0)/ 2 6] sinh et}, and S (t)

- (V/e) exp[t(8-0)/2] sinh et, where 8 -6 ab + [(a-8)/ 212. If follows that

1 _ - (e-a)/2

A

Hence, Result 2 yields that the X force will be annihilated in finite time

if and only if

XO / 2 ()+1 ,(6.13.8)
YO31
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where R - a/b denotes the relative fire effectiveness of the two opposing

primary weapon-system types, and S - (4-a)/a/a denotes the net effectiveness

of Y's supporting units normalized by the "intensity" of combat between the

primary units. Moreover, when each side's supporting fires are equally

effective, i.e. a " 8 or S - 0, then the X force will be annihilated in

finite time if and only if

which is the same as LANCHESTER's classic model (2.2.1) without the supporting

fires. Finally, we observe that the X force level x(t) is given by

x(t) - {x0 cosh ot [ay0 + (a ) xo] sinh et}, exp[-t(a + b)/2]

Simple approximate battle-outcome-prediction conditions for a fixed-

force-ratio-breakpoint battle may be developed by considering the RICCATI

equation satisfied by the force ratio u - x/y, namely

du . b(t)u 2 + {a(t) -8(t)}u-a(t) with u(O) - u0  XO (6.13.9)

This observation was apparently first made by TAYLOR and PARRY [59]. Before

developing simple approximate victory-prediction conditions with (6.13.9),

we will develop some "local" conditions of force superiority which will

motivate subsequent developments.

For a fixed-force-ratio-breakpoint battle, it seems appropriate to

say that "the course of battle is moving towards a Y victory" when

du/dt < 0. Moreover, du/dt < 0 if and only if
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b W) x 2() + {ae(t) - O(t) xMt y(t) < a(t) y2(t W (6.13.10)

which may be rearranged to yield that for nonnegative force ratios

"Y is winning" xt< R-t S(t) p_)___(.3.1

if and only if 2 [2 2

where

R(t) - a(tS) 8(t) (6.13.12)
b(t) ra(t) b(t)

Here R(t) represents the relative fire effectiveness (Y to X) of the

primary units, while S(t) represents the net effectiveness of Y's support-

ing units normalized by the "intensity" of combat between the primary units.

The "local" condition of force superiority (6.13.11) then says that the
/

force ratio x/y will continue to decrease (to Y's favor) when it is below

a certain (time-varying) critical "threshold" value. This threshold value

depends on only the weapon-system-performance parameters (i.e. the attrition-

rate coefficients) through the model parameter R(t) and S(t). In a sense,

we have decoupled the quantity and quality of weapon systems in the "local"

condition of force superiority (6.13.11).

In a moment we will extend the above "local" condition to be a "global"

one of force superiority, but let us first consider a very important special

case. When the supporting weapon systems are equally effective, i.e.,

a(t) 8(t), (6.13.10) reduces to the "instantaneous" square law

b(t) x 2t) < a(t) y2Ct) , (6.13.13)
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which may be considered to be a "local" condition for Y to win. In other

words, when the supportingweapon systems are equally effective, their effects

cancel out. Furthermore, if R(t) - a(t)/b(t) is a nondecreasing function

of time and a certain technical condition is satisfied then (6.13.13) holding

at t = 0 is sufficient for Y to win (recall Theorem 6.6.2). It is also

necessary when R(t) is constant. Similar statements may be made about

(6.13.11) in those cases for which a(t) 0 0(t), and we will now develop such

simple approximate battle-outcome-prediction conditions.

Thus, we will now develop a simple approximate battle-outcome-prediction

condition for combat with supporting fires not subject to attrition (see

Theorem 6.13.3 below). First, we must attend to some preliminaries. Let us

denote the right-hand side of the inequality (6.13.11) as u +(t). More

precisely, let u +(t) and u_(t) denote, respectively, the positive root

and the negative root of b(t)u2 + {a(t) - 8(t)}u - a(t) - 0. It follows that

"u"(t) - VR(t) V + 1 (6.13.14)

so that u_(t) < 0 < u +(t) and (see Figure 6.19)

< 0 for u_(t) < u < u+(t)

du (6.13.15)
dt > 0 for u+(t) < u.

We then have

THEOREM 6.13.1 (TAYLOR and PARRY [591): If du/du(0) < 0 and

u+(t) is a nondecreasing function of time, then du/dt(t) < 0

( for all t > 0.
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dudt

0 ,

Figure 6.19. Force-ratio velocity as a function of the force ratio for combat

modelled by LANCHESTER-type equations for an (F+T)I(F+T)

attrition process [see equations (6.13.1) in the text]. Here

the length of the arrow drawn on the u-axis is in proportion

tu the magnitude of du/dt corresponding to that force ratio

u, and the direction in which the'arrow points corresponds

to the sign of du/dt, e.g. an arrow pointing to the left

corresponds to a minus sign for du/dt (cf. Figure 2.7).
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PROOF. The basic idea behind this proof is that u(t) and u +(t) "move

in opposite directions." The hypothesis that du/dt(O) < 0 yieJds that

0 < u0 < u+(O) by (6.13.15). The assumption that u+(t) is nondecreasing

then yields that u0 < u+(0) < u.(t) for all t > 0. IZ follows that

u(t) is a strictly decreasing function of time, since for t near zero

we have u(t) < u0 < u+(O) < u+(t) and consequently (6.13.15) yields that

du/dt(t) < 0 always. Q.

Theorem 6.13.2 then tells us when u+(t) is nondecreasing.

THEOREM 6.13.2 (TAYLOR and PARRY [59]): If R(t) and S(t)

are both nondecreasing functions of time, then u+(t) is a non-,

decreasing function of time.

We now make the following additional assumptions.

(A4) R(t) and S(t) are nondecreasing functions of time,

(AS) b(t) A L(O, +4o)

(A6) R(t) is not identically equal to zero.

Let R0 denote R(O) and similarly for S . Then a simple approximate

battle-outcome-prediction condition is given by the following theorem.
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THEOREM 6.13.3 (TAYLOR[501): Assume that (A4) through (A6) hold.

Then Y will win a fixed-force-ratio-breakpoint battle in finite

time if

x Rý0 S 1 (6.13.16)

YoO {2 (2 12}

PROOF (sketch; see TAYLOR [50] for complete details). The initial-condition

inequality (6.13.16) implies that du/dt(O) < 0 so that Theorem 6.13.1

tells us that du/dt(t) < 0 for all t > 0. It remains to show that

u(t) +UBPX < u0  in finite time, where uBpX > 0 denotes X's "breakpoint"

force ratio. The latrer result may be proven by showing that u(t)t

i - K1 ft b(s)ds with K > 0, since limt+ f b(s)ds - 4•. There

are now two cases to be considered: (Cl) S(t) < 0 for all t > 0,

and (C2) there exists t 1> 0 such that R(t 1 ) > 0 and S(t ) > 0. In

the first case (Cl) it may be shown that du/dt(t) < {b(t)/b 0}du/dt(O),
t

whence u(t) < u0 + (1/b 0 ) duidt(O) f b(s)ds, and the theorem follows
0

in this case. In the second case (C2) it may be shown that

-b(t) R(tI) for 0 < u < {S(t)/21 rR-(it
-(t) <
dt - -b(t) [-l/b(t 1 )]du/dt(t 1 ) for 0 < (S(t)/2} /R(t) < u < u+(t),

t
whence u(t) < u0  K1 ft 1 b(S)ds with K- minimum [R(t 1),(-l/b(t 1))du/dt(t)].

_Q.E.D.

The assumption that limT ÷ +o 0T b(t)dt - + means that an X primary weapon

system [and, by implication from assumption (A4), a Y primary weapon system

also] has unlimited firepower, i.e. there are no logistics constraints on the
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battle. Theorem 6,13.3's proof, which we have sketched above, is particularly

significant because it allows several important extensions: (1) cumulative

firepower need not be unlimited, and (2) conditions for Y to achieve a

given force ratio within a specified time.

Let us now make a few observations about the simple approximate battle-

outcome-prediction condition (6.13.16).

Comment 1. Although there are six absolute quantities (i.e. two force

levels and four attrition-rate coefficients) in cur model of combat with

supporting fires (6.13.1), there are only three independent relative-cavabi1iZt

parameters (one relative-initial-primary-force-size parameter and two relative-

fire-effectiveness parameters) involved in victory prediction: (1) the

initial force ratio of the primary systems u0 - xo/y 0 , (2) the initial

relative fire effectiveness of the primary weapon systems R, and (3) the

initial net fire effectiveness of the supporting weapons normalized by the

intensity of combat between the primary weapon systems SO.

Comment 2. When the supporting fires are always equally effective, i.e.

a(t) E 0(t), their effects "cancel out," and (in terms of the force ratio)

the battle's outcome is the same as though they were not prejent.

Although highly idealized, the model (6.13.1) is significant because

of the insights that it provides into the dynamics of combat. As we discussed

above, we may consider (6.13.1) to model combat between two homogeneous

forces (primary weapon systems) with superimposed effects of supporting

fires not subject to attrition. F. W. LANCHESTER [26] apparently belleved

325

!II
1-________ _______________________________________ l__£__I

UA



that before 1914 the "modern" trend in warfare had been towards greater

concentration of forces (i.e. higher troop densities in combat area) and

formulated his now classic model of combat (without supporting fires)

in order to quantitatively justify the principle of concentration. It is

significant to note (e.g. see HERO (20-22], however, that the actual trend

in combat operations over the past two thousand years of military history

has been towards greater dispersion of forces (i.e. lower troop densities

in combat areas). Some figures for the last hundred years are shown

in Table 6.XII (see STEWART [41]).

Furthermore, the model (6.13.1) may be used to gain important insights

into whether or not it is "beneficial" to concentrate forces, i.e. whether

or not a side should make its initial commitment of forces as large as

possible (e.g. see Section 2.9 above). Results show zhat if the "intensity"

of the supporting-fire combat exceeds that of the primary systems [i.e.
19

m(t) 0(t) > a(t) b(t)], then the victor should not concentrate his forces

(see TAYLOR (48] for a detailed analysis of the decision of whether or not

to concentrate forces; also see Section 8.10 below). Considering the past

increases [20-22] in the fire effectiveness of supporting weapons relative

to that for primary weapon systems (e.g. small arms), we would expect that

in general a(t) B(t) > a(t) b(t) on the modern battlefield. Consequently,

the victor should not concentrate his forces according to the above. Thus,

the model (6.13.1) yields a theoretical result (about optimal military

tactics) that is in better agreement with the historical trend in military

operations than is that yielded by LANCHESTER's original model (2.2.1)

without supporting fires (i.e. the victor should always concentrate forces

[see Section 2.9 above]).
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TABLE 6.XII. Increase in the Dispersion of Troops from the U. S. Civil War

to World War II (from STEWART [41]).

ITEM CIVIL WAR WORLD WAR I WORLD WAR II

Area of 100,000 men
(in square miles) 26.8 140 1727

Average frontage of
100,000 men (miles) 8.0 11 38.4

Average depth of
100,000 men (miles) 3.3 13 45
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It will be instructive for us to consider a more concrete case and

examine more closely this question about the optimal initial commitment

of forces. Hence, let us consider the constant-coefficient model of combat

with supporting fires

/dx__wihx0
dt -ay -oxwt ()-o,

(6.13.17)

d -bx -ay with y(O) - YO
dt

where a, b, a, and 8 now denote constant attrition-rate coefficients.

Returning to first principles, to determine the optimal initial commitment

of forces, we must consider a "combat-optimization" problem as we have done

in Section 2.9 above (see also Section 8.10 below). Consider now a battle

in which Y has more than enough troops to win. Will Y be "better off" by

initially committing all his forces to battle? Should he hold some of them

in reserve? We assume that this initial-commitment decision is to be made

(only) once before the battle begins. If we take the overall casualty-exchange

ratio Rc (- yc/xc, where yc denotes Y's casualties and similarly

for x c) as Y's decision criterion, then Y should initially commit more

forces to battle as long as DR c/y0 < 0. Then for either a fixed-force-

level-breakpoint battle or a fixed-force-ratio-breakpoint one, it may be

shown (see TAYLOR [491) that DRc/3y0 < 0 if and only if a(dy/dx)/Du > 0.

This if-and-only-if statement holds because a(dy/dx)/Du always has

the same sign (see below) and the attrition-rate coefficients are constant.

For the model (6.13.17) we have
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d= a + bu
dx a + Su

4( and a straightforward computation yields

•u d =ab - aiB (6.1].3.18)
Sx (a + su) 2  1

Thus, we see that a(dy/dx)/3u > 0 always if and only if ab > a$. Hence

the prospective victor should initially commit as many primary-system

forces (e.g. infantry forces) as possible to battle when the intensity

of combat between the primary forces exceeds the "intensity" of the

supporting fires, i.e. when ab > aB. When a8 > ab, more forces than are

required to "Just" assure victory should not be initially committed because

they are more vulnerable to supporting fires (see TAYLOR [48] and Section

8.10 for further details).

As discussed in Section 2.9, there is a very simple and intuitively

appealing interpretation of the above optimal force-commitment decision

rule. The instantaneous casualty-exchange ratio dy/dx represents the

"cost" to Y of reducing the X force level a unit amount. The partial

derivative a(dy/dx)/au represents the variation in this cost to changes

in the force ratio u - x/y. When a(dy/dx)/au > 0 always, then Y's

instantaneous cost of doing battle is always reduced when the battle is

fought at lower force ratios u - x/y. If Y in,"tially commits more

forces to battle (i.e. Y makes yo larger, then the battle is fought

at lower force ratios, and Y is cumulatively better off according to this

decision criterion. Hence, ab > 08 yields that Y is better off by

initially committing more forces to battle. Moreover, this decision rule

is surprisingly robust and holds for other decision criteria (see TAYLOR

[48]). Finally, this heuristic reasoning is shown to be mathematically

precise in Section 8.10 below.
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6.14. HELMDOLD-Type Combat with Supporting Fires

If we assume that attrition between the two primary weapon systems (e.g.

infantries, see Figure 6.18) follows HELMBOLD's modification of LANCHESTER's

equations of "modern warfare" to account for inefficiencies of scale when

infantry-force sizes are grossly unequal (see Section 6.11), our model of combat

with supporting fires (6.13.1) becomes (see Figure 6.20)

dx x1-W
d -a(t) (A) 0 y - 8(t)x with x(0) -dt x0

(6.14.1)

dy - -b(t) (Y) "-W x - c(t)y with y(O) - yo ,

where a(t) and 0(t) again represent the effectivenesses of the supporting

fires, and W denotes the "WEISS parameter" of the battle.

More formally, we will call (6.14.1) the equations for HELM.OLD-type

combat with supporting fires not subject to attrition, although (of course)

we know that other interpretations are possible (see Sections 2.12 and 6.13

above). Here, we have assumed that both sides suffer the same inefficiencies

of scale. This nonlinear combat model (6.14.1) reduces to the above studied

linear model (6.13.1) when W - 1. In analyzing this model we will again

assume that assumptions (Al) through (A6) of Section 6.13 hold. Finally,

let us note that the above nonlinear combat model (6.14.1) is highly oper-

ationally significant, since it provides an excellent fit to large-unit

(i.e. division-level and larger) casualty-rate curves currently used in

several of the principal large-scale ground-combat models used in the

United States (see Section 7.11 below for further details).
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Again (see Section 6.11), this nonlinear HI-LMBOLD-type combat model

may be transformed into a linear combat model by the appropriate transformation
W W

of the dependent variable. Thus, the substitution p - x and q - y

transforms (6.14.1) into

( -W{a(t)q + 0(t)}l with p(O) - XOw
dt P

(6.14.2)

d-d -W{b(t)p + a(t)q} with q(O) . Y(W
dt

Hence, all the results (see Section 6.13 above) for the linear model with

supporting fires not subject to attrition (6.13.1) apply the the nonlinear

HELMBOLD-type combat model (6.14.1). For example, when assumptions (A4) through

(A6) of Section 6.13 are satisfied, then the Y force will win a fixed-force-

ratio-breakpoint battle in finite time if

(x ) + ' + 1 (6.14.3)

where R(t)' and S(t) are given by (6.13.12), R0  denotes R(0), and

similarly for SO.
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I
6.15. The General Linear Model with Replacements (Constant Attrition-Rate

Coefficients).

In the case of constant attrition-rate coefficients, the general

linear model (6.12.1) reads

dx -ay -x + r with x(O) - x0 ,
dt x

(6.15.1)

-bx - ay + s with y(O) - Y0
dt

where a, b, as, , r, and s denote quantities that remain constant during

a particular battle, and we assume that a and b > 0, while a and

B > 0. Although there are several different sets of physical circumstances

that may be hypothesized to yield (6.15.1) (see Section 6.12 above), we

will consider (6.15.1) to model "aimed-fire" combat between two homogeneous

forces with supporting fires not subject to attrition and continuous

replacements/withdrawals. In this case we should consider r and s to

be replacement rates, with a negative value denoting a net rate of

withdr .wal of forces. Accordingly, we will place no restrictions on the

replacement rates r and s, i.e. r and s are unrestricted in sign.

The model (6.15.1) is of interest because it provides insights into

the consequences of additional troops (continuously) committed to battle.

We may consider a term like, for example, r to represent the rate at

which additional X forces are committed to battle. Another related inter-

pretation is that r represents the net rate at which the X force enters

the fields of fire of the Y force. Such interpretations essentially apply
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to small-unit combat in fire fights. We may also (see Section 6.12 above),

however, consider (6.15.1) to model combat with operational losses and

continuous replacements. In this case we may consider (6.15.1) to apply

to large-scale combat over a sustained period of time, and then r and s

represent the rates at which additional resources are committed to the

theater of operations (see MORSE and KIMBALL [31, pp. 71-731). In this

light, analysis of this combat model will provide important insights into

the nature of tradeoffs among (1) direct combat capability, (2) "build-up"

capability, and (3) operational losses. In terms of the NATO scenario,

the model (6.15.1) provides rough insights into the structure of tradeoffs

among the quality of weapon systems, the quantity of weapon systems, and

the "build-up" rates at which new systems are introduced into the theater

of operations.

Unlike the previous variable-coefficient versions considered above,

the constant-coefficient model (6.15.1) yields an analytical solution that

is simple enough to provide some important insights into the dynamics of

combat through direct analysis. When ab 0 a8, the X and Y force

levels x(t) and y(t) for the model (6.15.1) are given by 2 0

x(t) - + Ae(-6a)t ( + (e ) Be-(e6+)t,

and (6.15.2)

y(t)-n (e + 6) Ae (e-)t +Be-(e+)t

where
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A- 2e( +) (x° - ( 6)- (o- i , (6.15.3)

26(e + 6) b - ) + (Y - r)

B- ab +(e+0 / (x0  (6.15.4)

aB T- (e b+ -) a

- as ,r br Bs A - ab - aS , (6.15.5)

6 2 ab + 6'2 d 2 and a - 2 (6.15.6)

Let us also note the following identity

e+6 r - 1 1 ~ 2l (6.15.7)

where R - a/b and S - (0-a)/Y/a (see Section 6.13 fcr a discussion of

the military interpretations of these parameters R and S).

When ab - ac, the X and Y force levels x(t) and y(t) for

the model (6.15.1) are given by

x(t) . x e- (a+B)t + (ar- ast

+(Or + as) + (1 ex o - ( (6.15.8)
(ai + 0)2 CL + B

and

y(t) -yo e (a-0) t - (a)(cr - as ) t

-(as + br) ( I (cix - ay0\

" (+ + 8)2 + + 8 {i - . (6.15.9)
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In this latter case, i.e. when ab - aB, the constant-coefficient combat

model (6.15.1) possesses the state equation

b(x 0 - x) - 8(y 0 - y) + (8s - br)t, (6.15.10)

which yields that the overall casualty-exchange ratio is constant, i.e.

x_8E 'a _ (6.15.11)

Yc b'

where the X and Y casualties are given by

xc x0 + rt - x , and Yc YO + st - y . (6.15.12)

Let us observe that in all cases the instantaneous casualty-enchange ratio

dx/dy is giverý by

dx . sBb+-"E _ (6.15.13)d-y 'ý I s W- bx ay c 5

which for ab - a8 becomes

dx8+ r- (8/b)s (6.15.14)
dy b s- bx- a"y

In particular, for br - Os and ab - ct we have the linear law

b(x 0 - x) - 8(yo - y) ' (6.15.15)
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I
Determination of the qualitative behavior, e.g. battle-outcome-

prediction conditions, for the linear combat model with replacements

(6.15.1) is much more difficult than we have heretofore encountered because

the force levels x(t) and y(t) no longer possess a very important mathe-

matical property that facilitated analysis of combat modelled with

LANCHESTER's equations for modern warfare (6.5.1): namely, all solutions

to (6.15.1) are no longer nonoscillatory in the strict sense that x(t)

and y(t) can have more than one zero. We will give an example cf such

solution behavior below. However, analysis of the qualitative behavior of the

model (6.15.1) ir relatively straightforward when ab > a8, i.e. the

intensity of combat between the primary systems exceeds the "intensity"

of the supporting fires, and we will aaw develop force-annihilation-prediction

conditions for this case. Let us first observe that 6 - a > 0 if and

only if ab > ca. Hence, in this case the exponential e(8-C)t in (6.15.2)

is a strictly increasing function that grows -iAthout bound. Furthermore,

the signs of x(t) and y(t) for large t are opposite and determined

by the sign of A. For A - 0, i.e. (x0 -O ) - (yo-n)(e+6)/b, (6.15.2)

reduces to

x(t) - x0 e-(e+a)t + ei - e-+)t},

and (6.15.16)

y(t) - y0 e-(e+a)t + nil - e-(eG ) }.

We observe that 8 + 6 > 0. It follows that for ab > c8, And • and

>>0

(
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x will be annihilated

in finite time if (x0 - 0 < + ) (y0 - n), (6.15.17)

and only if

which may also be written in the equivalent form

( -< // [IS+ (2++i (Y0 -ri) ' (6.15.18)

The Y force will be annihilated (and only then) in finite time when

the above inequality (6.15.18) is reversed. Moreover, from (6.15.2) we see

that y(t) > 0 for all t > 0 when (6.15.18) holds with C and n > 0.

The requirement that & and n > 0 in the force-annihilation-prediction

condition (6.15.18) is absolutely essential as the example depicted in

Table 6.XIII shows. In other words, (6.15.18) [equivalently, (6.15.17)]

is satisfied for the battle depicted in Table 6.XIII, but the Y force

is actually annihilated before the X force is. The reason why (6.15.18)

fails to correctly predict force annihilation is that ri < 0. This example

should alert the reader to the fact that determination of the qualitative

behavior, e.g. force-annihilation prediction, for the constant-coefficient

model with replacements/withdrawals (6.15.1) is much trickier than that

for the variable-coefficient model (6.5.1) with no placements/withdrawals.

Let us finally sketch the development of the above expressions for

the force levels x(t) and y(t). When ab 0 a$, we may write (6.15.1) as

dx ' -a(y - n) - B(x- •) and d -b(x- •) - a(y - 1) (6.15.19)dt

whence the substitution X x - • and Y - y - n transforms (6.15.19)

into
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TABLE 6.XIII. Example That Shows That One Must have Both & and n > 0

in Order for the Inequality (6.15.18) to Correctly Predict

a Y Victory in a Fight-to-the Finish.

NOTE: In this battle we have taken (in compatible units) a - b - 2,

a- 8 - 1, r 0, and a - 150. It follows that (6.15.18) is

satisfied but with - 100 and n - -50.

-t X(t) y(t)

0.00 200.00 60.00
0.1 172.26 33.31
0.2 151.52 13.73
0.3 135.94 -0.56
0.4 124.17 -10.92
0.5 115.19 -18.33
0.6 108.25 -23.53
0.7 102.79 -27.07
0.8 98.40 -29.35
0.9 94.76 -30.65
1.0 91.64 -31.18
1.1 88,85 -31.11
1.2 b6.27 -30.53
1.3 83.78 -29.53
1.4 81.30 -28.15
1.5 78.76 -26.43
1.6 76.10 -24.37
1.7 73.27 -21.99
1.8 70.23 -19.28
1.9 66.92 -16.22
2.0 63.31 -12.79
2.1 59.36 - 8.98
2.2 55.02 - 4.73
2.3 50.23 - 0.02
2.4 44.96 5.19
2.5 39.15 10.97
2.6 32.72 17.36
2.7 25.63 24.43
2.8 17.80 32.35
2.9 9.15 40.89
3.0 -0.41 50.44
3.1 -10.98 61.00
3.2 -22.66 72.67
3.3 -35.56 85.57
3.4 -49.82 99.82
3.5 -65.57 115.58
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dX dY O -bX - aYd--u iaY -8X and d--t bX-a
dt d

for which we have given a solution in Section 6.13 above. When ab aB,

we may write (6.15.1) as

dx . a( +ad s - b(x + y),
dt rbx+y) and bt

whence follow the above results.
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t
6.16. 'variable-Coefficient Equations for FTIFT Attrition Process

As emphasized above, S. BONDER [5;10] has stressed the importance

for weapon-system evaluations of using time-dependent attrition-rate

coefficients in LANCHESTER-type combat models to represent temporal variations

in firepower on the battlefield (e.g. see the battle trajectories given in

Section 6.2 above). We have considered various aspects of such variable-

coefficient generalizations of LANCHESTER's equations for modern warfare

in several of the above sections. Let us now, however, consider the follow-

ing LANCHESTER-type equations for a FTIFT attrition process with time-

dependent attrition-rate coefficients

dx -a(t)xy with x(O) - x0

(6.16.1)

dy - -b(t)xy with y(O) - yo

These equations may be hypothesized to model combat under either of the

following two sets of circumstances (cf. Sections 2.4 and 2.11 above):

either (S1) both sides use "area" fire and a constant-area

defense [12; 61],

or (S2) both sides use "aimed" fire with the rate of target

acquisition being inversely proportional to the

number of enemy targets and also being the controlling

factor in the attrition process [12].
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The modelling of the attrition-rate coefficients a(t) and b(t) is

discussed in Sections 5.4 and 5.7 above. Mathematically, we assume that the

attrition-rate coefficients a(t) and b(t) are positive and piecewise

differentiable. We further assume that both a(t) and b(t) ( L(O,T) for

any finite T > 0 and similarly for d/dt{b(t)/a(t)}.

The development of analytical results for the X and Y force levels

x(t) and y(t) is very much more difficult for time-dependent attrition-

rate coefficients than it was for constant coefficients (see Section 2.4).

Since no relation like LANCHESTER's linear law (2.4.3) generally holds for

the variable-coefficient combat model (6.16.1), we are led to a nonlinear

second-order differential equation in order to analytically determine, for

example, x(t). Accordingly, we may use differentiation and algebraic

elimination to obtain from (6.16.1) the X force-level equation

d2 xx 1 {dx 2  dx x 1 da dx
d2 x (x)x a d a(t) dt 0 , (6.16.2)

with initial conditions

x(0) - x 0 , and dx

where a0  denotes a(O) and similarly fpr b0 . Unfortunately, this

second-order nonlinear differential equation is apparently not equivalent

to any standard equation solvable in terms of "elementary" functions,

e.g. see INCE [23] or DAVIS [16]. However, we will give some simple

approximations to the solution of this nonlinear differential equation.
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TAYLOR (46] has developed the following two simple approximations

to the solution of (6.16.2), denoted as x it) for i - 1 and 2, namely

x 0

t - t t t, (6.16.3)

[exp{--f Gi(s)ds} + x0 f b(s) (exp{-f Gi(r)dr})dsl
0* 0

where

a(t) (b x - y) for i - 1
a 0 0 000

Gi(t) - (6.16.4)

b(t)x0 - a(t)y0  for i - 2.

What is the error made in using the above approximations? How "good" are

they? To answer these important questions, TAYLOR [46] has developed a

bound for the error made in using either of the two approximations Wl(t)

and x2 (t). This bound is easy to evaluate and does not require knowledge

of the exact solution x(t). His result is as follows.

THEOREM 6.16.1 (TAYLOR [46]): A bound on the error made in

the approximation (6.16.3) xi(t) (for i 1,2) to the exact

solution x(t) of (6.16.1) is given by

x 2 (t) - Xl(t) > Ix(t) - x (t)01 for i - 1,2, (6.16.5)

where a

x j ( t ) = tt[exp{- H(s)ds} (+ 0 f b(s)(exp{- f H (r)dr})ds]

0 0

and
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H (t) - a(t) (b 0 x0 - ay) + (--l)j V0(b)

a f 0  A 00 0,t a

for j = 1,2.

In Theorem 6.16.1 V denotes the variational operator defined and

discussed in OLVER [34, pp. 27-29], i.e.

a 0s) dsa.

When b(t)/a(t) is monotonic, however, this bound simplifies and becomes

tighter. Thus, we have

THEOREM 6.16.2 (TAYLOR (46]): If d/dt{b(t)/a(t)} > 0 foc

all t E [O,T], then a bound on the error made in the approxiue.tion

(6.16.3) x i(t) (for i - 1,2) to the exact solution of (6.16.1)

is given by

x2 (t) - (t) > (-1)"+ {x(t) - • (t)} > 0 for i - 1,2.

The above are the only analytical results known to the author for the

nonlinear combat model with temporal variations in fire effectiveness (6.16.1).

Let us finally observe that all the above results apply to a more

general nonlinear combat model. When each side has supporting weapons not

subject to attrition (cf. Section 6.13 above), our model becomes
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d x
dt -a(t)xy - 8(t)x with x(O) - x0 ,

(6.16.6)

dy- -b(t)xy - c(t)y with y(O) - y0 ,
dt

where a(t) and 0(t) are nonnegative and represent the effectiveness of

supporting fires. However, the substitution (6.12.2) transforms (6.16.6)

into

I2dt - -A(t)pq with P(O) - x0 V

(6.16.7)

- -B(t)pq with q(O) - yo ,
dt

t t
with A(t) - a(t) e3p{- f a(s)ds} and B(t) - b(t) exp{- I $(s)ds}.

0 0

Tib, all the above results for the model (6.16.1) may be applied to the more

general model of combat with supporting fires not subject to attrition (6.16.6).

(3
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"*6.17. A Result for the General Model with Temporal Variations in

Fire Effectiveness

Two quantities of fundamental interest to the military OR worker

are (1) the force ratio, and (2) the casualty-exchange ratio. In this

section we will show that for the general case of combat between two homogeneous

forces, the difference between these two fundamental quantities provides a

simple (but yet very basic) "local" condition of force superiority that some-

times allows one to determine that the force ratio is a monotonic function of

time. Such a result is not only of intrinsic interest but also important

for understanding the dynamics of FEBA movement (Forward Edge of the Battle

Area, which is the contact zone between opposing forces) when combined with

a rate-of-advance equation for FEBA motion. In large-scale combat models

for a given engagement, the motion of the FEBA is usually taken to depend

monotonically on the force ratio so that monotonic behavior of the force

ratio over time can be translated into qualitative statements about cumulative

FEBA movement (see Sections 7.13 and 7.14 for further details). Thus, the

results of this section may be used to develop fundamental qualitative in-

sights into the dynamics of combat.

As we saw in Section 6.1 above, we may generally model combat between

two homogeneous forces with the following deterministic LANCHESTER-type

equations for x and y > 0

dx . -G(t,xy) with x(O) -

(6.17.1)

d- -H(t,x,y) with y(O) yo

"*Starred sections are not required for the understanding of the sequel and

should be omitted at first reading. They usually require more mathe-

matical sophistication to be understood.
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I
where x(t) and y(t) denote the X and Y force levels at time t, and

G and H denote force-change rates (with a negative force-change rate

signifying a net influx of replacements). When there are no replacements

and withdrawals, G and H are simply casualty rates. To insure the

existence of partial derivatives needed in subsequent analysis, we assume

that G and H are differentiable.

It is of interest to be able to determine in whose favor the course

of battle is progressing without solving the equations (6.17.1) in detail.

If we consider a fixed-force-ratio-breakpoint battle (a special case of

which is a fight to the finish in which one side or the other is annihilated),

then the rate of change of the force ratio is an appropriate measure of

the direction in which the course of battle is moving, since we can then

identify towards which combatant's force-ratio breakpoint the battle is

being "steered." Then according to this criterion, there is a simple criterion

(with a rich military interpretation) for a force to be "winning": namely,

a force is "winning" when the force ratio exceeds the casualty-exchange
21

ratio. This "local" condition of force superiority applies to all

LANCHESTER-type models with two force-level variables and yields a "global"

condition of force superiority (i.e. the force ratio monotonically changes

to the advantage of one side) when certain trends over time hold.

Let us now develop our local condition of force superiority.

Accordingly, we introduce the force ratio u - x/y. As pointed out by

TAYLOF and PARRY [59], for a fixed-force-ratio-breakpoint battle it seems

appropriate to say that "the course of battle is moving towards an X

victory" when du/dt > 0 (or, simply, that "X is winning"). Our "local"

( •condition of force superiority is developed by determining the sign of
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du/dt at a point in time. We will do this without solving the equations

(6.17,1) in detail. Considering the force ratio u - x/y, we find after

some straightforward manipulations that

dx du/dt (6.17.2)
dy .1 k

y dt

This result (6.17.2) is the key result from which all subsequent developments

in this section follow. We assume for simplicity that we always have dy/dt < 0,

with other cases being handled in a straightfoward manner. When dy/dt < 0,

then du/dt and (u - dx/dy) have the same sign. Thus, for dy/dt < 0

we see from (6.17.2) that a "local" condition of X-force superiority (i.e. X

is "winning" a fixed-force-ratio-breakpoint battle) is

u (t,x,y) . (7.17.3)

The inequality (6.17.3) has a very important military interpretation.

In general, the quantity dx/dy is the instantaneous (or differential)

force-change ratio, which for cases of no replacements and withdrawals becomes

the instantaneous (or differential) casualty-exchange ratio. Consequently,

in such cases, (6.17.3) says that X is "winning" when the force ratio

exceeds the instantaneous casualty-exchange ratio. In other words, the

relative size of the force ratio and the casualty-exchange ratio determine

the direction of the course of battle. Such a rule of thumb may be very use-

ful in such an interpretative sense when the exact dynamics of combat are

not known, i.e. one can still determine in whose favor the direction of

battle is moving.
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It is of particular interest to be able to predict when (6.17.3)

will hold throughout a battle (i.e. to determine a "global" condition of

force superiority). Although we have not succeeded in developing such

conditions in general, we will now give results for a special case of

fairly wide applicability. Thus, for many LANCHESTER-type combat models

of interest, the instantaneous force-change ratio dx/dy depends on only

t and the force ratio x/y, i.e. dx/dy is a homogeneous function of

degree zero in the force-level variables x and y (see COURANT [15,

pp. 108-1101). When this is true, we will say that Condition (HO) holds

and will denote dx/dy as o - p(t,x/y), i.e.

Condition (HO): •y (t,x,y) p p(t,u), with u x/y . (6.17.4)
dy

In this case, we may write

duadu IE 1 .(t, u) ,(6.17.5)
dt y dt)

where

E(t,u) - u - P(t,u) . (6.17.6)

We will call E(t,u) the excess function, since it represents by

how much the force ratio u - x/y exceeds the force-change ratio dx/dy.

Motivated by consideration of a number of specific LANCHESTER-type models,

we assume that E(t,u) - 0 has a unique positive root, which we will

denote as u+, for each finite value of t and that E is positive

for u > u+ but negative for u < U+. In order to assure that u+1t)
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"behaves properly" over time, we assume that 3E/9u is nonpositive for

u - u+. More precisely, we assume

(Al) < 0 for 0 < u <
u+()Etu) > 0 for u +< u,

and

(A2) _L (tu+) < 0 for all t > 0

where u+ denotes the unique positive root of E(t,u+) - 0 for any fixed

value of t.

Let us now consider combat modelled by LANCHESTER-type equations for

which Condition (HO) holds. Then X is "winning" a fixed-force-ratio-break-

point battle when (6.17.3) holds. This is a "local" condition of force

superiority. As discussed above, one can specify certain trends over time

to in some sense strengthen (6.17.3) into a "global" condition of force

superiority (cf. developments in Section 6.13 above). In particular, when

u+(t) is nonincreasing over time, then (6.17.3) holding at only t - 0

guarantees that du/dt(t) is always positive,22 i.e. the force ratio

u - x/y continuously changes to the favor of X.

THEOREM 6.17.1 (TAYLOR [44]): Assume that Condition (HO) and

Assumption (Al) hold and that u+(t) is a nonincreasing

function of time. It follows that

(6.17.7)

implies that u(t) - x(t)/y(t) is a strictly increasing function

of time t.
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I
PROOF. From (6.17.5) we see that du/dt and E have the same sign when

dy/dt < 0. We assume that this latter condition holds. Hence (6.17.7)

and Assumpcion (Al) imply that u+(O) < u0 . The assumption that u,(t)

is nonincreasing then yields that u +(t) < u +(0) < no for all t > 0.

It follows that u +(t) is a strictly increasing function of time, since

for t near zero we have u+(t) < iu+(O) < u0 < u(t) and consequently

Assumption (Al) implies that E(t,u(t)) > 0 for all t > 0. Q.E.D.

We now establish a necessary and sufficient condition for u+(t) to

be nonincreasing.

THEOREM 6.17.2 (TAYLOR [44]): Assume that Condition (HO) holds.

Then u+(t) is a nonincreasing function of time if and only if

ap/at(t,u+) < 0 for all t > 0, i.e., Assumption (A2) holds.

PROOF. Differentiating the identity E(t,u+) - 0 - u+ - p(t,u+), we obtain

du+ a- (tu)

S3,U+)

whence follows the theorem by (A2). Q.E.D.

We will now briefly consider several concrete examples in order to

illustrate the above general theory.
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Example 6.17.1. For LANCHESTER's equations of modern warfare (6.5.1),

we have dx/dy- (1/u) a(t)/b(t) - (1/u) R(t) - p(t,u) so that Condition (HO)

is satisfied. We also then have that E(t,u) - u - (l/u) R(t) so that

Assumption (Al) is satisfied with u +(t) - R_(. Computing ap/pt - (1/u) dR/dt,

we see from Theorem 6.17.2 that u+(t) is nonincreasing if and only if

R(t) is. We leave it as an exercise for the reader to show that (6.17.8)
yields the same result as direct computation of du+ /dt. Theorem 6.17.1 then

yields that the force ratio u - x/y is a strictly increasing function of

time when u0 > viý and R(t) is nonincreasing.

Example 6.17.2. For the equations of HELMEOLD-type combat with supporting

fires (6.14.1) with W E (0,1], we have dx/dy - u -W(a(t)+8(t)u W}/{a(t)+b(t)uW I

- P(t,u) so that Condition (HO) is satisfied. We also then have that

E(t,u) fu u-W/(a(t) + b(t)u W)} F(t,u) where F(t,u) - b(t)u2w +

fa(t)- 8(t)} u - a(t) so that Assumption (Al) is satisfied with

W V(t) I S¶t) + + 1 , (6.17.9)

where the normalized net effectiveness of supporting fires S(t) is given

by (6.13.11). It may be shown (cf. Theorem 6.13.2 above) by direct

computation using (6.17.9) that R(t) and S(t) nonincreasing implies that

u+(r) is nonincreasing. Applying Theorem 6.17.1, we find that the force

ratio u - x/y is a strictly increasing function of time when

(x/yo)W > /R {S0 /2 + /i + (S0/2)}2 and R(t) and S(t) are nonincreasing.
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S
A more thorough analysis of the force-ratio equation, however, is required

to develop a battle-outcome-prediction condition analogous to (6.13.16)

(cf. the proof of Theorem 6.13.3).

Example 6.17.3. Consider combat modelled with

dx -a(t) g(t,x,y) and dy -- b(t) g(t,x,y)
dt dt -

where a(t), b(t), and g(t,x,y) > 0. It follows that p(t,u) - R(t) so

that our results yield the "instantaneous" linear law b(t)x < at)y for

Y to be winning a fixed-force-ratio-breakpoint battle. When g(t,x,y) - xy

[i.e. combat is modelled with (6.16.1)], further analysis of (6.17.5) yields

V that

t
u(t) < u0 exp{- (% - u0 )yf f b(s)ds} , (6.17.10)

0

where yf denotes Y's (final) force level when X is annihilated and

we have assumed that u0 < R0 and R(t) is nondecreasing. If we assume

that b(t) j L(0, + -o), then (6.17.10) only guarantees that X will lose
X

any fixed-force-ratio-breakpoint battle with uBp > 0 in finite time.

It does not guarantee that X will be annihilated in finite time (and,

indeed, X will not be). Furthermore, this annihilation-time bound (i.e.

infinite time being required to annihilate the X force) cannot be improved

upon.
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Every military man intuitively knows that the force ratio and the

(instantaneous) casualty-exchange ratio influence the outcome of battle.

In this section we have shown that these two ratios may be quantitatively

related to develop battle-trend predictions, e.g. the force ratio will

always change to the advantage of one of the combatants, without having to

solve the LANCHESTER-type equations in detail. In particular, we showed

that a general "local" condition of force superiority which applies to all

deterministic LANCHESTER-type models with two force-level variables may be based

un comparing the force ratio with the instantaneous casualty-exchange ratio.

When appropriate temporal trends are satisfied, "global" conditions of force

superiority may be developed from these "local" ones.
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FOOTNOTES for Chapter 6S
1. By the classic LANCHESTER theory of combat (i.e. its classic developments)

we mean developments in the differential-equation modelling of combat

before the publication of DOLANSKY's [17] 1964 survey article. Con-

stant attrition-rate coefficients were assumed for reasons of simplicity

and lack of methodology and data for their prediction [17].

2. S. BONDER (see BONDER and FARRELL [10, pp. 30-31]) has stressed the

importance of analytical solutions to such models for developing in-

sights into the dynatics of combat by portraying the relation between

various factors in the combat attrition process and the surviving num-

bers of forces and for facilitating sensitivity and other parametric

analysis (see BONDER [91). Furthermore, finite-difference methods

for developing numerical approximate solutions to such equations are

discussed in Chapter 7 below.

3. Other significant work appears in BARFOOT (2], BONDER and FARRELL [10],

and KIMBLETON [25].

4. Here we would like to mention the work of RUSTAGI and SRIVASTAVA

[39] and RUSTAGI and LAITINEN [38] on the estimation of the

Markov-dependent-fire parameters in BONDER's [6;8] expression for the

LANCHESTER attrition-rate coefficeints (see also Footnote 1 for

Chapter 5).
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5. To be precise, we only conjecture that this statement is true. It

is, of course, a very difficult task (and one well beyond the

scope of this book) to prove that the solution to a differential

equation cannot be expressed in terms of "elementary" functions

(e.g. see RITT [37] or RISCH [36]). Based on our work in this

field, however, we feel that the statement is probably true for

combat modelled with many (if not most) time-dependent attrition-

rate coefficients of tactical interest.

6. See Footnote 13 of Chapter 3.

7. See Footnote 14 of Chapter 3.

8. In other words, both x(t) and y(t) > 0 for all finite t > 0.

9. It seems appropriate to delineate a set of physical circumstances

that may be hypothesized to yield a battle with attrition-rate

coefficients such that h(t) E L(0,4-). For example, consider a

fire fight in which the combatants take cover and continue to reduce

their vulnerability so that enemy fire effectiveness decays

exponentialily over time, i.e. a(t) - k ae-Yt and b(t) - ke-Yt

with y > 0. In this case, M - X /y, and M is finite when
h(t) E L(0,41).

10. This point was not noted by TAYLOR and PARRY [59].
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1i. See TAYLOR [50] for an example that shows that such a battle

need not ever end when b(t) E L(O,+-o), i.e. limited cumulative

firepower is available to the X force.

12. The naming of our LCS functions is based on the facts that

a function similar to F (0) was introduced by LUDWIG SCHLXFLI

(1814-1895) in 1867 (see [401) and that another related one

appears in a posthumous fragment of the great English geometer

WILLIAM KINGDON CLIFFORD (1845-1879) (see [14, pp. 343-348]).

Although the GLF given by (6.9.3) may be expressed in terms of

modified BESSEL functions of the first kind of fractional order

(i.e. I for 0 < a < 1) [see (6.6.1) through (6.6.14) above],

we have introduced the LCS functions because too few of such
BESSEL functions I are tabulated (i.e. tabulations apparently

only exist for a - + 1/4, + 1/3, + 1/2, + 2/3, + 3/4, and these

do not correspond to cases of interest). Observing that we may

write
" (/2) 2k+a

I a w k {k! r(k + a + 1)1k-O

the reader may find it instructive to show that the results given

in Example 6.5.2 are equivalent to (6.6.11) and (6.6.12) and

also to (6.9.3) above.

13. Equation (6.9.6) follows directly from substituting (6.9.3)

into (6.5.6).
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14. The tabulations provided in Appendix D are taken from the longer

(i.e. (55]) of the two reports by TAYLOR and BROWN (55; 561 (also

available from the National Technical Information Service) which

contain five-decimal-place tables of the hyperbolic-like LCS func-

tions tions F (C), H1a (C), and T (E) for values of the argu-

ment g - 0.00(0.01) 2.00(0.0) 10.0 and various values of the order

a. The short table [56] contains tabulations for a - 1/2, 1/3, 2/3,

1/4, 3/4, 1/5, 2/5, 3/5, 4/5, 3/7, and 4/7 corresponding to

p, v - 0,1,2,3 for the attrition-rate coefficients (6.9.2); while

the longer table (55] contains tabulations for a - 1/2, 1/3, 2/3,

1/4, 3/4, 1/5, 2/5, 3/5, 4/5, 2/7, 3/7, 4/7, 5/7, 4/9, 5/9, 3/11,

5/11, 6/11, 8/11, 5/13, 8/13, 5/17, 12/17, 5/21, and 16/21 corre-

sponding to V, v - 0, 1/4, 1/2, 1, 1 1/2, 2, 3. As we have seen

above in Section 6.2 [see (6.2.1), (6.2.5), (6.2.6), and Figure 6.2],

such values for u and v allow one to analyze, for example, a wide

variety of range capabilities for weapon systems in BONDER's constant-

speed-attack model (6.2.1).

15. These force-annihilation-prediction results may be obtained by

substituting the GLF (6.9.3) and the result (6.6.17) for Q of

Section 6.6 into Theorem 6.7.1.

16. More generally, we could have considered D > 0 but did not do

so because (6.9.14) reduces to (6.9.2) when D - 0.
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17. The naming of t'ie LIOUVILLE-GREEN-LANCHESTER (LGL) approximation

was arrived at in the following manner. The LIOUVILLE-GREEN-

(LG) approximation [34] (also called the WKB approximation [33,

pp. 790-791; 34], the JWKB approximation [28; 341, or even the

WKBJ approximation [30]) to the solution of a second-order linear

differential equation is a very useful approximation that is frequently

made in applied mathematics. Since we have applied the theory of

the LG approximation to LANCHESTER-type equations of modern warfare,

we have called the result the LGL approximation.

18. The LG approximation (see OLVER [34, Chapter 6]) is a widely used

approximation to the solution of a second-order linear ordinary

differential equation. See the previous footnote for further

details.

19. Actually, additicnal hypotheses are required. For simplicity we

have omitted them here (see TAYLOR [48] or Section 8.10 below).

20. An equivalent result is given by MORSE and KIMBALL [31, p. 72].

However, their result is in a considerably less convenient form for

determining the qualitative behavior of the model (6.15.1). For

example, the behavior shown in Table 6.XIII was not detected by

MORSE and KIMBALL, and consequently incorrect battle-outcome-

prediction conditions are implied in [31, p. 72].

21. This interpretation only holds for cases of no replacements and

withdrawals or, more generally, when the rates of replacement

and withdrawal are equal.
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22. In TAYLOR (44] we erroneously stated that (under the stated assump-

tions) (6.17.7) was a condition sufficient to predict an X victory

in a fixed-force-ratio-breakpoint battle. Subsequently, we discovered

the counterexample mentioned in Footnote 10 above (i.e. see TAYLOR

(50]) that shows that such a battle need never end when

b(t) E L(O,+-), i.e. limited cumulative firepower is available to

the X force. Consequently, for example, Theorems 6.6.2 and

6.13.3 each contain the assumption that b(t) • L(O,+-), and

Theorem 6.17.1.
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APPENDIX D: TABLES OF LCS FUNCTIONS FOR ANALYZING

HOMOGENEOUS-FORCE BATTLES

1. Introduction.

This appendix contains the most extensive set of tables of the

LANCHESTER-CLIFFORD-SCHLXFLI (LCS) functions (see Section 6.9) which

are currently available for analyzing homogeneous-force "aimed-fire"

combat modelled by power attrition-rate coefficients with "no offset"

Ua(t) - k a(t+C), and b(t) - kb(t4C) (D.1)

or by certain other attrition-rite coefficients that yield force-level

equations equivalent to (6.9.7). Some military situations modelled with

these coefficients have been discussed above in Section 6.2, e.g. "aimed-

fire" force-on-force combat between two opposing weapon-system types

with the same maximum effective range. These tabulations of LCS functions

allow one to analyze such combat modelled by the power attrition-rate

coefficients (D.1) with somewhat the same facility as one can for the

conscant-coefficient case, and thus they can aid in parametric analyses

(see Section 6.9 for further details).

Tabulations of the hyperbolic-like LCS functions F (m)

Hl(•) , and Ta (&) are given in this appendix fcr various values of

the argument & and for a - 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5,

4/5, 2/7, 3/7, 4/7, 5/7, 4/9, 5/9, 3/11, 5/11, 6/11, 8/11, 5/13, 8/13,

5/17, 12/17, 5/21, and 16/21. As we have seen in Section 6.9 above,
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I
the LCS functions F (:M and HL (E) may be represented for

a 0 0,-I, -2, ... as the infinite series

2 2k
F w r() {k0 r (k+a)J ' (D.2)

and

H ) U/2) (k+)
Ha_.() = r(k) F. (k!r(k+a+l) (D.3)

while T (Q) is defined by

H l_a (C)

T L (E)- (D.4)ci F(a

The LCS function F (C) corresponds to the hyperbolic cosine, H 1(aMaiI-

to the hyperbolic sine, while T (E) corresponds to the hyperbolic

tangent. A key result that is used to develop force-annihilation-

prediction conditions is that (TAYLOR and BROWN [51 ; ee also Section

6.9 above)

lim T M = a (D.5)S r(a)

2. Use of LCS Functions for Analyzing Homogeneous-Force Combat.

The LANCHESTER-CLIFFORD-SCHLFLI (LC.7) functions F a() and

SH(a ( are very useful for analyzing "aimed-fire" combat modelled by
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the power attrition-rate coefficients with "no offset" (D.1). In other

words, the LCS functions arise in solving the differential-equation

force-on-force combat model (6.5.1) with attrition-rate coefficients

(D.1). In order that both a(t) and b(t) E L(t 0 ,T), we must have ij

and v > -I, and we will assume that this latter condition is satisfied.

For such combat, these LCS functions may be used to

(Ti) compute the force levels as functions of time,

(T2) predict force annihilation,

and (T3) compute the time of force annihilation.

Although we have given results for accomplishing these tasks in Section

6.9, for the reader's convenience we will review the salient points and

collect the main results here.

According to (6.5.6) and (6.9.3) , the X force level x(t)

may be written as

x(t) - x0 (Fp(T 0 )Fq(T) - q (To0 )Hp(T)}

-Yo R A Fq(To)Hp (T) - Hp(To)Fq(T)} (D.6)

where p - (a+1)/(i+v+2), q - 1-p

T(t) - (L (t+C)(p+v+2)/2 (D.7)

T0 denotes T(O), X1 - ai- and XR k /kb. Let us observe that

from the condition that both i and v > -1, it follows that bonh p
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I
q E (0,1). From (D.5) and (D.6) (see TAYLOR (3] for details) we may

conclude the following force-annihilation-prediction result. [Alterna-

tively, we may substitute (6.9.3) and (6.9.8) into Theorem 6.6.1 to

obtain Theorem D.1.]

THEOREM D.1 (TAYLOR and BROWN [5]): Consider combat between

two homogeneous forces modelled by the FJF LANCHESTER-type

equations (6.5.1) with power attrition-rate coefficients (D.1).

Assume that both W and v > -1. Then the X force will be

annihilated in finite time if and only if

XF ()-r()) H (TO)
XO C__ 47rGo (D.8)"YO AR U q- P r(q) Hq•(T

When T- 0 (i.e. C -O), the X force will be annihilated

in finite time if and only if

x0 < ' q-p r(p) (D.Sa)

YO (-;;2) r(q)

When (D.8) is satisfied, the time to annihilate the X force, ta is

determinedly x(t) - 0. It follows that
a
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oF(T o) +y - Hp(TO
T FT(t X ) p 0 +v+2) H 0  (D.9)

q a )I aq-p
X0 iqCT0)+ YOVXR i+v+2/ Fq(TO)

or, more explicitly,

- F o(rO) + YO qR H C(T
t T T (D.IO)

a0 q XH t0 )+Y0 Vi.' 14+v+2, q _.

where T- and T denote inverse functions. Numerical examples
q

using the above analytical results have been given in Section 6.9 above,

and these examples show the use of the LCS functions for analyzing

homogeneous-force combat.

3. Tables of LCS Functions.

This appendix contains the most extensive set of tables of the

LANCHESTER-CLIFFORD-SCHLFI functions currently available. The Annex

contains tables of five-decimal-place values of the hyperbolic-like LCS

functions Fa(x), Hi-.(x), and T (x) for various values of the argu-

ment x, namely x - 0.00 (0.01) 2.00 (0.1) 10.0, and a - 1/2, 1/3,

2/3 V 1/4 I 3/4 V 1/5 V 2/5 , 3/5 V 4/5, 2/7 , 3/7 , 4/7, 5/7 , 4/9, 5/9, 3/11, 5/11,

6/11, 8/11, 5/13, 8/13, 5/17, 12/17, 5/21, and 16/21. These values of the

1
index a correspond to 4, v - 0V 1/4, 1/2 , 1 1 p-, 2, and 3 in (D.1)
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and allow one to analyze, for example, a fairly wide variety of range

capabilities for weapon systems in the constant-speed-attack model of

Section 6.2. These tables have been calculated by the recursive methods

given in TAYLOR and BROWN [4, Section 8].

