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PREFACE

The Twentieth Century has been characterized by innumerable

attempts to use the Scientific Method as a basis for policy planning

in national and international affairs. The emergence of the field of

operations research (OR) out of attempts of scientists in the Western

Democracies to apply the Scientific Method to military problems during

World War II is well known. Since World War II there has been a

dramatic growth in both the interest in and use of OR and systems-

analysis techniques for such purposes within the U.S. defense establish-

ment, especially since the beginning of the so-called McNamara Era of

defense planning. A concomitant trend has been an equally dramatic

increase in both the number and variety of mathematical models used to

support these analytical activities.

Unfortunately, professional communications within the defense

analytical community have not kept pace with this dramatic growth in

modelling and analysis activities. In particular, there has been a

relative lack of scientific communication and organization of knowledge

concerning the foundations of defense analyses and associated defense-

analysis technology. However, even this important point has not been

explicitly articulated in several fairly recent critical appraisals of

tthe foundations of defense analyses . To be sure, research progress on

these foundations has been made, but it has not always been efficiently

and effectively communicated to interested parties. This inaccessibility

-In particular, see JACOB A, STOCKFISCH, "Models, Data, and War: A

Critique of the Study of Conventional Forces," R-1526-PR, The RAND
Corporation, Santa Monica, California, March 1975 and also U.S. General
Accounting Office, "Models, Data, and War: A Critique of the Founda-
tion for Defense Analyses," PAD-80-21, Washington, D.C., March 1980.
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of scientific information concerning combat-modelling methodologies

has contributed to the existing gap between theory and practice. Some

undesirable consequences of this communications deficiency between

analysts and researchers include (1) duplication of effort, (2) models

being inefficiently used (or even misused), (3) lack of the appropriate

intellectual environment for effective professional review by peers, and

(4) lack of any "road map" to provide direction (and purpose) for

methodological developments.

Thus, although there has been a great need, information about

combat-modelling methodologies, their strengths and weaknesses, limita-

tions, etc. has not been very widely disseminated in accessible form.

National security (i.e. material being classified) has not really been a

factor in producing this situation in which the quantitative foundations

of defense analyses have not been readily available to the analysis

community for scientific scrutiny. Without such generally available

methodological material, little scientific progress can be made, since

open scientific discussion is hampered by such vital information not

being readily available to all interested parties. Consequently, this

monograph has been written in an attempt to fill some of this void by

organizing the current state of knowledge about a certain type of combat

model, so-called LANCHESTER-type equations of warfare. Hopefully, its

appearance will also stimulate discussion and debate concerning assess-

ment of existing capabilities and future needs in this one specific area

of combat-modelling methodology.

At the personal level, the reader may be interested in knowing how

the author has become drawn to this subject: the author has been

interested in the subject of LANCHESTER-type combat models since the late
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1960's, when R. NICHOLS HAZELWOOD introduced him to combat models and,

in particular, to the work of HERBERT K. WEISS. He has been fortunate

enough to have subsequently had such interests nurtured at the Naval

Postgraduate School (NPS) and has had the opportunity to do research on

combat models and teach graduate-level ccurses about them to students

(primarily U.S. Army and U.S. Marine Corps officers) in the OR curriculum

ac NPS since 1970. The treatise at hand (and its petite predecessor

Force-on-Force Attrition Modelling ) has evolved from these activities.

This monograph is a comprehensive treatise on LANCHESTER-type models

of warfare, i.e. differential-equation models of attrition in force-on-

force combat operations. Its goal is to provide both an introduction to

and current-state-of-the-art overview of LANCHESTER-type models of warfare

as well as a comprehensive and unified in-depth treatment of them. Both

deterministic as well as stochastic models are considered. Such models

have been widely used in the United States and elsewhere for the model-

ling of force-on-force attrition over the complete spectrum of combat

operations, from combat between platoon-sized units through theater-level

air-ground combat. This material should be of interest primarily to

individuals concerned with defense planning, quantitative aspects of

military analysis, military OR, war gaming, or combat modelling, although

it may also be of interest to the reader concerned with the modelling and

analysis of other dynamic systems. It should also be of interest to the

concerned citizen who is interested in the foundations for defense

analysis and has the appropriate technical background.

ttThe full citation here is JAMES G. TAYLOR, Force-on-Force Attrition
* Modelling, Military Applications Section of the Operations Research

Society of America, Arlington, Virginia, 1980.
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I have tried to make this monograph particularly suitable for three

specific groups of readers: (1) the beginning student of military OR,

(2) the practicing military OR analyst, and (3) the research worker in

OR, applied mathematics, models, or systems analysis and evaluation. For

the first group (i.e. beginning studeats of military OR), I have included

much expository and explanatory material: each major topic is preceded

by a general discussion of the contextual setting in which it arises

(with figures depicting important conceptual ideas and typical numerical

results). For these readers I have supplied motivation and overview.

For the second group (i.e. practicing military OR analysts), I have

emphasized those theoretical and applied concepts that are basic for the

building and running of operational combat models (e.g. the numerical

determination of values for LANCHESTER attrition-rate coefficients) and

have provided a bridge between such current operational combat models and

the abstract notions that form their conceptual bases. For these readers

I have supplied examples from current operational combat models. For the

third group (i.e. OR and other researchers), I have surveyed the current

state of the art of pertinent quantitative methodologies concerning

LANCHESTER-type combat models, particularly mathematical results for

analytically investigating the quantitative behavior of relatively simple

LANC1YITER-type models. For these readers I have included numerous

references to the literature and a comprehensive bibliography on the

LANCHESTER theory of combat. This book, however, is particularly slanted

toward the beginning military-OR student who is interested in force-on-

force combat models, since it is through him (particularly if he is an

officer in one of the military services) and his education about combat

models that the greatest long-term improvements in defense decision
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making may be achieved by the U.S. Departrment of Defense (DoD). It

strives to give the reader (regardless of his orientation) an apprecia-

tion of the complex operational models that are today used for

investigating large-scale simulated air-ground combat operations by DoD.

Mathematical prerequisites have been kept to a minimum, with more

mathematically oriented sections that are not necessary for the under-

standing of the sequel being identified as "starred sections." Through-

out this monograph, modelling aspects have been emphasized. Anyone with

a background in calculus good enough to understand the physical

interpretation of an ordinary-differential equation model should have no

trouble in reading most of it. However, the few starred sections do

require more mathematical sophistication to be understood.

This monograph is organized into two volumes of four chapters

each. The monograph begins with a discussion in Chapter 1 about the

general nature of models (particularly, combat models), their use in OR,

and particularly the contextual setting for the use of such models as

planning tools in the U.S. DoD. Chapter 2, which begins by reviewing

FREDERTCK W. LANCHESTER's pioneering work on quantitatively justifying

the Principle of Concentration, examines LANCHESTER's classic combat

models and the many subsequent variants of them. The models are kept

simple and deterministic here, but the stage is set for subsequent model

enrichments considered later in this monograph. The discussion of

LANCHESTER's classic combat models is self-contained, with background

material on the relevant mathematics being contained in an appendix.

This material is fundamental and very important not only in its own right

but also for understanding subsequent developments in this book: it

forms the basis for the many extensions considered later in the book. A
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selection of Problems has beer provided in Chapter 2 for the enhancement

Fof the reader's familiarity with these basic models.

Chapter 3 ocontains a comprehensive examination of some simple

models of battle termination. It considers both the empirical foundations

of such models and also the mathematical analysis of their properties.

Both deterministic and stochastic battle-termination processes are

examined, although only deterministic LANCHESTER-type attritioýi processes

are considered. This chapter is essentially a state-of-the-art survey of

battle-termination modelling and focuses on work by H.K. WEISS and R.L.

HELNBOLD. It culminates by examining HELMBOLD's empirical investigatiun

of the validity of breakpoint hypotheses. Cbapter 4 examines stochastic

versions of the simple deterministic homogeneous-force models considered

in Chapter 2. Continuous-time MARKOV-chain models of LANCHESTER-type

attrition processes are exclusively considered. After examining

analytical results for such models and noting their complexity, the

reader will certainly appreciate the fact that except for small numbers

of combatants, the expected course of combat (at least for MARKOV-chain

models of homogeneous-force combat) is well approximated by deterministic

LANCHESTER-type equations. Not surprisingly, such deterministic

LANCHESTER-type models are consequently frequently referred to as

expected-value models. Herein ends Volume I.

Volume II begins with Chapter 5. In order to use a LANCHESTER-type

model in any actual military OR study, numerical values must be determined

for the attrition-rate coefficients, which represent the single weapon-

system-type kill rates. Chapter 5 considers in detail approaches and

methodologies for determining such numerical values for LANCHESTER

attrition-rate coefficients for various types of weapon systems. The

vii
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two main approaches that are currently used in the United Srat#ns to

determine such single-system kill rates are basad on using (.) a "free-

standing" analytical submodel of an individual firer engaging a single

enemy target, and (2) a statistical estimate based or "combat" data

generated by a detailed Monte Carlo combat simulation. Such methodology

is a basic essential ingredient for the building of any operational

S-I

* LANCHESTER-type combat model. Chapter 6 considers LANCHESTER-type

models for combat between two homogeneous forces and emphasizes the

* ~analysis of such models. IYor several important classes of homogeneous~-

force models, analytical results are given that make the analysis

(including determining the force levels as func~tions of time and predict-

ing the battle's outcome) of such variable-coefficient combat models

almost as convenient as that of LANCHESTER's original constant-coefficient

ones. Tables of special new mathematical functions (i.e. the LCS

functions developed by the author) are provided for the reader's use in

analyzing certain important classes of "aimed-fire" bat-tles between two

homogeneous forces.

Chapter 7 considers modelling tactical engagements and surveys

approaches currently used in the United States for assessing casualties

in simulated tactical engagements between general-purpose military

forces in conventional air-ground combat operations. It reviews the

various different modelling alternatives available to the military OR

worker and then expounds on both detailed deterministic LANCHESTER-type

models of attrition in tactical engagements and also aggregated-force

models based on index numbers (e.g. firepower scores), with hierarchical

modelling approaches also being briefly discussed. Model formulation

and methodological aspects are emphasized, with simple auxiliary models
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being used to illustrate modelling points for developing and understanding

complex operational models. Examples of current operational models that

use the two main theoretical approaches of casualty assessment (i.e.

detailed LANCHESTER-type force-change representations and aggregated-force

casualty assessments based on index numbers) are given. Recent develop-

ments by authors such as L.B. ANDERSON, D.P. DARE, and R.M. THRALL for

determining firepower scores (i.e. weapon-system-type values) from a

linear model that imputes values to weapon-system types based on their

LANCHESTER attrition-rate coefficients are reviewed and discussed, as

well as the important (and elusive) problem of historical validation of

attrition models. Next, Chapter 8 reviews work on developing insights

into the structure of optimal tactical decisions by applying the

appropriate optimization theory to a combat model with military strategy

and tactics quantified through tactical-choice variables. Gaming

aspects are also briefly considered. This chapter is essentially a

comprehensive overview and review of work on the quantitative study of

military strategy and tactics by using optimization theory in conjunct-

ion with combat-modelling theory. Again, simple auxiliary LANCHESTER-

type models are used to study these complex operational problems. As

before, model formulation and insights gained into the structure of

optimal time-sequential decisions are stressed, with optimization-theory

(i.e. differential-game) prerequisites being kept at a minimum (i.e. the

results of such optimization studies are given but not the details in

the application of the optimization theory). Finally, a comprehensive

bibliography on the LANCHESTER theory of combat is included in an

appendix for the reader who is interested in further information abcut it.

This monograph has evolved out of a tutorial on LANCHESTER-type
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models of warfare that the author was invited to deliver by the Military

Applications Section of the Operations Research Society of America (ORSA)

at the 46th National ORSA Meeting on Thursday October 17, 1974 in San

Juan, Puerto Rico. This tutorial was well received, and it was subse-

quently repeated at the 35th Military Operations Research Symposium in

July 1975 and at the 15th Annual U.S. Army Operations Research Symposium

in October 1976, After attending this tutorial in July 1975, CDR JAMES J.

MARTIN, USN, then Chairman of the MORS Publications Committee, expressed

strong interest in the author's expanding the tutorial material into a

monograph on LANCHESTER-type models of warfare. The writing of this

monograph was consequently begun under the sponsorship of the Office of

Naval Research (Code 431, Naval Analysis Programs) in July 1976.

Continued encouragement by Dr. MARTIN (now retired from the U.S. Navy)

has been appreciated. I have used earlier drafts of the beginning

portions of this material (primarily Chapters 1 and 2 and occasionally

Chapter 3) in graduate courses on combat models for OR students at the

Naval Postgraduate School.

The author would like to thank all the organizations and

individuals who have helped facilitate the appearance of this monograph.

Although all those who have helped me are far too numerous to mention,

I would like to explicitly express my thanks to 3everal. In particular,

the writing of this monograph has been financially supported by the

Office of Naval Research (both through direct funding by Code 431 and

also through the Foundation Research Program at the Naval Postgraduate

School), the U.S. Army Research Office (ARO), Durham, North Carolina,

and the Headquarcers of the USAF, Studies and Analysis Group. Addition-

ally, ARO supported some separate research during this period on
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LANCHESTER-type models of warfare, and results from this work have been

incorporated into the monograph at hand. Most of the author's research

on LANCHESTER-type models of warfare, however, has been supported over

a number of years. by the Office of Naval Research (both through direct

funding by Code 431 and also through the Foundation Research Program at

NPS). The author would like to thank Provost JACK R. BORSTING of NPS

(formerly chairman of the OR department) for his continual encourage-

ment and support of such work as well as that from subsequent OR

department chairmen Dean DAVID A. SCHRADY and Professor MICHAEL G.

SOVEREIGN. The endeavors of Associate Professor GILBERT T. HOWARD

(associate chairman for research of the OF. department) in this respect

are also gratefully acknowledged. The author would also like to thank

HERBERT K. WEISS, Dr. JAMES J. MARTIN, Dr. FRANK E. GRUBBS, Professor

MARTIN SHUBIK, and LTC JOHN FRIEL (USAF), for their constant encourage-

ment. Additionally, the authoz would like to thank Professors CLINTON

J. ANCKER, GORDON E. LATTA, GUILLERMO OWEN, and MICHAEL G. SOVEREIGN, as

well as LTC RICHARD S. MILLER (USA) for their numerous suggestions for

improving this manuscript. I am especially indebted to LTC MILLER for

many stimulating discussions on the topics of combat modelling and this

constant encouragement and help concerning this project. The author

would also like to thank the late ROSEMARIE STAMPFEL tt for her consum-

mate typing of this manuscript. Finally, the author would like to thank

his family for their understanding of the long hours he has spent

#tSadly and unexpectedly ROSEMARIE STAMPFEL passed away just after

completing the typing of the first draft of the manuscript. As a tech-
nical typist, she was without peer. I would like to thank her for her
many suggestions and help in improving this manuscript. She wiJ.l be
missed by many. xi
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writing this book and for their constant support, especially his wife

MARY ANN, who has proofread most of this monograph (some while recover-

ing from surgery).
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Chapter 1. BACKGROUND AND INTRODU1CTION

1.1. Operations Research and Models.

Loosely speaking, LANCHESTER-type models of warfare are differential-

equation models of combat operations. In one form or another, such models

are fairly widely used in operations research (OR) studies by the Depart-

ment of Defense (DoD) in the United States. The use of these combat models

for planning purposes has been made possible by modern large-scale digital-

computer technology. However, there are competing methodologies (for

example, so-called high-resolution Monte-Carlo simulation) for combat model-

ling, and there has been much debate 1 by advocates about the advantages

of this method or that one for defense planning. To place such discussion

about the use (and misuse of combat models, their realm of applicability,

and their strengths and weaknesses in proper perspective, it seems appro-

priate to briefly discuss the nature of OR, combat models, and their use

by DoD. The reader should keep in mind, however, that this book will

focus on LANCHESTER-type models o• warfare.

1.1.1. The General Nature of Operations Research.

Operations research (OR) originated out of questions arising in

military activities during World War II. After the war, the approach

and techniques of OR were applied to business and non-military government

problems. OR has expanded greatly during the thirty or more years since

the end of World War II. What exactly is OR? Although there is far from

2universal agreement as to the exact nature of OR, the author prefers to

think of OR in the following terms3 : operations research is a scientific

method of providing executive departments with a quantitative basis for

decisions regarding the operations under their control.
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The above definition of OR is not new, but the author feels that

it is important because this definition focuses on what is being done and

not the techniques used. Moreover, one should expect to find that different

methodologies receive different amounts of emphasis in different fields of

application of OR. For example, in the private (i.e. business) sector of

the economy one finds that the "theory of the firm" and related subjects

* (such as profit maximization, efficient distribution of products, invest-

ment planning, inventory management, etc.) play a central role in OR applica-

tions and require the use of certain OR theory and techniques (such as

inventory theory, queueing theory, linear and integer programming, discounted

cash flow, etc.). One would expect quite a different phenomenologieal basis

for defense planning, with possibly different OR techniques receiving

emphasis. It is the author's hypothesis that defense planning should be

based as much as possible on the scientific study of warfare. Unfortunately,

this is not the case in practice today (see, for example, SHUBIK and BREWER

[86, pp. 9-10] for a discussion of this point). For further discussion

of the nature of OR, the interested reader should consult the literature4

Four concepts of fundamental importance to the practice of OR are

(see HERRMANN and MAGEE [381):

(Cl)5 the model,

(C2) the measure of effectiveness (MOE),

(C3) decision making,

(C4) the role of experimentation.

Models (in particular, so-called LANCHESTER-type models of warfare) are the

central theme of this book. We should bear in mind, however, that the de-

velopment and application of a model in an OR study is only one of several

essential ingredients for a successful study. Each of the three other aspects
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listed above can significantly contribute to the failure of a defense-

planning study. It is the author's opinion that people unfamiliar with

quantitative models are quick to blame an unfamiliar modelling methodology

for deficiencies in the application (e.g. data-base quality or errors, in-

correct implementation, etc.) of a particular model. The practitioner should

not blame the model (particularly, a LANCHESTER-type model) if the wrong MOE

is used in a study, nor should he blame the modelling methodology if the

model is incorrectly applied or exercised with low-qualit'; data, or if the

scenario is wrong. Thus, the development of a combat model is only one

facet of a military OR study, albeit a very important aspect,

During World War II most OR concerned actual ongoing military opera-

tions. Some people prefer to use the term operations analysis (OA) for

such activities. In 1976 (with the end of U.S. involvement in Southeast

Asia) most applied military OR activities concerned some type of planning.

If a military system does not physically exist (and even when it does),

its effectiveness must be evaluated "on paper." Thus, for example, for

assistance in system-acquisition decisions, one would expect to use in

the advanced planning phase some type of combat model to help quantitatively

explore the possible benefits from a proposed system. Even if a prototype

has been built and "operational" data has been collected, some type of

combat model may be required to assess the system's military worth based

on the observed performance data. 6 In other words, the nature of military

OR has changed since World War II when few operational models were really

7used, and today combat models are an eseential (and expensive ) part of

DoD planning activities.

1.1.2. The General Nature of Models.

It seems appropriate for us to briefly discuss the general nature of
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models in order to better place combat models in proper perspective.

Models are basically representations, They may be representations of

states, objects, or events. Models are idealizations (i.e. abstractions)

in the sense that they are less complicated than reality (and hence po-

tentially easier to use for research purposes). The U.S. Army Models

Review Committee [42, Appendix B to Chapter I] has defined a model as "an

abstract representation of reality which is used for the purpose of pre-

diction and to develop understanding about the real-world process."

Thus, models are easier to manipulate and "carry about" than the

real thing. They are relatively simple compared with reality because only

the relevant features of reality have been represented. For the person

unacquainted with this basic property of models, however, it is easy to

confuse relevance with realism. Thus, many DoD decision makers who are

removed from the modelling business find simulations to be more credible

models of combat operations than analytical models because of the much

larger amount of detail that is present in a simulation. Additionally,

models allow one to transcend one's environment and make inferences about

* things and events that have not been experienced directly. In the analysis

of combat operations (particularly possible future ones), this aspect is

quite important.

