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Chapter 5. LANCHESTER ATTRITION-RATE COEFFICIENTS

5.1, General Congiderations,

For applying any kind of LANCHESTER-type combat model to study a
particular hypothesized combat engagement in a defense-planning study, one
must be gble ;o predict the vates at which weapon systems would inflict and
sustain casualties. In other words, one must be able to compute a reliable
numerical value for the loss rate of each and every weapon-system type on
the battlefield. This capability 1s essential for utilizing LANCHESTER-
type models of warfare in combat analyses. Thus, in this chapter we will
consider methods for predlcting LANCHESTER attrition rates and, in par-
ticular, the coefficients that portray these rates.

Two approaches that have been developed and used to predict loss

rates for LANCHESTER-type combat models are based on using

(Al) an analytical submodel of the attrition process for the
particular target typel,
and (A2) a statistical estimate based on "combat" data generated by

a detailed Monte Carlo combat simulationz_

12 this chapter we will examine each of these approaches in detail., For
now, however, let us say a few general words about each of them.

S. BONDER [15] has called the first approach (Al) the use of a

freestanding or independent analytical model, since this type of analytical

model cau be run independently of any detailed Monte Cario simulation of
the same combat process. The basic conceptual idea is to develop an
analytical expression for every required kill rate by considering a single
firer engaging a "passive" target (i.e. one that doasn't fire back) and
then to "tie all the attrition rates togethec” with a LANCHESTER-type

model. One designs such a model to use the same types of inputs as used

-




by Monte Carlo simulations of the the same combat process. Hopefully, the
freestanding analytical model will predict similar outputs in an efficient
and easily interpretable manner. An example of such an independent analyti-
cal model is the BONDER/IUA differential model, which was first used in
the United States in 1969 [15], and the many subsequently enrichc.! versions
of it (see Section 1.3 above). BONDER and FARRELL [17] have reported ex-
cellent agreement between outputs from the BONDER/IUA model and a cor-
responding Monte Carlo simulation.

The second apprvach (A2) has been called by BONDER [15] the use of

a fitted-parameter analytical model. The basic idea here for predicting

LANCHESTER attrition-rate coefficients is to statistically estimate the
parameters of the loss rate for each type of weapon system from the output
of a high-resolution Monte Carlo combat simulation. This idea is ap-
pareantly due to G. CLARK [24] and is schematically shown in Figure 5.1.
Thus, the fitted parameter analytical model must be used in conjunction
with a Monte Carlo simulation (or appropriate data from the actual procesa3).
The data or outputs of the simulaticn are used to fit one or more free
parameters in the analytical model so that the analytical model will (at
ieast) dupiicate and (hopefully) predict results comparable to those ob-
tainable from the simulation model. The COMAN model [24] is an example
of such a fitted parameter model. Encouraging results have been reported
[36]. Such a model is built on a physical basis with only a minimum num-
ber of parameters to be estimated (in contrast to statistical regression
functions).

Both the above general approaches (Al) and (A2) for predicting LAN-
CHESTER attrition-rate coefficients, however, in some sense make use of

the general principle that the loss rate is equal to the reciprocal of
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the expected time for a target to be killed. The details of both approaches
should be more readily comprehendcd if we will keep this principle in mind.
Let us therefore provide a motivation for this principle. We start by
considering combat between two homogenous forces. Assuming that the loss
tétgs only depend on the numbers of combatants and not time explicitly,

we may model the attrition process with the following determirnistic LAN-

CHESTER-type equations of warfare

gf-- -A(x,¥) with x(0) = Xq»
(s.1.1)

dy = -B(x,y) with y(0) = Yo»

dt

where x(t) and y(t) dencte, respectively, the X and Y force levels
at time t. Here we find it convenient to represent, for example, the
actual number of X combatants, which i1s a nonnegative integer, with the
real number x(t). Let us assume that there are no replacements and
withdrawals, and then A and B are the attrition rates of the X and

Y forces, respectively.

If we want to statistically estimate the loss rates in the model
(5.1.1) from Monte Carlo simulation output data (i.e. casualty data generated
by a (pseudo-) random process), we must consider a stochastic version of
(5.1.1) in which casualties occur randomly over time. It 1is now con-
venient to consider the restriction that the force levels are really non-
negative integers and to model the combat attrition process as a continuous-
parameter MARKOV chain. Letting M(t), a random variablea, denote the in-
tegral number of X combatants alive at time t (with corresponding
realization denoted as m) and similariy for the Y force, we then have
the following so-called forward KOLMOGOROV equations (gese Chapter 4) for

the evolution of the state probablities for 0 < m <my and 0 <n < n,

b
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%% (t,m,n) = P(t,uwt+l) A(m+l,n) + P(t,m,n+l) B(m,n+l)

- {A(m,n) + B(m,n)} P(t,m,n), (5.1.2)

where P(t,m,n) = P[M(t) = m, N(t) = n|M(0) = mys N(0) = n,] and we have
adopted the convention that, for example, A(m,n) » 0 for m > m, or

n > ng. From this stochastic model, we find that (see Chapter 4 above)

1
E[TXY] = A—(m,n) ’

(5.1.3)

where TXY’ a random vériable, denotes the time required for the Y force

to kill an X combatant (i.e. the time between two successive X casualties)
and E[T] denotes the expected value of T. For the case of equal casualty
rates that are independent of the numbers of combatants (i.e. A(m,n) = B(m,n)

= )\ = constant), (5.1.3) becomes the well-known result for casualties oc-

curring to a Poisson stream

E[T] - % [}

or

(5.1.4)

>
]
]

where T denotes the time between the occurrences of successive casualty
events and t = E[T].

The reader may be familiar with this well-known result (5.1.4), and,
in ary case, the more general version (5.1.3) should provide a heuristic
motivation for cartain subsequent results in predicting attrition-rate
coefficients. Thus, in statistically estimating loss rates from simulation
output data, we should expect to use statistics about the times between

casualties. Furthermore, BONDER's freestanding analytical model approach




is also conceptually based cn (5.1.3): one develops a model for TXY’
analytically computes E[TXY]’ and takes A(x,y) = 1/E [TXY]' Therefore,
(5.1.3) should in some sense be taken as a general principle that is es-

gential for understanding subsequent developments in this chapter.
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5.%i. Attrittion-Rate Coefficients for LANCHESTER's Equations of Modern Warfare.

Let ug now consider the determination of numerical values for the attci-
tion-rate coefficients in a particular combat model. We accordingly con-
sider "atued-fire" combat between two homogenwous forces and assume that
target-acjuisition timcs sare constant (independent of the number of enemy
targets). This combat situation may be modelled with the following LAN-
CHESTER-type equations for modern warfarcs (see Section 2.11 for a further

diacuseion of the military circumstances hypothesized to yield them)

dx ‘ -
el with x(0) Xy
(5.2.1)
dy . . -
dc bx with y(0) =y,

vhere for a particular battle a8 and b are positive constants called

LANCHESTER attrition-rate coefficients (gee Figure 5.2). Each of these

attrition-rate coefficients in such a combat model rep: :sents the f-re
effectiveness of cne side's weapon system against enemy targets, For
exsuple, a 1is the rate at which one Y firer kills X targets. The
dimensions of & are (number of X casualties)/(time X number of Y
firers). 'Thus, a is indeed a rate and has the dimensions of reciprocal
time.

Before discussing a simple analytical model for determining numerical
values for the LANCHESTER attrition-rate coefficient in particular mili-
tary engagements, let us point out a very important relation hetween the
daily casuelty rate (expressed as a fraction of the side's current strength)

of & homogeneocus force and such a LANCHESTER attrition~-rate coefficient.

We will show that for the model (5.2.1), for example, the LANCHESTER




x(t) b y(t)

Figure 5.2. LANCHESTER attrition-rate coefficients a and b
(here assumed to be constant) for LANCHESTER-type
equations of modern warfare. The coefficient a
represents the fire effectiveness of the weapon-
system type used by the Y force in the operational
circumstances of the battle under consideration.

More precisely, a 1s the rate at which one Y

firer kills X targets.




¢

attrition-rate coefficient & 1is the slope of the plot of fractional casual-
ties per unit time versus a certain force ratio. Let us acccrdingly con-
sider, for example, X's fractional casualties per unit time. From the

first of equations (5.2.1), we obtain

.1 dx\_ [X's fractional casualties) _ a _ (5.2.2)
x dt per unit time s o ) te

where u denotes the force ratio of X to Y, f.e. u = x/y, and v
denotes its reciprocal, i.e. v = y/x.

In Figure 5.3 we have plotted X's fractional casualties per unit time
as a function'of a certain force ratio. The force ratio that we have used
is the quotient of the attacker's strength (here, force level) divided by
that of the defender and have denoted it as A/D, since most combat analyses
use this ratio A/D and consequently we will be able to more easily relate
the simple LAMCHESTER-type model (5.2.1) to them. The solid line in
Figure 5.3 represents X's fractional casualties per unit time as a function
of the force ratio A/D when X defends and Y attacks. It is a straight
line through the origin with a sloupe equal to the value of the LANCHESTER
attrition rate coefficient a as the reader can see by referring back to
(5.2.2). Thus, we have developed an important relation between fractiomal
casualty rate and the LANCHESTER attrition-rate coefficient. Finally, the
dashed line (which is a hyperbola) in Figure 5.3 represents X's fractional
casualties per unit time as a function of the force ratio A/D 1in the other
case in which X attacks and Y defends. Similar curves for daily
casualty rates are commonly used to assess casualties in currently opera-

tional large-scale ground-combat models (see Section 7.13).

Let us now return to our discussion of numerically determining the
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LANCHESTER attrition~rate coefficients a and b for the model (5.2.1).
In general, we may think of, for example, the LANCHESTER attrition-rate

coefficient a as being given by (cf£. (5.1.3) above)

1

a .._.._TE[TXY , (5.2.3)

where 'I‘XY again is a random variable (frequently abbreviated r.v.) and
denotes the time for an individual Y firer to kill a single X target.
Justification for using (5.2.3) is given in the next section (Section 5.3).
As we discussed in general terms in Section 5.1 above, such a LANCHESTER
attrition-rate coefficient may be predicted for particular military

engagements by using

(Wl) an analytical submodel involving physically measurable
weapon-gystem characteristics of the attrition process
for an individual friendly firer engaging a single enemy
target,

or
(W2) a statistical estimate based on "combat' data generated

by a detailed Monte Carlo combat simulation.

In the remainder of this section we will discuss the first way (Wl),
while the second way (W2) 1s discussed in Section 5.15 below.
In the simplest case (a more complicated one is considered below),

the LANCHESTER attrition-rate coefficient is simply given by, for example,

a=v_P (5.2.4)

YSSKXY’

where v, denotes Y's firing rate, and P denotes Y's single shot
Y SSKXY

kill probability against X. This simple expression (5.2.4) is usually

hypothesized to apply to "aimed-fire" combat when the following conditions

11




hold:

(C1) negligible target-acquisition time,
(C2) statistical independence among firing outcomes,

and (C3) uniform rate of fire.

The reader can probably best appreciate the intuitive plausibility of the
expression (5.2.4) by noting that a represents the average number of
kills per unit time by a single Y firer, vY denotes his rate of fire,
and (on the average) he kills a given fraction of an X target with each
round fired denoted by PSSny.
As we see from (5.2.3), the LANCHESTER attrition-rate coefficient
is the reciprocal of the average time for an individual firer to kill
an enemy target. Let us therefore consider a simple model for the time

to kill a target. If we let T, a r.v., denote this time for a firer to

kill an enemy target, then ‘T 1is given by

T = Ta + T (5.2.5)

kla °’

where Ta denotes the time to acquire a target, and Tkla denotes the
time to kill an acquired target.
Again, in the simplest case (as above, assuming: (Al) a uniform rate
of fire, and (A2) statistical independence among firing outcomes) we have
1
- —— (5.2.6)

kla v PESK

E[T, | 1 = ¢

k|a

where v denotes the firing rate, and P denotes the single-shot kill

SSK
probability. The reader may find the following intuitive justification
for the average time to kill an acquired target (5.2.6) to be helpful:

1/P'SSK represents the average number of rounds to killﬁ, while 1/v
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represents the average time between rounds, and consequently their product

E is the average time to kiil an acquired target E[Tk|a]'
Thus, if we let
E[T] =t , (5.2.7)
a a
then our simple model for the time to kill a target yields
EIT] = £, +—o— (5.2.8)
SSK
and consequently, for example,
1
a = , (5.2.9)
E[?kY]
where E[.S(Y] = taXY + l/(vYPSSKXY). Thus, we see that (5.2.4) is just
the special case of (5.2.9) in which L, = 0.
Xy
N Let us finally note that, strictly speaking, (5.2.8) holds only when

(Al) and (A2) are satisfied [i.e. there 1s (Al) a uniform rate of fire,
and (A2) statistical independence among firing outcomes]. There are,
however, many weapon systems and engagement circumstances under which
these assvmptions are not at all approupriate. Consequently, S. BONDER
has developed an expression more complicated than (5.2.8) for target en-
gagement . .delled by MARKOV-dependent fire. He developed this expression
for the ....-.ysis of tank operations in which it is very important to con-
sider MARKOV dependence. We will examine BONDER's work in the section

following the next one.

B
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5.3. Justification of General Expression for Attrition-Rate Coefficlents

for LANCHESTER's Equations of Modern Warfare.

In this section we present justification for taking an attrition-
rate coefficient for LANCHESTER's equations of modern warfare (5.2.1)
as the reciprocal of the expected time for an individual firer to kill a

target, e.g.

1
am (5.3.1)
ElTyy]
where T is a random variable (abbreviated r.v.) denoting the time for

XY
an individual Y firer to kill an X target and E[T] denotes the

expected value of T. BONDER and FARRELL [17] (gee also [28; 88; 89])
have based their approach for determining attrition-rate coefficients
for a wide spectrum of weapon-system types on this definition (5.3.1).
It is tﬁerefore of considerable interest to inquire as to what justification
there is for basing the calculation of LANCHESTER attrition-rate coefficients
on (5.3.1). We have already provided heuristic justification of (5.3.1)
in Section 5.1 above, and here we will consider several more rigorous
justifications.,

All justifications of (5.3.1) known to this author are ultimately

based on the following basic hypothesis.

BASIC HYPOTHESIS: Combat is a complex random process, and

the LANCHESTER-type equations (5.2.1) are an approximation

to the mean course of combat.

14




If we assume that real-world combat attrition may be modelled
as a continuous-parameter MARKOV chain correasponding to (5.2.1), then
the probability distribution for the numbers of combatants satisfies
(5.1.2) with, for example, A(m,n) = an. Here, m is the realization of
an integer-valued r.v. M(t) denoting the number of X combatants
at time ¢t, and similarly for n and N(t).” In this case, the times
between casualties for each side are exponentially distributed, and (5.3.1)

holds exactly. In other words, (5.3.1) holds exactly for exponentially-

distributed times between casualties. Let us finally observe that as

long as there is "negligible" probability that either side is annihilated,
then the mean course of combat may be taken to be given by (see Section 4.12

above)

@ _; with 5O) = u

(5.3.2)
dn - -
rri ~bm with n(0) = ng

where m(t) denotes the average X force level at time t, i.e,

m(t) = E[M(t)], and n(t) denotes the average Y force level at time t.
Both BONDER [11] and BARFOOT [3] base their determinations of

an expression for the LANCHESTER attrition-rate coefficient on consider-

ing the mean course of combat corresponding to (5.2.1) to be given by

15
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dm - -
3¢ - with m(0) my
(5.3.3)
QE « -Bm with n(0) = n
dt 0’

where o denotes the expected value of the rate at which an individual Y
firer kills X targets and similarly for 8. This definition of the

LANCHESTER attrition~rate coefficient as [cf. (5.3.2)], for example,

- rate at which a single Y
@ wg =E (5.3.4)

firer kills X targets

implies an underlying distributicn for the attrition-rate coefficient (as
stressed by BONDER [14; 15]). No particular distribution for the times
between casualties has been assumed here, though. 1In his original paper
[11) BONDER took the LANCHESTER attrtion-rate coefficient to be given by
amn E[l/TXY] but could not obtain explicit results for it. BARFOOT [3]
then pointed out that there are two possibilities for computing a, the

average rate at which a single Y firer 111s X targets: namely,

(P1) arithmetic mean,
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and (P2) harmonic mean, o = ETT;;T

Furthermore, BARFOOT has argued that the harmonic mean is more appropriate,

since we should think of the probability distribution function for an




1 attrition-rate coefficient as representing rhe fraction of targets
killed at each rate. Thus, BARFOOT [3] has justified (5.3.1) foxr
any distribution of the times between casualties.

Following BONDER and FARRELL7 [17], let us now give a more
rigorous justification8 of (5.3.1). As above, we consider combat in
which the initial numbers of X and Y combatants, denoted as o, and
n,, are sufficiently large to insure that there is a "negligible" prob-
ability that their side will be annihilated during our examination of
the battlefield. Let us now focus on a single Y weapon system. We
will make no assumption about the distribution of tim:s between kills,

but we will assume that each individual Y weapon system kills enemy

targets according to an attrition process in which the times between kills

are independent and identically distributed random variables (so~called

i.1.d. random variables). In the parlance of the theory of stochastic

processes, such an attrition process is called a renewal process (e.g.

see PARZEN [58, Chapter 5] for further details). Let Nﬁ(t) be a r.v.
denoting the numbeéer of X casualties produced b& a single Y weapon

system, and let Ei(t) denote its expected value, i.e.

a’;m - E[N}é(t)] , (5.3.5)

the expected number of X casualties produced by a single Y weapon

system in ([0,T]. Let us now introduce Aﬁi(At,t) defined by ;

AE’C‘(A:,:) - a’é(: +AL) - E’c‘(:) . (5.3.6)

~
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which 1s the expected number of X casualties produced by a single Y

weapon systenr in the time inCerval9 (t, t + At). For exponentially

distributed times between kills, we have that (e.g. see PARZEN [58, p. 177])

aar(at,r) = L (5.3.7)
C W,
T
where Mo denotes the average time for a single Y firer to kill an X

target, i.e. W, = E[TXY]. For any other distribution for the times

between kills, (5.3.7) holds only asymptotically in the sense that

lim AE’:(Ac,c) - —ﬁi ) (5.3.8)

t >4 T
The above result (5.3.8) is usually known as BLACKWELL's theorem (see
PARZEN [58, p. 183]). Assuming now that each Y firer acts independently

and identically, we find that for the entire Y force

nit
force in (t, t + At) ’ (5.3.9)

number of kills by Y -
Hr

which holds exactly for exponentially distributed times between kills and
only asymptotically in the same sense as (5.3.8) for any other distribution.
LANCHESTER's equations for modern warfare (5.2.1) with "large enough"

numbers of combatants suggest that [cf. (5.3.2)]

AL = B aumber of kills by Y - anht . (5.3.10)
force in (t,t+At)
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Comparison of (5.3.9) and (5.3.10) suggests taking the LANCHESTER
attrition-rate coefficient to be the reciprocal of the average time for
an individual firer to kill an enemy target, i.e. (5.3.1) has been
justified.

More generally, BONDER and FARRELL [17] take an attrition-rate

coefficient for a specific range r in heterngeneous—force combat to

be given by, for example,

1

aij(r) = E[Tx . T (5.3.11)
1]
where E[Tx v Ir] denotes the expected time for a single Y firer

1]
of type j to kill an enemy target of type i, given that the range between

the firer-target pair is r. Again, this definition of an attrition-rate
coefficient for heterogenous-force combat is equivaleant to the harmonic
mean for the attrition rate of a single combat system when this single-

system attrition rate is viewed as a random variable at range r.
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5.4. BONDER's Model for MARKOV-Dependent Fire.

For many weapon systems and engagement circumstances modelled
by (5.2.1), the extremely simple analytical model (5.2.4) for prediction
of numerical values for the LANCHESTER attrition-rate coefficient is
totally inadequate. Ideally one should analyze the engagement process
for each particular target type by each narticular weapon-system type to
predict such attrition-rate coefficilents. BONDER and FARRELL [17] have
developed general methodology for predicting attrition-rate coefficients
for a wide spectrum of weapon-system types. Basically, their approach is
founded upon calculation of the LANCHESTER attrition-rate coefficient as
the reciprocal of the expected time to kill a single target, e.g. (5.3.1)
above. Hence, central to their developments is the analysis and modelling
of the time to kill a target.

To facilitate such analysis BONDER and FARRELL [17] have classified
the engagement of particular target types by different weapon-system types
according to the taxonomy10 shown in Table 5.I. Weapon-system types are
first classified according to the mechanism by which they kill particular
target types (i.e. their lethality characteristics) as being either impact-
to-kill systems or area-lethality systemsll. Within each of these two
categories BONDER and FARRELL further classify weapon-system types accord-
ing to how they use firing information to control the system's aim point
and their delivery characteristics, i.e. the firing doctrine employed.
Expressions have been developed for LANCHESTER attrition-rate coefficients
corresponding to the weapon-system classifications gagged with asterisks *

in Table 5.I.
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TABLE 5.I. Classification of Weapon-System Types for the Development

of LANCHESTER Attrition-Kate Coefficlents for the Model

(5.2.1).

Lethality Mechanism

(1) Impact

(2) Area

Firing Doctrine

(1) Repeated Single Shot
(a)* Without Feedback Control of Aim Point

(b)* With Feedback on Immediately Preceding Round
(MARKCV-Dependent Fire)

(c) With Complex Feedback
(2) Burst Fire
(a)* Without Aim Change or Drift in or Between Bursts

(b)* With Aim Drift in Bursts, Aim Refixed to Original
Aim Point for Each Burst

(c) With Aim Drift, Re-aim Between Bursts

(3) Multiple Tube Firing: Feedback Situations (la), (1b), (lc)
(a)* Salvo or Volley

(4) Mixed-Mode Firing
(a) Adjustment Followed by Multiple Tube Fire

(b)* Adjustment Followed by Burst Fire

T
Indicates that analysis of tnis category has been performed by BONDER
and FARRELL [17].

[
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A large class of weapon systems (e.g. tanks firing at tanks,
anti-tank weapon systems firing at tanks, etc.) may be classified as
MARKOV-dependent-fire weapons, i.e. the outcome of the firing of a round
by the weapon system depends on only the outcome of the immediately pre-
ceding round. For such weapon systems and an {mpact-to-kill lethality

mechanismlz, BONDER [11; 14] has developed a general expression for the

LANCHESTER attrition-rate coefficientla. His expression applies when the

following assumptions hold:

(Al) MARKOV-dependent fire with parameters p,, P(hlh), and’

P(hlm) ’

(A2) geometric distribution for the number of hits required

for a kill with parameter P(K|H).