A representative tabulation of the hyperbolic-like LCS functions

F Qx), Hl-Q(x), and T a(x) is given in, for example, Tables D.VIIIA

and D.VIIIB of the Annex for a - 3/5. The values of the argument x

are the same as those used for the tabulation of the hyperbolic functions

by ABRAMOWITZ and STEGUN [1]. These particular tables for a - 3/5 also

appear in Section 6.9 and have been used to compute the numerical examples

given there. The reader should note in Table D.VIIIB that from (D.5) the

limiting value of T a(x) as x ) +- (here a- 3/5) is quickly reached,

with three-decimal-place agreement by x - 4.5. Also, the reader should
recall from Section 6.9 (e.g. see Table 6.11) that F 1/2() - cosh •,

H1/2 - sinh •, and TI/ 2 (•) - tanh 9, and consequently Tables D.IA

and D.IB for a - 1/2 are simply tabulations of the hyperbolic functions.

4. Outline of Computational Procedure.

The above-mentioned tabluations of these LCS functions make the

analysis of several important classes of LANCHESTER-type battles (see

Section 6.2) a comparatively easy matter. A couple of numerical examples

have been given in Section 6.9 to show how these LCS functions may be

used to analyze homogeneous-force "aimed-fire" combat modelled by the

power attrition-rate coefficients with "no offset" (D.1). For such analy-

sis of homogeneous-force combat, the author suggests the following

3
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computational procedure (based on the results given above in Section

D.2):

(TASK 1) determine from (D.8) whether the X force can be

annihilated,

(TASK 2) if annihilation is possible, determine the time of

the X force's annihilation as follows:

(SUBTASK 2a) compute Tq (T) by (D.9)

[here T - )

(SUBTASK 2b) using interpolation, determine T x
a

from the appropriate tabulation of TqP

(SUBTASK 2c) using (D.7), compute tXa T-1 (t )'

a a-

From the above, it should be noted that these two determinations involve

only the initial force ratio u0 - x0 /y 0  (and not the individual initial

force levels themselves). For the numerical examples given in Section

6.9, when the X force is not anninilated with a given time tmax* the

final X force level has been calculated by (D.6) with the help of our

tabulations.
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5. Final Remarks.

In Section 6.9 above, we have shown how the LCS functions

allow one to conveniently obtain much valuable information about the

"aimed-fire" force-on-force attrition model (6.5.1) with power attri-

tion-rate coefficients (D.1) without having to explicitly compute the

entire force-level trajectories. Previously one was limited to only

being able to compute force-level trajectories (see TAYLOR [2] and

TAYLOR and BROWN (4]). With the availability of these tabulations of

LCS functions (see the Annex to this appendix), one can now tell which

side is going to be annihilated and when this event will occur without

explicitly computing the trajectories. Not only did we answer questions

about the qualitative behavior of the force-on-force combat model (e.g.

force annihilation) for specific values of, for example, initial force

levels but also for the entire possible range of values for the initial

force ratio, (i.e. parametric analysis of model behavior).

The results of this appendix may be used for other parametric

analyses, e.g. parametric dependence of battle outcome on weapon-system

capabilities. Thus, the contents of this appendix (see also Section 6.9

above) allow one to develop important insights into the dynamics of combat

between two homogeneous forces with temporal variations in fire effective-

ness. With the availability of these tabulations of the LCS functions,

one can now analyze combat modelled by the power attrition-rate coeffi-

cients (D.1) with somewhat the same facility as he can for the constant-

coefficient case of FlF LANCHESTER-type equations and thus aid in para-

metric analyses of such homogeneous-force battles. For a further discussion

of the significance of such results for military operations research, the

reader is directed to TAYLOR and BROWN [5].
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ANNEX to Appendix D:

Tabulations of the LCS Functions F (x), H W(x), and T (x) for

a 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, 2/7, 3/7, 4/7, 5/7,

4/9, 5/9, 3/11, 5/11, 6/11, 8/11, 5/13, 8/13, 5/17, 12/17, 5/21,

and 16/21.
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Chapter 7. MODELLING TACTICAL ENGAGEMFNTS

7.1. Introduction

The fundamental role of ground-combat troops (in the U.S. Army's

own words, e.g. see [164, p. iv]) is to "shoot, move, and communicate."

Consequently models of tactical engagements must in some manner represent

the attendant processes of attrition, movement, and C3 (i.e. command,

control, and communications). In this chapter we will focus on the

modelling of force-on-force attrition in tactical engagements, although

some consideration does have to be given to the other two processes of

3movement and C , especially as they influence the attrition process. The

two attrition-modelling approaches that are principally used in the United

States for assessing casualties in simulated combat engagements and that

we will examine in detail are as follows:

(Al) detailed LANCHESTER-type models of attrition in tactical

engagements,

(A2) aggregated-force casualty-assessment models based on the

use of index numbers to quantify military capabilities.

We will try to be fairly comprehensive in our examination of these two

approaches for assessing casualties in tactical engagements, and when

details must be omitted, references to further details in the literature

will be given. Moreover, there is a third approach that also merits

mention:
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(A3) Coordinated use of a detailed combat model with a less

detailed casualty-assessment model.

Although it has been rather widely used for defense-planning purposes

in both England and West Germany, this third approach (i.e. the

hierarchical-modelling approach) has not been as widely used in the

United States as the first two. Consequently, we will only briefly

discuss the hierarchical-modelling approach and not examine it in nearly

as much detail as the other two.

Combat (especially that between company-sized units and larger) is

a fantastically complex random process. Nevertheless, deterministic

models of combat attrition are commonly used in studies for computational

reasons, since many people believe that they give essentially the same

results for the average course of combat as do corresponding stochastic

models and these stochastic attrition models are considerably less con-

venient to handle (see Chapter 4 for further details). Hence, in the

chapter at hand we will consider only deterministic models of force-on-

force attrition for assessing casualties in tactical engagements. Even

so, the inherent complexity of the combat process leads to great complexity

in operational models of combat attrition. However, for purposes of

understanding the modelling approaches and concepts that may be used to

build such operational models, it is convenient to abstract much simpler

2
auxiliary models and to study them . Thus, we will examine some

simplified versions of tactical-engagement models, with the understanding

that a more complicated model would be desirable for investigation of

actual planning or operational problems.
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As we indicated in Chapter 1, two divergent (but yet complementary)

trends in the use of combat models are the following3:

(Ti) their simplification in order to more easily obtain insights

into the dynamics of combat,

(T2) their enrichment in details in order to better duplicate real-

world combat activities.

In previous chapters we have concentrated primarily on obtaining insights

into the dynamics of combat from relatively simple models rather than

enriching such models in details. Thus, we have emphasized studying rela-

tively simple combat models in order to better understand their basic

nature and to hopefully perceive some significant interrelationships that

are difficult to discern in more complicated models. However, such simple

models may also be the point of departure for building complex operational

models.

In other words, one approach for understanding the reasons why a

large-scale complex operational model produces certain output results for

particular numerical input data is to abstract a simpler model (e.g. one

with fewer variables or simpler functional relations between them) from

the complex one. This simple auxiliary model is then used to investigate

the system dynamics of the more complex model by considering alternative

assumptions and data estimates. The simplified auxiliary model should

be intuitively plausible and transparent but yet it should capture the

basic essence of the complex operational model. This idea of using relatively

simple auxiliary models in conjunction with a complex operational model is,
4

of course, not new , but the author knows of no clear articulation of this

approach for understanding large-scale combat models. Thus, the simple

models that we will consider in this chapter should not be taken literally

but shotuld be considered as a point of departure in the building of more
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complex models enriched and elaborated upon in numerous details. In order

that our simple models not be taken literally by the inexperienced modeller,

we will explicitly discuss a few general ideas about modelling, the process

of building a model. Our remakrs should provide some insight into how

ymplex models like, for example, ATLAS, BONDER/IUA, and VECTOR-2 have

evolved 5 .

- Many people (e.g. see MORRIS r114] or BONDER [12]) have come to realize

that models and modelling are two completely different subjects. Thus,

A an individual can be quite knowledgeable about models (i.e. he may under-

stand the assumptions on which they are based and also their characteristics

and properties), but he may still be quite incapable of building his own

model to fit given requirements of, for example, military analysis. It

is not an easy task to adapt (i.e. to "bend and twist") a model to fit

specific scenario and analysis requirements. Modelling (i.e. model build-

ing) is an art, which is probably best learned by active experiences (see

BONDER [12] and MORRIS [1141 for further discussions). Thus, the simple

models presented in the rest of this chapter should not be considered as

final products but rather should be considered as points of departure in

the building of operational models.

W. T. MORRIS [1141 has hypothesized that the process of model building

may be considered to consist of the following three aspects:

(Al) the process of enriching or elaborating upon a basic logical

structure,

(AW) the use of analogy or association with previously developed

logical sturctures to determine the starting point for this

enrichment process,

and (A3) the interactive (i.e. "looping") nature of the model-building

process.
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The enrichment process itself may be considered to consist of the following

elements: (1) making constants into variables, (2) adding more variables,

(3) using more complicated (i.e. nonlinear) functional relations between

variables, (4) using weaker assumptions and restrictions and (5) not sup-

pressing randomness. These general ideas about modelling should be kept

in mind as we subsequently review models of combat attrition. Combat-

modelling theories only provide the "skeleton," and the military operations

research (OR) worker must add the "meat" to the body of the attrition model.

Let us finally make a few observations about the impact of the modern

digital computers on modelling. The computer has essentially freed the

military OR analyst from having to worry about mathematical tractability

and allows him to focus on model formulation (i.e. model building). For

example, with respect to attrition modelling, the military analyst's efforts

should be focused on analyzing the combat process and formulating the

appropriate casualty-assessment equations, since numerical results can

always be generated with the help of a digital computer using standard

numerical integration techniques. However, before the age of digital com-

puters one had to worry about building "useful" models that could be

conveniently "solved." Of course, the mathematical aspects of models are

still important, since many times in the process of model building it is

useful (even essential) to understand the mathematical properties of the

logical structures being enriched in details.
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7.2. Additional Operational Factors to be Considered in LANCHESTER-type

Models.

In adapting LANCHESTER-type models to represent the dynamics of

combat in actual tactical engagements, one should consider a number of

additional operational factors that were omitted by the relatively simple

models considered previously in this book. In particular LANCHESTER's

classic combat formulations essentially considered only the fire effective-

ness (assumed constant) and the numbers of opposing combatants. We can

enrich such simple attrition models by considering additional operational

factors such as those shown in Table 7.1 in order to reflect more of the

inherent complexity of combat (see also Sections 2.6 and 2.7 above).

The LANCHESTER-type models that we consider here and in Sections

7.4 and 7.8 are all deterministic in the sense that each of them will

always yield the same output for a given set of input data. Even though

combat between two military forces is a complex random process, such

deterministic combat models are commonly used for computational reasons

in defense-planning studies, for example, to assess the relative impor-

tance of various weapon-system and force-level parameters, since

many people believe that they give essentially the same results for

the mean course of combat as do corresponding stochastic attrition

models6.

Let us now briefly discuss the operational factors shown in Tible

7.1. Some of them have been considered in previous portions of this

book, and many will be further discussed in this chapter. To begin with,

we have already discussed (see Sectioi. 5.5 above) how for "aimed" fire

the corresponding LANCHESTER attrition-rate coefficients depend directly
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TABLE 7.1. Additional Operational Factors to be
Considered in LANCHESTER-Type Models.

(1) Range-dependent weapon-system capabilities

(2) Other temporal variations in fire effectiveness

(3) Unit breakpoints

(4) Unit deterioration due to attrition

(5) Target-acquisition considerations

(6) Diversity of weapon-system types

(7) Command, control, end communications

(8) Effects of terrain

(9) Suppressive effects of weapon 3ystems

(10) Effects of logistics constraints
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on factors such as firin3 raýe, rate of target acquisition, hit prob-

abilities, etc. and indirectly on factors such as range between firer

and tarSet, tactical postures of firers and targets, relative motion of

firers and targets, etc. Many people (e.g. BONDER and FA111LL [151) feel

that for many tactical situatiuns the principal factor iS Lhe rsnme betwe'en

firer and target, and we have examined Lhe consequences of such raj£nc

dependence for attrition-rate coefficients in BONDER's consrant-speed-

attack model (see Section 6.2 above). In other cases, however, one may

want to have the attrition-rate coefficients also depend on other opera-

tional factors (e.g. firing rate, target posture, etc.) that may change

over time.

We have already considered modelling battle termination through

unit breakpoints and unit deterioration due to attrition in Chapter 3

(in particular, see Section 3.10; see also Section 2.8). Additionally,

for combat between two homogeneous forces taret acquisition is explicitly

considered through tas which appears in (5.4.1) through (5.4.2), in

BONDER's expression for the LANCHESTER attrition-rate coefficient in

the case of MARKOV-dependent fire. In Section 5.10 we examined an

important limiting case for such a coefficient when the constraining

factor for killing targets is acquiring them (after ideas of H. BRACKNEY

[201). We found that under such conditions the rate of "aimed"-fire

attrition took the form

dx _ "xy, (7.2.1)
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where A is a constant of proportionality related to the reciprocal of

the time required to acquire a target by visually searching a region (siee

Section 5.10 for further details). Moreover, Vector Research, Inc. (see

[15 4,pp. 203-108] or (117,pp. 43-45]) has developed a more refined (i.e.

enriched in operational details) model for the target-acqufsition process

in engeaenta between heterogeneous forces and its consequent impact an

the attrition process. Since we have not discussed heterogeneous forces

yet, let us do so (and also command, control, and communications) before

returning to a brief general discussion of target-acquisition eftects

(including terrain effects and target selection).

Actual combat (especially large-scale operations) consists of many

different weapon-systeri types (e.g. infantry, tanks, artillery, mortars,

etc.) operating together as "combined-arms teams," and such diversity of

weapon-system UTes may be modelled by explicitly considering the attrition

of each different type. In other words, attention is given to differences

in weapon-system cap1biJ.ity, and each side's forces are disaggregated by

explicitly considering many differcnt veapon-system types that can be

individually attrited. We will consider in greater detail the modelling

of attrition in combat between such heterogeneous forces in Section 7.7

below. Essentially one keeps track of the lasses from all opposing weapon-

sytem types for each target type. The extension of the attrition-modelling

ideas of, for example, Chapter 2 is straightforward and is primarily a prob-

lem of bookkeeping and notation in the simplest case.

One may conside.. conmmand. Pcontrol, and communications (C 3) as influencing

the efficiency of fire directed at enemy targets. Let us briefly examine
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a simple model that vas deve)oped by T. S. SCHREIBER (1271 and provides some

insight into the conctcibution of C3 systems to combat effectiveness 7 .

SCHREIBER considered a battl.:2 between two homogeneous torces in which eachi

unit remains in its original posLt!.on and fires on enemy units untiU it

is destroyed by enemy fire or the battie ends. At the beginning of battle,

each force has complete information about enemy unit locations. SCBREIBER

argued that an intelligence system provides informatior on the effects of

fire on enemy units and also the status of friendly unita, and a command

and control system redirects fire (using information from the intelligence

system) uniformly over surviving enemy units 8 . He hypothesized thez the

effectiveness of the intelligence and command and control systems in this

type of battle could be represented by the fraction of the enemy's destroyed

units from which fire has been redirected. If this fraction is one, fire

is being directed at only "live" enemy units with no "overkill;" but if

it is zero, fire is being directed at the original enemy positions with

attendant "overkill." Consequently, SCHREIBER postulated that the following

LANCHESTER-type equations (for x and y > 0) would model such a combat

situation.

dx . -a xy with x(O) - x0 9

dt Xo- ey(xo - x

(7.2.2)

AX -b xy1 with y(O) - yo
dt (YO - ex(Yo - y))
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where x(t) and y(t) denote the X and Y force levels, a denotes

the usual LANCHESTER attrition-rate coefficient for "aimed" fire [i.e.

it ia given by (5.3.1) and (5.3.2)], ey denotes the "command efficiency"

of the Y force, and b and e denote corresponding quantitites for

the X force. The above equations (7.2.2) have the same functional form

as thoac for BRACKNEY's model with target-acquisition times inversely pro-

portional to target density (5.10.11).Also, 0 < ex, ey < 1 in (7.2.2).

It is instructive to examine the extreme caues fct the aiove attri-

tion process as postulated by SCHREIBER. Tie maximiLm combat efficiency

for the Y force occurs when e.. 1., and theti

dx (7.2.3)

which is th.ý usual attrition ratc for "atmed" fire when Larget-acquisition

times do not depend on the number of enemy targets. The maximum "overkill"

by the Y force (i.e. the least combat effici.ency) occurs when ey - 0.

and then

dx - a x , (7.2.4)

which is the same functional form for the attrition rat4 for "area" fire

against a constant-density defense. HELMBOLD [78] has also noted that

atrrition rates take the form (7.2.3) when fire is ,oncentrated on the

sur-viving targets, and (7.2.4) whet, it is directed at the original positi'ons

with no redistribution.
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SCHREIBER [121] assumed tnat the "command efficiencies" e, and e

were constant in (7.2.2) and used this simple model to show that an increase

in the efficiency of intelligence and command and control systems can be

e.uivalent zo a substantial increase in numerical strength (up to 41.4 per-

cent). His analysis used the following analytical results. Since the

instantaneous casualty-exchange ratio for SCHREIBER's model (7.2.2) is given

by

dx aY - ex(Y0 -)l-- .- y-i - (7.2.3)
dy b x 0 - ey (x 0 - X)7

and the "cimmand efficiencies" eX and ey are assumed to be constant,

one readily obtains the state equation for SCIMREIBER's model.

'0 1 - x(t)l X0~ (2 - ey) + ey 2~~

0y (7.2.26)

"a YO - y(tw! > (2 - ex) + ex(7--.,

which readily yields (cf. Section 3.5) the folloidng coildition for a draw

in a fight-to-tne-finish (3'parity" condition)

bx 0
2  ay0  (7.z.7)

(2 - ex) (2- e)

Although a state equation is thus radily obtaLned, for example, the X

force-level equation Is not equivalent to any standard differential-eqzuation

form, and consequcutly the X force level X(t) is apparertly not ex-

pressible in terms of "elementary" functions. Considering the left-hand

side of "he parity condition (7.2.7), we can easily show that an increase

it the value of the command afficiency from e to ex increases the
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combat power by the same amount as an increase in numerical strength by a

fraction f given by

,-7 1 , (7.2.8)
X

when follows SCHREIBER's conclusion about the Lradeoff of numerical strength

and the efficiency of C3 systems.

Let us finally note the following two significant shortcomings of

SCHREIBER's above tradeoff analysis: (Si) in the case of mobile units they

would not remain in their original positions, and (02) "command efficiency"

would decline during battle due to damage to the intelligence and comeand

and control systems. Nevertheless, SCHREUBERis simple model (7.2.2) with

constant "command efficiencies" eX and ey has provided some important

insights into the influence of C3 systems on combat power.

We now return to target-acquisition considerations with a brief

general discussion of target-acquisition modelling for combat between

heterogeneous forces. We continue our dJscussion of Vector Research's re-

fined model of the target-acquisition process and its influence onr the

attrition rate. Vector Revearch, Inc. (see [254,pp. 103-108] or [117, pp.

43-45]) considers that the rwo major factors determining the value of an

attrition-rate coefficient are (1) the acquisition and selection of tar-

gets, and (2) the conditional kill rate (i e. the rate at which acquired

targets are destroyed). Concerning target acquisitien and selection, the

proportion of time that a Tyeapon is actively engaging an enemy tacget de-

pends on the interaction of three processes:

(P1) the line-of-saiht process (whitoh determines when a given

target is visible or invisible to a potential firer),
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(P2) the target-acquisition process (which determines the time

required for a firer to acquire a particular target),

and (P3) the target selection process (which specifies a scheme by

which a weapon crew chooses to engage a particular target

from among those that have been acquired).

In other words, the effects of terrain are considered by computing inter-

visibility (i.e. existence of line of sight) for each target-firer pair

based on their map locations. Therefore the complex operational models

developed by Vector Research must keep track of all firer and target po-

sitions during the evolution of battle9 . The exact way in which the above

three processes interact depends in an essential way on which of two kinds

of acquisition and target-selection modes the weapon systems employ--serial

or parallel acquisition (see Section 5.16 for further details; see also

(39], [154], or (117]). Suppressive effects of weapon systems may be

accommodated in Vector Research's models (e.g. see [72]), k-ut the phenome-

nologlcal basis of such suppressive effects is poorly understood at this

time (see the "R~port of the Army Scientific Advisory Panel Ad Hoc Group

on Suppression" [45]).

Although the process of suppression is poorly understood, most military

arelysts feel that the suppressive effects of weapon systems should be in-

cluded in any model of combat operations. In general, two ways to model

auppressive effects within the context of detailed LANCHESTER-type formu-

lations are (see TAYLOR [141,pp. A-56 - A--60] or BARR [ 81 for further de-

tails):

(a) modify LANCHESTER attrition-rate coefficients to reflect

degraded fire effectiveness of the firing units due to firers

being suppressed1 0 ,
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(b) consider combatants of a given class to be in different states

(in the simplest model there are two states: unsuppressed and

suppressed) with different fire effectiveness and vulnerability

to enemy fire in each state; this approach requires some model

of state transitions.

The reader can see from the above that there is no problem in modelling

suppressive effects. However, there unfortunately is no supportable data

on troop behavior when under fire to use in such models. Thus, the major

problems are to scientifically determine functional relations and to

estimate the parameters in any hypothesized model of suppressive effects.

Although the U.S. Army Combat Developments Experimentation Command (CDEC)

has conducted many suppression experiments and the U.S. Army has reviewed

the entire topic of fire suppression (see [45]), the representation of

suppressive effects in casualty-assessment models (in particular, LANCHESTER-

type models) remains a major problem area.

The effects of logistics constraints may be modelled in various ways.

The main approach is to represent the consumption and distribution of

various types of supplies (e.g. ammunition, fuel, etc.). When supplies

of a particular type are depleted to some given critical level, the combat

effectiveness of a unit is appropriately modified (see [117J,BONDER and

FAR.RELL [15], KERLIN and COLE [98], and CHASE [28] for further details).
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7.3. Modelling Small-Scale Engagements versus Modelling Large-Scale Ones.

There is a fundamental difference between modelling (with differential

equations) ,;mall-scale engagements and modelling large-scale ones: for

small-scale operations it may be possible to reasonably represent force

interactions and attendant attrition rates with a few differential equations,

but for large-scale operations of conventional armed forces the same approach

might well involve hundreds (and possibly even thousands) of differential

equations tied together through battlefield operations. In other words,

large-scale warfare involves a seemiugly overwhelming amount of detail

because of the very scale of operations. Small-scale operations are usually

considered as fire fights between at most a few different weapon-system

types on each side, but in large-scale warfare one must consider many dif-

ferent weapon-system types (both combat and combat-support systems) operating

as combined-arms teams in sustained operations that involve not only fire

fights but also maneuver, reconnaissance, logistics, committing of reserves,

allocetion of tactical aircraft to missions, etc. Thus, in large-scale

warfare there are not only many more military units and types of systems,

but these systems and units engage in a much wider variety of activities

than do the few types in small-scale engagements.

Moreover, the scale of combat operations actually dictates what is

a feasible approach for modelling a particular type of engagement (see

Figure 7.1). As we saw in Chapter 1, there are three main approaches used

for assessing outcomes (in particular, casualties) of simulated tactical

engagements:

(Al) firepower-score approachI,

(A2) Monte-Carlo-simulation approach,

(A3) LANCHESTER-type-model approach.
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FEAS•ILE MODELLING APPROACH

I! i!
INDIVIOJAL-FIRER ENGAGEMENT X

SMALL-UNIT ENGAGEMENT
(BATrAUON-SIZED UNITS AND SMALLER) X X

LARGE- UNIT ENGAGEMENT
(DIVIKI4-SIZED UNITS AND LARGER) X X

Figure 7,1. Feasible modelling approach related to scale of

combat operations.
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Each of these approaches involves a different level and amount of detail,

and each provides a different degree of resolution to battlefield operations.

The higher the degree of resolution, the higher (of course) is the amount

of details that the model considers. Furthermore, the total amount of

details that is feasible to handle depends on current computer technology.

As we saw in Chapter 1 (recall Table 1.III relating combat-assessment

approach to the scale of combat operations), Monte Carlo simulations have

been used to assess casualties in small-unit combat (i.e. combat between

battalion-siz .1 units and smaller), while the firepower-score approach

applies primarily to large-scale (i.e. corps-level and theater-level) com-

bat. However, LANCHESTER-type models12 have been developed in the United

States for the full spectrum of combat operations, from small-unit combat

to large-scale operations. Thus, if one wants to assess casualties for

simulated tactical engagements between battalion-sized units or larger,

there are essentially only two types of models that have been widely used

in the United States for assessing casualties in such tactical engagements:

(Tl) detailed LANCHESTER-type models,

and (T2) aggregrated-force models based on quantifying military

capabilities with index numbers (i.e. firepower-score models).

Although one could also consider a third approach of employing a hierarchy

of models, such an approach has not been widely used in the Uited States,

and we will consequently not consider in detail in this monograph (see

Section 7.20, however, for a brief conceptual discussion).
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For very simple small-scale engagements it has always been possible

to model in detail attrition in fire fights (provided that forces and opera-

tions are not too complicated). Here, we mean not just to formulate a com-

bat model but to develop an operational model from which numerical results

may be obtained. However, for large-scale warfare it has been possible only

relatively recently to model attrition in detail (i.e. to attrite each dif-

ferent type of weapon system individually). The modern large-scale digital

computer has provided the computational capability for detailed modelling of

large-scale military operations. In fact, without the modern digital

computer operational models of virtually any degree of complexity would be

impossible. In particular, the advent of the modern high-speed large-

scale digital computer has made feasible not only high-resolution Monte

Carlo combat simulations such as DYNTACS and CARMONETTE, automated "quick

games" such as ATLAS, and other theater-level firepower-score-based combat

models such as CE and TBM-68, but it has also made possible differential

combat models such as BONDER/IUA and its many derivatives 1 3 . Furthermore,

the relation between feasible modelling approach and the scale of combat

operations (as portrayed in Figure 7.1) depends in an essential way on the

state of the art of computer technology.

All the above complex operational models that are conceptually based

on LANCHESTER-type equations (e.g. BONDER/IUA, DIVOPS, or VECTOR-2), however,

model combat attrition in detail and explicitly consider the many different

weapon-system types that can be individually attrited. These weapon-system

types include different types of weapon systems in maneuver units and dif-

ferent types of fixed-wing aircraft, as well as separately represented field

artillery, air defense artillery, and helicopter weapon systems. Such

LANCHESTER-type models represent attrition in a way that reflects the in-

ternal dynamics of combat activities and relates these dynamics to specific
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weapon-system parameters and tactics considered important in small-unit

engagements. The effects of individual weanon-system types on the outcome

of a theater-level campaign are clearly observable and bear a clear relation-

ship to the input performance assumed (see [117] for further details).

A different approach for modelling attrition in large-scale (i.e.

theater-level) combat operations is to represent attrition in a macroscopic

fashion. The many different weapon systems on one side are all combined

together by using firepower scores into a single scalar quantity, the "com-

bat capability" (or firepower index' of the force, and combat causes

attrition of this index number. The attrition of combat capability is de-

termined with the help _Z casualty-rate curves that relate the relative

combat capabilities of the forces (expressed in terms of the two firepower

indices) and other tactical factors to their casualty rates (expressed in

an aggregated fashion). Losses of individual weapon-system types are then de-

termined by some means of disaggregation. Such aggregated loss-rate relations

are apparently largely judgmentally determined (although having some alleged

basis in empirical combat data), and the author knows of no conceptual ap-

proach or mathematical models for relating weapon-system-performance para-

meters and other operational variables to the numberical determination of

these aggregated-force loss rates.

In the rest of this chapter we will discuss various aspects of model-

ling tactical engagements. We will first consider a number of examples from

guerrilla-warfare applications because the engagements are of small enough

scale to yield simple (but yet detailed) LANCHESTER-type models and also

because such modelling information is readily available in the open litera-

ture. We will then progress to more complicated LANCRESTER-type models,

including models of combat between heterogeneous forces. The firepower-

( .score approach and aggregated-force models are then discussed. Finally, we

briefly discuss current operntional models of large-scale conventional warfare.
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7.4. Applications to Guerrilla Warfare.

The literature on applications of LANCHESTER-type models to the study

-of guerrilla warfare (see DEITCHMAN [44] and SCHAFFER [1251 is small but of

particular interest because it contains the only examples of tactical engage-

ments kparticularly ambushes) to appear in the open literature. These two

papers contain many interesting modelling ideas as well as several detailed

models of small-scale engagements. Moreover, the ambush models considered

by these authors have much wider applicability than just to guerrilla war-

fare, since (for example) the "force-oriented defense" (see HOLDSWORTH [88]),

which has been proposed for NATO operations, is based on a tactical doctrine

of rather wide-spread use of ambushes.

DEITCHMAN [44] in 1962 introduced the idea of modelling an ambush with

"aimed" fire for the ambushers and "area" fire for the ambushees, e.g. F/FT

attrition. He used such a simple model to argue that the attacking guerrillas,

heavily outnumbered overall, can win if both sides are divided into small

groups, and the guerrillas always attack in ambushes. Such a result is in

consonnance with recent history, which shows that defending regulars must

have overall force ratios above teu to one to meet such local guerrilla

attacks at all successfully. SCHAFFER [125] subsequently in 1965 studied

guerrilla-warfare engagements in more detail and under a variety of operational

conditions (i.e. skirmish, ambush, and siege). He developed several LANCHESTER-

type models for small-force guerrilla engagements that are typical of the

early stages of insurgency. These models included the effects of supporting

weapons and the discipline or morale of the troops involved, and they allowed

for temporal variations in weapon-system effectiveness (i.e. firepower).

His paper is an excellent source of modelling ideas. SCHAFFER used these

models to develop insights into the important attack parameters in guerrilla

warfare and also to quantitatively justify some new military hardware. We

will now examine the ideas of these two important papers in more detail.
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I
7.5. DEITCHMAN's Basic Ambush Model.

The goal of DEITCHMAN's investigation [44] was to develop a quentitative

explanation of why high counterguerrillo./guecrilla force ratios have beea

required for regulars (i.e. counterguerrillas or counterinsurgents) to defeat

insurgents in guerrilla warfare (see Figure 7.2). He sought to explain this

empirical fact with a simple model. DEITCHMAN's simplified conceptualization

of guerrilla warfare was as follows:14 the defending regular aL'my (counter-

insurgents) must fragment itself to defined the many possible points that are

vulnerable to guerrilla attack and to hunt down the many guerrilla bands;

guerrilla warfare itself occurs as a sequence of engagements between small

groups drawn from the oveiall forces. Thts, the overall forces do not engage

each other directly in combat, but small groups drawn from them sequentially

fight battles. As Figure 7.2 shows us, history indicates that the defending

regulars must have overall force ratios abo,'e ten to one to defc•t the gterrillas

under such circumstances.

DEITCUMAN thus considered guerrilla warfare as a sequence of engage-

ments between small groups drawn from overall forces. H. K. WEISS [1581 had

developed the following LANCHESTER-type squations to approximately represent

such combat between two homogeneous forces in which both sides use "aimed"

fire (with constant target-acquisitio.l times)

dx - p. with x(, ) -x o ,

dt m

(7.5.1)

y . -b with y(O) - yo ,
dt n
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Figure 7.2. Estimated force ratios in guerrilla wars between

,.he end of World War II and 1962 (from DEITCHMAN [44]).

Although the erd of the Vietnam War has been indicated,

the data upon which this figvre is based dates from

ro later than 1962,
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where x(t) denotes the overall X force level, m denotes the (initial)

size of X's combar groups, b denotes a constant LANCHESTMI attrition-rate

coefficient representing the fire effectiveness of a single X combatant, and

y(t), n, and a denote corresponding quantities for, the Y force. We will

sketch the derivation of these equations at the end of thle section.

The condition for a draw in a fight to the finish (i.e. "parl cy"

condition) is readily obtained from (7.5.1) as (cf. Section 3.5)

0o (a n (7.5.2)

For larger values of the initial force ratio, i.e. x0/y 0 > (a/b)(n/m), X

will win such a fight to the finish; and for smaller ones, the X force will

lose. Thus, engagement outcome depends on three relative parameters (cf. Section

2.2. and 6.6 above): (1) the initial overall force ratio (xo/yo), (2) the

relative fire effectiveness (b/a), and (3) the ralative (initial) size of

the small groups (m/n). The break-even (or parity) point expressed in terms

of the initial force ratio as a fumction of relative group size is shown in

Figure 7.3 for various values of relative fire effectiveness b/a. This figure

shows that a side that is heavily outnumbered overall can still win if in all

the individual engagements its groups are larger than te enemy's or if the

relative fire effectiveness is sufficiently in its favor.

DEITCHMAN [44] argued that for all "reasonable" values of the Zbove

relative parameters (i.e. x0/yo, b/a, and m/n), the parity condition (7.5.2)

implies that an excessively large (initial) local force ratio is required for

the guerrillas to win. For example, let X be ths counterinsurgents aad
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Figure 7.3. Break-even (or parity) point in the initial overall force
ratio as a function of relative group s•.ze for combat
between small groups drawn from overall larger forces
(after DEITCHXM.N [44]/. Tnis figure shows up that, for
example, for (b/a) - 2.0 a value of (m/n) - 0.125 is
required for parity when (x0 /y 0 ) - 4.0. If we let X
denote dre counterinsurgents (counterguerrillas) anld Y
denote the guerrillas, then the counterinsurgents X

will win such a sequence of engagements with (b/a) - 2.0

for all combinations of (m/n) and (x0 /y 0 ) lying

above the straight line labelled (b/a) - 2.0.
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Yt be the guerrillas. Then (7.',2) (or, eqwivalently, Figuv-e 7,3) says that,

for exkmple, a local (initial) zorce ratio of (m/n) -i 0.125 is required for

parity when (.ý/yo) -t 4,0 and (b/a) s 2.0, The latter two valued are taken

to represent the guerrillas being less numerous overall and possess 4ng

relatively less effecrlv-, firepowizr than the couraterinsurgents. [DEITCHMAN

argued that relative fire effLCtivenees (b/a) should favor the counterinsurgents,

since onn ,;ould expect the guerrillas to use crude weapons or a limited number

of captured ones.] Thus, for sLch "typical" values WEISS'S [1581 model (7.5.1)

requires that the guerrillas must hteavily vndtnumber the counterinsurgents in

all the local ergagements in order to be able to win. Peuce, WEYSS's model

is in this case at variance wtth empirical evicencb that guerrillas can win

(and, indeed, many times have [recall Figure 7.21) wi..h equal or ilferior

numbers in the local cngasements. DELTMI21AY then sought to find tactics that

would allow the guerrillas to win with equal or inferior numbers in the local

engagemer as: lie consequently postulated that 'imbush tactics by the guerrillas

could achieve this end.

Thus, DEITQhIArN conceptualized that a counte Linsurgent force, say

X, would move through an area iearchtin for gu'errillas or Intenlirg tu a' tack

a guerrilla base, The guerrillas., denoted as the Y force, should counter

such a tactic by preparing an ambush for the approaching counterinsurgents.

In this ambush engagement, the force being ambus ,:1 (i.e. the ambushees X)

are in plain sight (i.e. full view) of the arb,'vuhers Y, who use "aimed"fire,

so that X's casualty rate is proportional to only tho- number of Y ambushers,

with target-acquisition times negliglble. On the othar hand, the aabushers

are hidden, and the ambusheei (who have been "caught by surpirse") fire

blindly Into the general area occu'ied by th2 ambushers (i.t. they return

451



"area" fire) so that Y's casualty rate is proportional to the product of the

numbers of both X ambushees and Y ambushers. Thus, DEITCHMAN [441 hypothesized

that attrition in such a homogeneous-force ambush could be modelled by 1 5 (see

Figure 7.4)

Sdx
dt - -ay (AMBUSHEE ATTRITION) with x(O) - x0 ,

(7.5.3)

... -bxv (AM-BUSHER ATTRITION) with y(O) - yodt "

where for the simplest case considered by DEITCHMAN the atczition-rate

coefficients a and b would be given by (see Chapter 5 for further details

about more sophisticated models for them)

a = vYs P and b - v . (7.5.4)
Y SSIC.Y X A 7

with v and v denoting the firing rates of X and 1, PSSKXY denoting

che single-bhot kill probability of Y .gainst X, aVx denot.ing the vulnerable

area of a single X target, and A,, denoting the "presented" area occupied

by the Y force. Here, we assume that the anbushees return "small arms" fire

(see Section 5.13 for other types of. "araa" fire, e.g. "arýillery" fire). We also

assume that the X force fires iuto the actual region occupied by the Y force,

with modificatJon of (7.5.4) being required if this does not coincide with the

region i- which X believeg the ambushers to occupy and into which hb con-

sequen:ly directs his fire.

The state equation for DEITCHMAN's ambush model (7.5.3) is given by
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COUNTERGUERRILLAS GUERRILLAS

x(t) (t

AMBUSHEES AMBUSHERS

Figure 7.4. Schematic of ambush situation considered by

DEITCHMAN [441.

453

/

/



b2 (x 0 - x2) - a(y 0 - y) , (7.5.5)

so that (see Section 3.5) the ambushing Y force will win an engagement with
x

fixed force-level breakpoints f fBP Xo a YBP B if and only if

(X)2 fY(x0 )2 2a { 1  YB }

Y0- <fX p2B (7.5.6)

~BP~

Thus, parity exists between the forces in a fight to the finish for

(x0)2 2a 2V y PSSKxy

Sb VX (aVx /AY)

LkL us finally note that these results all hold for a single engagement.

DEITCHMAN [44] used the above simple ambush model [and, in particular,

the parity condition (7.5.7)] to conclude that:

(Cl) attacking guerrillas, heavily outnumbered overall, can win if

both sides are subdivided into small gr?,ips and the guerrillas

attack with local numerical superiority, but the local superiority

required on the part of the guerrillas is greatly reduced if

ambush tactics are used,

(C2) all things being equal, the ambushee cannot win in such an

ambush engagement,

and (C3) the counterinsurgints' use of ambush tactics is a powerful tool

against guerrillas.
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S
DEITCHMAN added that the overall high defender/guerrilla force ratios that

have historically been required for counterguerrillas to win against guerrilla

attacks are very difficult to reduce significantly. These conclusions were

based on the following type of analysis. Consider an ambush by guerrillas

such as we have examined above. Then parity between the guerrillas and the

ambushees is given by (7.5.7), and (2a/b) in (7.5.7) can easily be on the

order of several hundred so that a few ambushers can annihilate many ambushees.

For example, PSSK may be on the order of 0.1, aVX may be about 1 square foot

for a man taking available cover in the terrain, and 2 men .can easily be hidden

in a region of uncerzainty of 1.600 square feet; th,-n for equal firing rates,

(2a/b) - 320 so that according to (7.5.7), for example, 2 ambushers can

annihilate a force of 25 ambushees.

The force levels as functions of time, i.e. x(t) and y(t), are rather

complicated for the simple model (7.5.3). To develop them, for example, we

may solve (7.5.5) for y and substitute the result into the first equation

of (7.5.3) to obtain

dx a

{x2 + [(2b/a)y2 - x ]} 2

whence integration (e.g. see the "C.R.C. tables" [871) yields the results

shown in Table 7.11. The complexity of these results for the simple model with

constant coefficients (7.5.3) provides some insight into why numerical integra-

!-ion techniques must usually be used for LANCHESTER-type models of any degree

of complexity. DEITCHMAN gave numerical results for x(t) and y(t) for

a number of illustrative battles. He observed that the victor can reduce

his fractional loss (i.e. casualties expressed as a fraction of the unit's
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TABLE 7.11. Analytical Expressions for Force Levels x(t) and y(t)

in DEITCHMAN's Ambush Model (7.5.3).

u 2

(a) Whem ambusher Y wins a fight to the finish (i.e. 2 x0 < aYO):

for 0 < t < B/A

x(t) - -- Y0 - xo tan(-At + B)

y(t) - {y -_L x2} {sec(-At + B)}2

for B/A < t

x(t) - O and y(t) - 2 x 2

where

b ~/2a 2A 2= V ;' YO Xo

B tan-l Xo

2ab 2

(b) When ambushee X wins a fight to the finish (i.e. J- x2 > aYO):

2 0

for 0 < t

X(t) - 2 -
2a coth(A't + B')

VxO T~ YO

b 2

y(t) 2x Y 2
{sinh(A't + B'))

where

A' = O Xo-•-L

B' 1 coth-I l( a
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initial force level) by initially committing more men to battle (see

Section 8.9 for more general results of this nature).

Let us finally sketch the development of WEISS's model for combat among

small groups (7.5.1). WEISS (158] observed that warfare was tending in the

mid 1950's towards employment of small combat groups operating independently.

He consequently sought to develop a simple model for aggregating a large number

of such engagements between small groups. Let us therefore consider an X

force of overall numerical strength x0 and assume that it' is divided into

"combat groups," each of which initially contains m0  combatants. There will

be NX - x0 /m such groups. Similar quantities for the Y force are

analogously defined, with n0  denoting the initial strength of their combat

groups. We will consider "aimed-fire" combat between two such small groups;

it may be modelled by

dm -an with m(O) - m.

dts

(7.5.8)

dnd -bm with n(O) - n

where m(t) and n(t) now denote the force levels of the two small groups

at time t in the engagement, and m and n denote their initial (or start-

ing) values (equal to m0 and no when two "fresh" units fight). For one

engagement, we then have

a(n 2s- 2) - b(m 2 
- 2) (7.5.9)

s f 5 f

4
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where the subscript f denotes a final value (i.e. a value at the end of such

an engagement).

Consider now a sequence of engagements between pairs of two such

combat groups drawn from the overall forces (which have initial strengths x0

and y0 ) such that (1) each engagement is a fight to the finish, (2) the

survivors of one engagement subsequently take on a fresh enemy combat group

(a full initial strength) in another fight to the finish, and (3) the sequence

ultimately leads to a draw (i.e. all the initial overall forces x0  and yo

are annihilated). By repeatedly applying (7.5.9) to engagements of such a

sequence and adding, we find that all terms not involving the initial strengths

cancel out, and the condition for a draw consequently is

or

arOY0y bmox 0 , (7.5.1G)

since there were, for example, (x 0 /m0 ) engagements in which the X group

started at full strength. Notice that when all men on each side are in a

single unit, (7.5.10) reduces to LANCHESTER's square law; but when we have a

sequence of engagements between two individuals, (7.5.10) reduces to LANCHESTER's

linear law. Can we devise LANCHESTER-type equations that yield (7.5.10)

as a parity condition for a fight to thp finish? Denoting mo and no simply

as m and n, we observe that the equations (7.5.1) yield the desired parity

condition, and this is how WEISS [158] developed his equations for combat among

small groups.

,
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7.6. SCHAFFER's Models of Guerrilla Engagements.

SCHAFFER's [125] goal was to develop LANCHESTER-type models for studying

(e.g. for evaluating casualty claims for) small-force guerrilla engagements that

are typical of Phase II insurgency.1 6 His models included the effects of

supporting weapon systems and the discipline or morale of the troops involved.

SCHAFFER also allowed the fire effectivenesses of the different weapon-system

types to vary with time and model temporal variations in firepower due to, for

example, changes in the tactical postures of combatants during a fire fight.

A number of his models explicitly considered such time-dependent attrition-rate

coefficients. As is the case for operational models with almost any degree

of complexity, analytical results were not expressible in terms of "elementary"

functions, and numerical results had to be generated by numerical integration.

SCHAFFER's article [125] is particularly important because it is

apparently the first reported use of LANCHESTER-type models to study actual

combat situations and because of the many interesting models that it contains.

He apparently used these models in studies at RAND to provide insights into

the important attack parameters in guerrilla warfare and to quantitatively

justify new hardware concepts (e.g. fast-response from supporting weapons).

SCHAFFER [125] first considered the overall military manpower flow in

Phase II insurgency (see Figure 7.5) and examined small (typically 100-man)

engagements classified as (1) skirmishes, (2) ambushes, or (3) sieges.

Thus, each side has a large manpower pool from which small fighting groups

are drawn for guerrilla-type operations. He assumed that for such operations

food, weapons, and ammunition were inexhausbile. Traditional LANCHESTER

combat theory had previously considered only battlefield casualties, but

SCHAFFER added operational losses and captures to his models.
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Voluntary
enlistments Manpower Desertions

Impressedp
combatants

Operations 0 Casualties
(skirmishes, Desertions

sieges ) Captures

Figure 7.5. SCHAFFER's conceptualization of the military manpower

flow in Phase II insurgency (from SCHAFFER [1251).
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SCHAM'F1R developied. a gt*neralized LAN(ES.TER t•heory for force depletýon

tn such small engagecents. Fe considered losses due to t:he following source,4

(SI) batlefleld casualties,

and (02) surrenders and desertions.

L%.!t X denote the counterinsurgents ind Y denote the guerrillas (!nsurgenLs).

SCHAFFER considered combat between small groups of infintry withI supporting

weapons and took the rates of battlefiild ca.iaalti*s to be elven b,"

c - a(r,x)y E I Ei(r,x) Wi(t) with x(O) - x0 #
i

(7.6.1)

dt - -b(t,y)x - L (ty) W Lt) with y(O) - yo ,
)c

where (dx/dt) denotes the casiualty rate for the X force, b , b(t,y)

denotes the fire effectiveness of a single X combatant (i.e. LA'.'HESTER

attrition-rate coefficient), E (t,y) denotes the effectIveness of I's jth

suoporting weapon-system type, W (t' denotes the number of X's jth support-

ing weapon-system type thac is firing at time t, and (dy/dt)c, a = a(-,x),

Ei, an( Wi denote similar quantities tor the Y force. Here the subscript

i refers to the Y force and j to the X force. Wi and W have been

taken t- be futictions nf time, since the supporting weapons are taken to be

employed f.r only portions of the battle.
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The rate o.f -,ur. xdera, an deserticss were hrpothesited by SCHAFFER

to delend on (1) the friendly namualty rate, and (2) the difference between

rhe friendly/eaemy force rttio and unity (i.e. an unfriendly force ratio

causea the fciendly fal-ces to "fade away"). Assumtog that the surrender and

desertion :atas i-ere ýxpressible ,s su.s of separate pom;.r series, SC'.!AFFER

wrote

d x rx [PXl + 2 +

( A) r dt it.

d 1 y4  L ?YI + P'2 c )J

L q~1  -Y+ 1 q - I

'wiere qk - i for y/x < 1, and -~ 0 for x/y ( 1. SCHALFFER [125, pp.

461-462] went on to digcusr what restrictions should be placed on the signis

of the 'coefficibnts p. q, and r in (7.6.2). He pointed out that for the

types of engagements between small units considered by him (i.e. both dx/dt an l
dy/cit mut always be < 0), one must always have both (dx/dt) and

+ 2d

(dy/dt)s~ <_ 0 (i.e. a net rate cf loss due to surrende~s and desertions), and

hence h assumed tha both rx and r < o. [SCA <FE1R observed that "in a

self-policing military group" it can be assumed thai r - 0.] Thus, on
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I
pyrsica.l/opo.rational grounri. w- muiit alwayvi h.xva both 4. 'k ad q,) Ž0 for

,•.l1 irtegers k > I; qre mull analogously have borth V., and <' 0 The

coefficients p n pk q ird qYk roficrt the wotivation. and diocitp.'ine

of the troops involved in tha engagemert, and rhe greater the magnitaddcr t•ie

abso.J,lute v.lue of such a coefficienz, tht poorer the motivatiou and disciplirne

of the trools involved. 1 7

For computational purposes SCHAFFER only retained the first few terms

in (7.6.2). Thua, his equations for the total race of force der.. ion, e.g,

dx/dt - (,x/dt)c -. (dx/dtis+d, w'.-re (see Figure 7..5)

dx .- _('p) a(Lx)y 1 -I 1 ( x ..

dt 1 x x 2

- (l-p 7 ) .El(tx) WitW) with x(0) -x

(7.6.3)

- -(i-pr) b(t,y)x - qyl - 1 - qY - 1)2

\ ~- (l-Py Ej (t,y) Wj (t) with 7(O) -YO

j

where both pX aud p j 0, qXk _ 0 with q 0 when y/x < I, and

qY >0 with qY - 0 when x/y < I. The larger that Ip x, Ip Y , I, XqI, or

lqy I is, the poorer is the motivation and discipline of the soliders involved

(i.e. as discussed above, these coefficients model the morale and discipline

of the troops involved). Also, for the appropriate choices of values for

q Xk and qYk the terms that contain (y/x - 1) and (x/y - 1) can simulate

the act of breaking off an engagement, which is in keeping with the guerrilla

tactic of fading off into the Jungle (i.e. when 2:-err~lla forces are outnumbered

46
463

_____ _____
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~~~SUPPORTING WEPN
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b tY) GUERRILLAS

SCOUNTERGUERRILLAS

Figure 7.6. Diagram of guerrilla-warfare engagement to which

SCHAFFER's general model applies.
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or at soma other disadvantage, . wil 1 gradutally disengage, with the remaining

troops fightinug a rear-gurard aution). S01AFFER then applied his above

•e.ali~ed .ttrit.f.n IA2. auiotýs (7.b3) ;o the following three special types

of guerrilla-warfare engageýeents: (T) •.kirmlsh, (I1) ambush, ana (l11)_sie.

As noted above, the solution to a LVICRESTER-:ype model as :umplex as (7.6.3)

is most likely not exqpressible in cer-ms of "elementary" functions, 1 8 anM con-

sequently one must use numarltcal-integration teclomiques to generate nvmerical

results for specific battles.

SCFAFFER U25, p. 4631 used the. word skirmish to denote an engagement

with a relatively limited commitment of resources. He assumed Lhat the primary

force19 cn each sice :Is composed of riflemen ard that every rifleman on each

side uses "aimed" fire (see Sections 2.2 and 6.5 for further discussions of

"aimed" fire) with an associated constant actrition-rate coefficient modellir.g

their fire effectiveness. In this case equations (7.6.3) become

dx (l.-px)ay , _ 1) - q 2 ._ i)2d• X - qxI x x

- (l-P x. ) Ei(t,x) Wi(t) with x(0) - x0

(7.6.4)

-- (1-,o )bx - qhY ' 1) -. q(~ 1~
dt Y1 \y ' Y2 (y

- (l-PY) E Ej(t,y) W (t) with y(O) - y

where a and b denote constant attrition-rate coefficients.

SCR&FFER examined numerical results (generated by numerical-integration

techniques) for a variety of specific battles modelled by (7.6.4). lie concluded
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that morale and discipline (in addition to weapon-system effectiveneraes ana

the initial force ratio) can have a sLgnificant effect on the outcome of battle.

He showed that the numerically weaker side can win when discipline/morale

factors outweigh firepower disparities. In his calculations SCHAFFER took

numerical values of 0, -0.5, and -1.0 for both pX and py [see (7.6.4)],

where (for example) pX M -1.0 means that one X combatant deserts his

fighting group for each casualty that the group sustains. Values of 0.04 were

assigned to both a and also b. SCHAFFER modelled these attrition-rate

coefficients (see Chapter 5 for more sophisticated models) by, for example,

a = vYPSSKxY 'YP(KIH)Xy , SSH (7.6.5)

where AT

PS - . (7.6.6)
2 y

Here v denotes Y's firing rate, AT denotes the presented area of a prone

X infantrymAn to rifle fire over average terrain, P(KIH)XY denotes the prob-

ability that an X target is killed when he is hit by a round of Y's iire,

and P SSH denotes single-3hoc hit probability. SCHAFFER actually gave sample

numerical values for these parameters to the above model (7.6.4). An illustrative

ave..age rate of fire of v - 5 pounds/minute would lead to expenditure of

10 lbs of .22-cal rifle ammunition in about 80 minutes. SCHAFFER considered

the following values to be typical: AT - 0 1 ft2 at a range of 100 feet,

P(KIH) - 0.5, and a - 1 ft (corresponding to 10 mils at 100-ft range).

The single-shot hit probability PSSHxY given by (7.6.6) is computed according

to the "small-target" approximation (see MORSE and KIMBALL [l15,p. 1121), which
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applies when the single-shot dispersions are "much larger" than the target.

Some skirtaish results for the case in which there are no supporting weapons

on either side are shown in Figure 7.7.

SCHAFFER also considered skirmishes in which a single type of supporting

weapon backed up the weaker side. For example, when the cuimterguetrillas bring

up supporting weapons, he modelled combat by (see. Figure 7.8)

dx -.- -) a(S )y - q (Yx - 1)2 with x(O) - ;70
(7.6.7)

. -(i-py) { bx + S (t,y) }- q 1)2 with (7..)
dt Yc Y wihyO)yJ

'whe-e S yc (t,y) -1 E (t,y) W (t) and the integer index j takes on a single

value. In other words, S M S (t,y) denotes the effectiveness of the single¶~cc
type of supfort4 .ng weapon. Suppressive effects of the supporting weapons

are considered by having the fire effectiveness of enemy infav.:rv decreased by

the supporting fire, i.L. a - (S c) with a(S c) being a decreasing function

of S . The effectiveness of the supporting fires is modelled by the simplified

formula given in Section 5.13, namely 20

a.