There are many ways to classify models. Three different basic

types of models are the following:

(Tl) iconic models,

(TI) analosue models,

(T3) symbolic models.

An iconic model is a large- or small-scale representation of states, objects,

or events. They "look like" what they are supposed to represent with only
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a transformation of scale. Examples of iconic models are a flow chart,

blueprint, road-map (or any other type of picture or diagram that looks

like the real thing), pilot plant, or a wind tunnel. In each case only

the scale of the system or operation has been changed.

An analogue model uses one property to represent another different

property. For example, we can represent the third dimension (i.e. elevation)

on a two-dimensional map by means of contour lines, which represent informa-

tion about changes in elevation (i.e. slopes) by their distance apart.

Another similar example iF the use of colors to represent different types

of terrain on a map. Since one property is used to represent another, a

legend is required to remind the reader of the transformation of properties.

Other examples of analogue models are the slide rule and an electrical sys-

tem represented by a hydraulic ,ystem.

The last general type of model is the sn bolic model, which represents

properties symbolically. Verbal descriptions of processes or systems qualify

as symbolic models When symbols represent quantities, the model is usually

called a mathematical model. We will focus on mathematical models of com-

bat (in particular, combat attrition) i-. this book. Here we have indicated

to the reader, however, that other types of models certainly exist.

Although they are the most abstract, the distinguishing feature

of mathematical models is the ease with which they may be manipulated for

the extraction of information. Iconic and analogue models are much less

flexible in this respect. In terms of combat operations, we should point

out that field exercises are basically iconic models, while map exercises

are basically analogue models. However, both these two types of combat

models are difficult to manipulate (particularly the field exercise, which

is also very costly). Thus, although they may require some time and cost

to develop, mathematical models are relatively easy to manipulate and hence
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respond to the demands of analysis.

Many other classifications of models are possible, 8 but for our

purpose of studying combat modelling we need only distinguish here between

two basic types of mathematical models:

(Ti) deterministic model.

and (T2) stochastic model

A deterministic model is one that contains no element of chance. Hence, its

output is uniquely determined by its input in the sense that the same input

always produces the sIe output. A stochastic model contains an element of

chance (or uncertainty 9) so that its output is not uniquely determined in

this sense by input, but rather one must talk about the chances of observing

various outputs f*,a given input. In other words, one must consider the

I probability distribution over the set of possible outcomes for a given set

of inputs. In this book we will consider both deterministic and stochastic

LANCHESTER-type models of warfare.

1.2. Defense Planning, Combat Models,- and the Scientific Study of Warfare.

Thk Twentieth Century has been characterized by attempts to use the

Scientific Method in policymaking, in particular for military and defense
40 10problems. Many writers have stressed the importance of applying quanti-

tative OR methodologies to defense planning. Enlightened defense planning

is, of course, important for both the short-run and also the long-run
' 11

national security of the United States. What are typical defense-planning

problems? According to STOCKFISCH [90], they are as follows:

(P1) How do we assess a possible opponent's military capability, and

how large should our military forces be to meet the perceived

threat?

6



(P2) How should the total force be structured between major services,

such as land forces and tactical air forces?

(P3) How should the land forces be structured with respect to (1) com-

bat branches, such as infantry and tanks, and (2) service

specialties that provide logistic and personnel support?

(P4) What should be the technical performance and physical specifica-

tions of new weapons that will be the object of engineering

development programs? Given the availability of new weapons,

what should be their tactical usage, how many of them should be

procured, and in what organizational and command context should

they be employed?

Such questions concern the evaluation of weapon-system and force-level

planning alternatives in future time frames. In order to determine the

benefits to be gained from a particular alternative, one is invariably faced

with the problem of predicting the effectiveness of specified military forces

in possible future military engagements. Since such forces and/or weapon

systems only exist "on paper," some type of combat model (see Section 1.3

for further details) must be used in such studies. In way of summary, then,

combat models are valuable in many aspects of defense planning: (1) for

evaluating "oa paper" proposed weapon systems during advanced planning:

(2) for extending, interpolating, and interpreting operational test data

during field testing; etc. (see [104] for a fuller discussion).

Thus, combat models have been used as decision aids for defense plan-

ning. They have actually been used by analysts to study such major subjects

(see STOCKFISCH [901) as:

(Sl) the design specification and selection of new weapons,

(S2) the allocation of resources between air and land forces and,

within land forces, between infantry and artillery,

7



0(3) how tactical air capability might be allocated among diverse

missions,

(S4) the amount of logistic support that the combat elements of

field forces should have,

(05) the rate at which forces might be mobilized and deployed,

and (S6) the issue of how large the forces should be.

The kinds of models that are used for such studies should be related to the

type of information that is desired from the analysis. We will discuss the

various types of combat models in the next section.

If one contrasts World War II operations research with today's prac-

tice, then it is clear that a major change has occurred in the practice

of military OR and the use of models in defense planning. OR has ceased

to be a purely scientific discipline, and some, in fact, feel that it has

become a purely speculative activity (see, for example, BONDER [9]).

During World War II, operations research was primarily concerned with the

engineering (i.e. designing and planning) of on-going operations. Con-

sequently, some combat data could be collected as needed for use in studies.

Hypotheses about such military operations might actually be scientifically

verified by testing against this data. Thus, World War II OR was many

times a truly scientific discipline. Today military operations re3earch

is primarily concerned with planning of some type; and, as emphasized by

BONDER [9], it has ceased to be a truly scientific discipline 12 because

of the absence of combat data (see also HOWLAND [46]).

In this vein, SETH BONDER [10] has emphasized that there are almost

no empirically verified models of most combat processes. Besides the

inherent problem of operational definition and measurement, the major

insuperable difficulty in empirically verifying any combat model is that

8
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the historical data base is too poor: it is not rich enough in detail to

permit the classic scientific verification of combat models, since nations

* fight wars for other reasons than to collect combat data. Unfortunately,

iln the past military historians have been surprisingly reluctant to provide

information on battles such as the number of forces of each kind partici-

pating on both sides and the losses. H. K. WEISS (115] feels that "the

average military historian is particularly susceptible to the criticism

aimed by VAGTS [102] (see also (103]) at the 'average military officer'

of avoiding 'bellometrics' 'as someting too materialistic and derogatory

to military art.

This shortage of historical and other empirical data for combat models

and analysis is apparently not as widely acknowledged, articulated, or ap-

preciated by the policy-making community (and even some parts of the analysis

community) as it should be (see also STOCKFISCH [90]). Moreover, one can-

not expect accurate point estimates of combat effectiveness from these

models. Rather, such nonempirically developed models should only be used

for analysis purposes to provide defense management with [9]:

CR1) insights into directions and trends thereby increasing under-

standing of the system dynamics,

(R2) guidelines for the development of data-collection plans - what

data is important and how accurate it must be,

(R3) guidelines for the development of technological and modelling

research plans.

It is in this spirit of developing insights that simplified LANCHESTER-type

models of warfare are considered in this book. In the same vein, KARL von

CLAtSEnITZ1  [20, p. 191] stated many years ago in his classic work On War

that if theory caused a more critical study of war, then it had achieved its

* purpose.

9
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Underlying the engineering (i.e. designing and planning) of military

operations, evaluation of military systems, and other problems of defense

planning, however, should be the scientific study of conflict (in particular

warfare). Just as most branches of engineering (for example, mechanical

*• engineering) are besed on NEWTONIAN physics, so should military operations

research be based on the scientific study of warfare. Unfortunately,

appallingly little basic research on conflict and warfare has apparently

been conducted.14 No science of "bellometrics" [102; 115] has as yet

emerged. Later in this book we will briefly discuss what has been done with

respect to the scientific verification of LANCHESTER-type models of warfare.

As mentioned above, the quality and extent of the historical data base have

been severely limiting factors for such important investigations.

1.3. Different Types of Combat Models.

As we have discussed in Section 1.1.2. above, models are representations

of reality, and we have seen that different types of such representations are

possible. With respect to combat operations, Figure 1.1 shows the variety of

forms that combat models may take. One can associate trends in model

characteristics such as degree of operational realism, abstraction, and

convenience and accessibility with this spectrum of combat models. As

Figure 1.1 shows us, operational realism and degree of abstraction are con-

flicting qualities.

For present purposes, let us focus on the three right-most types

of combat models depicted in Figure 1.1. Following BONDER [10], we will

limit our discussion of combat models to the following three general types:

(TM) war games,

(T2) simulations,

(T3) analytical models.

10
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Additionally, in the ensuing discussion we will generally emphasize ground

combat models (i.e. models of warfare between ground combat units). Al-

though other classifications are certainly possible, the above is adequate

for now.

According to PAXSON (70], "a war Same is a model of military reality

set up by a judicious process of selection and aggregation, yielding the

results of the interactions of opponents with conflicting objectives as

these results are developed under more or less definite rules enforced by

a control or umpire group." The distinguishing feature of war games in

relation to simulations and analytical models, however, is that actual

human beings are used to simulate decision processes by having people

play the roles of decision makers and use their own judgments in making

decisions (see also [42]). This distinction is graphically depicted in

Figure 1.2.

War games may be classified as being either "rigid" or "free",

depending on whether or not the assessment rules are rigidly prescribed

and completely cover all possibilities. These two types of war games

(i.e. the rigid and free war games) correspond to the opposing demands

of realistic games and playable games. The rigid war games are somewhat

similar to simulations in their assessment of combat outcomes in that

combat interactions are considered in detail. Before the age of large-

scale computers, the sheer immensity of the volume of the details for such

rigid assessments was overwhelming: it was not uncommon for many volumes

(i.e. books) of rules and combat-results tables to be required for the

running of a rigid war game. As a reaction and revulsion to such over-

whelming detail, "free" war games were developed, with the assessment of

combat outcomes being judgmentally determined by umpires. It is inter-

esting to note that modelling issues such as degree of resolution,

12
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appropriate technique of aggregation, amount of detail, etc. were all con-

sidered in the past by war gamers of the 19th and 20th centuries.

Today many computer-assisted war games exist, with the computer doing

the bookkeeping and assessing combat outcomes. To a certain extent, the

modern large-scale digital computer has neutralized some of the shortcomings

of rigid war games. Teams of players typically represent the commanding

"officers and their staffs. However, this type of model, i.e. the rigid

(computer-assisted) war game, is very expensive in terms of time and money

to develop, maintain, and use. BONDER [10] points out that it typically

may take something like four to eight years to develop such a rigid war

game. He also notes (10, p. 73] that as recently as 1971 it took six months

to obtain one realization of ten hours of battle with a particular war game.

War games may be an excellent vehicle for developing general insights and

identifying critical elements for further more detailed analysis, but

many feel that this type of model is not a feasible vehicle for system-

atically analyzing a wide variety of system alternatives in a responsive

manner [10].

To simulate means to act like. Simulations are models in which pro-

cesses and activities are "acted out." Systems are microscopically analyzed

and modelled by analogue duplication. Because of the large amount of

bookkeeping involved in such minute duplication, a large-scale digital com-

puter is a necessity. In fact, the development of the modern digital computer

has led to the widespread use of simulation as an analysis technique. Such

simulation of combat operations is the modern-day automated version of the

classic sand table for military analysis. In essence, such a combat simu-

lation is an analogue model, which recreates the sand table with the help of

the digital computer, and battles are acted out on this automated sand table.

Simulation may or may not involve actual human beings playing some

14
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of the decision-making roles in the system modelled. For the purposes of

"our present discussion, we will limit ourselves to so-called machine simu-

* lation that runs on a computer entirely without human participation. 15

* Moreover, for convenience we will henceforth refer to machine simulation

simply as simulation.

Simulation is probably the most widely used technique for military

systems analysis. To develop a simulation of combat operations, the

military system and associated activities are microscopically studied and

decomposed into a set of basic events, which in turn are ordered in sequence

of occurrence (much like a network). When such a model is run to predict

combat outcomes such as numbers of casualties of various types, territory

lost, resources expended, etc; the battle is essentially "acted out on

the computer," with the sequence and flow of events and combat activities

followed in the same microscopic sequencing as determined by previous

analysis. Human decision making in the combat is simulated with pre-

determined decision tables or rules.

Moreover, there are some problem areas that are more or less unique

to the simulation of combat operations. A major problem area is the re-

presentation of terrain, especially the modelling of the line-of-sight

process. A high-resolution simulation such as DYNTACS [7; 19] may spend

as much as 60 percent of its running time in checking for intervisibility

(i.e. the existence of line-of-sight) between weapon systems, and usually

at least about 20 percent of its running time is so spent [69]. Thus, an

inordinately large amount of time is usually spent in simulating the line-

of-sight process in combat simulations. Terrain modelling sometimes re-

ceives attention in books on simulation (see EVANS, WALLANCE, and SUTHERLAND

(26]), but usually it does not (see, for example, FISHMAN [29]). Other

15
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problem areas (not only for simulation but for combat modelling in general)

are the modelling of battlefield intelligence, route selection, and tactical

decision processes (especially those relating to the management of large,.

scale warfare (10]).

Most combat simulations used in defense planning are so-called Monte

Carlo simulations because statistical sampling techniques (involving the

generation of pseudorandom numbers (29]) are used to determine the outcomes

of random events, such as the outcome of firing at a target. Because of

the tremendous quantity of computations and other information processing

requirements in such a simulation, the use of a modern high-speed digital

computer is essential. Probability distributions for all the random elements

(i.e. random variables) in the simulation are required as inputs, and con-

sequently a high-resolution Monte Carlo simulation such as DYNTACS requires

a rather extensive data base for its running.16 The difficulties and costs

of data base preparation are considerable and are frequently underestimated.

The simulation then empirically generates the probability distribution for

the set of possible combat outcomes. Each run of the simulation for a

given set of input data is essentially a sample from the distribution of

outcomes, and the simulation must be run repeatedly to obtain accurate

statistical information about this distribution of combat outcomes.

The strong point of Monte Carlo combat simulation is that such a

simulation may contain a lot of detail and therefore may be more credible

than a more abstract model to many people. Examples17 of such Monte Carlo

simulations are ASARS II, CARMONETTE, DYNTACS, and SIAF. Some people

(see SHUBIK and BREWER [86], for exanple) feel, however, that such simula-

tions make a "fetish of realism." The large amount of detail, moreover,

causes a significant amount of computer time to be required for a single

run of such a simulation, and this characteristic is essentially their un-

doing as far as being a viable analysis technique for exploring the limits

16



of system capability,

There are a number of serious shortcomings to the use of Monte Carlo

i18
simulation for defense analysis.18 First, such simulations are quite costly

to build. It is not unteasonable to expect to spend 5 to 10 man-years of

* 2 19effort to develop a detailed simulation of tactical combat. Second,

they are costly to run, with typically 10-20 minutes of computer time

* (IBM 360/67) required per replication of about the same length of battle

time, and one needs 10-60 replications for statistical stability in the

results (see, for example, ZlMMEEMAN (120, p. 741]). Additionally, because

of the amount of detail involved, the data-base requirements are quite

demanding. For example, it is not unheard of to have several analysts

spend about three months preparing a new set of input data and the cor-

responding data deck for DYNTACS. Not only is a so-called high-resolution

combat simulation costly to build and run, but it is also costly to main-

tain: a staff of fairly highly trained personnel must be maintained to

insure that the computer program stays running and debugged as changes

are continually implemented. For several reasons (e.g. size of the com-

puter program, complexity of the model, etc.), changes may be quite dif-

ficult to implement in such a combat simulation. The tremendous amount of

detail (i.e. the large number of variables and other parameters) present

in a simulation essentially precludes the running of parametric studies

to examine the sensitivity of the model to changes in simulation assumptions

and input data. Because of this lack of capability to run parametric

studies, it is essentially impossible to use simulation by itself as a

vehicle for determining those system capabilities, tactics, and environ-

menta. characteristics that significantly influence the system's effective-

ness. As S. BONDER points out [11, Chapter 1], simulation is essentially

too detailed to be by itself a useful tool for analysis. These disadvantages
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of Monte Carlo simulation are summarized in Table 1.1.

Analytical models (like machine simulation) do not involve human

participation during running. They may, of course, be either deterministic

or stochastic in nature. Their distinguishing characteristic is their de-

gree of abstraction: as Figure 1 shows, analytical models are more abstract

than simulations. In fact, a good analytical model is usually quite ab-

stract, poor in the number of variables explicitly considered, but rich in

ease of manipulation and clarity of insight 1861. Before the advent of

high-speed digital computers, an analytical model consisted of at most a

few equations (see LANCHESTER's [51] classic models discussed in Chapter 2).

Today large-scale processes and systems can be modelled by many equations

with the help of a digital computer. The process under study is analyzed

and abstracted (i.e. decomposed into basic events and activities). Then

mathematical submodels of events and activities are developed and integrated

into an overall structure.

Analytical models of any degree of complexity usually do not yield

convenient analytical solutions but require numerical epproximation methods

and a digital computer for the generation of numerical results. However,

in those cases in which an explicit analytical solution can be obtained, one

has obviously simplified the process of understanding the model. Insights

into the dynamics of combat may be obtained by, for example, examining

explicit relations between the independent variables, the model's para-

meters, and the dependent variables (which are usually related to the MOEs).

Such insights are much more difficult to acquire when the solution is not

simply expressible in terms of elementary functions and, for example, finite-

difference methods must be used to generate numerical (approximate) results,

although the model's basic structure is explicitly contained in equations

that are readily examined.- Thus, although more abstract than simulations,
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TABLE 1.I. Disadvantages of Monte Carlo
Simulation of Combat

i (DI) Costly to build

(D2) Costly to run

(D3) Costly to maintain

"(D4) Lack of flexibility for change

(D5) Essentially impossible to perform
sensitivity and other parametric
studies
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analytical models are characterized by their transparency (i.e. ease, of

revealing their basic structure and assumptions). We will focus on such

models in this book.

Analytical models, particularly simple ones, help clarify the relation-

ship between theoretical models, empiricism, and data gathering. An ana-

lytical model is usually too simple and restricted to directly solve an

actual operational problem. But because of its transparency, the analyti-

cal model can warn about potential problem areas, indicate where additional

meansuresments are most needed, and identify and order important omissions

from the model (see SHUBIK and BREWER [86] for a further discussion).

There is one further general type of combat model that w~erits our

attention, a mixture of two of the above types called the hybrid analytical-

simulation model [10]. It has been developed in response to the needs for

parametric analysis coupled with the long preparation and rua times for

Monte Carlo simulations. It combines the strengths of these two modelling

approaches by representing some processes in one way and others in the other.

Again, the modern high-speed digital computer makes possible the integration

-'f these model types. For example, in battalion-level combat models such

as BONDER/IUA (see [92]; also [11; 12]) (and its various derivatives such

as BL.DM, FAST [13], AMSWAG [36], IHA [104]) and COMAN [18], attrition and

target acquisition (and sometimes allocation) processes are modelled

analytically, while simulation is used to model battlefield movement pro-

cesses [10]. The same general approach has been applied to large-scale

combat (i.e. combat between division-size and large units) with models such

as DIVOPS [106] and VECTOR-2 [107] in which the attrition, maneuver-unit-

element and fire-support-sensor acquisition, and terrain-line-of-sight pro-

cesses are modelled analytically [10]. Such hybrid models use LANCHESTER-

type equations (i.e. deterministic differential equations) to represent the
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combat attrition process.

A related (but yet distinct) classification of combat models would be

according to how they assess the outcomes of tactical engagements (irrespective

of how tactical decision making is modelled). Three current approaches for

S Ii predicting the effectiveness of combat units in such engagements are as

follows (see BONDER and FARRELL [11] for further details):

* (Al) firepower scores (see STOCKFISCH (90, pp. 6-271),

(A2) Monte Carlo simulation (33; 1201,

(A3) analytical models (e.g. differential equations) [111.

All three approaches have been used to assess the outcomes of combat engage-

ments in war games. We have already discussed Monte Carlo simulation and

analytical models above so it remains to discuss the other combat-assessment

approach, firepower scores. We will also say some additional words about

analytical models in the context of assessing the outcomes of tactical

engagements. Finally, we will briefly discuss the relation between the

scale of combat operations and these modelling approaches.