Here Py denotes Prob[hit on first round], P(hklh) denotes the conditional
hit probability ?rob[hitlprevious round hit], P(hlm) denotes the con-
ditional hit probability Problhit|previous round miss], and P(K|H)
denotes the conditional kill probability Prob[kill target|hit target].

It is well known (e.g. see PARZEN [57, pp. 129-132]) that the three hit
probabilities pl,P(hlh), and P(h|m) completely describe MARKOV-dependent
fire in contrast to the situation with statistical independence between

the outcomes of any two rounds fired in which case only a single hit prob-
ahility, denoted simply as p, completely describes the process.

.As above let us denote the time for the firer to kill a target as T

(a r.v.). Then, BONDER [11; 14) has developed that

L8

22




TABLE 5.II. Factors Included in Expression for LANCHESTER Attrition-Rate

Coefficient for Single-Shot MARKOV-Dependent-Fire Weapon

Systems with a Geometric Distribution for the Number of Hits

Required for a Kill.

Time to acquire a target, ta

Time to fire first round after target acquired, tl

Time to fire a round following a hit, th

Time to fire a round following a miss, tm

Time of flight of the projectile, tf

Probability of a hit on first round, Py

Probability of a hit on a round following a hit, P(hlh)

a Probability of a hit on a round foilowing a miss, P(h|m)

Probability of destroying a target given it is hit, P(K|H)
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(t:h + tf)

BT =ty + 6y = & * TR

L T ED i - pealny)
P(h/m) P(K[H)

+ P(hlh) - P! > (5.4.1)

where all the variables are defined in Table 5.II. The corresponding
LANCHESTER attrition-rate coefficient (see Sec:tion 5.3 above) is then
the reciprocal of (5.4.1)13, i.e. for the homogeneous-force model (5.2.1)

we have, for example,

1

-t (5.4.2)
E[Ty,]

a

where TXY (a r.v.) denotes the time for an individual Y firer to kill

a single X target. (5.4.1) is the general expression15 for the expected
time to kill a target with MARKOV-dependent fire and a geometric distri-
bution for the number of hits required for a kill. It may be developed

(see the next section) by considering the time required for an individual
firer to engage and kill a single enemy target. We will see in Section 5.10
below how this complex expreesion reduces to very simple ones in special

cases, e.g. E[T] = 1/(vP_..) for a uniferm rate of fire, statistical

SSK
independence between rounds, and negligible time of flight and targat-
acquisition time.

Togather (5.4.1) and (5.4.2) allow us to estimate attrition-rate
coefficients for a homogeneous-force F|F LANCHESTER-type attrition process

(1.e. force-on-force combat attrition modelled by equations (5.2.1) above],

and consequently one may consider using such a model to operationally
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analayze combat between two homogeneous forces. In such an operational

B model or its extension to heterogemeous forces (gee Section 7.7), we would
want to consider variable attrition~-rate coefficients to model temporal
variations in fire effectiveness when, for example, the range between
firers and targets changes appreciably during battle. We will discuss
below in Section 5.11 the variables upon which such attricion-rate
coefficients (indirectly) depend, with some typical range dependencies
being given in Section 5.12. Moreover, this attrition-rate-coefficient
model given by (5.4.1) and (5.4.2) is a general one in the sense that it
allows a uniform treatment of both area-fire as well ag direct-~fire weapons
(see Section 5,13 below and also BONDER [11, p. 231] for further details).
Furthermore, we nocte that the MARKOV-dependent-fire assumption has been
naturally motivated, since BONDER's model for MARKOV-dependent fire arose

S | in the analysis of armored operations (e.g. see BONDER [9; 11], BONDER

and FARRELL {17], or KIMBLETON [49] for further details). For example,

i in the analysis of tank main guns it is usually assumed (e.g. see BONDER
[12; p. I1II-11]) that the result of the previous round is observed before

N the next one is fired. If the round fired misses the target, the tank

gunner will make an appropriate adjustment; i1f a hit is obtained, the

same gun setting will be used again.

Finally, let us briefly discuss data sources for BONDER's model

(3.4.1). All the inpuc data for this model is shown in Table 5.II.

Data is available for all these inputs from a variety of sources:

ballistics-laboratory tests, military field experiments, troop exercises,

further submodels, etc, A detailed discussion of such data sources is

}' ' (w is given in, for example, [54, pp. 167~168] and [28, pp. 173-174]. We
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should add, however, that all such experimental data is for systems

under simulated combat conditions and not for actual combat.
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5.5. Dexivation of BONDER's Result for the Expected Time t¢ Kill a

Target (Apprcach Based on the Exact Distribution of Time to Kill).

In this section we will derive BONDER's expression (5.4.1) for
the expected time to kill a target, which applies under the following

conditions:

(Cl) MARKOV-dependent fire,
(C2) geometric distribution for the number of hits to kill,

(C3) deterministii event times (i.e. ta’ €rr by Eoo and tf

are all assured to be deterministic quantitiesl6).

BONDER's result (5.4.1) is particularly significant because it is the
basis for estimating weapon-system kill rates in a variety of operational
models that are fairly widely used in defense planning today (see
Section 7.9 for further details). The combat-modelling approach of

S. BONDER and his associates at VECTOR RESEARCH, INC. basically de-
corposes the battlefield into unit and subunit engagements, which are
essentially further decomposed into a series of one-on-one duels between
opposing weapon-gystem types. For each type of firer-target pair, one
must perform a detailed analysis of a single firer engaging a passive
(i.e. one that does not return fire) target and compute the weapon-
system type's kill rate according to (5.4.1) and (5.4.2), e.g. see
BONDER and FARRELL [17], TAYLOR [80, Section 5.5; 81, Section 6.6],
Section 7.9 of the book at hand, or [28; 88; 89]. Thus, (5.4.1) is

a key result in the force-on-force combat-modelling business (see

also [84; p. 16-2]).




Before we derive (5.4.1), though, let us briefly examine the
shortcomings (i.e. limitations) of BONDER's approach to estimating

weapon-system kill rates based on the 1ogical17 analysis of a single

firer engaging a single pagsive target. Besides assuming that the
above stated conditions (Cl) through (C3) hold, BONDER's approach

possesses the following limitations:

(L1) no consideration of interactions between firer and

target,
(L2) cumulative damage assumed to be negligible,

(L3) precludes situations of both group firers and group

targets.

The first limitation (L1) is a direct consequence of BONDER's general
approach of considering a firer engaging a passive target. In reality,
there are interactions between firer and target, e.g. the firer may
"duck" and degrade his firing effectiveness when the target returns
fire. The second limitation (L2) is due to the assumption of a geo-
metric distribution of hits to kill. In reality, a target may be
partially killed by the first hit and "finished cff" by a second one.
However, BARFOOT [3, pp. 890-892] (see also KIMBLETON [49, pp. 704-~705])
has indicated how to overcome this shortcoming. The last limitation (L3)
may in some sense be considered to be an elaboration and extension

of the first limitation. In particular, the infantry fire fight,

for example, has been characterized as being a group-target/group-firer

environment (see STOCKFISCH [72; pp. 72-73]; also [83; p. 2-42]),




and it is extremely questionable whether the attendant combat inter=-
actions can be captured by any methodology based on consideration of
a single firer engaging a passive target,
Thus, we will now derive (5.4.1) by analyzing the process of
a single firer engaging a single passive target and following S. BONDER's
[11] original analysis pathlB, which included determining the probability
distribution for the number of rounds necessary to achieve =z hits,
pNIZ(nIz), where N (a r.v. with realization n) is the number of rounds
fired, Z (a r.v. with realization 2z) is the sumber of hits achieved,
and pNIZ(nlz) denotes a conditional probability mass function. 1In
some sense, this approach might be called a "brute force" approach,
due to the laborious direct computation of the conditional expectation
E[N|Z = z] by means of its definition as Z:;l npNIz(nlz). We will
later (see Section 5.6 below) present a much simpler and more general
approach for developing not only E[N|Z = z] but also E[T] (see
Section 5.8).; Our review here of BONDER's original approach for deter-
mining E[T] will let the reader appreciate the simplicity of our aew
approach. Finally, BONDER's original approach is limited to consider-
ation of only deterministic event times (i.e. tae Tps oo Eoo and tf
are all assumed to be deterministic quantities), but our new approach
will be able to handle stochastic ones (see Section 5.8 below).
Accordingly (following BONDER [11]), we consider the process
by which a single firer engages and kills a single passive enemy target.
We conceptualize thils process as consisting of the following sequence

of events from target acquisition to destruction:
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(E1) The sequence begins with target acquisition which takes

t:a minutes to occur.

(E2) The first round is then fired and arrives in the target

area (tl + tf) minutes Lacer.

(E3) 1If the first round misses, the next round will arrive

(tm + tf) minutes after the first.

(E4) 1If the first round hits the target and more than one hit

is required (i.e. z > 1), the next round will arrive

(th + tf) minutes later.

(ES5) The above sequence of firing after hits and misses is
continued until the final hit, which destroys the target,

is obtained.

The above conceptual target-destruction-process model is consistent
with the assumption of MARKOV-dependent fire in which the ocutcome of
the previous round is observed before the next one is fired. .

For the above conceptual model of a single firer engaging a
single passive target, we will now compute the average time for the
firer to kill a target, E[T]. This important result will be obtained

by accomplishing the following steps:

(S1) development of mathematical model for the time to obtain

z hits 'I‘z (a r.v.),




(S2) computation of the expected value for Tz, i.e.
E[Tz] = E[T|Z = 2] which 1s thke expected time to kill the

target given that 2z hits are required for a kill,

(S3) computation of the unconditional expectatiom E{T] from the
conditional expectation obtained in step (S2), i.e.

o

E[T] = Xl p,(2) E[T|Z = 2] . (5.5.1)
z-

Here, pz(z) denotes the probability mass function for the number of hits
to kill (assumed to follow a geometric distribution in BONDER's develop-
ments). The reader should note that the conceptual approach taken here
for determining the time to kill a target is to decompose the killing
process into a hitting process and a process of killing the target

with hitslg. For a geometric distribution of the number of hits to kill,

we have

py(2) = {1 - B(K|H) 2=l pklmy . (5.5.2)

Let us now carry out the above three computational sreps (S1)
through (S3) for obtaining E[T]. We will see that this computation
will require us to use the expected number of rounds to obtain 2z hits,
E[N|z = z], which will be subsequently derived below. Turning to the
first computational step (S1), we consider the above sequence of events
(E1) through (E5) to kill a target and focus on the time to obtain =z
hits, Tz’ which is a r.v. In this case, the number of hits z {13

considered to be a parameter (realization of the r.v. 2Z). Observing
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that there are (z-l) rounds fired after immediately preceding hits
and (Nz - z) rounds fired after immediately preceding misses because
the target i1s assumed to be destroyed by the zEE hit, we may mathematically

express our model as
'rz =t + (tl + tf) + (t:h + tf)(z-l) + (cm + tf)(Nz - 2z) , (5.5.3)

where the first term on the left ca corresponds to (El), the second
(t1 + tf) corresponds to (E2), the thlrd (th + tf)(z-l) to (E3),
and the fourth to (E4). Thus, we have completed step (Sl).

Turning now to step (52), we write (5.5.3) in the more con-

venient form

Tz - ta + tl - th + (th - tm)z + (t:m + tf)Nz ’ (5.5.4)

and take its expected value to obtain
E[Tz] =ty + €1~ + (th - tm)z + (cm + tf) E[Nz]’ (5.5.5)

ox

E(T|Z = z] = L, bty -+ (ch -t)z+ (cm +tg) E[N[Z=z], (5.5.6)

It should be noted that (5.5.6) has been obtained without our making
any assunmption about the r.v. N, i1.e. (5.5.6) holds in general. We
could at this point uncondition the conditional expectation (5.5.6)

and obtain
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Q E(T] = ta + £y = t, + (th - tm) E[Z] + (ttn + tf) E[N] , (5.5.7)

h
but we will not follow this course of development any further here,
since we wish to follow BONDER's original analysis path. Here E[N]
denotes the average number of rounds required to kill the target. Thus,
(5.5.7) is an important result that relates the expected time to kill a
target to the expected number of rounds required to kill the target

and the expected number of hits required to kill. Only deterministic
event times, cf. condition (C3) above, are required for it to hold.
Again, it should be noted that (5.5.7) has been obtained without our
making any assumptions about the random variables N and Z. Return-
ing now to BONDER's original development path, we again consider (5.5.6)
and substitute for E[N|Z = z]. It will be shown below that for MARKOV-
dependent fire

(l—pl)

{1 - PChin} . _
P(hlm) (z-1) , (5.5.8)

P(h|m)

E[N|Z = z] = z + +

Substituting (5.5.8) into (5.5.6), we cbtain

P(hlh)--p1
B(TlZeal = g * ey -ty (5 Y ) R
(e ) + (e +t) [1P2hf£?lhll } z (5.5.9)

j We are now ready to execute step (S3). Assuming a geometric
I

distribution for the number of hits to kill [i.e. (5.5.2) holds], we may

{‘ uncondition (5.5.9) by multiplying both sides of it by pz(z) and




s pea———

g g

and summing over z from 1 to =, whence follows (5.4.1), since

o0 o

] bz =1 and | zp,(2) = FTE%ET . (5.5.10)

z=]l z=]l

The reader should observe how the conditions (Cl) through (C3) have
entered into the above development of (5.4.1).
It remains for us to derive the result (5.5.8) for the conditional

expectation E[N|Z = z}. To derive this key intermediate expression,

we assume MARKOV-dependent fire and execute the following two taskszo
« (Tl) develop expression for the distribution of the number
of rounds to obtain z hits pNIz(nlz) ,
(T2) compute the desired conditional expectation E[N|Z = z]
by "brute force,” i.e.,
E[N|Z = z] = § npy |, (mlz) . (5.5.11)
n=1

To develop the distribution for the number of rounds to obtain
z hits (with the sequence of firings ending in a hit), it is convenient
to split the probability that N rounds are required to obtain =z

hits into two parts as follows

PNlZ(n|z) = P[N = n|2 = z]

= P[N = n|Z = z with bit on first round]

+ P[N = nl|Z = z with miss on first round] , (5.5.12)

AR,
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which holde because the outcome of the first firing is either a hit
or a miss. This split will be seen te he convenient in light of sub-
sequent combinatorial arguments. For convenience we will also write

(5.5.12) as

Pyjz(®l2) = p, () +p (alw) , (5.5.13)
where pz(nIH) denotes the first of the two probabilities on the
right-hand side of {5.5.12) and pz(nln) denotes the second.

We will now focus on the development of the probability pz(nIH).
To develop this probability, we consider the sequence of events, denoted

as S,, in which the following occurs:

H!

In the first r, firings, the event hit occurs everytime;

In the next 8y firings, the event miss occurs everytime;

In the next r firings, the event hit occurs everytime;

In the next 8 firings, the event miss occurs everytime;

In the next s firings, the event miss occurs everytime;

In the last rk firiogs, the event hit occurs everytime.

We observe that for the joint occurrence of the above events

k k-1
v, =z and I s,=n-z, (5.5.14)
1=1 1=1

where r, and 8, are positive integers for all {1 > 1. The prob-

i i

ability of trhe joint occurrence of the above events, denoted as
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P[S,, occurs], is obtained according to the MARKOV~dependence assumption

H
by multiplying together the probabilities of all the individual firing-

outcome events. Hence

r,~1 s,-1 r. -1 s,—1 rk-l

P[SH occurs]'-plu 1 (1-u) (1-v) 1 vu 2 (1-u) (1-v) 2 e oyu ’ (5.5.15)
or
B[S, occurs] = plurlﬂf. . .ﬂknk(l—u)k-l(l-v) RN ‘ﬂk‘l_(pl)vk'l, (5.5.16)
where for convenience Wwe have introduced
u = P(h|h) and v = P(hlm) . (5.5.17)
] Using (5.5.14), we may write this latter probability as
P[s, occurs] = pu® (1w T (1w TR KL (5.5.18)

Now the above probability holds for any particular sequence of events SH

in which there are z hits and (n-z) misses. Furthermore, the 2z hits
occur in k strings of one or more hits between which there are sandwiched
(k~1) strings of one or more misses. Thus, to compute the probability
pz(nla) we must consider the number of ways in which such an SH can

occur with z hits and (n-z) wmisses. Now
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number of ways
in which such
an SH can occur

number of ways in number of ways in which
which k strings . (k-1) strings of one
- of one or more hits x or more misses can . (5.5.19)
can contain exactly contain exactly (n-z)
z hits misses

Also (cf. Lemma 5.5.2 below)

number of ways in

which k strings z~-1

of one or more hits = . (5.5.20)
can contain exactly k=1

z hits

where (i) denotes the binomial coefficient z!/{(z~k)! k!} and k!
k

denotes "k factorial” = 5 {1 for k > 1. Similarly
1=}

number of ways in

which (k-1) strings n-z-1

of one or more misses | = . (5.5.21)
can contain exactly k=2

(n-z) misses

Hence

number of ways in z2-1 n-z-1
which such an SH - ’ (5.5.22)
can occur k-1 k-2




P[N = n|2 » z with hit on first round]

z=-1 n-z-1
- P[SH occursj , (5.5.23)
k-1 k=2

or

P[N = n|Z = z with hit on first round]

z-1 \ /n-z~1 ‘ .
-p ( >< ) w2 R (1eg) KL (1y) TR R (5.5.24)
Wk-1/\ k-2

Such an outcome can occur for all values of k such that 1 {(k {z. It

follows that

plu for n =z ,
p (n|d) = z z-1\ /n-z-1 - e
z Z ( >( > o2 k(l-u)k-lvk'l(l-v)n z=k+1

k=2 \ k-1 k-2

forn> z , (5.5.25)

since (n;f;l ) =0 for k=1 and n >z (i.e, it is impossible to have

(k~1) strings of one or more misses sandwiched between k strings of one
or more hits when n > z and k = 1). In a similar fashion it may be

shown that

z [z-1\/n-z~1
pz(nIM) = (1-p1) z ( )( )uz-k(].--u)k.]'vk(l—v)n-z-k . (5.5.26)
k=1 \ k-1 k=1 /

Substituting (5.5.25) and (5.5.26) into (5.5.13), we obtain the

desired distribution »p (n|z) for the number of rounds to obtain z hits
NIz
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i [ 0 for n < z,

pluz—l for ns=3z,
3 z-1 n-z-1 2~k k-1 k-1 n-z-k+1
bnlz‘“"’ =1r; ! u T(l=u) T v T(1-v) (5.5.27)
k=2 \ k-1 k-2

' ' z [z=1\/n~2-1
+ (1-p) | u? kg TR ey PR
N s \x-1/\ k-1

for n >z ,

where the reader should recall that u .énd § aré ;onditional hit prob-
abilities defined by (5.5.17). Thus, we have completed the first task

g (T1) for deriving E[N|Z = z].

| For accomplishing the second task (T2), it is more convenient
to consider the characteristic function for lez(nlz), denoted as

¢N|z(s), i.e.

() = ] &M py iz, (5.5.28)

where i = v¥=1, than it is to compute E[N|Z = z] directly by (5.5.11).

The desired conditional expectation E[N|Z » z] 1s then given by
E[NIZ = 2] = (3) L. ,.(0) . (5.5.29)
17 ds"wlz

to compute ¢N|z(s) we begin by splitting it into two summations 21

and 22, i.e.

(s) = I, +: (5.5.30)

onlz 2
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oo z z-1 n-z-1
+ z }' ( >< >eisnuz—k(l_u)k. 1vk l(l-v)n z~k+1 ,
k-2

(5.5.31)

and

00 z [z-1\ /o~z-1 _
I, A-p) ] ( >< )eis“ W2 R ) SR 1) R (5.5.32)
asz+l ket \k=1/ \ k-1

We will now concentrate on simplifying the expression (5.5.31)

for El. Interchanging the order of summation in (5.5.31), we obtain

I = iszuz—l
1 1
z [z-1 oo n-z-1 v
+ X ( >uz-k{v(l_u)}k-l Z < )eisn(l__v)n—z-kﬂ .
k=2 \ k-1 n=z+1 k~2

(5.5.33)

We will now concentrate on evaluating the last gsummation in (5.5.33). To

this end, let us denote this summation as Sk’ i.e. for k=2, 3, ...

g n-z-1
S, = 1 ( )ei’m(l-v)“'z'k'"1 . (5.5.34)
n=z+l k-2

For subsequent manipulations, it is convenient to introduce

m=n-2z-1 and j=k~2, (5.5.35)

and then write (5.5.34) as
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o0 m
S, =T, = J ( ) els(mtztl) () _ o3 (5.5.36)
m=0 \ j ’

or, simplifying, for j = 0,1,2,...

w /m
T = eiS(Z'H(-l) Z < >[eis(1_v)]m-j , (5.5.37)
j m-J j

since (™ =0 when m < j. It is then convenient to further introduce

]
2 = m-j and rearrange (5.5.37) into

o0 +2
T w gl8(ztk-1) ) 3 [eis(L-v)ll . (5.5.38)
3 =0 \ j

Let us now recall that the-binomial theorem says that for [x| <1

1]

(1-x) ™™ = 1 + nx + Eﬁ%iil.xz + e

or

_ o fp-l+k Kk
1-x)"" = ¥ X . (5.5.39)
k=0 \ n-1

Let us now temporarily assume that P(h|m) > 0. It follows that leis(l-v)l <1,

and consequently (5.5.38) may be written as

ig(z+k-1)
T, = 2 (5.5.40)

31 - el8aoyyitt’

or, equivalently,
eis(z+k-l)
S, = - . (5.5.41)
k - eis(l_v)k 1}
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Using (5.5.34), we may write (5.5.33) as

k-1
z z-1l ( )
k=2 \k~1

whereupon substitution of (5.5.41), for Sk yields

z z~1 is k-1
z.‘l_plaisa:uz-l 1+ Z < ) e ui]s.-u) ,
k=2 \k-1/ |u{l - e (1-v)}

which by introduction of ¢ = k-1 may be more conveniently written as

i -1 z-1 z-% is (1-u) .
£, =pe 82,27 ¥ £ ¥ = . (5.5.42)
L=0 3 u{l - e s(l--v)}

Again recalling the binomial theorem, i.e. for integer n we have

@+ =70 0@ x*, we may rewrite (5.5.42) to obtain £; in its final
form
is z-1
£, =ppet® lu 4 —o ¥ . (5.5.43)
{1 -e " (-v)}
It may be similarly showm that
+1) - z-1
(l—pl)eis(z )v eisv(l-u)
2" is u + 1 . (5.5.44)
{1 -e " (1-v)} {1 -e"(1-v)}

Substituting (5.5.43) and (5.5.44) into (5.5.30), we obtain

our desired result for ¢N|z(s), namely
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e e,

is
py-e (pl—v) a - eis<u_v) z-1

1-eBa-v) | |1 - f%a-v

isz

(s) = e (5.5.45)

Nl 2z

Let us observe that (as it should) ¢N|z(0) = 1, since pNIz(nlz) is a

probability mass function and consequently zn-O lez(nlz) =1,
For the computation of the conditional expectation E[N|Z = z] by
(5.5.29), it is convenient to split ¢N|Z(s) into three multiplicative

factors eisz, Fl(s), and Fz(s) as follows

by)z(®) = 182 Fy(s) Fy(s) (5.5.46)
where 1is
pl"e (Pl‘V)
F (s) = = , (5.5.47)
1 e (l-v)
and
- is( -v) z-1
Fy(s) = u ei Lk 4 . (5.5.48)
1 - e 3(1-v)

For future purposes, we observe that

dyjz(0) = F (0) = F,(0) = 1. (5.5.49)

Because of the multiplicative representation of ¢le(s) (5.5.46), it is
convenient to obtain d¢N|z/d5 from its logarithmic derivative

d{¢n ¢N’z(s)}/ds, which is given by

dF dF
d 1 1 1 2
ds Lo @NIZ(S) = 1z + ?1—(-8-)- T (s8) + FZ(B) 5 (s) . (5.5.50)
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Consequently, we find that

] . ) (s) dF ¢ (s) dF
d N|Z 1 N|z 2

Fz(s) ds
where
dF is
o () - Ao vlee) (5.5.52)
{1l -e"(1=v)}
and
) dF is is z2-2 l
. =2 (s) = (z-1) I le v(izw) 2' l 4 eis(““"-i : (5.5.53)
-e*a-vwi1? | 1 - 2a-v
It follows from (5.5.49) that
’ (1-p,)
d 1 (z-1) {(1-u)
a;q;m.z(a) = iz + 1 ——t i = . (5.5.54)
. since .
(1-p,)
d 1
a;.pl(o) -1 —, (5.5.55)
and
: d - (z-1) (i-u) -
1s FZ(O) i - ’ (5.5.56)
Recalling (5.5.29), we see that
(1-p.) )
EIN|Zaz] = z +——=+ (z-1) L0, (5.5.57)

. and thus by (5.5.17) we have proved (5.5.8) for P(h|m) > 0. It should be

clear, however, that (5.5.8) holds for P(hlu) > 0.