Se V 'U •Y Y' (7.6.8)

where V denotes the firing race of X's supportirg weapons, aL denotes
UL

the lethal area cf a single round of these supporting ueapons, and fly denotes

the area of the region in which the Y force is considered to be randomly

dispersed (and into which the supporting weapons are assumed to deliver "area"

fire). SCHAFFER conceptualized that such a skirmish ,vuld begin without

( any supporting veapors for the counter insurgents, supporting fires would be

cailed for at come time after engagement initiation, and after some additional
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50 Case (l-p x)ai C-p.r)b qy

1 0.04 0.08 1.0
20 4 0.08 0.08 0403 0.06 0.06 0
4 0.08 0.06 0

Squa~re low 0.04 0,04 Ci
130 -5 0.06 0.04 0

10-

0
50- Ot

~40-

~30-

202

*10-

430-

5 Square low

I0

0 2 4 6 8 10 12 14 16 1820 2224 2628 30
rime (min), t

Figure 7.7. Results for model of skirmish with no supporting weapons

on either side (after SCHAFFER [125]). In this case, the
battle dynamica are given by

Tt d (1 - Px)ay - q(Z ...)2

-P )bx - q Y~a 1)2
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SC

X- FORCE

ARTILLERY

U 0 :]bAY

COUNTERGUERRILLAS GUERRILLAS

Figure 7.8. Skirmish in which the counterguerrillas bring up
supporting weapons. Here S denotes the effectiveness

C

of supporting fires and is modelled by (7.6.8). If

we ignore surrenders and desertions, then the combat

dynamics are given byIdxI
- -a(S )y,

S-bx - S (t~y).

Suppressive effects are modelled by taking a - a(S c),

i.e. the fire effectiveness of a Y combatant

(guerrilla) is degraded by the effectiveness of the

X-force artillery fire.
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delay the supporting fires would arrive. He modelled this process by

S c(t,y) - wyU(t)y H(t - td) , (7.6.9)

where wyu(t) - vUaLu /A [cf. equation (7.6.8) above], td denotes the delay
U .

time for the supporting fires to be added to the battle, and H(t-td) denotes

the "unit step function"

H(t-t d 0 for 0 < t < td (7.6.10)

1 for td-i t .

Such a step function allows us to "turn on" the supporting fires after a given

amount of delay.

SCHAFFER took DEITCHMAN's ambush model (see the previous section) as a

point of departure and added temporal variations to fire effectiveness modelled

by attrition-rate coefficients. SCHAFFER emphasized that it was important to

use time-dependent attrition-rate coefficients (cf. Section 6.2 above) and that

such time dependence was the dominant factor in an ambush. He argued that

temporal variations in fire effectiveness are the result of changes in cover

(i.e. shielding) available to the ambushees and their gradual transition from

area to aimed fire over the course of the ambush. Because of the element of

surprise in thi ambush, the ambushees' cover is initially minimal but inproves

as they "take cover." On the other hand, the ambushers' position is relatively

secure and it does not change until they choose to break off the engagement.

The ambuehees initially return area fire because they have been "caught by

surprise," and this fire transitions (i.e. changes) to aimed fire as they
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I
recover their tactical discipline from the initial shock of the ambush. On

the other hand, the ambushers always use aimed fire, although its quality

deteriorates over time. During the early stages of the ambush, the ambushers

have little motivation to desert or surrender, but after a time t , they

may decide to withdraw. SCHAFFER quantified the effects of these potential

acts through the quantity qT(t) defined as

qy(t) - qyI H (t-tc) H(x/y- 1) .C(7.6.11)

In other words, qy(t) > 0 for t > t > 0 or x/y > 1, and it is zero other-C--

wise.

Based on the above considerations, SCHAFFER modelled such an ambush

with the following LANCHESTER-type equacions (see Figure 7.9)

dx2
t -(l-pX) a(t)y - q(X -1) (-P E E(t,x) w~ Wt

(AMBUSHEE ATTRITION) with x(O) -x

(7.6.12)

dy -_b(t,y)x - (q)W x 1)2 jtyW()dt Y - yy • jty jt

(AMBUSHER ATTRITION) with y(O) - yo

where qy(t) is given by (7.6.11), and the attrition-rate coefficient a(t)

representing a Y-firer's fire effectiveness is given by
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SC

COUNTERGUERRILLAS b (t, y) GELLAS

Figure 7.9. Schematic diagram of battlefield sit.uation corresponding

to SCHAFFER's model (7.6.12) of ambush in which counter-

insurgents have a single type of fire support (here,

artillery) with fire effectiveness denoted as Sc - S (t,y).

For this guerrilla-warfare engagement, (7.6.12) reduces tofRd-IL -(1- p a(t)y qx

S-b(t,y)x - I(t,y) - q (t) (

where the attrition-rate coefficient for the ambusher

"aimed" fire a(m) is modelled by (7.6.13) and the

ambushee return-fire effectiveness b(t,y) is modelled

by (7.6.14). Here the arbushee return fire, as modelled

by (7.6.14), t.ransitions from pure "area" fire to pure

"aimed" fire.
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vyIr(t) P(KIH)y

a(t) - X 2 (7.6.13)

with the presented area of a single X ambushee being modelled by

AT

AT (t) = ---
X 1l-e-atS

Here, AT denotes the "steady-state" value for the vulnerable area of a single
00

X ambushee, and a and 8 reflect the speed with which an ambushee can

approach this level of maximum cover. A typical value for AT for prone

2troops against rifle fire is 0.1 ft . SCHAFFER modelled the ambushee's return

fire against the ambushers with

b(t,y) - b (l e-yt) + b y e-Yt (7.6.14)

"aimed-fire" "area-fire"
contribution contribution

where bI and b2 denote attrition-rate coefficients for "aimed" and "area"

fire respectively, and y denotes the transition rate from "area" to "aimed"

fire. The parameter y is used to model how fast the ambushees recover from

being "caught by surprise" in the ambush. SCHAFFER, however, expressed

in terms of two other parameters: a factor of increase in the effectiveness

of the ambushees' return fire, F, and a time for this increase to occur, r.

We then have

Fb 2 Y0 - b1 (1 - e-Y) + b2 Yet, (7.6.15)

whence
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Fl4 , - b 2y/b 1  (7.6.16)
T'~ 1 - Fb 2Y0/b 1J

SCHAFFER observed that typical values for the battle parameters yield

b2 y/b 1 < b2 Y0 /b 1 << 1, whence we have the approximation for (7.6.16)

Y -(!)1 Zn (7.6.17)

Some "typical" results for ambushes modelled by (7.6.12) are shown in

Figure 7.10. SCHAFFER concluded from his study of ambushes modelled by (7.6.12)

that "in the absence of supporting weapons, ambushes can be successful against

forces that are numerically twice as large as the ambusher's force, provided

the ambushee has less than perfect discipline and/or is sluggish in attaining

aiming parity with his opponent." His analysis showed that a properly conducted

ambush should be an excellent tactic (see SCHAFFER [1 2 5 ,pp. 483-484] for

further details).

Finally, SCHAFFER considered sieges, which he divided into two stages:

(i) a "softening-up" phase with supporting weapons, and (II) an assault stage

during which the artillery fire must be lifted. Fe modelled an assault with the

fcllowing LANCHESTER-type equations (after work by BRACKNEY f20] on tactical

posture and the functional form for an attrition race; see also Section 7.2 above)

dx PSSKXy
-t - -(-px) tXY y (ATTACKER ATTRITION) with x(0) - x0

(7.6.18)

dd•- -Cl1-py) --
t Y kxy (DEFEN&)ER ATTRITION) with y(O) - v
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10O Case F' r Px qx _

90 SqKare law - - - -

1 20 5 0 0 05
so 0 2 20 15 0 0 0.5

70 - 3 5 5 0 0 1.0
4 5 5 0 0 0.5
5 5 15 0 0 0.5DC60 -6 5 15 -0.5 1.0 0.5

50 -2 Initial X force level 10
__Initial Y force level z 5
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x 30 - [ 0 : o z50
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10 6 \5 4
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Time (min), t

Figure 7.10. Results for model of ambusit with no suIpporting weapons
on either side (after SCHAFFER [125]). In this case,
the battle dynamics are given byL -d -,(1 - p ) a(t)y - q)

&- -{b (l-e-Yt) + b ye -t }x - qY(t) (~-1)2,
where a(t) is modelled by (7.6.13).
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where t denotes Lhe average time between the firing of two successive rounds

by a single defender (with target-acquisition times being assumed negligible),

and the average time for an attacker to acquire a target by visual search of the

defender's position (with "presented area" AY) is assumed to be inversely

proportional to target density (with constant of proportionality k X) and is

assumed to be the dominant (i.e. constraining) factor in the target-actrition

process for the defenders. In the assault modelled by (7.6.18), X is the

attacker and Y is the defender. Thus, the time for a single assaulting

firer to destroy an emeny defensive target is approximately equal to the time

for him to acquire one, and the average time for an assault troop to acquire

such a defensive target is given by k a/yý The model (7.6.18), of course,

only applies to the assault situation up until the time The defensive perimeter

is overrun or until a counterattack is launched.

Thus, SCHAFFER [125] developed a number of detailed LANCHESTER-type

models of small-scale guerrilla-warfare engagements. These were apparently

the first detailed LANCHESTER-type models of tactical engagements to be

developed and applied to military-analysis problems in the United States.

His models contained a number of significant operational enrichments (e.g.

time-dependent attrition-rate coefficients reflecting changes in tactical

posture, fire discipline, calling in of supporting fires, etc.) over previously

considered simplistic LANCHESTER-type models (e.g. the classic constant-

coefficient models (2.2.1) and (2.4.1) of LANCHESTER [104]). SCHAFFER developed

a number of important quantitative insights into the dynamics of guerrilla-

warfare operations from exercising these models (see SCHAFFER [125] for

further details).
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7.7. Modelling Attrition for Combat Between Heterogeneous Forces.

So far in this book we have considered various aspects of attrition

modelling for combat between two homogeneous forces, but actual combat consists

of many different weapon-system types operating together as "combined-arms

teams." For example, there may be infantry (armed with several types of

weapons), tanks, artillery, mortars, etc. on each side. Let us therefore consider

combat between such heterogeneous forces and briefly indicate how the above

basic ideas on modelling combat attrition are extended and adapted to such cases.

For illustrative purposes, we consider an engagement with m different

types of weapon systems on the X side and n for Y (see Figure 7.11).

Although more complicated types of force interactions may be postulated, we will

consider the "natural" extension of (2.2.1) to this combat situation. We

accordingly assume that

(Al) the attrition effects of various different enemy weapon-system

types against a particular friendly target type are additive

(no mutual support, i.e. no synergistic effects),

and (AW) the loss rate to each enemy weapon-system type is proportional

to the number of enemy firers of that type.

Let Y denote those Y who engage Xi, and let Yij denote the correspond-

ing number of Yij and similarly for y . Similar quantities are analogously

defined for the X force. We observe that we then have

m
Yj " (7.7.1)

i-l
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X Force (m different Y Force (n different
weapon-system types) weapon-system types)

Oil Y11(t )

x121 1 INFANTRY

IFNR a 21 y31 ( 0

xI(t a- Mp

" Y31)

TANKSTANKS

Y2 (t)

0
3

Yn
xm

Figure 7.11. Schematic of combat between heterogeneous forces.

In this figure Y denotes those Y who are

engaging Xi, and Y j denotes the corresponding

number of Y and similarly for y Also, aij

denotes the "inherent" weapon-system kill rate of

one Y against live Xi targets, i.e. the rate

at which one Y can kill Xi targets.
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I
For notational convenience we will always let the subscript i refer to the X

force and the subscript j refer to the Y force. Thus (recall Figure 7.11),

the index i will always take on the integer values 1 through m and the

index J will always take on the integer values 1 through n. In other words,

Xji denotes those Xi who engage Y with i - 1,2,..., m and j - 1,2,..., n.

Hence, without further specification if we say xi > 0, it will be understood

that the inequality holds for i - 1,2,...,m.

For modelling combat between heterogeneous forces, one must take into

account that a particular firer type can try to engage various different enemy

target types. Hence, we must represent how fire is distributed over enemy target

types. Accordingly, we will now introduce the allocation factor ij -YiJ/Y i

- fraction of Y who engage Xi. It follows that

yiJ- ijYj (7.7.2)

To complete our notational preliminaries, we let aij denote the "inherent"

weapon-system kill rate of Y against live Xi targets, i.e. the rate at

which one Y can kill Xi targets.

Let us now examine how (Al) and (A2) lead to the following linear model

(no synergistic effects for weapon systems in joint operations) for xi and

y >0

dxi n

dt y *ijaiJY with x (0) - xi,
dy1  

(7.7.3)

- i- ibjixi with yj(0) - yj
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where 0 < %Jio' ij 1 1, and on physical grounds aij and bj > 0. Let us

now develop (7.7.3) from assumptions (A!) and (A2) above. Assumption (Al) may

be stated in mathematical terms as, for example,

dxi n (Xi loss rate (

dt I due/o Y

while assumxjrion (A2) irteans that

X, loss rate
due to YJ aiJYij , aJLiPiYJ ' (7.7.5)

whence follows (7.7.3) from combination uith (7.7.4). If we "absorb" the

allocation factors into the attrition-rate coefficients, e.g. let A ij -ulij,

then our linear combat model (7.7.3) may be written as (for xi and y > 0)

dx n
i r 0 itd-• =-L Aij with x (0) M x ,

(7.7.6)

dy1  m0
dt . - i1 with y, (0) - I

If we add operational losses [or attrition from enemy supporting weapons

not subject to attritljn (see Sections 6.12 and 6.13 for further details)], then

our combat wodel becomes (again, for xi and yj > 0)

dxi n 0
S_ - -n with x (0) - x0,

(7.7.7)

_ il Bixi -•JyJ with yj(O) - yj
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where a denotes ail attrition-rate coefficient modelling the operational losses

of Y and similarly fc " On physical grounds, we must have a and

> 0.

In complex operational LANCHESTER-type combat modc.-s like BONDER/IUA

and its may derivatives, 2 1 attrition-rate coefficients corresponding to Aij

and Bji in (7.7.6) above are (as they are in the real world) complex functions

of the weapon-system capabilities, target characteristics, distribution of the

targets, allocation procedures for assigning weapons to targets, etc. These

models then attempt to reflect these .omplexities by partitioning the attrition

process into four distinct subprocesses:

(1) the fire effectiveness of weapon-system types firing on live

targets,

(2) the allocation process of assigning weapons to targets,

(3) the inefficiency of fire when weapon-system types engage other

than live targets,

and (4) the effects of terrain on limiting firing activities of weapon-

system types and on mobility of the systems.

BONDER and FARRELL [15, pp. 16-17] have included the effects of the first three

subprocesses above on an attrition-rate coefficient, for example, as
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Ai(r) - Pi 1ia 1 (r) , (7.7.8)

where ip ij denotes the allocation factor (the fraction of Y who are

assigned to engage Xi), IY denotes the intelligence factor (the fraction

of Y who are actually engaging live Xi targets), and a j(r) denotes

the "inherent" weapon-system kill rate (the rate at which one Y kills

live Xi targets when it is engaging only Lhem). HLre, for simplicity,

we have assumed that the inherent weapon-system-kill capability (as quantified

by aij) depends on only the range between firer and target (see BONDER and

FARRELL [15] for further details). Similar to the case of homogeneous forces,

te "inherent" weapon-system kill rate aij is computed as

I (7.7.9)

where TxY ( a r.v.) denotes the time for a single Y firer to kill an

Xi target.

Thus, BONDER and FARRELL's [151 approach (see also CHERRM [30] and

[117; 154]) basically decomposes the battlefield into unit engagements, and there

are further decomposed into a series of one-on-one duels between opposing weapon-

jystem types. For each firer-target pair one must perform a detailed analysis

of a single firer engaging a passive target. Force interactions are then tied

together with attrition equations similar to (7.7.6), and these assessment

equations are made to respond tn the evolution of combat (e.g. changing firer

positions) through the operational factors influencing kill rates. Terrain

effects are incorporated into such models by computing intervisibility (i.e.

existence of line-of-sight) for each target-firer pair based on their map
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locations. Consideration is given to cover, concealment, terrain roughness,

etc. but time does not allow us to So into further details here (see Chapter z,

especially Section 5.16, for further developments, however).

Let us finally consider the determination of numerical values for the

allocation factors OJi and ti in the heterogeneous-force model (7.7.3).

We first observe that (in some sense) X controls (i.e. influences or can

affect) 0ji but such an allocation factor is not directly affected by Y.

Similarly, Y controls *iJ. There are then two basically different approaches

for determining numerical values22 for such allocation factors in a tactical

engagement:

(1) the descriptive approach (based on asking the question, "How

would fire be allocated?"),

and (2) the normative approach (based on asking the question, "How should

fire be allocated?").

Both these approaches involve building a model of the allocation process. The

descriptive approach is based on observing how people make such decisions in

real-world situations, while the normative approach is based on modelling human

behavior as a "rational process" with an optimization problem. This latter

normative approach may also be thought of as being based on asking the question,

"What is the 'best' choice for the allocation factors?" Further discussion of

this important topic of determining values for such allocation factors would

take us too far afield from our main subject of modelling tactical engagements,

but we will return to it in Chapter 8 (see also Section 5.16).
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7.8. Analytical Results for Heterogeneous-Force Models.

Let us now briefly discuss what analytical results have been obtained for

tLe heterogeneous-force model (7.7.7). We will find out that, except for some

special cases, only a few analytical results of limited usefulness have been

developed. In fact, it is essentialiy impossible to analytically solve systems

of differential equations like (7.7.7) for combat interactions with any degree

of complexity (recall Figure 6.11). Consequently, numerical-integration methods

(see Appendix E) must be generally used to generate numerical results for particu-

lar battles of any degree of complexity. Thus, such numerical-integration methods

are essentially always used to numerically determine the force levels as functions

of time, i.e. x i(t) and y (t), in complex operational models like BONDER/IUA.

In general an attrition-rate coefficient such as Aij in (7.7.7) varies

with time t and the force levels of the combatants. When the attrition-rate

coefficients Aij and Bji depend on the force levels xi and y , the system

of differential equatiors (7.7.7) is nonlinear. We will not consider this case,

however, since no useful analytical results are apparently available for such

systems of nonlinear ordinary differential equations. When the attrition-rate

coefficients do not depend on the force levels, we may take them to depend on

time,23 and we will therefore consider (again for xi and y > 0) the follow-

ing linear combat model with time-dependent attrition-rate coefficients

dxi n
dt - I A j ty - 6i(OX. with x1(0) - xA ,

J-l
(7.8.1)

dy - 0
dt - I Bji(t)xi - a(t)y with y (O) -yd t .

i-i4
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whtere (as above) the subscript i runs over the integer values I through m

and j over I through n when such ranges are not explicitly given. However,

the substitution

t

(7.8.2)
tq(t) W y(t) exp{f a (s)ds},

0

transforms (7.8.1) into

dpi i1 A ij (qn with p (0) - Xi

(7.8.3)

= - Bji(t)Pi with q (0) W YO

where

t

A (t) W Ai W exp{f [Bi(S) - a (s)]ds}
0

and (7.8.4)
t

i(t) W B jiW exp{- f [si(S) - a (s)Ids}

0j

Thus, in discussing the development of analytical solutions, we may without loss

of generality consider (7.8.1) with i(t) and a (t) identically equal to

zero, 3..e. for xi and yj > 0

dxi n 0

dt J1l A ij Wy with x (0) - Xi

(7.8.5)

fdy 1  i 0
dt I Bji(t)xi with yj(0)M y-
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Although equations (7..8.5) are a linear differential-equation combat

model and consequently all. the results from the theory of linear ordinary

differential equations may be invoked, essentially no explicit analytical

results for x i(t) and y.(t) of practical significance for military OR are

known to this author. We can, of course, in theory use the method of successive

approximations (cf. Section 6.5 above) to determine xi (t) and y (t), but the

details are prohibitively complex. Let us proceed just far enough to indicate

such difficulties to the reader.

It is, moreover, convenient to express such computations in a more compact

notation. Therefore, let us write (7.8.5) in vector/matrix notation as

i - -A(t)y with x(O) - 0(8

(7.8.6)

S=-B(t)x with y(0) - y0

where i denotes dx/dt, x denotes a column vector of the m force levels of
T

the heterogeneous X force [i.e. x . (Xlx2,... x m)], B(t) denotes an n x m

matrix of attrition-rate coefficients (i.e. B(t) - [Bji(t)], where [B ji(t)

denotes the matrix with element B ji(t) in the Jth row and ith column for

j - 1,2, ... , n and i - 1,2, ... , m), and similar quantities for the

Y force are analogously defined, with Z being an n-vector and A(t) an

m x n matrix. We may write (7.8.6) in even more compact notation by introducing

T T T S= (,x ,z ) so that it becomes (for w > 0)

T T T T
S- -C(t)• with T(0) - 0 (,0' 0) , (7.8.7)

where C(t) denotes the following (m + n) x (m + n) matrix
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c(t)-

Assuming tiLe appropriate integrability of the coefficients [i.e.

C(t) E L(0,T) for any finite T], and apply the method of successive approxi--

mations (cf. Section 6.5), one may show (e.g. see REID [1 2 2 ,pp. 62-63])

that the solution to (7.8.7) is given by

- 0(c)MX , (7.8.8)

where 0(C) denotes the following infinite series of matrices

t t S1
Q0(C) - I - f C(sl)ds 1 + f C(s 1 ) {f C(s 2 )ds 2 }ds 1

0 0 0

t S sl s 2

-f C~s f C(s2) {f C(s 3 )ds 3 }ds 2 ds 1  , (7.8.9)
0 0 0

I denotes the (m + n) X (m + n) identity matrix, and the integrals are matrix

integrals. The matrix quantity Qo(C) is sometimes called the matrizant ( 122,

p. 63]. It is the (m + n) x (m + n) matrix of fundamental solutions to (7.8.7)

and satisfies the matrix differential equation (see REID [1221 for further

details)

S- - C(t)W with W(0) - I , (7.8.10)

where W(t) - to(C).
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Example 7.8.1. We may obtain the representation (6.5.16) for the solution

Cx(t) to (6.5.13) as a special case of (7.8.8). To see this, we let

T
w w (CX9S y) and then (6.5.13) may be written in the form (7.8.7) with

n = (1,0) and

(t) - b)0 a(t)/IXR]

If we substitute the above into (7.8.8) and (7.8.9), we find that C x(t) is

given by (6.5.16). Thus, the successive-approximation results of Chapter 6

for the hyperbolic-like GLF may be viewed as special cases of the matrizant (7.8.9).

The reader should nute that (7.8.8) also applies to the more general

model

d-A(t)- - G(t)x with x(O) - (7.8.)

S-B(t)x - (t)Z with z(0) -,Yo ,

in which case C(t) is given by

FG(t) A(t)

C(t) - (7.8.12)
1B(t) H(t)

The above results are also readily extended to the case in which replacements are

continuously added to the battle (7.8.6) [or, equivalently, (7.8.11)].

Accordingly, we let q(t) denote an m x n column vector of replacement rates.

Our mudel (7.8.7) then becomes
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TT T T
, -C(t)w + %(t) with w(0) - w - (,) (7.8.13)

The solution to (7.8.13) may be written as (e.g. see REID [122] again)

t

W(t) - (c(C)4 + P (C) f fio(C)] 1(s)ds, (7.8.14)
0

t 0 0-1

where %O(C) is given by (7.8.9) and [no(C)]'] denotes the inverse operator

M-(C) of Q(C). Thus, the force levels as functions of time are even more

compiicated when replacements are continuously committed to LANCHESTER,-type combat

[cf. (6.12.8) and Figure 6.11]. As we noted in Chapter 6 (recall Figure 6.11),

it is impossible to "solve" the differential-equation combat model (7.8.13)

when both m and n > 1, although a formal solution such as (7.8.14) may, of

course, be written down.

The solutions (7.8.8) and (7.8.14) are formal symbolic solutioxis to

(7.8.7) and (7.8.13) for the vector of force levels w T(t) - ( T(t),Y (t)).

Unfortunately, they are of no computational use when both m and n > 1. Thtus,

although they symbolically represent the force levels, the "solutions" (7.8.8)

and (7.8.14) have been put to no practical use.

Let us now consider the model (7.8.6) in the special case of constant

attrition-rate coefficients, i.e. for x > 0 and > 0

(x--AX with :z(O) Z-

(7.8.15)

S--Bx with t(0) 1
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where A denotes an m x n matrix of constant attrition-rate coefficients modelling

the fire effectiveness of the heterogeneous Y force and B denotes an n x m

matrix of constant attrition-rate coefficients for the X force. Similar to

what we saw in Chapter 2, the two basic vehicles for answering questions con-

cerning the outcome of combat modelled by the constant-coefficient differential

equations (7.8.15) are: (1) the state equation, and (2) the X and Y force

levels as a function of time x(t) and Z(t). Unlike the case of combat between

two homogeneous forces, though, we now deal with vectors and matrices, not

scalars, and far fewer explicit analytical results have been developed.

To obtain information concerning parity (i.e. equal military strength)

between the two opposing heterogeneous forces w& consider the state equation.

By parity we mean that neither force ever "wins," and of course we must specify

battlpý-termination conditions for such a determination. We will limit our

discussion to a fight to the finish, since results have only appeared for this

special case. Since negative force levels make no physical sense (cf. our

discussion in Section 2.2), we must accordingly extend the model (7.8.15), which

holds for x and y > 0, to cases in which one or more of the component forces

of either heterogeneous force become annihilated. if we are to retain constant

coefficients, we must essentially assume that there is no redistribution of

fire by friendly forces after an enemy target type has been annihilated. In

this case, the naturaleextension of (7.8.15) is

(A--E X(x).AZ with 0() -

(7.8.16)

_ -E y()Bx with X(0) M
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where Ex(x) is an m x m diagonal matrix with diagonal element

i for xi > 0,
eX W 1 frx >0(7.8.17)ei ) to otherwise

and similarly for Ey(Z).

Equations (7.8.16) and (7.C.17) are nothing t..ore then the generalization

to heterogeneous-force combat of LANCHESTER's equations written in a form to

avoid the physical absurdity of negative force levels. In other words, Xi

only suffers attrition according to the appropriate component of (7.8.15) as

long as x > 0 (i.e. dxi/dt nl ajYj for xi > 0), and such an

attrition equation is "turned off" once xi - 0 (i.e. dx /dt - 0 for x, < 0)

[cf. (2.2.2)]. By parity Letween the forces, we simply mean that xi (t) and

S(t) > 0 for all i, J, and finite t > 0. Unfortunately, there is generally

no extension of LANCHESTER's square law of parity between two homogeneous forces

(2.1.6) to combat between such heterogeneous forces. However, SNOW [133] has

shown24 that in one and only one special case does the square law (2.i.6)

generalize to combat between heterogeneous forces: namely, the condition for

parity between heeterogeneous X and Y forces is given bythe following quadratic

expression for the force levels

Iil i ~ j l (bi 2 (7.8.18)alji~laij " J-1 J l

1f and only if for any two fixed indices I and J

aL- i - -LDLI- (7.8.19)
aijaU bj 1 b
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where i - 1,2,...,m and j - 1,2,...,n. The condition (7.8.19) was called

Condition M by SNOW (133].

For developing, for example, the X force level as a function of time

x(t), there are two different (but equivalent) methods for constant attrit-ion-

rate coefficients and heterogeneous forces:

(Ml) a matrix-theory approach that involves evaluation of a matrix

eponential function,

and (M2) algebraic elimination to obtain the Xi force-level equation

(which contains only xi).

Although (in both cases) one finds that x i(t) is simply a sum of certain

exponential functions of time weighted by coefficients that are functions of

only the attrition-rate coefficients and initial force levels, explicit

results (even for the simplest 2 x 2 case) have not been generally obtained for

(7.8.15) (recall Figure 6.11 of Chapter 6). Thus, although the general form

of the solution is well known, it is so complex that explicit analytical

results have not been obtained except in special cases. We will now briefly

illustrate each of the above solution methods. In both examinations we will

only consider the case in which xi and y > 0, and then (7.8.15) applies.

The matrix-theory approach consists of considering the vector differ-
T (T T)

ential equation (7.8.7) for w - (Z ,T ), namely

- -Cw with T(0) - T T T (7.8.20)
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where C denotes the (m + n) x (m + n) matrix of constant attrition-rate

coefficients given by

C (7.8.21)
B 0

In this case the matrizant (7.8.9) reduces to the matrix exponential

-Ct 00 k(k t k

e = - , (7.8.22)

and the solution to (7.8.20) may be written in terms of this matrix exponential as

w(t) - e-Ct w0 . (7.8.23)

Thus, we are left with the task of evaluating the matrix exponential e-Ct with

C given by (7.8.21).

The complexity of evaluating the matrix exponential depends essentially

on whether or not the matrix C has distinct eigenvalues. Let ICI denote

the determinant of C and

A( - IC - XI1 . (7.8.24)

The eigenvalues of C (as the reader will recall) are the roots of the (m + n)

degree polynomial equation

A(A) - 0 - IC - AII (7.8.25)

Consider now the (m + n) roots of (7.8.25) and assume that there are q distinct

values. Let Nk denote the multiplicity minus one of the kth elgenvalue. It
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follows that q + jq- Nk - m + n. By the confluent form of SYLVESTER's theorem

-Ct
(see FRAZER, DUNCAN, and COLLAR [59, pp. 78-853) the matrix exnonential e is

given by

ek Z (X k t (7.8.26)

k rk k i

whereN

ZN (k k) -(N k T k TN dAI Xk

(Nr+1)
N (X) 1 ( r- )
k r#k r

and F(M) denotes the transposed matrix of the cofactors of XI - C. In the

English mathematical literature F(X) is called the adjoint of XI - C (see

[ 59, p. 21]). The result (7.8.26) may be equivalently developed by considering

the JORDAN canonical form for the matrix C (see CODDINGTON and LEVINSON [38,

Chapter 31). In the case of distinct eigenvalues for C, the above expression

for e-Ct simplifies considerably: namely (cf. HILDEBRAND [82, pp. 64-66])

-Ct m+n - kt
e I Z0O(Ak) e , (7.8,27)

k-l
where

nI (C- Arl)

0 k n (A-
r4k
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As the reader may have already guessed, no really useful analytical results have

so far been obtained for (7.8.26) except in special cases when other methods are

more convenient (see below). Thus, matrix-theory methods show us the form of the

solution to (7.8.20) for the X and Y force levels x(t) and X(t), but these

results are generally of little computational use (recall Figure 6.11 of Chapter 6).

Example 7.8.2. For the (F + T)I(F + T) attrition process, we have m - n - 1,

aad (7.8.20) holds with [see equation (2.12.2)]

CCr

Invoking (Y.8.23) with e given by (7.8.27), we find that, for example,

S ½(I
1

x(t) - e 2 {x cosh et - - [ay0 +1 (0-%)1 sinh St}

where 8 - Vab - {(8-10 )/2}

The algebraic-elimlnation approach relies on the differential-equation

combat model's special structure to use differentiation and algebraic elimination

to develop a Nth order (where N < m + n) linear differential equation for each

of the force levels. When there is a simple solution for the force levels to

the linear combat model (7.8.15), this approach is the simplest one for obtaining

it. Let us now illustrate the algebraic-elimination approach with a simple

example. Consider a homogeneous Y force in combat against two enemy weapon-

system types. Then, for xi ard y > 0, we have
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dx 1  ywith x (0) X

dx2  -alY with xl(O) - x

dx 20

awith 2O (7.8.28)

dA - -blx - b2 x2  with y(O) yo

The Y force level equation is readily obtained by differentiating the last

equation of (7.8.28) with respect to time and combining the result with the previous

two equations. We find that

d _ (a b + a b2)Y . 0 (7.8.29)
dt2  1 b1  a2 b2

with initial conditions y(O) - yo and dy/dt(O) - - blxO - b2 xO. It follows that

y(t) y Y0 cosh t- OO)sinh et , (7.8.30)
0 0

where z - blx0 + bx 0 and e - Va b + a b Also,
0 1 1 2 2 1 1 a2b2  Alo

0(t) - + a ( o sih et (7.8.31)

We may also use algebraic elimination and elementary integration to obtain the

following state equation from (7.8.28)

2 2 z 2 2

z -2 (Yo - y2) , (7.8.32)

where z - z(t) - b1x1 + b When the X force is composed of m different

weapon system types, the state equation is still given by (7.8.32) and the force
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levels by (7.8.,30) and (7.6.31), only with z, z0 , and 6 now given by

z(t) - . bzx (t) z0 - z(0), and 6 iml albi . The above results

for (7.8.28) are the only simple ones known to the author for combat between

heterogeneous forces (recall Figure 6.11).
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7.9. Current Detailed LANCHESTER-Type Operational Models of Tactical Engagements.

The following are current operational 2 5 models (used in the United States)

that employ detailed LANCHESTER-type equations to assess casualties in tactical

engagements: 26

batulion-level combat: BONDER/IUA and its many derivatives such as

BONDER AIRCAV (or IHA), BLDM, AMSWAG, FAST,

division-level combat: DIVOPS

theater--level combat: VECTOR-2

As we have pointed out in Section 1.3, in these models attrition is modelled

analytically, but movement is modelled in a simulatory manner. Consequently,

these models are not exactly analytical ones, but they are more precisely called

hybrid analytical-simulation models. Since all the above detailed differential-

equation combat models have been developed by the principals of Vector Research,

Inc. (VRI) (see also Footnote 21 above), it seems appropriate to briefly discuss

the combat-modelling approach of VRI.

The basic idea 2 7 behind the modelling approach of VRI is to develop

analytical structures that can. be used to forecast the evolution of combat over

time in terms of battlefield geometry (i.e. troop positions), force levels, and

supplies. It is also hypothesized that there exists a functional relation between

the results of battle and the initial numbers of forces, types and capabilities

of their weapon systems, their doctrine of employment, and the environment, i.e.
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Number of Forces
/f

Results Types of Weapon Systems

of are a function of Weapon CapabiMities

Battle Doctrine of Employment
(tactics, organization)

Environment

Unfortunately, because of the large number of variables Involved, such a functional

relation is not known for the overall evolution of battle, nor is there sufficient

data to develop it empirically. It is therefore assumed that subprocesses can be

quantified and modelled for at least short periods of time and extrapolated.

Thus, the VRI approach is to examine the battle for short periods of

time afd to hypothesize that for each side during such a short period of time:

(1) locations change due to tactical movement,

(2) weapon systems are attrited by enemy activity,

(3) resources are expended,

and

(4) personnel become casualties due to enemy activity.

Heterogeneous-force LANCHESTER-type equations (cf. Section 7.7) are used to

represent the loss of weapon systems and personnel. Implicit in such use is the

assumption that if the state of the battle is known at the beginning of a small

time interval and the actions that take place during this interval are also known,

4
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then the rate aL which losses occur- can be predicted for this small time interval.

Because of this rate focus, differential equations (i.e. LANCHESTER-type equations)

are the appropriate modelling tool. Conceptually these models are based on the

following two components:

(I) the concept of the state space,

(2) the concept of process models.

As we mentioned in Section 1.6, the state space consists of those variables that

allow one to predict the future course of combat, e.g. numbers and locations of

different weapon systems, target lists, plans and intentions, etc.

The VRI approach (BONDER and FARRELL [151; see, also [39; 117; 154] and CHERRY

[30]) in essence conceptually decomposes the battlefield into unit engagements,

whic--h are further decomposed into a series of one-on-one duels between opposing

weapon-system types. For each firer-target pair one must perform a detailed

analysis of a single firer engaging a passive target (e.g. recall Section 5.3).

Force interactions are then tied together with LANCHESTER-type heterogeneous-

force attrition equations similar to (7.7.6), and these assessment equations are

made to respond to the evolution of combat (e.g. changing firer positions)

through the operatioual factors influencing the kill rates. The evolution of

other state variables (e.g. ammunition supplies or battlefield information)

are similarly modelled with differential equations. Terrain effects are incor-

porated into the combat model by computing intervisibility (i.e existence of

line of sight) for each target-firer pair based on their map locations.
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Consideration is given to cover, concealment, terrain roughness, etc., but

time does not allow us to go into further details here (see Section 5.16 or

[39; 117; 154] for further details). In such a complex system model, the

LANCHESTER-type equations are numerically integrated.

The modern large-scale digital computer has made such det4iled models

possible, especially those of large-scale combat. Because of the detailed

weapon-system-performance information used in their combat assessments, i.e.

to compute LANCHESTER attrition-rate coefficients (see Chapter 5, especially

Section 5.16), the data and data-base problems associated with such models

are, however, formidable although no less so than those for detailed Monte

Carlo combat simulations. For example, VECTOR-2 may require between 200,000

and 300,000 pieces of input data for a "typical" run (see BONDER [141 for

further details). The interested reader can find further information about

the time and resource requirements for actually using these models in [91

(e.g. the time required to acquire input data, the time required to structure

this data in the model's input format, the time required to run the model, and

the time required to analyze and evaluate the model's results). Such models

consider heterogeneous forces, battle plans (ground order of battle and air

order of battle), target acquisition, allocation of fire, fire support by

ground weapons, movement, intelligence, command and control, logistics, etc.

The full extent of combat systems and processes that have been incorporated

into the VRI models is indicated in Tables 7.111 and 7.IV (see CHERRY [30]

and [39; 117; 154] for further details). These very complicated operational

models, however, have been developed from the basic analltical structure

discussed above by the process of enrichment, which we have also considered

above (e.g. see Section 7.1).
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TABLE 7.111. Weapon Systems Included in the Differential Combat Models Developed

by Vector Research, Inc. (from CHERRY [30]).

Tanks, including secondary armament

APC's, including multiple armament systems

Anti-Tank Guns and Missiles

Assault Guns

Heavy Machine Guns

Mortars

Rifle-Squad Weapons, including

light and medium machine guns

grenade launchers

mixed-mode weapons

rifles

Convention, ICM, and Laser-Guided Artillery

Attack Helicopters with

automatic weapons

rockets

command-guided missiles

self-guided missiles

laser-guided missiles

Rocket or Missile Artillery

Fixed-Wing Tactical Aircraft with Conventional or Advanced Ordnance

Air Defense Guns and Missiles

Land Mines, including scatterable mines

Jeep and Truck Mounted Weapons

Laser Designators

Target-Acquisition Systems, whether ground or air based,

including optical and other electromagnetic systems and

seismic, audio, and other systems

Smoke or Other Obscurant Aerosal, however delivered.
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TABLE 7.IV. Processes Modelled in the Differential Combat Models Developed by

Vector Research, Inc. (from CHERRY (30]).

Acquisition, "serial" or "parallel," including false acquisitions,

acquisitions of dead targets, and mis-identification (and loss

of acquisition)

Target Selection, including criteria for the acceptance of low-priority

targets (an approximate minimax target-selection process is avail-

able in addition to descriptive models)
Aiming, Round Selectior,, and Mode-of-Fire Selection, including fire

adjustment process

Firing, direct and indirect: single rounds, volley, and burst; adjusted

and unadjusted; ballistic ordnance, command-guided ordnance, self-

guided ordnance, illumination-guided ordnance; etc.

Ordnance Lethality, immediate or delayed, against weapons-system
,' hardware or crew, including multiple damage states (which may

involve damage to only one component or sub-system of the weapons

system, such as a mobility kill or a partial firepower kill)

Maneuver

Deliberate Deterministic or Stochastic Use of Local Terrain or
Vegetation for Cover and Concealment, including (but not limited to)

suppression by artillery or direct fires

Commimication of Target-Acquisition Information Between Weapon Systems

Damage Recovery, including re-manning of a weapon system which has

suffered a crew kill

Minefield Encounter, including initial encounter attrition, attrition

during reorganization (if any), clearing- or passage-tactics

decision, maneuver alterations for clearing, passage, or attempted

bypassing, and attrition by mines during passage, clearing, etc.

Aerosol Generation and Consequent Acquisition and Illimuna.ion

Environmental Degradation
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7.10. Overview of Aggregated-Force Mo)dels of Attrition in Tactical

Engagements.

In stark contrast to the aet:ailed LANCHESTER-type models of

attrition in tactical engagements are the aggregated-force attrition models

that combine all the various different weapon-system types on a side in

some particular geographical combat area (or "sector") into a single

equivalent homogeneous force. This force's combat capability is quaintified

by a single scalar quantity called the unit's firepower index, As we

discussed above in Section 7.3, the firepower-index approach is only

used for modelling large-scale combat (i.e. division-level operations and

larger). T•ie quotient of the firepower indices of the two opposing forces

is calletd thz force ratio and is the principal measure of relative combat

capability used in analyses of simulated conventional ground combat. It

is a major factor considered in the assessment of casualties and the move-

ment of fcrce,* against enemy resistance.

Moreover, the Jaily lose in combat power as quantified by the

uait's firepower Index is assessed on the basis of seve:al operational

factors, principal of which is the force ratio (actually the ratio of

the attacker's firepuwe. index to that of the defender). Curreni theater-

level combat models typically use curves of daily fractional (or percentage)

casualties versus the force ratio (for both the attacker and also the

defender for each of several engagement types such as meeting engagement,

attack of prepared position, etc.) for assessing such losses. These

curves supposedly have an empirical basis (.see (16 4 ,pp. 23-28] or

ANDERSON et al. (6, p. 53]; however, COCKFKLL and BALL [37, especially

p. 1-21 have a different opinion). Unfortunately, there 1,s no erplicit
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I
relationship between weapon-system parameters, operational factors, and

attrition as there is for detailed LANCHESTER-type models (e.g. recall

(5.2.1), (5.2.3), and (5.4.1) above in Chapter 5, see also (117, pp. 3-4]

or [154]).

Although such aggregated-force models are much simpler thin the

detailed differential combat models and therefore more computationally

convenient, a large-scale digital computer is still required for their

implementation. Such aggregated-force models have been fairly widely

criticized (see, for example, BONDER (13],HONIG et al. [901, or STOCKFISCH

[135]),but large-scale conventional-force ground-combat models that use

such aggregation techniques have been and continue to be essentially the

only analysis tools used for large-scale conventional-force military

analyses in the United States (see [ 91) and also NATO countries [94].

The simple fact is that some. type of aggregation must be done in order to

model theater-level combat in a computationally convenient manner.
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7.11. Aggregation of Forces in Combat Analyses.

The modern battlefield contains many diverse weapon-system types

that complement each other and operate as "combined-arms teams." For

example, there can be both mounted and dismounted infantry, tanks, various

types of anti-tank weapon systems, artillery, mortars, infantry with

rifles, infantry with machine guns, etc. One must then either model such

operations in great detail or find some means for aggregating forces.

Military planners28 and military operations analysts have consequently

developed various index-number approaches for aggregating the diverse combat

capabilities of such a heterogeneous military force into a single scalar

measure of combat power. Although there are many such indices 29 of the

relative combat capabilities of military units, all 30 are essentially

variations on the same theme, and consequently we will generically refer

to any such index-number approach as a firepower-score approach.

The firepower-score approach develops one single number (referred

to as the firepower index) to represent the "combat potential" of a

military unit. A linear model is used to develop this index number, i.e.

the firepower index, from the scores of individual weapon systems as

Table 1.11 of Chapter 1 shows. As STOCKFISCH [135] has emphasized, however,

the words score and index should not be regarded as being synonymous.

We should use the term firepower score to refer to the military capability

or value of a specific weapon system and use the term firepower index--

which is obtained by summing scores-to refer to the military capability

or value of some aggregation of diverse weapons. In other words, the

firepower index of the X force, denoted as IX, is given by
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n
I-Iix Yii

where si denotes the firepower score of the ith X system and xi

denotes the number effective in the unit (see Table 1.11 again).

Although many firepower-score methods claim that the firepower

scote of a weapon system is determined as the product of a measure of

single-round lethality and the expected expenditure of ammunition

during a fixed period of time, in actuality varying amounts of subjectivity

are involved in the development of such a firepower score. For this and

other reasons (e.g. see HONIG et al. [90]), the firepower-score approach

has received a fair amount of criticism. Nevertheless, it is essentially

the only approach that has been used to model large-scale combat in

currently operational ground-combat models (e.g. see [9]). In other words,
4.

unless one duplicates large-scale combat in detail, one must use some

type of index-number approach to aggregate the many different types of

forces involved in modern large-scale military operations (see last

paragraph of Section 7.9). Thus, although it has received varying amounts

of criticism from different sources, the firepower-score approach is used

by essentially all currently operational large-scale ground-combat models.

In large-scale (i.e. division-level and above) ground-combat

models,31 firepower indices are used as a surrogate for unit strength to32

(1) determine engagement outcomes,

(2) assess casualties,

and (3) determine FEBA movement.
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The force ratio is a major factor (but not the only one) used to make

such assessments. Here, however, the term force ratio means the ratio

of the attacker's firepower index to that of the defender. Consider,

for example, the 7th Infimtry Division of the U. S. Army and assume that

the firepower scores and other data shown in Table 1.11 apply. Then the

7th Infantry Division would have a firepower index of 32,640. If an

attacking enemy army group were to have a firepower index of 146,880,

then we would have a force ratio of 4.5 (A/D), where A refers to the

attacker and D to the defender.
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7.12. General Mathematical Structure of Attrition Calculations in

Aggregated-Force Models.

The usual approach (e.g. see [64]) for assessing casualties in

firepower-score-based combat models is to have daily casualties (i.e. the

casualty rates) depend directly on the following two factors:

(Fl) the force ratio,

and (F2) the engagement type.

It will be instructive for us to hold the last factor constant and further

examine how casualty assessment depends on the firepower scores and indices.

The basic mathematical structure of the attrition calculation in

aggregated-force models may be thought of as being done in two steps and

may be explained as follows:

nXno X X 0

iil

STEP (.)
(Aggregation of Forces) (7.1241)

YO - Si

. Ax)m A(E wTith A[(0) - xO,
STEP (11) x at w (7.12.2)

(Mutual Attrition of
the Aggregated forces) " ( ) - B(Y) with y(O) - x0

y yX

where ai denotes the firepower score of the ith X weapon-3ystem type,
0_
X i denotes the initia number of the ith X system, x0  denotes the

5C9
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initial value of the firepower index for the X force, x(t) denotes

its value at time t, A(x/y) denotes a given function of the force rati),

t - 0 denotes the start of the attrition calculation, and similarly for

the corresponding Y quantities. This calculation is then repeated for

each "sector" on the battlefield (see Figure 7.15 in Section 7.15 below).

Thus, casualties in terms of a loss in the force's combat power are computed

from some expression like (7.12.2). In other words, we only know how

much the force's combat power was reduced by a day of combat action, and

losses of individual component weapon-system types must be obtained by

some means of disaggregation.

ATLAS basically computes casualties in the above manner, with the

firepower scores (i.e. X and sa) being held constant over time.

However, IDAGAM dynamically recomputes weapons' values which correspond

to the firepower sctres si and s Y above, according to the antipotential-i i

potential (or eigenvector) method (see Section 7.18 below; also HOWES

and THRALL [92] or ANDERSON [3; 5]). The latter calculation involves the

numbers of enemy targets, allocations of friendly fire, and kill prob-

abilities against enemy targets.

We have given the basic structure foi attrition calculations in

aggre&,ated-force models above. In actual application such models give

attention to a multitude of details on combat operations, e.g. positioning

of units, logistics considerations, allocation of fire (especially support-

ing fires), air defense, air operations including allocation of aircraft

to tactical missions, unit breakpoints, terrain factors, intelligence,

command and control, order of battle, etc. (e.g. see documentation on
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on CEM [25; 106] or IDAGAM [6] for further d.tails). Sur-h operational

and tactical factors influence exactly how '0.i2.1) is computed.

Finally, let us briefly discuss how the engagemenit type, the

second factor (F2) considered in casualty assessment, is determined.

In CEM [15, p. 21; 56, p. 35], for example, the type of engagement is

determined by the missions (which are, in turn, determined from an

estimate of the situation at various echelons of command) of the

opposing forces and, where appropriate, the type of defensive position

(see Table 7.V). In the "mission matrix" shown in Table 7.V, the

entries are the engagement types, while the rows and columns denote the

missions and types of defenEive positions of the two opposing forces.

Thus, we see that in CEM there are tl'ree possible missions (for each

side), two types of defensive position, and eight possible types of

engagement. Similar methods of engagement-type determination are used

in all such large-scale combat models.
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TABLE 7.V. Engagement-Type Determination According to Mission and

Type of Defensive Position of Each of the Two Opposing

Forces (from CEM [25; 106]).

Red Mission Attack Defend Delay

Red position
Blue type
mission - Prepared Hasty

Blue
posii:io
type

Attack -- Meeting Blue attack Blue. attack Blue
engagement of prepared of hasty advance

position position

Red attack
Prepared of prepared Static Static Static

position
Defend

Red attack
Hasty of hasty Static Static Static

position

Delay Red advance Static Static Static
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7.13. Fitting a Differential-Equation Model to Loss-Rate Curves

Typically Used to Represent Large-Scale Ground-Combat Attrition.

In this section33 we will develop a general attrition model, whose

general form fits the shape of most loss-rate curves typically used to

model large-scale ground combat34. All currently operational large-scale

combat models in one way or another assess casualties for each side by

using such a loss-rate curve consisting of casualty rate (expressed as a

fraction or percentage of current strength lost per unit time) plotted

against the force ratio. Here, as above, the term force ratio means the

ratio of the firepower index of the attacker to that of the defender,

denoted as A/D. Also, loss here means loss of value for the side's fire-

power index, which can then be disaggregated into losses in numbers of

different weapon-system types.

In other words, the firepower-score a pnroach takes each side's

heterogeneous forces and converts them into an equivalent homogeneous

force quantified in terms of a firepower index, daily reduction in each

side's capability (expressed as a reduction in firepower index) is then

determined from the ratio of the two such firepower indices, and finally

casualties (i.e. losses in numbers of the different weapon-system types)

are assessed by some means of disaggregation. We will now discuss how a

relatively simple pair of differential equations may be used to model this

process and fit these loss-rate curves.

Our starting point is to consider the following equations of

RE[LMBOLD-type combat with "operational" losses (cf. Section 6.14 above)
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dt -a(t)* x)ey - O(t)x with x(O)- xo

(7.13.1)/ \-
d_ -.b(t),I-z) .x - £t(t)y with y(O) -dt 0O

In the above equations (7.13.1) we have added a feature not contained in the

model of Section 6.14: each side has its own WEISS parameter, denoted as

WX and Wy for •he X and Y forces respectively. We also recall from

Section 6.11 that, for example, such a parpmeter Wy allows one to account

for inefficiencies of scale in producing casualties by the Y force when

the two opposing forces are grossly unequal in size. In other words, the

firepower-modification factors EX and E are no longer necessarily
1-Wy I-WX

the same for both sides, i.e. Ey (u;W y) - u # Ex (u;W X) a u [cf.

(6.11.1)]. Also, a term like 0(t)x may be considered to represent

(here X's) "operational" losses (e.g. losses due to sickness, accidents,

etc.; see Section 6.12 for further details).

For the case of constant attrition-rate coefficients, (7.13.1)

becomes

dx 1 -d
Sdx -a-yl-dy - Ox-- with x(O) - ,

(7.13.2)

-a -be) ox - ay with y(O) - ,

where for notational convenience we have denoted W simply as d and

WX as e. For our wodel (I.13.2), for example, X's fractional casualties

per unit time are now given by
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X/ fractional casualties
(x!d per unit time )

(7.13.3)
-d d

-au +8 -av +8 •

In Figure 7.12 we show the relation between X's fractional casualties

per unit time and the force ratio v a y/x for the case in which X

defends (cf. our discussion in Section 5.2 (recall Figure 5.3) and see,

in particular, Figure 6.15 of Section 6.11). Figure 7.13 shows the same

type of relation when X attacks.

Essentially all of the principal large-scale ground-combat models
35

currently in operational use in the world today assess casualties using

the firepower-score concept and (in one form or another) casualty-rate

curves of the form shown in Figure 7.14, which is taken from documentation

on ATLAS [64]. Such casualty-rate curves are typically plots of fractional

casualties per unit time (or its equivalent) versus the force ratio (A/D)

for different engagement types 36 . Thus, two such plots like those shown

in Figure 7.14 are used to assess casualties, one curve for the attacker

and one curve for the defender. It turns out now that the Helmbold-type

model (7.13.3) gives a remarkably good fit to almost all these casualty

rate curves, i.e compare Figures 7.12 and 7.13 with Figure 7.14 (i.e.

Figure 6-5 on p. 6-5 of [64]), Figure 3 on p. 12 of [501, or pp. 28-31

of [51].

in other words, if (for a given engagement type) we assume that

the fractional casualty rate depends on only the force ratio, then the so-

called [17] asymptotic-power form (7.13.3) gives a very good fit to most

such casualty-rate curves currently used, and thus the Helmbold-type

( equations (7.13.2) may be considered to model the attrition process, with

515

AWLM-



_ X DEFENDS AND Y ATTACKS
.- 0.06

0.05

W0.-%
(W x
W 0.04

jWZ
~LL
, Q 0.03

cLIJd1/
xI~ dO 0

0
xa

I I I II

0 1.0 2.0 3.0 5.0 7.0

FORCE RATIO, A/0

Figur2 7.12. Relation between the defender's fractional casualty rate

and the force ratio for the model ý-• -a-A .y ex

with X defending.
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Figure 7.13. Relation between the attacker's fractional casualty rate

and the for~ce ratio for the model -- y Bdt -a.) y -

with X attacking.
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ATLAS
DIVISION CASUALTY RATES AS A FUNCTION OF FORCE RATIO

ATTACK OF A,
6.0 A FFORTIFIED POSITION

PREPARED POSITION
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FORCE RATIO, AiD

Figure 7.14. Typical casualty-rate curves used in ATLAS (from [64)).
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the parameters a, b, a, 0, d, and e depending on the type of engagement.

Moreover, there are even computerized routines available for the least-

squares estimation of these parameters (e.g. see [17], especially Figure 1

on p. 6).

As we discussed in Section 6.11 above, the model (7.i3.3),

equivalently (7.13.2), can accommodate a wide variety of classic attrition-

rate forms, and furthermore, a variety of attrition-rate forms have

indeed been used in large-scale ground-combat models over the years.

For example, ground-combat attrition in the original version of TAGS was

assumed to follow the logarithmic law (see SISKA, GIAMBONI, and LIND

(132,p. 29]), cf. d - e - 0 in (7.13.2). Today, attrition is usually

modelled as being "intermediate" between the logarithmic and square laws.