The firepower-score20 approach is basically a technique for aggre-

gating heterogeneous forces (i.e. tanks, artillery, infantry, etc.) into a

single homogeneous force on each side. It is an index-number approach,

which develops one number (referred to as the firepower index) to represent

the "combat potential" of a unit. A linear model is used to develop this

index number, i.e. the firepower index, from the scores of individual wea-

pon systems as Table 1.II shows. Moreover, as emphasized by STOCKPISCH

[90, p. 7], the words score and index should not be regarded as being

synonymous. It is more precise, therefore, to use the term firepower score

to refer to the military capability or value of a specific weapon system

and to use the term firepower index -- which is obtained by summing scores --
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TABLE l.II. Hypothetical Example of Determination
of Firepower Index for a Combat Unit

Firepower Total Contribution
Weapon Type Number Score to Firepower Index

Rifle, M-16, 5.56mm 6,000 1 6,000

MG, M-60, .30 cal 150 6 900

MG, M-2, .50 cal 250 10 2,500

Mortar, M-125, 81mm 50 20 1,000
Howitzer, M-109(SP), 155mm 50 40 2,000

Howitzer, 8" 8 30 240

Tank, M60A2 200 100 20,000

TOTAL FIREPOWER INDEX 32,640

Firepower Index for U.S. Army's 7th Infantry Division
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to refer to the military capability or value of some aggregation of diverse

weapons. In other words, the firepower-score approach provides a common

denominator for aggregating the many different types of weapons on a battle-

field, and military combat is characterized by such "combined-arms" opera-

tions consisting of many different weapon systems.

How is the basic firepower score for a weapon system determined? There

are apparently almost as many different answers to this crucial question

as there are different firepower-score methods.21 Many methods state that

the firepower score of a weapon system is essentially the product of a mea-

sure of single-round lethality multiplied by the expected expenditure of

ammunition during a fixed period of time. Although this procedure appears

to yield an objective measure of weapon-system capability, STOCKFISCH (90,

pp. 23-78, especially pp. 23-27 and 76-78] points out that actually varying

amounts of subjectivity are cranked into various such firepower scores.

Moreover, the firepower-score approach probably dates back to World War II,

although documentation about it is generally somewhat difficult to come by

(see STOCKFISCH [9] for introduction to the scanty firepower-score literature).

In large-scale (i.e. division-level and above) ground-combat models,

firepower indices are used as a surrogate for unit strength. They are then

in general used to:2
2

(Ul) determine engagement outcomes,

(U2) assess casualties,

(U3) dete.mine FEBA mov3ment.

[FEBA stands for Forward Edge of the Battle Area. It is the contact zone

between two opposing forces.] The force ratio is the significant factor in

such determinations. Here the term force ratio means the ratio cf the fire-

power index (i.e. the aggregation of all the firepower scores in the unit)
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of the attacker to that of the defender. Let us consider a hypothetical

example to illustrate this point. Consider, for example, the 7th Division

of the U.S. Army and assume that the firepower scores shown in Table l.II

apply. Then the 7th Division has a firepower index of 32,640. If an

attacking enemy Army Group were to have a firepower index of 146,880,

then we would have a force ratio of 4.50 (A/D), where A refers to the at-

tacker and D to the defender.

Although the firepower-score approach has been widely used for top-

level planning, it has received increasing criticism in recent years (see,

for example, STOCKFISCH [90] or [11]). Significant deficiencies of the

index-number approach are the following (from [11]):

(D1) it does not measure the accomplishment of unit missions,

1(D2) it ignores most of the significant factors that affect mission

accomplishment (i.e. weapon system characteristics, threat

variables, organizational structures, tactics employed, en-

vironmental conditions, etc.),

(D3) it oftentimes bears little relation to the physical combat

or other processes under study.

STOCKPISCH [90, p. 128] claims that no satisfactory simple technique for

aggregating modern conveational forces currently exists. Although the

firepower-score approach has been thus far much criticized, conventional

forces must be aggregated in many analyses, and until a better alternative

le developed, firepower scores will continue to be used.

Analytical models have been discussed in general terms above. We

will now discus3 their use specifically for assessing the outcomes of com-!

bat engagements. In particular, differential-equation models have bean

fairly widely used for the assessment of combat outcomes. Such models are
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used to represent the decay in numbers of weapon systems (i.e. the attrition

process) and require submodels (again usually analytical ones) for various

subordinate processes such as target detection, target location, fire al-

location, etc. The modern large-scale digital computer has made possible

the development of large-scale hierarchical system models, with submodels

feeding information into a master coordinating model. In the field of

combat modelling, the basic calculation is one of force attrition, and con-

sequently is usually done with the aid of some type of differential-equation

model. The use of such models as practical analysis tools is primarily due

to the efforts of S. BONDER and his colleagues formerly at the University of

Michigan and now at Vector Research, Inc. Their main contribution has been

the development of fairly detailed submodels for the prediction of loss

rates from engineering and operational data for such differential-equation

models. We will refer to such a differential-equation model that represents

attrition from enemy action through a system of differential equations for

the force levels as a LANCHESTER-type model of warfare (also commonly

called a differential combat model [16]). The rest of this book concerns

such models.

Each of the above combat-assessment approaches (i.e. firepower scores,

Monte Carlo simulation, aud analytical models) may be thought of as cor-

responding to a different scale of combat operations, with the firepower-

score approach and Monte Carlo simulation being at opposite ends of the

spectrum of the scale of combat operations (i.e. the size of the units in-

volved). This correspondence is shown in Table 1.1II. The contents 2 3 of

Table 1.III are only generally true, with exceptions certainly existing.

As we see from this table, the firepower-score approach has been primarily

used for eagagement assessments In large-scale (i.e. theater-level) combat
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TABLE 1.III. Combat-Assessment Approach Related
to Scale of Combat Operations

Scale Example 2 3 of

Modelling of - Model
Approach Combat

firepower score theater - A1TLAS, CEM

Monte Carlo infantry: platoon - ASARS II
simulation armor: company/battalion -

DYNTACS, CARMONETTE

battalion - BONDER/IUA
LANCRESTER-type division - DIVOrS
model theater - VECTOR-2, TWSP,

BALFRAM, DMEW

26



models. Although there are exceptions, high-resolution Monte-Carlo simu-

latiori has been a feasible assessment approach only when there have been

no more than about 100 elements (e.g. individual tanks, crew-served weapons,\

etc.) on each side. On the other hand, LANCHESTER-type models have been

Sdeveloped for the \full spectrum of combat operations, from combat between

company/battalion-sized units to theater-level combat operations.

1.4. The Influence of blodern-Digital Computer Technology. 24

Without the modern high-speed digital computer both high-resolution

Monte Carlo simulations such as DYNTACS and CARMONETTE and also differential

combat models such as BONDERI\UA and its many derivatives would be impos-

sible. The modern computer pr6vides not only large-scale memory capacity

but. also the ability to perform~illions of arithmetic operations per

second. In such a computational environment, the numerical integration

of a system of hundreds of ordinary differential equations becomes possible.

Today LANCHESTER-type complex system models, which rely on modern digital

computer technology for their implementation (see, for example, BONDER and

HONIG [12]), have been developed for various levels of combat, from combat

between battalion-sized units (see BOSTWICK et al. [13] or HAWKINS [361)

to theater-level operations (see CORDESMAN [211, FARRELL [28], or [105; 1071).

1.5. The Purpose of This Book.

As indicated above, there currently appears to be a trend toward increasing

interest in LANCHESTER-type models of warfare. However, information about

the nature of such models, their strengths and weaknesses, etc., unfortu-

nately does not appear to be widely disseminated beyond a relatively small

group of research workers. Moreover, there have been essentially no readily
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accessible sources of general information about LANCHESTER-type models:.

there has been no book, textbook, or monograph on LANCHESTER-type models

* of warfare, and the one and only survey article by DOLANSKY (23] appeared

in 1964. Considering contemporary developments, DOLANSKY's article is quite

out of date today. Furthermore, results and developments have been widely

* scattered in the literature, and it has been difficult (if not impossible)

* for an analyst to obtain general information and an overview of LANCHESTER-

type models of warfare.

The purpose of this book is to provide a comprehensive survey of

LANcHESTER-type models of warfare. By LANCHESTER-type model. of warfare

we mean differential-equation models that describe changes over time in the

force levels of the combatants and other significant variables that describe

the combat process. Our objective is to present a unified treatment of

such models and of their behavior, with emphasis on the insights that may

be consequently obtained into the dynamics of combat. We hope to tie to-

gether much of the knowledge about LANCHESTElt-type models that has been here-

tofore widely scattered in the literature.

In the past (say up until about 1970), LANCHESTER-type models of war-

fare were only used by a small group of the leading analysts: as a conse-

i25

quence of pioneering work by F. W. LANCHESTER s[511 done about the time of

World War I, a few military operations analysts have used simplified de-

terministic26 differential-equation models to develop insights into the

dynamics of combat from about the end of World War Il (see, for example,

[8; 11; 12; 23; 94; 110-112]). The advent of the modern high-speed digital

computer has made feasible the development and use of quite complicated

versions of such LANCHESTER-type (also frequently called differential)

models as practical defense planning tools (10]. Thus, today militarily
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realistic computer-based LANCHESTER-type models of quite complex combat sys-

tems have been developed and are fairly widely used by a much larger number

of analysts than ever used the simple differential-equation models. Thus,

the modern digital computer has made much more extensive use of these models

possible. Such models currently exist for almost the entire spectrum of

combat operations, from combat between battalion-sized [13] and division-

sized [16] units to theater-level operations (21; 28]. The study of the

basic nature and behavior of such differential combat models is the subject

of this book. Our goal is to promulgate a better understanding of such

!* models.

Two divergent aspects of LANCHESTER-type combat models are the

following:

(Al) insights that they provide into tne dynamics of combat,

W(A) their enrichment in order to better model real-world combat

activities.

As is always the case, a book reflects the tastes and interest of its author.

Inspired by the works of F. W. LANCHESTER and H. K. WEISS, I have been more

interested in obtaining insights into the dynamics of combat from relatively

simple models than enriching such models in details (see. W. T. MORRIS [63]

for a discussion of the processes of such enrichment). Hence, this book

emphasizes studying relatively simple combat models in order to learn their

basic nature and to, hopefully, perceive significant interrelationships that

are difficult to discern in more complex models. Such insights can provide

valuable guidance for more detailed computerized investigations (see WEISS

* |[112]). We will also consider the use of LANCHESTER-type models. of warfare

_ -for developing quantitative insights into optimal time-sequential combat

strategies (see Chapter 8).
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1.6. Dynamic Systems and State Variables.

The LANCHESTER-type combat models considered in this book may be

viewed from the vantage point of system theory (see PADULO and ARBIB (68]).

We will find it convenient to do so in order to better understand the

philosophical underpinnings of such models. Let us therefore introduce

the reader to some intuitive notions and ideas related to systems. We

will not attempt to give explicit and precise definitions. For our pur-

poses intuitive and rather vague terminology will suffice, 27

A physical system is defined as an interconnection of physical elements,

or objects. The notion of a system is rather broad: it applies not only

to simple mechanical and electrical devices but also to more esoteric and

complex systems such as automobiles and (especially) weapons systems. In

particular, one can view military units such as companies and battalions

as systems.

Systems may be either static or dynamic. This book concerns dynamic

combat systems. For our purposes, a dynamic system is one whose inputs and

outputs are related by a set of differential (or difference) equations. The

system evolves dynamically over time. The set of differential equations pro-

vides a model fur the system's evolution. We require that such a model. be

valid in the sense that the present predicts the future. Let us informally,

therefore, introduce the notion of cause and effect or, more formally, the

principle of casualty. Consider the following example: in NEWTONIAN

*i~ mechanics, the future motion of a system of particles is completely determined

if the present positions and moments are known, along with the present and

future forces. Future forces have no affect on the present (nonanttcipatory

system), 'ýnd how the system reached its present state is not important.
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Knowledge of the present allows us to predict the future. What we mugt know

about the present (besides the equations that describ, the evolution of such

quantitites) is called the gtj.tsof the system. Intuitively, the state of a

system is the minimum amount of present information about the history of the

system that allows one to predict the effect of the past upon the future. The

variables chat are used to describe the state of a system are called the state

variables.

The above terminology is convenient for conmunication about LANCHESTER-

type models of warfare. Later when we consider time-sequential combat stra-

tegies, it will be convenient to introduce the system-theory notions of closed-

j oR and open-loop controls. As we will see in the next chapter, one may view

LANCHESTER's classic combat theory as saying that force levels are the state

variables for combat between two military systems. We return to this theme

later.

1.7. Final Remarks.

Thus, we see that we may say that LANCHESTER-type models of warfare re-

present dynamic combat systems whose state variables are typically force levels.

In this introductory chapter we have established a framework for studying such

differential-equation models of combat: we have examined the general nature

of models, the use of combat models in defense planning in the United States,

and the various types of combat models that are in current use. Based on our

examination of the scientific study of conflict and warfare, we feel that most

of the shortcomings usually attributed to LANCHESTER-type models28 are also the

shortcomings of any combat model.

Moreover, we feel that LANCHESTER-type models are an ideal vehicle for

studying combat dynamics because of the relative ease of extracting information

from them and the fact that usually no other type of model is better justified.
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Our conclusion is based on a careful examination of the state-of-the-art

of conflict and combat modelling. In the next chapter we will see how

LANCHESTER-type models readily provide many important insights into the

dynamics of combat.
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FOOTNOTES for C,•aptar I

1. Unfortunately, litle of this debaoe has reached the open litera:ure.

e___e, however, he excellen report by the U.S. Army Models Review Com-

mit~tee [42], BOtER and FARRELL [11, Chapter 11, and BONDER[i0].

2. For some differing views on the nature of operations research, see

BARISH [4], BONDER [9], CHURCHMAN, ACKOFF, and ARNOFF [17], GOODEVE [34],

KLEIN and BUTKOVICH [50], MISER [59; 60], and references contained there-

in.

3. Although this definition opens the classic book by MORSE and KIMBALL [64],

the definition apparently goes back to KITTEL [49] (as reported by

GOODEVE [ 35]).

4. See, for example, MORSE and KIMBALL [64], CHURCHMAN, ACKOFF, and ARNOFF

[17], HILLIER and LIEBERMAN [401, or WEISS [113]. SEee also the references

cited in Footnote 2.

5. Here the letter C is used phonetically to denote that we are enumerating

-concepts in this list:. For the next such enumeration in this book, the

letter T is used to denote that we are liating Sypes (of models).

6. The effectiveness of any military system may be defined as the extent

to which the system may be expected to achieve a set of objectives [1091,

and the quantitative expression of the extent to which specific mission

requirements are attained by the system is referred to as a measure of

effectiveness (MOE). In OR work, it is important to distinguish between

the performance (e.g. rounds fired per minute, single shot kill probability,
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I

etc.) of a weapon system and its effectiveness (e.g. decisively winning

a fire fight), or military worth. Failure to choose appropriate measures

of effectiveness can lead to completely wrong conclusions as to preferred

alternatives (see MORSE and KIMBALL [64]). As stated in the main text,

although performance data for a weapon system may be collected in "opera-

tional" tests, a combat model is usually required (for example, due to

safety considerations) to "put ir all together" against an enemy threat

in an operating environment to estimate system effectiveness (see, for

example, RUDWICK [80, p. 57]). In other words, the combat model trans-

forms performance measures (e.g. target acquisition capability, rate of

fire, etc.) into effectiveness measuzes (e.g. battle outcome, FEBA move-

meat).

7. About $30 to $40 million is apparently spent each year for just the

construction of such models. Unfortunately, it is very difficult to

estimate how much money is actually being spent annually on combat model-

ling activi.ties because of the nonexistence of cost-accounting definitions

and procedures (86].

8. See, for example, QUADE and BOUCHER [74, pp. 221-225).

9. In the decision sciences, the word "uncertainty" has a special technical

meaning (see, for example, LUCE and RAIFFA [54]). However, we are using

this word as being synonymous with "having an element of chance involved. "

10. See, for example, HITCH and McKEAN [41], QUADE [73], ENKE [251, QUADE and

BOUCHER [74], or BONDER [9].
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11. Here we are brought face to face with the disagreeable paradox pointed out

by M. HOWARD [45, p. 10] that "war might be necessary as an instrument

of policy to insure the suzvival of a society in which it was possible

to renounce war as an instrument of policy." Speaking about World War II,

he went on to say [45, pp. 10-11], "Good will and international organiza-

tions were apparently not enough in themselves to eliminate violence as

an element in international affairs." In the mid-1960"s and early 1970's

a wave of sentiment (remarkably similar to that reported by HOWARD [45,

p. 10] for post-World-War-I England) arose within American academe (and

especially within the OR community) that war was not a problem to be

examined but an evil to be shunned. The parallel with the intellectual

climate of the 1920's and 1930's (as reported by HOWARD) is uncanny.

12. There is a special problem which has gone largely unnoticed, for those

who wish to test the validity of models of defense/military systems and/

or operations: the data base for the testing of such a model is from the

real world (past and present), whereas the prediction from the model is

for the real world (future). The physical sciences are based on the principle

of uniformitarianism, which holds that physical and biological processes,

conditions, and operations do not change over time (i.e. uniformity over

time). For example, in geology the doctrine of uniformitarianism holds

that the present is the key to the past [61]. This principle, of course,

does not hold for planning models of new future environments (see, for

example, ROWLAND [46]). What is meant by the validity of such a planning

model is in need of critical examination.

13. For a discussion of von CLAUSEWITZ and the other major writer of the

NAPOLEONIC age on the art of war (namely, General Baron de JOMINI), see

EDMONDS [241.
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14. Concerning the scientific study of warfare, let us note some of the work

that has been done in the fields of arms races and warfare in general.

LEWIS FRY RICHARDSON did pioneering work in both fields [78; 79]. For a

lucid and authoritative discussion of RICHARDSON's mathematical theory of

war (including arms races), see RAPOPORT [75]. For an introduction to

the scientific study of arms races, see INTRILIGATOR and BRITO [471,

RATTINGER [76], SAATY [81] and WEISS [113]. H. K. WEISS [114] has pointed

out that although more books have been written about war than about almost

any other human experience, the number of quantitative analyses is ex-

tremely small. The most notable of these are the pioneering studies by

QUINCY WRIGHT [117] and L. F. RICHARDSON [79].

SAATY [81] points out that in 1965 a Norwegian statistician used a

computer to organize a data base for 14,531 wars in 5,560 years of recorded

history. This data suggests that RICHARDSON's [79] pioneering quantita-

tive study of 315 wars that ended between 1800 and 1952 may well be re-

presentative of the entire recorded history of man on earth. H. K. WEISS

[114] has taken RICHARDSON's data as a point of departure for developing

several stochastic models for the duration and magnitude of wars. HORVATH

[44], however, has criticized this work and suggested an alternative

model based on the theory of extreme values. All this data suggests that

unfortunately, war has been quite an established human institution. More-

over, the author feels that one should view the scientific study of war

(including Lanchester-type and other combat models) much as one views the

study of, for example, a disease like cancer: the subject area may be

unpleasant but somebody must understand the phenomenon to be able to

realistically suggest what to do about it.

15. One, for example, develops simple decision tables or rules to model the
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complex human decision-making process.

16. However, Monte Carlo combat simulations are not appreciably more demanding

in their input requirements than detailed hybrid analytical-simulation

combat models such as BONDER/IUA and its various derivatives diacussed

below.

17. Even when it exists, documentation of a combat model may be poor (86].

However, the following documentation and information is exceptionally

good for this field. Further information about CARMONETTE may be found

in ZIMNERMAN [120] or ADAMS, FORRESTER, KRAFT, and OO•TERHOUT (3].

CARMONETTE was an early effort in ground combat simulation and won the

Lanchester Prize (see Footnote 24) for RICHARD F. ZINWNERM [119] in 1956.