44




Finally, it remains to justify (5.5.20). Thus, we consider the

number of ways in which k strings of one or wore hits can contain exactly =z

hits. 1t is obvious that this number 1s the same as thke number of ways to
obtain 2z hits on k targets with each target being hit at least once.
Moreover, the problem of determining this number has exactly the same

mathematical structure as the classic occupany probiem of probability theory

(see FELLER [35, pp. 36-37]), when we agree to treat the hits as indistinguish-
aple. To set the stage for proving (5.5.20), let us consider the somewhat
simpler problem of determining the number of ways to obtain z hits on k
targets without requiring that each target be hit at least once. To this

end, we state and prove the following lemma.

LEMMA 5.5.1: The number of ways to obtain 2z hits on k
targets (without requiring that each target be hit at least

once) 1s given by (ZIEI]') .

PROOF. Consider 2z hits distributed among k targets. Use the symbol *
(star) to repreaent a hit and the symbol | (bar) to represent a target's
boundary. Any stars contained within two bars between which no further

bars lie represent the hits on a target. Thus, [ % | |*%%|%| would repre-
sent 6 hits on 4 targets with the first target having 2 hits, the second 0
hits, the third 3 hits, and the fourth 1 hit. 1In general, (k+l) bars are
required to represent k targets. The desired number of ways for obtaining
hits 12 determined by considering the number of possible arrangements for

the above symbols. 1In all such arrangements, however, the first and last
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symbols must be bars, and accordingly there are 2z stars and (k-1) bars
remaining to be arranged. Thus, the desired number of arrangements is

determined by considering the number of ways to select (k-1) places out
of (z+k-1), which is well known (e.g. see FELLER [35, pp. 32-35]) to be

given by the binomial coefficient i

. n+k-1 n+k~-1
x - . Q.E.D.
- k-1 n
We are now ready to prove (5.5.20) in the following equivalent form.

e LEMMA 5.5.2: The number of ways to obtain 2z hits on k

targets with each target being hit at least once 1s given by
(z-l>
k-1

PROOF. Introducing the star and bar symbols as used above in the proof of
l.emma 5.5.1, we consider the number of possible arrangements for these |
symbols. Again, the first and last symbols must always be bars, and
consequently there are 2z stars and (k-1) bars remaining to be arranged.
However, this time the requirement that each target must receilve at least
one hit imposes the additionai condition that no two bars can ever be
adjacent to each other in such arrangements. We may conceptualize this
situation by moving and placing each of the (k-1) arrangeable bars above

the star to its left. In other words, we would consider |**|*|[kkx|%| ag
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*kkhkd*, Since the last star receives no bar [recall that the first and

last of the original (k+1l) bhars have been omitted from further consideration
because they are fixed and consequently not arrangeable], there will be

(k~1) stars with bars over them out of a total of (z-l1) stars available

for such arrangements. Thus, the desired number of arrangements is determined
by considering the number of ways to select (k-1) places out of (z-1),

which is given by the binomal coefficient

z-1
() .
k-1




5.6. A Simple Derivation of the Expecied Number of Rounds Necessary to

Obtain 2z Hits.

In this section we will present a very simple derivation of a general
expression for the expected number of rounds to obtain z hits, denoted
above as the conditional expectation EIN|Z = z]. 1In the special case of
MARKOV-dependent fire, cur general expression reduces to BONDER's result
(5.5.8), wvhich was a key result in the development of the expected time
te kill a target with MARKOV-dependent fire in Section 5.5 above. The
approach that we will use here is particularly significant, since it readily
leads to other important more general results [e.g. see (5.8.1) below].

Let N. (a r.v,) denote the number of rounds fired to obtain the

1

first hit, and let N, (a r.v.) for i > 2 denote the number of rounds

i
fired after the (i—l)EE hit to obtain tane rEh hit, We then have the follow-
ing very simple model for the number of rounds to obtain 2z hits Nz (also

ar.v.)

Z
No=N + ] N (5.6.1)

17,

The above result (5.6.1) is a particularly transparent model for Nz. It

follows that

z
E(N,] = E(N;] + 1Zz EIN] . (5.6.2)

Let us again denote E[Nz] as E[NIZ = z] and assume that the random

.- variables N, , 1 = 2,3,...,2z, are identically distributed. Let us also

i

introduce Ns as a random variable having the same distribution as the

",-“” random variables Ni for 1 > 2. It follows then that
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E[N|Z = z] = E[N,] + (=-1) E[N] . (5.6.3)
We have therefore proved the following important lemma.

LEMMA 5.6.1: Let the random variables Ni’ i=2,3,...,2,

be identically distributed. The conditional expectation for

the number of rounds to achieve 2z hits, E[N|Z = z], ig then

given by (5.6.3), where Ns denotes a random variable having

the same distribution as the random variables Ni for 1 > 2.
It should be noted that there is no assumption about MARKOV dependence

for (5.6.3) to hold, only that the random variables N,, i = 2,3,...,z,

i’
be identically distributed.

For the case of MARKOV-dependent fire, it may be shown (and we will

do so below) that

(l-pl)
E[Nl] = 1 + POl (5.6.4)

and

1 - P(hlh)]
P(hlm) b

EIN] =1+ d (5.6.5)

Substituting (5.6.4) and (5.6.5) into (5.6.3), we obtain BONDER's expression
for MARKOV-dependent fire (5.5.8).
It remains for us to develop the expressions (5.6.4) and (5.6.5).

We begin by observing that the rariom variable Nl has the distribution

Py for n=1,

PNl(n) - (5.6.7)

(1-p ){1-P(h|m ™2 p(n|m)




and sgimilarly the random variable Ns has the distribution

P(h|h) for n=1,
PN (n) = n=2 (5.6.8)
8 {1-P(h|h) }{1-P(h|m)} P¢h|m) for n > 2,
Direct computation now yields
2 (1-p)) P(him) ) (-1
E[Nl] -p1+ T:-—l,-(m-;r b n{1 - P(h|m)} . (5.6.9)

Let us now observe that for 0 < le differentiation of the geometric series

] (a-otai (5.6.10)
n=0 X
yields
I n-0"t L, (5.6.11)
n=1 X
and (for future purposes)
y n(n—l)(l—x)“-2 - i% . (5.6.12)
n=2 X
It follows that for 0 < lxl
] a7l . Ui (5.6.13)
n=2 x
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Let us now temporarily assume that P(h|m) > 0. Our desired result (5.6.4)
for E[Nll now follows by using (5.6.13) to simplify (5.6.9). It should
be clear that (5.6.4) holds for P(h|lm) > 0. The expression (5.6.5) for

E[NB] follows similarly.
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5.7. The Number of Rounds Necessary to Kill a Target (General Derivation).

Tt 18 of considerable interest to also computeé the expected number
of rounds necessary to kill a target E([N]. Our development here is
particularly significant because it suggests a way tc compute both the mean
and the variance of the time to kill a target under 'very general counditions.
These important new results are given in the next section.

Assuming that the random variable 2 1is independent of N, for all

i
i > 1 and then taking the expected value of (5.6.3), we accordingly obtain

E[N] = E[Nll + {E[7] - 1} E[Ns] (5.7.1)

where Z denotes the random variable that the ZEE hit kills the taxget.

We have therefore proved the following important lemra.

LEMMA 5.7.1: Let the random variables Ni’ i=2,3,...
be identically distri»uted and assume that the number
of hits required to kill the target, a random variosble
denoted as 2, is independent of the random variables
N, for all 1 2 1. The expected number of rounds to
kill a target, E[N], 1s then given by (5.7.1), where 2
denotes the random variable that the zth hit kills the

target and Ns denotes a random variable having the same

distribution as the random variables Ni for 1 > 2.
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it should be noted here that no assumption has been made about the specific
nature of the distribution of the number of hits to kill a target. In other
words, (5.7.1) applies under much more general circumstances than just for a
geometric distributiou of the number of hits to kill a target. However, 1if

we do assure MARKOV-dependent fire and a geometric distribution for the number

of nits to kill, then we may substitute (5.6.4) and (5.6.5) into (5.7.1)

to obtain

1
1 - 1 + P(him) - P(hlh) n
E[N] = -?—(m- {P(hlh) Pl + [ T (K [H) J } . (5.7.2)

since we have for a geometric distribution of the number of hits to kill

M4 1——..
E(Z] = 5T - (5.7.3)

Finaily, it should be noted that (5.7.2) and (5.7.3) may be substituted into
(5.5.7) to yield BONDER's result for the expected i(ime to kill a target.
The above approach of considering Nz 48 a sum of random variables

(5.6.1) is particularly significant, since it allows us to also compute
higher moments for Nz (and consequently also for N). We will accerdingly
now compute the variance of the number of rounds to kill a target, denoted

as var[N], which gives us soms idea of the variability in tha average number
of rounds to kill a target E[N]. We will begin by computing the conditional

variance var[N|Z= z]. Here we willi assume

P e A




(AI) the random variables Ni’ i=1,23,..., are not
only independent of one another, but they are also
independent of the random variable Z representing
the number of hits required to kill the target,

and

(AII) the random variables N,, 1 = 2,3,4,... , are

i’
identically distributed.

It then follows from (5.6.1) (e.g. see PARZEN (57, pp. 405-407]) that
var(N|z=z] = var[Nll + (z-1) var[Ns] . (5.7.4)
We have therefore proved the following companion result to Lemma 5.6.1
LEMMA 5.7.2: Assume that (AI) and (AII) hold. The cond!tional
variance for the number of rounds toc achieve z hits,
var[N|Z=z], 1s then given by (5.7.4), where N, 1s as defined

in Lemma 5.6.1.

For the case of MARKOV-dependent fire, it may be shown (and we will

do so below) that

{1-p,H1 + p, - E(hjm)}

var[N,] = ’ (5.7.5)
1 ?2(h|m)
and )
| var(n ] = {1 - P(hlh;}{l + P(h|h) - P(him)} (5.7.6)
‘ P (him)
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It should be noted that for independent fire, 1i.e. P - P(h|h) = P(hlm),
(5.7.5) and (5.7.6) both reduce to the well-known result for the geometric
distribution, namely var[number of rounds for first hit] = (l-pl)/pi.
Substituting (5.7.5) and (5.7.6) into (5.7.4), we find that for MARKDV=-
dependent fire the conditional varlance for the number of rounds to achieve

z hits is given by

{P(hlh) - pl}{P(hlh) +p - P(hlm)}

var[N|zZ=z] = 3
P (h|m)

+ 21 - P(h|h)}{1 + P(hih) ~ P(hlm)}
Pz(hlm)

’ (5.7.7)

which for independent fire reduces to var[N|Z=z] = z(l-pl)/pi

It remains for us to develop the expressions (5.7.5) and (5.7.6).
We begin by computing E[Ni]. Direct computation yilelds E[Ni] = z:-l nsz (a),
or by (5.6.7) '

o0

E[Ni] =py + (l—pl)P(hlm) [ y n(n-1) {1 ~ P(hlm)}nm2

nm=2

1 T n-1
M ST} :22 n{l - P(h|m)} ] , (5.7.8)

whence substitution of (5.6.12) and (5.6.13) into (5.7.8) and some algebraic

R

manipulation yields

Pz(hlm) + {1—p1}{2 + P(h|m)}

E[Ni] - 7 . (5.7.9)
P“(hlm)
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Substituting (5.6.4) and (5.7.9) into var[Nll - E[Ni] - EZ[NI], we easily
obtain our desired result (5.7.5). The expression (5.7.6) for var[Ns] may
be developed in a similar way.

To compute the unconditional variance var[N] from (5.7.4), we

]
I,

observe that there is an important formula (e.g. see PARZEN [58, p. 55])
expressing the unconditional variance in “erms of the conditional variance,

namely
var[N] = Ez[var[NIZ]] + varz[E[NIZ]] , (5.7.10)

where Ez[-] explicitly denotes that the expected value 1s being computed
with respect to the r.v. Z and similarly for varz[']. Again we will
assume that assumptions (AI) and (AII) hold. From (5.7.4), we see that the
expected value of the conditional variance Ez[var[NTZ]] is given by

Ez[var[NIZ]] = var[Nl] + {E[ 2)-1} var[Ns] . (5.7.11)

From (5.6.3), we see that the variance of the conditional expectation

varz[E[NlZ]] is given by
var, [E[N[2]] = var(z] EZ[NS] : (5.7.12)

Substituting (5.7.11) and (5.7.12) into (5.7.10), we obtain the following

expression for the variance of the number of rounds to kill a target
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var(N] = var[N,] + (E[2]-1} var[N_] + var(z] E°[N ] . (5.7.13)
We have therefore proved the following important lemma.

LEMMA 5.7.3: Assume that (AI) and (AII) hold. The variance

of the number of rounds to kill a target, var(N], is then

given by (5.7.13), wvhere Z and N, are as defined in

Lemma 5.7.1.

For the special case of MARKDV-dependent fire and a geometric distribution

for the number of hits to kill, (5.7.13) becomes

(u-p,){u + p, - v)
. var[(N] = 1 5 1
! v

+ {(1-u+v)2 + 2w (u-v) (1-u+v/2) - wv}
(wv) 2

, (5.7.14)
where u = P(h|h), v = P(hlm), and w = P(K|H). This important result (5.7.14)
is equivalent to omne obtained by KIMBLETON ([49] by other means in a much

less explicit form.
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5.8. General Results for Time to Kill a Target.

In this section we will extend the approach used in the previous section
(fcr developing the mean and the vatianée for the number of rounds to kill a
target) to develop new important results for the time for a single firer to kill
a single passive enemy target. Specifically, we will use a very transparent,
simple model to obtain very general expressions for the mean and variance of the
time to kill a target. As the reader undoubtedly knows by now, such results are
very significant because they provide a basis for estimating weapon-system kill
rates in detailed operational LANCHESTER-type models of combat attrition, and
our new results allow such kill rates to be estimated under more general conditions
than before. Additionally, the simple direct approach used to obtain these new
important resulits is significant in its own right, since it appears to be
applicable in other related cases of interest.

Thus, the main result of the section at hand is to show that under fairly

geﬁeral circumstances the expectred time to kill a target, E[T], is given by
E[T] = E[Ta] + E[Tfr} - E[Th] + {E[Th] + E[Tf]} E(Z]

+ {E[Tm] + E[Tf]} (E[Z] {E[Ns] - 1} + E[NI] - E[Ns]> ’ (5.8.1)

where
Ty (a r.v.) denotes the time to acquire a target.
Tft (a r.v.) denotes the time to fire the first round after the
target has been acquired,
Th (a r.v.) denotes the time to fire a round following a hit,
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Tm (a r.v.) denotes the tinme to fire a round following a miss,

T, (a r.v.) denotes the time of flight of the projectile,

N1 (a r.v.) denotes the number of rounds f:red to obtain the first hit,
Ns (a r.v.) denotes the number of rounds fired to obtain any hit

subsequent to the first one (sud measured from the
occurrence of the last hit),

and

Z (a r.v.) denotes the number of hits required to kill the target.

Also, a souewhat less explicit and more complicated result for the variance of
the time to kill a target is given by (5.8.11l), (5.8.20), and (5.8.28) below.

For the special case of MARKOV-dependent fire and a geometric distribution

of the number of hits to kill, the above general result for the expected time

to kill a target reduces t021

{E[Th] + E[Tf]}
E(K|H)

E[t] = E[Ta] + E[Tfr] - E[Th] +

{(EIT ]+ EITI}Y |1y C penln)]

P(him) P(KIH) (5.8.2)

+ P(hlh) - p

+ 1 R
which the reader will easily recognize as (5.4.1) with the deterministic event
times ca’ tl’ th’ tm’ and tf replaced by the expected values of the corre-
sponding randow variables.

Let us now turn to the development of (5.8.1) for the expected value
of the time for a single firer to kill a single passive enemy target and
the variance of this time. We will again consider the conceptusl model (given

' (n in Section 5.5) of the process by which a single firer engages and kills a
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single passive enemy target. It consists of the sequence of events (El)
through (E5) given above in Section 5.5. For this model we will compute the
average time for the firer to kill a target, %[T], by executing the twoc

following steps:

(51) relate expected time to kill a target to the expected times to
obtain the first and sutsequent hits and to the expected number

of hits to kill [see (5.8.6) below],

(82) develop submodel for the expected times to obtain the first and

subsequent hits [see (5.8.15) and (5.8.23) below].

The variance of the time to kill, var{T], will be obtained in a similar (but
much less explicit and more complicated) manner. The basic idea behind
developi g these results is to decompose an event time of interest into the

sum of a random number of coﬁponent event times and to compute the appropriate
moments along the lines as done in Section 5.7 above. For the development of
these results, we will let Tl (a r.v.) denote the length of the time interval
from the time at which the last target was killed until the first hit is

obtained on the target at hand, and T (a r.v. for 1 =2, 3, 4, ...) denote

i
vhr length of the time interval from the time at which the (i—l)EE hit was
achieved until the isﬁ hit is obtained on the target. We will then assume

that
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(A1) the random variables T,, i{ = 1,2,3, ... , are all independent

i)
of the random variable Z representing the number of hits

required to kill the target,

(A2) the random variables Ti’ i=2,3,4, ..., are all identically

distributed,

and (A3) the random variables T,6, i = 1,2,3, ... , are all independent

i’

of one another.

Let us now carry out the above two computational steps (S1) and (S2)
for obtaining E[T] and var[T]. Accordingly, we turn to the first computa-
tional step (S1) and consider [cf. (5.6.1) above] the following model for the
time to obtain 2z hits, Tz (a r.v.),

) F4
T,=T, + L T (5.8.3)

1 {=2 i

where z denotes a previously-specified positive~integer number (i.e. it is

a positive-integer-valued deterministic parameter upon which the r.v. is con-
ditioned). Here (as elsewhere) we have adopted the convention that Z:_Z T, =0
for z < 2. The above result (5.8.3) is a particularly =ransparent model

for Tz. It follows that

z
E[T ] = E[T, ]+ ] E[T,], (5.8.4)
z 1 i
im2
Denoting E[Tz] as E[T|Z = z] and recalling assumption (A2) above, we may

then write
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E[T|Z = z] = E[TI] + (z-1) E[Ts] R (5.8.5)

where Ts denotes a r.v. having the same distribution as the random variables
Ti for 1 > 2. Recalling assumption (Al), we multiply both sides of (5.8.5)
by pz(z) and sum from 1 to = to obtain the expected value for the time to

kill a target
E[T] = E[T,] + {E[2] - 1} E[T_] . (5.8.6)

To compute var[T], we observe that (cf. Section 5.7 above or

PARZEN [58, p. 55])
s var[T] = E,(var(T|z]] + var,[E[T|z]] . (5.8.7)

Now it follows by arguments similar to those used for the development of

(5.7.4) above that

var(T|z] = var[Tll + (z-1) var[Ts] . (5.8.8)
“
whence
Ez[var[TIZ]] = var(1,] + {E(Z] - 1} var[T ] . (5.8.9)
’ Here, agsumption (A3) 1is needed for (5.8.8) to hold. We also observe that

(5.8.5) yields [cf. the development of (5.7.12) above]
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varz[E[T|Z]] = var[Z] EZ[Ts] . (5.8.10)

Substituting (5.8.9) and (5.8.10) into (5.8.7), we obtain the following expres-
sion for the variance of the time to kill a target in terms of the variance

for the time tc obtain the firsc hit T, and that for the time to obtain any

1
subsequent hit T8

var{T] = var[TI] + {E[Z] - 1} var[Ts] + var[Z] EZ[TS] . (5.8.11)
We have therefore proved the following important lemma.

LEMMA 5.8.1: Assume that (Al) and (A2) hold. The eipected time

to kill a target, E[T], is then given by (5.8.6), where T, (a r.v.)

1
denotes the time to obtain the first hit, Ts (a r.v.) denotes the
time between any two subsejuent consecutive hits, and Z (a r.v.)
denotes the number of hits required to kill the target. If we

additionally assume that (A3) holds, then the variance of the time

to kill a target, var{T], 1is given by (5.8.11).