For example, comparing Figure above to Figure 7.14 (i.e. Figure 6-6

of [64]), we find that the casualty rate for a defending force is best

fit by d near I (i.e. dx/dt - -ay - $x). However, comparing Aigure 7.13

above to Figure 7.14, we find that a value for d around one-half seems

more reasonable for the attrition-rate of an attacking force (i.e.

dx/dt - -ax y/2y/2 - Bx). All these attrition-rate functional forms may,

of course, be handled by the HELMBOLD-type equations of warfare with

operational losses (7.13.2) by taking the appropriate values for the

fire-effectiveness-modification exponents d and e. Thus, this general

model (7.13.2) has the flexibility of fitting a wide variety of attrition-

rate forms that have been used to model large-3cale ground combat.

Let us finally note here that the author knows of no acknowledgment

of the possibility that the casualty-rate curves such as we have been

discussing could be fit by a differential-equation model, or might even
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have arisen from a formal or informal understanding of simple differential

equations. Thus, we have developed an important simplified analytical

model of large-unit attrition. A good analytical model, of course, should

simplify, be transparent and easy to understand, be easy to manipulate,

and increase our understanding of real-world processes (i.e yield important

insights). In the next section we will develop from the model (7.13.1)

and its constant-coefficient version (7.1.3.2) some important insights into

the dynamics of combat that are not at all obvious from the above

casualty-rate curves.
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S7 14. Changes over Time in the Force Ratio for the Above Model.

First, let us recall (see Section 6.14 above) that when WX - W - W

in (7.13.1), i.e. we have the equations

1 -W
dx . -a(t) - (-) *y - B(t)x with x(O) - x0 ,
dt y

(7.14.1)

dt • (I-) x- c(t)y with y(O) - yo 9dt x

w w
the substitution p - x and q - y transforms this nonlinear combat model

(7.14.1) into the following linear one

dp - -W{a(t)q + a(t)pl with p(O) - xW
dt0

S~(7.14.2)

- -W{b(t)p + a(t)q} with q(O) - YO
dt

Hence, we can invoke all the results of TAYLOR and PARRY [146] (see Section

6.13 above). In particular, if we let

R(t) - a(t) and S(t) - {,(t) - Q(t) (7.14.3)
bkt) V-a (t)b(t)

and assume that (Al) W E (0,11, (A2) R(t) and S(t) are nondecreasing

functions of time, W) limT.. fo b(t)dt - + -, and (A4) R(t) is not

identically equal to zero, then X will lose a fixed-force-ratio-breakpoint

battle in finite time if
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")W< So2 + /0,/2)2 + 1 (7.14.4)

where R0 denotes R(0) and S0  denotes S(0). Moreover, the force ratio

u - x/y is a strictly decreasing function of time in such a battle. When

WX# Wy., the model (4.1) is, unfortunately, no longer transformable into

a linear one, but we still can obtain similar results for constant attrition-

rate coefficients by slightly different arguments.

We aczordingly compute the rate of change of the force ratio u - x/y

for the model (7.13.2), namely

du -bul~+ (i- al-ddu- ' 1e + (a - )u - au ,d F(u) . (7.14.5)

Computing F"(u) U( + e)ebu e- + d(l-d)au-d- , we find that F() - F(u;de)

is a strictly convex function of u on [0,+-) for 0 < d, e < 1 but

not both d and e simultaneously equal to zero. Let us therefore assume that

this condition is satisfied, i.e. 0 < d, e < 1 but not both d and e

are simultaneously equal to zero. Observing that F(0) < 0 and

limu +, F(u) - + o, we see that there exists a unique positive value for

u such that F(u) 0, since F(u) is strictly ccnvex on [0,+-o). Let

us denote this unique positive root of F(u) - 0 as u+. Then we have

(< 0 for 0< u < u+,

F(u) (7.14.6)

> 0 for U+< U.

It follows that if u0 < u+, then du/dt(t) < 0 as long as u > 0, since

although u(t) changes (decreases) over time, it still E [O,u+). Also,
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if u > u+ then du/dt(t) > 0 as long as u - x/y remains finite.

Thus, we have proved (cf. Theorem 6.13.1).

THEOREM 7.14.1: For the nonlinear HELMBOLD-type combat model

(7.13.2), du/dt(t) < 0 for all t > 0 as long as u > 0 if

and only if du/dt(O) < 0, i.e. u0 < u+.

We observe that when d - e and d E (0,I], then

u+- Sf2 + S /(2 + +I,(7.14.7)

where R now denotes a/b and S denotes (-a)/a/b.

Theorem 7.14.1 not only is of intrinsic interest, but it also forms

the basis of important results about the dynamics of FEBA movement given in

Section 7.16 below. Theorem 7.14.1 also leads to

THEOREM 7.14.2: For the nonlinear HELMBOLD-type combat model

(7.13.2), X will lose a fixed-force-ratio-breakpoint battle in

finite time if and only if u0 < u+.

PROOF. By Theorem 7.14.1 we know that du/dt(t) < 0 for all r > 0 as

long as u >.0 if and only if u0 < u+. It remains to show that u ÷0+-

in finite time. Since F(u) is convex, we know that its maximum value

occurs at the end points of the interval [O,u 0 ]. Denote this maximum value

as -M with M > 0. Then F(u) < -M < 0 for all u E [O,uo]. Hence,
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t .du)

u(t) - u 0 +' dt Uo - Mt
0

It follows that u(t) - 0+ in finite time, and we have proven the theorem. Q.E.D.

The following theorem is then an immediate corollary to Theorem 7.14.2

and (7.14.7).

THEOREM 7.14.3: Assume that d - e and d E (0,1] for the

nonlinear HELNBOLD-type combat model (7.13.2). Then X will

lose a fixed-force-ratio-breakpoint battle in finite time if

and only if

dS2+vS2 (7.14.8)
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7.15. FEBA-Movement Modelling.

Although the fundamental role of ground-combat troops (in the

U. S. Army's own words, e.g. see [1 6 4 ,p. iv]) is to "shoot, move, and

communicate," one may think of the Army's mission as being ground control.

All ground-combat models must consequently in one way or another reflect

the control of territory by the opposing forces. Many large-scale ground-

combat models (e.g. ATLAS, CEM, and TAGS) assume that a "contact zone"

(or FEBA) separates the two opposing forces and runs in a more or less

continuous line between them. These models divide the tactical battlefield

into strips called "sectors," and the fighting forces are generally con-

strained to move within these sectors, which correspond to axes of advance

or withdrawal (e.g. see [25, pp. 9-13 and p. 82]. Combat operations in

such a sector are then more or less independent of those in adjacent

sectors, with the exact details varying significantly from model to model

(e.g. between AILAS [98] and CEM [25]). For our purposes here, however,

we assume that there are no interactions between sectors, and let us then

focus on an individual sector.

in such a sector, the forces are separated by a FEBA (see Figure 7.15),

and during an engagement changes in the rate of FEBA movement are primarily

38
caused by chzuiges in the force ratio . FEBA position is then calculated

as the integral of a rate-if-advance equation, i.e.

t d

s-J (-d) dt , (7.15.1)
0 dt

where

- f(u;r) ,
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ADJACENT FEBA
E CONTACT ZONE BETWEENSECTOR (THE TWO OPPOSING FORCES,)
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"" i
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CUMULATIvE FEBA
* _MOVEMENT, sof)

Figure 7.15. Conceptualization of aggregated-force combat in

a sector.
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s - s(t) denotes cumulative FEBA movement from its initial position,

ds/dt denotes the rate of advance (taken to be positive for X), and

u - x/y denotes the force ratio (usually the ratio of the firepower

indices x and y of the opposing forces). In other words, we have

adopted the convention that ds/dt > 0 means that X is advancing against

the enemy (Y). In current aggregated-force models (e.g. ATLAS and CEM)

it is assumed that the rate of advance also depends on additional tactical

factors such as: (1) terrain trafficability, (2) unit types in the attack-

ing force, and (3) the engagement type 3 9 (e.g. route, retirement, delay,

meeting engagement, attack of a hasty defense, prepared position, or fortified

zone). In equation (7.15.2), r denotes all these other tactical factors.

For a fixed value of r, the rate of advance consequently depends on only

the force ratio, and this dependence (at least for most of the rate-of-advance

curves seen by this author) may be characLerized as follows:

(CI) a threshold forue ratio is required for an advance to start,

(C2) above this threshold value, the rate of advance increases

as the force ratio increases, but at a decreasing rate

(i.e. above the threshold value, the rate of advance is a

convex function of the force with essentially a horizontal

asymptote).

A sector such as depicted in Figure 7.15 is one-dimensional in the sense

that only a single number s(t) is used to specify FEBA position at time t.

We may think of this s(t) as representing an average FEBA position within

the sector (i.e. variations in FEBA position within the sector are
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not considered). Although we have depicted the sectors shown in Figure

7.15 as being straight and of uniform width, this need not be the case

(e.g. see (25, p. 10 or p. 82]).

Let us row consider an example of a rate-of-advance equation that

has been suggested by historical data and used in various forms in many

RAND studies. We use this example in the next section to show that we

need to know only the above two general characteristics of a rate-of-advance

curve (and not numerical particulars as long as the curve has these general

characteristics) and, for example, the fact that the force ratio is a

strictly increasing function of time (see Section 7.14 above) in order to

develop some important insights into the dynamics of FEBA movement. We

therefore consider (see Figure 7.16)

I R--
MRx u for 0 < u < uR

ds 0 for u u < u (7.15.3)
dt R- -A <

V mA ( u uA u
ma for uA<

where VR denotes the maximum speed for retreat of the X force, uR denotes

the force ratio at which retreat begins, VA denotes the maximum speed for
max

advance of the X force, and uA denotes the force ratio at which advance

begins. We should think of the pacameters VaR x R ma amax' URP ma uA a

depending on the tactical variables (i.e. terrain type, attacking unit types,

and engagement type), denoted as T above. The functional form (7.15.3)
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is suggested by a model that fits data on operations in Western Europe

during Wrold War II (see [116] and [66, pp. 17-18]). We have chosen to

consider the functional form (7.15.3) because (1) it provides a good
40

fit to many rate-of-advance curves currently in use, and (2) it yields

an analytically tractable model when combined with attrition equations

such as (7.13.2).

From (7.15.3) we see that for a given set of tactical conditions

(denoted as T above), FEBA motion depends on the force ratio, and con-

sequently we are interested in how the force ratio behaves over time

(see Section 7.14 above). In the next section we will show how the

equations (7.13.2) and (7.15.3) provide some valuable insights into the

dynamics of ground combat.
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7.16. Dynamics of FEBA Movement in Large-Scale Ground-Combat Models 41 .

As discussed above, in an engagement FERA movement i9 governed by

the force ratio, which in turn varies with time due to losses on both sides.

We will now show how the analytical formations for attrition and FEBA motion

(given above in Sections 7.13 and 7.15) lead to some valuable insights into

the dynamics of FEBA movement as portrayed in current large-scale ground-

combat models.

It will be convenient to restate our combat model here, since its

component parts are widely scattered above. As we have seen above, con-

ventional-force combat in large-scale operations may be modelled by (7.13.2)

and (7.15.3). Unfortunately, we have not been able to obtain explicit

analytical resulida concerning FEBA position, combat capabilities (i.e.

the two firepower indices of the opposing forces), and the force ratio. for

the general version of this model. However, by choosing the appropriate

values for certain parameters, we are able to obtain such explicit analytical

results: thus, we assume that d - e in (7.13.2) and denote this common

value as W. Also, for convenience and simplicity, we assume that uA - uR and

VA vR -V in with extension to the general case of u ý u andmax max max A R

A V R being straightforward but messy. Our model for conventional
max max

combat between large ground-force units in a sector may then be written

as the three coupled equations

dx -a () y- ax with x(O) =
dt yx

0

~ I-W

di" - x (Y-) x - my with y(O) -Y 0 , (7.16.1)

!Ls V with s(O) - ,

where 0 < W < 1.
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One important characteristic of the analytical model (7.16.1)

ii izs transparency (cf. the last paragraph of Section 7.13): we explicitly

see all hypothesized functional relations. For a special case of this

particular model (the author currently knows of no other), explicit analytical.

results are readily available, and we will develop them below. The author

conjectures (but cannot prove) that analytical results take their simplest

form for the model (7.16.1). Even in this "simplest" case, however, the

analytical expression for FEBA position [see (-7.16.8) a=d (7.16.9) below]

is so complicated That computational results are required to provide any

insight into the dynamics of FEBA movement. However, the qualitative

behavior of FEBA position over tiae is readily discernible for the more

general case of d 0 a in (7.13.2) by combluing results on changes over

tiwa in the force ratio (se._e Theorem 7.14.1) with the general character-

istics of rate-of-advance equations [see (Cl) and (C") in Section 7.1.5

above]. Thus knowledge about how the force ratio changes over time. is

a key piece of information for understanding the dynamics of large-scale

combat as currently represented in many large-scale ground-combat models,

Analysts should therefore become familiar with how various functional

forms for attrition rates yield different types of temporal variations in

the force ratio.

We will now develop the explicit analytical results for the model

(7.16.1). If we let u - x/y v z, where Z - 1/W, then the above model

may be written in the equivalent form
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dv _1 2(dt bv + (0 - )v- a with v(O)- yo)

(7.16.2)

ds with s(O) - 0-t" Vmax Z +

where I < Z < + o. The first equation of (7.16.2) is readily incegrated

to yield the force ratio as a function of time, namely

W W )( W P e)W (7.16.3)

M ((t0 - v) ) - (u0 -vM) e 2WOt,

where

I -1 , R - a/b , S - (7.16.4)

VP r{ SS/2/+ /(S/2)2 + 1 (7.16.5)

and_ _

v- ,fS/2) + < 0 (7.16.6)
V 'R~/2 (S2

Because of the coupling of equations (7.16.2) we have not been able to

develop an explicit expression for FEBA position as a function of time,

s(t). It is possible, however, to express FEBA position as a function

of the force ratio. Thus, we may eliminate time from (7.16.2) to obtain

z v d V (1, + J)dv (7.16 7)
ds --- ~s-- b e v-V)( V - ) (v" +l(v -vp)(V VM)ii'

For Z - n - 1/W, we may use a partial fraction expansion of (7.16.7)

to obtain after some rather lengthy computations
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kU• P~ ~ on ( •n-

and the other coeffncien+ s are given in Table 7.VI. When n is odd and

vM - 1, the above expression (7.16:;8) reduces to

/ + (u - v / u 0

max I//n
6= -o+ /uav U + -}

+ F(1 n [el k] + Gn[tan- {- ( \ (u) tan- Q(U0 } 1 + /
kkuo )I Iak.{QI) k k) (7.16.9)

where the modified coefficients C through Gn are given in Table 7.VII.

Thus, we see that explicit analytical results are readily obtain-

able fo- the model (7.16.1), although the FEBA-position results only hold

for WV /n. UnfortuInately, even these explicit results do not readily

reveal the dynamics of FEBA movement. We will now show how the qualitative

behavior of the force ratio over time as determined from a force-ratio

equation Like (7.14.5) may be coupled with a rate-of-advance equation

to yield nme important insights into the dyn amics of FEBA movement.

This approwch also allows us to consider more general models of both
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TABLE 7.VI. Coefficients for Relation (7.16.8) Between FEBA Position

and the Force Ratio u - x/y.

C " ,'¶ (uA + 1)f(-_)n - 3.}/{2nl(vp + 1)(vg + 1)1
n P A

E _(vp - uA)/{2e(vP + 1))

S -(ve _UA)/{26(v + 1)}

,k= "'� (u + 1){S Aý + (R - 1) cos &k1/{nlP
kA k kM

Gkn 2 IR (ui + 1)(R + 1)(sin On~l{n/Pn(v enn(vM)}
k A k'k' P k M

pn (q) -q 2 _ 2q(cos n) + I

Qkk

Q n M) (ul/ - Cos 0 n)/(sin 0 n

and

nk- (2k - 1)'f/n
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TABLE 7.VII. Modified Coefficients for Relation (7.16.9) Between FEBA

Position and the Force Ratio u - x/y When n is Odd

and vM - 1.

C -{nnV - uA (n - )[ - (vp + l)(uA + l)/2j]/(n(vp + 1)-ý

D (Up - )/((v + 1)(v + 1))
n U A p

E n= (uA + 1)/{n(vp + 1)}

F - '¶( + 1) (S vAf + (R-1) cos 0 n}/{2nI(1 + cos onl) Ifl(v )k A k k k

Gk -2v~(A k k k
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attrition and also FEBA motion for conventional combat between large unitt3 in a

sector.

We therefore consider the more general version of

dx l-d
dx ,-a (--) y - with x(O) - X0

d_ = -b (Y-) x- Cy with y(0) - Y760
dt x (7.16.10Y

I f R(u;T) < 0 for 0 < u < uR

ds 0 for uR < u < uA with s(O) 0,
dt

Sf(u;T) > 0 for uA < u

where 0 < d, e < 1, with d and e not simultaneously equal to zero. Here

the attrition-rate coefficients a, b, a, and a also depend on the tactical

parameters, denoted as i. For understanding how the trading of casualties

interacts with the rate-of-advance equation to determine the dynamics of FEBA

movement, we need consider only the force-ratio equation in conjunction with

the rate-of-advance equation, however. Thus we consider
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xO

u +e (a-)u - au with u(O) u 0

f R(u;T) < 0 for 0 < u < uR (7.16.11)

ds 0 for u u u with s(O) = 0,
dt R ý- - A

f A(u;) > 0 for uA < u

where 0 < d, e < 1, with d and e not simultaneously equal to zero. Let

us assume that X is the attacker. Consequently it is not unreasonable to

expect that u+ > uA. For example, a/b - 9, a - a, d - e, and uA - 1.7

leads to this situation. In this case (i.e. when u+ > uA), recalling

Theorem 7.14.1, we can obtain some important insights into the dynamics of

FEBA movement by considering the second differential equation in (7.16.11) (see

Figure 7.17). In other words, the FEBA-movement information shown in Figure

7.17, has been obtained by combining the strictly-monotonic behavior of the

force ratio over time (cf. Theorem 7.14.1) with the general characteristics

(Cl) and (C2) (see Section 7.15 above) of the rate of change of FEBA

position (cf. the second differential equation in 7.16.11).

Figure 7.17 shows us that there are several critical initial-force-

ratio threshold values that bound regions of quite different subsequent

evolution for the course of combat. If the initial force ratio u0  exceeds

u+ > uA, then the X-force attack will continue to advance against increasingly

more favorable force ratios, i.e. the attack "breaks out" in the sector.

If Y does not, for example, commit reserves or allocate air strikes to

the sector, then (according to the model) his forces will continue to

retreat in the face of an increasingly more unfavorable force ratio until

538



4C~

I'-

0 ADVANCE OF X
U ý- 4:FORCE AT INCREASING

oS9C RATE. .- (ATTACK "BREAKS OUT a)

I iADVANCE FOLLOWED

ey RETREAT
.j• - (ATTACK "STALLS OUT*)
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Figure 7.17. Qualitative behavior of FEBA position over time

for combat modelled with (7.16.11).
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they are eventually annihilated. If u1 < u0 < u+, we have the most interest-

ing (and enlightening) case: the X-fcrce attack will continue to push

forward but at increasingly more unfavorable casualty-exchange ratios until

the force ratio is no longer such that an advance can be sustained, i.e. the

attack "stalls out." Our model then says that the contact zone will remain

stationary for a while until the f'rce ratio is further worn down enough

for the Y force to counterattack and being to advance.

Although the model considered here is quite an idealization ar.d

simplification of operational models such as ATLAS, CEM, and TAGS. this

basic trading of space for time (in the case in which uA < u 0 < u+)

in order to wear down the force rat.o and then to subsequently counterattack

has been a basic prnmise of NATO defense planning for years. Thus our

simple model has revealed this ianportant structure of large-scale operations.

It should, of course, be noted that this structure (i.e. the combat dynamics

portrayed in Figure 7,17) is not directly discernable from any of the complex

operational models from which we have distilled our simplified auxiliary

model.
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7.17. Current Complex Aggregated-Force Operational Models of Large-Scale

Tactical Engagements.

The following are currently operational theater-level combat models

"that use the firepower-score approach to aggregate forces for assessing

casualties in the manner discussed above 4 2 :

TAGS,

ATLAS,

CEM,

IDAGAM,

and TACWAR.

These are essentially the only operational models currently available in the

United States for analyzing simulated theater-level combat. It was estimated

[9] that as of August 1977 the approximate frequency of use of ATLAS was

600 times per year, that of CEM was 25, and that of DAGAM II was between

150 and 200.
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"*7.18. A Linear Model for Imputing Values to Weapon-Sstem Types Based on

Their LANCHESTER Attrition-Rate Coefficients.

One significant and basic criticism [90, pp. II-C-3I of the fi'repower-
43

score approach is that the effectiveness (or value) of a weapon-system type

depends on the circumstances of its employment and that any methodology for

quantifying the combat capability of a weapon-system type should result in

each weapon being assigned a number representing that weapon-system type's

value in a particular combat situation relative to all other weapon-system

types being employed. Consequently, there have been several attempts to

impute value to a weapon-system type based on the particular circumstances

of that system's fighting capability relative to that of other systems on

the battlefield. This value is then treated like a firepower score for aggre-

gating forces in models of large-scale combat operations for purposes of

modelling combat processes such as attrition, FEBA movement, and tactical

44
decision making . Thus, in this section we will examine an approach for

imputing value (i.e. assigning a firepower score) to a weapon-system type

based on the circumstances of its employment and its casualty-producing

capability relative to that of all other weapon-system types in the particular

combat environment under zonsideration. The basic idea45 of this approach

is to use a linear model for transforming all the LANCiESTER attrition-rate

coefficients 4 6 of a combined-arms team fighting against a heterogeneous

enemy force into a set of values for these weapon-system types.

This approach for imputing values to weapon-system types based on

their single-system kill rates is important because it has been and continues

to be used in so-called weapon-system equivalence studies by the U. S. Army

[89,; 149], and it also forms the basis in IDAGAM4 7 [5; 6; 130] for computing
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force ratios that are used for scaling casualties, determining FEBA movement,

modelling tactical decision making, etc. (see ANDERSON et al. [6] or SHUPACK

[130] for further details). It has also served as the theoretical basis

for aggregating forces in a hierarchical combat-modelling approach developed

in the United Kingdom (see DARE and JAMES [43] and DARE [42] for further

details; see also Section 7.20 below). Unfortunately, different authors

have used different names for referring to this method (and certain of its

variants based on how weapon-system-type value is "scaled"): HOLTER [89]

has used the terms weapon effectiveness value (WEV) and unit effectiveness

value (UEV), ANDERSON [5] has called it the antipotential potential method,

while HOWES and THRALL [90; 92] have referred to it as the method of ideal

linear weights.

The rest of this section is organized in the following fashion.

First, we will present the basic linear model for imputing values to weapon-

system types based on their LANCHESTER attrition-rate coefficients. Next,

we will show how these weapon-system-type values allow one to consider the

evolution of aggregated-force value without having to keep track of indi-

vidual weapon-system types in detail when it is assumed that all attrition

occurs according to the equations for a heterogeneous-force FIF LANCHESTER-

type attrition process. This result leads to several important interpretations

for parameters of the linear-valuation model, including that of the square

root of the eigenvalue of maximum magnitude from an associated eigenvalue-

problem as representing the intensity of combat between the aggregated

forces. Additionally, the evolution over time of the force ratio for this

associated aggregated-force model is examined. The imputed weapon-system-type
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"!aluas foi, each force are only determined up to a constant multiple by the

basic linear-valuatlon model. Various methods for scaling the two opposing

force-value vtctors determined by the basic model are revie~ed, and an alter-

native scaling scheme Lhat avoids certain difficulties is suggested.

We begin by considering a linear model for imputing values to weapon-

system types baaed cri their heterogeneousgforce single-system kill rates

against cpposing enemy weapon-system types. Let us first consider a feu

heuristics to foster an understanding of the liaear-valuation model's funda-

mental premise: namely, that weapon-system types are vailued in direct pro-

portion to the rate at which they destroy the value of opposing enemy weapon-

system types. Assume that you are in combat against an enemy combined-arms

team composed of various weapon-system types. Would you value an enemy

machine gun more than, say, a :'ifle? Without doubt, one will value the

machine gun more than a rifle because it is more "dangerous," i.e. it will

hurt us more in combat by destroying more of our systems. S'ince different

types of systems are involved here in the list of machine-gun kills, one will

have to pick some common denominato%:, aggregate target-type kills accordingly,

and consider the overall value of targets destroy4d. Thus, one is very

naturally led to the following gen*4ral principle for assigning value to

weapon-system types.

FUNDAMENTAL PRINCIPLE OF WEAPON-SYSTEM VALUATION: The value of a

weapon system is directly proportional to the value of enemy

weapon systems that it destroys.
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SThis qualitative rmaxim will now be developed into a quadtitative model for

deturmining weapon-system-type values. In order to have a comaon basis for

comparing different weapon-system -ypes one shoul' consider the number of

kills by a particular weapon-system type in some standard unit of time, and

thus we are led to consider the ate at which the value of enemy weapon

systems is destroyed. Thus, we see thac a very natural and intuitively appeal-

ing basic premise upon which to build a model fur determining weapon-system-
48

type value is the following .

BASIC MODELLING HYPOTHESIS FOR IMPUTING VALUES TO WEAPON-SYSTEM TYPES:

The value of a weapon-sy.tem type is directly proportional to the

rate at which it destroys the value of opposing enemy weapon-ystem

types.

We will now translate the above intuitively appealing basic hypothesis into a

quantitative model.

Consider two opposing heterogeneous forces: an X force consisting

of m different types of weapon systems (denoted as X1, X2, .. , , XK)

opposed by a Y force consisting of n different types of weapon systems

(denoted as 'Y' Y2' "' ' Yn ) (recall Figure 7.11). If we assume that

the total value of a collection of different weapon-system types is a linear

function of the number of each of these different types of systems, then

we can express the model's basic hypothesis given in the preceding paragraph

as follcws
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(value ol' the n aueo rate at which (value of
'L X weapon-- one CONSTANT' ne Xi sstem( one Y

system type system - destroys Y system

systemR

(71.8.1)

As we have done in Section 7.7, we will always let (if it is at all possible)

the subscript i refer to the X force and the subscripi j refer to the

Y force. Thus, if nothing else is said, the index i will always take on

the integer values 1 through m, aud the index _.j•will always take on the

integer values 1 through n. If we let A denote the rate49 at which

one Y system kills Xi systems in e particular combat situation and

similarly let b denote the rate at which one Xi systems kills Y

systems, then we ray express (7.18.1) in mathematical terms as

n
K - b , (7.18.2)

where s denotes the value of one X weapon system, K. denotes a constant

of proportionality which will be given an operational interpretation below,

and similarly a denotes the value of the jth Y weapon-system type. Un-

fortunately, our model is so far incomplete, since not only are there m unknown
X

values sa for the X weapon-system types but also n unknown values
yi

SYi for the Y weapon-system types. This indeterminant situation is readily

alleviated by observing that an analogous system of equations holds for the
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S Y weapon-systLm types. Thus, it is convenient to write the basic liaear

model (founded upon the above basic hypothesis) for imputing values to

weapon-system types based on their single-systam kill rates as follows

nx 1 Y
31 =KX1 bj is,

(7.lP,3)
y m x

Jm

where (on physical/operational grounds we must have) alj and bj > 0.

Equations (7.18.3) are (ni+n) equations in the (m+n+2> unknowns
x Y
i, sj, KX, and Ky. Thus, two more equations must be given, before a

determinant system can be obtained. On the other hand, if we consider that

and K have been determined, then we have (m+n) linear equations

x Y
in (m+n) unknowns si and s . On physical/operational grounds it only

makes senoe to have s and sa > 0, with a zero value meaning that the
i i -

model has imputed absolutely no value to the weapon-system type in question.

Thus, we should inquire whether the linear equatilons (7.18.3) possess such

a nonnegative solution. It is indeed remarkable that as loug as aij

and b > 0 we are guaranteed of always being able to find such deciied

nonnegative solutico.s to (7.18.3) without any further assumptions about the

single-system kill rates aij and bji. To prove this latter assertion,

one subscitutes the second equation of (7.18-3) into the first to obtain

- m ns, "X~ k r 1 Y %Jbj,)s ' (7,18.4)
k-1 J,,l

-. J.
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and similarly

in m

sj - • { j b kiaij sk
k-l i-I

which are more easily to be recognized as a pair of so-called eigenvalue

problems (e.g. see HILDEBRAND [82], MIRSKY [1ll], or SAMELSON (123] by

writing

(AB)T X - (7.18.6)

and

(BA)TSy - X.sy (7.18.7)

where

X - 1/(KxKy), (7.18.8)

s denotes a column vector of the m X-weapon-system-type values [i.e.
T X X X
T . s 2 , ... , s )], A denotes an m x n matrix of attrition-rate

coefficients (i.e. A - [aiji), AT denotes the transpose of A obtained by

interchanging its rows and columns, and similarly for By and B (with B

being an n x m matrix). We will see that by invoking the so-called PERRON-

FROBENIUS theorem50 for nonnegative matrices that one can guarantee that

(without any further assumptions about A and B) there always exists a

vector of nonnegative values such that, for example, (7.18.6) holds.

Before we state the PERRON-FROBENIUS theorem for nonnegative matrices,

it will be convenient to state a few basic definitions from matrix theory.

Our discussion here follows VARGA [152, Chapters 1 and 2]. For n > 2, an

n x n matrix C is called reducible if there exists an n x n permutation matrix.

P such that

P C[ " l Ci,2

,'0 c 2,21
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where Cl,1 is an r x r st'bmatrix and C2, 2  is an (n-r) x (n-r) submatrix,

with 1 < r < n. If no 3uch permutation matrix exists, then C is called

irreducible. Any reducible n x n matrix C may consequently be written

in the following nrm-al fort

R1,1 R1,2 R ,m

0 R 2,2 ..." R2,m
PCP (7.18.9)

0 0 ... R
m,m

where P is an n x n permutation matrix and each square submatrix R j,J

for I < j < m is either Irreducible or a 1 x 1 null matrix. Also, an n x n

matrix M - [mij I is called strictly upper triangular only if mij - 0

for all i > J. Finally, the spectral radius of a square matrix is defined

to be the maximum of the absolute values of the matrix's eigenvalues. We

now state here without proof the PERRON-ifROBENIUS theorem for nonnegative

mazvices (see VARCA [152] for a proof of this important theorem).

THEOREM .5.-1.1 (PERRON [121] and FROBENIUS [60]): Let C z 0 be an

n x n matrix. Then,

1. C has a nonnegative real eigenvalue equal to its spectral radius.

This eigenvalue is positive unless C is reducible and the

normal form (7.18.9) of C is ntrictly upper triangular.

2. To the spectral radius, there correspopda a uonnegativ. eigen-

vector. 1l C is irreducible, then this eigenvector is

positive and the corresponding eigenvalue ia simple.

3. The spectral radius of C increases when any entry of C is in-

creased unless C is reduciLle, and thuin ft does not decrease.
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The above Theorem 5.M1.1 tells us that since AB 2. 0, we can always find

a uonnegative vector of weapon-system-type values t> 0, which is unique

only up to a constant multiple, for the X force such that

(AB)T X _ *x, (7.18.10)

holds, where A denotes the nonnegative real eigenvalue of AB with

largest absolute value. If AB is an irreducible n x n matrix, then Ax

and A > 0. Similarly, BA > 0 guarantees that we can also find a non-

negative vector of weapon-system-type values py >_ 0, which is unique only

up to a constant multiple, for the Y force such that

T *
(BA) -T s , (7.18.11)

and if BA is an irreducible m x m matrix, both ty and A are positive.

It should be noted that under the present scheme of things tX and

,Z Yare each only unique up to a constant multiple, i.e. unique up to a

scale factor. In other words, if (for example) tX satisfies (7.18.10),

then so will ks where k is an arbitrary constant. By scaling these

value vectors in some appropriate fashion, one can make them be uniquely

determined, but we will see that this scaling is not really necessary,

although it may be convenient.

lo summarize, we have shown that we can always solve (7.18.10)

and (7.18.11) to determine sX and se > 0 (with, for example, sX > 0

if AB is an irreducible matrix), but that these weapon-system-type

scores are only unique up to a constant multiple. Thus, the weapon-system-

type-valuation scheme given by (7.18.3) is a "reasonable" model for imputed
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valuation of weapon-system types, since it does yield values that do not

obviousiy violate any paradigms of rationality (such as a negative value

occurring).

Let us now consider what happens to the total value of each of the

two opposing forces in the special case in which all attrition occurs accord-

ing to a heterogeneous-force FIF attrition process (see Section 7.7), and

all such attrition is accounted for by the A and B matrices of attrition-

rate coefficients. We will see that in such cases the total value of each

force undergoes a homogeneous-force FIF attrition process and that the
A

quantities KX, KY, and A may be given simple operational interpretations.

Thus, instead of having to analyze heterogeneous-force combat, one can

examine a derived homogeneous-force model for total force capability (i.e.

value). Additionally, we will find that certain model quantities are

invariant under admissible51 changes in scale for A. and zy, and we will

be led to a very convenient scaling scheme for s and s which in many

senses is the "best" scaling scheme. It should be pointed out here that

within the context of aggregated-force value, the existence of quantities

that are invariant under (admissible) changes in scale for s and

is of the greatest significance because it allows us to dedwice system

behavior that is fundamental in the sense of not depending on the particular

scaling assumptions (i.e. scaling method) adopted. All other quantities

(i.e those not invariant under the group of transformations effecting

admissible changes in scale ior As and y) depend on the choice of

scale for and and consequently different results will be obtained

for them with different scaling schemes. Thus, one has motivation for

looking for quantities that are invariant under changes in scale for 2X

and t.
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Thus, we will assume that the X and Y forces undergo hetero-

genecus-force FIF attrition (see Section 7.7 for a discussion of the oper-

ational assumptions associated with this attrition process), i.e. for xi

and yj > 0

dxi n

dt - - a aijy with xi(O)- x°,J-l

(7.18,12)

dy1 -- b x with yj(O)

dt b jii wi

Let us consider now the total value of the X force, denoted as VX, which

(if we assume that the aggregated-force value is a linear function of the

number of each component-weapon-system type in the combined-arms team)

is given by
m

VW m X
- sixi . (7.18.13)

i-i

Similarly, we takt, the total value of the Y force V to be given by

n
Vy sJy1 . (7.18.14)

The reader should recognize (7.18.13) and (7.18.14) as the usual linear

scoring scheme for determining a single index number to represent the total

combat capability or worth of a heterogeneous force (see Sections 7.11 and

7.12 for further details). It follows from (7.18.3), (7.18.13), and

(7.18.14) that as long as x and Z > 0 •
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d - ((- V wirh Vx(O) - Vx

(7.18.15)

dV. - (1) V with Vy(0) - 0

dt - X (i Y Vi

where

0 m X00=n Y0

sixi and V Y I y (7.18.16)
i-i J-i

From (7.18.15) we see that it is convenient to let

Cx 1/KX and Cy iM/Ky (7.18.17)

and write (7.18.15) as

dVx 
0

dt. -CyV with Vx(O) - Vx

(7.18.18)

dVf ( 0-v
V -. -CxYx with Vy(0) - 0

t X X Y V

It follows from (7.18.8) and (7.18.17) that the maximal eigenvalue X

determining the weapon-system-type scores sX and ty in (7.18.10)

and (7.18.11) is related to CX and C. by

- Cx C. (7.18.19)
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Thus, the square root of the PERRON-FROBENIUS eigenvalue V/XW- C

may be interpreted as the intensity of combat attriting the values of the

aggregated X and Y forces (cf. our discussion in Section 2.2 of the

intensity of combat for the FIF attrition process). Furthermore, CX

and CY may be interpreted as LANCHESTER attrition-rate coefficients in

the process by which aggregated-force value is diminished over time. Thus,

for example, Cx may be thought of as the rate at which one unit of aggre-

gated-X-force value (or combat capability) is destroying aggregated-Y-

force value.

At this juncture it is convenient to use (7.18.17) to rewrite the

fundamental equations for weapon-system-type worth imputed by attrition as

X nC i W J l b j i s i

(7.18.20)

CysY . a sj" aijsiX
i- 1

Although we will have no immediate use for them, it is convenient for future

purposes to record here the "summed results" that follow from (7.18.20)

n m

x j
J Vl

and (7.18.21,

m nx
i-l j-a

J-l
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from which it follows that the quantity CxCY is invariant under changes

in scale for R and i.e. CxCY remains the same when sX and

are replaced by klx and kgy where kI and k are arbitrary positive

constants.

Example 7.18.1. For the 2 x 2 case, i.e. two weapon-system types on each

side (m - n - 2), one can obtain explicit (but rather complicated and generally

unenlightening by themselves) results:

'{1 C c + /C c )2  + 4c1 2 c 2 1 } for c 1 2 c 2 1 > 0,1 {l+ 22 Cli-C22)2 1 22

-=(7.18.22)

max(cll, c2 2 ) for c1 2c2 1 - 0,

or, equivalently,

1 id + d + (d -d ) 42 +4d d for d d > 0,
1 22 11i 22 1221 1221(

* (7.18.23)

maX(dll) d22) for d - 0,

where

l 1 al1bll + a 12b 21, d i a1lbll + a 21b12

c1 2 "a11 b1 2 + a1 2 b2 2, d1 2 "a12 b11 + a2 2 b12,

(7.18.24)
c21- a 2 1 b1 1 + a 2 2 b2 1 , d2 1  a a11 b2 1 + a21b224

c2 2 -a21b12 + a 22b 22 d a12b21 + a22b22•

We find that
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(i-) ) sI for c > 0,

xs 2

(7.18.25)

c,.c2 i for c 0 and Cli >c 2 2 ,

x
with s 1 0 for c21 -0 and c 11 _ c 2 2 , and

(*d
21 1 21

yYs2 (7.18.26)

( dig Y)s for d -0 and d > d
d )l21 11 22

il 222

Ywith sI - 0 for d21 -0 and dl_< d22.

Let us now turn to consideration of the evolution of the total-

aggregated-force values V and V over time. Since these values satisfy

the LANCHESTER-type equations (7.18.18) for a FIF attrition process, we can

invoke all the results that we developed in Chapter 2. In particular,

the total-aggregated-X-force value as a function of time Vx(t) is given by

0cs C•

Vx(t) - V0ash r t - V sinh /X* t. (7.18.27)

From (7.18.27) the interpretation of V'7 as the intensity of aggregated-

force combat should be obvious. However, if we consider the fraction of

0the initial total-aggregated-X-force value, denoted as fx(t) - V x(t)/VO,

we will learn much more about this aggregated-force model. Hence, we consider

556

- - - - -~ - -- - -- - -



I I0
Vx(t) v0  /c~

fx(t) - - cosh VT t - - \/•-- sinh /N t, '7.18.28)

x x

from which we will deduce that the normalized force ratio p(t), defined by

P()- I V( (7.18.29)

is invariant under changes in scale for the value vectors sX and sy by

the following argument. Consider the fraction of the initial total-aggregated-

X-force value

(t) W x(t)
x __0_T

ft)" 0 T---- , (7.18.30)
Vx -1xa0

and observe that it is invariant under changes in scale for tX and Ay,

i.e. fx(t) remains the same when tX is replaced by k-sx where k is an

arbitrary positive constant. Consequently, from the right-hand side of

(7.18.28) we may conclude that the same is true for E y 0 /

- P0. Thus, the same invariance must hold for the normalized force ratio

defined by (7.18.79), and cur above assertion has been proven.

It is instructive for future purposes to consider a second proof of

the stated invariance of the normalized force ratio P(t). As we have seen

previously in this chapter, the force ratio is used for many key purposes

in aggregated force-on-force combat modelling (e.g. casualty assessment,

FEBA-movement determination, simulation of tactical decision making, etc.).

Therefore, let us consider the force ratio F R(t) defined by
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F W 
VVx(t)

R t) Vy(t) (.18.31)

We observe that the ordinary force ratio FR(t) is not invariant under

changes in scale for a and jy, since the substitution a' - kla and

k transforms it in the following way

FR' 2 F . (7.18.32)

From (7.18.18) and (7.18.31) it follows that the force ratio FR(t). as

usual, satisfies a RICCATI equation which in this case takes the form

dR 2 R0 (71.3F R .Cx(FR) -2 with F (O) - Vx/V 0 (7.18.33)

Let us observe that by (7.18.21) neither of Cx and 5 is invariant under

changes in scale for e and ey. Furthermore, any quantity possessing

such invariance cannot satisfy any (differential) equation with coefficients

that do not themselves possess such invariance. From this last observation

and inspection of (7.18.33) we are led to discover that p(t) defined by

p(t) - CXFR(t) (7.18.34)

possesses the desired invariance by seeking to transform (7.18.33) into a

differential equation whose cnefficients are invariarxt under changes in

scale for ex and ty. Conbidering (7.18.33), we see that an obvious thing

to do is to multiply both sides of it by CX and to use (7.18.19) to find that
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42. 2 *
dt p - with p(O) - pO (7.18.35)

The conjecture that p(t) possesses the desired invariance is readily

confirmed by using (7.18.2).) to write (7.18.34) as

P(t) f a smxS- • bsJs )n.y(7.18.36)

It is clear from (7.18.305) that p(t) remains the same when we replace
and p by kiAX and k•.

Thus, we have proven that both CXCY and CxFR(t) are invariant

under such changes of scale. Since the same must also be true for any func-

tion of these two invariants, we have consequently shown that the normalized

force ratio 0(t) - CXFR(t)/( /C 1CZ) possesses the desired invariance (which

we have previously shown by other means). This invariance may, of course,

also be proven directly by using (7.18.13), (7.18.14), (7.18.21), and

(7.18.29). From (7.18.29) and (7.18.33) it follows that the normalized force

ratio p(t) - p(s(t)) satisfies the following very simple RICCATI equation

"k P - 1 with P(O) - , (7.18.37)

where
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0Ko0

and

a~ -57t.

Invoking results about the force ratio from Section 2.?, we may conclude

the possession of the following important properties by the normalized force

ratio p(t), which we have shown to be invariant under changes in scale

for eXandA:

(P1) p(t) is a strictly decreasing function of time if and

only if p 0 < 1;

(P2) p(t) is constant over time if and only if po M 1;

(P3) Y will win any aggregated-force fixed-force-ratio-breakpoint

battle if and only if p 0 < 1;

(P4) p(t) is given by

M P + 1) exp(-2/A:*t) + (p 0 - (71)38
(Pt) + 1) exp(-2fA*t) - (p0- 1) (.13)

and (P5) the time t f that it will take for the normalized force

ratio to reach any specified final value p~ f 1 ise given by
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tf ( , (7.18.39)

where only one of the following two situations is possible:

either (Sl) Pf < P0 < 1,

or (S2) pf > P0 > 1.

It remains for us to discuss the normalization (or scaling) of the

weapon-system-type-value vectors s and s determined by the linear model

(7.18.3). Accordingly, we will first review how various authors have scaled

these value vectors, and then (based on being able to circumvent certain

observed apparent antimonies of imputed weapon-system-type valuation) we

will suggest an alternative scaling scheme that avoids some difficulties

observed for the other scaling schemes.

Two additional conditions (one for each vector) are needed to uniquely

specify the weapon-system-type-value vectors zX and ey that have been

each determined up to a scale factor by the linear imputed-value model

(7.18.3). Different normalization (scaling) schemes that have been proposed

and tried by various authors are shown in Table 7.VIII, with the Cx and

Cy proportionality constants of (7.18.20) (equivalently, the aggregated-force

LANCHESTER attrition-rate coefficients of (7.18.18)] that arise from these

various scaling schemes being shown in Table 7.IX. It should be noted that

when the HOLTER-ANDERSON approach to scaling is used, the usual force ratio

F Vx/VY is equal to the normaiized force ratio P (,r//c )Vx/VY, since

one has chosen to scale the value vectors in such a way that CX - 'Y.

Consequently,
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TABLE 7.VIII. Normalization (Scaling) of Imputed Values for

Weapon-Sys tern Types.

SPUDICH* (1968)

n rn
- a 0 s x a, m 0 . o Y
I { I a xy }i I S I { b xi0} s' j

i 1 j 1 Ji- i-i

DARE and JAMES (1971)

M IJJxn DJ Y -
i-i 1 a-i 1

HOWES and THRALT.L (1972)

M n HT X n r HT Y
I { I a, a I bji sj 9 *
i-i i-i J-i i-i

HOLTER (1973) and ANDERSON (1979)

HAX 1n HAY
8X 1 b hi s i

tHere SPUDICH (1968) - the document published by SPUDICH in 1968 (see

list of references at the end of this chapter).
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TABLE 7.IX. Proportionality Constants (Aggregated-Force LANCHESTER

Attrition-Rate Coefficients) that Arise from the Various

Normalization (Scaling) Schemes for Imputed Values of

Weapon-System Types.

SPUDIC t (1968)

0 SY S 0SX
y-1 i i

DARE and JAMES (1971)

nDJ m n
1 f i b I cD s a s

ii~ ii7 L

HOWES and THRALL (1972)

,HT n HTY HT m HTX

jini ijl

HOLTER (1973) and ANDERSON (1979)

CHA HA
x Y

tAs in the preceding table, SPUDICH (1968) - the document published by
SPUDICH in 1968 (see list of references at the end of this chapter).
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HA HA S DJ HT
FR = P P - -p , (7.18.40)

where the superscript denotes which scaling method is being used to uniquely

determine the value vectors p. and q in conjunction with the basic

model (7.18.20), and

S - the scaling method of SPUDICH [134],

DJ - the scaling method of DARE and JAMES [43],

HT - the sceling method of HOWES and THRALL [91] (see also [921),

and HA - the scaling method of HOLTER (89] and ANDERSON (5].

We will also use this superscript notation for referring to various other

quantities of interest computed according to these different scaling methods,

HA X the.g. 8 i will denote the value of the i- X-weapon-system type computed

by (7.18.20) with the HOLTER-ANDERSON scaling method.

It is also instructive to investigate how results for these various

scaling schemes are related to one another. Using (7.18.20), one can easily

show that if

8' " klsx and s- k , (7.18.41)

then
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C' 70x (7.18.42)

and (as we have already shown above)

F1- ) FR. (7.18.43)

Recalling that CX CY X* is invariant under such changes in scale, we

may also deduce from (7.18.42) that

C-\ (k 2 (7.18.44)

and CY- C . (7.18.45)

Using the above equations (7.18.43) through (7.18.45), one can easily

develop relations between these various quantities of interest for the

different scaling methods shown in Table 7.VIII. Such relations (except those

pertaining to SPUDICH's scaling method) are given in Table 7.X.

The HOLTER-ANDERSON scaling method is to be preferred over the

others mentioned above (eee also Table 7.VIII) because it allows the X

and Y weapon-system types to be compared with each other, not just among

themselves (see ANDERSON (5] for further details). It is the approach taken

to scaling weapon-system-type-value vectors determined by the linear model

(7.18.20) that is used by IDAGAM [5; 6; 130]. Consequently, we have
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TABLE 7.X. Relations Between Various Quantities of Interest for Different

Normalization (Scaling) Schemes for Imputed Values of Weapon-

System Types.

DJ 1 HT 1 HA
ix HA x

i1i

DJ 1 HT 1

X ~HA YV

i-i
n

XHT HF~ W CX HT - iLŽL}F A
R C T R mH

C

DJ HT HA HFA

m H

C - C - H

I y

Jim!

(RAYX

ýJ"1

NOTE: The superscripts denote whose scaling method is being used for uniquely
determining the value vectors 1h and ty, with: S - the scaling method
of SPUDICH [134]; DJ - the scaling method of DARE and JAMES [43]; DJ - the
scaling method of HOWES and THRALL [91] (see also (92]); and HA - the
scaling method of HOLTER [89] and ANDERSON [5].
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worked out explicit results for the 2 x 2 case in the following example.

In more complex cases with more weapon-system types on each side, the eigen-

value problems (7.18.10) and (7.18.11) may be solved by iterative methods52

(e.g. see HILDEBRAND [82, pp. 68-74] or ANDERSON [5]) or some type of

iterative procedure may be used to solve the original linear system (7.18.20)

(see HOLTER [89] for further details).

Example 7.18.2. For the 2 x 2 case with the HOLTER-ANDERSON scaling applied,

the general results of Example 7.18.1 take the particular form

x5s -lI
s1

X ( -2C1 ) 
11 > d22'

s2"

(c1
2 )2 for c2 - 0 and c 1 >c 2 2

Cli-C 22 2 l c2

d21 for d > 0
{b 11 d21+b 21 (X*-d1 1)P. 21

Y (dll-d22) -1
S1 b22) +b21d12} for d - 0 and d > d

{b 11(d d2 +b 21d2 7 .1 11 22'

0 for d - 0 and d1l d
215
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Y I {b d21 + b2(A*-d } for d2 1 > 0,
11 21 21 11

S 2 d 2 / d __
12 11 for d - 0 and d >d

(bl(dlld2) + b2d 21 11 22'

0 for d2 1 - 0 and dll d 22.

Unfortunately, this method of imputing value with the HOLTER-ANDERSON scaling

scheme53 sometimes produces results that at first sight seem counterintuitive

(see the next section, however). For example, increasing the kill rate of

a weapon-system type for one side may actually increase the force ratio

in favor of the other side. This apparently paradoxical behavior is shown

by the following example.

Example 7.18.3. For the special 2 x 2 case in which a21 - a22 ' b12 - b22 0,

i.e. two Y weapon-system types against a single X weapon-system type

(see Figure 7.18), the imputed weapon-system-type values determined with

the HOLTER-ANDERSON scaling reduce from the general expressions given in

Example 7.18.2 to

xxsI11i, s2" - ,
1 2

(4.18.46)

y a11  Y a1 2sI - , s2 - all

(a11bll + a1 2 b21  11 + a12b21
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!y b2 l

X 2

Figure 7.18. Diagram of heterogeneous-force interactions

considered in Example 7.18.3.
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Computing the force ratio F - SX X/(s Yl + sY), we find that
R 1 111 2Y2

alb all ( + 2a12b)2y
R 1211 a12 alb

3a1 1  2al 1lb 1 1 + a 1 2 b2 1  (ally1 + a12Y2)2

Thus, we see that there are circumstances, i.e. y 2
1/y

> (a11/a1 2) {1 + 2a 1 2 b2 1 /(a 1 1 b1 1 )), under which increasing the kill rate

of a Y weapon-system type actually increases the force ratio in X's

favor, i.e. aF R/•a1 > 0.

Although such apparently paradoxical behavior cannot entirely

be eliminated from the imputed valuation of weapon-system types by the

linear model, it is eliminated in a few special cases (such as that of

Example 7.18.3) by the following proposed scaling system. First let us

recall, though, that the HOLTER-ANDERSON scaling method picks one of the

X weapon-system types (taken to be the first X weapon-system type here)

as a reference point, and that the other X-weapon-system-type values,

which are determined by (7.18.20) only up to a constant multiple, are then

scored (i.e. scaled) relative to this standard. The reference weapon-

system type must be a "major system" in order for this scaling method to

work 54. The Y-weapon-system-type values, which are also (of course) only

determined by (7.18.20) up to a zonstant multiple, are then scaled by using
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the first of equations (7.18.20)with 1 - 1 and the assumption that

CXHA , CyHA (see Tables 7.VIII and 7.IX). Considering the above, we

propose here the following scaling scheme: choose both an X and also

a Y reference-weapon-system type; assign a value of 1.00 to the X

weapon-system type and score the Y weapon-system type according to its

relative effectiveness against this reference X weapon-system type in

a lx lduel (i.e. the ratio of single-opposing-reference-system kill rates).

Thus, we would have

T X T Y al1sI 1 and sI Y- • (7.18.47)

The basic idea here is that for each force a weapon-system type is selected

for scaling purposes as a reference point, the X-reference-weapon-system

type is assigned a value of 1.00, and the Y-reference-weapon-system type

is scored relative to this arbitrary X-reference-weapon-system-type value.

Example 7.18.4. For the 2 x 2 case with the above scaling method (7.18.47),

the general results of Example 7.18.1 take the particular form

X
8, 1,

( -c 21  for c21 > 0

c2 1

S2 = c12 )for c2 1  0 and c1 l > c2 2

2 12

Y all1
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and
for d2 1 > 0,d 21 2

Sd 12  a11d d2 b1 for d -0 and d > d
11l- 22 b11 21 11 22'

For the special case in which a 2 1 - a - b12 - b - 0 (again, see

Figure 7.18), the above imputed weapon-system-type values reduce to

x x
S" , s22 0

(7.18.48)

Y y
sI a1 1 /b ,1 1  s 2 a 1 2 /b 1 2 ,

and we then find that aFR/3alj - -b 1 xlY /(allY1 + a 1 2 Y2 )2 < 0

Which scaling method is "best"? This important question should

undoubtedly be answered by investigating which scoring scheme [i.e. combi-

nation of basic model (7.18.20) and scaling method] provides the "best"

model for imputing weapon-system-type values, i.e. produces the best results

according to some criteria. However, this type of investigation has

apparently never been completely carried out, and it doe3 appear that

alternate scaling methods are quite naturally suggested. For exaxmple,

besides the above one (7.18.47), another very reasonable scaling method

would be to assign a value of 1.00 to the X-reference-weapon-system type
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and then score the Y-reference-weapon-system type on the basis of its

relative effectiveness against this weapon-system type but weighted by the

intensity of combat in this I× 1 duel relative to the intensity of combat

in the overall battle, i.e.

2
TTY Y a 111 1 a a7 .lbl 1  * -I •-- (7.18.49)

However, it should be noted that the HOLTER-ANDERSON scaling method is more

natural in the sense of using the first of equations (7.18.20) with

x
1 and s1 - 1 to scale A . In the last analysis, though, the choice

of scaling method should be based on consideration of the properties of

the induced results.

(
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"*7.19. Critique of Such Methodology for Imputing Values to Weapon-§ystem Types.