Further information about DYNTACS is to be found in [7; 19], while that

about SIAF is in [99]. General information about current combat models

(mainly Monte Carlo simulations) is available in [92; 101].

18. Our discussion here follows BONDER [10].

19. CARMONETTE, a pioneering combat simulation, took about 20 man-years of

effort to develop [3, p. 6]. For more recent data on the cost of simu-

lation development, see SHUBIK and BREWER [86].

20. Indices of the relative combat capabilities of military units (based on

a "scoring system" for the weapons employed in the units) have been used

by military gamers and force planners for years. Wle are here generically

referring to such indices as firepower scores, i.e. using the term firepower

scores to refer to any one of a large family of such indices. Other
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members of this family of indices and related terms are firepower potential

(FP), firepower potential score (FPS), unit firepower potential (UF?),

index of firepower potential (IFP), index of combat effectiveness (ICE),

weapon effectiveness index/weighted unit value (WEI/WUV), weapon effective-

ness value (WEV), etc. (see STOCKFISCH [90, pp. 6-27] for further re-

ferences and a guide to the literature about firepower scores).

21. Names of various firepower-score methods are given in Footnote 20. See

STOCKFISCH (90] for further information.

22. The exact details vary from model to model. Sometimes (Ul) and (U2)

are combined.

23. As pointed out in Footnote 1.7, documentation of combat models is

generally poor. The following documentation and information is, however,

"exceptionally good for thJ.s field. Gerneral information about con'temporary

combat models (mainly Monte Carlo simulations) is available in [92; 101].

Further information about ATLAS may be found in KERLIN and COLE (48] or

(33], while that about CEM may be found in [151 or [531. Documentation

of both DYNTACS and CARMONETTE has been discussed above in Footnote 17.

Information about BONDER/IUA and its various darivative models ma,7 be

found in [11; 12; 36; 92; 104], while that about DIVOPS may be found in

[1061. The theater-level combat model named VECTOR is docume,,nted in

[21; 105; 1071. DMEW (see [1001) is also a theater-level model, as is

TWSP (see [211 or [271).

24. For an excellent general discussion of comptters and national security,

see PAXSON [71].
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25. T, DERICK W. LANCHESTER (1368-1946) was an eminent English automotive and

aeronautical engineer. Fer a brief sketch of his iany scientific and en-

gineering contributions, sae McCLOSKEY [55]. The Lanchester Prize is named

aster him and is awarded annually by the Operationa Research Society of

America "for the paper on operations research judged to 6e the best of

the calendar yearý"

26. Corresponding stochastic formulations (i.e. Markov-chain analogues) are

for all practical purposes analytically intractable (see Note 1 of

TAYLOR and BROWN [93, p. 65)).

27. See PADULO and ARBIB [68] or TIMOTHY and BONA [981 for more precise and

extensive discussions.

28. See, for example, the shortcomings given in Section 2.6 for LANCHESTER's

classic (constant-coefficient) combat formulations.
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NOTES and REMARKS for Chapter 1

Our discussion of models in Section 1.1.2 is similar to that of ACKOFF

L2, Chapter 4]. Further discussion in a simi'ar vein is to be found in

CHURCI14AN, ACKOFF, and ARNOFF (17, Part III] Our discussion of the dif-

ferent types of combat models in Section 1.3 owes much to BONDER and FARRELL

[11, Chapter 1] and BONDER [9; 10].

World-War-II Operations Robearch. Further information about World-War-II

operations-tesearch activities may be found in McCLOSKEY and TREFETHEN [57]

and McCLOSKEY and COPPINGER (56]. For some idea about the subsequent de'i'elop-

ment of OR, see (for example) DAVIES, EDDISON, and PAGE [22], ACKOFF (1],

HERTZ and EDDISON (391, and any recent textbook on OR (see, for example,

the fairly extensive references given in WAGNER [10]). The book by STOCK-

FISCH [89] contains not only a very good description of World-War-II OR

activities but also an outstanding description and analysis of the subsequent

development and use of OR, cost-effectiveness analysis, and their many

variants by DoD.

Defense Planning. For discussions (the classic ones) of defense planning, see

HITCH and McKEAN [41], ENKE [25], QUADE [73], and QUADE and BOUCFER [74]. For

an older account of the weapons-acquisition process, see PECK and SCHERER

[721. Overall discussion of American defense policy is to be found in HEAD

and ROKKE [37]. Information about the yearly Planning-Programming-Budgeting-

System (PPBS) Cycle and its evolution is to be found in ENKE [25] and NOLAN

[67]. STOCKFISCH [89] has given a penetrating analysis of weapon-system

development and procurement by DoD. he has postulated flaws that lead to

the military bureaucracies operating under "perverse incentives" in the car-
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rent defense system, and he has also made suggestions for improving DoD

management (see also STOCKFISCH [90; 91]). For discussions of contemporary

defense-policy issues, see various publications of The Brookings Institution

(for example, LAWRENCE and RECORD [52], or RECORD [77]). Issues for the

fiscal year 1977 are discussed in SCHNEIDER and HOEBER [82].

Systems Analysis. For various views on the nature of systems analysis, its

role in defense planning, and its relationship to OR, see QUADE [73], QUADE

and BOUCHER [741, RUDWICK (80], and NOLAN (67]. For a critical discussion

of systems analysis in nonmilitary context-s, see HOOS [43]. In fact, the

study of "systems" has become quite a field of study in its own right (see,

for example, von BERTALANFFY (6]). Unlike the variety of systems analysis

practiced in the defense community (see the above references [67; 73-74; 80]),

the brand of systems theory espoused by von BERTALAFFY and others of this

general school of systems science (see, moreover, OOS [43, pp. 15-41] for

a brief and penetrating survey of the diverse meanings of the word "system"

as used in many differcnt disciplines) uses differential-equation models as

the basic vehicle for studying the dynamical behavior of systems. In this

respect, see (for example) the work of FORRESTER [30-32]. Moreover,

FORRESTER's work, in contrast to the work at hand, has stressed an "experi-

mental" approach to understanding system behavior through the repeated

running of continuous-time simulations (i.e. numerical integration of sys-

tems of differential equations, not Monte Carlo simulation). This work has

not been without its critics, though (seek, for example, SHUBIK [83], BREWER

and HALL (14], and BERLINSKI [5]). Moreover, the analogue in the defense

community of FORRESTER's work has been that of PAUL CHAIKEN of the Stanford

Research Institute (see, for example, [58]).

41



Simulation and Gaming. For an early general account of simulation, see

MORGENTHALER [62]. More recent accounts are contained in, for example, the

books by NAYLOR, BALINTFY, BURDICK, and CHU [66], EVANS, WALLACE, and SUTHER-

LAND (26], and FISHMAN [29]. The latter book [29] (see also NAYLOR [65])

contains fairly extensive references to the simulation literature. Most of

this literature, however, is irrelevant to our current examination of combat

models and defense planning: a very small portion of the contemporary

literature on simulation (one exception being the book by EVANS, WALLACE,

and SUTHERLAND [26]) considers the simulation of military combat or other

military operations and is therefore relevant to the analysis of defense-

planning problems. Along these lines, ZIMMERMAN's 1960 article [119] is

probably still the best article available on the simulation of ground combat.

Although the list of combat simulations that we have given above (see, for

example, Footnote 17) is rather short, it does include most of the principal

ones that are being used by DoD today.

We probably have not done justice to the topic of gaming. For recent

general discussions of various aspects of gaming, see SHUBIK (84; 85] (seee

also SHUBIK and BREWER [87] and SHUBIK, BREWER, and SAVAGE [88]). The lat-

ter book [85] contains excellent guides to various parts of the gaming

literature. For a very readable and informative popular account of war gaming,

see WILSON [116]. We agree, moreover, with SHUBIK and BREWER [86, p. 8]

that "the amcunt of publicity given free-form, political-diplomatic-military

games has been enormously disproportionate to the financial and intellectual

investments iv them. Popular accounts aside (such as [116]), research on

the intellectual foundations and uses of this type of work has been neglible."

The classic work on "traditional" war gaming is by YOUNG [118] and contains

a comprehensive history of the development of war gaming. For accounts of

operational gaming and its role in military operations research, see THOMAS
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and DEEMER [97], THOMAS [95; 96], and PAXSON (701. Although somewhat dated,

the references. [95-97] are still an excellent introduction to gaming, probably

the beat technical one in the military field. A more recent varsion of this

material (but not as deep or comprehensive in the military area) is to be

found in the book by SHUBIK [84].
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Chapter 2. LANCHESTER'S CIASSIC COMBAT FURMULAI•ONS

2.1 Lanchester's Original Work.

In 19141 F. W. LANCHESTER 2 (55] considered hia now classic mathematical

formulations of combat between two homogeneous forces in order to quanti-

tatively justify the principle of concentration3 m•der "modern conditions."

A When viewed in this light, his simple differential equation modelp are

quite reasonable. With the elegance of simplicity, they convincingly

,* show that concentration of forces is much more important under "mcdern

conditions" than under "ancient conditions.'"

lie should, perhaps, be more am&zed that such simple models yield

intuitively appealing results than be critical because of the factors

omitted from them (see WEISS [98, p. 15]). As is usually the case with

simple analytical models (see Section 1.3 above), they may be too abstract

to solve any specific real operational problem. They can, bowever,

illustrate a general principle such as concentration, clearly delineate

modelling issues, warn about potential difficulties, and ser-re as a

basis for communication among analysts (see SHUBTK and BREWER (74, pp. 2-3]

for further discussion). In other words, such simple analytical models

can provide valuable insights into the dynamics of combat, although they

may be far too simple to be able to address any specific operational

problem. 4

LANCHESTER's (55] hypothesis was simply the following. In "ancient

times," warfare was essentially a sequence of one-on-one duels 5 so that

the casualty-exchange ratio during any period of battle did not depend

on the combatants' force levels. But under "modern conditions," however, the

firepower of weapons widely separated in firing location can be concen-

trated on surviving targets so that each side's casualty rate is proportional
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to the number of enemy firers and the casualty-exchange ratio consequently

depends inversely on the force ratio. Hence, under modern (i.e. 1914) con-

ditions there is a definite advantage to be gained from concentration of

forces; this has nnt alwayb been true since in ancient times there was no

such advantage to be usually gained from concentration . LANCHESTER

stressed that "modern" technology had radically changed the fundamental

nature of warfare from what it was in the past. In ancient times, weapons

such as swords and battle axes had to directly engage each other so that

warfare was essentially a sequence of one-on-one duels. However, in

modern times, the long-range delivery capability of contemporary weapons

allows the concentration of firepower by weapons widely separated in

firing location. Consequently, many weapons may fire at a few with

devastating effects.

LANCHESTER's (55] main contribution was to translate the above verbal

7model into mathematical terms. Because of the really pioneering nature

of his work, LANCHESTER provided much motivation and logical (but not

scientific) justification for his simple mathematical developments. He

U5, p. 422] very insightfully comments that "the defense of modern times

is indirect: tersely, the enemy is prevented from killing you by your

killing him first, and the fighting is essentially collective." The

model that LANCHESTER formulated for combat under modern conditions re-

flects this consideration. He then used this model to convincingly

shcw the advantage from concentration of forces, i.e. the advantage of

aol: committing forces "piecemeal."

Conditions of Ancient Warfare. As we have seen above, LANCHESTER

hypothesized that ancient warfare was essentially composed of a series
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of one-to-ene duels between men fighting with weapons such as swords,

battle axes, etc. He argued that if two equal-sized forces composed of

combatants with equal fighting ability were to meet in battle, then each

side would lose about the same number of men. Let us denote oue side as

the X torce and the other as the Y force. Then LANCHESTER reasoned that

if 1000 members of the X force and 1000 of the Y force meet in battle,

it is of little consequence whether, for bxample, the 1000 X meet the

entire Y force at once, or helf now and the other half later. LANCHESTER

reasoned (implicitly) that those who do not have duel opponents would have

to wait in line for the opportunity to do battle and could not "gang up"

on the enemy. In other words, h•ere is no advantage to be gained from

concentration of torces.

8LANCHESTER did not give any equations for ancient warfare , but it

is clear from reading his paper that he had in mind a combat attrition

process for -;hich the (instantaneous) casualty-exchange ratio is independent

of the numbers of combatants, i.e.

dx
dy . , (2.1.1)

where x(t) and y(t) denote the numbers of X and Y combatants at

time t, and E denotes the coustant exchange ratio. If we denote the

initial number of X combatants at the beginning of battle at t - 0 as

x0, i.e. x(0) - x0 , and similarly for the Y force, then integration

of (2.1.1) yields LANCHESTER's linear law

x0 - x(t) - E{y 0 - y(t)} . (2.1.2)

The significant insight into the dynamics of combat, which the above

simple analytical combat model readily yields, is that under such ancient
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conditions of warfare there was no advantage to be gained from concen-

trating forces. We can see that this important result is an immediate

consequence of LANCHESTER's linear law (2.1.2) by considering how a side's

casualties depend on the number of his forces initially committed to bat-

tle 9. Consider, for simplicity, a fight-to-the-finish in which the X

force will be annihilated. [In Section 2.10 below, we will consider this

topic again with more realistic battle-termination conditions after we

have briefly considered the topic of modelling the battle-termination

process.] Let us denote the final force levels at the end of battle with

the subscript "f," and then xf - 0. Let us also assume that the ex-

change ratio E is equal to unity, i.e. E - 1, and that X starts

with 100 men, i.e. xo 100. Then, we can take different values for

Y's initial strength, use (2.1.2) to compute yf, and determine Y's

loss fur each different initial commitment of forces. As Table 2.1 shows

us, we find that Y's loss is always the same (provided that Y wins,

i.e. yo > 100), irrespective of how many men he commits to battle. Al-

though we have demonstrated this result only for specific numerical values,

it is true in general (see Section 2.10 below). Thus, there is no ad-

vantage under conditions of ancient warfare to concentrating forces.

"Modern Conditions Investigated. LANCHESTER hypothesized that under

"modern conditions," a side's casualty rate would be proportional to the

number of enemy combatants due to the firepower-delivery capability of

modern weapons. In mathematical terms, we have

(dx
dt -ay with x(O) -Xo,

(2.1.3)

d -bx with y(-) -
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TABLE 2.1 Numerical Results That Illustrate That Under "Ancient Conditions"

of Warfare There Was No Advantage to Concentrating Forces (i.e.

No Reduction in Own Casualties From Committing More Men to

Battle).

"ANCIENT WARFARE"

0-x f E (Y0 - Yf)

Set Einl, x0 -100, xf -0

Then

100 150 200 250 300 500

Yf 0 50 100 150 200 400

Y's loss 100 100 100 100 100 100

NO ADVANTAGE TO CONCENTRATING FORCES
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where t denotes the battle time, the battle begins at t - 0, and a

and b are constants that are today called. LANCHESTER attrition-rate

g. These attrition-rate coefficients represent the effective-

ness of each side's fire (i.e. its firepower). This simple combat situa-

tion considered by LANCHESTER is diagrammatically represented in Figure

2.1.

In contrast to the previous situation for ancient warfare, it now

makes a tremendous difference how the Y force of 1000 combatants is

committed against the X force of 1000 combatants. If all 1000 Y meet

the 1000 X of equal fighting ability (i.e. we assume that the relative
frefetensa iseula

fire effectiveness, a, is equal to unity, namely A - 1), then the bat-

tle would be fought to a draw, with both sides being simultaneously

annihilated. However, if half the Y force, i.e. 500 combatants, meets

the entire X force, the result would be the annihilation of all the

Y forces committed at a cost of about 134 casualties to X. Plots of the decays

of the force levels are shown in Figure 2.2. If the 866 X survivors

now engage the remaining 500 Y, the result would again be the annihilation

of the Y combatnats, this time at a cost of about 159 additional casual-

ties to X (see Figure 2.3). Thus, if X can divide the Y force and

concentrate all his forces against each half in two sequential battles, then the

entire Y force of 1000 men can be annihilated by X with a loss of only

293 men. LANCHESTER [55] gave this example and then went on to examine

several other examples of the "weakness of a divided force." Thus, we

see that under the "conditions of modern warfare" (at least as modelled

by (2.1.3)) JULIUS CAESAR's famous dictum "divide and conquer" has been

quantitatively justifed (at least in a heuristic sense).

From equations (2.1.3) we may obtain the instantaneous casualty-

exchange ratio
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!Ld X -E Y (2.1.4)
dy bx x

where the constant exchange-ratio coefficient E a/b has been intro-

duced so that we can readily compare (2.1.1) and (2.1.4). Integration

* of (2.1.4) yields LANCHESTER's square law

bx2 _x2 ay2 _2

which (as we have partially seen above) has the important consequence

tbat a side can significantly reduce its own casualties by initially com-

mitting more forces to battle (see Table 2.11 and compare with Table 2.1).

LANCHESTER, however, referred to the "condition for equality of

fighting strengths 10 namely

bx2 - y2 (2.1.6)

as the "square law." It is interesting to note that he did rnot

deduce (2.1.6) from (2.1.5), but LANCHESTER

[55, p. 422, column 1] reasoned that two forces are of equal strength

when their force ratio does not change _during the course of battle. For

example, let an X force of 1OQ0combatants, each armed with an M-16, en-

gage a Y force of 500 men, each armed with a light machine gun. If

after a given time, X %Trill have lost 200 men against a loss of 100 for

Y, then the force ratio has remained constant and the forces may be re-

garded as being of equal strength. Introducing the force ratio, u -x/y,

we find that it satisfies the RICCATI equaticlA

dt u-a with u() u- . (2.1.7)

From (2.1.7) we see that the force ratio doesn't change over time
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TABLE 2.1I Numerical Results That Illustrate That Under "Modern Conditions"

of Warfare There Is an Advantage to Concentrating Forces (i.e.

Reduction in Own Casualties From Comnitting More Men to

Battle).

"MODERN WARFARE"

2 2 2 2
x XfE (yQ y)X0 -f 0 yf

Set E - , x0 100, Xf -0

Then

YO 100 150 200 250 300 500

Yf 0 112 173 229 283 490

Y's loss 100 38 27 21 17 10

ADVANTAGE TO CONCENTRATING FORCES
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(i.e. du/dt 0) if and only if (2.1.6) holds. It was indeed insightful
12

that LANCHESTER deduced his famous "square law" in this fashion.

Area-Fire Model. LANCHESTER also considered the case in which each

side fires into the general area occupied by the enemy and not at par-

ticular targets. He assumed that this area is independent of the number

of targets present in the area. Implicit in LANCHESTER's development is

the assumption that fire is uniformly distributed over this area. In

this case, LANCHESTER hypothesized that the following equations would

hold

dt axy with x(0) - x0,

(2.1.8)
d d -bxy with y(O) - y0 (

dt 0

Again, (2.1.2) is a consequence of (2.1.8) with E - a/b, so that in

such cases of area-fire battles there ta no particular advantage from

concentration (again, see Table 2.1).

Final Remarks. The level of matlematics is kept at a minimum

in LANCHESTER's original paper (55], yet if one carefully reads the paper,

it becomes clear that LANCHESTER had explored fairly deeply the mathe-

matical properties and operational implications of his simple models.

In the next couple of sections we will examine the properties, behavior,

and operatiohal implications of these classic models.

2.2. Constant-Coefficient LANCHESTER-Type Equations for Modern Warfare.

We have seen that in his original 1914 paper, LANCHESTER [55]

hypothesized that combat between two homogeneous forces under "ýmodern con-

ditions" could be modelled by 1 3
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( dx -dt ' -aywith x(O) X x0.. (2.2.1)

4  -bx with y(O) Y•
dt

Even though combat is a complex random process, such deterministic differ-

ential-equation models are commonly used in the analysis of military

combat. 1 4  In this simple combat model, the attrition rate for each force,
e.g. (-dx/dt) for the X force, is assumed to be proportional to only

the number of enemy firers. As we have seen above, the constants a and

b represent the effectiveness of each side's fire, i.e. its firepower,

and are called LANCHESTER attrition-rate coefficients. In other words,

the attrition-rate coefficient a represents the fire effectiveness of

a single Y firer, i.e. the rate at which he kills X targets.