The reader should note that the above results for the time to kill
a target are expressed in terms of the moments for the time to obtain the first
hit and the time between any two subsequent consecutive hits, and not in
terms of the basic event times for the sequence of events (El) through (E5)
in the conceputal model of Section 5.5 (i.e. the raadom variables Ta’ Tfr’

T Tm, and Tf). Accordingly, we now turn to the second computational step

h’

g
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(S2) mentioned above and consider the following model for the time to obtain

the first hict, Tl’

T, =T, + (Tfr + Tf) + (N1“1>(Tm + Tf) , (5.8.12)

1

where N (a r.v.) denotes the number of rounds fired to obtain the first hit.

. 1
We will now assume that

(A1) the random variables Ta’ Tf, Tfr’ and Tm are all independent

of the random variable N, representing the number of rounds

1
fired to obtain the first hit,

and (A2) the random variables Ta’ Tf, Tfr’ and Tm ara all independent

of one another.

To compute the expected value of Tl’ we consider the time required

to fire n rounds Tg (here n may be considered to be a realization of

Nl) and obtain from (5.8.12)

n

Tl = Ta + (Tfr + Tf) + (n—l)(Tm + Tf) » (5.8.13)
and hence
E[TllNl =n] = E[Ta] + z[rfr] + E[Tf] + (n-1) {z[rm] + E[Tf]} . (5.8.14)

where E{Tg] has beeua denoted as E[TllNl = n]. Using arguments similar to

those usel above, we may uncondition E[TllN1 = 1] to obtain '§
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E[Tl] - E[Ta] + E[Tfr] <+ E[Tf] + {E[Nl] -1} {E[Tm] + E[Tf]}

§5.8.15)
To compute var[Tl], we first observe that
var[T,] = ENl[var[Tllnl]] + vaer[E[Tllnlll . (5.8.16)
From (5.8.13) and assumption (A2) it follows that
var[TllNl = n] = var[Ta] + var[Tfr] + var[Tf} + (n-~1) {var[Tm] + var[Tf]}, (5.8.17)

whence

ENl[var[TllNl]] - var[Ta] + var[Tf

r] + var[Tf] + {E[Nllwl}{var[Tm]4-var[Tf]}. (5.8.18)

Here, assumption (Al) is needed to justify obtaining (5.8.18) from (5.8.17).
Also, (5.8.14) yields

vaer[E[TllNlll - var[N,] {E[T ] + ;-:[Tf]}" .

(5.8.19)
Subatituting (5.8.18) and (5.8.19) into (5.8.16), we obtain the following
expresslon for the variance of the time to obtain the first hit
var[Tll - var[Ta] + var[Tft] + var[Tf] + {E[Nll - 1}{var[Tm] + var[Tf]}
2
+ var[NI] {E[Tm] + E[Tf]} . (5.8.20)
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We have therafore proved the following important lewna.

';lu LEMMA 5.3.2: Assume that (AL) kolds. The expected time to
‘ obtain the fivst hit on a target, E[Tll, is then given by (5.8.15).
If we additionally assume that (A2) holds, then the varlance of
the time to obtaia the first hit on 4 target, var[Tl], is given by

(5.8.20).

We have now completed the first hslf of step (S2). This computational
step 1s completed by repeating the above calcalation procedure for the time
between any two subsequent consecutive hits on the target Ts’ which has

the same distribution as T, for 1 > 2. Here we will merely sketch develop-

i

ments, since the details are completely analogous to those given above for

T,. We will now assume that

1
§ H (Xl) the random variables Tf, Th’ and Tm are 11l indeperdent
of the random variable N, (for 1 > 2) 1represeniing the
number of rounds fired after the (1-1)35 hit to obtain
the 1% nie,
and (32) the random variables Tf, Th’ and Tm are all independent

of one another.

Simiiar to the above, it may be shown that the following model (for 1 > 2)




T, =T, T+ (Ni-l)(rv‘+ T (5.8.21)

1= Ty ¢

leads to

E[Tilui = nl = E[ThI + E[Tf] + (n~1) {E[Tm] + E[Tf]}, (5.8.22)
and consequently

E[Ts] - E[Th] + E[Tf] + {EiNs] - 1}{E[Tm] + E[Tf]}, (5.8.23)

where we have taken the liberty of replacing Ti angd N1 by their equivalents

T, and N_. We now turn tc the variance. In general, we have for 1 > 2
var[Ti] = ENi[var[TiINi]] + varni[E[TilNi]] . (5.8.24)
It is easily shown that

var[TiINi =qn] = var[Th] + var[Tf] + (n-1) {var[Tm] + var[Tf]}, (5.8.25)

ENi[var[TilNi]] ~ var[Th] + var[Tf] + {E[E[Ni]-l}{var[Tm] + var[Tf]} , (5.8.26)

and
) 2 i
varui[a[rilni]] var[N,] {E[T ] + E[T.]}", . (5.8.27) ;
whence (again, replacing Ti by Ts and Ni by Ns) follows
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vat[Ts] = var[Th] + var[Tf] + {E[Ns] - 1}{var[Tm] + var[Tf]}

+ var[Ns] {E[Tm] + E[Tf]}z (5.8.28)

and the following important lemma.

LEMMA 5.8.3: Assume that (Al) holds. The expected time to obtain
any subsequent hit on a target (where this time interval is measured
from the occurrence of the last previous hit), E[TS], is then given
by (5.8.23). If we additionally assume that (A2) holds, then the
variance of the time to obtain any subsequent hit on a target,

var[Ts], is given by (5.8.28).

We are now ready to develop our final results for E[T] and wvar(T].
Substituting (5.8.15) and (5.8.23) into (5.8.6), we obtain the desired final
regsult (5.8.1) for the expected time to kill a target. Because of the com-
plexity of corresponding terms for the variance of the time to kill a target,
we will not present here one final expression for var[T] in terms of the
fundamental operational variables appearing in (5.8.1), but we will let
var[T] be given by (5.8.11) in terms of var[Tll and var[Ts], which 1in
turn are expressed in terms of the fundamental operational variables by
(5.8.20) and (5.8.28). Thus, to compute var{T] one must first use (5.8.20)
to compute var[Tll and (5.8.28) to compute var[Ts] and then use (5.8.11)
to combine these intermediate results into the final desired result for
var[T]. It remains for us to reconcile the three different sets of assumptions
used to develop Lemmas 5.8.1, 5.8.2, and 5.8.3, upon which the final results

for E[T] and var(T)] are based. In particular, 1if we assume that the random
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variables Ni for 1 =1,2,3,.. are independent'of one another, then assump-~

tion (Al), (A2), (Kl), and (A2) imply that assumption (A3) holds (i.e. the
random variables Ti for 1 =1,2,3,... are independent of one another).

Thus, all these above assumptions may be merged into the following consolidated

get:

(Al) the random variables Tas Tgs Tgp, and T, are all independent
of the random variable Nl representing the number of rounds

fired to obtain the first hit,

(A2) the random variables Tg, T, and T, are all independent of

the random variable N, (for 1 > 2) representing the number

i
of rounds fired after the (1—1)55 hit to obtain the LEE hit,

(23) the random variables N, for {1 = 1,2,3,... are all independent

i

of the random variable Z representing the number of hits re-

quired to kill the target,

(34) the random variables Ni for 1= 2,3,4,... are all identically

distributed (let N8 denote a random variable having the same

distribution as these random variables),

(A5) the random variables N, for 1 = 1,2,3,... are all independent

i

of one another,

and (A6) the random variables Ta’ Tf, Tfr’ Th’ and Tm are all independent

of one another.
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We are now ready to summarize the final results of this section for the mean
E[T] and the variance wvar[T] of the time to kill a target. We do this with

the following theorem.

THEOREM 5.8.1: Assume that (Al) through (A4) hold. The expected

time to kill a target, E{T], is then given by (5.8.1). If we
additionally assume that (;5) and (;6) hold, then the variance of

the time to kill a target, var[T], is given by (5.8.11), with (in turn)

var[Tll given by (5.8.20) and var[Ts] given by (5.8.28).

The above result (5.8.1) for the expected time to kill a target holds
under the very general conditions described by assumptions (;l) through (A&).
Moreover, there are some speclal cases of particular interest to the combat
modeller. 1In particular, for MARKOV-dependent fire (with stationary transition

probabilities), we have shown that (see Sectiomn 5.7)

{E[Nl] -1} = P@lm) (5.8.29)

1 - P(hlh
{E[Ns] -1} = -—PH{&J—L . (5.8.30)

and

For a gecmetric distribution of the number of hits to kill, we have

1
EfZ] = mu—) . (5.8.31)

Thus, for MARKOV-dependent fire and a geometric distribution of the number of

hics to kill, (5.8.2) then follows from (5.8.1). We leave it as an exercise
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for the reader to verify that assumptions (Al) through (A6) are satisfied
in this case. Finally, we could also use in this special case (5.7.5) and

(5.7.6) to compute var{T] by means of (5.8.11), (5.8.20), and (5.8.28).
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5.9. Development 3f Expected Time to Kill a Target as Mean State~Recurrence

Time in Continuous-Time Semi-MARKOV Process.

In this section we present a third approach for developing the
expected time to kill a target. It is based on conceputalizing the process
by which a single flrer engages a single passive target as a so-called
continuous~time semi-MARKOV (or MARKOV-remewal) process and invoking a
result by BRARLOW {4, p. 53] for the mean recurrence time for a state in
such a stochastic process with an imbedded ergodic MARKOV chain (i.e. the
system can be In any one of a finite number of states after a sufficiently
long lapse of time). Although our approach based on considering the
expected value of the sum of a random number of random variables is uandoubtedly
the simplest and most transparent one for deriving attrition-rate-coefficient
results for homogeneous-force combat, the state-recurrewnce-~time approach
may have greater applicability for heterogeneous-force combat, and it
does form the basis for determining numerical values for attrition-rate
coefficients in the VECTOR series of combat mode1522 of VECTOR RESEARCH,

INC. (28; 54; 89; 90] (see also Section 5.16 below).

The state-recuirence-time approach may be considered to have
received its inpetus from BARFOOT [3], who in 1969 (besides first proposing
that an attrition-rate coefficient be defined as the reciprocal of the
expected time to kill a target) presented aa alternative (to BONDER's
[11]) method for deriving an expression for the expected time for a single
firer to kill a target. BARFOOT considered that the target could be in
one of, in general, m states [to obtain a result like BONDER's [1l] for
the time to kill a target, one of three states: killed, hit (but not killed),

and missed (and not killed)], transitions between these states would

72




occur from the jmpacts of rounds in the target area, and this target-
destruction process formed a MARKOV chain. FARRELL (17, pp. 136-137] then
observed that if the target-destruction process could be conceputalized
in such a way that every state has some probability of eventually occurring,
then one can invoke 3 known result on mean state-recurrence time from the
theory of semi-MARKOV processes to determine the expected time to kill
a target.

Loosely spcaking, a semi-MARKOV process (SMP) 1s completely described
by a matrix of transition probabilities for arn imbedded MARKOV chain (MC)
and a matrix of distribution functions for the "wait" in a state before going
to another state. For a continuous-time MC, the "wait" In a state is
exponentially distributed, while the SMP considers more general distri-
butions for waiting times (e.g. see BARLOW (4], EINLAR_[ZZ], COX and MILLER
[30, p. 352], or ROSS [59; 69]). For such a SMP, BARLOW [4, p. 53] (see
also GINLAR {22, Theorem 6.12] or ROSS [59, Theorem 5.16]) proved the

following important result.

THEOREM 3.9.1 (BARLOW [4]): Consider a semi-MARKOV process

(with J states Sl’ SZ’ cee s SJ) in which all states

communicate. The mean recurrence time for state Si’ denoted

as is then given by

STL

J
_1_2,,

lii - "1 s juj . (5.9.1)

where 1y denotes the unconditional mean wait in state Sj

3

and m, 1s an element (corresponding to state Sj) of the

3
stationary distribution of the imbedded MARKOV chain. It follows

that
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J [

Mo 12.1 LFLT (5.9.2)
and 3
uy = k§1 Pyt (5.9.3)

where pij is the transition probability that the system goes

from state S, to state S, when such a change does occur, and

i b

ujk denotes the mean time that the system remains in state §

before it transitions to state Sk.

3

It should be noted that no assumption at all is made here about the distri-

bution of waiting time in state S, before the system transitions to

]
state S

K"
Let us now show how BARLOW's result (Theorem 5.9.1) may be used to
develop the general result (5.8.2) for the expected time for an individual
firer to kill a single passive enemy~target type with MARKOV-dependent
fire [a special case of which is 3ONDER's result (5.4.1)]. After developing
results for this important special case, we will outline how this approach
may be used to determine the expected time to kill a target under more
general circumstances (e.g. under conditions of several target types with
diffevent prioritias for their engagement).

To develop (5.8.2), we consider a single firer trying to engage and
kill a single type of target. We assume that all the assumptions required

for (5.8.2) (and given in Section 5.8) hold. Let us focus on the target.

it can be
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(1) undetected,
(2) hit,
(3) missed,

or (4) killed.

When a target has been killed, search immediately begins for a new target.
We now seek to define the system states so that the conditions requisite

for invoking BARLOW's ‘theorem (i.e. Theorem (5.9.1) are met (in

particular, given any starting state, after sufficient lapse of time the
system could be in any state). Thus, the "killed" state cannot be absorbing.
To accomplish such a defining of system states, we observe that the follow-
ing two situations are mathematically treated the same: (I) a new target
immediately appearing upon the destruction of the currently engaged target,
and (II) the same target being repeatedly killed. Thus, we will define

the following three system states:

S1 = killed state (which lasts from the destruction of the

previous target until the first round has been fired at

a new target),

S, = hit state (in which the target has been hit but not killed

2
by the last round fired),

and S3 = missed state (in which the target has been missed and not

killed by the last round fired).
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These states and the corresponding transition probabilities for changes
in gystem state are shown in Figure 5.4. The transition probabilities for

the imbedded MARKOV chain are givem by

P;; =P PKIB), Py, = P(hln) PxIW), Py; = BP(hlm) P(kIW),
P1s *pl{l-P(KIH)}, Pyy ™ P(hin){1-P(KIH)}, Pyp = P(him) {1-P(K|H)}, (5.9.4)
Py3 = 1-Py» Pyy = 1-P(hlh), Py3 = 1-P(h|m),

Furthermore, the expected wait in each state is independent of the next

state visited and given by

up = E[T_] + E[T, ] +E(T.] ,

Hy = E[Th] + E[Tf] ’ {5.9.5)

"3
where all the subscripted T's are as defined in Section 5.8.

With the above definitions, all states communicate, and the expected
time to kill a target is just the expected time between visits to state Sl,
i.e. the mean recurrence time 211 of state Sl. Hence, the expected time

to kill a target E[T] 1s given by

E[T] = ¢ (5.9.6)

1] ’
11 1 g=1 i3

where the stationary prcbabilities are given by the aystem of equations
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p. P(KIH)

KILLED
(Look for New Torget)

P{him) {1-P(kIH)}

PN {1-P(KIH } S P(mih) P (mim) = 1 - P(him)

HIT 1 MISSED
(but Not Kilied) 1-P(hin) (and Not Killed)

Figure 5.4. System states ard transition probabilities used in
alternate derivation of expected time to kill a
targer. by invoking BARLOW's [4] result for mean
recurrence time of semi-MARKOV process with
imbedded ergodic MARKOV chain.
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3
T,® ) TP for 3 = 1,2,3. (5.9.7)
I 4. U v

From (5.9.6) we see that what we need for computing the mean recurrence

time for a target being killaed ¢ is not the stationary probabilities

11
n, for j = 1,2,3 themselves but the ratios = /wl for j = 1,2,3.

] b
Accordingly, let us detfine
L
r, » —1-- (5.9.8)
3 "
1
We may then write
E(T] = 211 -y + oMy + Tty (5.9.9)

where and r, are determined by the linear system of equations

) 3
(Pyy = Dty + Pypry = =Pyy »

(5.9.10)
Py3fy + (Py3-1)7y = -py4 -

The reader should recall here that ouly two of the three equations (5.9.7)

are linearly independent, since X;-l pij

= 1., Solving (5.9.10), we
find that
o P12l = Pyg) = PPy
and (5.9.11)
Py3(1 = Pyg) + P1oPos
3 (l-pzp (1‘1’33) - 923932

r
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Substituting (5.9.4) into (5.9.11), we find that

L {1 - PRIR)Y

T2 P(K|H) °
and
1 {1 - P(hib)]
T3 * Balm) pRIm T PGl -py b,

whence follows (5.8.2) from substitution of (5.9.5) and (5.9.12) into (5.9.6).
In general, the above approach may be used to develop an expression

for the expected time to kill a target E[T] 1in any firing process with

a set of J distinguishable states Sl, 52’ cee s SJ as long as the

following assumptions hold:

(Al) the process makes transitions at distinct points in time,

(A2) given that one 1is in state Si’ the probability of transition

to state S, does not depend on any history of the process;

3

we let denote the probability of transition to state

S from state S

j 1’ i.e.

system in state system in state ]

p, =P
4 [ Sj after transition Si before transition

(A3) given that one is in state Si, the mean wait before a

transition to state S, depends only on the specification

b
of these two states; we let uij denote the mean wait in
state Si before a transition to state Sj,
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(A4) no matter where the gystem starts, every state has some

probability of eventually occurring,

and (A5) the states are so defined that the expected time interval
between successive entries into state S1 corresponds to

the expected time betwzen casualties.

In esseuce, this approach may be applied to any target-destruction process
that can be modelled as a semi-~-MARKOV processZ3. Let us now introduce

the ratio ¢, = v /% The expected time to kill a target E[T] 1is

IR N o

then simply the expected time between the occurrences of two successive

casualtieg 211 and 13 given by

J
E(T] = Hy + jQZ rjuj ’ (5.9.13)
where Tyy +o+ » T are determined by the linear system of equatiomns
J
122 (pij - Gij)ri = -Py; for 3 = 2,...,J, (5.9.14)

and 61j denotes the KRONECKER delta defined as =1 for i = 3 and

= 0 otherwise. Here we should recall that assumption (A4) guarantees that
we can always solve the linear system cof ejuations (5.9.14) (e.g. see
FELLER [35, pp. 356-362] or PARZEN [57, p. 265]). 1If the uj are not
directly available, they may be obtained from the "13 by using (5.9.3).
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5.10, Special Cases of BONDER's General Expression for the LANCHESTER-

Attrition-Rate Coefficient.

We began our examination of the analytical modelling of a LANCHESTER
attrition-rate coefficient [i.e. apprcach (Al) of Section 5.1} by consider-
ing in Section 5.2 some very simple models for such coefficients in the
case of aimed fire and an impact lethality mechanism, and then we progressed
to much more complicated models for the time to kill a target [namely,
BONDER's result (5.4.1) for MARKOV-dependent fire and our more general
ones (5.8.1) and (5.8.2)]. Thus, we started by presenting without justifi-~
cation results for a couple of very simple analytical submodels for a
LANCHESTER attrition-rate coeffirnfent under conditions of "aimed" fire,
and we subsequently developed a fairly general model for the expected
time to kill a target and cbtained a general result for this model.

At this juncture it now seems appropriate for us to show how the earlier-
obtained simple results may be viewed as special cases of these later=-
obtained, mere general results. In particular, we will show how BONDER's
result for the expected time to kill a target with MARKOV-dependent fire
(5.4.1) simplifies and ylelds (under the appropriate circumstances) a
simple result like (5.2.4) for the LANCHESTER attrition-rate coefficient.
We will also examine an analogous simplification that yields that "aimed"
fire can lead to an FT target-type-attrition procesa24 when a model
proposed for target-acquisition times by H. BRACKNEY [20] is considered.
In preparation for developing these results, though, let us briefly review
how the different results that we have developed for varying degrees of
generality are related to one ancther.

The most general recsult that we have developed to the expected

time for an individual firer to kill a single enemy passive target is
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given by (5.8.1), which holds for assumptions (Al) through (Aé) of Sectiom 5.8.

The operational conditions corresponding to these assumptions are more general
than MARKOV-dependent fire and a geometric distribution of the number of hits
required for a kill with random event times. When we do assume MARKOV-
dependent fire and a geometric distribution for the number of hits to kill,
however, our most general result (5.8.1) simplifies and we obtain (5.8.2),
which still contains random event times. BONDER's result (5.4.1) is a
special case of (5.8.2), i.e. it is the special case in which all event times
are deterministic. In turn, (5.2.8) is a special case of BONDER's result
(5.4.1), and (5.2.4) corresponds to a special case of (5.2.8), 1.e. the
special case in which the time to acquire a target 1s negligible with

respect to the time required to destroy an acquired target and is taken to

be equal to zero.

Let us now consider more systematically the simplification of
BONDER's general result (5.4.1) in some special cases of tactical interest.
Other such special cases (and ones that we will not examine here) are to
be found in BONDER and FARRELL [17, pp. 106-107] and also [88, p. 28].

We begin by listing assumptions that are more restrictive than those used
to develop (5.4.1) but are yet of tactical interest (see [€8, p. 28] for

a further discussion):

(Al) statistical independence among firing outcomes, i.e.

pl-P(hIh) = P(him) = I

(A2) "uniform" rate of fire, {i.e. t, =t = 1/v;

h - tm - tv

B
e



(A3) negligible time of flight for projectile, i.e. assume that

-0;
/

e
and (A4) target-acquisition time negligible, i.e. assume that ta = 0.

If we take assumption (Al) to hold, i.e. independent fire instead of MARKOV-

dependent fire, then BONDER's general expression reduces to

(tm + tf) (t

t )
h m
E[T] t + t, - ty + PSSK + PO ° (5.10.1)

where P P(K|H) denotes the single-~shot kill probability; If

ssk ~ Fssu
we additionally take assumption (A2) to hold, i.e. uniform firing rate,

then this last result further reduces to

(cv + tf)
E[T] = ta + 5 (5.10.2)
SSK
which may also be written as
1+ vtf)
E{T] = ta + 5 (5.10.3)
SSK

where v denotes the firing rate (assumed uniform). If we additionally
take assumption (A3) to hold, i.e. negligible projectile flight time, then

this last result further redunes to

1 =
5P , (5.10.4)

E[T] = ta +
SSK
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which is the same as (5.2.8) above. If we additionally take assumption
(A4) to hold, i.e. negligible target-acquisition time, then we finally

obtain

E[T] =

e (5.10.5)
SSK

which is equvalent to the LANCHESTER attrition-rate coefficient being given
by, for exszmple, (5.2.4), i.e. the kill rate of a single weapon system is
equal teo the product of its firing rate times the (single-shot) kill prob-
ability of each round. We summarize the above results with the following

lemma.