It is only fair to alert the reader to taie fact that there is far

from universal agreement about the usefulness and validity of the methodology

described in the previous section for imputing values to weapon-system

types. Although it is beyond the scope of our current investigation to

examine in detail criticism of and issues associated with this methodology

for valuating forces in aggregated-force analyses, we will try to outline

the salient features of such di3course and identify sources of further

information for the reader who desires additional details. It should be

born in mind, though, that (irrespective of such criticism) comparing,

equating, or quantifying in some way the relative performance of diverse

weapon systems is one of the key tasks in the evaluation of weapon systems

for defense planning (e.g. see [149, Chapter 30] for further details), and

frequently such analysis must be done within such stringent resource and

time constraints that the use of any type of detailed combat model is pre-

cluded (see below for further discussion).

The above method for imputing values to weapon-system types based

on their LANCHESTER attrition-rate coefficients has evolved out of previous

attempts to use the index-number approach to quantify military "apabilities:

it was apparently developed in response to the criticism of the old fire-

power-score approach that it did not value (or score) weapon-system types

based on the circumstances (i.e. combat environment, friendly force structure,

and enemy force structure) of employment for a weapon system [90, p. II-C-3]

(see also [39, p. 15], LESTER and ROBINSON (105],and [150, p. •6]). Thus,

in order to properly assess the usefulness of this new weapon-system-valuation
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methodology one should review critical appraisals of the old firepower-score

methodology: the interested reader can find critical reviews of the firepower-

score approach in HONIG et al. (90, Appendix C to Chapter II], BODE (10], and

STOCKFISCH [135] (see also [150, pp. 54-56]). It appears to this author

that the model considered in the last section for imputing values to weapon-

system types does respond favorably to the criticism that the old firepower-

score approach, which essentially judgmentally determined the values of

weapon-system types, was not a transparent model of weapon-system valuation

[150, p. 56],and also did not reflect changes in the circumstances of combat

(e.g. enemy force mix or distribution of fire over enemy target types) in

the valuation of weapon-system types. See, however, FARRELL [56] and

ANDERSON (5] for critiques of the imputed-value method.

No discussion about the pros and cons of index-number approaches used

in general-purpose-force analyses and/or models can be considered to be complete

without placing it in the perspective of noting that it may be viewed as part

of a broader debate over whether corps-level and theater-level combat oper-

ations should be represented by aggregated or detailed models for purposes

of defense analyses (e.g. see STOCKFISCH [135, pp. 9-10] or [150, pp. 54-563).

It has been argued that detailed models are to be preferred55 because they

make judgment (and the use of judgment in an immature field such as combat

modelling apparently cannot be avoided56) explicit and hopefully transparent.

Due to the almost complete lack of relevant combat data to empirically test

whether detailed or aggregated combat models yield better predictions (at

least when tested within the context of past historical combat), the debate

has become essentially metaphysical, with many people seemingly arguing

K 5
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that more detail is necessarily better. A more germane question is: How

much detail is relevant? And an even more practical question is: How much

detail can one afford? A recent U. S. General Accounting Office (GAO) report

[150, pp. 28-29] points out that there is a strong inconsistency between

people wanting more detail in combat models and yet resenting having to pay

for it by spending more man-years of effort to have analysts understand such

a detailed combat model and learn hcw to use it. In other words, more support

is required in terms of people (i.e. analysts) to maintain and use a more

detailed model, particularly if another agency or company developed the model.

The transfer of a complex model from one installation to another is fre-

quently an insuperable problem (e.g. see SZYMCZAK [139] for further details).

Many people today feel that combat models have become too complicated5 7 ,

and there has consequently been talk of a "complexity crisis" (see Section 7.23

below). One suggested way out of this dilemma of requiring both model detail

and also ease of running and understanding has been to use a hierarchical

modelling approach in which the output from detailed combat models of small-

unit operations is used to generate various combat-results tables for a

large-scale aggregated combat model. Thus, the output from one model is the

input to another model. Well-developed hierarchies of combat models exist

in the United Kingdom and West Germany, and also to a lesser extent in the

United States (see Section 7.20 for further details). Within this context

the above weapon-system-valuation model provides an essential interface

between a small-unit detailed model and a large-scale aggregated one by

converting heterogeneous-force single-system kill rates (determined by the

detailed model) into firepower scores 5 8 (i.e. weapon-system-type values)
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that are sensitive to the physical and operational circumstances of battle

(e.g. see DARE [42, pp.294-295]). Thus, these imputed weapon-system-type

values in some sense combine the best of the detailed- and aggregated-combat-

modelling worlds by explicitly considering the physical and operational

factors of a combined-arms-team engagement but yet aggregating all the forces

on each side in some geographical region. Within this context, these new

imputed weapon-system-type values apparently are a distinct improvement over

the old firepower scores which were essentially judgmentally determined.

With the above as general background, let us now briefly turn to

the problem of evaluating the merits of the above methodology for imputing

values to weapon-system types. Four criteria that one can use for this

evaluation are as follows:

(Cl) internal consistency,

(C2) external validity,

(C2a) prima-facie validity,

(C2b) empirical validity,

(C.Z transparency,

and (C4) computational efficiency.

The first criterion (Cl) asks that such a methodology is logically consistent

and produces no contrudictions or paradoxes, while the second (C2) requires

.£that if such weapon-system-type scores (i.e. values) are used in a model of
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some combat process (e.g. attrition, FEBA movement, tactical decision making),

the results produced are consistent with evidence from the real world. In

the latter instance (as well as the next two), the use to which the weapon-

system-type scores are being put must be considered. The Tlsr two criteria

(C3) and (C4) are particularly important for any quantitative methodology

that is to be used for defense planning/defense decision making (e.g. see

[150, -pp. 25-31]). They are apparently particularly well satisfied by the

above methodology for imputing values to weapon-system types in relation to

other modelling approaches (especially the computational efficiency of index-

number-based models of such combat processes as aggregated-force attrition,

FEBA movement, and tactical decision making), and consequently they will not

be further discussed here. Thus, it remains to discuss the internal con-

sistency and external validity of tne imputed-value method.

R. L. FARRELL [561 has investigated the internal consistency of the

above weapon-system-type-valuation scheme and concluded59 that this valuation

method does not satisfy the elementary properties that one would desire for

a weapon- and force-evaluation methodology. He used the following four

criteria for evaluating the methodology:

(FCI) consistency,

(FC2) regularity,

(FC3) tactical meaningfulness,

(FC4) dependence on effectiveness parameters and independence

of nuisance parameters.
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I,
FARRELL argued that the methodology failed to be tactically meaningful by

exhibiting the following "paradoxes":

(P1) increasing the kill rate against an enemy system sometimes

actually increases the value of that system,

and (P2) a shift in fire distribution to cause more attrition to a

higher-value enemy target can sometimes reduce the value of

the firing force.

We will now show by considering a simple example that a little further

analysis reveals that neither instance is really a paradox.

I

Example 7.19.1. Consider the special 2 x 2 case in which a12 0 a22 " b21

a 22 - 0, i.e. two X weapon-system types against a single Y weapon-system

type (see Figure 7.19). The imputed weapon-system-type values determined

with the HOLTER-ANDERSON scaling are given by

X X b12sI I 2 blI1

(7.19.1)

aY 1 a b +absY 0
1 b - a1 1 b + a 2 1 b 1 2  2b11

It is readily shown that

as Y
-- <0 , (7.19.2)-5 7
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y 2X/

Figure 7.19. Diagram of heterogeneous-force interactions

considered in Example 7.19.1.
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but that

aY
s>0 . (7.19.3)

12

What does not seem to have been previously noted, though, is that

I i <~ . (7.19.4)
ýb12 (s X

2

Thus, the value of a Y target type is increased when it is inflicted with

a higher loss rate by any other X weapon-system type except the reference

one XI, since the value of the firing X system goes up and consequently

the Y system kills a higher value target type and hence increases in value.

However, the target type always increases in value less rapidly than the

firer type (see (7.19.4) above], and this result is quite plausible and

intuitively appealing. Computing the force ratio FR - V x/V -

(b11xI + b 1 2x2 )/(y 1 Va11b11 + a2 1b 1 2 ), we find that

3F R a11b 12 b11  ab+X 7195
11 2( 1 b11+a2b12) y 11 2112 11

Thus, we see that there are circumstances, i.e. x2 /x 1 > (b 1 1 /b 12 ){l+2a 2 1b1 2 /(a 11 b1 )}

under which increasing the kill rate of an X weapon-system type actually

reduces the force ratio against X, i.e. 3 FR/abll < 0. To understand why

this has happened, let us observe that
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as Xxb-- < 0 (7.19.6)

b11

i.e. increasing the kill rate of X1 against Y1 decreases the value of

X2 relative to that of X (see Figure 7.19). Hence, increasing the kill

rate of X can actually decrease th.e force ratio against X when there are

not enough X1  systems present to overcome the decrease in value of the

X2 systems.

The above example provides much insight into the imputed-valuation

scheme (7.18.20) with HOLTER-ANDERSON scaling and raises the question (at

least in this author's mind) of whether the "paradoxes" (P1) and (P2) above

are really paradoxes at all. Some further discussion of ELample 7.19.1

within this context therefore seems to be in order. Further investigation

has revealed that more generally60 (at least for the 2 x 2 case)

for < 0 (7.19.7)
3b ab X

bji >i 0 o i bt( sX

i.e. increasing the single-system kill rate bji of Xi (with the exception

of i - 1, the reference-weapon-system type for the HOLTER-ANDERSON scaling

scheme) against Y increases not only the value of the firer-type weapon
x y

system sa but also the value of the Y target-weapon-system type s .

This is not unreasonable, since the Y system now kills a more valuable Xi
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target type. However, the firer type increases in value more than the

target type, _'.e. 3(s '/si)/ab1 l < 0, as is eminently reasonable,. Further-

more, 39 /3b~ < 0 for k 0 1 or 1, i.e. increasing the single-system kill

rate of Xi against any target type decreLses the value sX of any other

X firer type Xk (except for, of course, k - i or 1) because it has become

less effective relative to Xi [cf. (7.19.6) above in Example 7.19.1].

Furthermore, this last result explains the second apparent paradox (P2),

since

p js n as-
R- 1 kr2 k F' I X (7.19.8)

abji {nl, k2-8bj R=1-Itl bj

In particular, recalling (7.19.5) and the subsequent discussion in Example

7.19.1, we see that increasing the fire effectiveness of one wcapon-system

type decreases the relatyive effectiveness of other weapon-system types

(except for, of course, the X-reference-weapon-system type) against the

enemy weapon-system type, with the attendant consequence thaL total force

value may actually decline61 if the relative numbers of these diminished-

value weapon-system types are sufficient to outweigh the total value of

the weapon-system type whose fire effectiveness has been increased. It

should be noted that this situation occurs when a weapon-system type with

relatively small numbers on the battlefield is increased in effectiveness

(i.e. single-system kill rate), while relatively more numerous weapon-system

types remain at their previous effectiveness and therefore decrease in

relative value.
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It consequently does seem to be perfectly reasonable to this author

that increasing the single-system kill rate of a particular weapon-system

type could actually decrease the total value of a force due to weapon-

system types that are more numerous becoming less valuable. In this context,

it should be born in mind that increasing the capability of a single

particular weapon-system type in a combined-arms team historically has not

always increased total-force effectiveness. (Here we have taken some

literary license in the phrasing of this argument, but in any case the

model here indicates that more detailed analysis of interactions is required

for assessing total-force effectiveness.) Thus, the model (7.18.20) for

imputing values to weapon-system types based on their single-system kill

rates not only does not appareatly produce any serious paradoxes but also

yields some interesting and important insights into weapon-system valuation.

In retrospect, it does not seem intuitively obvious that one could increase

the value of a single particular weapon-system type (as the old judgmentally-

based firepower-score methodology allowed) in isolation from its interactions

with other weapon-system types.

Thus, the above paradoxes (P1) and (P2) produced by this model for

imputing weapon-system-type values appear to this author to be more illusionary

than real, just as have so many other paradoxes of rationality that have,

for example, been noted for game-theoretic models of political behavior 6 2

(e.g. see BRAMS (21]). The brief remarks made in this section about the

internal consistency of this methodology are not meant to be definitive but

to stimulate further detailed analysis and discourse. Thus, it does appear

to be premature to dismiss the weapon-system-valuation model presented in
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the preceding section as not being a satisfactory quantitative tool for

defense planning because it fails to satisfy elementary properties that one

would desire for such weapon-system-valuation methodology (although indeed

one cannot guarantee that it may not eventually-turn out to be so). Further

investigation, thought, communication, and discussion of such results are

definitely required.

It remains for us to very briefly discuss the external validity of

the above weapon-system-valuation methodology. It seems appropriate to

consider both the valuation methodology itself and also the use in models of

combat processes (e.g. attrition, FEBA movement, tactical decision making)

of index numbers developed from these weapon-system-type values. Concerning

the valuation methodology itself, it easily passes the test of prima-facie

validity, but to date no experiments about whether tactical commanders,

defense planners, battlefield soldiers, etc. actually value weapon-system

types this way have been conducted to establish its empirical validity (cf.

SHUBIK's [129] remarks on experimental gaming). Concerning the use of index

numbers derived from these weapon-system-type values in combat-process
63

models, such models again easily pass the test of prima-facie validity6 .

As with any type of combat model, however, empirical validity is an open

question because of the scarcity of combat data (recall our discussion in

Section 1.2 above and see Section 7.22 below). One point that is rather

ironic in view of the current fashionability of detailed models today and

bears special note is the fact the available real combat data does not

support investigating the empirical validity of detailed combat models but

only that of relatively simple, aggregated large-unit models (see

Section 7.22 and HUBER, LOW, and TAYLOR [951 for further details).
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Finally, a very important point that has not been mentioned and apparp-tly

has been overlooked is that aggregated-force casualty-rate and FEBA-movement

curves (see Sections 7.13 and 7.15) that were developed for one set of

firepower scores must be recalibrated for these new imputed values based on

single-system kill rates. For example, if one uses the ATLAS casualty-rate

curves as IDAGAM [6, p. 53] does but with weapon-system-type scores developed

by the antipotential-potential method, then the casualty-rate curves must

be revalidated for the new weapon-system-type scores, since different fire-

power scores originally produced the derived data points upon which the

curves aje based (see (84]). In other words, firepower scores (called

theoretical lethality indices in [84]) were used to convert raw historical

data (numbers of men and material) into derived historical data (force ratios

and combat-environment descriptors) from which the caaualty-rate curves

were developed (see Figure 7.20 and also [84]). It certainly is not obvious

a priori that a different set of firepower scores (such as produced by the

antipotential-potential method) would lead to the same curves, and this

point regarding the validity of empirically-based functional relations

developed for one set of firepower scores when different scores are later

used to compute force ratios should be further investigated.

Thus, we have exposed the reader to a number of objections that

have been raised against this new weapon-system-valuation methodology.

The interested reader can find further discussions of this matter in the

references cited in this section. However, the author does not believe

that these objections are any more serious than can be raised against

essentially any other combat-modelling methodology. Furthermore,

there are times when aggregated-force models based on index numbers must be

used, and this new methodology appears to overcome many of the shortcomings of

the old iurely-judgmentally-based firepower-score method.
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Figure 7.20. Process of developing casualty curves from raw

historical data via valuation of weapon-system

types.
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7.20. Hierarchical-Modelling Approaches.

As we have seen above, one can either model the force-on-force combat

attrition process in detail or use some type of aggregation approach to model

it in not so much detail. Each approach has its strengths and weaknesses.

Modelling in ditail produces very complex models that are more credible64 to

many people, apparently mainly because they do contain more detail. However,

for many (of these very same) people such detailed models of large-scale combat

operations are far too complicated to be understood, require too much input

data, and (in general) are just not responsive enough. On the other hand,

aggregated combat models are fast running, do not require as large data bases,

and are much more responsive. However, they do lack a certain amount of credibility,

and many of their inputs are not derivable from physically measurable quantities

[14]. But yet for many defense-planning purposes there is a need for large-

scale (e.g. theater-level) fast-running models (e.g. see DARE (42, pp. 286-287]).

How can one represent large-scale combat in an aggregated fashion and

still maintain credibility? The hierarchical-modelling approach attempts to

solve this formidable problem by combining the strengths of high-resolution

detailed combat models of small-unit operations with those of low-resolution

aggregated models of large-scale combat operations. The basic idea is to run

the detailed model (or models) to generate data for estimating parameters (i.e.

input data) for an aggregated model. In this way, the output data of a high-

resolution combat model is used as the input data for a low-resolution combat

model. This is also the basic idea behind the fitted-parameter analytical model

which was discussed in Sections 5.1 and especially 5.15 above (see Figures 5.1

and 5.12 again).
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Although (to the best understanding of this author) the idea of such a

hierarchy of models has been around for some time, recent interest in the United

States and an attendant analytical framework apparently dates from the Ph.D.

thesis of G. CLARK [34] in 1969 (see also [35]). Subsequently, CLARK's ideas

have been used by a couple of organizations in the United States. For example,

Research Analysis Corporation (RAC) (later GRC) has employed this approach (see

STOCKTON [137]) to use output from CARMONETTE to develop combat-results tables

for assessing engagement outcomes in the Division Battle Model (DBM) [47] (see

also [64]).

Apparently, however, such a hierarchical approach has been much more

widely used in NATO countries for a variety of reasons. There are well-developed

hierarchies of models in both the United Kingdom (UK) and also the Federal

f Republic of Germany (FRG) [41] (see also DARE [42], FISCHER and HUBER [57], and
4

NIEMEYER [119]). In fact, the best conceptual discussion of the hierarchical-

combat-modelling approach known to this author is the recent one by D. P. DARE

[42] of the UK (see [64, Appendix A], however).
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7.21. Significant Modelling Issues.

We have briefly touched upon the conceptual bases (i.e. methodologies)

for assessing casualties in tactical engagements in war games and other

combat simulations in the above sections. However, there remain a number

of significant problems involved with the implementation of such methodologies

and building operational models of combat (cf. our discussion of the art

of modelling in Section 7.1 above). Here we will briefly indicate what

some of the issues are. The following is therefore a list of what appear

to the author to be some of the significant modelling issues:

(1) scale of operations to be represented,

(2) significant factors (i.e variables) to be represented,

(3) degree of resolution versus amount of detail,

(4) representation of time and space,

(5) assessment of battle outcomes.

Time prohibits any detailed discussion of all these important issues

so let us focus on one area that holds particular promise but (unfortunately)

has apparently not been appreciated by military OR workers as much as it

should have been: namely, the identification and classification of the

significant variables in combat. The American military historian and

combat analyst COL TREVOR N. DUPUY [86] (U. S. Army, ret.) has developed

the following classification of combat variables:
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S
(1) environmental variables-those which affect the effectiveness

of weapons,

(2) operational variables-those which influence the employment

of weapons and forces,

A. tangible

B. intangible.

DUPUY (48; 49] has developed methodology for systematically applying the

effects of such variables (see Table 7.XI) to his own fire-power-score

method of combat analysis, which he calls the Quantified Judgment Method

of Analysis (QJMA). He has the advantage of apparently being essentially

the only person in the United States to have generated new primary combat

data from historical records, and combat modellers and analysts should

get many new ideas from his work.
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TABLE 7.XI. The Significant Combat Variables of T. N. DUPUPI [86].

A. Weapons effects

Environmental B. Terrain factors

Variables C. Weather factors

( D. Posture factors

E. Mobility effects

Operational F. Tactical decision-making effects

Variables G. Vulnerability factors

H. Tactical air effects

I. Intengible factors
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7.22. Historical Validation of Attrition Models.

What confidence do we have that our models can actually pre-

dict what might happen in future possible combat? What is the basis

of our knowledge about military combat that is represented by these

models? Following STUART CHASE [29], it is possible for us to identify

at least seven methods for obtaining such knowledge:

(Ml) appeal to the supernatural,

(M2) appeal to worldly military authority -- the higher

ranking the better,

(M3) listen to the claims of the most compelling con-

tractor or advisor (i.e. the best "snake-oil

salesman"),

(M4) intuition,

(M5) common sense,

(M6) pure logic,

and (M7) the Scientific Method,

These approaches are, of course, not mutually exclusive and often

overlap. Unfortunately, the Scientific Method has not always been

65
the source of knowledge in defense-planning work , and the simple

fact is that if we are honest, there are some severe limitations on

the current state-of-the-art as far as how literally we should believe
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model outputs. The main problem is that the nature and quality

66
of the available combat data is so extremely poor that we have no

reliable "bench mark" against which to "calibrate" our combat models.

Compared with the physical sciences, there is an almost complete lack

of historical combat data (see Section 1.2 above). Although future

combat may be quite unlike that of the past due to the introduction of

new technologies and weaponry, it does seem desirable to (in some sense)

calibrate our models with past military operations.

Does such a model (necessarily an abstraction) agree (or, at

least, not disagree) with the realities of the physical world (either

now or in a possible future)? Thus, the combat scientist is faced

with the very practical problem of verifying a combat model, perhaps

with respect to future possible circumstances and not even the reali-

ties of today. In general, the problem of verifying models of man/

machine systems is quite difficult (e.g. see NAYLOR and FINGER [118]

or VAN HORN [151]), and combat models in particular present a number of

special subtleties (see also HUBER, LOW, and TAYLOR [95, Appendix C]),

although the process of model verification67 frequently appears to

the uninitiated to be straight-forward. We will now discuss a few of

these subtle points, but more careful reflective discussion is need-

ed on this difficult subject.

Special subtleties present in the scientific verification

of combat models are as follows:
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(1) principle of uniformitarianism does not hold,

(2) systems are only partially observable,

(3) conceptual basis of knowledge is more like that in the

social sciences than that in the physical sciences.

The physical sciences are essentially based on the principle of

uniformitarianism, which holds that physical and biological process-

es, conditions, and operations do not change over time (i.e. uni-

formity over time). For example, in geology the doctrine of uniform-

itarianism holds that the present is the key to the past [1121. This

principle, of course, does not hold for planning models of new fu-

ture environments (e.g. see HOWLAND [93]). Thus, the combat model-

ler faces a special problem (which has gone largely unnoticed) in

verifying his models: the empirical data base for the testing of

such a model is from the real world (past), whereas the prediction

from the model is for the real world (future). What is meant by

the verification of such a planning model is in need of critical

examination. Additionally, in contrast to the modelling of purely

physical systems, combat models involve (1) hardware (e.g. weapons)

and physical processes, (2) people, and (3) organizational structures.

Although human behavior in combat may not chanýe appreciably over

time, weapons (i.e. hardware) and organizational structures have and

will continue to change appreciably. Thus, the principle of uniform-

itarianism does not hold for combat analybis, and we cannot use the

past by itself to predict the futw-e for combat operations.
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Furthermore, since wars are fought for reasons other than

just for collecting combat data, even our knowledge as to what

has occurred in past combat is imperfect and incomplete. One might

even say in technical jargon that military systems in combat are

only "partially observable." Finally, since combat models resemble

social-science models more than physical-science ones, the standards

of knowledge about combat should be more like those of the social

sciences than those of the physical sciences. Unfortunately, this

has caused difficulties, since the backgrounds of most military OR

workers are most closely related to the latter field (i.e. the

physical sciences). It appears that epistemological concepts from

the social sciences should be quite useful and possibilities in this

direction should be further explored in the future.

Before we consider the specifics of the verification of com-

bat models, it seems appropriate for us to briefly consider the

sources, nature, and availability of combat data. Firstly, one

should distinguish between two types of combat data:

(TI) real combat data,

(T2) simulated combat data (i.e. data generated in a simulated

combat environment by field experiments, field exercises,

war games, machine simulations, etc.)

The two basic primary sources of real combat data are (see McQUIE et al.

[110] or McQUIE [109] for further details):

596

I -J



(Sl) archives,

(S2) official military histories.

Unfortunately, quantitative data that is needed from these primary

sources for verification of mathematical models of combat is not

readily available: the extraction of such quantitative data from

archives requires great investment in manpower of a highly specialized

nature (one essentially needs a military historian), while the official

histories (at least those for the U. S. Army) are purely narrative and

do not contain tables, graphs, or appendices with data [109]. (Moreover,

a glance at Russian works like SIDORENKO [131] indicates that such

quantitative historical studies have been undertaken with vigor in the

Soviet Union.) COL T. N. DUPUY (U. S. Army, ret.) and his associates

at the Historical Evaluation and Research urganization (HERO) are

some of the few people to have conducted research on the archival data

(e.g. see [84] or [85]; see also DUPUY [49]) and must be considered the

only bona fide experts on it. Moreover, HERO has provided (from

winter 1975 until spring 1978) a "Combat Data Subscription Srrvice,"

whose volumes contain quantitative data (laboriously) extracted from

archives 68. Finally, secondary sources of real combat data are dis-

cussed in many of the papers mentioned later in this section.

After a thorough study of the sources, nature, and availability

of real combat data, McQUIE et al. [110] concluded that for the purposes

of statistical analysis, the data available on World War 11 and Korea

are "inadequate, incomplete, and probably biased." Incompleteness is

a particular problem with data measured for one engagement
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frequently not available for others [110]. Moreover, the avail-

able real combat data is essentially of an aggregated (as opposed to

detailed) nature, i.e. "bean counts" for the larger combat units (see

McQUIE et al. (110] or McQUIE [109] for further details). In other

words, the available historical records do not provide detailed com-

bat data such as the positions of individual weapons, targets en-

gaged, engagement conditions for individual target-firer combinations

(including the number of rounds expended at each target), etc. Thus,

the available real combat data does not support verification of de-

tailed combat models, but it only supports such investiations of

relatively simple aggregated large-unit models (see Section 7.3 (also

TAYLOR [145]) for a discussion of detailed versus aggregated combat-

attrition models).

However, using simulated combat data, one can in principle

verify either detailed small-unit (or even many-on-many) models or

the submodels used in such models. There have apparently been some

efforts along these lines (e.g. by the U.S. Army's Combat Develop-

ments Experimentation Command (CDEC)) but information dissemination

about them is poor to nonexistent. The author can supply no specific

references outside of mentioning the relatively recent TETAM (Tactical

Effectiveness of Antitank Missiles) study by the U.S. Army [31-33]

(see also BRYSON [26] and THORP [147]).

There have been some (but surprisingly few) attempts to veri-

fy combat models. To place this work in proper perspective, it is

convenient to conceptually factor the overall combat process into

the following four components (see HUBER, LOW, and TAYLOR [95] for

further details):
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I
(1) attrition,

(2) movement,

(3) C3 1 (command, control, communications, and intelligence),

(4) support.

Verifiuation efforts have concentrated on the first of these four pro-

cesses, and for present purposes so will we. We may also consider

that there are different organizational levels at which combat can be

represented. One example of such a set of levels is as follows:

I
(1) force-on-force (a) large scale,

( (b) small scale,

(2) many-on-many,

(3) few-on-few,

(4) one-on-one,

(5) engineering design.

The available (real) combat data 6 9 is only on Level 1 of the

above classification scheme, i.e. force-on-force operations, and

then apparently predominantly for large-scale operations. Generally

speaking, one can develop both detailed and also aggregated models

K5t
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of combat processes at each of these five levels 70 (cf. Section 7.3

above). Model verification efforts, moreover, have primarily con-

sidered the attrition process71 for such large-scale force-on-force

combat. Furthermore, there are essentially only two general approach-

es for verifying72 (or testing) such large large-scale attrition

models:

(Al) "replay" some particular historical battle(s) to see

whecher or not the model satisfactorily "reproduces"

the historical outcome(s),

and (A2) find regularities or "patterns" in historical battle

data, and then determine whether or not the m9del ex-

hibits a similar "pattern."

The first approach has generally involved large-scale detailed models

and large-scale aggregated data (e.g. see FAIN et al. [54], and one

can raise serious objections about its scientific validity (see below).

The second approach has generally involved large-scale aggregated

models and large-scale aggregated data and has by and large only con-

sidered the classic constant-cceifficient LANCHESTER-type equations

for modern warfare. i'ith rather mixed results being reported (see

below for further details). To this author, the general consensus

seems to be that such a simple functional form is not violently

contradicted by the available combat data but that the consequent

model predictions are statistically too inaccurate for practical use

[77] (Uf. McQuie et al. [110, p. 93]). A careful review and inte-

gration of such past work is lacking and seems to be in order before

plowing any new ground.
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Now that we have established the contextual setting for the

B historical validation of combat models, let us consider a few par-

ticulars. A number of studies (see Table 7.XII) have considered

verification of very simple LANCHESTER-type models, i.e. LANCHESTER's

classic formulations (2.2.1) and (2.4.1) and simple variations there-

of. In Table 7.XIIwegive the authors' names and publication date

of every empirical-verification examination appearing in the open

literature and known to the author. The exact reference to each

piece of work may be obtained by consulting the list of references

at the end of this chapter. All this work has considered secondary

sources and combat data, i.e. data available from other sources

such as history books. Usually considering only initial and final

strengths in numbers, it has generated results tbat at best may be

called inconclusive. This result is not too surprising, since

"aggregated" forces were considered without any type of "scoring"

(i.e. weighting) of the various different weapon-system types com-

prising the opposing heterogeneous forces.

Positive results (i.e. reports of theoretical consequences

not at variance with the available combat data) have been reported

by ENGEL [52], WEISS [158; 160], HELMBOLD [74-76; 79-80], SCHMIEMAN

[126], BUSSE [27], and SAMZ [124]. For example, WEISS [158] reports

that there is some justification for using LANCHESTER-type equations

of modern warfare (2.2.1) "as a point of departure" in modelling

combat. On the other hand, after a rather lengthy and comprehensive

analysis, WILLARD [162,p. 4] concluded that his analysis did not

justify the use of LANCHESTER's classic equations (2.2.1) and

(2.4.1) for modelling large-scale combat. This conclusion is not

at all surprising, since heterogeneous forces were aggregated on the
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TABLE 7.XII. AuthorsWhoHave Investigated the Empirical Verification

of LANCHESTER-Type Models of Warfare.

J. H. ENGEL (1954)

H. K. WEISS (1957, 1966)

R. L. HELMBOLDt (1961a, 1961b, 1964a, 1964b, 1969, 1971a, 1971b)

D. WILLARD (1962)

W. A. SCHMIEMAN (1967)

W. W. FAIN, J. B. FAIN, L. FELDMAN and S. SIMON (1970)

J. J. BUSSE (1971)

R. W. SAMZ (1972)

J. B. FAIN (1977)

tHere HELMBOLD (1961b) - the second paper published by HELMBOLD in 1961

(see list of references at the end of this chapter). ,'
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basis of numbers alone without any "scoring" of the various different

weapon-system types. Moreover, when such "scoring" is used, much

more positive results hav-e been reported (see FAIN [53, pp. 38-391).

As we have previously discussed above, HELMEOLD [80, pp. 1-3]

has emphasized that there are only the two general approaches (Al)

and (A2) for verifying combat models: (A-1) the approach of "replay-

ing" some particular battle(s), and (A2) the approach of looking for

regularities, or "patterns," in the historical battle data. The

usual difficulty with the first appraoch (Al) is that insufficient

data is available on any one historical battle to carry out the pro-

posed comparison (see HELMBOLD (80]; also McQUIE [109]). Even when

sufficient data is available, rather restrictive assumptions must

be made about the conduct of battle, and critical appraisal of these

assumptions leads one to raise serious objections about generaliza-

tions based on such an examination (see HELMBOLD f80, pp. 1-2] for

further details). The work by ENGEL [52], FAIN et al. [54], BUSSE

(27], and SAMZ [124](see also BOULTON et al. [19]) falls into this

first category (Al), while that by WEISS [158; 160], HELMBOLD [74-77;

79-811, and SCHMIEMAN [126]falls into the second category (A2).

This second approach (A2) is nothing more than the Scientific Method

of verifying a model indirectly through checking testable conse-

quesces against observations, the so-called hypothetico-deductive

method (see MORRIS [ll3,pp. 101-103]).

ENGEL's work [52]' gets more attention from the uninitiated

than it probably should. Its weakness is that he estimated para-

meters and also tested the model with the same set of data and forced

a fit through the initial and final force levels for the battle of
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Iwo Jima. In fact, all such attempts at model verification by

method (Ml), i.e. historical "replay," suffer from such deficiencies

(lee REMOLD (80, pp. 1-2] for a further discussion). On the other

band, HELMBOLD's work [74-77; 79-81] has been much more comprehen-

sive. He has sought to indirectly test LANCHESTER-type combat models

against the available historical data by empirically examining the

testable consequences of such models (see Footnote 40 of Chapter 2

for further details). He has applied this approach not only to

ground battles [74-76] but also to air battles [80] and has reported

positive results concerning the validity of LANCHESTER-type combat

models. More recently, he [81] has examined the validity of "break-

point-type" hypotheses (see Chapter 3) and found that "the breakpoint

hypothesis yields theoretical implications that are at variance with

the available battle termination data in several essential respects."

On the other hand, T. N. DUPUY [.83-861 has examined combat

data from primary sources and has in some sense shown the validity

of the firepower-score approach (see also [69]). His work apparently

is the original empirical basis for both the ATLAS and also TBM (see

1164])casualty-rate curves. Subsequently, J. FAIN [531 has analyzed

HERO (Hisotrical Evaluation and Research Organization) World War II

data on 60 engagements in four major Italian campaigns and has repor-

ted positive results concerning the scientific validity of LANCHESTER-

type models of warfare (particularly when a "scoring" system is used

to aggregate the heterogeneous forces). She [53, p. 34] has empha-

sized that the HERO data (of which she examined only a small part)

is the most nearly complete and accurate 'ollection of combat data.

Most recently, DUPUY [491 has published a book Numbers, Predictions
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and War, which may be considered to be the culmination of about fif.-

teen years of historical research by DUTPUY and his associates at HERO

and makes their work available to the general public. Much more work

should be done in this area. It is encouraging that today HERO of-

fers a "Combat Data Subscription Service"73 and a journal entitled

History, Numbers, and War.

I
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7.23. The Complexity Crisis.

It appears that the trend for the future is f or the development and

use of more detailed and complex combat models. This trend has, however, caused

an unanticipated result: it has created a complexity crisis,. In fact, this

complexity crisis was even the theme of the U. S. Army's Fifteenth Annual

Operations Research Symposium held in 1976 (see HARDISON (71]). The complexity

crisis has manifested itself in several significant and far-reaching ways such

as the inability of various DoD agencies to use their complicated computer-

based models to their maximum potential, or by the inability of military OR

analysts to communicate model methodology (and hence the quality of study-generated

74information) to decision makers . This communication problem is especially

acute because of the high degree of labor differentiation and specialization in

DoD analysis activities (e.g. L_ýPPER (97] identifies the following different

participants: users, designers, developers, producers, and managers of models

and data bases, and decision/policy makers;,see also BREWER and SHUBIK [24].

The operational combat models that we have mentioned in Sections 7.9

and 7.17 above are very complex, particularly detailed models. Such complicated

combat models must be implemented on a digitial computer, and without the

modern high-speed large-scale digitial computer they would be impossible.

Consequently, detailed combat models (not only the Lanchester-type ones we

have discussed above but also high-resolution Monte Carlo simulations) are

quite costly to build, costly to run, and generate quite demanding data-base

requirements (see [9] for further details). In other words, such complicated

operational combat models are rather demanding in resources (especially

highly technically qualified peopole to maintain, exercise, and modify them).
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In fact, just evaluation 75 of such complex models is a significant and by

no means completely solved problem (e.g. see GASS [62]). Additionally,

the complexity of a model limits one's ability to conduct useful sensitivity

and other parametric analyses. Thus, there is a definite price to pay for

complexity, and those who demand more detail are frequently not willing to pay

the price for it (e.g. see the discussion by BONDER [14]).

How should one go about resolving this complexity crisis? This is a

very difficult and subtle question that is far beyond the scope or our modest

efforts here. If the reader has become aware that more detail is not always

better, that too much detail can cause a problem, and that serious thought

should be devoted to this problem, then this section has achieved its goal.

Now that the modelling community has proven that it can build very detailed

and complicated combat models, how should it manage their use? This is not

purely a technical question, but one with organizational, professional,

managerial, and sociological aspects %cf. STOCKFISCH [135; 136], BREWER [221,

and BREWER and SHUBIK [24].

The hierarchical-modelling approach (see Section 7.20).may be thought of as

one possible way to overcome the complexity crisis: a detailed model is used

to support a more aggregated model. Along the saae lines, a colleague of the

76author has suggested that the complex model should be used to educate the

mnalyst, while a simple model should be used to comminicate with the decision

maker. In other words, complex combat models should be used as research tools

to determine basic relations that can be presented to decision makers with

simple, transparent, easily-understood models. The detailed contbat model could

be used as a device for developing confidence in thv ability of the simple model
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to reflect the same trends as the complex one and consequently for giving

credibility to the simple model. In this context the complex model serves as

77the "back-up" for the simple model . The reader will, of course, recognize

this approach as being essentially the coordinated use of the large-scale

complex operational model with a simple auxiliary model (see Section 7.1

above; also IGNALL, KOLESAR, and WALKER [96] for a lucid discussion not in a

defense context). It should be clear to the reader that more work on such

modelling strategies for large-scale systems is desperately needed.
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FOOTNOTES FOR CHAPTER 7

1. As the author's colleague Professor C. J. ANCKER of the University of

Southern California has pointed out, it is not generally true that a so-

called mean-value model (obtained by replacing a random variable in a

stochastic model with its mean value) yields a good approximation to

the mean value of the corresponding stochastic process. However, the

results of Section 4.16 indicate that if the initial force levels are

"not small" and the forces are "not near parity," a deterministic

LANCHESTER-type combat model may be considered to approximately yield

the mean course of combat in the sense that it yields very nearly the

same expected values for the force levels as does the corresponding

continuous-parameter MARKOV chain (see Section 4.2) for the same values

of model inputs. Thus, in this very special case of exponentially-dis-

tributed times between casualties, such a deterministic LANCHESTER-type

model may indeed be considered to yield the mean course of combat (see

Section 4.16 for further details). In other cases (e.g. some other

distribution for the times between casualties), however, this is not

always true. Thus, without the appropriate qualifications being observed,

it is simply no0 true that such a deterministic model invariably yields

the same results for the mean course of combat qL do corresponding

stochastic attrition models (e.g. a Monte Carlo simulation). Hopefully,

we will see further clarificaticn of this important point in the literature

In the future.
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2. The :everse process of starting with a simple model and then elaborating

upon it and enriching it in details is, of course, the approach usually

used by model developers to build their models. See W. T. MORRIS [1141

for a lucid discussion of this enrichment process. It is discussed later

in this section.

3. Our discussion here follows that in TAYLOR [143], where these ideas were

apparently first articulated.

4. GEOFFRION [651 has suggested a similar conceptual approach of using a

simple auxiliary model to generate tentative hypotheses to be tested in

a full-scale operational model and thus to provide guidance for further

(computerized) higher-resolution invcsttgacions. We also have felt (see

TAYLOR [140]) that the use of relatively simple auxiliary models in con-

junction with complex operational models has much to offer for the analysis

of military operations (see also NOLAN and SOVEREIGN [120] and WEISS

[159]).

5. Documentation about these models has been discussed in Chapter 1 (see

Footnote 23 of Chapter 1). For the reader's easy reference, however, let

us point out that information about ATLAS may be found in KERLIN and

COLE [98] or [64]. Also, information about BONDER/IUA and its various

derivative models may be found in [9; 15-16; 72; 153], while that about

VECTOR-2 may be found in [39] (for VECTOR-l, see [1541 or [117]).

6. See Footnote 1 above. Further information about the comparison of deter-

ministic and stochastic LANCHZSTER-type models (in particular, about the

comparison of a determiniatic force-level trajectory with the mean course

of combat for a corresponding HARKOV-chain model) is to be found in SeLL'Ou 4.16.
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7. VECTOR-2 promises [155] detailed representation of the C3 process, combat

intelligence, and further refinements in target acquisition (see [39] for the

final product). These processes were apparently not modelled in detail in

VECTOR-l (see [117; 154]) but require user-supplied tactical decision rules

for their representation. Also, see TIEDE and LEAKE [148] for some related

ideas concerning the modelling of tactical information systems.

8. The command and control system tries to avoid wasting fire by engaging

killed targets or false ones. The uniform distribution of fire over

surviving enemy targets reflects this mission.

9. Thus, the target-acquisition, allocation, and attrition processes are repre-

sented by analytical submodels, while movement (which causes changes in

the positions of weapons) is represented in a simulatory manner. Bonder

[13]has consequently referred to a model like BONDER/IUA or one of its

many derivatives as a hybrid analytical-simulation model.

10. This is the approach apparently taken in AMSWAG (a derivative of BONDER/IUA)

[721. A more sophisticated approach would be to also modify the appropriate

LANCHESTER attrition-rate coefficients to reflect decreased vulnerability

of suppressed combatants.

11. The firepower-score approach has been briefly discussed in Chapter 1, and

we will discuss it further in this chapter. Indices of the relative combat

capabilities of military units (based on a "scoring system" for the weapons

employed in the units) have b-en used by military gamerg and force planners
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in the United States for at least thirty five years. We are here

generically referring to both such indices and the associated scores as

firepower scores. (See Section 1.3, STOCKFISCH [135, pp. 7-9], and

Section 7.11below for a discussion of the difference in meaning between

the words score and index as generally used in defense analysep). Members

of this family of scores and indices are firepower score/index of combat

effectiveness (FS/ICE), firepower potential/unft firepower potential

(FP!UFP), firepower potential score/index of firepower potential (FPS/IFP),

weapon effectiveness index/weighted unit value (WEI/WUV), weapon effective-

ness value/unit effectiveness value (WEV/UEV), antipotential potential, etc.

(see STOCKFISCH [135] for further references and a guide to the literature

about firepower scores; also see HONIG et al. [90, Appendix C to Chapter II]

and HOLTER [891). When two names (separated by a "slash") are given above,

the first name (e.g. FS) denotes the scoring system for weapon-system types,

while the second (e.g. ICE) identifies the index number for a unit's capa-

bility. The firepower-score approach has also been used in NATO countries

(e.g. see WOLF [163], HUBER et al. [94], or DARE [42]).

12. We are calling both differential-equation and also difference-equation

models LANCHESTER-type models. In practice, all operational models of

combat systems of any degree of complexity use finite-difference methods

for computation and thus are really difference-equation models. flowever,

for purposes of model building, it is much more convenient to think

in terms of differential equations.

13. Again (also see Footnote 5 above), mcstof these models have been discussed

in Chapter 1 (see Fuotnotes 17 and 23 of Chapter 1). However, information

about TBM-68 (as well as a discussion of the concept of a theater-level

"quick gamie") may be found in [1641.
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14. DEITCHMAN's [44] analysis neglected many important factors of guerrilla-

counterguerrilla operations (particularly the effect of the attitude and

support of the local population, for which the two sides must contend by

political, economic, and psychological as well as military means). However,

such factors may be represented in the model's parameters (e.g. fighting

effectiveness or size of the group). Also, they might be expressed in

probabilistic terms, but DEITCHMAN did not considex this aspect (see

KISI and HIROSE [103]for an examination of the probability of winning

for the MARKOV-chain analogue of DEITCHMAN's ambust model).

15. Thus, DEITCHMAN's [44] model is purely deterministic. Stochastic aspects

have been investigated by KISE and HIROSE [103],who considered the MARKOV-

chain version of DEITCHMAN's ambush model and determined expressions (both

exact and a POISSON approximation) for the probability of winning a

fixed-force-level-breakpoint battle.

16. The concept of phases of insurgency is apparently due to MAO TSE-TUNG

(see SCHAFFER (1 2 5 ,p. 458]). There are three such phases, with Phase III

being traditional national warfare. The first two phases of insurgency

are characterized by small-force ground-yielding operations by the

insurgents but overall military superiority of the counterinsurgents.

During Phase II the insurgents' operations escalate in military character

but remain basically small-force guerrilla activities designed to cause

the dLfense to fragment (i.e. the engagements are localized and

relatively isolated). During Phase III the insurgents take the strategic

offensive and operate with larger, more conventional forces in more

traditional military ways (aee also [70] or [108]).
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17. Thus, one obtains valuable guidance for selecting numerical values for

the coefficients in (7.6.2): pick larger values for the coefficients

p and q corresponding to troops that are poorer in motivation and

discipline.

18. To determine whether or not the solution to a particular differential

equation is expressible in terms of "elementary" functions is a very

difficult advanced-mathematical task (see Footnote 5 of Chapter 6 for a

further discussion). Here all we mean is that (based on our mathematical

experience and intuition) we feel that the statement is very likely to

be true.

19. Here we mean "primary" (as opposed to "supporting") weapons system. The

reader may think of a force composed entirely of primary weapon systems

as being infantry (see WEISS [15 9 ,p. 180] for further details).

20. SCHAFFER [125,p. 470] stated that (7.6.8) holds approximately if

VUa < 0.2AY and that a "more exact formula accounting for overlapping

effects would be"

Sc - {1 - (1 - a /AY)U}y/Tv

where T denotes the "time it takes to fire vU rounds." SCHAFFER

also gave a more precise definition of a .
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S
21. Essentially all complex operational LANCHESTER-type combat models that

represent engagements in detail (i.e. do not aggregate forces with fire-

power scores) and are in current operational use in the United States

have been developed by the principals of Vector Research, Inc. The

discussion here follows that of BONDER and FARRELL [15, pp. 11-17].

22. The value of such an allocation factor may, of course, change during an

engagement, and thus we should denote it as being a function of time,

e.g , ýl "j -ý j (t)"

23. We are justified in doing so because each of the variables upon which

such an attrition-rate coefficient directly depends (see Section 5.11)

5 may be considered to be a function of time. Hence, it is possible to

explicitly determine the value of such an attrition-rate coefficient

as a function of time (cf. Section 6.2).

24. Actually, the results were apparently obtained by others and summarized

by SNOW [133,p. iii].

25. Documentation about these models have been discussed above in Footnote 5

(see also Footnote 23 of Chapter 1, BOSTWICK et al. [18), CORDESMAN [40],

and FARRELL [55]).

26. Here we mean a model that represents some of the complexities of actual

combat operations. Such a model may be used to address operational

problems.
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27. Our discussion here follows that of BONDER and FARRELL (15, pp. 11-121.

28. Military planners have apparently used the firepower-score approach

(see below in the main text) for at least thirty years (see MULHOLLAND

and SPECHT [1161 to plan operations and to plan and control tactical

exercises. Although the origins of using firepower scores for these

purposes are somewhat obscure they are still in use today (see the

U. S. Army's field manual FM 105-5 (73]). Furthermore, it appears as

though such use of firepower scores in planning was the origin of their

use by OR workers for modelling large-scale ground combat.

29. Examples of such scores/indices are given in Footnote 11 above. BODE [10]

has given an excellent discussion of the use of such index numbers in

general-purpose force analysis, while ALDRICH and BODE [1] have given a

lucid discussion of the conceptual problems of aggregation in theater-level

combat models.

30. The one exception is the antipotential potential or WEV/UEV (see

Footnote 11 above, HOWES and THRALL [92], and ANDERSON [3-4];

see also Section 7.18), which may be exercised in the running of

IDAGAM (see ANDERSON et al. [6]). ATLAS and other models that

employ the firepower-score approach have, however, been in the recent

past much more widely used in the United States than IDAGAM (see (9]).

31. Our discussion here follows that already given in Section 1.3, but we have

repeated part of it. here in order to give the reader a complete and unified

overview of the topic of aggregation of forces.
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32. Many times the first assessment (i.e. determination of engagement outcome)

is omitted. For example, ATLAS and IDAGAM only do the last two assessments.

However, some models (e.g. Theater Battle Model (TEM-68) [164]) determine

the outcome of an engagement (e.g. whether or not an attack is successful)

before assessing casualties. In this case, the casualty-assessment curves

depend on the engagement's outcome (see Figures 4 through 7 of [1641).

33. For a slightly different discussion of the developments of this section,

see TAYLOR [142].

34. Examples of such casualty-rate curves may be found in the documentation

for the following large-scale ground-combat models (see also Footnote 5

above): ATLAS [18; 98]; CEM [25; 1061, TBM-68 [164] and TAGS [50-51].

See HONIG et al. [90] for a general discussion about such large-scale

models (but for the period before 1971). Although IDAGAM does not use

firepower scores (see Footnote labove), it uses the same casualty-rate

curves as ATLAS (see [6, p. 53]). In fact, it is stated on p. 53 of [6]

that until better historical data is available, the standard functional

relationships (used in ATLAS) between force ratios and percent casualties

must still be used. Finally, models used for NATO planning also employ

the firepower-score approach and similar casualty-rate curves (e.g. see

[94, pp. 287-298]).

32. See Footnote 32 and also Footnote 5.

33. For example, as shown in Figure 7.14, ATLAS [64] distinguishes between

seven different types of engagements.
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37. Subsequent research by the author (see TAYLOR [144]) has shown this assump-

tion to be necessary. It was not orignally given by TAYLOR and PARRY [1461

(see also Sections 6.6 and 6.13 above).

38. Here, again, force ratio means the ratio of firepower indices (AID).

39. In CEM [25, p. 21; 106,p. 35], for example, the type of engagement is

determined by the missions of opposing forces and, where appropriate, the

type of defensive position. In this fashion the tactical decisions (i.e.

mission assignments) of commanders influence FEBA movement through the

determination of engagement type (see the last paragraph of Section 7.12

for further details).,

40. Rates of advance for simulated large-scale ground-combat operations are

usually given as tables or curves (e.g. see [25; 46; 64; 90; 106; 164]

WAINSTEIN [156-157] and not as mathematical relations. See EMERSON [ 511,

however, for some other functional relatious. An excellent survey of rate-of-

advance modelling (with some European perspectives) is to be found in GOAD [68).

41. See also TAYLOR [142].

42. With the exception of that for TACWAR [100] (formerly called TACNUC [102])

(also see KERLIN et al. [101]), references to documentation about these

models has already been given in Footnotes 5, 13, and 34 above (see also

Footnote 23 of Chapter 1).
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43. It should be emphasized to the reader here that we are generically using

the term firepower-score approach to refer to any one of a family of index-,

number approaches for determining the value (or score) of an individual

weapon-system type and then the combat capability (or value) of the

military unit employing them (see Footnote 11 above). A simple linear model

is used to aggregate the firepower capabilities of all the different

weapons in the unit (recall the example given in Table 1.11).

44. In IDAGAM [6] (see. also SHUPACK (130]) tactical decisions such as allocation

and movement of reserve divisions, to attack (or not) and where, and with-

drawal of divisions from a sector are handled by the theater-control model.

Force ratios (based on some type of scoring for weapon-system types) are one

of several factors considered in algorithms modelling these tactical

decisions. Moreover, there are a number of different options (in all 13)

available to the user of IDAGAM (see SHUPACK [130, pp. 86-97]), all but

one of which use force ratios to scale the magnitude of combat losses.

It is therefore possible to use LANCHESTER-type equations by themselves

thwithout any such scaling (i.e. use the 13 attrition option) to model

combat losses and use force ratios only for modelling tactical decisions.

The CEM model [25; 106] does something similar in not using force ratios

for the assessment of casualties but using them only in the modelling

of tactical decisions. Thus, the possibility exists of using a detailed

(e.g. LANCHESTER-type) model of attrition in conjunction with a tactical-

decision model that uses force ratios. It is interesting to note that

the need for some aggregation method for quantifying the military
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capability of fighting units for use in a tactical-decision algorithm in

a closed (i.e. no human intervention) model of large-scale combat operations

is never mentioned by critics of the firepower-score approach.

45. This idea was apparently independently proposed by SPUDICH [134], DARE

and JAMES [43], and HOWES and THRALL [91] (see also [92]). Early work

was done by ANDERSON [2] (see also [5]) and HOLTER [89]. Some further

references to work done by U. S. Army analysts is to be found in [149].

See also ANDERSON [3; 4] for ome further background material and

references.

46. Here we are using the term LANCHESTER attrition-rate coefficient in its

broadest sense to denote the kill rate of a single weapon-system type against

a particular enemy weapon-system type. Consequently, no assumption at all

is being made here that any LANCHESTER-type model be used or even represents

the attrition for such an engagement. For example, in several U. S. Army

studies (89; 149, Chapter 30] the Division Battle Model (DBM) was used to

generate the "casualty data" from which single-system kill rates were

computed. In other cases, detailed Monte Carlo combat simulations have been

used to generate "killer-victim scoreboard" (i.e. a matrix whose elements

show how many of each weapon-system type were destroyed in a battle by

each weapon-system type on the opposing side) in so-called weapon-equivalence

studies (see [149, Chapter 30] for further details). Further information

on approaches for determining single-system kill rates is to be found in

Chapter 5.
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47. IDAGAM is a theater-level combat model that is widely used in the United

States and elsewhere (see Section 7.17). It is one of the major models of

theater-level combat and is principally used at the joint-service level

of studies and analyses.

48. Some alternative hypotheses for imputing values to weapon-system types are

discussed in HOWES and THRALL (91; 92]. These authors, however, recommend

the one we have given here.

49. For notational convenience, we have denoted here as aij an attrition-

rate coefficient that includes the effects of the fire-allocation process

and that we have denoted above as A ij. Thus, the reader should bear in

mind that such an attrition-rate coefficievt as aij changes when the

distribution of fire by a Y firer type changes.

50. For further information and background about the PERRON-FROBENIUS theorem,

which goes back to results of PERRON [121] and FROBENIUS [60], see

GANTMACHER [61, Chapter 13], VARGA [152, Chapter 2], and SENETA [128].

51. Here we have used the term "admissible", since we must limit ourselves

to those transformations of scale that preserve the fundamental requirement

that ZX and ty must always be nonnegative. Henceforth we will omit

the word "admissible" when referring to such transformations of scale,

but the reader should keep the above restriction in mind.
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52. All modern computer centers have "canned" algorithmic routines available

for numerically solving such eigenvalue problems and determining the

eigenvector associated with a particular eigenvalue.