This simple combat model is very significant because almost all develop-

ments in the LANCHESTER theory of combat [including current operational

models such as BONDER/IUA, BLDM, VECTOR-2, etc. (see Section 1.3)] may

in one sense or another be considered to take (2.2.1) as a point of

departure. In particular, much can be learned about developing analytical

solutions and gaining insights into the dynamics of combat by studying

it. Consequently, we will study this particular model in some detail.

For convenience, we will refer to the equation (2.2.1) as LANCHESTER's

equations for modern warfare,iS although they have been hypothesized to

apply under other circumstances. In fact, two sets of physical circum-

stances under which these equations have been hypothesized to apply are:

(Cl) both sides use "aimed" fire and target-acquisition times are
constant, independent of the force levels (a special case of
which is when target acquisition times are negligible) [99],

(C2) both sides use "area" fire and a constant density defense [151.

64



A more complete discussion of these hypotheses is to be found in the

papers by BRACKNEY [15] and WEISS [99] and in Section 2.11 below.

The above equations (2.2.1) only make sense for x, y 1 0, since

negative force levels are physically meaningless. If we consider the

physical process of two military forces exchanging fire, then it is clear

that equations (2.2.1) can only be valid for x, y > 0 and require modi-

fication for x - 0 or y - 0. For example, the first becomes dx/dt -0

for x - 0. To be more precise, we should write LANCHESTER's classic

model of modern warfare as

dx • -ay for x > 0,

dt 0 for x - 0

(2.2.2)

d -. -bx for y > 0,

dt 0 for y - 0.

To avoid inessential complications, however, we will not do so with the

understanding that when we write the differential equations for some model

like (2.2.1), we implicitly imply that the equations are "turned off" when,

for example, one side or the other is annihilated. The reader should also

observe from (2.2.2) that a LANCHESTER-type differential-equation combat model

need not always have the same "right-hand sides."

the next aspect to consider is to determine what we can learn from

LANCHESTER's model of' modern warfare about the dynamics of combat between

two homogeneous forces. In particular, one is interested in answering

such questions1 6 as:

(Ql) Who will "win"? Be annihilated?

(Q2) What force ratio is required to guarantee victory?
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(Q3) How many survivors will the winner have?

(Q4) How long will the battle last?

(Q5) How do the force levels change over time?

(Q6) How do changes in parameters (i.e. initial force levels, x and y
and attrition-rate coefficients, a and b] affect the outcome
of battle?

(Q7) Is concentration of forces a good tactic?

In the remainder of this section we will consider answering the above

questions.

The two basic vehicles for answering the above questions are (1) the

state equation, and (2) the X(or Y) force level as a function of time. Additional-

ly, we will see that we can also determine who will be annihilated from the

force-ratio equation and obtain further insights into the dynamics of combat.

A state equation is an equation satisfied by the state variables.

Since time t is not a state variable, the state equation for combat between

two homogeneous forces takes the general form

S(x,y) = 0 , (2.2.3)

where x and y denote the force levels of X and Y, respectively.

To obtain the state equation for the combat model (2.2.1), we divide the

first equation by the second to obtain the instantaneous (or differential)

casualty-exchange ratio

dx (2.2.4)
dy bx (

Separating variables and integrating, we obtain the state equation for

LANCHESTER's model of modern warfare

b{x - x2 (t)} - a{yo - y2 (t)} (2.2.5)
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We will also refer to (2.2.5) as LANCHESTER's square law.

Let us now see how we may use the above state equation to obtain the

X force level as a function of time, denoted as x(t), for combat modelled

by (2.2.1). Solving for x and substituting into the first differential

equation of (2.2.1), we obtain

dx 2+_ /
Sx+k with initial condition X(T 0) X0, (2.2.6)

where t - t andk-o2

where T - Ya-b t and k - (a/b)yo0  x 0 . Separating variables and inte-

grating, we find that

kn (x + x _ k - - T .(2.2.7)

S+ y0 /b

Raising e to the power of each side of (2.2.7), we obtain the X force

level x(t) after some algebraic manipulation

x(t) - 1 {(x - y e + (x 0 + yo) e- 1' t} . (2.2.8)

In terms of the so-called hyperbolic functions (ue Appendix A.1), we may

write the X force levels as

x(t) - x0 cash /aib t - y0 / sinh a'b t (2.2.9)

For the general case of time-dependent attrition-rate coefficients,17

there is no state equation of.the form S(x,y) - 0. With this fact in mind,
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let us seek anothex method that does not depend on using such a state

equation to develop the X force level. We may differentiate the first

equation of (2.2.1) with respect to t and combine the result with the

second equation to obtain a second order linear ordinary differential

equacion that contains only the X force level

2dx - abx - 0 ,(2.2.10)
dt

with initial conditions

x(0) - x 0 , and dt ( -ay.

We will call (2.2.10) the X force-level equation. Using standard solution

methods (see Appendix A.2), we again obtain (2.2.8) [or, equivalently,

(2.2.9)] for the X force level. Again, this solution approach of develop-

ing an X force-level equation is significant because it generalizes to

cases of variable coefficients, whereas the approach based on the state

equation in general does not.

In Figures 2.4 and 2.5 is plotted the decay of the X and Y force

levels. For convenience, we record these results here as 1 8

x(t) - x0 coshva t - yo / sinh /a t

and (2.2.11)
y(t) - y. coshyaTb t - xo/A sinh aib t

The force levels are most conveniently expressed in terms of the hyperbolic

functions when parametric studies are desired. We will see below that repre-

sentation of the force levels in terms of the exponential functions provides

certain important insights. In Figure 2.4 the smaller force is seen to be

annihilated, whereas in Figure 2.5 the larger force is annihilated. In

both cases, we have "stopped" the battle as soon as onc side or the other
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Figure 2.4. Force-level trajectories of X and Y forces for combat

modelled by LANCHESTER's equations of modern warfare. For

these calculations, a - 0.04 X casualties/(minute'number of

Y combatants) and b - 0.04 Y casualties/(minute'number of

X combatants).
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Figure 2.5. Force-level trajectories of X and Y forces for combat

modelled by LANC1!ESTER's equations of modern warfare., For

these calculations, a - 0.01 X casualties/(minute-number of

Y combatants) and b - 0.1 Y casualties/(uinute-number of

X combatants).
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has been annihilated, i.e. we have not computed the force levels past the

time at which one side is first annihilated.

To more clearly exhibit the parametric dependence of the force-

level trajectors, we normalize the force level by considering the fraction

of the initial strength x(t)/x 0  given by

x(t) = cosh /a t --- sinh /a t • (2.2.12)
x 0 x 0V bs nh a t(.12

From (2.2.12) we see that the X force level depends on the following three

quantities (although the model (2.2.1) contains the four independent

parameters, a, b, x0 and yo):

(1) initial force ratio, u0 - x0/Y0

(2) intensity of combat, I - Y,

(3) relative fire effectiveness, R - a/b.

We observe that u0 and R are relative quantities (without units), whereas

I is an absolute quantity. It is the so-called geometric mean of the attri-

tion-rate coefficients. It seems appropriate to call I - raib the intensity

of combat, since the course of combat for the model (2.2.1) more quickly

reaches its conclusion the larger that I is. In other words, I controls

the time scale of battle.

To determine who will "win" the battle, one must specify battle.-

termination conditions, with "victory" conditions also being given for each

side. In other words, one must have a model for the battle-termination

process. The simplest, but albeit somewhat unrealistic in the light

of historical evidence, model of battle termination is to consider that each side

fights until it is annihilated. Let us assume that this is true.

We will consider a more realistic model below in Section 2.8.

71



Thus, we considez a "fight-to-the-finish," which can have three

possible outcomes:

(XW) X wins with xf > 0 and yf - 0

(YW) Y wins with yf > 0 and xf - 0,

(D) draw with xf yf 0,

where xf denotes the final X force level and similarly for yf. For

any particular battle (i.e. for particular specified values of the attrition-

rate coefficients a and b and the initial force levels x0 and y0 ) we

can always plot the decay of the force levels x(t) and y(t) versus time t

and consequently determine who will be annihilated and who will win the

fight-to-the-finish (see Figures 2.4 and 2.5). This is, however, a time-consuming

procedure, and doesn't provide any deep understanding of the dynamics of

combat, i.e. how weapon-system capabilities (as quantified by the attrition-

rate coefficients a and b) and the initial force levels x0 and yo

determine the outcome of battle. However, it is of considerable interest

to determine force-annihilation-prediction conditions, i.e. conditions that

allow us to determine battle outcome (here, force annihilation) without

having to spend the time and effort of explicitly computing force-level

trajectories. Let us, therefore, now determine conditions that are necessary

and sufficient for Y to win a fight-to-the-finish in finite time, i:e. X

be annihilated in finite time. There are several ways in which we can do

this. Here we will only consider the easiest way, with a more in depth

examination being given in the next section.

Probably the easiest way to determine force-annihilation-prediction

conditions is to consider the X and Y force levels expressed in terms

of the exponential functions, namely
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x(t) - {(x 0 -f yo) e"' + (x0 + yo) e't} (2.2.13)

and

I y(t) - {Y - xO) e + (Yo + xO) e } (2.2.14)

We observe that the second term in brackets for both x(t) and y(t) is

always positive, since the negative exponential function is always positive.

It is strictly decreasing as a function of t and becomes negligible for

large t. Thus, both x(t) and y(t) > 0 and lir x(t) - lrm

0 if and only if x/Y - -/b. In other words, we have a draw when

(and only when) x0 /Y0 - Va/b. Furthermore, y(t) > 0 for all t > 0 and
n0

iimt- +y(t) > 0 if and only if the first term in brackets for (2.2.14) is

positive, i.e. the coefficient of the increasing exponential in (2.2.14) is

positive. This is equivalent to xo/Y 0 < /a/b. In this case (i.e.

xo/Y0 < /a7b) the first term in brackets of (2.2.13) for x(t) is negative

and decreases without bound as t - + -. Hence, at some point in time

x 0 when the two terms in brackets just cancel out. Thus, we have shown

PROPOSITION 2.2.1: Y will win a fight-to-the-finish in finite

time if and only if x0 /Y0 < _a_ •

Proposition 2.2.1 is particularly significant because it shows us

that the outcome of battle (here, the annihilation of one side) is determined

by only two relative factors (namely: (I) the initial force ratio u0

-ix 0 /Y0 , and (II) relative fire effectiveness, R - a/b) and not absolute
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quantities. Thus, even though the model (2.2.1) contains the four inde-

pendent parameters, it is the only two relative quantities u0 and R

that determine force annihilation. It is also very important for us to

point out that (except for the so-called quasi-autonomous case in which

a(t)/b(t) is constant) although LANCHESTER's square law in the form (2.2.5)

does not generalize to cases of time-dependent attrition-rate coefficients,

the force-annihilation-prediction condition of Proposition 2.2.1 does

generalize to such cases.

Rewriting (2.2.14) as

y(t) (Xo - yo e t + (xo + yofg) e a t, , (2.2.15)

we clearly see from (2.2.13) and (2.2.15) that at most one of X and Y

can ever be annihilated in finite time (i.e. at most one of x(t) and

y(t) can ever be driven to zero in finite time). This is an important

property of the model (2.2.1), since it allows us to consider only

one of x(t) and y(t) in order to determine force annihilation for both

combatants. In other words, if x(t ) - 0 with tX > 0 and finite, then
Sa a

we know that y(t) > 0 for all t > 0. Thus, if we can compute the time

for X to be annihilated, we know that y(t) will always be greater than

* zero. In more mathematical terminology, equivalently, we have shown that

the X force-level equation (2.2.10) possesses a nonoscilliatory solution

x(t), i.e. x(t) has at most one zero for t e (0, + -). Furthermore,

the same is true for (dx/dt)(t).

In view of the importance of the fact that at most one of x(t)

and y(t) is ever equal to zero, let us deduce this property of the

74



force level trajectories from the basic differential equations themselves.

First, a few heuristics. Looking at the first equation of (2.2.1), we

see that if y(t) becomes negative, then x(t) begins to increase.

Thus, it is intuitively obvious that if y(t) goes to zero and then

becomes negative, the corresponding plot of x(t) versus t will have a

Y
positive minimum corresponding to the time ta at which y(t) - 0. This

situation is shown in Figure 2.6. Thus, if we forget to "turn off"

y
equations (2.2.1) at ta (i.e. don't use (2.2.2)), then the X

"force level will actually increase as time t increases when t > tY.

Let us now give an analytical demonstration of the fact that all

the solutions to (2.2.1) are nonoscillatory (see HILLE (38, p. 373]), i.e.

at most one of x(t) and y(t) can vanish in finite time. Multiplying

the first equation of (2.2.1) by y, the second by x, adding, and

integrating the result between 0 and t, we obtain

x(t) y(t) - x0y0  f {ay (s) + bx 2s)) ds . (2.2.16)
0

It is impossible for both x(t) and y(t) to be equal to zero at

any finite time, since then they would have to be equal to zero for
all time. 1 9  Hence, the integral term (i.e. f fay2(s) + bx2(s)}ds)

0
is strictly increasing and positive for t > 0. Since xo0y > 0, it

follows that x(t) y(t) has at most one finite zero for t > 0. Thus,

we have deduced the desired property, which we record here as

Proposition 2.2.2.

PROPOSITION 2.2.2: For the model (2.2.1), at most one of the

two force levels x(t) and y(t) can ever vanish in finite time.
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Figure 2.6. Force-level trajectories for combat modelled by the

differential equations (2.2.1). The dashed lines

extend the X and Y force levels computed by (2.2.13)
Y

and (2.2.14) past ta. The values of a and b area
the same as for Figure 2.5.
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Since the force-annihilation-prediction c-ndicion contained in

Proposition 2.2.1 involves the initial force ratio and not a force level,

we are motivated to consider the force ratio and ask what happens to it

over the course of battle. Furthermore, many aggregated combat models

(such as ATLAS) have both casualty rates and also FEBA movement depend

on the force ratio (of firepower indices or their equivalent). In order

to determine how the force ratio changes over time, we seek a differential

equation for it. Introducing the force ratio u - x/y, we consequently

consider kn u Z Zn x - kn y and differentiate with respect to time to obtain

1 du 1 dx 1 AX
u dt x dt y dt

Using the differential equations (2.2.1), we find that for the combat

dynamics of (2.2.1) the force ratio u - x/y satisfies the following

Riccati equation (see Appendix A.3)

du bu - a , (2.2.17)

with u(O) u0 - x0 /Y0 .

Although we could separate variables in (2.2.17) and integrate

(see INCE [41, pp. 311-3121) to obtain2 0

u(t) . _b j (xO - yO/a7) + (xo + YOra_/b) e-2/a t

(x0 _ YUa/7) _ (Xo + y0 a-7 *) •-2VaF , (2.2.18)

the main use of the force-ratio equation (2.2.17) is not to solve explicitly

for u(t) but to obtain qualitative information about the.solution u(t).

For a fight-to-the-finish, we observe that (a) X wins at t - T when

u(T) - + •, and (b) Y wins when u(T) - 0. Thus,it seems appropriate
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to say that "the course of battle is moving towards a Y victory" when

du/dt < 0 (or, simply, that "Y is winning"). Moreover, du/dt < 0 if

and only if

x <(2.2.19)

Let us now examine the qualitative behavior of the force ratio over

time as determined by the force-ratio equation (2.2.17). We will see that

we need not solve (2.2.17), i.e. consider (2.2.18), in order to quali-

tatively determine how u(t) changes over time. It seems appropriate

to call du/dt the force-ratio velocity. For convenience we consider that

(2.2.17) holds for -- < u < + -. Let us now examine how the force-ratio

velocity du/dt depends on the force ratio u. For such an examination

we hold t constant and consider du/dt to be a function of only u,

denoted as du/dt(u). We define u+- = alb and u - Va/. It follows

from (2.2.17) that du/dt(u) < 0 for u_ < u < u+. The minimum of

du/dt(u) occurs at umin- 0, and we have du/dt(u min) - -a < 0.

Usually, however, we will let t vary, and then du/dt may be considered

to be a function of t, denoted as du/dt(t), since the dependent vari-

able u depends on t.

In Figure 2.7 the force-ratio velocity du/dt is plotted against

the force ratio u. It should be recalled that a negative force-ratio

velocity has the interpretation that Y is "winning" the battle (2.2.1).

Also shown by means of arrows drawn along the u axis in Figure 2.7 is the

direction of movement of the force ratio, with the length of the arrow

reflecting the magnitude of the force-ratio velocity. From Figure 2.7

it is clear that if du/dt (t 0 0) < 0, then u(t) decreases and du/dt(t)

becomes more negative (as long as u > 0). Thus, we have proved
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tdu

Figure 2.7. Force-ratio velocity as a function of the force
ratio~ for combat modelled by LANCHESTER's
equations of modern warfare.
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PROPOSITION 2.2.3: If du/dt(t - 0) < 0, then du/dt(t) < 0

for all t > 0. If u > 0, then du/dt(t) 1 du/dt(t - 0) < 0.

Thus, if u0 < a/b, the force-ratio always will decrease during the

course of battle; it will always increase if u 0 > /o/b. For the

constant-coefficlent model of "modern warfare" (2.2.1), we see from

(2.2.17) that if x0 /y 0 - /a/b, then the force ratio remains constant

during the course of battle although the force levels exponentially decline.

We state this result as Proposition 2.2.4.

PROPOSITION 2.2.4: If du/dt(t - 0) - 0 (i.e. x 0 /Y 0 - /avb), then

the force ratio remains constant during the coursa of battle (i.e.

u(t) - x(t)/y(t) - aVPb), although the force levels exponentially

decrease, i.e. x(t) - x0 exp(-Vaa- t) and y(t) - yo exp(-/aVb t).

We observe that such force-level behavior only holds for a constant-

coefficient 21 model.

Let us now show how the force-annihilation-prediction condition of

Proposition 2.2.1 may be deduced from the force-ratio equation (2.2.17).

This result is particularly significant because it generalizes to certain

cases of time-dependent attrition-rate coefficients and yields simple

force-annihilation-prediction results that do not involve any higher

transcendental. functions. We observe that du/dt(t - 0) < 0 if and only

if x0 /Y0 < 7a/b. Thus, by Proposition 2.2.3 u(t) is strictly decreasing.

It remains to show that u(t) beccmes zero in finite time. We readily

show this by considering for u > 0

u(t) Uo + f du t u + t du
0 0 • dt~ u 0 dt• -(o80
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the last inequality holding by Proposition 2.2.3. Hence, u(t) ÷ 0

in finite time, since du/dt(O) < 0.

We are now in a position to easily answer the question of how

long the battle will last. Again, the results given here will be limited

to a fight-to-the-finish. By proposition 2.2.1 we know that X will be

annihilated if and only if x0 /y 0 < /Tb. The time at which X is

annihilated, denoted as t X, may be determined from x(t - 0. In thisa a

determination we may express the X force level in terms of either the

exponential functions [see equation (2.2.8)] or the hyperbolic functions

[see equation (2.2.9)]. Thus, we have

tX a n 1 (2.2.20)
2/a 1 (x 0/y0)A-/

or, equivalently,

t X I ltah -11 (2.2.21)
a Va y Vaf

The number of survivors for the winner (here Y) of this fight-to-the-

X
finish may be determined by substituting the annihilation time t given

a

by (2.2.20) into (2.2.14). Doing this, we obtain for the fractional

survivors

Syf b x0\21- -- -o , (2.2.22)

where yf denotes the final Y force level at t - t We also could

have deduced (2.2.22) from LANCHESTER's square law (2.2.5) (i.e. the state

equation for LANCHESTER's model of modern warfare) by setting x(t) - xf = 0

and y(t) - yf. We observe that the state equation (2.2.5) is useful for

such determinations only when we already know one of the force levels.
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In general, for x, y > 0 we have

Y0-a Y0o!\Y0/ . (2.2.23)

The principal results that we have developed above are summarized

-in Table 2.111.
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TABLE 2.111. Summary of Principal Results for LANCHESTER's Model

of Modern Warfare

LANCHESTER's Equations for Modern Warfare

S dx
dt -ay with x(O) i xr0

idt -bx with y(O) - y

Differential Casualty-Exchange Ratio, dx dx ay
dy Ty bx

2 2 2 2State Equation: a{y2 - y2(t)} b{x 0 x(t)}

Differential Equation Satisfied by the X Force Level:

d x - abxI 0

dt
2

with initial conditions

x(0) x and dx (0) -ay
I0u dt

X Force Level:

X(t) x 0 cosh/a t -- y0 ba sinh/ t

or

x(t) (x Yo - Y ) e' t + (xo + yo 4f) e-'a t

Differential Equation Satisfied by the Force Ratio, u -1:
yi I du Iu2 X.o

Id ub a with u(O) -
Tt YO

Force-Annihilation-Prediction Condition: X will be annihilated in

finite time if and only if xO /y0 < vra/b.
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*2.3. A Further Look at Predicting Force Annihilation.