LEMMA 5.10.1: Assume that assumptions {(Al) through (A2) abové hold.
BONDER's general expression for the expected time to kill a target
(5.4.1) then reduces to (5.10.4), with the LANCHESTER attrition-
rate coefficient being given by, for example, (5.3.1) [i.e.

am= l/{taXY + 3/ (v P If we additionally take assumption

Y SSKXY)}]'
(A4) to hold, {L.e. ta = (0, then (5.10.4) reduces to (5.10.5) and
the LANCHESTER attrition-~rate coefficient is given, fcr example,

by (5.2.4).

Thus, we have shown that the simple models that we initially considered
may be viewed as special cases of much more general ones.

Aloung the same lines, let us now consider a targat-acquisition-
time model proposed by K. BRACKNEY [20] and see }ow "aimed" fire can lead

to an FT target-type-attzition process when target-acquisiti'n times are
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target-type~force-level dependent and arc the constraining factor in the
attrition process. Following BRACKNEY [20, p. 32], let us accordingly

replace assumption (A4) above by (44).

(A4) the mean time to acquire a target is inversely proportional
(let k denote the constant of proportionality) to the
target density, i.e. ta = k/p where p denotes the density

of targets in the target area A that is searched.

In analytical terms, assumption (A4) yields that, for example,

s (5.10.6)

vhere T (a r.v.) denotes the time required for a Y firer :o acquire
an X tar:eg, Ax derotes the area occupied by { targets (and searched

by Y firers), x denotes the X force level within this region, and kY
denotes a constant of proportionality for this model of the time for a

Y firer to acquire an X target. The above considerations lead to the

following interesting result.

LEMMA 5.10.2: Assume that assumptions (Al) through (A3) and (A4)
hold. The expected t.me for a, for example, Y firer to kill an
X target is then given by

kyAy 1 (5.10.7)

E[T,.] = +
XY vYPSSKXY

X
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This last lemma has the following important consequence: 1if the
time to acquire targets is the csonstraining factor in the target-attrition

process, then one has approximately, for example,

N i

E[Ty,] ™ »
XY x VYPSSKXY

’ (5.10.8)

which yields that the LANCHESTER attrition-rate coefficient may be taken

under such circumstances to be given by

a=ax, (5.10.9)

where a = 1/(kYAx). Consequently, the rate of change of the X force

level under these circumstances would be given by

X a -axy . (5.10.10)

Thus, we have shown that when BRACKNEY's target-acquisition-time model is
used and target acquisition is the constraining factor on the rate of
attrition, "aimed" fire yields an FT target-type-attrition process. Thus,
both "area" fire against a target type and also the above situation for
"aimed" fire may be hypothesized to yield the same target-type-attrition-
rate equation, and this situation was the reason why we introduced in
Section 2.12 our classification scheme for homogeneous-force LANCHESTER-
type attrition processes (and which we have adapted just above to a single

target type's attrition).
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One can use BRACKNEY's above target-acquisition-time model (5.10.6)
with the general expression for the expected time to kill a target (5.8.1)
and its various derivatives which we nave discusgsed above to develop some
interesting consequences. In particular, the assault of an X force
against a IY force's defensive position may be hypothesized to yield F|FT
LANCHESTER~type attrition equations. A convenient place to begin this
development 1s to observe that the conditions of Lemma 5.10.2 [i.e. assump-
tions (Al) through (A3) and (A4) being satisfied] yield the following

LANCHESTER~type equations

[ dx with x(0) = x

- y
dt {Hﬁ/x + ll(vYPSSny)T 0

(5.10.11)

Gy

dt = " T /y + 17("xpssxcnﬂ vith y(0) =y, -

Limiting cases of these equations provide some important insights intoc the
dynamics of combat. Such limiting cases may be generated by considering
the relative gsize of the time to acquire a target in relation to the

time required to kill an acquired target. BRACKNEY (20, pp. 32-33] comn-
sidered the two limiting caces of (I) when the time to acquire is
negligible, and (II) when it is the dominating term. He further reasomned
that a combatant's search time (i.e. the time to acquire an enemy target)
is negligible when the enemy rushes through an open area and assaults his
position. Furthermore, he postulated thac a combatant's search time

is the dominating term in the expression for the time to kill an enemy

target when the enemy remains under cover in their defensive positions.
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Consequently, BRACKNEY [20, p. 33] argued that furce-on-force attrition
for the agsault of an X force againat a Y force's defensive position

could be modelled by

_vYPSSK y with x(0) = Xg
(5.10.12)

with y(0) = Yo o

which are readily recognized by the reader as the equations for an F|FT
LANCHESTER-type attrition process. This model (5.10.12) was proposed by
BRACKENY [20, pp. 32-33] and used, for example, by SCHAFFER [65, p. 488]
to study sieges in guerrilla-warfare operations (see Sectiom 7.6 below).
Furthermore, when both sides remain in their (covered) defensive positions
(a situation that BRACKNEY [20, p. 36] termed a fire duel), BRACKNEY

argued that force-on~force attrition could then be modelled by

dx _ _ _xy =
T kYAx ' with x{0) Xy »

(5.10.13)
d

with y(0) = Yo -
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5.11. Variables Upon Which Attrition-Rate Coefficients Depend.

It is intuitively obvious (and bornm out by empirical evidence)
that, in general terms, the fire effectiveness of a weaéon system depends
on the target type engaged and the environmental circumstances of the
engagementzs. Thus, a numerical value for a LANCHESTER attrition-rate
coefficient depends on both the characteristics of the firer's weapon
gsystem and also those of the target. However, this dependence of a
LANCHESTER attrition-rate coefficient on firer-weapon-system~type and
target characteristics is not direct but indirect through the operational
variables (e.g. time to acquire a target, hit probabilities, etc.)
upon which such an attrition-rate coefficient directly depends. Conse-
quently, it seems appropriate for us to comnsider that an attritiom-rate

coefficient depends on two types of factors:

(T1l) direct factors,

and (T2) 1indirect factors.

Llet us now examine more closely this distinction between direct and
indirect factors by considering the special case of the LANCHESTER attrition-
rate coefficient for an impact-to~kill system under conditions of MARKOV-
dependent fire and a geometric distribution for the number of hits required
for a kill. Similar remarks will, of course, apply to a LANCHESTER attrition-
rate coefficient cerresponding to other circumstances. To return to the
case at hand, we again focus on an impact-to-kill system with MARKOV-

dependent fire and a geometric distribution for the number of hits to kill.
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As we have seen above in Section 5.4, the direct factors upon which the
LANCHESTER attrition~rate coefficient depends correspond to the variables
appearing in (5.4.1) (gsee also Table 5.II). However, each of these vari-
ables, e.g. p or P(hlh), themselves in turr depend on other operational
factors in the tactical environment. For example, the hit probabilities
depend on such variables as range (i.e. distance) between target and firer,
tactical posture of the target and/or firer, etc. We will refer to such

variables as the indirect factors upon which a LANCHESTER attrition-rate

coefficient depends. Table 5.III lists some indirect factors upon which
the LANCHESTER attrition-rate coefficient may depend. This 1list is not
meant to be exhaustive, but it should be consideved to be suggestive of
functional dependencies that should be considered in modelling force-on-
force combat interactions.

For many weapon systems, the range (i.e. distance) between firer
and target has a very significant effect on weapon-system fire effectiveness.
In such cases (as stressed by BONDER [9-11; 13]), if the range between
firers and targets changes appreciatly during the course of an engagement,
then use of constant attrition-rate coefficients in a LANCHESTER-type
wodel can yield quite misleading results (see Section 6.2 for further details).
BONDER has consequently emphasized the importance of explicitly considering
in LANCHESTER-type combat analyses such range deprendence of weapon-system
fire effectiveness, especially for mobile weapon-system types. Thus, in
many tactical situations of interest we should consider, for example,
that for the model (5.2.1) the LANCHESTER attrtion-rate coefficients a and

b explicitly depend on range26, i.e

90




TABLE 5.I1II. Indirect Factors Upon Which LANCHESTER Attrition-Rate

Coefficients Depend.

1. Range Between Firer and Target

2. Effects of the Battlefield Environment (e.g. Visibility Conditioms,

Target-Background Contrast, etc.)

3. Target Posture

4. Firer Posture

5. Terrain

6. Target Movemeut

7. Firer Movement

91

. T

|




a = a(r) and b = 8(r) , (5.11.1)

where r denotes the range (i.e. distance) between firers and targets.
Thus, we should consider LANCHESTER attrition-rate coefficients to be at

least (and probably primarily) dependent on the range between firers

and targets.
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5.12. Some Typical Range Dependencies for the LANCHESTER Attrition-Rate

Coefficient.
As we have just discussed above, the range (i.e. distance) between

firers and targets is one of the principal indirect factors upon which a

LANCHESTER attrition-rate coefficient depends. It is intuitively obvious
(and born out by empirical evidence) that the fire effectiveness of a
weapon system is strongly dependent on the range between firer and target.
Based on their examining predicted numerical values of the LANCHESTER
attrition-rate coefficient for specific weapon systems with widely differ-

ing characteristics and how these values varied with range, BONDER and
FARRELL [17, pp. 196-200] have considered a number of functional forms for
range-dependent attrition-rate coefficients in "aimed-fire" combat, e.g.
for combat modelled by (5.2.1). The functional forms considered by BONDER
and FARRELL may be classified as:

(F1) power dependence

(F2) exponential dependence upon range,

(F3) cosine dependence upon range,

(F4) plecewise-constant dependence upon range.

We will accordingly call such attrition-rate coefficients as follows:
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(Cl) power attrition-rate coefficient

aP(r) - (5.12.1)

(C2) exponential attritjion-rate coefficient

-a,(r - r)
ao[l-ele ] for 0zr<r ,

e
ag(r) = (5.12.2)

0 for .St

(C3) cosine attrition-rate coefficient

%o r
5= |1 + cos{Z= for 0<r<r_ |,
2 Te - = e

a (r) = (5.12.3)
C
0 for r < r,
e ——
(C4) pilecewise-constant attrition-rate coefficient
@y for 0 <r < LN )
£) = (5.12.4
% ()
0 for r, 2r

Here T, denotes the maximum effective range of the firer's weapon sys-
tem, ao and al are positive constants, and p 1is a nonnegative con-

gtantc.
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The first two above functional forms for range-dependent attrition=-

rate coefficients are shown in Figures 5.5 and 5.6. In Figure 5.5 we have
plotted the value of the power attrition-rate coefficient aP(r) given by
(5.12.1) versus the range between firers and targets. As we can see from
Figure 5.5, the constant u 1is used to model the range dependence of the
attrition-rate coefficient aP(r). For values of yu > 1, the attrition-
racte coefficient aP(r) 1s a convex function of r on [O,re],

i.e. the plot of aP(r) versus r ''flexes downward." We have accordingly
chosen to call u the '"shape" parameter, since it controls the shape of
the plot of aP(r). In Figure 5.6 we have similarly plotted the exponential
attrition-rate coefficient aE(r) given by (5.12.2) versus range. In this
case, the constant a, is used to model the range dependence of aE(r).
However, this attrition-rate coefficient aE(r) is a concave function of

r on [O,re], i.e., the plot of aE(r) versus r 'flexes upwaﬁd." Also,
we observe that aE(r) + linear dependence on r as ay + 0, and we have
gimilarly chosen to call ¢y the "shape' parameter.

Still another model for range dependence of such an attrition-rate

coefficient is an exponential fall off in fire effectiveness of the form

-a,r
aED(r) - age (5.12.5)

where oy > 0. We call call the attrition-rate coefficient aED(r) given

by (5.12.5) the exponentially-decaying attrition-rate coefficient. It is

plotted versus range in Figure 5.7. As Figure 5.7 shows, it has a range
dependence somewhat similar to the attrition-rate coefficient up(r).

In other words, aED(r) is a convex function on [O,rP] as ap(r) is for
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Figure 5.5.
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Ronga r ( meters )

L4
o 500

Variation in fire effectiveness (measured in kills/minute

per firer) with range for the power attrition-rate

coefficient aP(r), which is analytically given by (5.12.1),

for several different values of the "shape" parameter y.

The maximum effective range of the weapon-system type is
denoted as r, and for this example r, = 2000 meters.

Also, in this example the weapon-system kill rate at zero
force separation (range) aP(O) =ay = 0.6 X casuvalties/(unit
time X number of Y firers) has been held constant, and the
"shape'" parameter u has been varied (i.e. curves plotted
for u =1/2, 1, 2, 3, and 4).
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RATE
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Figure 5.6. Similar to Figure 5.5, variation in fire effectivenss with
range for the exponential attrition-rate coefficient aE(r),
which i3 analytically given by (5.12.2), for several differ-

ent vaiues of the '"shape' parameter @ - Again, the maximum

effective range of the weapon system is given by re-ZOOO
meters. Also, the weapon-system kill rate at zero force
separation (range) aE(O) - ay has again been held constant,

and the '"shape" parameter ay has been varied.
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# > 1. Although (5.12.5) implies that the wapon system theoretically
has an infinite maximum effective range, for all practical purposes the

weapon system becomes "ineffective" (i.e. 1t ceases to kill) when
5

a;r 2 12, since then aED(r) is less than 10~ times its value at
r = 0 (cf. the curve labeled a, = 0.004 1in Figure 4.7 for ranges
greater than 1500 meters).
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5.13. Attirition-Rare Coefficients for Area-Fire Weapons.

The above attrition-rate-~ccefficient results [in particular, (5.4.1)
and its generalizations (5.8.1) and (5.8.2)] apply to weapon-system types
that direct their fire at individual targets that are vulnerable to only
the impact of a projectile fired by the weapcn system27. Let us refer to

this situation as "aimed" fire againet an impact-sensitive target. Many

times, however, a weapon system will engage a target or complex of targets
not by aiming its fire at an individual target but by directing its fire
into only the general area thought to be occupied by the target or targets.
Let us refer to this latter situation as "'area” fire (cf. Section 2.11 above).
It is for this type of firing mode that we will now consider the determina-
tion of LANCHESTER attrition-rate coefficients. Furthermore, such "area'
fire may be directed at both fragment-sensitive and also impact-sensitive
targecsze. As far as combat modelling is concerned, the former is far more
the important case, since it may be considered to conceptually model
artillery engaging enemy dismounted-infantry troops (i.e. those not in
protective vehicles) dispersed in tactical formations. An example of the
second case (i.e. "area'" fire against impact-sensitive targets) would be
small-arns fire against poorly located enemy dismounted-infancry troops.
This latter tactical situation has been considered in guerrilla-warfare
settings by DEITCHMAN [31] and SCHAFFER (65] (see Chapter 7 for further
details). Thus, a number of important tactical situations may be modelled
by area fire.

Let us accordingly coneider combat between two homogeneous forces
(denoted as X and Y) in which force-on-force attrition occurs at a

rate proportional to the number of enemy firers (at least on the surface
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it appears to do so) but in which each gide uses "area'" fire. Fer the
sake of placing something concrete before the eyes of the reader, we will
focus on the attrition of the X force caused by the Y firers. According

to the assumptions just made, we may write

gats - -ay , (5.13.1)
with
R (5.13.2)
, .13.
E[TXY]
where T (a r.v.) denotes the time required for a Y firer to kill an

Xy

X target. For "area" fire, however, the expression for the expected time
to kill a target takes a different form than that for "aimed" fire, i.e.
E[T] 1s no longer given by (5.4.1).

The simplest model for E[T] in the case of "area" fire involves
adapting (5.4.1) to this casezg. This adaptation may be accouplished by
conceptualizing the target-destruction process in the following manner:
an "area" target is acquired, and "area" fire is directed at it; if a round
lands in the target area, the target may be killed; otherwise it 1is not
damaged. Thus, t, would represent the time to acquire the "area" target,
and other quantities in (5.4.]) would be analogously redefined. However,
since an area target 1is usually not reacquired after every kill of one of
its elements, we should replace t, by ta/nK, where e denotes the
number of elements killed per acquisition of such an area target. Thus,

we would have
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ca (th + t.)
= — 4 -t
A S N S ERW

(by vt [ (1 =P (a6
L £ area o TR |
Parea(hlm) P(Krﬁarea) * Carea'™ ™ T Parea| (5.13.3)

+

where
ta denotes the time to acguire an area target,
oy denotes the number of kills per acquisiticnm,
t1s Cer T and t, are defined similarly as for "aimed" fire
in Section 5.4,
pirea, Parea(hlh), and Patea(hlm) denote MARXOV-dependent prob-
abilities for hitting the area target,
and P(KIHarea) denotes the probabilic that we kill a target element
given that we "hit" the area targer.
Here, P(K|H ) depends on the lethal area (see (84, Chapter 15]) of the

areca

weapon system's projectile30.

Moreover, there is a special case of the model discussed in the
previous paragraph that merits further examination and discussion. To this
end, let us make the following assumptions (cf. those made in Section 5.10)

concerning the above adaptation of (5.4.1), namely (5.13.3):

(Al) statistical independence among firing outcomes, i.e.

1 area
Parea " Parea(hlh) - Parea(hlm) = PSSH ’
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(A2) "uniform" rate of fire, i.e. t, = t, = t and we will

1 h

denote this commou value as t, - 1/v;

and (A3) ne;ligible time of flight for projectile, i.e. assume that

te = 0.

In this case, (5.13.3) reduces to

t

E[T] = -2 + «—-%;;;— , (5.13.4)
wP i
SSK

where v = l/tv denotes the operational firing rate of the weapon sysiem

area area
and Poor = Posy

destroying a target element with one round. It is implicitly assumed here

P(K!Harea) denotes the single~shot~kill prohability fer

that multiple kills are impossible (i.e. at most only one target element

can be killed with any one round). Furthermore, when ta/nK is negligible

area
SSK

may be approximated by [cf. (5.2.4) above]

compared to 1/(vP ), then Y's attrition-rate coefficient in (5.13.1)

a area , (5.13.5)

= "YPssxXY

Paraa
SSKyy

engaging an X area target.

where denotes the single~shot-kill probability for a Y firer

Moreover, there are a couple of speclal cases for the LANCHESTER
attrition-rate coefficient (5.13.5) that we should consider. When a weapon

system employs "area" fire and enemy targets defend a constant area (gee
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Table 2.XIX for a more precise list of the associlated assumptions), the
expression for the LANCHESTER attrition-rate coefficient may be glven in an
even more explicit form (i.e. one depending on more basic measurable
operational quantities) and depends (among other things) on the vulnerable
area of the target (denoted as av) and the lethal area of the projectile
fired by the firer's weapon system (denoted as aL). In general, a
rather complicated expression is obtained for such an attrition-rate coefficient
(e.g. see BONDER and FARRELL (17, pp. 141-162]), but this expression may be
stated in a particularly simple form in special cases under the appropriate
simplifying assumptions, e.g. for "small-arms fire" when ay > a and for
"fire from a weapon of great lethality" when a; >> ay - Thus, two cases

in which a simple expression is obtained for an attrition-rate coefficient

for "area" fire and a constant-area defense are as follows:

(Cl) small-arms fire (i.e. ay » aL),

and (C2) fire from weapons of large lethality (i.e. a; >> av).

A more precise description of the operational conditions that we have

in mind is given in the first five assumptions listed in Table 2.XIX.
Assuming that ta/nK is negligible, we may take, for example, the
attrition-rate coefficient a to be given by (5.13.5) if we assume that

the attrition-rate of the X force is given by (5.13.1).

area

SSKXY

for use in (5.13.5) by considering a '"lethal dot" being randomiy placed

For small-arms fire (i.e. ay >» aL), we may calculate P
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into a large region (of area Ax) that contains x "vulnerable circles"

(each of area a, ). Under these circumstances and the assumption331 that
X

a Y firer directs his fire into the region actually occupied by the X
targets and that his fire is uniformly distributed over the region into

wiaich it is directed, the probability that a target is hit, denoted as

area
SSH ?

divided by the area of the region into which fire is directed (see

P 1s given hy the ratio of the total vulnerable area of all the targets

Figure 5.8), i.e.

X
parea | _ X (5.13.6)

SSH AX :

It follows that
xay P(KIH)XY
area X

E ]
SSK Ax ’

P (5.13.7)

where P(KIH)XY denotes the probability that an X target is killed by a
Y projectile when it is hit. Thus, when P(KIH)XY = 1,0, the attriticn

rate of the X force is given by

av

dx . _X vy %, (5.13.8)

de Ax
which 1is the result ([with P(K!H)XY included) given in Table 2.XIX.
For fire from weapons of large lethality (i.e. a, >>av), a slightly

different analysis is required. In this case, we may calculate P;;;;Y by

considering a '"lethal circle" being randomly placed into a region that contains

105




.o E . Ak o TN -
W M YA N A 8., » -~

Figure 5.8. Conceputalization of target-destruction process for

"area fire" by small arms. In this case ay > ars
i.e. the vulnerable area of a target is much larger
than the lethal area of a round. The above diagram

considers X to be the target and Y the firer.
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' We assume that these dots are so

x randomly placed "vulnerable dots.'
placed that the "lethal circle'" covers at most cne of them per throw.
Furthermore, the probability of covering cne of these x ‘'vulnerable dots"
in the region of area Ax is the same as the probability of covering one
such dot randomly placed in a region of area Ax/x. This latter prob~
ability 1s simply given by the ratic of the total lethal area to the

total area of this equivalent region (see Figure 5.9), and hence

area x’aLY

PSSK "—A}—(— . (5.13.9)
In the above formula, it is assumed that a "hit" om a target will kill the
target, The formula is easily modified to model the case in which each
such "hit" (i.e. the covering of a "vulnerable dot" by a "lethal circle")
has a probability less than one of killing such a target. TFinally, for
the above case of fire from weapons of large lethality, the attrition rate
of the X force is given by

dx LY

Tl K;_ vy XV s (5.13.10)
which 18 a result first apparently given by WEISS [91, p. 83] and later
used by both DEITCHMAN [31, pp. 821-822] and SCHAFFER [65, p. 470] in
the modelling of guerrilla warfare (see Chapter 7). The small-arms-fire

result (5.13.8) may be considered to be a particularization of (5.13.10)

in which the lethal area of a Y round is taken to be the vulnerable

area of an X target (see DEITCHMAN [31, p. 822]).




Figure 5.9.

Conceptualization of target-destruction process for
"area fire" by weapons of large lethality. In this
case a > ay, i.e. the lethal area of a round is
much larger than the vulnerable area of a target,
and the target density is reflected by considering
an equivalent process taking place in a region of
area Ax/x. The above diagram considers X to

be the target and Y the firer.
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There is, however, another (more general) approach for developing
the above kill-rate result for "area" fire (5.13.10). This other approach
is based on the equivalence of expected target coverage to kill prob-
ability, and it considers the expected number of survivors by conceptually
replacing all the targets by a single equivalent target and computing the
probability of destroying this equivalent target [1.e. see (5.13.14)
below]. This approach is particularly significant, since it is essentially
the one used by BONDER and FARRELL [17, pp. 141-162] to develop attrition
rates for multiple~tube-firing cases (for both volley and salvo fire).