53. Such apparent antimonies as discussed here are, unfortunately, inherent

to this linear model for imputing values to weapon-system types. However,

the choice of scaling method evidently does influence which particular

cases will be plagued by such apparently anomalous behavior. Furthermore

(and more importantly), we show in Section 7.19 that such antimonies are

more apparent than real.

54. In the 2 x 2 case (see Example 7.18.2), one must have (a11b11 + a1 2b 2 1 )

> (a2b2 + a2b1) tn order that s• be defined when a2111 + a2221 - 0.

55. In real-world studies, the time and resources available invariably dictate

whether or not a detailed model can be used. A detailed model like

VECTOR-2 requires approximately five to ten times the number of data

inputs as does an aggregated model like IDAGAM (see [150, p. 53]).

Even a relatively simple theater-level model as ATLAS requires a fair

amount of resources just to be prepared for a new set of production runs:

it requires 2-4 months to acquire a fresh data base and 1 man-month

to structure this data in the model's input format (9, p. 38]. A

detailed model like VECTOR-2 requires infinitely more time for the prepara-

tion of inputs. Thus, there is a need for theater-level models that are

fast running (including data-base preparation) and easily modified, i.e.
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so-called "quick games" (see [164]). It has always struck this authcr

as being rather unfair to criticize ATLAS because it is a relatively

simple model that does not demand a lot of time and resources to be run.

Such critics appear to have forgotten that ATLAS was developed as a

"quick-game" model (see [164]) (it evolved out of a model called

computerized QUICK GAME [991 (see also LOW [107, Appendix D])) and that

it was not developed for detailed investigatios of theater-level combat

[98, p. 5].

56. STOCKFISCI [135, p. 6] has used the term immaturity to denote the state

of affairs in which the phenomenological bases of the field are not well

established. In such a field (as combat or conflict analysis), epistemological

questions abound (often in the guise of questions about methodology) because

the correspondence between the real world and the model world has not been

irrefutably established. This situation should be contrasted to that for

classical physics in which (within their realm of applicability) physical

laws are so well established that one does not suggest the use of alternative

paradigms (i.e. questions aboý.Z methodology do not arise). STRAUCH [138,

pp. 13-15] has pointed out that in an immature field like defense analysis

the application of quantitative methodology to a problem (denoted by him

as a squishy problem) differs fundamentally from that for a rigorously

quantifiable problem in a mature field because the analyst must exercise

judgment (see, in particular, [138, p. xiii]) to abstract a formal problem

and attendant mathematical model from an ill-defined problem regarding

phenomena not well understood (see also [138, pp. 3-20]).
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57. Besides being difficult and costly just to maintain and run, complex

models are particularly difficult to evaluate (see GASS [62] (also

[63]) for a further discussion), especially when documentation is

lacking (see (150, pp. 25-31] for a particularly lucid discussion of

documentation and other related management problems). As we have

already noted many times, documentation is a particular problem for

combat models (see SZYMCZAK [139] for not only a lucid discussion of

problems within the defense-analysis community but also some interesting

suggestians for improving current documentation practiceL,).

58. See Footnote 43 above.

59. However, there is far from universal agreement concerning many of the

details of FARRELL's investigation (e.g. see ANDERSON [5, pp. vii-viii]).

60. The statements made here are based on further investigations that time

and space do not permit us to document in complete detail..

61. ANDERSON [5, p. viii] has pointed out that (if desired) there are

straightforward ways of preventing such behavior, for example, with

the antipotential-potential method in IDAGAM (see SHUPACK [130] for

further details).

62. The author would like to thank his colleague G. OWEN for exposing him

to the literature of paradoxes of rationality. Professor OWEN has

emphasized that the occuirence of such paradoxes did not result in
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researchers abandoning trying to apply game- theory to problems of

rational behavior but instead provided rationale for further (more

sophisticated) analysis. He has added that what appears Lo be a

beginner as a paradox invariably appears to the seai;oned game theorist

ab perfectly intuitively obvious behavior.

63. Frequently, such models are challenged because they are too simple, but

any experienced modeller can take the basic paradigm and build a more

complicated model through the process of model enrichmeut (see

Section 7.1 above and MORRIS [114] for further details).

64. It is interesting to note that determination of whether such a model

is "convincing" or "credible" is apparently based on logical grounds

and not based on testing against any empirical data. In Section 7.22

we will discuss the problem of historical validation of combat models.

To the best of this author's knowledge, no detailed combat model has

ever been validated against historical data, essentially because of thu

quality of available historical combat data (see Section 7.22, McQUIE

et al. 11101, McQUIE [109], and/or HUBER, LOW, TAYLOR [95] for further

details).

65. A recent U. S. Getueral Accounting Office (GAO) [1501 study has emphasized

that empirical study is necessary to strengthen the scientific foundation

and objectivity of defense decision making (see also BREWER and HALL

[23], STRAUCH [138], STOCKFISCH [135; 136], and BREWER and SHUBIK [241).
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66. See HELMBOLD [77], McQUIE et al. [110), and McQUIE [109] foz discussions

of the limited avax.lability of historical combat data, HELMBOLD discusses

the nature of data available from secondary sources (e.g. history books),

while McQUIE [1091 (see also (110]) discusses the nature of data available

from primary sources (e.g. unit reports and official miltiary histories).

Additionally, McQUiF discuuses the shortcomings of tne historical combat

data that does exist. He provides an outstanding dJscussion of the nature,

availability, and quality of historical data.

67, We are here using the words "verification" and "validation" interchange-

ably. Many auLhors distinguish between the verification and the validation

of a model, but there is apparently no consistent use of these terms in

the literature (see, for example, MORRIS [113], FISHMAN and KIVIAT [58],

BONDER [11, pp. 68-70], VAN HORN [1511, and NAYLOR and FINGER [118]).

For our present purposes, however, such a distinction does not seem warranted,

especially since there is not consistent use of these terms in the

literature.

68. Unfortunately, this unique service had to be terminated after only two

volumes of (quarterly) publication, apparently due to lack of support.

69. Simulated combat data of one form or another exists on essentially all

levels, particularly the lower levels (i.e. few-on-few and below).

70. BONDER [13] has considered models of different combat processes at three

different levels: (1) individual firer against a passive target,

(2) small-unit combat (battalion and below), and (3) large-scale combat.
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He has discussed the verification of models at these three system

levels. Based on our knowledge of the available combat data, such

verification can only pertain to simulated (and not real) combat

data (here some type of field experimentation), but this fact is not

explicitly pointed out to the reader. No references are given by

BONDER (13].

71. Some notable exceptions have been the HERO ORALFORE study [85] and work

by COCKRELL [36], GOAD [67] (see also (68]), and GRAVES [69], which have

investigated historical FEBA movement (see also [46; 49]). Again, large-

unit operatious were considered.

72. Our discussion here follows HELMBOLD (80, pp. 1-3]. There are, of course,

other positions that one can take concerning the verification of models

(see, especially, NAYLOR and FINGER [118]). In the main text we have

presented the two that are most germane to combat models.

73. See Footnote 68 above.

74. The author would like to thank LTC Richard S. Miller, U. S. Army, of

the Naval Postgraduate School for many of the ideas discussed here,

as well as elsewhere in this section. The author is, of course, solely

responsible for the views expressed Yere.
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75. GASS [62] (see also [63]) has considered the evaluation of computerized

complex models to consist of the interrelated tasks of model

verification and validation. Here, verification is taken to mean the

attempt to ensure that a model behaves as the analysts (i.e. model

formulators and computer programmers) intended, while validation is

the testing of the agreement between the behavior of the model and

the real-world system being modelled (see FISHMAN and iVIAT [58];

see also, however, Footnote 67 above). As we have indicated above in

Section 1.22, the validatiou of even simple combat models against

historical data is a particularly difficult tsak.

76. LTC Richard S. Miller, U. S. Army, of the N~aval Postgraduate School

(see also Footnote 74 above).

77. For examples of the actual use of this approach, see NTRUMEYER [1191,

WIEGAND [1611, and ASBED (7). Each of the first two West German

authors [119; 161] has briefly discuesed one so-called TREND model,

which is a structurally rather simple aggregated deterministic

simulation model. that reproduces results of the more detailed inter-

active computerized theater-level war game RELACS (see also DARE [41]).

ASUED (7] has similarly reported about the development of a relatively

simple aggregated model and the comparison of its results with those

obtained from IDAGAM (a much more detailed theater-level model).
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APPENDIX E: FINITE-DIFFERENCE APPROXIMATIONS TO

LANCHESTER-TYPE EQUATIONS

1. Introduction

As we have seen above in Chapters 6 and 7 (e.g. recall Figure

6.11), it is impossible for all practical purposes to solve analytically

the differential equations for any but the most simple LANCHESTER-type

combat models. In order for such models to have any practical value,

there must be some convenient way to extract from them information

that is needed for defense-planning purposes. Moreover, the solving

of the differential equations for the dynamics of the force-on-force

combat provides force-level information which many times forms the

basis for extracting any further desired information from the model.

Sinca analytical methods are usually of no avail in solving these differ-

ential equations (at least for models with any degree of operational

realism), numerical methods for obtaining approximate results must be

resorted to.

Thus, in this appendix we will consider so-called finite-

difference methods for developing approximate solutions to LANCHESTER-

type differential combat equations. We will see how LANCHESTER-type

differential equations may be approximated by so-called difference

equations, which can then be conveniently numerically solved by an

automated computational procedure implemented on, for example, a modern

digital. computer. Moreover, the modern high-speed, large-scale computer
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hap made such recursive solution procedures computationally feasible,

and without it current operational models like the BONDER/IUA and its

many derivatives or the VECTOR series of models would be i~possible.

In this appendix, we will focus on the development of simple finite-

difference approximations, with the mathematical proof of answers to

attendant numerical-aaalysis questions such as convergence and stability

of these approximations being beyond the scope of our examination here.

Thus, the reader is referred to the numerical-analysis literature for

a complete mathematical justification of the methods presented here

(see the last section of this appendix),

2. A Simple Finite-Difference Approximarion.

Let us consider the following general LANCHESTER-type homo-

geneous force equation for t > 0

dt

-!dZ -H(t,x,y) with y(O) - y0 ,dt

where x(t) and y(t) denote the X and Y force levels, t denotes

time, and G and H denote force-change rates (which are net loss

rates when G and H > 0). In this section we will show how to generate

an approximate solution to (E.1) by first developing a simple finite-

difference approximation to these LANCHESTER-type equations. Thus, we
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will approximate the system of ordinary differential equations (O.D.E.s)

(E.1) by a system of difference equations (i.e. equations that connect

the force levels between only discrete points in time), which may then

be recursively solved with the help of, for example, a modern automatic

digital computer (or even a contemporary programmable hand-held calculator).

For any system of O.D.E.s such as (E.1), time is in essence

allowed to vary continuously, i.e. in principle an analytical solution

provides us with the X and Y force levels x(t) and y(t) at

any desired time t > 0. For example, the successive-approximation solu-

tion (6.5.6), (6.5.16), and (6.5.18) to the FIF LANCHESTER-type

equations (6.1.1), i.e. equations (E.1) with G(t,x,y) - a(t)x and

H(t,x,y) - b(t)y, in principle provides us with x(t) and y(t) at

any time t during the counse of such a h~mogeneous-force battle. We

v'ill now consider an approach for numerically generating an approximation

t3 the force levels at only discrete points in time.

Thus, we will consider a numerical-solution method that will

enable us to generate approximate values for the force levels, but only

at discrete points in time (as opposed to a point in time that can vary

continuouslX over the course of the battle). Accordingly, we discretize

time by introducin3 a finite number of so-called mesh points t for then

fixed interval [0,T]

to . 0,

and (E.2)

t - t 1 + At for n 1,2,..., N,
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I
whe re

At - T (E.3)N

It then follows that (see Figure E.1)

t - nAt for n - 0,1,2,..., N . (E.4)n

The time tn is commonly referred to as the rr-- time step (i.e. the
th

position of the n--- step in time), and the increment At is referred to

as the time-step size (here uniform). It is now convenient to introduce

the notation

X(tnn " n Y(tn) - yn
(E.5)

G(t n,x,y) - Gn(x,y), H(t ,x,y) - H (x,y).

The simplest way to generate a discrete-time approximation to

the continuous-time equations (E .1) is to recall the definition of a

derivative such as dx (t), i.e.
dt

dx (t) - lim x(t + At) - x(t) (E.6)dt AAt ý 0 A

and upproximate the rate of change of the X force level as

A
dx (t) x(t + At) - x(t) (E.7)
dt At"
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K dx

Here 'C t) denotes an approximation to the value of the derivative

at time t, i.e. the value of the rate of changa of the X force level

at time t. If we use such an appcoximation for the reta of change of,

for example, the X force level at the battle point (tnX nYn), we obtain

the following equation for an approximate value for the X force level

at the (n+!)-- time step in terms of previously determined approximate

force-level values at the th time step

x - x
n - n -G (x ,y ) (E.8)
A~t n n n

where xn and yn denote approximate values for the X and Y force

levels at time tn, e.g. x represents an approximate value for

x n X(tn). However, it is more convenient to write this latter finite-

difference equation as

n x - G n(x ny . (E.9)

Thus, by applying such approximations to our continuous-time combat model

(E.1), we obtain a discrete-time combat model (E.10) for which values of

the approximate force levels n and Yn may be generated recursively

at a finite number of mesh points t for the fixed interval [0,T] byn

the following formulas for n - 0,1,2,...,N-1

xn+l xn - Gn(xnYnt with xO - X,

Yn+l yn -Hn(x'Yn)At with " Y0

I.
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In the parlance of numerical analysis, the equations (E.10) are the

difference equations of the EULER-CAUCHY method. As we will see below,

there are not only several methods for developing such finite-difference

approximations, but there are also many other such approximations possible.

For convenience, we have assumed a uniform time-step size At, and it is

an easy matter to extend these developments to cases of a variable time-

step size At - tn - tn-I.

The most significant aspect about the finite-difference equations

(E.10) is not that they are any easier to analytically solve than the

original differential equations (E.1) (in matter of fact, they are not!)

but that they may be recursively solved for any particular numerical values,

a procedure that can be easily automated for use on, for example, a high-

speed digital computer. As we will see below in Example E.1, automation

is (in fact) quite necessary because although such recursive computation

may be very straightforward to do, it is very tedious to carry out when

it must be repeated a very large number of times. Thus, the approximation

(E.10) may be considered to be the basis for a stbp-by-step solution

procedure, which marches the battle results ahead in time: with the

approximate force levels xn and yn known at the old time step n,

equations (E.10) allow one to readily compute approximate values for the

force levels xn+1 and yn+l at the new time step n+l and thus to

"march ahead in time" (see Figure E.1).

We should now observe that since our original LANCHESTER-type

equations (E.1) only hold for x and y >. 0, we must do some precautionary

bookkeeping to prevent negative approximate force levels. This is readily

done by interpreting (as we should) equations (E.10) as meaning for

n - 0,1,2,..., N-1
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A A

( Xn+ max(O, x - G (x ,y)At) with x0 - x0

CE .11)
A A

Yn+l max(0, Yn - Hn(xn ,Y)At with y0 - y0.

For simplicity's sake, we will henceforth write an approximation in the

form (E.1O) with the understanding that an approximating system in the

form (E.11) is meant.

From (E.6) it should be clear that the "goodness" of the approxi-

mate force levels x and jn depends on the time-step size At inn

the approximating finite-difference equations (E.10), which converge to

the original LANCHESTER-type equations (E.1) as At -) 0. Indeed, it is

not surprising that it may be shown (similar to how it is done in texts

on the numerical solution to O.D.E.s) that, for example,

lim max Ixn - x 0 . (E.12)
At- 00<n<N

Unfortunately, it is a matter of artwork (as opposed to science) to pick

a time-step size At that yields "satisfactory" numerical results for

the approximate force levels. Two heuristic methods for determining

a satisfactory value for At are accordingly suggested here:

(Ml) compare exact analytical force-level results, i.e. numerical

values for xn - x(t n) and yn = Y(tn ), for a simplified

version of (E.1) (for which such analytical results are con-

veniently obtained) with the corresponding finite-difference-

generated values for the approximate force levels Xn and n

in order to find such a satisfactory value for at,
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(M2) compare numerical values for xn and yn corresponding to

the same value of t but generated by several different mesh

widths (or time-step sizes) at (e.g. At - h, h/2, h/4, etc.)

until such values, no longer "change appreciably for variations

in At" in order to find such a satisfactory value for At.

Finally. let us note that so-called higher-order (i.e. more complicated

and more accurate) approximations are possible (see below for a few brief

comments), but we feel that they are not really jusitifed for a combat model

such as (E.l) because the model itself is only a very rough approximation

to reality. This situation should be contrasted to that in the physical

sciences where the differential laws governing physical-system behavior are

much more accurately known and in many uses (e.g. a mid-course correction

for a space ship on a trip to the moon) must be very closely apprcvimated.

3. Extension to Heterogenous Forces.

The above simple method of finite-difference approximation is

both in principle and also in practice readily extended to heterogeneous-

force combat. In fact, except for a relatively minor amount of notational

complexity, it is essentially no more difficult to generate such numeri-

cal results for heterogeneous-force combat than for homogeneous-force

combat.

Let us accordingly consider combat between an X force composed

of r different weapon-system types (denoted as l, X2, ... , Xr)

and a Y force composed of s weapon-system types (denoted as

Y' Y2' "'" Y ' ) (cf. Section 7.7 above). General LANCHESTER-type

equations may be formulated for such combat by extension of the homo- A.

geneous-force model (E.1) and may be taken for t > 0 as
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idx
dt -G i(txl ... "Xr'Y,'""y) with x (0) -,

(E.13)

adt j -H (tX,...,x ryl,...,ys) with y (0) - yj,

where x it) denotes the number of Xi at time t and analogously

for y (t). Here we have adopted the convention (cf. Section 7.7) that

the index i will always take on the integer values 1 through r, and

the index j will always take on the integer values 1 through s.

Discretizing time as above (recall Figure E.1) and introducing

the notation

xi(t) =xi y(t ) JSn n 9 n Yn

G i(t n, Xl,...,YXrYI, .... Ys G ni (Xl, ... ,Ixrvyl, ... ,tys) I (E.14)

SH j(t n X,...,XrYl,...y) Hj(Xl .,xy 1.,Y, ... ,ys)

we may again introduce the above simple first-order finite-difference

approximations to the force-level derivatives and analogously obtain the

following simple approximation to the LANCHESTER-type heterogeneous-

force combat equations

X+l xn - G (X^ 9 .. x Py )

n+l n n n n

with initial conditions

ii j j
i and y ,

iiwhere x denotes the approximation to the X, fcrce level x - x (tn)

at t - tn and similarly for ;i_

651



It should be clear to the reader that the approximating finite-

difference equations (E.15) may again be numerically solved with a

simple recursive algorithm. In fact, on a modern large-scale high-

speed digital computer, they are essentially no more computationally

difficult to solve than the homogeneous-force equations considered in

the previous section.

4. General Approaches for Developing Finite-Difference Approximations

As Te indicated in our examination of the simplest finite-

difference approximation (E.1O) to the homogeneous-force LANCHESTER-type

equations (E.1), there are several approaches for developing such

app,,oximatiovs to generate numerical solutions to such differential-

equatiun combat models. In this section we will very briefly consider

three basic approaches for developing such finite-difference approxi-

mations and will also meation a few specific mcthods that the reader

may encounter elsewhere. In p&rticular, all digital-computer computa-

tion centers today provide users with numerical differential-equation-

solver routines (i.e. computer -outines for the numerical solution of

O.D.E.•) as part of their general scientific-computation package.. Since

a reader who attempts ý'.o nimerically implement ý LANCHESTER-type combat

model on the computer is c'..tain to encounter such methods and routines

1i he conxAits his computation center for assistance, a few general

words about theot seem in order. However, as zoe have discussed above,

we suggest that the Yeader use tha EULER-CAUCHY method in such compu-

tational work, since it is extremely convenient to implement and possesses
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accuracy (crude as it may be) that is consistent with the scientific

validity of the original LANCHESTER-type combat model. Of course, if

one (for one reason or another) chooses to use one of the many numerical

differential-equation-solver routines that are available from one's com-

putation center (which usually supplies such differential-equation solvers

to users in the physical sciences), one will undoubtedly wind up using

some standard higher-order method, e.g. the so-called classical RUNGE-

KUTTA method (see below).

The three general approaches that can be used to develop finite-

difference approximations to O.D.E.s may be referred to as methods

based on:

(Ml) numerical differentiation,

(M2) numerical integration (combined with interpolation of

the integrand),

(M3) TAYLOR-series expansion (either directly or indirectly).

We devaloped the above EULER-CAUCHY approximation (E.10) from the stand-

point of numerical differentiation, although one could have equally

well used either of the other two approaches (M2) and (M3) (e.g. see

HENRICI [4, pp. 9-10]). Principal methods based on the numerical-integra-

tion approach are the ADAMS-BASHFORTH method, the ADAMS-MOULTON method,

and the generalized MILNE-SlMPSON method (e.g. see HENRICI [4, especially

Chapter 5] for further details; see also MILNE [11] and HILDEBRAND [6]);

while the principal methods based on TAYLOR-s*ries expansion are those

IT of RUNGE-tUGTrA type (e.g. see HENRICI [4, pp. 66-70]), especially the
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classical RUNGA-KUTTA method which (next to the EULER-CAUCHY method) is

probably the best known of all the so-called one-step methods.

How good is any particular finite-difference approximation?

What is the basis for our re( nmmendation that the reader should use

the EULER-CAUCHY method? Would another approximation be better? The

answers to such questions at least partially rest on certain concepts

and results from the mathematical field of numerical analysis. It is

beyond the scope of our present examination to provide a complete

theoretical answer to these important questions, which are easy to

answer but quite difficult to justify these answers (i.e. supply mathe-

matical proofs). Thus, for present purposes we will go into numerical-

analysis aspects just far enough to articulate issues and answers. Our

goals then are (1) to expose the reader to numerical-approximation

methods for O.D.E.s, (2) to suggest a general course of action (i.e.

use the EULER-CAUCHY method) for satisfying computational requirements,

and (3) to indicate to the reader that there are sound reasons for

our suggestion.

How good is any particular finlte-difference approximation?

Three ways to answer such questions about the validity (or goodness)

of a numerical-approximation technique are as follows:

(Wl) compare exact and approximate results,

(W2) perform theoretical numerical-analysis investigations,

(W3) do experimental cosputing.
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II

Similar to the intimate relation between game theory and war gaming

(i.e. behavioral model building) (see Section 8.2 below), the theory of

numerical analysis provides a fundamentally important methodological

approach (i.e. concepts and results) to the study of computational

algorithms. Thus the approach (W2) provides a basic framework (i.e.

concepts and vocabulary) for pursuing the other two approaches (WI) and

(W3), both of which have certain inherent shortcomings. For example,

the comparison of exact and approximate results can only serve as a

benchmark (i.e. a test in a specific known case), since the exact results

are lacking when the approximate results are really needed. We thus

turn to the theoretical investigation of the "goodness" of a given

finite-difference approximation. A very reasonable criterion to consider

in such an investigation is the magnitude of the error involved in

using the approximation.

There are, in fact, several types of error involved in the

numerical solution of O.D.E.s:

(Tl) truncation (or discretization) error,

(T2) roundoff error,

(T3) approximate-solution error,

(T4) total error.

Moreover, the reader should be warned thac not all authors define

these terms in the same fashion or as we will here. The definitions

given here by us for the above var;.ous types of errors are more or
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less patterned after those of ISAACSON and KELLER [9, Chapter 81. Let

us now for illustrative purposes consider a finite-difference approxi-

mation to the homogeneous-force equations (E.l.) and examine these

various errors more closely. One important reason for doing this is

that not all finite-difference methods yield satisfactory results:

there do exist approximations with unsatisfactory error properties,

and a potential user should be aware of this fact. In our examination

here of these errors we will consider definitions and results for only

the X force level, with similar results holding for the Y force level.

The local truncation error measures the error by which the

exact force levels from (E.1) fail to satisfy the approximating differ-

ence equations, and consequently it depends on the finite-difference

method used. Thus, when the EULER-CAUCHY method is used, the local
x

truncation error for the X-force-level difference equation T
n

is defined (following ISAACSON and KELLER (9, Chapter 8]) as

X Xn+l n+G(x yj (E.16)
n " At n n' n

where we recall that xn - x(t ) and similarly for yn" If the Tn

vanish as At - 0, we say that the difference equations are consistent

with the differential equation (here for the X force level). Also

of interest io how quickly such a limiting value is reached, and this

speed of convergence may be expressed in mathematical terms as

n 0(hp) , (E.17)
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where h - Lt. Here the notation f(h) - O(hp) means that

limh- 0 f(h)/hp - c, where c is a constant independent of h, aald is

read "f(h) is of the order hp." For example, the EULER-CAUCHY method

has truncation error T - O(At) and is consequently called a first-ordern

method. The classical RUNGE-KUTTA method has truncation error of order
4

(At) and is consequently called a higher-order method (here fourth-

order),

The roundoff error for the X-force-level difference equation
X

r is defined as
n

r =X - x (E.18)n n n

where 'n denotes the exact solution of the approximating equations and
n

I Xu denotes the numerical value that is actually calculated by the

computing equipment in place of the x Roundoff errors exist because
n

the number X cannot be calculated with infinite precision due to the

limited accuracy of any computing equipment. The approximate-solution

error for the X force level eX is defined as
n

e - x - x(tn) , (E.19)en n

which measures the error made by taking the exact X-force-level solution

of the approximating difference equations n in place of the exactn

solution to the X-force-level equation x(tn ). For any finite-difference

approximation to be any good, we require it to be convergent in the

sense that we can make the aoproximate-solution error arhitrarily small

by taking At small enough, i.e. in analytical terms
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lim max le X -0 (E.20)
At÷O O<n<N

which is equivalent to (E.12) above, and similarly for e - y - Y(tn)"nn n

For example, the EULER-CAUCHY method is convergent, with an approximate-

solution error of order At. The classical RUNGE-KUTTA method is also

convergent [with error of order (At) 4, while the so-called MILNE method

is not (there are differential equations for which spurious numerical

approximations may be obtained). Finally, the total error in the approxi-

mate value for the X force level EX is defined as (see ISAACSON and

KELLER [9, pp. 374-377] for a detailed analysis of the total error of the

EULER-CAUCHY method)

X X KE n X x(t) e + r . (E.21)n 1 n n n

A word of caution, however, is in order on the indiscriminate use

of higher-order finite-difference-approximation methods. Consider, for

example, the single differential equation

dx- -x with x(O) - x0 , (E.22)

and approximate the derivative by the central-difference formula

A

dx n- n+l n-l

to obtain the finite-difference approximation
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n+1 n-i n _
2At n

or

xn+, n -22c t + with X0- x (2.23)

which is well-known (e.g. see HILDEBRAND [7, pp. 132-133]) to have

truncation error of order (At) 2. Nevertheless, although the truncation

error for (E.23) is of higher order than for the EULER-CAUCHY approximation

Xn+1 i (I - 2At) n, this finite-difference approximation is not convergent

and hence is not satisfactory (see HENRICI [4, pp. 240-241] or HILDEBRAND

[7, pp. 132-135]). The O.D.E. (E.22) has the unique exact solution

e, wite-difference approximation (E.23) (being a

second-order difference equation) possesses a general solution made up

of two linearly-independent components, one of which behaves sort of like
-t t

e for small values of At but the other of which behaves like e .

Consequently, the finite-difference equation (E.23) possesses an extra

"spurious" (also "extraneous" or "parasitic") solution that has growth

properties contrary to those of the exact solution to the differential

equation (E.22) and hence will spoil the numerically computed values X
n

(see HENRICI [4, pp. 240-241] for further details).

Without going into mathematical details here (e.g. see

HILDEBRAND [7, pp. 132-145] or HENRICI [4, pp. 209-288] for such details),

the approximation of a differential equation of a given order by a differ-

ence equation of higher order has the shortcoming of introducing "spurious"

solutions as illustrated by the above example. More precisely, the higher-

order difference equation has a larger number of fundamental solutions

6
659



(i.e. the building blocks out of which one constructs all solutions) than

does the original differential equation, and not all of these may behave

like the exact solution of the original differential equation. Conse-

quently, for example, the approximation (E.23) is not a satisfactory one.

In general terms, higher-order approximations introduce spurious solutions,

and such spurious solutions may cause convergence problems. In plain

words, this means that one can pick a finite-difference method such that

the exact LANCHESTER-type-model results for, for example, x(t n) and

y(t ) cannot be reached (sometimes even remotely) by the numericaln

ones X and Y by taking at small enough. Such troubles may be11 n

avoided by investigating the (relative) numerical stability of the finite-

difference-approximation solution. Unfortunately, not all higher-order

approximations (which do possess better trunction error) are numerically

stable. The reader is directed to texts on numerical analysis (e.g

[4-11]) where finite-difference-approximation methods with such undesirable

properties are identified. Thus, whenever one uses a higher-order method,

one must make sure that it possesses the desired numerical stability

properties. Moreover, the EULER-CAUCHY method recommended above is both

convergent and numerically stable.

Let us finally note here that the important mathematical properties

of convergence and stability of finite-difference approximations to O.D.E.s

are intimately related. It is a rather far-reaching result in numerical

analysis that for consistent finite-difference approximations, stability

of the difference equations is equivalent to convergence of the difference

equations' solution to that of the original differential equation (see

HENRICI [4, pp. 217-287], ISAACSON and KELLER [9, pp. 410-417], or

HILDEBRAND (7, pp. 140-145] for further details).
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5. Some Examples.

In this section we will give several examples of finite-difference

approximations by the EULER-CAUCHY method to specific homogeneous-force

models. The main reason for giving these examples (particularly the first

one) is to indicate how such finite-difference approximations may be

recursively solved to generate numerical results.

E.I___le E.1: Constant-Coefficient LANCHESTER-Type Equations for FIF

Attrition Process. If we consider a fight to the finish, our differential

battle model is

d -ay for x and y > 0
dx }with x(O)-Xo

dt " 0 otherwise

(E.24)

-bx for x and y > 0

S= 1 with y(O) - yO
dt 0 otherwise w

The finite-difference approximation by the EULER-CAUCHY method then reads

'Xn+l I in - aj nt with o I Xo 9

. . (E.25)

Yn+l = Yn - bxnAt with YO 0 YO V

which in view of lhe fight-to-the-finish equations (E.24) should be taken

to more precisly mean
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( n+l 0 max (0, x - ay n At) with xO - x0

Yn~l max(O, Yn -bx At) with yo - yo

The reader will recognize (9.25) as FISKE's equations for modern warfare,

which we have examined in Section 2.10 above. Moreover, it should again

be emphasized that when we write (E.25) as being a finite-difference

approximation to (E.24), we really mean that the equations (E.26) are to

be understood. This previously-agreed-to convention will be followed in

the balance of this appendix. We will dow consider a specific numerical

example to illustrate the recursive solution procedure for the approximating

difference equations. Numerical results for the input data shown in

Table E.J are given in Table E.II. From considering these numerical

results, the reader should have no trouble in understanding how the

approximate battle results Xn and jn are propagated ahead in time from

the old time step to the new time step in a step-by-step fashion (cf.

Figure E.1).

Example E.2: Variable-Coefficient LANCHESTER-Type Equations for FIF

Attrition Process. In this case the battle model reads

dx -a(t)y with x(O) - x0 ,

dt

(E.27)

a -b(t)x with y(O) -yo
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TABLE E.I. Input Data for Numerical Example on EULER-CAUCHY

Finite-Difference-Approximation Method Applied

to Constant-Coefficient Equations for FIF

Attrition Process.

x0 - 10.0

YO a 30.0

a - 0.06 X casualties/minute per Y firer

b = 0.6 Y casualties/minute per X firer

At - 0.01 minute

1

NOTE: For the differential-equation combat model, X will win a fight

to the finish, since

0.333 XO > /-- - 0.316YO ao
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TABLE E.HI. Numerical Example for EULER-CAUCHY Method for Input Data

Shown in Table E.1.

t time stepn nbi At a~nAt
(minutes) ni n Ynn i n

0.00 0 10.0000 30.000 0.060 0.0180

0.01 1 9.9820 29.940 0.060 0.0180

0.02 2 9.9640 29.880 0.060 0.0179

0.03 3 9.9461 29.820 0.060 0.0179

0.04 4 9.9282 29.760 0.060 0.0179

0.05 5 9.9103 29.700 0.059 0.0178

0.06 6 9.8925 29.641 0.059 0.0178

0.07 7 9.8747 29.582 0.059 0.0177

0.08 8 9.8570 29.523 0.059 0.0177

0.09 9 9.8393 29.464 0.059 0.0177

0.10 10 9.8216 29.405 0.059 0.0176

etc.

5.00 500 4.4317 9.8276 0.0266 0.0059

5.01 501 4.4258 9.8010 0.0265 0.0059

5.02 502 4.4199 9.7745 0.0265 0.0059

7.50 750 3.4081 4.0526 0.0205 0.0024

7.51 751 3.4057 4.0321 0.0204 0.0024

7.52 752 3.4033 4.0117 0.0204 0.0024

9.55 955 3.15691 0.0645 0.0190 0.00004

9.56 956 3.15687 0.0455 0.0189 0.00002

9.57 957 3.15685 0.0266 0.0189 0.00002

9.58 958 3.15683 0.0077 0.0189 0.00000

9.59 959 3.15683 0.0000
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Examples of such time-dependent coefficients (together with their origins

from physical circumstances) have been given in Section 6.2 above. If

we denote a(t ) as a and b(t ) as b , then the EULER-CAUCHY finite-n n 11 n

difference approximation to (E.27) reads{xn+l = x n- any nAt with x C WX0 , (.)

b k Ltwith
Yr)+l 'Yn b n n• t 9t 0 , YO

In this case the reader can readily see that once the time-dependent

attrition-rate coefficients a(t) and b(t) have been specified, the

step-by-step numerical integration of the variable-coefficient equations

(E.27) by means of (E.28) is actually no more difficult than that of the

constant-coefficient equations (E.24) by means of (E.25).

Example E.3: Dynamics of a Fire Fight. Consider a "fire fight" between

homogeneous X and Y forces. Assume that LANCHESTER-type equations

for FIF attrition describe the attrition process. If we further assume

that (Al) whether or not a side has "fire superiority" may be measured

in terms of whether or not that side is putting out the greater total

volume of fire, and (A2) having (not having) fire superiority yields the

consequence that individual firers are overwhelming the enemy with their

fire (are being overwhelmed by the enemy's fire) and are consequently

increasing (decreasing) their rate of fire up to a maximum value (down

to a minimum value); than this combat may be modelled by the following

equations (see HUGGINS [8] for further details; see also von FABECK [14]

for an examination of the phenomenological bases of fire superiority)
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dx . -a(t)y -b(t)x, (E.29)
dt -adt

a(t) - 1/ta + 1/[Vy(t) PSSKy]

b(t) - 1/{tayx + l/[Vx(t) PSIKyX]},

Cx sgn(v X -xVyy) for mX < vx < MX

dv x

S0 otherwise,

dv Y C x sgn(VyYY - Vx) for my < Vy < V Y

dt- 0 otherwise,

with initial conditions

x yx(O) - X0 , y(O) - YO V (0) - V0  ' (0) M-

where taXy, tayx, P SSK S x%'P S1KYX C X N my. Mx, and MY denote

constants. Here we have assumed the simple model for the LANCHESTER

attrition-rate coefficient given in Section 5.2 (see als, Section 5.10).

Also, the symbol sgn 8, read "signum e," denntes the sistnuw function

denoted by

+1 for 8 0,

sgn - 0 for a -O , (E.30)

-1 for 9 < 0
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The above model (E.29) incorporates the feature that individuals on the side

that is producing the larger total volume of fire (measured in terms of

the total number of rounds fired per unit time) can increase (up to a

limit) their firing rate by virtue of having fire superiority. Similarly,

an individual's firing rate is "chocked off" when his side loses fire

superiority. Introducing notation in the obvious way, we may then write

the EULER-CAUCHY approximation to (E.29) as

Xn+l -Xn - anynAt, Yn+l Yn - bnxnAt, (E.31)

^^

nn nnnY+ 1 (,nPS KX

l/{t + S/ }'
b n ayx n SSK

•n + C,&t sgn(v nx n - Vn Yn) for mX < , n < x,

^X
V n+l ^X

Vn otherwise,

Ay + C At, gnA y -XA for m < \n < My,

^y
Vn+l " •Y

Vn otherwise,

with initial conditions

AX X AY If

'0, 0. y Y, V 0 =V 0 P VO m V0
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Although our model of the dynamics of a fire fight (E.29) is fairly

complex and it is for sure impossible to conveniently represent its

solution in terms of any elementary functions, it is an easy matter

to program a digital computer to recursively compute the numerical

solution of the approximating finite-difference equations (E.31) and

hence to numerically integrate our differential combat model (E.29) in

a step-by-step fashion. Such a numerical procedure was indeed quite

tedious and essentially not practical before the advent of the bigh-speed

digital computer.

6. Advantages and Disadvantages of Both Analytical Sclutions and

Also Their Numerical Approximations.

In this monograph we have considered both the formulation and

also the solution (i.e. extraction of information for analysis purposes)

of LANCHESTER-type homogeneous-force combat models. Both analytical

and also numerical-approximation solution approaches have now been

examined. Some similar investigations (i.e. formulation and solution)

have been g.arried out to a lesser extent for heterogeneous-force models.

Based on these investigations, it seems appropriate to compare the

advantages and disadvantages of both analytical solutions and also their

numerical approximation. As an example of the latter, the reader should

keep in mind the first example of the last section, a numerical example

of integration of FIF attrition-process equations by finite-difference

means.
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Advantages and disadvantages of analytical solutions to

LANCHESTER-type models are given in Table E.III, which is self-explanatory

and does not need any further elaboration except for the following

discussion of a few not-so-obvious points. A real advantage of simple

analytical models that yield convenient analytical solutions is their

behavioral transparency, i.e. one can easily see how model outputs are

related to inputs and other model parameters. For example, we know that

for LANCHESTER's equations of modern warfare (i.e. constant-coefficient

equations for an FIF attrition process) that the X force level

x(t) is given by

x(t) - x0 cosh(/aFb t) - yo g/b sinh(/ t) . (E.32)

Thus, the analytical solution reveals the two important model

parameters: (1) the intensity of combat, I - a/r; and (2) the relative

fire effectiveness of individual combatants, R - a/b. It also reveals

that of these parameters only relative fire effectiveness R helps

determine battle outcome, with the intensity of combat I only adjust-

ing the battle's time scale. Another very important aspect of simple

LANCHESTER-type models is their ability to provide a framework for under-

standing and interpreting results from much more complicated operational

models. This characteristic is the basic idea behind the fourth advantage

given in Table E.III, and in a similar vein we have discussed above in

Section 7.1 the coordinated use of a simple auxiliary model with a

complex operational model. A further discussion of this important

concept within the context of modelling tactical decision making as

t
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TABLE E.III. Advantages and Disadvantages of an Analytical Solution

to a LANCHESTER-Type Model.

ADVANTAGES DISADVANTAGES

(1) exact results (1) may be quite complicated

(2) behavioral transparency (2) available only for very

(i.e. can easily see relation- simple cases

ship between model's (a) few state variables

parameters and solution (b) simple forms for

behavior) attrition rates and

(3) parametric analyses easily coefficients

performed (3) may require mathematical

(4) can generate hypotheses to sophistication to under-

be tested in higher-resolution stand, appreciate, and

studies, use.
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a rational process and optimizing tactical resource allocation is to

be found in Section 8.5 below. Some additional thoughts on the coordi-

nated use of a simplified auxiliary model writh a higher-resolution com-

plex operational model (besides a graphical articulation of the basic

concept) are portrayed in Figure E.2.

Moreover, it seems appropriate to point out here that one dis-

advantage of an analytical solution is that advanced mathematical theory

may be required just to understand and use it. An example of this unfortu-

nate situation is the solution to variable-coefficient LANCHESTER-type

equations for modern warfare with power attrition-rate coefficients

(see Section 6.9). Here for cases of no offset the force levels may be

represented in terms of LANCHESTER-CLIFFORD-SCHLFLI functions (or,

equivalently, modified BESSEL functions of the first kind of fractional

order). Thus, some knowledge of special mathematical functions is more

or less required for analytically analyzing essentially all but simple

constant-coefficient LANCHESTER-type models, in particular for variable-

coefficient LANCHESTER-type equations of modern warfare (see Chapter 6).

In a similar fashion, advantages and disadvantages of approxi-

mate numerical solutions are given in Table E.IV. The only additional

comment that seems necessary here is that one disadvantage of them (the

last given in Table E.IV) is that some caution must be observed in their

use. For example, one cannot indiscriminately choose the time-stop

size at to be used in numerically generating results with the finite-

difference approximation. Also, as we have discussed above, not all

finite-difference approximations to LANCHESTER-type differential equations

are really satisfactory from the standpoint of military OR. Some

6t
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CO MPLEX SIMPLIFIED

PHENOMENA ABSTRACTION AUXILIARY
(Coma MODEL

Operations)
(Analytical Solution)

C-

C4
OUTLOOK"-4

(IOFAS)

COMPLEX OPERATIONAL
MODEL

(e.g. Approximate Numerical Solution
or Simulation like OYNTACS)

Figure E.2. Coordinated use of simplified auxiliary model
and complex operational (i.e. higher-resolution)

model.
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f TABLE E.IV. Advantages and Disadvantages of an Approximate Numerical

Solution by Finite-Difference Methods to a LANCHESTER-type Model.

ADVANTAGES DISADVANTAGES

(1) can always be obtained (1) need computer to generate:

(i.e. guaranteed answer) resources required

(2) easily generated by (a) time

recursive algorithm (b) money

(i.e. finite-difference- (2) difficult to perceive

equation solution readily significant relationships

computed recursively) between model parameters

(3) no advanced mathematical and solution behavior

theory required to under- (3) might be costly to perform

stand and use. parametric analyses

(4) only obtain approximate

solution (beware .)
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knowledge about numerical analysis (such as we have outlined above) is

useful for avoiding certain pitfalls of computation.

After comparing the advantages and disadvantages of analytical

and approximate numerical solutions shown in Tables E.III and E.IV,

the reader should sense that simple analytical solutions and numerical

approximations to more complicated models are in some sense complementary.

Returning to our theme about considering the information to be extracted

from a combat model, we observe that in many cases some information may

be obtained from an analytical solution to a simple model, while other

complementary information about system performance and effectiveness is

probably best obtained from a more complicated model by numerical means

(i.e. finite-difference approximation). Again, Figure E.2 portrays some

related thoughts along these lines. We feel that much more work is needed

on analysis strategies for the coordinated use of simplified auxiliary

models with complex operational combat models. In force-on-force combat

analysis, no one model can stand alone!

7. Suggestions for Further Reading.

In this section we give some selected references for the reader

who desires further information about the numerical solution of O.D.E.s.

Excellent introductions for the nonspecialist are afforded by HENRICI

[5, Chapter 14], McCRACKEN and DORN [10, Chapter 10], HILDEBRAND [7,

Chapter 2], and RALSTON and WILF [13, Chapters 8 and 9], with the last

reference probably containing the best introduction for the OR worker
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(even though the computer material is quite dated). Other good intro-

ductory texts are those by MILNE [11] and HILDEBRAND [6], in spite of

the fact that they appeared in the relative early days of digital computers.

The reader who desires further information about difference equations

themselves will find very readable introductions in HENRICI [5, Chapter 3]

and HILDEBRAND [7, Chapter 1]. An excellent short summary of the principal

finite-difference methods for O.D.E.s appears in DAVIS and POLONSKY

[3, pp. 896-897]. More theoretical treatments of the numerical solution

of O.D.E.s are to be found in HENRICI [4] and ISAACSON and KELLER [9],

with a fairly extensive list of references to the numerical-analysis

literature concerning O.D.E.s appearing in HENRICI [4] (see also MILNE

[111 for an extensive list of earlier references).

8. Final Remarks.

With the information about finite-difference approximations

contained in this appendix the reader has the computational means at hand

for building operational LANCHESTER-type models of essentially any

desired degree of complexity. Such approximation methods allow one with

the help of a digital computer to generate numerical results (albeit for

particular values of input data) from essentially any kind of LANCHESTER-

type model. With such computational support, the military-OR worker

can focus on model formulation and, more generally, the iterative process

of model building (cf. MORRIS [12]).
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For such computational work we have (for a variety of reasons)

recommended the use of the EULER-CAUCHY method. In particular, because

of the very approximate nature of LANCHESTER-type models in the first

place, higher-order finite-difference-approximation schemes hardly seem

justified as they have been in, for example, the physical sciences where

the differential laws of nature are quite precisely known. Besides the

convergence and stability of finite-difference methods discussed above,

another important computational consideration is the number of computa-

tions required. The EULER-CAUCHY does very well on this criterion because

of its simplicity. Moreover, because of the speed of modern digital

computers and the simplicity of the EULER-CAUCHY method, the smaller

time-step size required by consideration of truncation error in relation

to that possible for higher-order schemes is of little consequence.

Furthermore, operational LANCHESTER-type combat models in use today such

as the BONDER/IUA or any one of the VECTOR series of models use the

EULER-CAUCHY method (e.g. see BONDER and HONIG [1, p. 337] or [2, p. 51]).
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EXERCISES FOR APPENDIX E

1. Consider LANCHESTER's constant-coefficient equations of modern war-

fare for a fight to the finish (E.24) and the EULER-CAUCHY finite-

difference approximation (E.25) that we developed for them.

Part a. Using the finite-difference approximation and the following

input data x0 - 20, yo - 70, a - 0.1 X casualties/minute per Y firer,

b - 0.5 Y casualties/minute per X firer, and At - 0.1 minute; compute

by hand the approximate force levels xn and Yn for several time

steps in order to get a feel for the recursive solution procedure.

Part b. Based on your computational experience gained in Part a,

automate the computational procedure by developing an algorithm and

writing a computer program to calculate the approximate force levels

xn and n"

Part c. Using the data of Part a, exercise the computer program

developed in Part b. Plot the exact force level values x(t) and

y(t) against time t, and on these same plots show the values for

the approximate force levels cn and Yn'

Part d. Using experimental computation (i.e. by trial and error),

find a value for the time-step size At that yields satisfactory

approximate results. (Hint: as suggested in this appendix, take

several trial values for At (e.g. At - 0.001 minute, 0.01 minute,
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0.1 minute, 1.0 minute, 10.0 minutes), compute the approximate

force-level trajectories for each of these different values, and

compare results).

Part e. Modify the finite-difference approximation and your computer

program to handle the case of a fixed-force-level-breakpoint battle

(see Section 2.8). Exercise your computer program with the data of

Part a and f - 0.5 and fP 0.15, where (as usual)
BP BPPar a and yfBPX Y

p- fBpx 0 and YBP m fBPY0*

2. Recall the LANCHESTER-type model that we developed in Section 3.10

and that considers unit deterioration due to attrition with fixed-force-

level breakpoints

-a(l-fI) 1 - YBP) y for x> xBp and y>dx~~~ IYT-B PBP'

Tt 0 otherwise,

(E.33)

(b(l-f ) 1-/ -x for x> xB, and
I XO~xB Y >BP'

dy
dt

0 otherwise,

where fX and fY denote the fractions of the X and Y forces thatI fI
are permanently ineffective, and 1i and V are constant parameters

modelling the unit-deterioration process.
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Part a. Develop the EULER-CAUCHY finite-difference approximatioL

to (E.33).

Part b. Using the finite-difference approximation developed in

Part a, write a computer program to calculate the approximate force

levels k and kn'

Part c. Using the data x0 - 30, yo - 80, a - 0.05 X casualties/minute

xper Y firer, b - 0.2 Y casualties/minute per X firer, f1 " 0.1,

Y - 0.3, - 2.5, v - 2.5, fBP M 0.5, and f . 0.15; find afI BP - 05adfBP

satisfactory time-step size At for this finite-difference approxi-

mation by experimental computing. (Hint: as suggested in this

appendix, first find a satisfactory time-step size for the finite-

difference approximation of Problem 1. Denote this value as hS.

Then compute approximate results for the model (E.33) for several

values of At, using hS as a point of departure (e.g. At - 0.1hs,

0.5hS, hS, 2.5hs, 5hs), and compare results.)

Part d. Using the data of Part c and the time-step value At

developed there, compute the approximate force levels, and plot
A

against time t and also y against time. Develop similar

plots for cases in which u - 1 and v 1, p - 1 and v - 2,

S- 1 and v - 2, and v - 10 and v - 10. Compare these

numerical results with those for LANCHESTER's equations of modern

warfare with the same fixed-force-level breakpoints.
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Part e. What other graphical plots would be of interest to a

military-OR analyst?

3. Using the computation aids (i.e. the computer programs) developed

above for the combat models (E.24) and (E.33), evaluate the following

rule of thumb frequently used by military planners: do not attack

unless you possess a three-to-one advantage in combat power.
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Chapter 8. OPTIMIZING TACTICAL DECISIONS

8.1. Introduction.

In this chapter we will briefly examine developing insights into

the structure of optimal tactical decisions by combining combat modelling

and optimization theories. Our approach is to apply so-called generalized

control theory (i.e. optimization theory for dynamic systems 2) to relatively

simple LANCHESTER-type combat models in which the combat strategies of

tactical decision makers are represented by "decision variables. 31, The

"best" values for these decision variables are then determined by invoking

optimality conditions from generalized control theory.

This chapter, however, is substantially different from the other

chapters of this monograph in the sense that its purpose is to provide an

introduction to and overview of the quantitative analysis of military

strategy and tactics and not to provide complete details on how this is

done. The author has felt it to be important to show how LANCHESTER-type

models can be used prescriptively for military decision making (at least

conceptually), even though circumstances have prevented complete details

being given here. Thus, our purpose here is to provide the reader with

some indication as to how the LANCHESTER theory of combat can be combined

with optimization theory to quantitatively study military strategy and

tactics. The author has felt that it would be better to provide a rather

sketchy introduction to and overview of this important topic rather than

omit it entirely. Thus, complete details will not be given, with the reader
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being referred to the literature for them. In partciular, essentially

no details from optimization theory (i.e. generalized control theory), no

details of procedures for developing solutions, and even no complete solu-

tions will be presented here. However, we will try to establish a framework

for the use of such normative models. Consequently, problem formulations

and the insights to be gained from such investigations will be stressed.

The structure of optimal time-sequential combat strategies has

been studied by the author4 by considering a sequence of specific problems,

and we will examine a few selected representatives from this collection

of specific problems. However, these combat models are too simple to

be taken literally but should be interpreted as only indicating general

principles to serve as hypotheses in subsequent studies with more detailed

operations models (e.g. a high-resolution Monte Carlo combat simulation

such as DYNTACS, or a complex operational analytical model such as BONDER/IUA

5or VECTOR-2) . Since these mathematical models are such idealizations of

the (rational) decision-making process in combat, probably the only

significant result obtained from then is the structure of the optimal

combat strategies. Consequently, the author's research has initially con-

centrated on relating the structure of optimal combat strategies to the

conceptualization of the tactical decision problem. Such work may be

helpful for understanding optimization results from (and, hence, for making

better use of) more complex operational models.

In this chapter we will therefore briefly examine several specific

optimization problems for determining optimal time-sequential combat

strategies (primarily fire-distribution strategies, i.e. strategies for
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distributing fire over enemy target types). We will also consider the

optimal initial commitment of forces in battle, and this examination of

ours will provide fresh insights into the "principle of concentration,"

which F. W. LANCHESTER [53] first attempted to quantitatively justify in

1914 (see also Section 2.9 above). On the battlefield, the opposing

commanders have conflicting interests, and this basic conflict of interests

leads to a so-called game-theoretic or two-sided optimization problem for

6determining the 'best" combat strategy for each side , i.e. each side is

faced with a tactical choice problem that is in turn affected by the

enemy's tactical strategy. Because such two-sided time-sequential opti-

mization problems (i.e. differential games) are generally so difficult

to solve and usually have such fantastically complicated solutions, we

will accordingly consider some one-sided optimization problems7 (i.e.

one side's strategy is fixed and thus only the other side has a free

choice of its combat strategy) in order to illustrate modelling points

and study the structure of optimal combat policies8 (or tactics).
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8.2. Quantitative Analysis of Military Strategy and Tactics

From the standpoint of modern operations research (OR), problems

of military strategy and tactics 9 may be viewed as being basically resource-

allocation problems over time. For example, a military commander of ground

forces is frequently faced with the problem of when and where to commit

his reserve forces into battle. As another example, the allocation of a

specific weapon-system type to an acquired target is an important tactical

decision in the fire-support process. Accordingly, the determination of

optimal (or even "good") fire-distribution strategies for supporting weapon

systems10 has been a major problem of military OR. In particular, the

determination of the optimal allocation of general-purpose aircraft to

missions in a multiperiod war with a specified number of periods has been

much studied in the past and continues today to be of significant interest

to defense planners.

Many people believe that such tactical decisions (quantified in

models as behavioral and/or decision variables) are the most significant

factors driving the course of combat to its end. Thus, one is faced with

11the problem of modelling tactical decisions . After such tactical-

decision models have been developed, it becomes of interest to find a pre-

ferred course of action from among the feasible alternatives.

Optimal strategies for such tactical-allocation problems may be

investigated by means of

12
(I) war gaming

(II) mathematical modelling combined with optimization theory.
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These two approaches both share some common dimensions of the tactical

decision-making process, but they may also be characterized by their

differences. The distinguishing feature of war games is that they use

real people playing the roles of the battlefield commanders and their

staffs to simulate tactical decision processes, while combat simulations

and analytical models use symbols, algorithms, or some other type of

logic to represent such decision processes. All such approaches and/or

modelling methodologies, however, play the same functional role in combat

simulations1 3 : they produce requisite tactical decisions (i.e. the outputs

of decision processes) at appropriate times during the course of simulated

combat. Moreover, war games are descriptive, while optimization problems

are prescriptive (or normative).