It is important for the military operations analyst to have a clear

understanding of how force-level and weapon-system-performance factors

interact to determine the outcome of battle. Victory-prediction condi-

tions (i.e. conditions that predict the outcome of battle without re-

* quiring the expenditure of time and effort to explicitly compute the

force-level trajectories) provide important insights into the dynamics

of combat by explicitly relating the initial force ratio and weapon-

system capabilities to the outcome of battle. Consequently, we will

examine in greater depth here the development of force-annihilation-

prediction conditions for LANCHESTER's (constant-coefficient) equations

for modern warfare (2.2.1). Our reasons for doing this are twofold:

(Pl) to extend such victory-prediction conditions to other

models [particularly the variable-coefficient version of

(2.2.1)],

(R2) to develop other types of outcome-prediction conditions

[e.g. victory-prediction conditions for a fixed-force-

level-breakpoint battle (see Section 2.8 below)].

In other words, examining the various approaches for developing force-

annihilation-prediction conditions provides us with important clues for

extending such conditions to other cases of interest.

In Table 2.IV we list the six different approaches for developing

force-annihilation-prediction conditions. For the combat model (2.2.1),

the force-annihilation-prediction condition is given by Proposition 2.2.1,

*Starred sections are not required for the understanding of the sequel and

4i should be omitted at first reading. They usually require more mathe-

matical sophistication to be understood.
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which we restate here for convenience.

PROPOSITION 2.3.1: Y will win a fight-to-the-finish in finite

time if and only if Y() T

The list given in Table 2.IV is exhaustive, i.e. we do not know of any

other way to develop conditions that predict force annihilation. Moreover,

it is approach (3b), determining the time to annihilation with the force

levels represented in terms of the hyperbolic functions, that provides a

computational means for determining force-annihilation-prediction condi-

tions for the general case of time-dependent attrition-rate coefficients

for the model (2.2.1). All the other approaches are not capable of being

generalized to such cases of variable coefficients.

In all but the next to last approach (4), manipulation of the

state equation (2.2.5), we will ultimately discover the nonoscillation

of all solutions to (2.2.1), i.e. at most one of the force levels x(t)

and y(t) can ever become zero (see Proposition 2.2.2). Since its

proof does not depend on force-annihilation determination, let us assume

that this important property of all solutions to (2.2.1) has been established.

Knowledge of the existence of the nonoscillation property

simplifies the development of force-annihilation-prediction

conditions. Let us note, however, that this important nonoscillation

property no longer generally holds when continuous replacements and/or

withdrawals are added to the model (2.2.1).

Since approaches (1) and (2) of Table 2.IV have been considered

in Section 2.2 above, we wi~l not consider them further here except for

making a few additional comments. First, we observe that analysis of the
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TABLE 2.IV Approaches for Developing Force-klnihilation-Prediction

Conditions

A.

THESE APPROACHES ARE TO CONSIDER:

(1) X force level represented in terms of exponential functiuns

(2) force-ratio equation

"* (3) time to annihilation with force levels represented in

terms of

(a) exponential functions

(b) hyperbolic functions

(4) state equation

(5) HELMEOLD's monotonicity condition (Method B of Section 3.3)
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force-ratio equation (2.2.16) (see Figure 2.6) leads to another proof

"of the nonoscillation of all solutions to (2.2.1). Secondly,

by both approaches (1) and (2), we readily establish that an-

nihilation occurs in finite time (except for the case of a draw).

Approach (3a) consists of considering the. X force level expressed

in terms of the exponential functions [see equation (2.2.8)] and solving

Sfor the time for the X force to be annihilated, denoted as tat asSx

determined by the equation x(t ) 0. Consequently, we find that
a

tXi Y0 + x o (2.3.1)
a 2 a/ I YO r -x0 V

In order for tX to be well defined and positive, the argument of thea

logarithm must be greater than one (but finite), and hence x0 /y 0 > a/b

in order for X to be annihilated. By the nonoscillation of all solutions

to (2.2.1) (i.e. Proposition 2.2.2), we know that y(t) > 0 for all
S~~~X such that x( Xa)-0 hnefl

t > 0 if there exists a finite t t 0, whence fol-

lows Proposition 2.3.1. We also observe that the nonoscillation of all

solutions to (2.2.1) may also be proven by observing that

Y 1 xo ' + yO i

-t Iln 0 (2.3.2)
a 2 Vab Ix0 6- -Y 0y /

and comparing this result with (2.3.1).

Approach (3b) consists of considering the X force level expressed

in terms of the hyperbolic functions [see equation (2.2.8)] and again de-

x K
termining ta from x(t ) - 0. Hence,

t - tanh (2.3.3)

Proposition 2.3.1 follows by observing that the hyperbolic tangent, i.e.
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tanh F, is a strictly increasing function with range [0,1] corresponding

to ýE[0, + -]. It is this property of the hyperbolic tangent that may be

generalized to cases of time-dependent attrition-rate coefficients in order

to develop the sought force-annihilation-prediction conditions.

Approach (4) consisto of considering the state equation (2.2.5)

and setting x xf - 0 and y - yf > 0 to obtain
Tf

2 2 b 2
Yf W YO - XO > 0

which means that we must have xo/y 0 < 7a/b in order that X will be

annihilated. Thus, we have shown that x o/Y < Y is a necessary

condition for the X force to be annihilated. However, to show that

this condition is also sufficient is much more difficult. Eren if we

assume that Proposition 2.2.2 has been proven, it is still not a trivial

task to show that the condition x0 /Y0 < "iT is sufficient to guarantee

that X will be annihilated (and much less that it will occur in finite

time). The difficulty is that we have not shown that there must be one

(and only one) zero for x(t) and y(t) in finite time if x0 /Y0 o /avb7.

To prove the latter proposition, however, one uses an approach that is

essentially equivalent to proving Proposition 2.2.1 by apprach (1) of

Table 2.IV. Thus, we reach the conclusion that although the state-equation

approach to developing force-annihilation-prediction conditions yields the

simplest way of guessing the desired conditions, this approach is totally

unsatisfactory for proving that the condition is indeed sufficient to

guarantee the occurrence of force annihilation in finite time (even for the

simple constant-coefficient model (2.2.1)).

Approach (5) consists of showing that one force level may be expressed
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as a strictly increasing function of the other one. This monotonicity

condition is usually developed, however, by using the state equation.

The desired force-annihilation condition may then be readily deduced from such a

relationship, but we will defer further discussion of this approach, which is

apparently due to HELMBOLD [371, until the next chapter (see Section 3.3).

Let us conclude this section by showing that for the combat model

(2.2.1) there must be exactly one zero for x(t) and y(t) in finite

time if x0/y 0 # a-/b. As in the proof of Proposition 2.2.2, let us multi-

ply the first equation of (2.2.1) by y, the second by x, and add to obtain

d 2 2
S(xy)-- (ay + bx) (2.3.4)

Similarly from (2.2.1) we also find that

d (ay2 + bx2 4abxy . (2.3.5)dt

Thus, the system of differential equations (2.2.1) is equivalent to

dt
(2.3.6)

da ~4ab 7rdO

where r - xy and a - ay2 + bx2. It follows that the product of the

force levels w satisfies the following differential equation

d2
d-7-- 4 ab• "r 0 (2.3.7)dr2

with initial conditions

dir 2 2
7r(0) - XYoY, and -- (0) -- (ay 0 + bxO)
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Solving (2.3.7) we find that

*ir a(t) - Vv ( Y a) 2  a Y r 2  2 4b, t (2.3.8)-it W -,+• - - ax0 e + (xo 0 "+Y

whence it is obvious that w(O) > 0 but w(t) must become negative as

t + - if xo/y 0  V&7b- . Thus, we have proved the assertion that there

is exactly one finite zero for x(t) and y(t). Let us note, however,

that solving (2.3.7) in terms of exponential functions is essentially

equivalent to developing (2.2.3), whence our comment that showing that

Xo0 /y< ia/b is sufficient to guarantee force annihilation in finite

time by using the state-equation approach (i.e. approach (4) of Table 2.IV)

is equivalent to proving Proposition 2.3.1 by approach (1) of Table 2.IV.

Let us finally note that from (2.3,6) we may similarly deduce that

dt (a2 _ 4abr2) 2 0 (2.3.8)dt

which is equivalent to the state equation (2.2.5).
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2.4. Constant-Coefficient LUNCHESTER-Type Equations for Area Fire.

LANCHESTER [55] also hypothesized that under "conditions of long-

range fire with fire concentratad oru a certain area," combat between two

homogeneous forces could be modelled by

d -axy with x(O) - x0 ,

(2.4.1)

-bxy with y(O) -yO

where a and b are again called LANCHESTER attrition-rate coefficients.

This time, however, such an attrition-rate coefficient represents both the

effectiveness of a side's fire and also the vulnerability of enemy targets

to tiat fire. Thus, the a's and b's (i.e. the LANCHESTER attrition rate

coefficients) are different in equations (2.2.1) and (2.4.1) and may be

related to different physical quantities (see Chapter 5). For simplicity,

however, we have chosen to denote, for example, "X's attrition-rate coef-

ficient" as b in both (2.2.1) and (2.4.1), and we caution the reader that

b therefore has a different meaning in these two equations.

In this simple combat model (2.4.1), the attrition rate for each

force, e.g. (-dx/dt) for the X force, is assumed to be proportional to

the product of the numbers of firers and targets. For convenience, let us

refer to the equations (2.4.1) as LANCHESTER's equations for area fire,20

although they have been hypothesized to also apply under other circumstances.

In fact, two sets of physical circumstances under which these equations

have been hypothesized to apply are:
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(Cl) both aides use "area" fire and a constant area defentse [15,99].

(C2) both sides use "aimed" fire, and target acquisition times are:
(a) inversely proportional to the number of enemy targets, and
(b) the dominant factor in the attrition process (15].

A more complete discussion of these hypotheses Is again to be found in the

papers by BRACKNEY [15] and WEISS [99] and in Section 2.11 below.

Let us now consider what we can learn from our model (2.4.1) about

the dynamics of combat Letween two homogeneous forces. We will do this

again by considering the seven questions (Ql)-(Q7) posed in Section 2.2

above. We begin by again developing (1) the state equation, and (2) the

X force level as a function of time, x(t).

To develop the state equation for the combat model (2.4.1), we

divide the first equation by the second to obtain the instantaneous (or

differential) casualty-exchange ratio

dx adx- a "(2.4.2)

Separating variables and integrating, we obtain the state equation for

LANCHESTER's equations for area fire

b{x 0 - x(t)} - a{y0 - y(t)} . (2.4.3)

We will also refer to (2.4.3) as LANCHESTER's linear law. Solving for y

and substituting into the first differential equation of (2.4.1), we obtain

the following RICCATI equation for the X force level

dx _ 2dt bx + 60 x , (2.4.4)
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where 60 -bx - ay.. For 60 0, a partial fraction expansion yields

(Lee INCE [41, pp. 311-312])

-x b dx -60

x (bx-s0) t

which readily yields our desired result for x(O). For 60- 0, (2.4.4)

becomps

_ dx - b dt , (2.4.6)

x

which is also readily integrated. Hence, we find that

x0 bx 0 - ay0  - ay•- a for bx 0 # ayo,
0 aoexp[-(bxo-ayo)t]

x(t) (2.4.7)

Sx0

1 + bx 0 t for bxo - ayO.

Later, it will be of interest to consider the variable coefficient

version of (2.4.1) for which no state equation such as (2.4.3) generally

holds. With this in mind, we would like to be able to develop (2.4.7) by

a method that does not involve the state equation (2.4.3) and can conse-

quently be extended to the variable-coefficient case. We have discussed

such a point previously in Section 2.2 above. Accordingly, we again differ-

entiate the first equation of (2.4.1) with respect to t and combine thE.

result with the second equation to obtain a second order nonlinear ordinary

differential equation that concains only the X force level, namely

d 2 x 1 dx 2  dx
2 x (d-t) + bx T- 0 , (2.4.8)

dt
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with initial conditions

x(O) - x0 , and d- (0) - -ax 0y.

dt Y

We will call (2.4.8) the X force-level equation. It is the analogue of

equation (2.2.10). This nonlinear differential equation (2.4.8) is one of

fifty standard forms for a certain class of nonlinear second order equations23

iUnfortunately, there apparently is no analytical technique for solving

(2.4.8) directly, and thus hope for the analytical treatment of the variable

coefficient version of (2.4.1) appears dim. However, the term i/x is an

integrating factor for (2.4.8), and we find that

-- :•_4 1ldx dx
=,d (xd-L) + b d-• - 0 (2.4.9)

whence integration yields the RICCATI equation (2.4.4). Thus, without use

of any approximation, the X force-level equation (2.4.8) is not as useful

as the corresponding equation (2.2.10) was for the model (2.2.1).

The decay of the X and Y force levels is plotted in Figures

2.8 and 2.9. For convenience, we record these results here as

x(t) - (2.4.10)
0 for bx 0  ay0,ay+bxt [(x a
0 0

I• + bxo0t =9
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Figure 2.8. Force-level trajectories of X and Y forces

for combat modelled by LANCHESTER's equations for

area fire. For these calculations, a - 0.004 X

casualties/(minute* number of X combatants-* number

I~

of YYoba a t )On 
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YO =60
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Figure 2.9. Force-level trajectcries of X and Y forces for combat

modelled by LANCHESTER's equations for area fire. For

these calculations, a - 0.001 X casualties/(minute

number of X combatants- number of Y combatants) and

b - 0.01 Y casualties/(minute• number of X combatants

number of Y combatants).

96

.. . . . . . . . . . .- .-



7 - ,- z - ---- u~W~r~~r ''

and

v exp[-(bxbx - ay 0
O e[ O-aYOW bxo ayO exp[-(bxO-aYO) I

for bx 0 #ay 0 ,

y(t) - (2.4.11)
YO

for bx ay
1 + ayot . 0

In Figure 2.8 the smaller force Is seen to be annihilated. In contrast to

the model (2.2.1), however, force annihilation is seen to be an asymptotic

result, i.e. it takes "infinite time" to occur. Thus, x(t) and y(t) > 0

for all finite t, and we do not have to "turn off" the equations (2.4.1)

to avoid negative force levels as we had to do for the model (2.2.1) [see

in this respect (2.2.2)]. In Figure 2.8 the smaller force is annihilated,

while in Figure 2.9 the larger one is.

To more clearly exhibit the parametric dependence of the force-

level trajectories, we again "normalize," for example, the X force level

by considering the fractional X force level, namely x(t)/x 0 , given by

i ) - P-l (2.4.12)
i x0  p -e(t)'

where p bx0/ay0  and e(t) = exp[ -ayt(p-i)]. From (2.4.12) we see

that the X force level depends on the following three quantities (although

the model (2.4.1) contains the four independent parameters a, b, x0 , and

.() initial force ratio, u0 - XON,

(2) relative fire effectiveness, R = a/b,

(3) initial volume of enimy fire, V0 = ay0 .
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The initial force ratio u 0 and the relative fire effectiveness24  R are

the same two relative quantities that we encountered in our study of the

model (2.2.1), whereas the initial volume of enemy fire V0 is an absolute

quantity that corresponds to the intensity of combat I - raib for the model

(2.2.1).

Let us now consider the determination of who will "win" the battle.

Again, for simplicity, we will consider here only a "fight-to-the-finish,"

* I with a more realistic model of battle termination being considered in Section

2.8 below. From considering (2.4.10) and (2.4.11), we can make a number of

important observations: (1) x(t) and y(t) > 0 for all finite t > 0,

(2) lim x(t) - 0 if and only if x /y0 < a/b, and limt ++x(t) -0

if and only if limt÷ +,,y(t) - y0 - (b/a)x0 . Thus, we have shown

PROPOSITION 2.4.1: Y will win a fight-to-the-finish if and only

if x0 /y 0 < a/b. The time required to annihilate X is not finite,

however.

Furthermore,

PROPOSITION 2.4.2: For the model (2.4.1), we have x(t) and y(t) > 0

for all finite t > 0. Consequently, both x(t) and y(t) are

always strictly decreasing, positive functions.

As we have pointed out in section 2.2 above (see also Section 1.3),

most aggregated models of ground combat (for example, ATLAS) use the force
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ratio to determine both casualty rates and also FEBA movement. Consequently,

it is of considerable interest to invesdiigate how the force ratio, e.g.

u - x/y, changes during the course of battle for our simple combat model

(2.4.1). We first observe that in general logarithmic differentiation of the

force ratio, u - x/y, yields

lI u 1ldx I!d ix I_AX (2.4.13)
u dt x dt y dt .

whence for the model (2.4.1) we obtain2 5

du a
bx(u - •. (2.4.14)

Thus, we see that unlike the case of the model (2.2.1), there is no first

order differential equation involving just the force ratio for the model

(2.4.1). We can artificially achieve this situation, however, by letting

T b ft x(s) ds, and then

d_.u adT = u - a (2.4.15)

Following an analysis similar to that given in Section 2.2 for the force-

ratio equation (2.2.16), we can easily prove Proposition 2.4.3.

PROPOSITION 2.4.3: If du/dt(O) < 0, then du/dt(t) < 0 for

all t > 0.

Thus, if u0 - 00/y 0 < a/b, the force ratio will always decrease during the
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course of battle; it will remain constant if and only if xo/Y - a/b although

the force levels continuously decay, of course [e.g. x(t) - x0/(1 + bx0t)1.

It is very important to note that du/dt < 0 for all t > 0 does not in

this case imply that u(t) - 0 in finite tine, since it is no longer true

that du/dt(t) < du/dt(O) when du/dt(O) < 0.

From (2.4.10) and (2.4.11) it is clear that neither side can ever

be annihilated in finite time. Thus, our model says that a fight-to-the-

finish will be of infinite duration. We do find from (2.4.10) that for

bx 0 #ay it takes time tf for the X force level to decay to a given

value xf, namely

ii tf In (p~O If 1-p], (2.4.16)

F where p bxo/ay0 t1 and the following restrictions must be placed on xf:

0 <xf <__x for p < I,

x a - <xf<x0 for P > I.

The number of survivors, expressed as a fraction of initial strength, for

the winner (here Y for x0 /y 0 < a/b) of such a fight-to-the-finish is

readily obtained from the state equation (2.4.3) to be

SYf b Xo
-Y 1 0 (2.4.17)

where yf denotes the final Y force level at t - + -. This equation

shows us quite clearly that fractional casualties are determined entirely

by relative factors. For any other (nonnegative) value of the X force

level, we (of course) have
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The principal results that we have developed above are summarized

in Table 2.V.
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TABLE 2.V. Summary of Principal Results for LANCHESTER's Model

of Combat with Area Fire by Both Sides.

LANCHESTER's Equations for Area Fire

dx
Tt = -axy with x(O) - x0

dt- -bxy with y(O) - yo

dx dx aDifferential Casualty-Exchange Ratio, dy" dy b

State Equation: a{y 0 - y(t)} - bix 0 - x(t)}

Differential Equation Satisfied by the.. X Force Level:

d2x 1 dx 2  dx S2 x dt) + bx F t 0

with initial conditions
dx

x(O) x and A- (0) -ax 0y

X Force Level:

bx - ay0
X0 [bx0 - ay exp[-(bxO-aY0 )tl] for bx0  ay

X(t)
0 for bx ay

1 + bxo0t 0

Differential Equation Satisfied by the Force Ratio, u -:x

y

du a Xo
, -bx(u - b) with u(O) - Y

Force-Annihilation-Prediction Condition: X will be annihilated (in

infinite time) if and only if x0 /y 0 < a/b.
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*2.5. A Further Look at the Area-Fire Model.