We will now present this important alternate development of attrition
rates for area-fire weapon systems.

A fundamental precept upon which target-coverage analysis (i.e.
the theoretical analysis of damage to targets by indirect-fire weapons
{e.g. see HESS [43]}) 1is based on the equivalence of expected target coverage

to kill probability32. It is simply stated as follows.

FUNDAMENTAL PRECEPT OF TARGET COVERAGE: The probability

of killing a randomly located point target is equal to the

expected coverage of a population of objects when the popu-

lation density is distributed in the same manner as the

point target,

If we let F denote the average fraction of targets killed and PK denote E

the probability of killing the point target, then the fundamental precept

of target coverage may be stated in analytical terms as
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(5.13.11)

This result may be considered to be equivalent to thinking of the status of
the point target as a BERNOULLI random variable and scaling up the expected-
fraction-killed result for this single target to that for the entire target
population. Implicit in this fundamental premise is the assumption that
the exact locations of individual targets in the target area are not known.
In this sense, we may take (5.13.11) to be a static msthematical statement
of "area" fire which we will now convert into the dynamic result (5.13.10)
by a series of logical arguments.

We begin by considering a homogeneous X force receiving area fire
from a homogeneous Y force and computing the expected number of survivors.
By the fundamental precept of target coverage, this number is given by

x(t) = {1 - PiY(t)}x (5.13.12)

0 5
where P:Y(t) denotes the cumulative kill probability of the entire Y
force engaging a single randomly placed X target for a period of time t.

Taking the logarithmic derivative of (5.13.12), we find that

dx
dt

4

XY
3¢ ‘oll = P (e}, (5.13.13)

=X

Assuming independence between the outcomes of any two rounds [recall

Assumption (A3) of Table 2.XIX], we also have that
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vyyt

Xy ) , (5.13.14)

XY
Y = - -
Py (t) 1-Q Pssx

where Vy denotes the firing rate of a single Y firer and ngx denotes

the single-shot kill probability for a single Y firer engaging a single

X point target. From (5.13.14), we readily deduce that

d XY

s XY = -
T 2n{l - Py (t)} 1254 2n(l PSSK) R (5.13.15)
whence follows
dx . X7
ac \)Y{Zn(l - PSSK)}X}' . (5.13.16)

by substitution of (5.13.15) into (5.13.13). The reader should regard

(5.13.16) as the fundamental attrition-rate equation for area fire. Com~

parison cf (5.13.16) with, for example, (5.13.1) reveals that we mey consider
the LANCHESTER attrition-rate coefficient for such area-fire weapons to

be given by

XY

am= -vY{zn(l - PSSK)}x , (5.13.16)

which should be compared with BONDER and FARRELL's [17, pp. 150-154] result

for area-fire weapons (see also [54, p. 170] or [28, p. 176]). Furthermore,

XY 33 XY XY
-PSSK is a good approximation SSK) when PSSK € [0, 0.2],

and in this case we approximately have

to n(l - P

XY

a= vy PSSK X, (5.13.17)
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Returning to our criginal problem of modelling the force-on-force attrition

of a homogeneous X force receiving "area" fire from an opposing homogeneous
Y force, we observe that the probahility that a single Y firer kills

a single randomly-placed target 1s equal to the probability that a "lethal
circle" of area aLY covers a8 "vulnerable dot" randomly placed within

the reglon of area Ay (under, of course, the assumption that aLY > avx).
Hence

P -— (5.13.18)

XY
ssp < 0-2-

BONDER and FARRELL (17, pp. 141-162] have used the basic idea of the

and (5.13.10) follows from (5.13.16) when P

above approach34 based on the fundamental precept of target coverage to
develop an expression for the attrition-rate coefficient corresponding to
firer by indirect, area-fire weapons. Their expression includes all the

factors shown in Table 5.1IV. It holds under the following set of assumptions55

(A1) no delivery bias exists--no aiming error, target-

location error, or intentional offset,

(A2) centers of impact (p,q) of the damage patterns are
distributed about a mean center of impact (p,q)
according to a circular-normal distribution; for con-
venience, let (p,q) = (0,0) and the standard deviation
be normalized to unity; the probability density function

for the delivery error is then
b(p,q) = -2%; expl-(p% + q%)/21,
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TABLE 5.IV. Factors Considered in Attritiou-Rate Coefficients for

Indirect, Area-Fire Weapons by BONDER and FARRELL [17].

Weapon aiming and ballistic errors

Target location errors

Weapon firing rate

Volley damage~pattern radius

Target distribution

Target radius

Target posture

Probability that the target is destroyed given it is covered

by damage pattern
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and

(a3)

(Ad)

(A5)

the target is a circle of radius Rt centered at the
origin; two mathematically equivalent types of targets

are considered:

(T1) a circular, homogeneous, area target centered

at (0,0) with radius Rt’

(T2) a point target (£,n) of uniformly uncertain
location in the area of radius Rt; the target
density function W(E,n) is then ll(wRi)

over the target area and zero elsewhere,

the damage pattern is a circular cookie-cutter of radius
Rp; let d(g,nip,q) denote the damage function, which is

then given by

» for (p-"E)z + (q-n)2 £ R§ ’
d(g,n;p,q) =

0 elsewhere,

where d(£,n;p,q) 4is the probability that a point target
at (g,n) will be killed by a damage pattern with center
of impact at (p,q); damage is either all or nothing (killed

or not killed)~-no cumulative damage is considered,

the weapon system employs a constant firing rate v.
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" BONDER and FARRELL [17] (see also [54, p. 170] or [28, p. 176]) have stated

that when the above assumptions hold, an approximation to the attrition-
rate coefficient for a, for example, Y firer engaging an opposing X

force with such an'area-fire—weapon-system type is given by

a= vY{Zn(l - ASl)}x . (5.13.19)
where R
1 t
s, == [ PR_,r)r dr , (5.13.20)
1 2 P
RS 0
t
1 2, .2
P(R,r) = I 3= exp -(P-——z——ﬂ-) dp dq , (5.13.21)
(p-£)2+(a-m 2 ¢ R2

and r denotes the distance from the point target located at (g,n) to

the mean center of impact at (0,0), i.e. r2 - 52 + nz. The function

P(Rp,r) is called the circular coverage function and plays a prominent
role in target-coverage analysis (e.g. see SNOW [70], HESS [43], ECKLER
[33], or ECKLER and BURR [34]). It 1is well-known to be also given by
R
2 P 2
!‘/?.f xe)(/2

P(Rp,r) =-e !

Io(xr)dx s (5.13.22)

where Io(x) denotes the modified BESSEL function of the first kind of

zero order (see HESS [43] or ECKLER and BURR [34] for further details).
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BONDER and FARRELL (e.g. [28, p. 176]) have stated that in general

the expression (5.13.18) is a good approximation to the attrition rate
of a single weapon system "if Rp » Rt’ or when Rt is less than the
standard deviation of the‘center of impact of the damage pattern, or
when the number of volleys is small."” Further details are to be found

in [28; 54].
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5.14. Results for Other Related Weapon-System Types.

We have developed abuve expressions for the LANCHESTER attrition-rate

coefficient under the following two different sets of circumstances:

(S1) MARKOV-dependent fire with an impact-lethality mechanism,

and (S2) an area-lethality mechanism.

In the first case we have developed our results under fairly general circum-
stances [see (5.8.1) and assumptions (Al) through (56) in Section 5.8 above].
There are, however, a number of additjonal operational circumstances and weapon-
system types for which it is convenient to have other LANCHESTER-attrition-
rate-coefficient results available, especially for building and exercising

a complex operational combat model in which a wide spectrum of weapon-system
types is to be played. For example, three different types of weapon-syctem

fire (cf. BONDER and FARRELL's taxonomy of weapon-system types reproduced

here as Table 5.I) are permitted in VECTOR-2 [28, p. 170] (see also [86; 87])
(1) MARKOV-dependent fire at a specific target,
(2) repeated-burst fire at a specific target,
and (3) area fire (not directed at any specific target).
Consequently, we will present in this section LANCHESTER-attrition-rate~
coefficient results for some other related weapon-system types of tactical

interest. Complete derivations of these resulta will not be given, however,

since results previously derived above may be invocked for their develcpment.
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Thus, we will give results for the following additicnal weapon-system

types/operational circumstances of tactical interest:

(T1l) MARKOV-dependent fire with chance of killing target on a miss,

(T2) burst fire-

(a) one long burst,

(b) mwixed-mode firing doctrine [repeated-single-shot-MARKOV-
dependent fire until first hit obtained after which there
is an immediate switch to burst fire (one long burst)],

(c) repeated-burst fire [multiple (short) bursts independently

firad].

In each of the above cases, we will give the appropriate expression for the
expected time to kill a target, with the LANCHESTER attrition-rate coefficient
(as usual) being obtained as the reciprocal of this quantity (recall Section
5.3 above). The first type of weapon-system fire (Tl), i.e. MARKOV-dependent
fire with kills on misses, applies to weapon-system types that fire rounds
with fragmentation effects at targets with exposed personnel. In such cases
it is quite possible to achieve a system kill when a projectile misses the
target weapon system but detonates and kills the personnel by fragmentation
effects. Thus, a miss may cause a kill, and the usual expression for
MARKOV-+dependent filre (5.8.2) (which only allows a target to be killed by
being hit) muat be modified to accommodate this fact. The second type of
waapon~gystem fire (T2), i.e. burst fire, 1is characteristic of automatic

weapons used by infentry and sometimes mounted on armored-personnel carriers
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or other vehicles [e.g. the vehicle rapid-fire weapon system (VRFWS) or the
secondary armament on a tank]. In particular, infantry doctrine calls for
automatic weapons to be fired in repeated short bursts, and the LANCHESTER
attrition~rate coefficlent must again be modified for automatic weapons to

accommodate this fact.

We will first consider the case of MARKOV-dependent fire with chance

of killing on a miss, which is a further gemeralization of MARKOV-dependent

fire considered above in Section 5.8. Let :+ assume that assumptions (Al)
through (A6) of Se.tiou 5.8 hold, and we will additionally assume that there
is a2 coustant probability, denmoted as P(K|M), that a miss kills the target.,

Then the expected time to kill a target is given by36

E{T] = E[Ta] + E[Tfr] + E[Tf]

{E[T,] + E[T JH1-PKIDH 1 -P(RIMI[PMIm) -p,] + p,}

Y Fhlm) PRI II-B(RIM)) +P(KIM) {1-PmIB)[1<P(KIHD]I]

{E[Tm] +E[Tf]}{l ~P(KIM}H1-PChlh) + [P(h|h) - pl] P(K|H)}

+ P(h{m) P(X|H) {1-B(RKIM)} +P(kIM) {1 -PChIn)[1-P&[H)]} (5.14.1)

which is a generalization of (5.8.2) given above and consequently is the most
general result given in this monograph for MARFKOV~dependent fire. The above
expression (5.14.1) 1is readily developed by invoking Seciion 5.9's approach
of considering the mean first-passage time for the killed state in a con-
tinuous-time semi-MARKOV process: one simply replaces the transition prob-

abilities (5.9.4) by the following
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Py = P RP(KIE),

plz - Pl{l - P(K,H)}v

By = (1-py) {1 - PRIM},

Py, = P(hlin) P(RIW)

Py, = B(hlh) {1 - P(R|D)},

P,y = {1 - P(aln}H1 - P(KIM],

Py, = P(hlm) P(KIH) ,

Py, = P(hlm) {1 - Pxim)} ,

Pyy = {1 - P(Im}1 - P(RIM)I, (5.14.2)

and substitute (5.9.5), (5.9.11), and (5.14.2) into (5.9.9) to obtaian the
desired result for the expectad time to kill a target.

Let us now turn to the case of burst fire. We will conmsider weapon-
system types that employ impact—iéthality projectiles and have the capability
of burst fire. BONDER and FARRELL {17, pp. 107-108] have pointed out that

such weapon—-system types can fire in a number of modes37:
(M1) repeated-single-shot-independent fire,
(M2) repecated~single-shot-MARKOV-dependent fire,

(M3) burst fire (one loag burst),

(M4) mixed-mode fire [repeated-single-shot-MARKOV~dependent fire until
first hit after which there 1is an immediate switch to burst fire

(one long burst)],
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and (MS) repeated-burst fire [multiple (short) bursts independently

fired].

Modes (M1) and (M2) arc special cases of BONDER's model of MARKOV-dependent
fire discussed in Sections 5.4 and 5.5 above, while mode (M5) 1s conceputally
the same as mode (Ml), and consequently results for the expected time to kill
a target may be obtained for them by involing, for examp1e38, (5.4.1).

In particular, VECTOR-2 (28, pp. 174-175] uses the following result for

repeated-burst fire [multiple {(short) bursts independently fired]

B, B |1~ P;BK
E[T}] =t +t  +¢t —_— R (5.14.3)
a 1 8 p®
SBK
where
t is as previously defined,
tg denotes the time to fire the first burst after the decision
to engage the target has been made,
tg denotes the time between the firings of any two successive bursts,
P;BK denotes the probability of killing the target with the first burst,
and P:BK denotes the probability of killing the target with any sub- g
sequent burst. )
The simplest model for P is to assume that all rounds within the burst

SBK
are independently fired, and then
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- PSSK)“ , (5.14.4)

Popg "1 - (1

where n denotes the number of rounds in the burst and PgSK denotes the
single-gshot hit probability fer any round in the burst (and is assumed to be
the same whether the round follows a hit or a miss).

For the mixed-firing mode (M4), using arguments similar to those
employed in Sectiom 5.5, BONDER and FARRELL [17, pp. 108-113] have derived

the following expression for the expected time to kill a target

l-p
1
E(T] ta + cl + cf + (tm + tf) l ——'—P(hl )
1- Pgsx
+ 1 -PID |t +t. + ¢t {-—a22 , (5.14.5)
h f b PP
SSK

where
s tys tes s t, Py, and P(K|H) are all as previocusly defined
in Table S5.1II,
P(hllm) denotes the conditional probability of a hit following a
miss before the first hit has been obtsained, |
tb denotes the time between the firings of any two successive rounds
in the burst-fire model,
and PgSK - PgSH P(%|H) denotes the probability of killing the target
with any one round in the burst-firing mode and PB denotes the

o SSH
corresponding bit probability.

-l
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Here BONDER and FARRELL [17, p. 109] have assumed that the hit probability

for any round in the burst is the same whether it follows a hit or a miss.

Mode (M3), firing one long burst, may be obtained as a special case of mode
(M4) by assuming

(Al) the time to fire every round except the first is i.e.

th - tm = tb;

tb,

(A2) after the first round, the hit probability is constant, 1i.e.

B
P(hylm) = Pggys
and (A3) only the time of flight for one round need be considered.

It follows that under these conditions the expected time to kill a target
with one long burst is given by, i.e. (5.14.5) reduces to

1 - plP(KlH)

E[T] =t +t; +t +t | 5g————7, (5.14.6)
Posh P(K|H)

which, if the first-round hit probability is the same as that for any sub-

sequent round, further reduces to

E[T] = ta + tl + tf + t:b — [ (5.14.7)

¥
=

vhere Pgo. = Poo P(K|H) and Pooy ™ Py = Pogp
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Let us finally note here that data sources for not only all the
attrition-rate~coefficient expressions given in this section but also all
those givea elsewhere in this chapter have to be discussed in the docu-
mentation on, for example, VECTOR-2 [28, pp. 173-175]. The interested
reader is directed to such places for further information about data sources

for computing numerical values for LANCHESTER attrition-rate coefficients.
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5.15. Maximum-Likelihood Estimation of Attrition—-Rate Coefficients.

In the introductory section of this chapter we saw that there are two
general approaches for determining numerical values for LANCHESTER attrition-

rate coefficients:

(A1) use an analytical submodel of the attrition process to compute

the desirced numerical value,
and (A2) wuse "combat" data to compute a statistical estimate of it.

In the previous sections of this chapter we have considered in detail the
former approach based on using an analytical submodel, and in this section
we will briefly consider the statistical-estimation approach, which pre-
supposes the availability of (either actua139 or simulated) combat data
(recall Figure 5.1). In actual applications some type of '"simulated-combat"
data (generated, for example, by a high-resolution Monte Carlo combat simu~
lation) is invariably used.

In this latter quasi-empirical approach, one uses the "combat' data
to compute statistical estimates of the attrition-rate coefficients (and
sometimes parameters contained in the coefficients). In general, there are
four principal statistical methods for computing such point estimates
(e.g. see BHAT [7, pp. 370-371] for further details): (a) maximum-1ikelihood
estimation, (b) method of moments, (c) BAYES estimation, and (d) method
of least squares. Of these four methods, however, only the first one has

had any significant application in combat analysis (e.g. see CLARK [24],
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[36, pp. 3~1 thrc gh 3-10], ANDRIGHETTI [2], STOCKTON [73], or GRAHAM [39]).

Accordingly, we will consider only the maximum-likelihood-estimation approach,
whizh determines attriticn-rate-coefficlent parameters from an appropriate
get of "combat" data by selecting their values to maximize the so-called
likelihood function corresponding to this data. Qur approach here will be
to consider a simple example first, before examining more general (and com-
plicated) cases.

Consider now that we have run a Monte Carlo combat simulation and
have recorded the times at which casualties have occurred (and also the type
of each casualty). Let us run this stochastic simulation until a total of
K casualties have cccurred. The total time that the simulation will have
been run is a random .variable that we will d-=note as TK (with realization
t,). Let us also denote (for k = 1,2,...,K) the time (a r.v.) at which

K

the kgl casualty occurs as Tk (with realization tk). We will start the

battle at t = 0 by setting to = (), Our main assumption is that we will

consider that our "battle" data represents a sample from the MARKOV-chain

analogue of the deterministic LANCHESTER-type equations

P with x(0) = Xy »
(5.15.1)
4y . -

i.e. in the corresponding continuous-parameter MARKOV chaii the transition
(casualty) probabilities are given by Prob[X casualty in small interval
of length At] = aAt and Prob{Y casualty in A4t] = bAt.

Let M(t) (a r.v. with realization m) denote the number of X

combatants at time t in the above stochastic combat model, and let N(t)
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(a r.v. with realization n) denote the number of Y combatants at time t

(see Figure 5.10). Furthermore, ler us introduce the r.v.'s Ci and Cz
'V. (with realizations ct and ci) defined by
th
1 1f the k casualty is an X
C: - combatant,
0 otherwise,
and
th
1 if the k™ casualty {s a Y
Y combatant,
Ck =
0 otherwise.

_ X Y X, Y _
Focussing now on the realizations Cy and Cyr We have Y 0 with

ci + c: = 1. For future purposes, we will let c¥ denote the total number
of X casualties, {i.e.
K
=13 &, (5.15.2)
k=]l
and, similarly,
K
ex= 1 ¢, (5.15.3)
k=]
with (of course)
X, Y, N "
Cr + Cp K . (5.15.4 ;

Furthermore, although we will not need thew right now, let us denote m(t
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M(t)

Figure 5.10.

N(t)

Schematic of combat interactions for stochastic
battle corresponding to the deterministic LANCHESTER-
type equations (5.15.1) for C|C attritiom process.
Here a denotes the caéualty rate of the X force

caused by the entire Y force.
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as m (i.e. o is the realization of the number of X combatants just
after the occurrence of the lc-t-:-‘rl casualty) and n(tk) as m . In other words,
there are o, X combatants and n Y combatants "alive" during the interval

[t ) for k=20,1,..., K-1.

K’ Ck+l

Using the data ¢t X X I

Y
1’ e K’ cl, ste s Cps» €y see , Cp, We will now

develop statistical estimates, denoted as a aond B, for the continuous-time

» t

MARKOV-chain analogue of the LANCHESTER-type model (5.15.1) by the so-called

method of maximum-likelihood estimation. The observant reader will notice

that in this case the casualty streams are nothing more than two superimposed
POISSON processes, and consequently a and D will turn out to be given by
expressions equivalent to well-known results for the maximum-likelihood
estimator of a POISSON parameter. In very general terms, the maximum=-likelihood-
estimation approach choses (based on the available data) the formulas for

the computation of a and b so that they give the greatest probability to
the observed combat outcome (see KENDALL [48, p. 178]). This maximization

is effected by considering the so-called likelihood function, which (in simple
terms) gives the probability of the observed realization of the stochastic
attrition process. The likelihood function, in turn, is constructed out of

the density functions for the times between casualties, since we should con-
sider the above combat data to be a random sample from these times. For

our stochastic attrition process, we may summarize the above maximum—likelihood

method as follows:

(S1) determine the probability density function (p.d.f.) for the
time to an X casualty (also that for the time to a Y

casualty),
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(S2) construct the likelihood function (i.e. the density

function for the observed sequence of events),
(S3) determine the values of the parameters a and b that
maximize the likaelihood function (denote these maximizing

values as ; and b).

We will ncw carry out the above three steps (S1) through (83) to

determine maximum-likelihood estimators a and b for the LANCHESTER attrition-

rate coefficients for the continuous~time MARKOV-chain analogue of (5.15.1).
For step (S$1), we consider the time to an X casualty from the occurrence
of the last casualty and develcp its p.d.f. For our constant-attrition-rate
coefficient continuous-time MARKOV-chain attrition model, the times between
casualties are exponentially distributed'(ggg Section 4.7 above). Thus, if
we let S denote the time between any two consecutive casualties, then the
p.d.f. for this nonnegative random variable is given by

~(atb)s (5.15.5)

fs(s) = (a+b) e
We now need to convert this p.d.f. for S 1into one for the time to the
occurrence of an X casualty from the occurrence of the last casualty (a r.v.

denoted as Sx). This may be accomplished by multiplying (5.15.5) by

P[X casualtyl|casualty occurs] = 2 : s (5.15.6)
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which ia just the probability that an X casualty occurs before a Y

one (gee Section 4.7 above). Thus

fg (s) = P[X casualty|casualty occurs] fs(s) ,
X
or

£ (s) = ae~(2tD)s (5.15.7)
X
Similarly
£ (s) = be”(&*P)S (5.15.8)
Y

We now turn to step (S2). To construct the 1likelihood function,

we observe that casualties have occurred at times tl’ tz, e tK’

there being a total of c¥ X casualties and cg Y casualties with
X Y

Cr + Cp ™ K. Consider now the occurrence of the ksh casualty, which repre-

gents a transition from battle state (mk~l’ nk-l) to (mk,nk). If it
is an X casualty, there would be a contribution to the likelihood

function of (i.e. the p.d.f. of the population from which the ksh sample

of the time between casualties is drawn would te)

a exp(-(a+b) {tk -t (5.15.9)

w11 3
while 1f it is a Y casualty, there would be & contribution to the

likelihood function of

b exp(-(at+b) {:k - 1] . (5.15.10)

b1

Intreducing the variables cﬁ and c:, however, we may write the
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contribution from the occurrence of the kEE casualty to the likelihood

function in both the above cases simply as

Y
c

a b " axpl-(ath) (r, -t }], (5.15.11)

since (5.15.11) reduces to (5.15.9) when cx « ] and to (5.15.10) when

k
v

cﬁ = 0 (i.e. when ci = 1). By the memoryless property of our continuous-
time MARKOV-chain attrition model, the times between casualties are indep-
pendent random variables, and hence the likelihcod function for the observed

sequence of events is simply the product of ell the independent contributions

{5.15.11), {i.e.