When we analytically model the tactical choice problem with each

of the opposing commanders seeking to use his "best" combat strategy, we

are led to a game-theory model for optimizing tactical decisions in which

there are at least two players or decision makers (cf. HO [34; 35]).

When there are two decision makers, such a normative model is also fre-

quently called a two-sided optimization problem (e.g. see HO, BRYSON,

and BARON [36]). Moreover, there is an intimate connection between game

theory and war gaming (e.g. see THOMAS and DEEMER [101]). In particular,

SHUBIK (72] has stressed that a knowledge of the theory of games provides

a useful benchmark and a fundamentally important methodological approach

to the study of situations involving potential conflict of interests.

Table 8.1 presents a brief synopsis of the major assumptions in game-

theoretic optimization problems and war gaming (i.e. behavioral model
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3
TABLE 8.1. Brief Synopsis of the Major Assumptions in Game-Theoretic

Optimization Problems and War Gaming (i.e. Behavioral

Model Building).

Game Theory Behavioral Theories

Rules of the game Military doctrine and custom

External symmetry Personal detail

1No social conditioning Socialization assumed

No role playing Role playing

Fixed well-defined payoffs Difficult to define and may

change

Perfect intelligence Limited intelligence

No learning Learning

No coding problems Coding problems

Primarily static Primarily dynamic
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building). Many of the same comparisons, of course, also apply to the

comparison between one-sided optimization (i.e. the combat strategy

assumed to be known for one side) and war gaming (see SHUBIK (72, pp. 157-1801

for further details).

The author's approach for investigating optimal combat strategies

(e.g. see TAYLOR [85-88; 91-97]) has been to develop an analytical model

of the tactical engagement, to quantify the tactical choices and/or

allocations of the commanders through decision variables, to incorporate

these decision variables into the combat model, and finally to determine

the "best" values for these decision variables. We have, of course, used

LANCHESTER-type models to represent the combat dynamics in these opti-

mization problems.

Thus, the topics covered in this book on LANCHESTER combat theory

fall essentially into two categories: namely, material on

(Cl) simple LANCHESTER-type models,

and

(C2) determining optimal tactical decisions with such

simple models.

Models in the first category may be classified as being descriptive,

while those in the second may be classified as being normative. In the

latter case, the LANCHESTER-type equations are used to assess the con-

sequences of the decisions made by the co-mmanders and modelled by decision

variables. The focus of the author's work has been on understanding the

dynamics of combat and optimization of tactical decisions through studying
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B simplified analytical models, especially those that provide an understand-

ing of the basic nature of more complex operational models. A good

analytical model, of course, should simplify, be transparent and easy to

understand, be easy to manipulate, and increase our understanding of

real-world processes (i.e. yield important insights). For reasons that

should be obvious to the reader by now, the combat-optimization problems

studied by the author are far too simple to be taken literally but should

be interpreted as yielding Insights that can provide valuable guidance

for subsequent higher-resolution computerized investigations. As we have

already stressed above in Section 8.1, probably the only significant

result obtained from such combat-optimization problems is the structure

of the optimal combat strategies, since these mathematical models are such

great idealizations of the (rational) decision-making process in combat.

6
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8.3. Information to be Obtained from the Quantitative Analysis of

Military Strategy and Tactics.

Thus, as discussed above, the author's research on determining

optimal tactical decisions has been based on applying optimization theory

to such simple LANCHESTER-type combat models as we have predominantly

considered previously in this monograph, with tactical decisions quantified

through decision variables. Our work has emphasized understanding the

dependence of the structure of optimal time-sequential combat strategies

on the basic elements of the combat-optimization problem (see Section 8.4

below). As we have previously stressed for our analytical investigation

of simple LANCHESTER-type (descriptive) models (cf. the questions of

Section 6.3), we have used judiciously selected questions to guide our

research efforts on optimizing tactical decisions. Specifically, we have

been guided by trying to answer such questions as shown in Table 8.11.

Other such questions may be found posed in TAYLOR [92, p. 2; 94, p. 1;

96, pp. 2-3].

Furthermore, our own research efforts have mainly concerned optimal

time-sequential tactics for the distribution of fire over enemy target

types, with some idealized looks at optimal fire-support strategies. Our

research approach has been to consider a sequence of specific problems,

to investigate for each problem such questions as shown in Table 8.11,

and to compare the structures of optimal fire-distribution strategies

among these different problems. Analytical rather than numerical methods

have been stressed. A scenario has been developed for each such specific

problem expressed in qualitative terms, and the military operations analyzed.

Appropriate LANCHESTER-type models of the combat process have then been
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TABLE 8.11. Information to Extract from

Combat-Optimization Problem.

(Qi) Do target priorities change over time?

(Q2) How should fire be distributed over enemy targets and how should

targets be optimally selected?

(Q3) How do force levels affect the optimal time-sequential

fire-distribution policy?

(Q4) How do the number of target types and the nature of combat-

attrition processes affect the optimal fire-distribution

policy?

(Q5) How does the nature of the planning horizon (i.e. battle-

termination conditions) affect the optimal fire-distribution

policy?

(Q6) What are the affects of logistics constraints on such policies?

(Q7) How do command-and-control capabilities affect the optimal

policy?
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developed, with decision variables used to represent the feasible

actions of the opposing combatants. An optimization problem (reflecting

the tactical allocation problem faced by the combatants) has ncxt been

formulated and solved by applying the appropriate optimization theory.

Finally, after a sequence of such optimization problems has been solved,

their solutions have been studied and compared to gain insights into the

structure of optimal fire-distribution strategies. This approach of

considering a sequence of specific problems has been repeatedly used to

investigate the influence of the following factors on optimal time-sequential

fire-distribution strategies:

(Fl) combatant objectives (quantification of military objectives),

(F2) dynamics of the combat-attrition process,

(F3) weapon-system-performance characteristics,

(F4) termination conditions of the conflict,

(FS) force strengths and composition,

(F6) effects of resource constraints,

(F7) range capabilities of weapon systems.
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8.4. Basic Elements of the Combat-Optimization Problem.

Consider two opposing forces in combat. Each force has a

commander who makes decisions that influence the course of combat.

What can each do?

What does each know?

What criteria does each base

his decisions on?

What does each war.t to do?
How is what each decides related

to what happens?

In more analytical terms, if we assume that each commander is a so-caled

rational decision maker and we attempt to model how each makes decisions,

then the essential aspects of each commander's decision process may be

stated as follows:

(EAl) the feasible courses of action available to each

decision maker,

(EA2) the information available to each decision maker,

(EA3) the outcome "yardstick" (decision criterion) used by

each decision maker,

(EA4) the relation between the joint course of action and

conflict outcome.
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However, we can formalize much further our method of inquiry

and (as discussed above) investigate optimal strategies for tactical

decisions by using mathematical modelling combined with optimization theory.

Let us now formally call such an optimization problem that is used for

investig&ting optimal tactical-allocation strategies a combat-optimization

problem. For the purposes of military OR it is convenient to consider

that there are five fundamental elements14 of any time-sequential combat-

optimization problem:

(El) the decision criteria (for both commanders),

(E2) the model of conflict termination,

(E3) the model of combat dynamics,

(E4) the feasible actions for each decision maker,

(E5) the information available to each decision maker.

It is intuitively obvious that each and every of the above five factors

can have a significant influence on what the "best" course of action will

be in combat. Furthermore, partially because of the paucity of real combat

data, there are alternative models which are essentially equally plausible

for each of these factors.

Modern air-ground combat operations may be characterized both

by their diversity and also by the vast scope of the sheer numbers of
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weapon systems involved. Consequently, current modelling and computer-

system technologies cannot directly reproduce such large-scale operations,

and large-scale systems must be considered in much system-evaluation work

for various reasons such as resource allocation, the combined-arms nature

of operations, etc. Since the resultant combat models representing a

tactical-decision problem for such systems (and even smaller) must be

highly idealized, probably the only significant aspect is how the structure

of optimal combat strategies depends on the above five essential elements

of the combat-optimization problem. Thus, an important problem for

military OR is to determine how the structure of optimal combat strategies

depends on these elements of the combat-optimization problem.

In essentially all optimization-theory application to tactical

decision making known to this author, it is assumed that decision makers

have essentially "perfect knowledge" about enemy capabilities. Hence,

we will not consider the information structure further, although it

certainly will play a major role in actual real-world military decisions.

Also, in much analysis a relatively simple structure for the feasible

actions of each decision maker is assumed. For example, it is frequently

assumed that an aircraft can be assigned to just one of a number of differ-

ent tactical missions, although in reality an aircraft might perform

several missions on a particular sortie. Hence, we will also not explicitly

consider the feasible actions for each decision maker (E4) further.

Moreover, concerning the first three items in the above list of elements

of the combat-optimization problem, our knowledge about such topics

increases as we go down the list. In other words, more is known about
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modelling the dynamics of combat than about modelling conflict termination,

and still less is known about the decision criteria actually used by

decision makers. The author's research has emphasized relating these

three elements of the decision problem to the structure of optimal

combat strategies by considering a sequence of specific problems. Thus,

the consequences and implications of alternative assumptions about these

elements may (hopefully) be better appreciated.
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8.5. Simple AuxiliaL7 Models and Complex-Operational Models.

In this chapter we will present some elements of a theory of

optimal tactical allocation by examining a sequence of idealized combat-

optimization problems that we have considered in our research. For

reasons of mathematical tractability, we have primarily considered one-

Bided time-sequential optimization problems (i.e. so-called optimal-

control problems), but we have also considered some time-sequential combat

games. We justify our examination of deterministic optimal-control

problems on the following grounds:

(Fl) LANCHESTER-type differential games are extremely difficult

to solve,

and

(F2) there is a well-known intimate connection between the mathe-

matical theories of optimal control and differential games.

Our idea behind studying such one-sided problems is to discover properties

of optimal time-sequential combat policies that will provide guidance

for studying two-sided time-sequential tactical decision problems. However,

one must be aware of the fact that differential games do possess many

subtle mathematical features that do not cccur in one-sided optimization

problems (see ISAACS [47] for further details).

Our approach for studying the optimization of time-sequential

tactical decisions has been to consider a sequence of judiciously-chosen

simrle problems, to analytically solve each optimization problem to

determine the optimal time-sequential combat policy, and to compare the
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structures of these optimal policies. Although these problems are too

simple to be taken literally, such an analytical investigation of the

optimization of combat dynamics may be useful for

(a) guiding higher-resolution studies,

and

(b) identifying cause-effect relations between optimal military

tactics and modelling assumptions.

Some of the philosophy behind this type of investigation is shown in

Figure 8.1. Thus, we do not claim that the simple combat-optimization

problems that we have studied should "stand alone" but rather that they

should be viewed as points of departure for more detailed investigations

using either simulation (see NOLAN and SOVEREIGN [63]), .large-scale

optimization (see GEOFFRION [26]), or even war gaming. The basic idea is

to coordinate the use of a complex operational model with that of a simple

auxiliary model, although in this monograph we will consider only the

latter. We have already discussed iLl Chapter 7 such complementary use of

models within the context of descriptive models, and we will now briefly

reexamine this important concept for normative models.

GEOFFRION (26] has pointed out that a serious inherent limitation of

large-scale optimization models is that they do not explain WHY the

optimal policy or strategy is what it is, although they certainly can

deliver an optimal solution for a given set of input data. For optimizing

tactical decisions, we are more interested in (at least initially) the

structure of optimal combat strategies and their dependence on modelling
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I

COMPLEMENTARY
OPTIMIZATION PROBLEMS

COMPLEX OPERATIONAL SIMPLE AUXILIARY
MODEL MODEL

I Complex structure based on eorrichmts (I Simple analyticl structure representing

of basic struct•re to achieve *realism" any most relevant features.

and "redibity". STRUCTURE

(2) Large number of variables and (2) Few variables and constraints.

constraints.

(3) Compulotiond limitations. (3) Analytically tractable.

(4) Coriutaltiaonl state of the art. (4) Theoretical state of the art and specialS~structure of problem.

(5) Only a few cam analyzed, INSIGHTS (5) Prarametric analysea possible.

(6) Socio-economic and paliticol objectives (6) Strictly military objcctives.

as wll as military ones.

(7) Credible results. (7) Theoretically sound results.

Figure 8.1. Complementary relation between the analytical study of

optimizing combat dynamics with a simple auxiliary model

and a more detailed examination with a complex operational

model.
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assumptions and variations in system parameters because of the many un-

certainties inherent in combat analyses. Furthermore, few (if any)

tactical-decision problems lead to a single perfect numerical model whose

solution is directly translatable into practical action. GEOFFRION [26]

has stressed that there is rather an entire family of imperfect numerical

models reflecting alternative assumptions, objectives, and data estimates.

An understanding of solution behavior for the entire family of models is

required to fully support the development of an appropriate plan of

action.

GEOFFRION [26, pp. 81-82] has further stressed that insights into

the determinants of an optimal solution are important because they help

to overcome the serious validation/credibility obstacles that are usually

present in practical applications (particularly military ones). How

can one be convinced a model is a useful representation of the real system?

Furthermore, how can the ultimate user of information generated by the

model - in DoD applications usually a senior military officer, civilian

manager, or politician rather than a technical person - be persuaded to

use the model as a decision aid? GEOFFRION [26, p. 82] feels (and so do

wOe) that the answer to both these important questions is that purely

numerical results must be supplemented by intuitively reasonable explanations

as to why these numerical results have occurred as they have. Otherwise

(GEOFFRION has continued) the validity of the model can only be taken on

faith, and the decision maker will be inclined to revert to intuition or

to some other basis for the decision about which he feels more secure.

He has then suggested the use of simple auxiliary models to supplement

the use of complex operational models, much as we have depicted in Figure 8.1.
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I
We therefore suggest the following methodological approach for

investigating the optimization of tactical decisions (after GEOFFRION [26]):

1. Reduce the level of detail and complexity of the full-scale

combat-optimization problem (i.e. the complex operational

model) until it can be solved analytically In closed form.

Call this a simplified auxiliary model.

2. Derive from the simple auxiliary model a set of tentative

hypotheses concerning the general behavior of the solution the

full-scale model--the combat-strategy and/or weapon-system trade-

offs determining the optimal solution for a given set of data,

the nature of the induced change in the optimal solution as

certain input data are changed parametrically, and so on.

3. Generate specific predictions from the tentative hypotheses

and test these numerically using the full-scale model.

4. To the extent that the numerical tests confirm (actually, do

not contradict) the tentative hypotheses about optimal combat

strategies, take these hypotheses as a conceptual framework

for understanding and interpreting the numerical results provided

by the full-scale model.

This approach underlies all our research on optimizing tactical decisions

(e.g. see TAYLOR [79, pp. 79-80]). Although GEOFFRION [26] limits his
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discussion to optimization models in a nonmilitary context, it is clear

that this conceptual approach has much to offer for tactical-decision

analysis when used in conjunction with either war gaming, Monte Carlo

combat simulations, or complex operational models such as BONDER/IUA or

VECTOR-2 that use fixed combat strategies. For example, one could

develop a finite number of tentative combat strategies from such a

simplified model and then evaluate in more depth each of these strategies

by using it in some type of complex operational combat model.

Thus, the relatively simple combat-optimization problems that

we will consider in the rest of this chapter should not be taken literally

but rather should be interpreted within the framework that we have

outlined above.
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I
8.6. Overview of Problems Considered in the Literature.

In this section we will attempt to provide the reader with an

overview of the various different types of combat-optimization problems

that have appeared in the literature. We will focus here on identifying

the principal problem types and on giving references to what work has

been done on each type. We will give both a brief overview with a few

selective references, and then we will give a more detailed breakdown

based on a more comprehensive examination of literature in this field.

In subsequent sections we will give detailed mathematical formulations

of typical problems from some of these problem-type classes.

First let us give our brief overview. For this purpose, the

author perceives that work on optimizing tactical decisions may be

classified roughly into the following four categories:

(Cl) optimal initial commitment of forces: BACH et al. [6],

TAYLOR and PARRY [90], TAYLOR [88];

(C2) optimal distribution of fire (general): ISBELL and MARLOW

[50], TAYLOR [76; 78; 79; 82; 84];

(C3) optimal fire-support strategies: WEISS [102; 103], KAWARA

[51], TAYLOR [80; 85; 86], TAYLOR and BROWN [89];

(C4) optimal air-war strategies: ISAACS [46], BERKOVITZ and

DRESHER [11; 14], BRACKEN et al. [15].