In this section we present a more in depth analysis of LANCHESTER's

model for area fire (2.4.1). In particular, we will consider the following

topics:

(Tl) a solution approach that can be generalized to cases of time-

dependent attrition-rate coefficients,

and (T2) determining the qualitative behavior of the force-level

H trajectories for the model (2.4.1) without having to explicitly

solve Zhe system of differential equations.

As note above, for the general case of time-dependent attrition-

rate coefficients, there is no state equation of the form S(x,y) - 0.

With this fact in mind, let us seek a method of solving (2 4.1) that does

not depend on using such a state equation. Accordingly, we will develop a

method of solving (2.4.1) that has this property and consequently for cases

of time-dependent attrition-rate coefficients, will allow us to determine

two approximate solutions that many times bound the exact solution, for

example, for the X force level.

We begin by providing motivation for a key transformation that

"linearizes" our nonlinear combat model. Let us rewrite the RICCATI

equation satisfied by the X force level x(t), namely

dx bx2 + 6
0 x (2.5.1)

where 60 . bx0 - ayO. Since there is no constant term on the right-hand

side of (2.5.1), it is a special case of a particular kind of RICCATI

equation called a BERNOULLI equation (see, for example, HILLE [39 , pp.

104-105]). The nonlinear BERNOULLI equation, moreover, can be transformed
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to a linear equation by a substitution for the dependent variable. For
(2.5.1) this substitution takes the form w - l/x. Let us therefore make

the substitution

w - i/x and z 1 i/y (2.5.2)

in (2.4.1) to obtain

(dw aw with w(O) 1/x 0

(2.5.3)
dz _bz

d -bzwith z(O) = i/y0dt T

The first equation of (2.5.3) may be rearranged and differentiated to yield

d 1 dw -1 dz
dt ~aw d 2 dt(25)

z
We may also manipulate (2.5.3) to obtain that -(i/z2) dz/dt 2(b/a)d(/w)dt,

whence (2.5.4) becomes

d _ 1 dw b
d- 1aw dt aw -. (2.5.5)

Integrating (2.5.5), we obtain

d- + (bxo - ayo)W = b , (2.5.6)

whence % second integration yields

bx 0 - ay0 exp[-(bx0 - ayo)t]

X 0 (bxo0  ay0 ) for bx 0 # ay0 ,wrt (2 .5.7)
,,i1 + bx ot

x 0 
frbx0 ay 0•
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Recalling (2.5.2), we readily obtain (2.4.7) from (2.5.7). Moreover, this

solution approach may be used to develop some very useful approximations

in cases of time-dependent attrition-rate coefficients, slice we did not

make essential use of the state equation (2.4.3).

Let us next determine some important solution properties for the

model (2.4.1) without having to develop an explicit solution. We begin by

examining the qualitative behavior of the X force level x(t) as

determined directly from the RICCATI equation (2.5.1). We will show that

much valuable information (e.g. force-annihilation prediction) about the

force-level trajectories of the model (2.4.1) may be obtained directly

from (2.5.1) without explicitly solving for x(t). Let us accordingly

focus on the RICCATI equation (2.5.1)

dxt _bx2 + (bx 0  ay)x (2.5.1)Tt 0 0~)

It seems appropriate to call dx/dt the force-level velocity. Let us

denote the two roots of the equation bx2 - (bx 0 - ay 0 )x - 0 as x

and x 2, with xI - x0 - (a/b)y 0  and x 2 '= 0. Then the maximum of

dx/dt considered as a function of x occurs at x - (x1 + x2 )/2. The

corresponding RICCATI equation satisfied by the Y force level y(t) is

dtA ay + (ay 0 - bx 0 )y , (2.5.8)

and we similarly define y1  and y2 with y, = y0 - (b/a)x, and Y2inO.

We observe that x1 . -(a/b)yl so that x1  and y1  always have opposite

signs except when they are both equal to zero. There are now three cases

to be considered: (1) x0 /y 0 < a/b, (II) x0 /y 0  a/b, and (III) x0 /y 0 > a/b.
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4
In Figure 2.10 the force-level velocity is plotted against the

force level for each of the X and Y forces in Case (I): x0 /y 0 < a/b.

The "direction" of movement for the force level is shown in Figure 2.10 by

means of arrows drawn along the force-level axis, with the length of the

arrow reflecting the magnitude of the force-level velocity. In this case,

x " x 0 - (a/b)y0 <x 2 - y2 < Yl - Y0 - (b/a)x0 . We always have IX1 1 <

and yYll < y0. From Figure 2.10it is clear that y(t) -÷ y0 - (b/a)x 0  and

x(t) 0 0 as t - + -, and also that x(t) and y(t) > 0 for all t > 0.

Thus, by plotting the force-level velocity versus the force level for each

of the combatants, the qualitative behavior of the force levels becomes

obvious. In Case (II) both x(t) and y(t) - 0 as t - + -. Case (III)

is symmetric to Case (I), with the roles of X and Y interchanged. Thus,

we see that in all cases x(t) and y(t) > 0 for all t > 0.

Let us now show that for the model (2.4.1) [without any modifica-

dion of the right-hand sides, cf. (2.2.2)] x(t) and y(t) > 0 for all

finite t > 0. The easiest way to do this without explicitly solving the

differential equations is to introduce functions 7(t) and a(t), analogous

to those introduced in Section 2.3 above. To this end, let us multiply the

first equation of (2.4.1) by y, the second by x, and add to obtain

x - - xy(ay + bx) . (2.5.9)

Similarly,

d
dT (ay + bx) - -2abxy . (2.5.10)

Let us rewrite the above as

diT dad-a d- _ - 2ab 7r, (2.5.11)
dt dt

where 7r xy and a- ay + bx. We observe that as a consequence of

(2.5.11) we have
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"=• d 2
dt (a- 4abw) - 0 , (2.5.12)

which is equivalent to the state equation (2.4.3).

By considering the first equation of (2.5.11), we will now show

that x(t) and y(t) > 0 for all finite t > 0. Recall that we have

shown above by considering the two RICCATI equations (2.5.1) and (2.5.8)

that x(t) and y(t) > 0 for all t > 0. It follows that ff(t) > 0 and

from (2.5.11) that a(t) is a decreasing function of time. Hence,

G(t) < a0  a(0) for all t > 0 so that

dir>

whence

7T(t) > 0 e-•t . (2.5.13)

This last result (2.5.13) shows that x(t) and y(t) > 0 for all finite

t, since 11(t) > 0 for all finite t > 0. Thus, we have proven Proposition

2.4.2 without explicitly solving the equations (2.4.1). It is desirable,

however, for extending this result to the case of time-dependent attrition-

rare coefticients to use the following argument.

Another (however, much more important) way to prove Proposition

2.4.2 is to consider the system of equations (2.5.3) satisfied by w - I/x

and z - 1/y, We will prove the following proposition (which is equivalent

to Proposition 2.4.2).

PROPOSITION 2.5.1: The solution w(t), z(t) to (2.5.3) is positive

and bounded for all finite t > 0.
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PROOF: First, we show that no component of the solution to (2.5.3) can

become negative by passing through zero. We prove this by contradiction:

let tl- inf{tlw(t) - 0 or z(t) - 0 for t > O} and assume that t1

is finite. Then w(t) and z(t) > 0 for t e [O,tl), and dw/dt(t) and

dz/dt(t) > 0 by (2.5.3), which is t.mpossible if a component of the solution

is to have a finite zero. The only other way in which a component of the

solution can become negative would be for it first to become infinite.

Let t 2 a inf{tlw(t) " • or z(t) - • for t > 0}. We will now show that

it is impossible for t 2  to be finite. If this were indeed the case, then

w(t) and z(t) > 0 for t e [O,t 2 ) so that dw/dt(t) and dz/dt(t) > 0.

It suffices to show that w(t 2 ) cannot be unbounded for any finite t 2 > 0.

Let us note that z(t) > z0 > 0 for t > 0. Hence, we have from (2.5.3)

that

dw a
dt -z

Thus, for any finite t > 0, we have

w(t) < w0 exp(-0 t) < . (2.5.14)
0 z 0

Hence, the solution to (2.5.3) is positive and bounded for all finite

t > 0. Q.E.D.
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2.6. Shortcomings of Lanchester's Original Models.

Viewed in the light that LANCHESTER [55] developed his very simple

models of combat (2.1.1), (2.1.3), and (2.1.8) to provide insight into

the dynamics of combat under "modern conditions" and to quantitatively

justify the principle of concentration, LANCHESTER's simple differential

equation models are quite reasonable. They yield results that are in

consonance with military judgement. Although such simple analytical

models can provide valuable insights into the dynamics of combat, they

are far too simple to be able to solve by themselves any specific opera-

tional problem. Thus, from the point of view of a weapon-system designer

or defense planner, who is interested in more than just insights 26 , differ-

ent demands are made on a model. In particular, the "realities of the

real world" must be "adequately" treated in the model in order that sound

recommendations be based on the information that it generates. Accordingly,

we will now examine what factors are not "adequately" treated in LANCHESTER's

original models, i.e. their shortcomings.

Speaking about the shortcomings of LANCHESTER's classic combat for-

mulations, WEISS (98, p. 15] has eloquently stated,

"While we should, perhaps, be more pleased that such simple

formulae yield reasoLable results than critical because of

the elements omitted from them, we must look beyond the LAN-

CHESTER expressions to see how they differ from reality, and

what may be added to them"

With this in mind, we have listed some of the major shortcomings of

LANCHESTER's original models (2.1.1), (2.1.3), and (2.1.8) in Table 2.VI.

These shortcomings are listed roughly in order of decreasing importance,

with the most important ones appearing first in the list.
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TABLE 2.VI. Shortcomings of LANCHESTER's Original Models

SHORTCOMINGS:

1. Constant attrition-rate coefficients

2. No force movement (e.g. no advance or retreat of forces)

3. Homogeneous forces

4. Battle termination not modelled

5. No element of chance

6. Not verified by history

7. No way to predict attrition-rate coefficients

8. Tactical decision processes not considered

9. Battlefield intelligence not considered

10. Command, control, and communications not considered

11. Logistics aspects not considered

12. Suppressive effects of weapons not considered

13. Effects of terrain not considered

14. Spatial variations in force capabilities not considered

15. No replacements or withdrawals

16. Symmetric form of attrition

17. Target priority/fire allocation not explictly considered

18. Target acquisition force-level independent in modern-warfare

model

19. All troops assumed to fire in combat

20. Noncombat losses (e.g. surrenders, desertions) not considered
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Let us now briefly discuss the first ten shortcomings of LANCHESTER's

classic models given in Table 2.V1.

(SI) Constant attrition-rate coefficients essentially mean that

the kill rate of each and every weapon system doesn't change

over time due to changes in range between target and firer,

target posture, firing rate, vulnerability of the target,

target acquisition rate, etc.

(52) No provision is explicitly made for movement, retreat or

advance. In particular, the movement of contact zones

. (i.e. FEBA movement) is not considered.

0(3) All forces on one side are considered to be the same.. Ir.

combined arms engagements, one usually has various different

force types, such as infantry, artillery, armor, mortars,

mechanized infantry combat vehicles, tactical aircraft, etc.

Also, there are other factors such as minefields, fortifica-

tions, barriers, smoke, etc. Furthermore, spatial variations

"in the effectiveness of forces are nor considered.
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(S4) No rules for battle termination are given. WEISS [98, p. 16]

emphasized that "engagements that continue until one side is

wiped out are rare. Retreat begins when the number of casual-

ties approaches the order of 10Z."

0(5) The equations are deterministic and do not portray the random

nature of combat. Many of the factors in combat are of a

random nature, and the uncertainty 2 7 in battle outcome is lost

-Iwhen one models combat with such deterministic equations.

(S6) A priori we have no confidence that combat (even in a gross

sense) actually behaves as postulated by LANCHESTER. Empiri-

cal verification would greatly enhance the acceptability of

such a basis for operational models by users and decision

makers.

0(7) One doesn t t know huw to levelop numerical values for the

attrit~on-rate coefficients such that the performance charac-

teristics of the weapon systems and the operating environment

are adequately reflected in the model.

(S8) Decisions to initiate combat, commit forces and/or reserves,

allocate fires, allocation of effort searching for targets,

etc. are not explictly considered.

(S9) The ability to locate and identify targets, correctly sense

killed targets, etc. are not explictly considered.

(SIO) The passing of information up and down the chain of command

isnot considered.
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We could go on and on. However, Table 2.VI and our brief discussion here

should give the reader some flavor of the shortcomings of LANCHESTER's

classic models.

1 •The reader should recognize that many such shortcomings are not

.1 strictly limited to only Lanchester-type models. If one dcesn't know

- p how, for example, command and control influences weapon-system kill rates

in a particular combat environment, then this is not necessarily a short-

coming of Lanchester-type models. It will also apply to the firepower-score

and M4mte-Carlo-simulation combat-modelling approaches. The author be-

lieves that if a combat process can be modelled at all, then it can ulti-

mately be modelled with a differential equation model of some type.

In spite of all these shortcomings, the amazing thing is that such

simple differenLial-equation models (or their equivalent) are frequently

used even today. It is frequently the case, however, that one does not

realize that the combat model he is using either is equivalent to or may

be most fruitfully viewed as a differential combat model (see, for example,

Chapter 8 below).

From the point of view of the subsequent development and enrich-

ment of differential-equation models of combat (i.e. the so-called Lan-

chester theory of combat), the above shortcomings of LANCHESTER's original

1914 models have played a central role. Namely, subsequent developments

in the Lanchester theory of combat have evolved to overcome these short-

comings.
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2.7. Subsequent Development of the LANCHESTER TheoEr of Combat: A

Preview of Things to Come.

As we have just discussed in the previous section, the development

of the so-called LANCHESTER theory of combat is probably best understood

by considering the shortcomings of LANCHESTER's original 1914 models.

Various authors from the 1940's on have subsequently sought to overcome

the shortcomings listed in Table 2.VI above, and these individuals have

accordingly made various extensions to LANCHESTER's classic combat models.

A list of such extensions is given in Table 2.VII. The extensions listed

in Table 2.VII are given in more or less chronological order, with the

reference(s) given representing in most cases the earliest work on the

topic known to this author. References available in the open, unclassi-

fied literature are emphasized.

Let us now make some remarks about the various extensions listed

in Table 2.VII. The first extensions of LANCHESTER's [55] original work

appeared in MORSE and KIMBALL's classic bcok [64], which reports various

investigations undertaken during World War II by American wartime analysis

groups. In particular, replacements were added to a model of aggregated

force combat, and some implications of the resultant model were studied

in [64] (see also KARNS [471). Equations (both the forward Kolmogorov

equations and also "random walk" ones) for a stochastic combat-attrition

process were developed, and results from the stochastic model were com-

pared with those from the usual deterministic model in the special case

of very few combatants on each side. R. SNOW [78] summarized and ex-

tended work done at RAND in the late 1940's. In particular, he examined

a LANCHESTER-type, MARKOV-chain model of combat and heterogeneous-force

combat formulations. Both the assumptions for LANCHESTER-type combat
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TABLE 2.VII. Extensions of LANCHESTER's Classic Combat Models

t
EXTENSIONS:

1. Replacements (an/or withdrawals) (47; 64]

2. Heterogeneous forces [78]

3. Inclusion of random effects in the attrition process [64; 78]

4. FEBA movement considered [28; 65 ; 99]

5. Fire-support effects included [28]

6. Optimization of tactical decisions [28]

7. Comparison with historical data [24; 32; 991

8. Attrition structures other than LANCHESTER's classic models [15; 36]

9. Unsymmetric formulations for attritions [15; 22]

10. Time- (or range-) dependent attrition-rate coefficients [8; 99 ]

11. Operational losses considered [31

12. Rough effects of intelligence and command and control U3]

13. Attrition-rate coefficients that depend on force sizes [36]

14. Models of guerrilla warfare activities (22; 721

15. Prediction of attrition-rata coefficients [4; 9; 20]

16. Noncombat losses (e.g. surrenders and desertions) (72]

17. Suppressive effects of weapons (721

18. Modelling of battle termination [37; 102 1

19. Interfacing with high-resolution Monte Carlo simulations (20]

20. Large-scale, complex planning models [19; 26]

t Numbers in brackets refer to references at the end of this chapter.
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between heterogeneous forces and analytical solution procedures were con-

sidered by SNOW (78], although the special structure of the combat equations

was not fully exploited for, developing analytical solutions in this pio-

neering work.

The RAND memorandum by GAIMBONI, MENGEL, and DISHINGTON [28] con-

tains a number of pioneering extensions of LANCHESTER's classic combat

formulations: (El) FEBA-movement modelling, (E2) inclusion of fire-

support (particularly tactical ai--power) effects, and (E3) optimization

of the time-sequential allocation of aircraft to tactical targets. This

report memorandum is still worthwhile reading today, even though it was

written in 1951. MULHOLLAND and SPECHT [65] examined some World War II

data and developed a rough model for FEBA movement in theater-level opera-

tions (see also WEISS [99]). Pioneering efforts at comparing the theo-

retical predictions of LANCHESTER-type models with historical, data have

been by J. ENGEL [24] and H. K. WEISS [991 (see also the work by R. L.

HELMBOLD [32-35; 37]).

A benchmark paper, which is still worthwhile reading today although

it is somewhat inaccessible, is H. K. WEISS's 1957 paper, "Lanchester-

Type Models of Warfare." Many innovative ideas were introduced, including

the following: (1) range-dependent attrition-rate coefficients, (2)

comparison of model results with historical data, (3) a model of combat

among small groups, (4) a model of FEBA movement, and (5) a differential-

game examination of optimal fire-support strategies. WEISS's [991 paper

is probably the second most referenced paper in the field after LANCHESTER's

original paper. Furthermore, all of H. K. WEISS's work has been charac-

terized by imaginative innovation, coupled with deep insights into the

scientific analysis of combat operations.
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Other models for the mutual attrition of two homogeneous forces in

combat have been proposed by BRACKNEY (151 and HELMBOLD [36]. BRACKNEY

(15] introduced target acquisition considerations and hypothesized that

the time to acquire a target is related to the target's tactical posture.

HELMBOLD [36] has proposed a modification of LANCHESTER's equations for

modern warfare, which incorporates inefficiencies of scale for the larger

force when force sizes are grossly unequal. S. BONDER [8] did the pioneer-

ing work on the prediction of attrition-rate coefficients from weapon-

system performance characteristics (see also BONDER [9; 10] and BARFOOT

(4]), and, motivated by such developments, he examined the effects of

range-dependent attrition-rate coefficients and nobility on battle outcome.

Operational losses were considered by BACH, DOLANSKY, and STUBBS

[3], who showed that if operational losses were "large enough," then it

would no longer be "beneficial" to concentrate forces (iLe. friendly

casualties would increase if more friendly forces were initially committed

to battle). LANCHESTER-type models of guerrilla-warfare engagements were

considered by DEITCHMAN (22] and Schaffer [72]. DEITCH1AN [22] developed

a LANCHESTER-type model of an ambush in order to explain the observed

high overall force ratios of regulars to guerrillas insurgency operations.

WEISS's [99] model for combat among small groups is DEITCHMAN's point of

departure. SCHAFFER [72] later developed models of several types of

guerrilla-warfare engagements in insurgency warfare. He considered non-

combat losses (such as surrenders and desertions) and included suppressive

effects for supporting weapons in several of these modelq.