< &
L(a,b) = kEl a b exp[-(atb) {t:k - tk__l}] ,

or {from (5.15.2), (5.15.3), and a little manipulation]

X Y
c c

L(a,b) = a = b T expl-(atb)e, ] , (5.15.12)

where L(a,b) denotes the likelihood funccion depending on the parameters
a and b.

Finally, we reach step (§83), the determination of the estimates
; and ; from maximization of the likelihood function (5.15.12). However,
instead of maximizing the likelihood function L(a,b) itself, one usually
maximizes its logarithm, since both maximum values occur at the same point

and the logarithm form is more tractable. Hence, we consider
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¢n L(a,b) = c¥ &n a + cg inb - (a+b)tK . (5.15.13)

~

The maximum—-likelihood estimates a and b are then the values of a and

b that solve the problems

maxintze 4&n L(a,b) , (5.15.14)
a,b
where
"
c¥ + . =K.

From (5.15.13) we see that the two-dimensional maximization problem (5.15.14)
[with (5.15.13)] factors into two one-dimensional maximization problems. Let

us now focus on determining the maximizing value for a. Computing

3 ‘:;."(
3a in L - tK , (5.15.15)

we find from 8L/%e = 0 that

-
e 0, (5.15.16)
yielding
X
~ cT
a== , (5.15.17)
K

which i3 the desired maximizing value for a, since 32 ¢n L/3a"(a) < 0.
Similarly, differentiating (5.15.13) with respect to b and equating to

zero, we otivain
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nli-ln'<

(5.15.18)

~

The estimates given by (5.15.17) and (5.15.18) are the maximum-
likelihood estimates for the LANCHESTER attrition-rate coefficients a and
b 1in the continuous-time MARKOV-chain analogue of (5.15.1). They are also
intuitively appealing, since the casualty process can be considered as being
composed of two POISSON processes, the X~force casualty process and the
Y-force casualty process. The equations (5.15.17) and (5.15.18) then give
the estimates of the LANCHESTER attrition-rate coefficients a and b
from c¥ occurrences of an X casualty and cg occurrences of a Y
casualty in time tK’ which is the time for K total casualties to occur.

Let us now consider the same maximum-likelihood-estimation problem

for the MARKOV-chain analogue of deterministic F|F LANCHESTER-type

equations, 1i.e.

%% = -3y with x(0) = Xy s

(5.15.19)
dl-— -
It bx with y(0) Yo

Here the transition probabilities for the continuous-time MARKOV-chain
attrition process are given by P[X casualty in At] = anAt and

P[Y casualty in At] = bmit, where m and n denote realizations of the
random variables M(t) and N(t), the numbers of X and Y combatants
at time t. 1In this case, for step (S1) we find that

£ (8) = ane” (antbm)s (5.15.20)

X
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and
£ (s) = bme ™ (antPD)S (5.15.21)
Y

Step (S2) then yields that the occurrence of the kEh rasualty at t, makes

k
a contribution to the likelihood function of
X Y
“k "
(amy )~ (omy_ ) © - expl-(amy ;) +bmy ) (e -t M
whence the likelihood function itself 1is given by
K ci cz .
L(a,b) -kzl (an ;) © (bmy ) © exp[-(am _, +bm ) {t -t }]. (5‘.15\.22)
Computing the natural logarithm of the likelihood function
K x X v
fn L(a,b) = z cy zn(ankul) + z Cie Zn(bmk_l)
k=1 k=1
K
- kzl (an, _, +bm ) {t, - 41, (5.15.23)
we find in step (S3) that
X
c K
9 fn L T .
Yenhdreis kgl n_qit - g} s (5.15.24)

whence, setting the above derivative equal to zero, we obtain the maximum

likelihood estimate

a=— I ) (5.15.25)
kel %108 = tp)

Similarly,
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Y
A Y
b=x

kml Pe-1{f% = k1!

(5.15.26)

The above results for maximum-likelihood estimates of attrition-
rate coefficlents are characterized by their simplicity, i.e. explicit
results are easily written down. Let us now show that for nonautonomous
LANCHESTER~-type combat, this will always be true when the attrition-rate
parameters appear linearly. To see this, let us consider the continuous-

time MARKOV-chain analogue of the nonautonomous LANCHESTER-type equations

dx

Ty ~A(x,y) with x(0) = Xq

' (5.15.27)
d

5% = -B(x,y) with y(0) = Yo *

In this case, the forward KOLMOGOROV equations for the stochastic evolution

of combat are given by (5.1.2), and the infinitesimal transition prob-

abilities are given by P[X casualty in At] = A(m,n)At and P[Y casualty in At]
= B(m,n)At. As usual, w and n are realizations of M(t) and N(t), the
numbers of X and Y at time t in the stochastic battle (see Figure 5.11).

We will now consider the special case in which the attrition-rate parameters
appear linearly in A(m,n) and B(m,n). When the attrition~rate coefficients

a and b appear liuearly in the attrition rates A and B, we may write

A(m,n) = aga(m,n), and B(m,n) = bgb(m,n) . (5.15.28)

In this special case of interest, calculations similar to those given

above yield that
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A(m, n)
M(t) ' N(t)

8(m,n)

Figure 5.11. Schematic of combat interactions for stochastic
battle corresponding to the deterministic
nonautonomous LANCHESTER-~type equations (5.15.27).
Here A(m,n) denotes the casualty rate of the
eatire X force with m combatants caused by

the entire Y force with n combatants.

.
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X
c

ioe L) . (5.15.29)
a1 8a(ip_pompey) (& = &y}
and
Y
-~ clr
b= — , (5.15.30)

=1 8 Peo1r M) (8 Biy?

Thus, when the parameters tc be estimated appear linearly in the attrition

rates, very simple estimates result. Furthermore, all our previous results
are just special cases of this one. We have presented these special cases

first, however, in order to show the reader the basic idea of the maximum-

likelihood method without his being overencumbered with notation the

first time.

In all the above developments, we have had the same stopping rule
for collecting our combat data: data was collected until the th casualty
occurred. Let us now suppose, however, that we collect data (or run our
"combat experiment') for a specified length of time t_ or until one side

f
or the other has been annihilated. Again, let us say that K casualties

have been observed at times tl’ t2, eee 5 t We have then that

"
b <t s (5.15.31)
K K
X Y
oo Smp, Y ¢ <n. , (5.15.32)
Koy k=" ksp £ 0

and (5.15.2) through (5.15.4) again hold. Here m, and n, denote the
initial numbers of X and Y combatants. Furthermore, we will now con-
sider the general continuous—-time MARKOV-chain attrition-process model
(5.1.2) (again, see Figure 5.11), with infinitesimal transition probabilities

P[X casualty in At] = A(m,n)At and P[Y casualty in At] = B(m,n) At.
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In this case, there will be an additional contribution to the likelihood

function of

exP[-{A(mK.nK) + B(mK.nK)}{tf- tK}] , (5.15.33)

when :f > tK’ i.e. when neither side is annihilated before tf. Accord-

ingly, the likelihood function for the observed sequence of casualties

is given by
K c: cz
k=1

x exp[-{A(m_ .0 1) +B(mk-l"ﬁ<-l)}{tk'tk-1}]
x exp[-{A(mK.nK) + B(mK,nK)}{tf—tK}] , (5.15.34)

where (5.15.2) through (5.15.4), (5.15.31), and (5.15.32) hold. The

natural logarithm of the likelihood function is then given by

K K

X Y
in L = ¢, in A( v, )+ Y e anB( R )
kzl k P-12"g-1 by Mr-1""k-1
K
- LA amy ) + By g um Y - g )
k=1 :
- {A(m,np) + B(mK,nK)}{tf -t} (5.15.35)

and hence when (5.15.28) holds we find that
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X
¢

a = Ly , (5.15.36)
kml Ba(Me_pome )l -t 5}
and Y
- CT
b - (5.15.37)

KL
Lim1 8y (my_ oMy et o)

where tK+1 a tf. We also have that tK = tf if and only 1if either

K X K Y
Xk-l Cy = Wy Or Ek-l ¢, ® ny» 1.e. if and only 1if either side is

annihilated before ¢t Thus, we see that the maximum~-likelihood estimate

£

of a LANCHESTER attriton~-rate coefficient depends (slightly) on the circum-

stances under which the combat data has been collected, although for the

stochastic analogue of (5.15.1) we have that, for example,

; = (total number of X casualties)/(total length of time that battle has
been observed).

If we had J replications of the "combat experiment,'" we would

redefine our notation as follows:

ti = time of occurrence of kEE casualty in jEh replication,
mi = pnumber of X combatants "alive" during the interval
(5 thag)s
ni = number of Y combatants "alive" during the interval
[ti, t:i_'_l) )
and K, = total number of casualties on both sides for the jEE

replication of the battle.

It then follows [say for the second stopping rule and the model (5.1.2)
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with (5.15.28}] that, for example,

T‘all replications

" 57 oK 3 3 i _ 3
zj-lxkél 8 (myyr Mey) 85~ fg?

R (c,)
a s (5.15.38)

where (cg) denotes the total number of X casualties

all replications
for all replications of the "“combat experiment."

We will wrap up this section by briefly sketching historical develop-
ments and possible future trends in the use of maximum~-likelihood estimation
of attrition-rate coefficients in combat analysis. This approach has been
intimately related with the idea of hierarchy of modeis (see Section 7.20)
in which the output data from, for example, a high-~resolution combat model
of small-unit operations is used as input data to a low-resolution combat
model of large-unit operations (again, refer to Figure 5.1).

Although the concept of a hierarchy of combat models has apparently
been on the minds of a number of military OR workers in the United States
since at least about the mid-1950's, recent interest in the United States
and an accompanying analytical framework apparently dates from the Ph.D.
thesis of G. Clark [24] in 1969 (see also [25]). He developed a satellite
model [called the COMAN (COMbat ANalysis) model] that must be used*® in
conjunction with a high-resolution combat-simulation model (usually Monte
Carlo type) in order to interpolate/extrapolate the results of the higher-
resolution model (in terms of numbers and types of casualties for a
given force mix or mixes) to other force mixes not explicitly evaluated
by the high-resolution model. The COMAN model was a stochastic LANCHESTER~

type heterogeneous-force combat model (i.e. the continuous-time
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MARKOV-chain analogue of certain decerministic heterogeneous-force
LANCHESTER~type equations) and involved the following two modifications
of the then existing LANCHESTER combat theory (see CLARK [24, pp. 139-164]

for further details):

(M1) dincorporation of weapon-system target-acquisition
capability into the model through introduction of the

probabilities that a target is unacquired by an enemy firer,
and (M2) introduction of target priorities.

The former medification (M1) was implemented through the introduction of
target-acquisition probabilities, which then were used to modify (i.e.
degrade) the inherent kill capabilities of weapon-system types, while
the latter modification (M2) was implemented through the input of two
target-priority lists (every weapon-system type on a particular side had
the same target-priority list) and the modelling of the engagement of
target tyres with prioritiesél. Let us now examine in greater detail how
this former aspect [i.e. modification (M1)] was handled. For simplicity,
we will consider a constant-parameter homogeneous-force versilon of
CLARK's COMAN model.

CLARK's [24, pp. 157-158] basic idea for incorporating weapon-system
target-acquisition capabilities into the LANCHESTER paradigm42 may be
.f; seen by considering the MARKOV-chain model (5.1.2) (see Figure 5.11 again)

with total-force kill rates given by
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A(m,n) = a{l - (pXY)m}n . B(m,n) = b{l - )%, (5.15.39)

(p-YX

where
a denotes the kill rate for a single Y weapon system having
acquired targets at which tc fire,
a specific X target is unacquired
?
Pxy by an individual Y firer
and b and Pyy are similarly defined for the X force.

Here, for example, a denotes an acquisition-independent attrition-rate
coefficient and represents the "inherent” kill capability of a single Y
firer in the sense that it is his kill rate when one or more enemy targets
are avallable for him to fire at (i.e. there are acquired targets at which
he can fire).

The total-force kill rates (5.15.23) may be developed in the follow-
ing manner. One assumes that the total-force attrition rate for each side
18 equal tec the sum of the individual firing-weapon kill rates for the
opposing force. Interactions due to multiple firers attacking a single
target are neglected by this assumption. Consider now, for example, a
single Y firer engaging X targets of which there are a total of n
at time t. The probability that this firer has one or wore X targets

at which to fire is given by 1 - )m, whence it follows by the above

(Pyy
additivity assumption that the Y-force kill rate A(m,n) 1s given Ly
(5.15.39). Furthermore, it is readily shown that when targets are easy

to acquire (e.g. Pyy is near 0), then A(m,n) 1is very nearly given by
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an (i.e. the X-force attrition rate is proportional to only che number of
enemy firers as in LANCHESTER's equations for modern warfare). Also, when
targets are difficuit to acquire (e.g. Pyy is near 1), then A(m,n) 1is

very nearly given by ammn (i.e. the X~-force attrition rate is proportional

to the product of the numbers of firers and targets as in LANCHESTER's
equations for area fire). Thus, we should think of (5.15.39) as a general
attrition-rate model that incorporates weapon-system target-acquisition
capabilities into the model and reduces to those corresponding to LANCHESTER's
classic formulations in the above two important limiting cases. From an
examination of DYNTACS43 data CLARK [26] fou~d that the probability of a
target being unacquired is quite sensitive to the nature of the terrain
profile between the oppoging forces. This terrain profile can change abruptly
and cause the target-acquisition probabilities to appear as almost discon-
tinuous functions of battle time.

CLARK's idea of the COMAN model was adopted by the Research
Analysis Corporation (RAC), which later became part of General Research
Corporation (GRC), and evolved““ into COMANEX (COMAN EXtended), which (like
COMAN itself) was composed of two basic sub-programs: the pre-processor
and the simulator (see CLARK [24] or [36] for further details). Figure
5.12 shows how these programs were used, with CARMONETTE serving as the
high~resolution model.

Data for weapons characteristics, combat environment, missionm,
etc. for a particular mix of opposing forces were input into CARMONETTE.

CARMONETTE was then run for a specified number of revlications of the

battle. The computer program then output (for each replication) a
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COMAREX
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Figure 5.12.

| !

KILLER / CASUALTY MATRICES B8Y TIME PERIOD

Implementation of the COMANEX model (from [36]), which
is an example (apparently the €irst to be developed in
the United States) of the fitted-parameter analytical
model (see Figure 5.1). The COMANEX model was composed
of two basic sub-programs: the pra-processor and

the simulator, with CARMONETTE serving as the high-

resolution model for generating input data to the

pre~processor.




time-sequenced casualty history, with the time at which each casualty
occurred (as well as the casualty type and the killer type) being given.
This output was, in-turn, input into the COMANEX pre-processor. This
pre-processor massaged the data and output a set of values for LANCHESTER
attrition-rate coefficients, which represent the kill rates fer each
firer/target combination on the battlefield. The values for these
attrition-rate coefficients were then stored in the COMANEX simulator

to be subsequently used in predicting the outcomes of battles involving
force mixes '"close" to the original mix (i.e. mixes involving the same
types but different numbers of weapons).

The force mixes to be analyzed were then specified and input into
the simulator. In practice, for test purposes, the first such mix was
usually the original one from which the values for the LANCHESTER
attrition-rate coefficients were determined. The simulator was exercised
for up to 100 replications of the battle. It output the expected results
of the battle in the form of killer/casualty matrices which listed the
number of casualties (averaged over all replications) by time period,
for each of the target types, and for each of the killer types. After
it was verified that the simulator indeed reproduced the results of the
original CARMONETTE run, the remaining force mixes were proczssed, and
their expected outcomes were listed (again in the form of killer/casualty
matrices). COMANEX was used in this fashion in a number of analyses for
the U. 3. Army (e.g. see [32]).

Later the same general idea was used by a U, S. Army syatems-
analysis agency called TRASANA (TRADOC Systeme ANalysis Activity) with a

few further modifications in the form of COMANEW [COMAN (N)EW].
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Target priorities and target-acquisition probabilities were eliminated
and replaced by heterogeneous-force allocation factors (see Section 7.7),
and also ammunition expenditure was explicitly considered (see GRAHAM
(39] for further details). Quite encouraging results have been reported.
Future trends would appear to be centered around the use of
further additional functional forms for attrition-rates in this satellite-
model approach. The theory of this approach has now been rather fully
developed, and the author anticipates that future activities will be
centered around computational work and that further computational results
will be reported, especially as to which functional forms for LANCHESTER-
type attrition rates give the "best" results. It is surprising, however,
that there have been so few result:; reported so far about which forms
for LANCHESTER-type equations are at least not inconsistent with simulated

combat results generated by high-resolution Monte Carlo simulations.
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5.16. Attrition-Rate Coefficients for Heterogeneous-Force Combat.

The modern battlefiald contains many different weapon-system types
that operate together with complementary capabilities as "combined-arms
teams." For example, there might be both mounted and dismounted infantry,
infantry with vifles, infantry with machine guns, tanks, different types of
anti-tank weapon systems, artillery, mortars, other types of fire-support
systems, etc. Since each of these various different weapon-system types would
generally inflict and sustain casualties at different rates, when one wants
to model the attrition process for combat between such combined~arms teams,
one is obliged to keep track of the number of each type of casualty and

consider combat between heterogeneous forces.

For such heterogeneous-force combat, the natural generalization of the
homogeneous~force F|F deterministic LANCHESTER-type attrition process may

be written as (see Section 7.7 for further details)

0
with xi(O) =X

9 (5.16.1)

d
PR

with yj(O) - yo
i=]

31 i

where xi(t) (for 1 = 1,2,...,m) denotes the number of the iEh weapon-system

type of the X force at time t, Bji denotes the rate at which one Xi firer
45

kille Yj targets ~, and the quantities yj(t) (for j = 1,2,...,n) and

Aij are similarly defined for the Y force {gsee Figure 7.11). Here (as

in Section 7.7) we will always let the subscript 1 refer to the X force
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(and rake on the integer values 1 through m) and the subscript J refer to

the Y force (and take on the integer values 1 through n). We will call

a nonnegative quantity such as, for example, Aij 4 heterogeneous—-force

LANCHESTER attrition-rate coefficient. It represents the fire effectiveness

of a Y, firer againsc xi targets and denotes the rate at which a typical

3

Yj firer kills Xi targets in the opposing heterogeneous enemy force (see
Figure 5.13). BONDER and FARRELL [17] (see also Section 5.3 above) have

argued that one should take such a heterogeneous-force LANCHESTER attrition-

rate coefficient to be given, for example, by

Ay, =, (5.16.2)

where E{Tx Y ] denotes the expected time for a single Y, firer to kill

3
i
an Xi target. As we have stressed above, the development of credible

methodology for computing numerical values for such LANCHESTER attrition-rate
coefficients has greatly facilitated the use of LANCHESTER~-type combat models
as viable defense-planning toole.

Heterogeneous-force attrition-rate coefficients such as Aij and
Bji in rhe model (5.16.1) reflect a much greater complexity in the attrition
process than do homogeneous-force attrition-rate coefficients such as a and
b in Ehe model (5.2.1): besides being complex functions of weapﬁn-system—
type capabilities and target-type characteristics, the attrition-rate

coefficienta A and B also depend on additional operational factors

1] 31
such as the distribution of target types, relative rates of target~type

acquisition for the various different types of firer-target pairs, procedures
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X FORCE (m different Y FORCE (n different
weapon-system types) wecpon-system types)

"

INFANTRY
y'( t)

y.(t)

v,

° ARTILLERY |
X y, (1)
\ ARTILLERY

x (t)
m

Figure 5.13. Schematic showing notation convention for subscripts
on attrition-rate coefficients in heterogeneous-force
combat. Our convention is that the first subscript
denotes the target type and the second subscript

denotes firer type, e.g. denotes the rate at

A
ij
which a typical Yj firer kills xi targets in

the opposing enemy force.
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and priorities for assigning weapon~system types to target types, etc. In
other words, not only must one consider how a given weapon~system type causes
attrition to a particular engaged-enemy-weapon-system type (as one deces in
modelling homogeneous-force-on~force combat attrition), but also one must
account for different such pairings occurring at different times and places
on the battlefield and also possible changes in these pairings over time.
Thus, attrition~rate coefficients for heterogeneous-force combat must reflect
much greater complexities of the attrition process than those for homo-
geneous-force combat. It is of fundamental importance, though, that all

approaches known to this author for modelling heterogeneous-force attrition-

rate coefficients take homogeneous-force results f[e.g. (5.4.1)] as key

"building blocks" for constructing their heterogeneous-force results. Thus,

” although there will occasionally be some minor modifications, we will use
(in the appropriate way) all the above homogeneous-force-attrition-rate-
coefficient results for developing heterogeneous-force attrition-rate
coefficients.
It is convenient for modelling attrition-rate coefficients (e.g. see
BONDER and FARRELL [17, pp. 15-16] or CHERRY [21, pp. 6-7]) to reflect such
complexities of heterogeneous-force combat as discussed above by partitioning

the attritionprocess into four distinct subprocesse546:

(SP1) the fire effectiveness of weapon-system types firing at

live targets,

(SP2) the allocation process of assigning weapon-system Iypes to

target types,
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(SP3) the inefficiency of fire when weapon~system types engage

other than live targers,

and (SP4) the effects of terrain on limiting firing activities of

weapon-system types and on the mobility of the asystems.