9!703

~~~~~~~~~~~~~~~~~-A I.. 
.. . . _ _ _- _- _ _ _- _- _- - _- _- -.. 

. ..



We will give examples of combat-optimization problems from each of these

four categories in subsequent sections of this chapter. Except for the

first category (Cl), all the above work concerns optimizing time-sequential

decisions, with both one-sided and also two-sided allocation problems

(see HO [34]) being considered. Older work on "static" tactical-alloca-

tion problems (i.e. "one-shot" decisions) may be found in DRESHER's book

[21]. Further detailed references to the literature may be found in the

above papers, particularly BRACKEN et al. [15], TAYLOR and BROWN [89],

and TAYLOR [85; 86] (see also TAYLOR [93] and below).

Work in the first category (Cl) concerns the same type of problem

originally considered by LANCHESTER [53] in 1914 (see Sections 2.1 and

2.9 above) and will be examined in more detail in Section 8.9 below.

Work in the second category (C2) concerns the optimal time-sequential

distribution of fire over enemy target types in two-sided combat in

15simple one-sided-decision situations and will be examined in more detail

in Sections 8.10 and 8.11 below. In some sense it forms a basis for

considering more complicated problems such as those in categories (C3)

and (C4). Work in these latter two categories is somewhat similar in

mathematical form, with the former category (Q3) concerning, for example,

artillery allocation and the latter category (C4) concerning the allocation

of multipurpose aircraft to different types of tactical missions over

time (see Section 8.12 for problem formulations from both these categories).

Work in the third category (C3) has been on both one-sided and also two-

sided optimization problems, while that in the fourth category (C4) has

been both mure extensive and also essentially always two-sided.
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I
A much more detailed overview of work done on optimizing tactical

decisions with LANCHESTER-type combat models is given in Table 8.111,

which can serve the reader as a more detailed guide for further reading.

Additional topics have been added here, and the references to the literature

are nearly complete. The reader can now see, for example, the large

amount of research on optimal air-war strategies over a long period of

time. The author has liberally added his own technical reports published

by the Naval Postgraduate School (NPS), since such reports are readily

16
available from the National Technical Information Service (NTIS),

U. S. Department of Commerce, 5285 Port Royal Road, Srpingfield,

Virginia 22151.

The author's own research (see TAYLOR [76-88] and TAYLOR and BROWN

[891; also TAYLOR [91-971 and TAYLOR and POWERS [981) has mainly concerned

optimal time-sequential tactics for the distribution of fire over enemy

target types, with some idealized looks at optimal fire-support strategies.

Many additional supplemental details such as fairly comprehensive

literature reviews, discussions of insights gained, etc. are to be found

in the author's NPS reports [91-97]. Our approach has been to consider

specific problems and to investigate the influence on optimal fire-

distribution strategies of factors such as (Fl) through (F7) of

Section 8.3.
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8.7. Decision Analysis for Tactical Military Decisions.

It is the author's hypothesis that a soiaewhat different brand

of decision analysis (e.g. see HOWARD [37-38] or NORTH [64]) is required

for tactical military decision making. The five basic elements of

such tactical decisions have been identified in Section 8.4 above. The

author's own research has concentrated on investigating the influences

of the first three elements (namely, (1) the decision criteria, (2) the

model of combat termination, and (3) the combat dynamics) on the structure

of optimal combat strategies. Moreover, the author feels that the field

of tactical decision-analysis is in its infancy (cf. HOWARD's [37, pp. 56-58]

deterministic phase of the decision-analysis procedure) and expects in the

future to see a maturing of the embryonic conceptual framework presented

here.

In TAYLOR [76; 78-79; 82; 84; 931 a linear utility (see Section

7.18 for methodology for the development of such linear utilities; also

HOWES and THRALL [39]) was assumed for the military worth of surviving

weapon-system types, and the criterion functional (i.e. payoff) was taken

to be the net military worth of survivors. We investigated the sensitivity

of the optimal fire-distribution policy (one-sided) to parametric varia-

tions in the assigned linear utilities for survivors. It has been shown

that the n-versus-one fire-distribution problems studied in TAYLOR [78-39;

82; 84] all have quite simple solutions when enemy survivors are valued

in direct proportion to their kill capability against the homogeneous

friendly force.

PUGH and MAYBERRY [69] have suggested that an appropriate payoff

for the quantitative evaluation of combat strategies is the loss ratio,
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with an "almost equivalent" criterion being the loss difference. TAYLOR

and BROWN (89] have shown that these criteria are not really equivalent

and that the quantification of military objectives may completely change

the structure of the optimal combat strategy. Similar results have been

obtained by TAYLOR [88], who showed that KAWARA [51] had chosen essen-

tially the only type of payoff that ylelds optimal fire-supDort strategies

being force-level independent. A general approach was given by TAYLOR [88]

for determining the functional form of terminal payoffs that yield state-

variable-independent optimal combat strategies.

In TAYLOR [79] we showed that the model of conflict termination

may significantly change the optimal. fire-distribution policy. For such

investigations it has been important to have available complete analytical

solutions which are then compared to determine the influence of such a

factor.

In TAYLOR [78-79] we have investigated the influences of the

nature of the target-type attrition process on the structure of the optimal

fire-distribution policies 8. When target-type attrition (as a rate) is

proportional to only the number of firers, we (TAYLOR [79; 82]) have shown

that the optimal fire-distribution policy is always to concentrate all fire

on a single target type, which may change over the course of battle. We

have also studied the nature of such changes in target priorities. How-

ever, an optimal fire-distribution policy does not always consist of

always concentrating all fire on a single enemy target type. In TAYLOR

[78] we have shown that when enemy targets undergo attrition at a rate

proportional to the product of the numbers of firers and targets, then

an optimal policy may involve firing at several target types to avoid
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"overkill." This important result may be best understood in terms of

diminishing returns from allocating a unit of weapon system to fire at

enemy targets (see TAYLOR (79, pp. 84-85] and below in Section 8.11 for

further details). Such a property of optimal fire-distribution strategies

(i.e. the splitting of fire between several target types) has been

observed by TAYLOR and BROWN (89] and TAYLOR [86] for much more complicated

combat dynamics.

1
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8.8. Some Combat-Optimization Problems to be Briefly Examined Further.

In the remainder of this chapter we will briefly consider some

specific combat-optimization problems concerning (I) otpimal initial

commitment of forces, and (II) optimal time-sequential fire-distribution

strategies (see Table 8.IV), As we have already indicated in Section 8.1

above, problem formulation will be stressed, with occasional comments

being given about insights obtained into the structure of optimal time-

sequential combat strategies. The reader is referred to the literature

19
for complete details, including the pertinent optimization theory

A further, more detailed breakout of combat-optimization problems con-

sidered in the rest of this chapter is given in Table 8.V, with the

section in which each problem is considered being indicated.
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TABLE 8.1V. General Types of Combat-Optimization Problems

to be Examined in Chapter 8.

(I) Optimal Initial Commitment of Forces

(II) Optimal Time-Sequential Fire-Distribution Strategies

(1) Optimal Fire-Support Strategies

(2) Optimal Air-War Strategies

'4

711

,$

__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



TABLE 8.V. Detailed Listing of Combat-Optimization Problems to be

Briefly Examined in Chapter 8.

(1) Optimal Initial Commitment of Forces (Section 8.9)

(II) Optimal Time-Sequential Fire-Distribution Policies

(1) the simplest fire-distribution problem (Section 8.10)

(2) other battle'-termination conJitions (Section 8.11)

(3) time-dependent attrition-rate coefficients (Section 8.11)

(4) replacements (Section 8.11)

(5) several enemy, target types (Section 8.11)

(6) command and control aspects (Section 8.11)

(7) FT attrition process of enemy target types (Section 8.11)

(8) stochastic LANCHESTER-type attrition processes (Section 8.11)

(9) time-sequential fire-support allocation (Section 8.11)

(III) LANCHESTER-Type Differential Games (Section 8.12)

(1) generalized tactical air-war game (Section 8.12)

(2) modified fire-support differential game (Section 8.12)
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8.9. Optimal Initial Coimmitment of Forces.

As we saw in the first section of Chapter 2, LANCHESTER (53]

was led to his pioneering mathematical mode] of combat by his attempt to

quantitatively justify the principle of concentration. We subsequently

revisited the topic of concentration of forces in Section 2.9, and we

analyzed 'here a commander's decision as to whether or not he should

initially commit as many of his forces as possible to battle. We

formulated a one-sided20 combat-optimization problem (2.9.2) and solved

it for two special classes of battles (i.e. "square-law" and "linear-law"

fixed-force-level-breakpoint battles) for a specific decision criterion

(minimizing one's own casualties). We explained how the optimal decision

could be very easily understood in terms of the behavior of the instan-

taneous casualty-exchange ratio, which determined the overall casualty-

exchange ratio and related measures of relative casualty-production

effectiveness. In the section at hand we will examine this problem more

deeply in a more general setting and will justify our contention that

many times the optimal initial commitment of forces can be very simply

determined by examining how the instantaneous casualty-exchange ratio

varies with the victor's force level and time (see TAYLOR [88] for

further details).

Let us accordingly consider combat between two homogeneous

forces described by the following deterministic LANCHESTER-type equations

for x, y > 0

d -G(t,xy) with x(O) u x0 9

(8.9.1)

dt -H(t,x,y) with y(O) - yo 9
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where G and H denote force-change rates (with a negative rate

signifying a net influx of replacements). For simplicity we will assume

that there are no replacements and withdrawals 21, and in this case G

and H > 0 are simply casualty rates. To insure the existence of

partial derivatives needed in subsequent analysis, we assume that

G(tx,y) and H(t,x,y) are each twice continuously differentiable.

Let us now consider the decision by the victor22 (taken to be X) in

this battle as to how many of his available forces he should initially

commit to combat. We will consider the initial-commitment decision by

X as a one-sided combat-optimization problem: we assume that the Y-force

commander has adopted a known course of action and consider X's initial-

commitment decision in this light. This decision is to be made only

once, before the battle begins. The decision variable for X in this

combat-optimization problem is x0 , the initial number of forces committed

to battle.

The "best" value of x0 for X to choose may be determined by

the following combat-optimization problem (sjee Section 2.9 for further

analysis of the initial-commitment decision):

minimize C, (8.9.2)
x0

mmn max
subject to: mi x 0  x0

the combat dynamics (8.9.1),

and appropriate battle-termination conditions.
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I
Here C denotes the decision criterion ("cost" of doing combat),

min drawdrw2
x -Xd + e, E > 0, and xdraw denotes the value2 3 of x0  that

leads to a "draw." Three possibilities for the decision criterion C

are as follows:

(Cl) friendly losses, Lx , x0 - Xf

(C2) loss ratio, Rc a (x 0 - x- Y f) ,

and

(C3) loss difference, Dc - (X0 - xf) - (Y 0  Yf)

where x f and yf denote the final force levels at the end of battle.

The battle-termination conditions are taken to correspond to either a

fixed-force-level-breakpoint or a fixed-force-ratio-breakpoint battle

(see Section 6.6). We will denote the optimal value of x0  as determined
,

by the above optimization problem (8.9.2) as x0 . Moreover, the above

optimization problem (8.9.2) requires calculation of the partial derivative

DC/ax0  and may not always be trivial to solve, since (for example),

mnm max-ino
aC/ax0  may have n.Altiple zeros in [x0  , x0 x] and determination of
x* could then be tedious. In other cases, however, it may be trivial
0

to solve; (e.g. when C/ax0 < 0 for all x. E (x0mn x•], then
* max

X - x0  and X should initially commit as much as possible).

Reparameterizing the course of battle in terms of y by

t - t(y) - t(y;x02 Y0 ) and x - x(y) - x(y;xo,y 0 ) , (8.9.3)
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TAYLOR [88] has shown24 how to express aC/ax 0  in terms of the

instantaneous casualty-exchange ratio dx/dy - G(t,x,y)/H(t,x,y) by

(ax 0~ Y- 3iX. + (ac(fx ax0

I/acx )f + (2C_) (8.9.4)'
Saxf dy / aYf x0, Y ax ,(.94

where (dx/dy)f denotes the final value of the instantaneous casualty-.

exchange ratio for t - tf, x = xf, and y - yf. TAYLOR [88, pp. 100-101]

has also shown how the reparameterization (8.9.3) leads to

axf / axf
ax - Cx-a0  a 0 , Y0*Yf

YO dxSexp f a dy
Yf ax 

ad

YO (at a ( d ) exp - f a (x)dy dy1] (8.9.5)
Yf 0YfI

which relates the instantaneous casualty-exchange ratio dx/dy

G(t,x,y)/H(t,x,y) to changes in the final X force level with

variations in X's initial strength. This result (8.9.5) is a key

one that TAYLOR has used to develop most of the results of his paper

[88]. Through (8.9.4) and (8.9.5) one can many times determine the
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sign of aC/Dx 0  from only the signs of 9(dx/dy)/ax and a(dx/dy)/at

without explicit calculation of aC/ax . Along these lines, TAYLOR

has proved the following results for a fixed-force-level-breakpoint battle.

THEOREM 8.9.1 (TAYLOR [88]): If a(dx/dy)/ax < 0 and

a(dx/dy)/at > 0 for all t E [Otf], then aC/ax0 < 0 for

C - LX, Rc, Dc.

THEOREM 8.9.2 (TAYLOR [88]): Assume that dx/dy - q(t,u)

where u - x/y and that the LANCHESTER-type equations (8.9.1)

are quasi-autonomous, i.e. a/at(dx/dy) : 0. If dx/dy = q(u)

is a strictly convex (concave) function of u on (0,4-),

then the decision criterion C is a strictly convex (concave)

function of x0  for C - LX, Rc, Dc.

The latter theorem tells us that there are decreasing marginal returns

from initially committing additional forces to battle when q(u) is
min max

convex and aC/ax 0 < 0 for all x0 E [x0  , x0 0 .

TAYLOR [88] has also developed corresponding results for fixed-

force-ratio-breakpoint battles and has investigated optimality results

for both classes of battles when the sign of a(dx/dy)/ax is always

the same. He has shown that the optimal initial-commitment decision

is sensitive to the decision criterion for fixed-force-ratio-breakpoint

battles but not for fixed-force-level-breakpoint battles. In other words,

different optimal initial-commitment actions are possible in these
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two types of battles. In particular, the loss ratio and the loss differ-

ence may yield different optimal initial-commitment decisions for a

fixed-force-ratio-breakpoint battle, although they yield the same optimal

decision for a fixed-force-level-breakpoint battle (see TAYLOR [88] for

further details and additional results). Similar results on the sensitivity

of optimal time-sequential fire-distribution policies to battle-termination

conditions have been pointed out by the author (see TAYLOR [79; 931 or

Section 8.11 below), Consequently, ie feel that more scientific work

is required on modelling conflict termination2 5 (see Chapter 3 for further

information and references).

Thus, the reader has seen that a fairly sophisticated mathematical

analysis has been required to justify the simple, intuitively appealing

"optimal decision rule" given under mere restrictive conditions in

Section 2.9 (see TAYLOR [88] for further details): namely, if the instan-

taneous casualty-exchange ratio (friendly to enemy) always decreases as

the force ratio (enemy to friendly) decreases, then additional forces should

be committed to battle by the victor (friendly forces). Conversely, a

simple principle underlies all this mathematical analysis: the casualty-

exchange ratio "in the small" may under the appropriate conditions be

projected to "in the large."
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8.10. The Simplest Fire-Distribution Problem.

"The simplest fire-distribution problem is for a homogeneous Y force

(e.g. riflemen only) to determine its "best" time-sequential allocation

of fire against a heterogeneous X force consisting of two weapon-system

types (e.g. riflemen and grenadiers), denoted as XI and X2 (see

Figure 8.2). Y's distribution of fire may be quantified through the

fraction of fire dirccted at X1. denoted as *. The problem for the Y

commander then is to determine the "best" value over time for ý,

denoted as 0*(t). For simplicity's sake 2, we will assume that the Y-force

commander has perfect information about the battle's current state and

also about all parameters in the attrition processes. Sefore we can determine

an optimal fire-distribution policy 0*(t) for Y, however, we must com-

plete the formulation of this combat-optimization problem, which as yet

lacks the first three basic elements (El) through (E3) given in Section 8.4.

In other words, we must still specify the following basic elements (cf.

Section 8.4) of the combat-optimization problem before it can be mathe-

matically solved: namely, (El) the decision criterion, (E2) the stopping

rule for the battle (i.e. the model of conflict termination), and (E3) the

model of combat dynamics.

Again for simplicity's sake, we will assume that the objective of

the Y force's commander is to maximize the net value of survivors at

the battle's end when such survivors are valued according to linear

utilities. Following our developments for homogeneous-force models (see

Chapters 2 and 6), we will assume that the battle continues until one or

the other has been totally annihilated, which is readily recognized as

I 719



Figure 8.2. The simplest fire-distribution problem.

Here * deDotes the fraction of Y's fire

directed at X1V The optimizattcn problem

for the Y commander is to determine the

"best" time-sequential value for *,
denoted as 0*(t)
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!
the simplest conflict-termination model. Later, we will discuas more

general breakpoints (see Chapter 3) below. Furthermore, we will assume

that all attrition occurs at rates proportional to the numbers of enemy

firers and that there are no synergistic effects between the X forces

(i.e. the attrition rates of X and X against Y are additive).
1 agis2 readtv)

For simplicity, we will also assume constant attrition-rate coefficients.

Such attrition processes may be thought of as arising when firers engage

enemy targets with "aimed fire" and (for example) target-acquisition

times are negligible (see Sections 2.2 and 6.1 [also 7.8] for a further

discussion of these modelling assumptions). Finally, we will assume

that all the Y force's fire may be instantaneously shifted from one

X-force target type to the other (i.e. perfect comsand-and-control

capability for the Y force), and we will discuss the relaxing of this

last aasumption in the next section.

In mathematical terms, the above fire-distribution problem for

the Y force may be stated as follows.

maximize{ry(T) - px1(T) - qx2(t)} with T unspecified, (8.10.1)
(t)1

with stopping rule: one side or the other annihilated at t T,

dx1

subject to: d- 1 -talY

dx 2
(combat dynamics) d- -Y

dy -b - bx x
dt 1 1 2
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with initial conditions:

0
xi(0) x 0 for i - 1,2, and y(O) - yo

and

0 < * < 1 (Control-Variable-Inequality Constraints),

x and x > 0 (State-Variable-Inequality Constraints),

where

x1 (t), x2 (t), and y(t) denote the numbers of X1, X2, and

Y combatants at time t,

al, a2 , bl, and b2 denote constant LANCHESTER attrition-rate

coefficients (cf. Section 7.8),

T denotes the time at which one side or the other is annihilated

(i.e. the length of the battle),

r, p, and q denote the values assigned to single surviving

XI, X2, and Y combatants at the end of the battle,

and * denotes the fraction of the Y force which fires at the

X1 force.

Here we say that T (the time at which one side or the other is

annihilated and the battle ends) is unspecified (as opposed to specified

in which case the battle ends at tf - T unless one side or the other

is annihilated before this time) because it depends on Y's fire-distribution

policy ý(C).
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Such a one-sided combat-optimization problem in which the combat

dynamics are modelled by a system of ordinary differential equations is

27called an optimal control problem . In particular, the above problem

(8.10.1) is in many ways the simplest optimal-control problem that arises

in the LANCHESTER theory of combat. It has been referred to in the

literature (see TAYLOR [76]) as the ISBELL and MARLOW fire-programming

problem. Consequently, the development of a complete solution to this

problem along with appropriate solution methodology has been essential

for guiding extensions to more complex situations. The author has

accordingly viewed this problem as a "benchmark case" to which the treat-

ment (both theoretical and computational) of more complicated problems

should be related2. Moreover, several important insights into the

structure of optimal fire-distribution policies in more general cases

have been obtained from studying this simple problem (e.g. see TAYLOR

(79; 89; 93]).

The optimal time-sequential fire-distribution policy **(t)

for 0 < t < T may be determined by invoking the appropriate optimality

29
conditions from the mathematical theory of optimal control . However,

these optimality conditions are only the point of departure for

determining an optimal policy. For a problem such as (8.10.1), a

solution procedure consisting of the following steps is required (see

TAYLOR (76, p. 542] for further details):
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(Si) apply the basic necessary conditions of optimality (a

key element of which is the so-called maximum principle)

to determine an extremal 3 0 control law,

(S2) synthesize extremals and the corresponding extremal

control by working backwards from each terminal state

(i.e. determine the time history of the extremal control.),

(M3) using the time history of the extremal control, determine

the domain of controllability31 fir each terminal state

by a forward integration of the state differential equations,

(S4) establish that an optimal policy exists (e.g. see TAYLOR

and BROWN [89, pp. 200-201]) and then determine which

(if any) domains of controllability overlap; the extremal

control is then optimal for those regions of the initial

state space covered by only one domairnof controllability,

(S5) if certain domains of controllability overlap, then for

a point in the initial, state space contained in their

intersection there is more than one extremal leading to

the terminal surface; compute the return associated with

each extremal in order to select the optimal control

from a finite number of alternatives.
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The above solution procedure has been used by us to solve the above

simplest fire-distribution problem (see TAYLOR [76; 84]) and other

LANCHESTER-type optimal-control problems.

Although this problem (8.10.1) looks quite simple, the development

of a complete solution to it (see TAYLOR (76; 84]) has led to a couple of

coneributions to the control-theory literature on optimality conditions

(see TAYLOR (77; 811). The reason for this is that such combat-optimization

problems contain certain mathematical features that are somewhat different

than those usually encountered in other dynamic optimization problems

arising in the physical sciences, engineering, and other parts of OR. To

best appreciate these mathematical difficulties, it is convenient to

consider the following generalization of the simplest fire-distribution

problem.

maximize J , (8.10,2)
*(t)

with stopping --le: one side or the other annihilated,

dx 1
subject to: dt -0aIy + rI

dx 2
(combat dynamics) •- - -(l-0)a 2y + r 2

-y -b x b-
dt 11 2x2
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with initial conditions:

0
x (0) - x for i 1 1,2, and y(O) -yo

and

0 < 1 (Control-Variable-Inequality Constraints),

x and x > 0 (State-Variable-Inequality Constraints),
1 2-

where J denotes the criterion functional, ri > 0 for i - 1,2 denotes

a constant replacement rate for Xi, and all other symbols are as defined

before. A particular difficulty in uolving a LANCHESTER-type optimal-

control problem such as (8.10.2) has concerned optimality conditions

associated with the state-variable-inequality constraints (SVICs). For

example, when r1  and r 2 > 0, the boundary of the state space is non-

absorbing (see TAYLOR [81] for a discussion of the concept of an absorbing

state-space boundary), and we have the following boundary condition for

the dual variable corresponding to xi

Pi(T) axi (T) + vi (8.10.3)

where pi(t) denotes the dual variable corresponding to xi(t) for

i - 1,2 and v, > 0. However we need not have vi > 0 when there are

no replacements (i.e. rI - r 2 - 0) and the boundary of the state space

is absorbing (see TAYLOR [84, pp. 632-633]).

7216
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Before we consider the optimal policy for the simplest fire-

distribution problem (8.10.1), a few general comments seem in order.

To solve a LANCHESTER-type optimal-control problem such as (8.10.1) or

(8.10.2), one needs to know what regions of initial force levels lead

to the various end states of battle (i.e. one needs to know the domain

of controllability for each terminal state), and this requirement has

partially motivated our work on victory-prediction conditions for

LANCHESTER-type combat models (e.g. see Sections 3.5, 3.6, 6.6, and

6.13 above). Moreover, both considerations "in the small" and also con-

siderations "in the large" are required to solve such problems (see

TAYLOR [84, pp. 617-618] for further details). Thus, direct computation

of the payoff and comparison of such values has been involved in the

development of optimal combat strategies in many of the dynamic combat-

optimization problems studied by the author (e.g., see TAYLOR [80] or

TAYLOR and BROWN [89]).

Using the above solution procedure consisting of steps (Sl)

through (S5), one can analytically solve the above simplest fire-distri-

bution problem (8.10.1) in so-called "closed form." After much laborious

work (see TAYLOR [76; 84]), one can determine the optimal fire-distri-

bution policy. Unfortunately, it is too complicated to be given in its

entirety (although we will examine it in a few special cases), but it

has been completely given for all parameter values in TAYLOR [76] (with

some further refinements given in TAYLOR [84]) as an open-loop control

0
(see Section 8.12 below), i.e. ** - **(t; to, xi, yO). What is

important for us here is that the essential characteristics of an optimal
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fire-distribution policy, denoted as 0*, may be summarized as follows:

(Cl) 32 0* is always 0 or 1 (except for at most one point in time),

(C2) parameters on which the optimal policy depends are

(P1) whether Y wins or loses,

(P2) R a 1lb1/(a2b2),

(P3) d - alp/(a 2 q) .

Moreover, there are some important military interpretations of the above

parameters: (I) aibi is a measure of the strategic value to Y from

firing at Xi (rate of destruction of X i's kill capability against Y),

and (II) alp is a measure of short-run return to Y from firing at

X1 at the end of battle (rate of destruction of X1 value at the end

of battle).

A significant aspect of the33 optimal fire-distribution policy,

expressed as a closed-loop control (see Section 8.12 below), is that

it depends on the force levels alone and not on time, i.e. 0* - 0*(xlxY).

This result is remarkable because the maximum principle does not directly

involve the state variables (i.e the force levels) when the Hamiltonian

is maximized for x1  and x2 > 0. Furthermore, the optimal policy for

Y may be diiferent for different combat outcomes (i.e. whether Y wins

or loses). Assuming that R - a1b1 /(a 2 b2 ) > 1, then if Y is going to

win, ** - 1 for x1 > 0. If Y is going to lose, then the optimal

fire-distribution policy depends on another parameter, d - alp/(a 2 q),

and may be very complicated to express as a closed-loop control.
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!
When Y is going to lose, the general features of Y's optimal fire-

distribution policy may be described as follows. Let p - k(l + y)b 1

and q - kb 2, where k is a positive constant and y is a parameter

that reflects whether Y has valued an individual X1  survivor at the

end of battle more (y > 0) or less (y < 0) than in direct proportion

to the X1  survivor's kill capability against Y relative to that of

an individual X2 survivor. Here kill capability is measured in terms

of the kill rate against Y of a single X. firer, and y - 0 yields

that p/q w b1 /b 2 . From the above definition of y, it follows that

p - q(b 1 /b 2 )(l + y) and consequently y - -1 + 6/R. Moreover, the

following results are significant to ncte: (RI) y - 0 means that

surviving enemy weapon-system types are valued in direct proportion

to their kill capabilities; (R2) for y > -(1 - l/R), the optimal policy

is very simple: 4* - 1 for x > 0; (R3) for 3 4 -(1 - l/R) > y

> - /1 - l/R, it is complicated to determine the optimal policy; and

(R4) for - /I'--1/R > y 1 -1, it is very complicated to determine the

35optimal policy. In the latter two cases , it may be that ** is

initially 1 and then changes to 0 later with x > 0. When this change

occurs is the complicated part (see TAYLOR [84] for further details).

Let us now discuss what important military principles may be

deduced from the solution to the ISBELL and MARLOW fire-progranming

problem. Firstly, from the fact that ** is essentially always 0 or 1,

we have a quantitative justification of one of the most significant

and oft-quoted of NAPOLEON BONAPARTE's sayings (see LIDDELL HART [54,

p. 117])--"The principles of war are the same as those of a siege; fire

must be concentrated at one point." Secondly, from the fact that when
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Y is going to win (or when he is going to lose with 6 > 1) the optimal

policy is to always concentrate all fire on the available enemy target

type with largest aibi, we have a quantitative justification of the

military principle of attacking "those dangerous enemy targets against

which one's fire is most effective." Thirdly, we have a motivation for

valuing enemy target types in direct proportion to their kill capability

(fire effectiveness) from the fact that the optimal policy is both intui-

tively appealing and also very simple in this case. The HOWES and THRALL

[39] concept of "ideal" linear weights is an extension of this idea to cases

of heterogeneous forces on both sides. Thus, we have a motivation for HOWES

and THRALL's important military-valuation methodology (see Section 7.18).

Fourthly, in battle a commander must use his judgment to ascertain to

what ends the course of battle can be steered so that he may devise his

strategy accordingly. Computationally this means that to solve such a

problem one must know to which extremal end states36 the battle can be

steered (i.e. what force levels are required to drive the LANCHESTER-type

battle to a target set such that appropriate necessary conditions of

optimality are satisfied at the end). In other words, it turns out

that considerations "in the large" dominate obtaining the optimal policy

in such problems.

Let us next turn to some important computational aspects of the

simplest fire-distribution problem (8.10.1). We will illustrate one of

the computational difficulties (multiple extremals) in determining an

optimal policy alluded to above (recall steps (SI) through (S5) of the

computational procedure given above]. In Table 8.VI are shown the

results of applying to (8.10.1) the maximum principle in Step ($1) of
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TABLE 8.VI. Extremals for ISBELL-MARLOW PROBLEM FOR R -R(R-1) < 6 < 1.

Nonrestrictive Assumption: R > 1, i.e. al b > a2 b2

Case (c2): R - IR(R-l) < 6 < 1 where 6 * alp/(a2 q).

Terminal State Extremal Control Domain of Controllability

x1(t 0 for 0< t-<t a b y0 < a + (R-l)(b x 2

C1 jx2(T) >0 0*(t) 2

y(T) -0 for t <t< T a biy0  -2 (b x 2

( fr 02 2
C- x2(T) -=0 *(t) blY > 2 + (R-1)(b 2 x )0
C2  2~ a1b 0 22

y(T) >0 for t1< t_<T

1lt) 0' for 0< t < t2 a bY _ y- ~ (b x 0)2

[ 1tt 2 s2 02

y(T) -0 0 for t 2 < t<T alb _ + A(c 2x2 )
y(T) 1 1 0b 2< 2 02

>0 2 < Rs2 {1 21/z21IT 1 0 all0 _

C5  x x2 (T) >0 **(t) 0 for 0 < t < T
I2 s2 bl012}

y(T) 0 Libi20  _< R{s - (b x 0

xl(T) >0 [ for 0 < t<T-T1  aby> 2

CS x T) >0 -*(t aby > a2 + A 0b2xO)2

2 < s A(b2 xO) 2

y(T) -0 0 for T-T 1 < t < T a1 blY0 < 2 + 2x

Definition of Times:

(a) t is first t such that x1CrI) ( 0.

I 0 0?2 2(b) t 2  is first t such that 2b 1x1 (t 2 )x 2 + b2(x2) a2y (t)

(c) T is determined by cosh 'a24•2 T (R-S)/(R-I).

1 2 2 1
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this solution procedure. Here the parameters A, B, s, and z are

defined as

A -- B=A(z-1)2 z 2(R-) - R"A"-1) 2  2 2
(z-l) z z (8.10.4)

0 0 =R-s blxO +b 2 x 2  , and Z R- .

Thus, we see that A and B have the same sign, and investigation of the

dependence of this sign on 6 leads to the following four cases:

(cl) 1 < 6,

(c2) R-vi(R-1) < 6 < 1,

(c3) 6 R - vf'R(R-1) ,

(c4) 0 < 6 < R - vii3(R-I)

where 6 - a1 P/(a 2 q). Case (c2) with A < B < 0 is the one shown in

Table 8.VI, which has been developed by working backwards from each

extremal end state of battle. If the initial force levels are such that

0 0
P0 - (x1% x2 , YO) belongs to the domain of controllability (see [76]) for

the terminal state CI, denoted as D(C1 ), then Y can steer the course

of battle to this end state with the open-loop extremal control shown

in the table. Moreover, it turns cut that several of the domain of

controllability shown in Table 8.VI overlap so that for a given set of
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initial force levels there may be more than one candidate optimal course

of battle. In order to determine which extremal is actually optimal in

such cases, one can compute the return associated with each extremal from

a given initial point P0  and then determine which of these feasible

alternatives (a finite number) yields the greatest return (see TAYLOR

[84, pp. 633-634] for further details and justification). This procedure

[i.e. steps (S4) and (S5) of the general solution procedure given above]

has been followed to obtain the optimal (open-loop) fire-distribution

policy shown in Table 8.VII from the information of Table 8.VI. An outline

of the determination of the optimal policy for regions of the initial

state space with multiple extremals will now be sketched (see TAYLOR

[76; 8-] for complete details).

We will now indicate how step (S5) is carried out for the simplest

fire-distribution problem (8.10.1) for Case (c2), i.e. R - /R(R.-l) < 6 < 1,

which is the one shown in Tables 8.VI and 8.VII. Let D(Ci) denote the

domain of controllability for extremals leading to terminal state Ci,

and let Pi denote the payoff (i.e. return) associated with such an

extremaly leading to Ci. Then it has been shown (TAYLOR [84]) for

R - /RTiT7 < 6 < 1 that for terminal state, for example, CI the domain

of controllability is as shown in Table 8.VI and that the return associated

with such an extremal is given by

P b b2 RAR -2 a(Rlb-lY0 (8.10.5)

Using such results, one can show [84, Theorems Al, A2, and A3] by direct

computation of the return functional (considerations "in the large")
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TABLE 8.VII. Solution to ISBELL-MARLOW Problem for R - (R-l) < 6 < 1.

Nonrestrictive Assumption: R > 1, i.e. a bI > a2 b2

Case (c2): R - VR(R-1) < 6 < 1 where 6 = alp/(a 2 q)

Terminal State

2~ 0 2xl(t) -0 1 for 0 , t < t alblY0 + (R-2)(b x11 1 1 y0  2 (Rl( 2x
C1 x2(T) > 0 *(t) 02

y(T) - 0 for tI < t < T a blY 0 + B(b2x2

x I (t 1 )-0 (1 for O t < t1
I 2 2> 02

C2 x2 (T) - 0 **(t) 1 albly0 > + (R-l)(b 2 x 0 2

y(T) > 0 0 for t1 < t < T

x (t 2 ) > 0 1 for 0 < t < t 2  albly0 _> R{s 2 _ (blx0) 2}

C 4 x 2(T) 0 0 *(t) -,

y(T) 0 0 for t2 < t < T albly0 < 2+ A(b+ x2

2' >0 2 2 2

xl(T) > 0 albly 0 < Rs 2 - li/z2 )

C5  x2 (T) > 0 **(t) - 0 for 0 < t < T

y(T) - 0 ably 2 2 02

1 0~ ~ 1 ( 1x

xI(T) > 0 1 for 0 _ t <T-TI albly0 > R .2  1

C5 x (T) > 0 ,*(t) a by2 + 02
5 2 12 1 0(x 2 )2

y(T) - 0 0 for T-X,<t<T 1 bly0 < + B(b x02

See Table 8.VI for definition of times tI, t 2 , and TI.
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S
that for R - iR(R-l) < 6 < 1

(a) P4(P0 > P 0(PO) for all p0 E {D(C ) n D(C4)

(b) P5 (P ) > PI(P ) for all PO E {D(C 1 ) n D(C5 ),

(c) Ps(p 0 ) > PI(P0) for all P0 E {D(C ) n D(C )}.

It may also be shown that D(C4 ) n D(C5 ) = 0, D(C4) n D(C5 ) = 0, and

D(C n D(C•) - 0, where 0 denotes the empty set. The above resultsD(5)5

(a) through (c) provide the basis for obtaining the optimal fire-distri-

bution policy shown in Table 8.VII from the extremals shown in Table 8.VI.

I Next, it seems appropriate to briefly discuss the extension of

the above simplest problem (8.10.1) to cases of more realistic break-

points, in particular, force-level breakpoints (see Section 2.8 and

Chapter 3). There are several different ways in which breakpoint consider-

ations can be incorporated into our combat model. The simplest way is

to consider X and X2 to be two different fighting units. If one

considers X and X2 as two different military units (each with its own

breakpoint), then we could invoke the natural extension of the simple

breakpoint model (2.8.12) of Section 2.8 and write for Y's attrition
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I-b X - bx for x>1 and x 2
1 11 221 B 2 >xBP

dv11 2
S-bX1 for x > x and x2 < x< , (8.10.6)dx111 B21 B

-b2x2 for x 1xl and x2 > 2p,

where 4 denotes the force-level breakpoint for X To mathematically

solve such a problem [i.e. (8.10.1) with Y's attrition rate replaced by

(8.10.6)] and determine the optimal fire-distribution policy, one considers

the battle to have different phases in each of which the appropriate right-

hand side of (8.10.6) holds. The determination of an optimal policy is now,

however, much more complicated than before (cf. TAYLOR [96, Appendix C])

and complete details have not been worked out. If one feels that a more

sophisticated breakpoint model is called for [e.g. the natural extension

of (3.10.10)], then the problem is analytically even less tractable.

However, for either modification, it is conjectured that the basic structure

of the optimal fire-distribution policy is not altered. Thus, the incor-

poration of more realistic breakpoints into the simplest fire-distribution

problem leads to a problem that is no longer analytically tractable but

that does not yield an optimal fire-distribution policy which is appreciably

different in structure than that for the simplest problem. However, the

computational solution of ths more complicated problem is facilitated

by the insights gained here for the simplest problem (8.10.1).

Finally, let us note that the very striking characteristic (Cl)

of an optimal fire-distribution policy of always concentrating all fire

on one enemy target type depends in an essential way on enemy target-type

attrition occurring at a rate proportional to the number of Y firers.

If the attrition of enemy target types is modelled by
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dxI dx 2d- t -0a axy, and d- -(l-)a 2x2 y , (8.10.7)

then 0* does not always have to be 0 or 1: it can sometimes be optimal

to divide one's fire between enemy target types (i.e. 0 < 0* < 1) for a

finite interval of time (see below in the next section for further details;

also TAYLOR [78-79]).

7
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8.11. Optimal Control of LA.CHESTER-Type Attrition Processes.

Based on the intimate relationship between the mathematical

theories of optimal control and differential games (e.g. see HO (33-34]),

the author's research approach for investigating the optimization of

tactical decisions has been to consider one-sided 3 8 versions of time-

sequential tactical-allocation problems before tackling the more realistic

(and complex) two-sided tactical-allocation problems themselves. Our

intent has been to firmly establish both the theoretical 3 9 and computational

bases for solving such optimal-control problems before attempting to solve

the much more complex differential-game versions of these tactical-

allocation problems. This does not mean that the author does not recognize

that solutions to differential games have many unique aspects not possessed

by solutions to optimal-control problems (e.g. see ISAACS [47-48]), but

that in order to recognize such unique aspects and attendant special

difficulties, one must know and understand the optimization results for

these one-sided versions of tactical-allocation problems. As discussed

in TAYLOR [79, pp. 102-103], we have used such one-sided combat-optimization

results fir guiding extensions to LANCHESTER-type differential games

(see next section).

A number of variations on the simplest time-sequential fire-distribu-

tion problem (8.10.1) have consequently been examined by the author in

order to develop an understanding of how various factors (cf. Section 8.4)

influence the structure of optimal tactical decision making. These vari-

ations are listed in Table 8.VIII, with references being given as to where

such investigations have been reported in the literature (see also
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TABLE 8.VIII. Variations of the Simplest Fire-Distribution Problem

(8.10.1) that Have Been Examined to Provide Insights

Into the Optimal Control of LANCHESTER-Type Attrition

Processes.

(VI) Prescribed-duration versus figbt-to-the-finish battle-termination

conditions [79]

(V2) Time-dependent attrition-rate coefficients and replacements [79; 82]

(V3) n-versus-one combat [92, Appendix E; 79; 82]

(V4) Command and control aspects (97]

(V5) Heterogeneous-force FTIF attrition process [78-79]

(V6) Stochastic LANCHESTER-type attrition processes [98; 30]

(V7) Time-sequential fire-support allocation [89; 96]
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TAYLOR [92, pp. 59-64]). It should be pointed out that the author's work

[76, 84] on the simplest fire-distribution problem (8.10.1) has been

essential for guiding these extensions and establishing a framework for

interpreting and analyzing results on the structure of optimal time-

sequential fire-distribution policies. We will now briefly highlight this

work, usually providing a formulation of the optimal-control problem under

consideration.

In variation (Vl) (see TAYLOR [79]) of the simplest fire-distri-

bution problem (8.10.1), one replaces the stopping rule: "one side or

the other annihilated" by

with stopping rule: tf - T or one side or the other annihilated

at tf < T , (8.11.1)

where tf denotes the final battle time (i.e. the time at which the

engagement ends) and T denotes a specified time beyond which the battle

cannot last (see also TAYLOR [92, Appendix G]). We will refer to a battle

with the stopping rule (8.11.1) as a prescribed-duration battle [as

opposed to a terminal-control battle such as (8.10.1) that only ends by

the battle being steered to a given end-of-battle state]. In TAYLOR [79]

we found it convenient to summarize the variations (on the simplest fire-

distribution problem) considered there as shown in Table 8.IX, with

the above variation (Vl) denoted there as Problem 1 and the simplest

problem (8.10.1) as Problem 3. For the fire-distribution problem (8.10.1)

with stopping rule (8.11.1), i.e. a prescribed-duration battle, the
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S
TABLE 8.IX. Summary of Problems Considered in TAYLOR (79] to Study

the Effects of Model Form on Optimal Fire-Distribution Policy.

0

Qj

0042 V E-D

W 4J 4 Ai 1

ww4.1 4.0

1 2 F C PD

2 2 F C TC

3 n F C PD

4 2 F V PD

5 2 FT C PD

EXPLANATION OF SYMBOLS

Target-Type Attrition Process: F - attrition rate proportional to

uumber of firers only, FT - attrition rate proportional

to product of numbers of firers and targets

Attrition-Rate Coefficients: C - constant, V - variable

Battle-Termination Conditions: PD - prescribed-,duriatirn battle

(special casc of x1 , x2 , y ) 0), TC terminal-control

battle (fight to the finish)

, t 741
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optimal fire-distribution policy ** again turns out to be 0 or 1 for

at most one point in time, but now 0* depends on time t in addition

to the force levels, i.e. 0*(Problem 1) - 0*(t, xl, x 2, y), and this

dependence (see TAYLOR [92, Appendix G] for complete details) is much

40more complicated than for the terminal-control battle0. Again, let us

make the nonrestrictive assumption that R - aIb1 /(a 2 b2) > 1. We then

have shown (79] that for the special case in which 6 - a1 P/(a 2q) < 1

and x1 (tf), x2 (tf), and y(tf) > 0, the optimal fire-distribution policy

depends on the problem's battle-termination conditions (i.e. it may be

different for Problems 1 and 2). On the other hand, when 6 > 1, the

optimal fire-distribution policy is the same for both problems: namely,

* 1 as long as x > 0.

In analytical terms, we have for 64 alp/(a 2 q) < 1 and xl(tf)

and x2 (tf) > 0

S1 for 0 < t < t f-I,
1*t fo ~~f-(8.11.2)

0 for tf - T1 * t < tf

where 0*(t) denotes the optimal distribution of fire over time and

the backwards switching time T is given by

Ti(a) I 1 + z + a2 (8.11.3)

2 2

with z - (R - 6)/(R - 1). Thus, in this case with 6 < 1 an optimal

fire-distribution policy involves a switch from all fire concentrated

on X1 by Y to all on X2 when the initial force levels are such that
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I
neither enemy target type can be annihilated and the battle is scheduled

to last long enough, i.e. T > TI. Then the nature of the planning

horizon affects the optimal fire-distribution policy in the sense that

for the appropriate initial conditions in both problems [i.e. initial

force levels such that 4 1 at the battle's end x1 (tf) and x2 (tf ) > 0,

with also y(tf) > 0 in the prescribed-duration battle with tf - TI,

R - a1 b1 /(a 2b 2 ) > 1, 6 - aIp/(a 2q) < 1, and r > 0 (see TAYLOR (79,

pp. 86-87] for further details)

T1 (Problem 1) < T2 (Problem 2) . (8.11.4)

Furthermore, the optimal fire-distribution pclicy in the prescribed-

duration battle depends on an additional parameter

q Va 2

since the backwards switching time TI may depend on a, i.e. for

x1 (tf), x2 (tf), and y(tf) > 0

T (Problem 1) - a12  (8.11.5)

with Tl(a) given by (8.11.3). Let us also note that for xl(T) and

x2 (T) > 0 and y(T) - 0
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T l(Problem 2) - T .(0) . (8.11.6)

The fact that ai/aa < 0 for 6 < 1 and the above results (8.11.5) and

(8.11.6) lead to the conclusion (8.11.4). Finally, it should be noted

that this case (i.e. R - aIb1 /(a 2b2 ) > 1 and 6 - a1 P/(a 2 q) < 1] only

arises when Y values a unit of the X2 force out of proportion to its

kill rate against the Y force (i.e. too high) relative to that of one

of the X1  force, i.e. p/q < b /b 2 . In other words, the more dangerous

weapon-system type is valued less highly, e.g. a rifle is valued more

than a machine gun.

A typical problem along the lines of variation (V2) is given by

(see TAYLOR [79, pp. 97-99; 821)

maximize{ry(ff) - PXl(tf) - qx 2 (tf)}, (8.11.7)
* (t)

with stopping rule: tf . T or one side of the other annihilated

at tf < T,

dx1
subject to: d-t - -Oa 1 (t)y + rl(t)

(combat dynamics) dx 2

d--- -(1-0) a2 (t)y + r 2 (t)

S -b (t)Xl - b2 (t)x 2 + s(t)
dt
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with

0 < 0 < 1 (Control-Variable-Inequality Constraints),

and

x and x 2 > 0 (State-Variable-Inequality Constraints).

Here (and henceforth) we have omitted statement of the initial conditions

for simplicity. Also, nonnegativity of a term like r 1 (t), r 2 (t), or

s(t) signifies a net continuous influx of replacements for the weapon-

system type corresponding to the force-level equation in which such a

term appears. This problem has been fairly extensively studied (79,

Problem 4; 82] under the assumption that

bi(t) - kb h(t) for i = 1, 2, (8.11.8)

which may be considered to have the physical interpretation that both

X-force weapon-system types have basically the same type of range capability,

but one weapon-system type dominates the other in exactly the same manner

at all ranges (cf. the model with range-dependent attrition-rate

coefficients in Section 6.2). When there are no replacements or with-

drawals (i.e. r 1 (t) W r 2 (t) W s(t) = 0) and the Y commander values

enemy survivors of each weapon-system type in direct proportion to their

kill rate against the Y force at the end of battle,43 i.e.

p - kbl(tf) and q - kb2 (tf) , (8.11.9)

then the optimal fire-distribution policy takes a very simple form
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when x1 (tf) and x2 (tf) > 0, namely

( 1 for a1 (t) b1 (t) > a2(t) b 2 (t)

¢*(t) =(8.11.10)

0 for a1 (t) b1 (t) W < a2(t) b2 (t) (

Here, the term aI(t) b2 (t) may be interpreted as the rate of destruction

of the Xl-weapon-system-type kill rate against the Y force (see TAYLOR

[79] for further details). Thus, the Y force simply concentrates all

its fire on the enemy weapon-system type against which it can destroy

the weapon-system type's fire effectiveness (i.e. kill rate against Y)

more quickly. When there are continuous replacements, however, deter-

mination of an optimal policy is much more complicated, and certain

multiplier conditions (e.g. seeTAYLOR (77; 81]) corresponding to the

state-variable-inequality constraints (SVIC's) play an even more prominent

role: in particular, the multiplier corresponding to the terminal SVIC,

for example, x1(Lf) > 0 is restricted in sign only if r 1 (tf) > 0

(cf. (8.10.3) and see TAYLOR (81] for further details). Also, many of our

results in TAYLOR [82] (also [79, Problem 4]) have been based on our

knowledge about the conditions under which variable-coefficient FIF

attrition equations possess a simple analytical solution in terms of

elementary functions (see Section 6.5 for further details).

Another variation (V3) of the simplest fire-distribution problem

(8.10.1) is to consider the X force to be composed of more target types,

e.g.
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n

maximize~vi(tf d y w ix i t f} with T specified, (8.11.11)¢(t) i-i

dxi
subject to: - -¢iaiy for i = 1,2,..., n,

- - n) b x,dt

with
n

ni i, 0, ý 0, xiy > 0, and tf < T
i-i

A rather illuminating result (see TAYLOR (92, Appendix E; 82]) is that again

when the Y-force commander values surviving enemy weapon-system types in

direct proportion to their kill capabilities against the Y force, i.e.

Sw, - kbi for i - 1, 2, ... , n , (8.11.12)

then the optimal fire-distribution policy for Y is very simple:

always concentrate all fire on the available enemy target type for which

aibi is largest. When survivors are not valued in direct proportion

to their dangerousness against the Y force [i.e. when (8.11.12) does

not hold], then determination of an optimal policy may be quite involved

(see TAYLOR [79] for further details; also TAYLOR (92, Appendix GI).

A variable-coefficient version of (8.11.11) has been investigated in

TAYLOR [82], and results for the optimal distribution of fire shown to

resemble the constant-coefficient ones under the appropriate circumstances.
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A fourth variation (V4) on the simplest fire-distribution

problem (8.10.1) is to consider how command and control limitations on

the redistribution of fire influence the structure of optimal time-

sequential fire-distribution policies. In all the fire-distribution

problems so far considered, it has been assumed that Y's distribution

of fire against the heterogeneous X forces can instantaneously change

from one value to another, e.g. in the simplest fire-distribution problem

(8.10.1) the rate of change of the fraction 0 of Y's fire directed

at X is unrestricted and consequently can instantaneously change,

for example, from 0 to 1. In other words, we have been assuming that

the Y force can instantaneously change their distribution of fire

against enemy target-types at will. Command and control limitations,

however, may cause restrictions on how fast fire can be redistributed,

i.e. restrictions on the rate of change of 0*. Such command and

control aspects have been investigated with the following optimal-control

problem (see TAYLOR [97] for futher details)

maximize{ry(tf) - Px 1 (tf) - qx 2 (tf)} with T specified, (8.11.13)

dx1
subject to: d- _-alY

dx 2

dt2

-y -b x -b x
dt 1 1 2 2

dt

with
0< 1, X19x 2 , y>0, -R u<u RUP and tf T.
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Here RU and RL > 0 denote upper and lower bounds on the rate of change

of the distribution of fire. It has been shown [97] that such command

and control limitations on the redistribution of fire do not essentially

change the structure of the optimal fire-distribution policy, although

the shifting of fires is initiated earlier when command and control limita-

tions exist than when an entire force can instantaneously shift all its

fire from one target type to another. In other words, due to decreased

reaction ability a force must begin to change its distribution of fire

before target priorities actually change in anticipation of this coming

change.

A fifth variation (VS) (see TAYLOR [78; 791) concerns changing

the functional form of the Y force's attrition rate against each

enemy target type to the case in which such an attrition rate is propor-

tional to the product of the numbers of firers and targets. For simplicity

we have denoted this variation as "heterogeneous-force FTIF attrition."

The optimal-control problem corresponding to the prescribed-duration-

battle version of the simplest fire-distribution problem then reads

maximize{ry(tf) - Pxl(tf) - qx 2 (tf)} with T specified, (8.11.14)
*(t)

dx 1
subject to: d- '- -a 1 xly

dx 2
dt-- -(l-•)a 2 x2 y

d - _-blX - bx xdt 1 1 -

with
0 << 1, X1  x2 , y 2 0 , and tf < T.

(
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There is a fundamental difference between the structure of an optimal

fire-distribution policy for the simplest problem (8.10.1) and that

for the above problem (8.11.14): when enemy target types undergo an

"FT attrition process" (cf. Table 8.VIII), the optimal distribution of

fire does not consist of always (except for a finite number of points

in time) concentrating all fire on a single enemy target type. In

other words (cf. the optimal polizy described in Section 8.10 for the

simplest problem), **(t) may be other than 0 or I for a finite interval

of time (cf. the solutions for Problems 1 and 5 in TAYLOR 179!). The

maximum principle is no longer adequate, and the so-called theory of

singular extremals (see TAYLOR [78] for further information) is

required to solve the above optimal-control problem (8.11.14), with

ý* such that 0 < f* - a2 /(a 1 + a2 ) < 1 being the "singular control."

In this case the optimal fire-distribution policy depends directly on

the force levels (and possibly time). In TAYLOR [78] it was shown for

constant att:Ition-rate coefficients that no change ever occurs in

the ranking of target priorities when survivors of each X-force weapon-

system type are valued in direct proportion to their kill rate against

Y (i.e. p - kb1 and q - kb 2 ), and this important result is independent

of whether both X-force target types undergo an "F attrition process"

or an "FT attrition process."

We will now briefly examine tne above problem's optimal fire-

distribution policy expressed as a closed-loop cý,ntiol (see Section 8.12

below) and graphically exhibiLed in state-space-decision-rule diagrams. The

optimal time-sequential fire-distribimion policy for (8.11.14) in the case
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in which p/q - b1 /b 2  (i.e. enemy survivors valued in direct proportion to

their kill-rate capabilities) is graphically depicted in Figure 8.3. When

a1 b1 > a 2 b 2 x2 , the optimal policy is for Y to concentrate all fire

on X1. The line with equation a1bx1 - a2b2x2 (denoted as L in

Figure 8.3) is called a singular "surface" and divides the state space

into two different decision regions. When a force-level trajectory

reaches L, the optimal policy says that fire should be divided be.;ween

the two target types in such a way that the trajectory stays on L

(i.e. the singular control

* a2 (8.11.15)S=aI+ a2

is used to remain on the singular "surface"). Thus, when p - kb1  and

q - kb 2 , the optimal fire-distribution policy may be expressed very simply

1 for a1b 1xI > a2 b2x 2,

6*(x!,x 2) - aa2 /(a 1 + a2) for aIblx1 = a2 b2x2 , (8.11.16)

10 for a1 bIx1 < a2b 2x 2.

When enemy survivors of each weapon-system type are not valued in direct pro-

portion to their kill -atc against Y (e.g. p/q > b1 /b 2 ), the situation is

more complicated, with the battle being divided into two phases as far as de-

scribing the optimal fire-distribution policy is concerned. For the case in

which p/q > b1/b 2 , the optimal policy is graphically depicted in Figure 8.4.
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Figure 8.3. Optimal fire-distribution policy and corresponding

battle trajectories in the state space for heterogeneous-

force FTIF attrition process when surviving weapon-system

types art valued in direct proportion to their kill rates.

The optimal battle trajectories identified in this figure

are discussed in detail in TAYLOR [78, pp. 686-688].
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Figure 8.4. Optimal fire-distribution policy and corresponding

battle trajectories in the state space for heterogeneous-

force FTIF attrition process when surviving weapon-system

types are not valued in direct proportion to their kill

rates G(ere case in which p/q > bl/b 2 ). The optimal

battle trajectories identified in this figure are dis-

cussed in detail in TAYLOR [78, pp. 688-6901.
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For describing the cptimal fire-distribution policy, we divide the battle

into two time phases: Phase I for 0 < t < t and Phase II for

tI< t < T. During Phase I the optimal fire-distribution policy is again

given by (8.11.16), but during Phase II the optimal policy is given by

(cf. Figure 8.4)

( 1 for a1px 1 > a2qx 2,l@*(t,xl,x 2 ) - (8.11.17)

0 for alPX1 < a2 qx 2 .

Further details are to be found in TAYLOR [78].

At this juncture it seems appropriate for us to briefly make a few

remarks about how the functional form for the attrition rates of enemy

target types influcences the structure of an optimal fire-distribution

policy. In particular, we will compare the structure of an optimal time-

sequential fire-distribution policy when each enemy target type undergoes

an "F-type attrition process" (i.e. the attrition rate for each enemy

target type is proportional to only the number of friendly firers) to

that when each enemy target type undergoes an "FT-type attrition process"

(i.e. the attrition rate proportional to the product of the numbers of

firers and targets). As we have seen above in both the simplest fire-

distribution problem (8.10.1) and also the corresponding prescribed-

duration battle (Problems 1 and 2 of [79]), an optimal fire-distribution

policy when each enemy target type undergoes an F-type attrition process

consists of always concentrating all fire on a single enemy target type,
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while an optistal fite-distribution policy when each enemy target

type undergoes an VT-type attrition process as in (8.11.14) may

(depending on the densities of enemy t:arget types) sometimes involve

44dividixng one's fire between the two enemy target types4. In this latter

case, an optimal policy basically has the property that one concentrates

all fire on one target type until the relative number of enemy target

types reaches an equilibrium point, and fire is then divided between the

two target types. In essence, one must guard against "overkill" when

each enemy target type undergoes an FT-type attrition process (cf.

the optimal policies shown in Figures 8.3 and 8.4).

Moreover, there is a very simple principle that underlies all the

above results about the dependenc:e of the structure of an optimal fire-

distribution policy on the functional form for the attrition rates of

enemy target types: an optimal allocation policy involves concentration

of all effort on a single alternative when there are constant marginal

returns (measured in terms of kill rate) over time from each alternattve 4 5

and the total effort available is limited. Furthermore, constant marginal

return over time Is a basic property of an F-type target-type attrition

process. This important result is readily seen by considering the

attrition of, for example, X1  (with 1 - 1) in (8.10.1), namely

dx,

( dt~ ' ( rate prof untenemy of ulte p roduced) (ll)y per unit of Y weapon system )

Thus, there is the same constant marginal return at any point in the

battle from the Y force allocating fire against a particular enemy
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target type when each undergoes an F-type attrition process. This

situation should be contrasted with the corrasponding one for an

FT-type enemy-target-type attrition process, i.e.

(-d-") irate of enemy casualties produced
y 1 alx per unit of Y weapon system (8.11.19)

In this latter case, however, the marginal return from allocating fire

diminishes over time as the X1 force level decays, and consequently

a division of total effort (i.e. allocation of fire) in an optimal policy

may be called for when the number of this particular target type is

sufficiently reduced. B. 0. KOOPMAN's (52] 1953 article on the optimal

distribution of effort contains an excellent discussion of such principles

that underlie an optimal allocation policy determined by such an

optimization problem (see also TAYLOR (79, pp. 84-85]).

Another important variation (V6) considers casualties to occur

randomly over time (see Chapter 4). TAYLOR and POWERS [98] have investigated

a stochastic version of variation (VI) above (i.e. Problem 1 of [79]) in

which casualties are assumed to follow stochastic LANCHESTER-type attrition

processes (see Chapter 4). They considered the following problem.
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maximize E[rN(tf) - PM1 (tf) - qM2 ((t)] with tf specified, (8.11.20)

subject to: casualties occur randomly as a continuous-time M1ARKOV

chain with stationary transition probabilities corre-

sponding to the deterministic heterogeneous-force

FIF attrition process (8.1.0.1),

with

M1 ' M2, N > 0 and 0 < 0 < 1.

Here 0 is taken to be a closed-loop control (see Section 8.12 below),

the integer-valued random variables Ml(t), M,(t), and N(t) denote the

X9 XV2 , and Y force levels, and E['] denotes mathematical expectation.

TAYLOR and POWERS [98] have concluded that the deterministic and stochastic

S versions of this time-sequential fire-distribution problem yield essen-

tially the same optimal policy, although the optimal policy followed by

Y in a realization of the stochastic combat process may differ appreciably

from that for the deterministic formulation if this realization does

not "follow the corresponding deterministic trajectory very closely."

Furthermore, HANNA [30] haag shown for a fight to the finish that con-

ditions do exist for which the deterministic and stochastic formulations

do not yield similar results at all for the optimal fire-distribution policy

for very small numbers of combatants.

Further variations [identified as (V7) in Table 8.VIII] on such

LANCHESTER-type deterministic optimal-control problems have been

investigated by TAYLOR [96] ar! TAYLOR and BROWN (89] within the context
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of time-sequential fire-support allocation. TAYLOR [96] has considered

10 variations on the same theme (i.e. a sequence of 10 closely related

fire-support problems), with some of these variants being investigated

much more thoroughly than others. This investigation exercises many of

the insights into the structure of optimal fire-distribution policies

discussed above. TAYLOR and BROWN [89] have shown that the structure

of such optimal policies depends not only on the functional form assumed

for target-type attrition rates (e.g. F or FT as shown in Table 8.IX)

but also on the quantification of military objectives. They have proven

the rather remarkable result for a given set of combat dynamics that

the splitting of the allocation of supporting fires between two enemy

forces in any optimal policy depends on whether the terminal payoff

reflects the objective of attaining an "overall" military advantage or

a "local" one.
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8.12. LANCHESTER-Type Differential Games.

Military conflict provides the classical contextual framework

for game theory: two or more decision makers with conflicting objectives.

Moreover, combat models in general and LANCHESTER-type models in

particular provide a natural framework for formulating and analyzing

time-sequential games that reflect the antagonistic aspects of military

decision making. We will accordingly consider a couple of LANCHESTER-type

(as opposed to pursuit-evasion) differential games, which have provided

some important insights into normative aspects of the dynamics of combat.

A differential game is simply a time-sequential game (i.e. game in exten-

sive form [55]) in which the system dynamics are given by a system of

ordinary differential equations. Others have found it to be convenient

to think of a differential ýame as a two-sided optimal-control problem

(e.g. see _ HO(33]). By a LANCHESTER-type differential game we mean a

differential game in which the system dynamics are given by LANCHESTER-

type equations of warfare. It should be pointed out that essentially

all the early differential-game literature has concerned pursuit-

evasion problems (however, see ISAACS [46, pp. 96-104 and Chapter 111

for notable exceptions).

More precisely, we will consider LAN.CHESTER-type differential

games that are two-person zero-sum deterministic differential games in

which each player uses a closed-loop (or feedback) pure strategy with

perfect state information (see HO (34; 35) for a discussion of other

possibilities). In other words, each of the two decision makers has

his own (scalar) criterion functional which he seeks to maximize but
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which is in direct antagonistic conflict with his opponent's in the

sense that the two criterion functionals have a constant sum (which may

be taken to be zero) so that one person's loss is the other person's gain.

Each player (i.e. decision maker) is taken to have perfect information

about the system state and combat dynamics, but each does not know the

strategy of his opponent. Since a differential game is a game in exten-

sive form, a pure (as opposed to mixed) strategy (within the context of

perfect state information) is a decision rule for determining one's action

based on the current system state, i.e. a mapping of the state space into

the space of feasible actions at time t. Such a pure strategy for a

game in extensive form is also called a closed-loop (as opposed to

open-loop) strategy. Mathematically we may express the concept of a

closed-loop (or feedback) control as

uC - k(t,x) (8.12.1)

where uC denotes the closed-loop control (or strategy), t denotes time,

x denotes the state variables, and k denotes the given functional

relation (i.e. the decision rule). Equation (8.12.1) shows us that a

closed-loop strategy is a function of the current system state. On the

other hand, an open-loop control specifies one's action as a function of

time t and initial conditions t0 , xo. Thus, an open-loop control may

be mathematically expressed during the length of the planning horizon

for 0 < t < T as

u0 u(t; top x , (8.12.2)
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where u0 denotes the open-loop control (or strategy). For one-sided

deterministic optimal control problems, it is well known that open-loop

control and closed-loop control yield identical results both for the

system trajectory and also for the payoff, but this situation is not

true for differential games (e.g. see HO [35]). Consequently, one must

distinguish between open-loop and closed-loop strategies as we have done

here.

We will now give two examples of LANCHESTER-type differential

games. Although we will not present any solution details here, the selec-

tion of these examples has been influenced both by their analytical

tractability and also by the rignificance of insights that they provide

into optimizing time-sequential tactical decisions.

I

Example 8.12.1: Generalized Tactical Air-War Game. This problem is a

generalization of R. ISAACS's [46, pp. 96-104] tactical air-war game,

which apparently owes its origin to A. S. MENGEL (see [27]). It considers

a war between X and Y, each of which is composed of ground and air

forces. The progress of the ground war is mensured in terms of the

position of the contact zone between the opposing ground forces or FEBA

(Forward Edge of the Battle Area) (see Section 7.15 for further details).

Both X and Y have a single type of aircraft that can fly two types

of missions: (Ml) ground-support missions against the enemy's ground

forces to influence the outcome of the land war in terms of FEBA position,
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and (M2) counter-air missions which result in the shooting down of enemy

planes (but not direct help for the ground forces). The problem for each

of the two opposing cormanders is to find the "best" time-sequential

allocation of his aircraft to mission type according to the decision

criterion of the sum of the net residual value of surviving aircraft at

the end of the campaign (and measured with linear utilities) and the net

amount of value obtained from ground-support missions flown (and measured

in terms of the return from planes dropping ordnance on the FEBA). These

objectives of the opposing commanders are taken to be directly conflict-

ing (i.e. the two payoffs have a constant sum), and thus it suffices to

consider a single scalar payoff which one player seeks to maximize and

the other to minimize. Also, the air campaign is taken to last for a

prescribed length of time, denoted as T, and it is assumed that new

aircraft are introduced on both sides at constant rates. This situation

is shown diagramatically in Figure 8.5.

Mathematically the above two-sided combat-optimization problem

may be stated as follows.

maximize minimize{vx x(t t) - v y(tf
U V

tf

+ 0[RX(t)ux RY(t)vyldt}, (8.12.3)
0

with stopping rule: tf - T - 0
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I

Figure 8.5. Diagram of generalization of tactical

air-war game (8.12.3).

763

* rw~ - ~- -~J.-



dx

subject to: dT- r - (1 - v) a(t)y ,
dt

(air-battle dynamics) dt s - (1 - u) b(t)x ,
dt

with initial conditions:

x(O) - x0  and y(O) -yO

and

0 < u, v < 1 (Strategic-Variable-Inequality Constraints),

x and y > 0 (State-Variable-Inequality Constraints),

where

x(t) and y(t) denote the numbers of X and Y aircraft

at time t,

a(t) and b(t) denote time-dependent attrition-rate coefficients

representing the effectiveness of aircraft in

shooting down enemy aircraft,

r and s > 0 denote constant replacement rates for each

side's aircraft,

vX and vy denote the values for each surviving X and Y

aircraft at the end of the campaign,

R(t) and RY(t) > 0 denote the time-dependent returns per unit

time obtained from flying an X &nd Y

ground-support missions,

u(t) and v(t) are strategic variables that denote the fractions

of X and I aircraft allocated to flying

ground-support missions at time t,

and tf denotes the final campaign time.
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Here the strategic (or control) variables u(t) and v(t) are taken

46
to represent the outcomes (or realizations) of closed-loop strategies

e.g. u(t) - U(t,x,y). A further discussion of this model and its rather

long history is to be found in TAYLOR [94, Appendix B], and optimal air-

war allocation strategies for the above LANCHESTER-type differential

game are developed there, with complete details being worked out for the

special case of constant coefficients (see also TAYLOR [83]).

Example 8.12.2: Modified Fire-Support Differential Game. This problem

is a variation of Y. KAWARA's [51] fire-support differential game and con-

siders the attack of heterogeneous X forces against the static defense

of heterogeneous Y forces. Each side is composed of infantry and

artillery. The X infantry (denoted as X1 ) launches an attack against

the position of the Y infantry (denoted as Y1 ). We will consider

only the battle's "approach-to-contact" phase that lasts from the start

of the advance of the X1 forces against the Y1 defensive position

until contact is made between them. It is assumed that this latter time

is fixed and known to both sides. Using "cover and concealment," the

X1 forces begin their advance against the Y1  forces from a distance

and move towards the Y position. Small-arms fire by the X1 forces

is held at a minimum to facilitate their movement, and hence the effective-

ness of XI's fire "on the move" will be assumed to be negligible against

YI" Since the X forces are so far away from the defenders, Y1
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is assumed to use "area fire" against the attacking X1 forces. During

this "approach to contact," the fire-support units (i.e. each side's

artillery) remain stationary and deliver either counterbattery fire

against enemy artillery or "area fire" against the enemy's infantry.

By virtue of its defensive posture, the Y force obtains better informa-

tion about the location of the X fire-support units, and hence Y2

can deliver "aimed counterbattery fire" against X2 , but X2 can only

return "area counterbattery fire" against Y2 " It is the objective of

each side to attain the most favorable infantry force ratio possible at

the end of the "approach to contact" at which time "hand-to-hand" combat

occurs between the two infantries and consequently artillery fire can

no longer be directed at the enemy's infantry for safety reasons. The

decision problem facing each side is to determine the "best" time-sequential

distribution of artillery fire in order to maximize the infantry force

ratio at the time of "hand-to-hand" contact between the two infantries.

Again, the objectives of the two opposing commanders are taken to be

directly conflicting, and thus it suffices to consider a single scalar

payoff which one player seeks to maximize and the other to minimize. This

situation is shown diagramatically in Figure 8.6.

Mathematically the above two-sided combat-optimization problem

may be stated as follows.
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l-v

I 
b

Figure 8.6. Diagram of modified fire-support differential

game (8.12.4).
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maximize minimize (82(tf)4
u v lY 1 (tf) (8.12.4)

with stopping rule: tf - T - 0

subject to: d- I - va1 2 xlY2

(battle dynamics) dx2  (-v)a2
dt (-a 2Y2

dy 1

dt b1 1x2

dy 2
d- -(-u)b2y2x 2,

with initial conditions:

Xi(0) - X and y(0) - y for i- 1,2,

and

0 < u, v < 1 (Strategic-Variable-Inequality Constraints),

xl, x2 ' yI' and y2 > 0 (State-Variable-Inequality Constraints),

where

x (t) and yl(t) denote the numbers of X and Y infantry

at time t,

x2(t) and y2 (t) denote the numbers of X and Y artillery

at time t,

all, a 1 2 , a 2 , bl, and b2  denote constant LANCHESTER attrition-rate

coefficients,
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u(t) and v(t) are strategic variables that denote the

fraction of X and Y artillery fire allocated

against opposing infantry forces,

and tf denotes the final "approach-to-contact" time.

Again, the strategic (or control) variables u(t) and v(t) are reali-

zations of closed-loop strategies, e.g. u(t) - U(t, xl, x2, y,' y 2 ).

A further discussion of this model and its history is to be found in

TAYLOR [86], and optimal fire-support strategies for the above LANCHESTER-

type differential game are developed there.

I
Other LANCHESTER-type differential games (besides those found in

ISAACS' book [46]) have been studied by WEISS [103], CHATTOPADHYAY

[19; 20], INTRILIGATOR [42], MOGLEWER and PAYNE [60], KAWARA [51], STERNBERG

[751, and TAYLOR [80; 85]. These differential games are generally only

partially solved, with a lot of work usually producing only rather meager

results. It should also be finally noted that a number of closely related

discrete-time-sequential games have been investigated by both analytical

ýuid also computational means (e.g. see FULKERSON and JOHNSON [251,

BELLMAN and DREYFUS [81, BERKOVITZ and DRESHER [11-131, PUGH [68],

BRACKEN, FALK, and KARR [15], and GOHEEN [29].
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8.13. Insights Gained

Based on our studies of the optimization of combat dynamics [76-981

using generalized control theory, we have learned the following:

(A) The structure of optimal time-sequential combat strategies

depends on all the following five factors:

(1) the decision criteria,

(2) th" battle-termination model,

(3) the combat-operations model,

(4) the feasible actions for each decision maker,

and (5) the information available to each decision maker.

The dependence is complex, and future research should concentrate

on simplified models of tactical interest to explore further how optimal

strategies depend on these factors.

(B) Force levels always effect optimal combat strategies.

The dependence may be indirect, however, through who

"wins" and "loses."

(C) The quantification of combatant objectives affects optimal

combat strategies. The most important planning decision

is whether to seek a "local" military advantage or an

"overall" one.
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(D) The time-sequential nature of target effects has a significant

influence on optimal fire-support strategies. Furthermore,

optimization of fire-support strategies should be based on

ground-support objectives.

(E) It may be quite dangerous to generalize optimal time-

sequential combat strategies from specific problems.

More research shotlid be done on better understanding the

qualifications that should be placed on such specific

results.

The above insights are illustrative of those salient features

about optimizing tactical decisions that we have uncovered in our work.

A further discussion about insights gained into the optimization of combat

dynamics may be found in TAYLOR [92, pp. 61-64; 94, pp. 8-9; 96, pp. 12-15],

where a discussion about the implications of such results for defense

planners is also contained. Although all these insights have been

developed within the context of specific problems, most of the properties

of the structure of an optimal time-sequential combat strategy appear

to be of general applicability. As we have stressed ir. the introduction

to this chapter, such insights into the structure of optimal combat

strategies are probably the only significant result obtained from this

work, since the underlying mathematical models are such idealizations of

the (rational) decision-making process in force-on-force combat operations.
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8.14. Role of Optimization in Decision Analysis for Tactical Military

Decisions

Here we will make a few final comments about considering such combat-

optimization problems in the quantitative study of tactical (as opposed to

strategic) decision making. These remarks are meant to stimulate further

thought and discussion, rather than providing any final definitive

answers.

The author feels that the most important current issue is to

determine the role of normative models in tactical decision analysis.

What exactly is the role of optimization in tactical military decision

making? Optimization problems arising from the modell.'ng of tactical

decision making with any degree of realism in the modelling of combat are

too large scale for even contemporary computing capabilities. If we

cannot optimize the detailed simulated system, what should we do? The

interchange of ideas between military gaming (e.g. see SHUBIK [721;

an excellent reference is still THOMAS and DEEMER [101]) and combat

optimization (as outlined above) needs to be stimulated. In particular,

mathematical programmers involved in such work should become more aware

of the analysis and modelling of combat operations, since they give

special structure to such optimization problems. The modelling of such

complex systems necessarily must precede system optimization, and the

author views the latter as but an extension of the former.

As we have stressed in the past (see TAYLOR [79]), more work

sh uld concentrate on developing exact optimal solutions to "approximate"

models of combat operations in orier to develop a better Lnderstanding of
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how to really improve tactical decision making (both iii the model world

and also in the real world). After all, the purpose of combat optimization

is insight, not numbers. 4 7
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FOOTNOTES FOR CHAPTER 8

1. This chapter is an expansion upon TAYLOR [87, pp. 778-779 and pp. 7o3-801].

It is also partially based on portions of the author's unpublished paper

"Survey on the Optimal Control of Lanchester-Type Attrition Processes,"

presented at the Symposium on the State-of-Lhe-Art of Mathematics in

Combat Models, June 1973 (available in report from as TAYLOR [931).

2. More precisely, generalized control theory is the mathematical theory of

optimizing the performance of a dynamic system (see Section 1.6 above for a

discussion of the concept of a dynamic system). The term "3eneralized

control theory" was apparently first coined by Y. C. HO 1341 in 1969

(see also HO [35]). It includes both deterministic and stochastic oprimal

control, dynamic programming, and differential games (see HO [34] for furtier

details).

3. Actually, these "decision variables" are really decision functions, since

they are functions defined on some time interval (e.g. 0 - p(r) for

0 < t < T). The term decision variable is probably used in analogy with

the term state variable, which also evolves dynamically over time.

4. See TAYLOR [76-88], TAYLOR and BROWN [89], TAYLOR [91-97], and TAYLOR

and POWERS [98] for documentation of the author's research on the structure

of optimal time-sequential combat strategies.
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I
5. These operational combat models have been discussed (including the nature

and availability of documentation about them) ii, Section 1.3 above (see

also Section 7.1).

6. For the mathematical modelling of rational choice under conflict of interests,

see LUCE and RAIFFA (551 or SHUBIK [721. For an excellent investigation of

methodology for determining how people actually make decisions in a non-

c..nflicting environment (i.e. no conflict of interests), see WILCOX [104].

7. Such a one-sided time-sequential optiidzation problem is called an optimal-

control problem. Relatively recent mathematical interest (and also that

of other scientists and technolgists) in optimal-control theory stems

from the work of PONTRYAGIN and his associates on the mathematical theory

of optimality couditions for such problems (e.g. see PONTRYAGIN et al.

(67]; see also HESTENES [32]).

8. We are using here the word strategy to denote a game-theoretic strategy,

i.e. a completely specified plan of action which covers all contingencies

(e.g. see SHUBIK [72, p. 42]). We then use the word policy to denote a

"strategy" in a one-sided optimization (or optimal control) problem, i.e.

a control. In military circles, the word strategy has a different meaning,

the plans for conducting a war in the widest sense including diplomatic,

political, and economic considerations as well as those of a purely

military nature (31] (see also LUTTWAK [56, p. 183]). One then uses the

word tactics to refer to the method employed by a commander to implement

( his strategic plan [31] (see also (56, p. 199]).
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9. Here we are using the words strategy and tactics as usually used by military

planners and not in the game-theoretic sense (see Footnote 8 above).

10. See WEISS (103] for a brief discussion of the distinction between a "primary"

weapon system (e.g. tnfantry) and a "supporting" weapon system (e.g.

artillery, tactical aircraft, etc.).

11. For an excellent general discussion of the modelling of tactical decisions

for use in combat models, see ANDERSON (1].

12. It is beyond the scope of this monograph to give a detailed treatment of

war gaming, but we will attempt here to outline some further reading for

those who are interested. Excellent introductions are afforded by PAXSON

[66] (a brief introduction) and McHUGH [57] (a longer introduction

which includes a historical summary) (see also SHUBIK [72]). For a very

readable and informative popular account of war gaming, see WILSON's

book [105], which apparently draws heavily on McHUGH's work [57]. A very

thorough historical summary (unfortunately, only through the late 1950's) is

YOUNG (107]. For other excellent accounts of operational gaming and its

role in military OR, see THOMAS and DEEMER [101] and THOMAS [99; 100].

Although somewhat dated, the references [99-101] are still an excellent

introduction to gaming, probably still the best technical one in the

military field. Other more recent accounts are by SHEPHARD [ 7 1j, ARCHER

and BYRNE [4], SHUBIK [72], and especially (74]. P. BRACKEN [16] has

discussed through some very interesting historical case studies some
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very subtle difficulties in the use of war-gaming results. SHUBIK's

book [72] not only provides an excellent general introduction to gaming

but also gives an important comparison between game theory and behavioral

theories (see [72, pp. 156-166]), which has had a significant impact on

our own thinking (e.g. see TABLE 8.1 in Section 8.2). BREWER and SHUBIK

[171 have concentrated on the professional and organizational environments

for war gaming in the United States and have made a number of critical

recommendations for enhancing the effectiveness of war gaming in solving

defense problems. However, little attention is given to combat-modelling

aspects. For some European accounts of war gaming, the reader should

consult SHEPHARD (71], WOLF [106], NIEMEYER [62], and especially HUBER,

NIEMEYER, and HOFMANN [41]. The latter book [41] probably provides the

best view of modern German thought on this important topic. Other related

references on the general topic of operational gaming are to be found

in the Notes and References for Chapter 1. Finally, let us note that

SHUBIK and BREWER [73, p. 8] (discussing gaming more generally) have

stressed that "the amount of publicity given free-form, political-diplomatic-

military games has been enormously disproportionate to the financial and

intellectual investments in them. Popular accounts aside (such as [105]),

research on the intellectual foundations and used of this type of work

has been negligible." Unfortunately, these statements are even more

true about war gaming.
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13. We are using here the term "simulation' in its broadest sense (cf.

the simulation types shown in Figure 1.1).

14. An abbreviated version of this list first appeared in TAYLOR (93, p. 3]

(and later TAYLOR [94, p. 8; 96, p. 12]), where such a factorization of

a time-sequential combat-optimization problem was first discussed (see

also TAYLOR [85; p. 507]). In our work we have stressed the importance

of this conceptual factorization for tactical decision analysis, but

others have not yet apparently appreciated our point of view.

15. Here we mean that fire is exchanged between the two opposing forces

("bullets fly in both directions") but that only one side is faced with

a fire-distribution-optimization problem.

16, One simply orders a report from NTIS according to its so-called

"AD-number," e.g. TAYLOR (96] would be referred to as AD A033 761.

17. Other such lists of factors influencing opitmal fire-distribution

strategies may be found in TAYLOR [92, p. 2; 93, p. 2; 96, p. 31.

18. See Footnote 8 above.

19. See HO [34; 35] for a discussion of generalized control theory (in

particular, various generic types of dynamic optimization problems).

Further information about optimal-control theory may be found in

PONTRYAGIN et al. (67], HESTENES [32], ATHANS and FALB [5], and BRYSON and

HO [18], which are standard references (see also BELL and JACOBSON (7]).

Further information about differential games, may be found in
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ISAACS (46], BERKOVITZ [9; 10], and FRIEDMAN [24] (see also BRYSON

and HO (18, Chapter 9] and PARTHASARATHY and RAGHAVAN [65]). A very

readable general introduction to all these topics is afforded by

INTRILIGATOR [43].

20. Here (as elsewhere in this chapter) one-sided (as opposed to two-sided)

optimization problem means that there is only one (as opposed to two

with conflicting objectives) decision maker. We may think of such a

situation as arising because the combat strategy for one of the two

opposing commanders has been previously determined. Hence only one

player's combat strategy remains to be optimized.

21. Extension to cases with replacements and/or withdrAwals is discussed in

TAYLOR [88, p. 1121.

22. Since our combat model is deterministic, in principle we car always

determine who will win before the battle is actually fought.

23. As we saw for an FIF attrition process in Section 6.6, it is not

generally true that such a single unique initial-force-level value

exists (cf. also Section 2.9). Consequently, we are implicitly assuming

here that the combat dynamics are such that it does.

24. The result (8.9.4) was not explicitly given by TAYLOR (88], but it is

implicit in his developments.
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25. Here we mean that more effort should be spent on developing scientifically

valid (see HUBER, LOW, and TAYLOR [40]) models of conflict termination

because of the sensitivity of analysis results to such models.

26. As discussed in Section 8.4 above, such perfect information is usually

assumed for combat-optimization problems. Thus, we are well within the

current state of the art to assume such perfect information.

27. See HO [34; 35]; also INTRILICATOR [43, p. xiii]. For an introduction

to the literature of optimal-control theory, see Footnote 19 above.

28. For example, one could test the capability of a computational approach

like LAGRANGE dynamic programming (see PUGH (68]) on a discrete-time

version of this problem.

29. Such optimality conditions may be found in, for example, the references

on optimal-control theory mentioned in Footnote 19.

30. By an extremal we mean a trajectory on which the necessary conditions

of optimality are satisfied. An extremal control law is then used to

denote the policy followed in order to instantaneously satisfy these

necessary conditions and is usually determined by considering the maximum

principle. An extremal policy, of course, may not turn out to be an

optimal policy.
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31. By the domain of controllability for a given terminal state we mean that

subset of the initial state space from which extremals lead to the

terminal state (see TAYLOR [76, pp. 542-543] for further details).

32. This first characteristic is a consequence of Y causing attrition to

Xi at a rate proportional to only the number of firers. It is not true

in general (see TAYLOR [78; 791 and Section 8.11 below).

33. Except when 6 - R - /R(R - 1), the optimal fire-distribution policy is

unique.

34. It should be noted that for R > 1 we have 0 < 1 - 1/R < 1.

35. From the relation y - -1 + 6/R, we readily see that -(l - l/R) < y

if and only if 1 < 6, - /1 - I/R 7y < -(l - i/R) if and'only if

R - IR(R - 1) < 6 < 1, and -1 < y < - /1 - I/R if and only if

0 < 6 < R - R(R - 1)

36. The author has developed theoretical results along this line, i.e. boundary

conditions for the dual variables (see TAYLOR [81]).

37. See also the discussion in TAYLOR [93, pp. 22-23].
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38. Here (as elsewhere in this chapter) one-sided (as opposed to two-sided)

optimization problem means that there is only one (as opposed to two with

conflicting objectives) decision maker. A game may then be considered

to be a two-sided optimization problem. Such a one-sided time-sequential

optimization problem is also frequently called an optimal-control problem

(see also Footnotes 7 and 20 above).

39. Some new facets of optimal-control theory have been uncovered by these

investigations, and consequently a couple of contributions (TAYLOR [77;

81]) have been made to the control-theory literature (see also

TAYLOR [831).

40. We have already seen above in Section 8.10 that for the fight to the finish

(8.10.1) the optimal fire-distribution policy depends on only the force

levels and not on tire, i.e. ý*(Problem 2) - ý*(Xl,X29Y).

0 0
41. In other words, x1, x2 , and y0  are such that x(T) and x2 (T) > 0

but y(T) - 0 in the terminal-control battle (8.10.1), but that they

are such that x1 (tf), x2 (tf), and y(tf) > 0 with tf - T in the

prescribed duration battle. Such conditions for the initial force levels

are given in TAYLOR [92, Appendix G] for the prescribed-duration battle

and in TAYLOR [76; 84] for the fight to the finish (8.10.1) (see also

Table 8.VII above).

42. Here (as elsewhere) one also makes the physically realistic assumption

that p, q, and r > 0.
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43. By virtue of (8.11.8), at any giveii point during the battle will

suffice.

44. In our discussion here we are assuming two enemy ta-get types. Extension

of these remarks to an arbitrary number of enemy target types proceeds

in the obvious manner.

45. Here we mean that the marginal return from firing at a particular enemy

target type does not change over time due to the decrease in the number

of that target type.

46. Such a distinction plays an essential role in the development of the

basic necessary conditions of optimality for such a differential game

(e.g. see TAYLOR (84; 95, Appendix A]).

47. As we have discussed in Section 8.5, GEOFFRION (261 has suggested a similar

conceptual approach of ustng a simple auxiliary model to generate tentative

hypotheses to be tested in a full-scale operational model and thus to

provide guidance for further computerized higher-resolution investigations.

We also have felt (see TAYLOR [79]) that the use of relatively simple

auxiliary models in conjunction with complex operational models has much

to offer for the analysis of military operations (see also NOLAN and

SOVEREIGN [63]). In fact, this has been the hypothesis upon which all our

research has been based.
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APPENDIX F: COMPREHENSIVE BIBLIOGRA"HY ON THE

LANCHESTER THEORY OF COMBAT

1. Introduction.

This appendix contains a comprehensive bibliography on the LANCHES-

TER theory of combat, i.e. organized knowledge concerning some aspect of

a LANCHESTER-type paradigm. Its objective is to provide the interested

reader with relevant and available information concerning LANCHESTER-type

combat models for further independent research. It should be of use to

OR researchers and other readers of this monograph who wish further more-

detailed information.

It seems appropriate to define our terms a little more precisely

here in order to better communicate to the reader exactly what type of

information he can expect to find in these references. First of all, the

reader should be aware that any theory about military combat is more

speculative than scientific because of the essential absence of histori-

ca] combat data (see Section 7.22 for further details), and the LANCHES-

TER theoty of combat (taken here to mean organized knowledge concerning

some aspect of a LANCHESTER-type paradigm) is no exception. By the term

LANCHESTER-type paradigm we mean a lucid simple example of the approach

of using differ2ntial equations to model the force-on-force combat-

attrition process. The term tLheora itself involves a number of subtle-

ties: it turns out that. a technically precise definition of the term

theory is somewh!- complicated and no such definition is apparently univer-

sally accepted (e.g. see ACKOFF [1, pp. 22-23], CAMPBELL (51, or
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BUNGE [4]). Thus, we will not precisely define the term theory, and

all this bibliography promises is further information about some aspect

concerning the models and topics studied in this monograph.

2. Nature and Scopc of This Bibliography.

This bibliography is a comprehensive list of unclassified refer-

ences on the LANCHESTER theory of combat. It is primarily composed of

journal articles to which the author has selectively added some company

and agency reports, The author has personally reviewed and has a copy

cf each entry, particularly of industrial reports. Internal publica-

tions that duplicate open literature publications have been specifically

not included. To the best of the author's knowledge, the list of open-

literature publications is complete. Finally, this bibliography is

more than a synthesis and integration of the references cited in the

individual chapters of this monograph, since additional references that

for one reason or another would have been inconvenient to cite in some

chapter have been included here. Thus, this bibliography should be

taken as the most up-to-date list of LANCHESTER literature contained in

this monograph.

The criteria for inclusion of references that are not journal

articles have been relevance and availability. The author has given

preference to citing those documents that an interested reader would

have a good chance in obtaining. In particular, three good sources of

"internal" publications are the National Technical Information Service

(NTIS), University Microfilms International, and The RAND Corporation,
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for which complete mailing addresses are as follows:

1. National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22151

2. University Microfilms International
P.O. Box 1764
Ann Arbor, Michigan 48106

3. The RAND Corporation
1700 Main Street
Santa Monica, California 90406

Documents available through NTIS are identified by their so-called

"AD number."

References have been narrowly limited to only those that consider

some aspect concerning LANCHESTER-type combat models themselves. The

closely related topic (at least from the standpoint of combat modelling)

of stochastic duels has been omitted, except for a few papers that show

relationships to Lanchester-type combat models. The reader who is

interested in stochastic duels is directed to the comprehensive, exhaus-

tive, and fully annotated bibliography on one-cn-one stochastic duels by

C. ANCKER [3] or his earlier comprehensive review of developments in the

theory of stochastic duels in general [2]. Likewise, references pertain-

ing to Monte Carlo simulation of combat and war gaming have been omitted.

Finally, literature concerning differential-equation models of conflict (as

opposed to combat. itself) such as RICHARDSON-type models of arms races

(e.g. see ZINNES [17]) has also not been considered here. (The interested

reader will find an introduction to this closely allied literature in

MOLL and LUEBBERT [10].)
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3. Its Origins.

It may be of interest for the reader to know how the present bibli-

ography has evolved, especially since its predecessors have apparently

influenced the work of others in ways that may not be readily apparent.

The author's 1970 report (12] on applications of differential games to

tactical-allocation problems already contained the nucleus of a litera-

ture review on the LANCHESTER theory of combat. Further references were

subsequently collected, and a M.S. thesis that gave a comprehensive lit-

erature review was directed (see HALL [8]). This work took DOLANSKY's

[7] 1964 review article as its point of departure. Subsequently, the

author prepared in December 1972 a selected bibliography [13] (60 refer-

ences), which was distributed to students in combat-modelling courses at

the Naval Postgraduate School, and any other interested parties upon

request. Here the author followed the policy (which he still does) of

citing only those references that he had personally reviewed.

It was then the author's good fortune to be invited by the Military

Applications Section (MAS) of the Operations Research Society of America

(ORSA) to deliver a "tutorial" ertitled "LANCHESTER-Type Models of War-

fare" at the 46th National ORSA Meeting on Thursday, October 17, 1974 in

San Juan, Puerto Rico. A revised selected bibliography [14] (82 refer-

ences) was consequently prepared in September 1974 and distributed at the

"tutorial" and afterwards. This tutorial was repeated at the 35th Mili-

tary Operations Research Symposium in July 1975, and the bibliography had

by this time grown to 89 references. By the time of the appearance of

the author's MAS monograph Force-on-Force Attrition Modelling (161 in

January 1980, this selected bibliography of primarily journal articles

47
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had evolved into a comprehensive bibliography of 151 references. Subse-

quent work on the monograph at hand has led to the comprehensive bibliog-

raphy presented in this appendix.

4. Other Bibliographies.

There are a number of other bibliographies that may be worthwhile

for the interested reader to consult. DOLANSKY's [7] 1964 survey paper

contains a fairly comprehensive bibliography (51 references) of material

published through 1962. In this respect, the Ph.D. theses of CLARK [6]

and SPRINGALL [111 are worthwhile to consult, especially concerning sto-

chastic LANCHESTER-type combat models. A comprehensive bibliography

(180 references) of material published up to 1980 has recently been pub-

lished by HAYSMAN and MARTAGY [9]. It should be borne in mind, however,

that different criteria have apparently been used for including refer-

ences in these various bibliographies. It may be of interest for the

combat modeller to examine similar material on arms races and other com-

petitive aspects of international relations, especially RICHARDSON-type

(i.e. differential-equation) models of arms races. In this respect, the

book by ZINNES [17] is very readable and contains a fairly comprehensive

bibliography concerning such allied work, and the recent survey article

by MOLL and LUEBBERT [101 (containing 127 references) is highly

recommended.

5. A Solicitation.

The author would be grateful to receive information concerning any
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additions, omissions, or corrections to this bibliography. Such material

would be incorporated into any future versions of this work.
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