Two general ways in which these effects have been included in LANCHESTER
attrition-rate coefficients are as follows: to model such a coefficient as,

for example,47

Y
(W1) Aij = wijfijaij ’ (5.16.3)

Y
or (W2) A, , = Fij(aij’

¥ all other variables deacribing the ) , (5.16.4)

acquisition and engagement of targets

where

wij denotes the allocation factor (the fraction of Yj assigred

to engage Xi) ’
1} 1" - - )

aiJ denotes the 'inherent" asingle~firer weapon-system kill rate
(the rate at which omne Yj firer type kills xi target types
when it is engaging only them),

i ] ‘ fzj denotes a factor aggregating the effects of all other variables

that are not included in the "inherent" single-firer kill rate

| a and modifying the effectiveness of an individual Y

i3
firer type against xi target types,

3
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i sz denotes a function that yields the attrition-rate coefficient for a YJ

firer type engaging Xi target types (with arguments as indicated),

and a denotes the conditional single-firer weapon-system kill rate

i]
i (the rate at which one YJ

target types when it is engaging them).

firer type kills acquired xi

The reader should note the distinction between the ''{nherent" single-firer

kill rate ai_1 (the rate at which one Yj firer type kills X1 target types

when it is engaging only them) and the single-firer kill rate against acjuired

targets a (the rate at which one Y, firer type killas acquired X

13 b 1
‘arget types when it 1s engaging only them). In other words, aij - aij when
the time to acquire a target is equal to zero. The '"inherent" single-firer
kill rate for a particular firer-type/target-type pair aij may be calculated
by using data for the pair together with the appropriate attrition-rate-
coefficient formula given above. For the reader's convenience, we have
summarized in Table 5.V the conditions under which such formulas have been
daveloped and have also cited the equation number for each such formula given
above. The conditional single-firer kill rate (i.e. the single-firer kill
rate against acquired targets) for a particular firer-type/target type pair

a may then be calculated by setting the time to acquire a target equal to

13
zero in the appropriate expression for aij' For example, the conditional
single-firer kill rate for a weapon-system type using MARKOV-dependent fire

and an impact-lethality mechanism is given by

{E[Th] + E[Tf]}

A E[T, ] - E[T ] +

%4 P(K|H)
| . {E[T_] + E[T ]} ,
n 4 {1 ~ P(hin)]
‘ ( * P(hlm) { PKIH) + P(hlh) - pl} , (5.16.5)
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TABLE 5.V. Summary of Conditions Uuder Which Expressions for LANCHESTER
Attrition~Rate Coefficients Have Been Developed, With Equation

Number of Each Expression Given.

(Cl) MARKOV-dependent fire and impact-lethality mechanism (5.8.2)

(C2) MARKOV-dependent fire and lethality mechanism by which a target

can be killed not only by a hit but also by a miss (5.14.1)
(C3) burst fire and impact-lethality mechanism (5.14.2) or (5.14.53)

(C4) multivolley fire and area-lethality mechanism48 (5.13.3) or

(5.13.19).
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' where all symbols are as defined in Section 5.8.
Before providing a few selective detailed results on the modelling

of heterogeneous-force—-attrition-rate coefficients A in the two general

1]

forms (5.16.3) and (5.16.4), we will present a brief overview of this entire

fieldag. The model (5.16.3) and the corresponding form of (5.16.4) [namely,
Y . .

Aij wijfijaij] have received by far the widest use. Let us note here

that the heterogeneous-force model presented ia Section 7.7, i.e. (7.7.3),

corresponds to (5.16.3) with fY = 1, In other words, in Section 7.7 we

i3
have developed a heterogeneous~-force model withso

Aij = wijaij . (5.16.6)

The modelling of attrition-rate coefficients A by the expression (5.16.3)

1]
; has been used in operational models such as (at the battalion level of combat)
BONDER/IUA [18] and its many derivatives (e.g. AIRCAV [85], BLDM[5], AMSWAG [41],
FAST [19]) and (at the theater level of combat) IDAGAM [1; 67] (see also
TAYLOR [74-78; 79, pp. 797-800]). The mecdelling of attrition-rate coefficients
Aij by the expression (5.16.4) and its special form

A (5.16.7)

13 - B13%13
has been used in operational models such as (at the battalion level of combat)
COMAN [24; 25] and its derivatives COMANEX [36; 73] and COMANEW [39] (see
also R. M. THRALL et al. [82]) and (at the theater level of combat) the

VECTOR series of models [28; 54; 86; 87]. Here gzj denotes a factor
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({similar to fij in (5.16.4)] aggregating tke effects of all other variables

that are not included in the conditional single-firer kill rate aij and

modifying the effectiveness of an individual Y, firer type against X

3 i
target types. COMAN and its derivatives have used (5.16.7), while VECTOR has

used the nonlinear form (5.16.4).

We will now provide a few selective detailed results pertaining to the
above brisf overview. In the BONDER/IUA [18] and its many derivatives such
as AIRCAV [85], BLDM [5], AMSWAG [41], and FAST [19], the first three sub-
prncesses (SP1) through (SP3) given above are incorporated into an attrition-

rate coefficient such as A as follows (see also Section 7.7):

13

Y

1 = wiinjaij , (5.16.8)

A

where wij and aij are as defined after equation (5.16.3) and (5.16.4),

and 17, denotes the intelligence factor (the fraction of those Y

13
allocated against X

3

who are actually engaging live X, target types). This

i i

intelligence factor, however, has not been considered in any applications at

least through 1975 (see CHERRY [21, p. 7]), i.e. = 1.0 for all i and

Y
Iij
and hence (5.16.8) reduces to (5.16.6). A submodel based on target-acquisition

considerations is used to calculate the allocation factors V The pro-

ij°
cedure used in the original version of BONDER/IUA is similar to that used

in AMSWAG and discussed belowSI. In the AIRCAV and BLDM models the factors
were calculated based on parallel acquisition of targetssz and a target-prioity

1list (inwhich more than one type of target was allowed to be tied at the

same level of priority to a firing weapon-system type). In actual computation,
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an algorithm based on a simplifying approximation was used to compute
numerical values for such allocation factors (see [85, pp. 29-32] or [5,
pp. III-6 through III-8]).

In the AMSWAG [41] model attrition-rate coefficients are modelled as

A (5.16.9)

13 ™ Y1399

where Uj denotes the fraction of the firer-type Y

Submodels are used for

that are unsuppressed.

J

(a) the suppression factor U, [41, pp. 15-17],

3

and (b) the fire-allocation factor wij [41, pp. 18-21].

We will now discuss in detail the fire-allocation submodel used in AMSWAG.
The following factors influence which target types will be engaged by

a particular firer type in AMSWAG and what allocation of fire they will

receive53

(Fl) target-type priority,
(F2) range to target,

(F3) intervisibility,

(F4) round choice,

and (F5) target-type acquisition.
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. In AMSWAG each firing weapon-system type has its own target priority scheme
which allows different target types to have the highest priority at various
}anges. An example of one such firer-type target-priority scheme is shown in
Figure 5.14. It i3 assumed that a firer type will attempt to allocate its fire-
power against the enemy target type currently having the higher priority, with
the closest target not necessarily having the highest priority (see Figure 5.14).
However, 1f two potential targets are of the same type, the one at the shortest
range always has the higher priority. Besides being an importamt factor in
target priority, the range (distance) between firer and target also determines
firing feasibility, i.e. no firing event can take place beyond the specified
maximum effective range of the firing weapon-system type. Moreover, no target
(regardless of priority or proximity) can receive any fire allocation if line

of sight from the firer to that particular target (i.e. intervisibility) does
not exist. However, if line of sight does exist, the fact that a target is

seen either partially exposed or fully exposed does not affect either the

target's priority or its allocation.

The availability of ammunition of the appropriate type also influences

the allocation of fire in AMSWAG: a proper round choice must exist before a
firer type can allocate its fire against a particular target types. Round
choice is modelled for each firer-type-—target-type combination by a table

of first and second choices of rounds at both short and long ranges, plus a
threshold range used to determine whether the current firer-target range

will be classified as either short or long (see Table 5.VI). If for some
reason the first choice of round type cannot be fired, the model tries to
carry out the firing event with the second-choice round type. If neither

round type can be fired, the target type receives no allocation of fire
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Figure 5.14. Typical target-type priorities used in AMSWAG
for a BMP firer in Europe with Blue on the
attack (from [41]).
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during this time interval. [Here the term time interval refers to the fact
that the basttle has been segmented into a large number of small time steps
({.e. intervals) for computational reasuns as per the numerical inte-

gration of the LANCHESTER-type attrition equations (see Appendix E, especially
Figure E,1).] Currently ip AMSWAG, there are two reasons why a particular
round type might not be used: (1) the particular firer type does not have
available that type of round, and (2) the firer is moving and that type of
round cannot be fired from a moving platform. Thus, a target type will

receive an allocation of fire only when all the following conditions have

been met:

(C1) the firer type has not allocated more thau ninety-eight

percent of ity firepower;

(C2) the target type is the highest priority target type that has

aot already received an allocation;

(C3) the target type is within the maximum effective range of the

firer type;
(C4) 1line of sight exists;
and (C5) a proper choice of round type exists.
Finally, target—-acquisition probabilities determine in the following way

exactly what the allocation by a firer type against a particular target

type will be when all the above ccnditions have been met. The cumulative
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detection probability for each firer type (say the iEﬁ) against each target type

(say the jﬁh) is computed at each time step since the existence of intervisibility.

If we let denote this cumulative detection probability, then in suck an

pij
"expected-value' model as AMSWAG 1:'1.1 1s interpreted as representing the
fraction of the 1£§ firer type that has detected the js31 target type. Then

the fraction of fire allocated by the isﬁ firer type against the jsﬂ-target
type cannot exceed pij times the unallocated portion of the firer type's fire.
A firer type continues to allocate its fire until it runs ocut of target types
or has allocated more than ninety-eight percent of its firepower (see HAWKINS
{41, p. 21] for further details).

In IDAGAM {1; 67] attrition-rate coefficients are also modelled by
(5.16.6), but completely different submodels are used to compute the "inherent"
single-firer kill rate aij and the allocation factor wij than are used
in BONDER/IUA. The "inherent' single-firer kill rates are computed according
to the heterogeneous-~force version of (5.2.4) (but at a much lower level of
resolution than that of a fire fight considered in BONDER/IUA), while a sub-
model based on the concept of a 'standard force" (see SHUPACK [67, pp. 45-49}
for further details) 1s used to determine the allocation factors. These are
computed, for example, for the Y force by

s | %(¢)
Y13 | 5F

i
xi(t) ’ (5.16.10)

P (B
{m1 4 xiF

SF

where xsF denotes the number of X, weapons in a standard force, wij

i i
denotes the fraction of Yj weapone that would fire at Xi targets if X
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were the atandard force, xi(c) denotes the number of X1 weapons in the

sector (or geographical region of interest), and the summation extends over

all weapon-system types iu the sector. Thua, the allocatlon factors used in

IDAGAM are internally computed based on what the allocatlon of fire by each

weapon~system type in the given farce would be against each opposing weapon-

system type in a standard force and corrected by the relative force compositions.
SF SF

Both X, and wij

Thus, the fraction of fire allocated by a weapon-system type against an enemy

are externally determined end are inputs into IDAGAM.

weapon-system type in an opposing force i1s roughly proportional to what would
he allocated against the standard force but modified by the relative force
composition of the actual opposing force. The denominator of (5.16.10)

insuras that z = 1.0.

m

1m1 Y13
As noted above, both the COMAN model [24; 25] (and its derivatives

COMANEX [36] and COMANEW [39]) and the VECTOR series of models [28; 54; 86; 87]

(in particular, VECTOR-2) use the conditional single-firer kill rate aij

to calculate the attrition-rate coefficient A COMANEX [73] considers

i3’

target priorities and computes attrition-rate coefficients according to

xH
1

Aij = (py)

Xy
31 - (py) s ayy 0 (5.16.11)

where

- p a specific X target is unacquired
Px by an individual Y firer ’

Xy denotes the number of Xi targets, and x? denotes the number of

surviving X weapon-system types of higher priority than Xi. Let us now

introduce S, denoting the set of indices of all target types having a

i
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. H
higher priority than Xi. It follows that X, Zk Esi X, - The parameters
and n are calculated as maximum-likelihood estimates from simulated

Py 19
combat data generated by a high-resolution Monte Carlo simulation such as

CARMONETTE [36] (see Section 5.15 for further details). For a closely related
alternative approach, see THRALL et al. [82, pp. 99-104]. COMANEW computes
attrition-rate coefficients according to [cf. (5.16.6) above]

A (5.16.12)

13 ™ Y13 %4y

where both factors (i.e. wij and aij) are estimated from simulated combat
data by the maximum-likelihood method (see [39] for further details).

VECTOR-2 [28; 54] also conmsiders the conditional single-firer kill
rates aij and uses different formulas to compute the attrition-rate coeffic-
ients Aij according to whether the target-acquisition process is done in
series with or in parallel with the killing of acquired targetssa. Thus, the
two major factors determining the numerical value of an attrition-rate

coefficient in VECTOR-2 are

(F1) the acquisition and selection of targets,

and (F2) the conditional single-firer kill rate against acquired
target types, aij'
The acquisition and selection of targets in VECTOR-2 is conceptualized as

consisting of the following three processes:
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(Pl) the line-of-sight process, which determines whether a given

target type 1ls visible or not to a particular firer type,

(P2) the target-acquisition process, which determines the time for

a firer type to acquire a particular target type,

and (P3) the target-section process, which represents how a particular
target type 1is selected for engagement from among those

acquired.

The interaction of these three processes depends on whether target acquisition
is done in series or in parallel. 1In both cases each firer type orders all
opposing enemy target types intc a priority list, which the model uses to
determine which target types are to be engaged first.

In serial acquisition in VECTOR-2 the acquired target type of highest

priority is engaged by a particular firer type until it has been destroyed
or until line of sight has been lost. At this time the serial acquirer

must acquire a new target. Moreover, past acquisitions are not remembered
by the serial acquirer. Also, in searching for a new target, the timeliness
of acquisition is given consideration through a series of search-cutoff
times. When there are m target types, the selection of the next target
type involves a sequence of (m-1) search-cutoff times. Prior to the ksh
cutoff time (where k < m), the observer looks for only target types of

priorities 1 through k and ignores any lower priority targets. If the

observer has not acquired a target by the (m-l)gE cutoff time, he will
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then engage the first target acquired (regardless of its priority). Once a
target 1s acquired in serial acquisition, it cannot be preempted by a higher
priority target, and only its destruction or loss of line of sight can cause
fire to be shifted away from it. In parallel acquisition search for new
targets continues even during the engagement of acquired targets. When the
target has been destroyed, a higher priority target type has been acquired,
or line of sight has been lost; fire 1s instantaneously shifted to the

highest priority acquired enemy target type. A narallel acquirer does

remember all past target-type acquisitions. It should be noted here that these

two different conceptual models of target acquisition lead to two completely
different expressions for the LANCHESTER attrition-rate coefficient: the
attrition-rate coefficient for serial acquisition may be developed using the
mean-first-passage-time result given in Section 5.9 for a continuous-time-
semi-MARKOV process, while that for parallel acquisition may be developed by
straightforward probability arguments.

The following i3 a summary of the assumptions made in VECTOR-2 con-

cerning target-type acquisition and selection in maneuver-unit combat [28;

pp. 53=54]:

(Al) the time to acquire a target, given that it is continuously
visible, is an exponentially distributed random variable with

parameter Ai » where 1 1s an index denoting the weapon-

3
system type of the target and j 1s an index denoting the

weapon-system type of the firer;
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(A2) the line~of-sight process betuveen a pailr of opposing weapon-
system types is an alternating MARKOV process with two states

~-yvigsible and invisbile;

(A3) the line-of-sight process for an observer-target pair is inde-

pendent of that for all other pairs;

(A4) there are two modes of acquiring targets; an observer using
the parallel mode acquires targets continuously, even while
engaging other targets; an observer using serial acquisition

can acquire only between engagements of targets;

(A5) when an observer in the parallel mode acquires a target of
higher priority than the one heing engaged, he shifts his fire

instantanteously to the target of higher priority;

and (A6) an observer in the serial mode selects a new target whenever he
loses line of sight to the previous target or the previous
target is killed (the model assumes that the firer can perfectly
distinguish between active and killed weapon systems and never
engages killed systems); there is a sequence of cutoff times
to limit the time spent searching for certain target types,
such that prior to the n-'-:-!l cutoff time only weapon-system

typés of priorities 1 through n are eligible a3 targets.
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Thus, the target-acquisition-and-selection process transforms a ¥
weapon-system type's (say the jEE) kill rates against acquired X target types
(aij for i =1,2,...,m) into an achieved kill rate against a particular enemy

target type (say the 1599 A that accounts for target priorities and the

1]
various competing activities in which a single firer may be engaged over time.
Moreover, the amount of attrition actually assessed against a force is limited
by a tactically acceptable maximum attrition rate (see [28, pp. 54-55] for

further details). We will now give attrition-rate~coefficient results for

the two cases

(CAl) serial acquisition of targets,

and (CA2) parallel acquisition of targets.

For the former case (CAl), it is additionally assumed for the derivation of

an expression for A that the time to kill an acquired target is exponentially

13

distributed [with parameter aij’ where 1 is an index denotinz the weapon-
system type of the target (here Xi) and J 1s an index denoting the weapon-
system type of the firer (here Yj)]‘ Also, in VECTOR-2 the mayimum number of
weapon-system types in a maneuver element is currently 11, i.e. within a homo-
geneous portion of the battlefield m = n = 11 where m and n are X-

and Y-force integer index limits appearing in (for example) summations below.

For serial acquisition of targets in VECTOR-2, the heterogeneous-force

LANCHESTER attrition-rate coefficient A is taken to be given by

13
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h, P
A - 1] 1 (5.16.13)
J T as 1
N E[Tkj]+ —
= +
k=1 %y My + Akj
where
[ a group~1 target (here Xi) being fired upon a acquired
h =P by a group~j firer (here Yj) will be destroyed by that
- ]
1] firer before either line of sight is lost or the target
| 1s destroyed by another firer. J
P =P F a group~j weapon which employs serial acquisition acquires ) ,
i | and selects a group-i target type when it selects a target |
E[Ti;] = expected time orn a given acquisition that a group-j weapon spends
acquiring and selecting a group-i target [here Ti? = (0 1if the
acquisition is of a non-group-i target; also if Ti? >0 for
some i, then T:; = 0 for all other 1i],
El— = expected time that a group~j weapon firing at a group-i target
4 requires to achievz a kill, i.e. the single-firer weapon-system
kill rate against an acquire target [it should be recalled that
the corresponding time to achieve a kill (a r.v.) has been assumed
to be exponentially distributed with parameter aij]’
-f%— = expected time that a weapon system in group i spends in the visible
1 state (for a weapon in a group j) each time that it enters that
that state [it 1s assumed that the corresponding time (a r.v.)
is exponentially distributed with parameter “ij]’
i S corresponding value for the invisible state,
“1j
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and :%—-- expected time for any firer other than the single group-j firer

Aij in questicn to kill a particular target in group i.

In somewhat simpler words, Pij denotes the selection probabllity of an Xi—type

target by a Y ,-type firer, and h denotes the corresponding destruction

3 ij
probability. The above expression (5.16.13) was developed by taking the
LANCHESTER attrition-rate coefficient to be the reciprocal of the expected time
to kill a target and then by involing BARLOW's [4] mean-first-passage-time
result for a continuous-time semi-MARKOV process [e.g. see (5.9.13)], and
consequentl; in VECTOR-2 the target-destruction process has been conceputalized
in such a way that this latter result could be invoked (see [28, pp. 55-67]

for further details). We will now give expressions for all the remaining

computed quantities in (5.16.13) (again, see [28] for further details). Accord-

ingly, we have

by = 11 , (5.16.14)
aij + uij + A 13
and
Prs
I-1 I-1
-l co _ .co
=D, (tx 1,0 U [1 D, (¢ 1 1 P oexp { 21 RyMygleron,g = tia1, sl
m=1l 2+1 9
co O
* RN Loin B (e Y expd 2 Ret1, Mer1, om0
g=I-1 k=1
(O (O
x E;; {[exp(~ -2, 5t EJ)] [exp (~ Z, 5t 241, J)]} , (5.16.15)
where
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. observer in group J (here Y_) has a target in group I
J ’
DIJ(t) =P

(here XI) under survelllance at time t after initial of search

co
try ™ cut-off time for an observer in group J searching for targets to
exclusively engage acquired targets of priority classes 1 through I
(i.e. a target of priority class I + 1 will not be engaged in
co co
acquired before t1y < t1+1’J) (see Table 5.VII; also KARR [47,
pp. 32-33]),
NIJ = expected number of currently surviving group-I targets within range
of a group-J firer,
Ao.n
Ry = mog e (5.16.16)
& IS & '
Ti_ = expected time for a weapon in group J (here YJ) to detect a visible
L target in group I (here XI) it should be recalled that the corres-
ponding time to detect (a r.v.) has been taken by assumption (Al)
to be exponentially distributed with parameter AIJ] ,
and 241
Z,5 " k};l RNy - (5.16.17)

Here the two conventions have been followed that (1) a summation over an
empty index set is always taken to be equal to zero, and (2) a product taken
over an empty index set is always taken to be equal to one, e.g. 22_1 Tk =0

( and Hg_l Tk = 1., Also, the complement of a cumulative distribution function
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TABLE 5.VII. Rules for Target Selection by Serial Acquirer
in VECTOR-2.

Priorities of Targets Priorities of Targets
to be Engaged to be Engaged if
Immediately Upon Previously Acquired
Time Acquisition and Still Visible
(0,391 1
tig 2
2.+ L2
es9 3
(€59, £5) 1, 2, 3
("ggz,s"ggl,ﬁ L 2 » el
t1?21,.1 "
(CESI,J'“) 1, 2, vy =1, m
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like {for example) DIJ(t) has been dencted as BIJ(t)’ and we then (»f

- L ‘ .
course) have DIJ(t) 1 DIJ(t). Let us observe tnat 0 ¢ NIJ < Xg-

The target types have been indexed in such a way that Xl denotes the
highest priority target, xz denotes the next highest, etc. It remains for
IJ(t:) in order that PIJ as given by
(5.16.15) mav be computed: the following expression has been developed for

us to give an expression for D

D..(t) (see (28, pp. 62-63] for further details)

1J
Dyg (v)
R, N1
=1-1{1- T o a {exp(~RIJt) - exp[-(uIJ + AIJ)t]} . (5.16.18)

Returning nos to the computation of the LANCHESTER attrition-rate coefficilent

A by (5.16.13), we see that it remains for us to give expressions for the

ij
expected time to acquire and select a target E[T;i] and the single-firer

kill rate of Xi-type targets by other than Yj-type firers Xij' The follow-

ing expression has beer developed for E[‘I’ad

IJ] (see [23, pp. 65~66] for furcher

details)