The above very rough sketch and Table 2.VII should give the reader

a general idea of the development of the so-called LANCHESTER theory

A of combat. Although we haven't discussed every reference cited in Table

2.VII, we have touched upon the high points. Figure 2.11 depicts the
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LANCHESTER (1914)

1MORSE, KIMBALL, KOOPMAN (1940's)MENGELI•c (194,1B)951) N (9)

ISAACS (1954, 1965) /*X~w(98
*1' ENGEL (1954) 1

ISBELL, MARLOW (1956) /
P BROWN (1955, 1963)SSS (1957, 1959, 1966 B KE Y (1959)

HELMBOLD (1961, 1964, 1971) /
DEITCHMAN (1962)

WILLARD (1962
ISMITH (1965)

BONDER(1964)
BNDE ( 4 BONDER (1967)

"KISI, HIROSE (1966) (1973)BARFOOT (1969
SCHAFFER (1968) CLARK (1969) + KIMBLETON (1971)

GRUBBS, SHUFORD (1973) TAYLOR (1974)

TAYLOR (1971, 1974)
TAYLOR (1972, 1974) TAYLOR, BROWN (1976)

TAYLOR (1975) TAYLOR (1977)

TAýYLOR, BROWN (1978)

Figure 2.11. Chronology of developments in

LANCHESTER theory of combat.
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chronology of these developments. In this figure, the arrows depict this

author's best guess as to how the works of various authors have influenced

each other.

Another way to look at developments in the LANCHESTER theory of

combat is to classify them into several broad areas. Table 2.VIII lists

the major areas of development for the LANCHESTER theory of combat into

which most of the extensions, for example, listed in Table 2,VU fall.

In Table 2.IX, we enumerate various papers that fall into these eight

major areas. In Table 2.IX, we give the authors' names and date of the

published work for each major (or benchmark) piece of work in these

areas. The exact reference to each piece of work may be obtained by con-

sulting the list of references at the end of this chapter.

Thus, we hope that Tables 2.VIT through 2.IX, Figure 2.11, and these

brief comments will provide a rough idea of how the LANCHESTER theory of

combat has developed. In the remaining chapters of this book, we will

examine in more detail some of the more important topics on combat model-

ling and/or analysis.
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TABLE 2.VIII. Major Areas of Development for
LAUCHESTER Theory of Combat

1. Stochastic combat models

2. Optimal fire-distribution strategies

a. optimal air-war strategies

b. optimal fire-support strategies

3. Empirical verification

4. Different functional forms for attrition rates

5. Applications to guerrilla warfare

6. Prediction of attrition-rate coefficients

7. Variable attrition-rate coefficients

8. Large-scale, complex planning models
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2.8. A Simple Model of Battle Termination.

For assessing the outcomes of combat engagements between units in war

games and simulations, one needs some type of "combat results table" that

relates the initial conditions of combat to probable outcomes. The military

operations analyst is faced with constructing such a table. Let us recall

that the first question that we posed in Section 2.2 about the dynamics of

,1 combat between two homogeneous forces was (Ql): "Who will 'win'? Be annihi-

lated?" It turns out that the determination of battle outcome depends on

not only the dynamics of combat (i.e. differential equations such as (2.2.1),

which model the force-attrition processes) but also the battle-termination

rules used.

Of even more interest to the military operations analyst is how the

means and tactics for waging war are related to the outcome of battle.

Specifically, one desires to have a clear understanding of how force-level

and weapon-system performance parameters interact to determine a battle's

outcome. What is the tradeoff between quality and quantity of weapon

systems? When are two forces of equal strength? All such determinations

require the specification of a model for battle termination. We will now consider

a simple model of battle termination and briefly study its implications for con-

ditions of force superiority. We had to defer the discussion of battle-

outcome determination/prediction (i.e. the answering of questions (Ql)

through (Q4) of Section 2.2) until now when we will examine battle-termination

modelling.

As H. K. WEISS [981 has emphasized, engagements that continue until

one side is wiped out are rare. Although we are well aware that battle

termination is a complex random process for which it is by no means certain

that force levels are the only significant variables (i.e. the state
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variables) 2 8 we will assume that combat ends when either of two given

"breakpoint" force levels is first reached. In Chapter 3 we will discuss

the modelling of battle term.ination more thoroughly. Accordingly, for

present purposes, let us define a force-level breakpoint as that point (i.e.

force level) at which a unit (either offensive or defensive) can no longer

perform its mission during a fire fight. We will assume that when a unit's

breakpoint force level (or, simply, its breakpoint) is reached, the unit

will "break off" the engagement and leave the enemy force in possession of

the field of battle. In other words, we consider that when a unit reaches

its breakpoint before the enemy has, that unit has lost the battle.

Thus, the simplest model of battle termination is that battle outcome

* depends (deterministically) only on the force levels. In other words, we

are considering a purely deterministic model of battle termination (with

no element of chance). In Chapter 3 we will discuss the modelling of

battle termination as a stochastic (or random) process. Let us consider

combat between two homogeneous forces (denoted as X and Y) and denote

X's breakpoint force level as xBP, with yBP being similarly defined.

Hence, for example, the following three conditions hold for a Y victory:

(Cl) Xf a XBP

Y wins when (C2) Yf > YBP (2.8.1)

S(C3) x(t) > xBp and y(t) > YBP for 0 < t t ,

where x(t) and y(t) denote the X and Y force levels at time t,

and tf, xf - x(tf), and yf - y(tf) denote final values. Let us also

write that, for example,
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xp f pX , (2.8.2)BP BP

where f denotes a given fraction of X's initial strength. This break-
BP

Xpoint fraction f (or, equivalently, the unit's breakpoint) is usually

assumed to depend on the tactical posture of the unit, its size, etc. Typical

values for a company-sized unit are the following:

fBX 0.7 for an attacking force,
.1 BP

and
f -0.5 for a defending force.
BP

For any particular battle (i.e. for particular specified values of

attrition-rate coefficients and initial force levels) between two homogeneous

forces with assumed fixed-force-level breakpoints, we can always, of course,

determine the outcome simply by plotting the decay of the force levels x(t)

and y(t) and observing which side first reaches its breakpoint. This

approach is, however, a time-consuming procedure, and it does not provide

any deep understanding of the dynamics of combat (i.e. how weapon-system

capabilities and numbers of forces determine the outcome of battle). It is

therefore of Interest to have available victory-prediction conditions, which

explicitly portray the relationship between these variables (i.e. weapon-

system-capability and force-level variables) and the outcome of battle.

Thus, we will give victory-prediction conditions for LANCHESTER's

classic combat formulations with fixed-force-level breakpoints. We will

state these results without proof; details of their development are given

in Chapter 3. In other words, we now will give battle-outcome-prediction

results that answer questions (Ql) through (Q4) posed in Section 2.2 above

for the two classic models:
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(MI) LANCHESTER's equations for modern warfare (2.2.1),

and (H2) LANCHESTER's equations for area fire (2.4.1).

Let us therefore first consider the case in which the combat dynamics

are given by LANCHESTER's equations. for modern warfare (2.2.1). In this case,

Y will win a fixed-force-level-breakpoint battle (in finite time) if and

x. (1 - (fY 2 )2
0 < Br 1 .f (2.8.3)

* When (2.8.3) holds and Y wins, the number of his survivors follows from

LANCHESTER's square law (2.2.5) and (2.8.2), and it is given by

* I

Y VI x.. )2 1 X2

{f j-- (2.8.4)

It is also of interest to compute the winner's total casualties

(denoted as y f) and also his fractional loss (denoted as (fY)) since

* these quantities are measures of his "cost" for doing combat and achieving

I victory. In general for cases with no replacements and no withdrawals,

Y's total casualties, denoted as yl are given by

-C WYO - y ,(2.8.5)

so that (2.8.4) yields that the victor's losses are given by

iiii a((X)2[ (fAC2]E, (2.8.6)

126



iiiiif

where y denotes Y's final -sualties at the end of battle at tf.

Similarly, Y's casualty fraction is defined (in such cases of no replace-

ments and withdrawals) by

fY a YO , (2.8.7)
c 

Y
so that (2.8.6) yields that the victor's fractional loss is given by

iI

U f 'I~4 b X0 1 - (f~~' (2.8.8)

where (fY)f denotes the final casualty fraction.

xWe denote the time for X to reach his breakpoint as t, with

t being similarly defined. The time tp may be determined by solving
B 

BBP

- the equation

X X

X(t~p) - fX , (2.8.9)

and accordingly we obtain using (2.2.8) that

_, F

-l In(l - for Z a
V- fBP) YO b

(2.8.10)
-(x 0 /Y0 ) f x + .,(a/b) - (x/yo)2 [2 (fX 2

x10Y BP - 0 BP)I

SBP /r n - (xo/yo)

xo0 Ia
for r-
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We can obtain a similar result 'for t Y Then che victory-prediction con-
BP

dition (2.8.3) follows from requiring that t X <c1 . Since the battle
BP B?

ends upon X's force level reaching his breakpoint (.!ee (2.8.1) above], the

X
time at which the battle ends, tf, is equal 0~ t BP. Thus, the time for Y"

Y y
to win such a battle, denoted as tý , is given by tw t tf. These results

are all. summarized in Table 2.X. In summary, the information contained in

this table provides the answers to the questions (Ql) through (Q4) posed

above in Section 2.2.

These results are particularly significant because they show that

the outcome of battle is determined by only three relative factors (and not

absolute quantities), even though our combat model (2.2.1) (with battle

termination conditions included) contains six independent parameters: namely,

a, bW x0a yot f sim and feu In particular the victory-prediction condition

(2.8.3) explicitly shows the parametric dependence of battle outcome on

various combat factors. We see that the outcome of a fixed-force-level-

breakpoint battle depends on three factors:

(el) the initial force ratio, u a t X 0/s 0

(F2) relative fire effectiveness, R a/b,

and (F3) a relative breakpoint factor, B 2
BP BP~

where

B(u,v) V 1- 2

All three factors are relative factors. The first two are simply ratios,

invariant for certain types of chaages in the absolute battle conditions

(namely, the group of similarity transformations,which leaves these ratios

} unchanged). The relative breakpoint factor has the following properties:
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TABLE 2.X. Summary of Battle-Outcome Results for IANCHESTER's Equations

for Modern Warfare and Fixed Force-Level Breakpoints

Sx0 - (fY 2

Y will win if and only if < Far
YO b I -(fX2

iBP

When Y wins:

Yf O b 0 2U -(fX)2
(A) winner's survivors, Yf ( ji - ) {l - Bp

(B) winner's fractional loss, (f ) i - - a ( 1 f- (f Icf a YO/ BP

(C) duration of battle, tf -tW where

-1 ln(l - f BP) for yo " "

X2 ( ax 2

ii~~-( ( a/b) - (xolYO) [ fp

-_n -(xo/Yo)-BP + BP
r aab/b - (xo/yO)

for 
a

m1
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(a) B(u,u) -1, (b) aB/3u > 0 for u > 0, and (c) aB/3v < 0 for

v > 0. Hence, B(u,v) > 1 for u, v > 0 if and only if u > v. We may then

rewrite the victory prediction condition (2.8.3) as

Y will win if and only if < B(fp, f) . (2.8.11)

Thus, even though for a fixed-force-level-breakpoint battle, the

model (2.2.1) contains six independent parameters (including the two break-

point fractions), it is only the three relative factors, u0 , R, and B,

which determine battle outcome. The relative breakpoint factor B(f B, fBP)

explicitly shows the influence of the units' breakpoints on battle outcome.

X YIn particular, when fBP M fBP' the victory-prediction condition (2.8.11)

reduces to the force-annihilation-prediction condition given in Proposition

2.2.1. It seems appropriate for us to point out here that although we have

been able to generalize Proposition 2.2.1 (i.e. genera]ize force-annihilation-

prediction conditions) to the case of time-dependent attrition-rate coefficients,

we have not been able to do so for the victory-prediction condition (2.8.11)

for a fixed-force-level-breakpoint battle.

Using the results of Table 2.X, we have constructed Table 2.XI.

In this latter table we show the influence of the values taken for the units'

breakpoints on the outcome of battle. Parameter values were chosen to be

representative of an attack by the X forces against Y. Frequently, one

"hears in military circles that a three-to-one force ratio is necessary for

success in attacking an enemy position. Table 2.XI has been constructed to

also examine this rule of thumb. Consequently, we have taken a Zorce ratio

of 3.00 (numbers of attackers to defenders) for this examination. Additionally,
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one would think that the defenders (with their established positions and

well-planned "fields of fire") would be relatively more effective (per man)

than the attackers. The input values shown in Table 2.XI reflect this
x

situation. Also, the values selected for the two breakpoints, aamely fBP

and fBP' reflect the hypothesis that the defending unit (which does not

move and require as close coordination and control for movement as the

attacking unit does) can sustain a higher fraction of casualties than the

attacker before abandoning its mission and "breaking off" the engagement.

Let us now examine the sensitivity of battle outcome to the units'

breakpoints. If the number contained in column 2 of Table 2.XI is smaller

than that contained in column 6, then Y will win according to the above

victory-prediction condition (2.8.3). The contents of column 7 (the

determined victor) show the sensitivity of battle outcome to the breakpoint

values used. Moreover, we should observe that if the battle were to be

fought to the annihilation cf one side or the other, then X (the attacker)

would win. However, since it is usually hypothesized that the attacker can

sustain a smaller casualty fraction than the defender before "breaking

off" the attack, the attacker may not always win, and the attacker will

lose battles for which the "breakpoints overcome mass." For example, X

loses the battle identified as Case 1 in Table 2.XI.

Thus, the examples shown in Table 2.XI tell us that a force may be

able to win a fixed-force-level-breakpoint battle for certain breakpoints,

even though it would lose a fight-to-the-finish. Figure 2.12 shows the

decay of the force levels in the more "usual" case in which Y wins with

x0 /y 0 < /a/b, i.e. X would be annihilated if the battle were allowed

to proceed until the annihilation of one side or the other. We have also
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extended, for example, the X force level (computed according to (2.2.13)]

past the unit's breakpoint at X and denote this extended cuive with

a dashed line.

From Figure 2.12 we see that the Y force level [computed according

to (2.2.14)] actually increases for t > ta. This should warn the readera

against indiscriminate "plugging in" to an equation like (2.2.14). In other

words, the attrition equations (2.2.1) are only valid for x > xp and

Y > BP To be precise then, once we have introduced the concept of break--

points and consider a fixed-force-level-breakpoint battle; we should, for

example, write LANCHESTER's equations for modern warfare as

dx _ -ay for x > xBp and Y > YBP
dt 0 otherwise,

(2.8.12)

dy -bx for x > xBp and Y > YBP

dt 0 otherwise.

However, for simplicity we will usually not write out the range of validity

of such equations as above and hope that the reader will understand this

implied restriction. Figure 2.13 shows that a force that would otherwise

be annihilated can actually win a fixed-force-level-breakpoint battle. This

situation corresponds to Case 1 sb.-wn in Table 2.XI.

Results are similarly obtained when the combat dynamics are given

by LANCHESTER's equations for area fire (2.4.1). In this case Y will

win a fixed-force-level-breakpoint battle if and only if
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I0 a 1-__BP
YO < . 1 BP (2.8.13)

1 f

The length of battle is finite, however, if and only if fBP > 0. OtherI results are obtained by means similar to those employed in the previous

casa (i.e. for LANCHESTER's equations for modern warfare). These results

are summarized in Table 2.XII.

From the victory-prediction condition (2.8.13) for combat modelled

by LANCHESTER's equations for area fire, we again explicitly see the parametric

dependence of battle outcome on only three relative combat factors, even

though our combat model (2.4.1) (with battle termination conditions

Included) contains six independent parameters. Although the functional

dependence in the victory-prediction condition is different from that for

LANCHESTER's equations for modern warfare, we again encounter the same

three factors that determine battle outcome: namely, (Fl) the initial

force ratio, u0 . xo/yo, (F2) relative fire effectiveness, R - a/b, and
X Y Y X

M(3) a relative breakpoint factor B = B(fp, f - (I - f - f
BP BPBP)/ 1 l B

The relative breakpoint factor, however, is diffe1 . *t for the two different

combat dynamics (namely, for combat modelled by (2.2 1) and also (2.4.1)].

For the combat dynamics (2.4.1) the victory-prediL.ion condition takes a

particularly simple form in terms of the breakpoint casualty fractions,

denoted as (f ) and (f. ) [see (2.8.7) above]. Thus, Y will win a
c BP c BP -_

fixed-force-level-breakpoint battle if and only if

~Y
0X a (c)BPx < a- f 1 (2.8.14)

0 (cBP

or, equivalently,
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TABLE 2.XII. Summary of Battle-Outcome Results for LANCHESTER's Equations

for Area Fire and Fixed Force-Level Breakpoints

Y will win if and only if b <iYo b 1 fBP

yO 1 ~BP

When Y wins:

(A) winner's survivors, Yf 1 - a (1 - f )

(B) winner's fractional loss, (fY) a (I - f)

(C) duration of battle, tf t WT where

- g- -l for p l
ay 0 ~f X

BP
tw-

ayo(l-p) (or o ,

and
j, a YB O

NOTE: X will win when 0 _fX <1 _ I
_BP p
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Y b • .(2.8.15)

In (2.8.15) the victory-prediction condition is expressed in terms of the

product of three relative factors, each the ratio of the X quantity to

that for Y). Let us stress that it is only for LANCHESTER's equations

for area fire (2.4.1) for which such simple results are possible. This is

even more true when each side's breakpoint is considered to be a random

variable (see Chapter 3).

Let us finally discuss some of the differences between the above

results for LANCHESTER's equations for modern warfare (2.2.1) and those for

LANCHESTER's equations for area fire (2.4.1). It seems appropriate to say

'Ithat two forces are of equal fighting strength for a particular battle if

neither force will win, i.e. either (01) neithcr side's breakpoint is ever

reached, or (02) both are reached simultaneously. Table 2.XIII then gives

the conditions for equality of fighting strengths for the two attrition

* models (2.2.1) and (2.4.1). From this table we see that equality of

fighting strengths not only depends on the battle-termination conditions

but also in different ways for the two models. Such parity conditions

may be considered to provide a tradeoff between the quantity and the quality

of weapon systems.

Furthermore, Table 2.XIII shows us that such quantity-quality tradeoffs

are quite different for these two classic combat attrition models. For

LANCHESTER's equations of modern warfare, a four-fold increase in the

relative effectiveness of enemy (for example, Y) weapons can be offset by

a doubling in the ratio of friendly to enemy forces (i.e. increasing a/b
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TABLh 2.XIII. Conditions for Equality of Fighting Strengths in a

Fixed-Force-Level-Breakpoint Battle for LANCHESTER's

Two Class Models.

(Ml) LANCHESTER's Esuations for Modern Warfare

X0 - (Ja

(M2) LANCHESTER's Equations for Area Fire

[ x0 1 -fB a
0 BP ( a

X x bS0 1 -fB
BP
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by a factor of four can be offset by increasing x0 /y 0  by a factor of

two). In a sense then, increasing the number of weapons for a side is

much more effective in maintaining military parity between two forces than

increasing their relative quality. However, for LANCHESTER's equations of

area fire (or, for that matter, any "linear-law" attrition process (sae

Section 2.9 below]) the trading of numbers for quality is "one for one,"

i.e. a four-fold increase in the relative effectiveness of enemy weapons

can be offset by a four-fold increase in the ratio of friendly to enemy

forces.

Finally, let us remark that the significant thing is that the battle-

termination model is important and not so much that there is thus and so a

functional relationship between parameters of the battle-termination model

and the force-parity condition. The actual real--.orld process of battle

termination is much more complicated than the simple model considered here.

Thus, the most significant aspect of our work here is the fact that battle

termination m-ust be considered in determining force parity.
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2.9. Concentration of Forces Revisited.

One of the half dozen or so principles of war is the principle

of concentration (or mass), which would have a commander concentrate as

many men and means as possible at the decisive point in battle. As we

have seen above in Section 2.1, F. W. LANCHESTER sought to develop in his

now classic 1914 paper, a quantitative justification for the principle

of concentration with an idealized model of the combat process. We will

now examine this topic in more depth than in Section 2.1, however.

LANCHESTER [55, p. 422, column 1] points out that there are two aspects

of the principle of concentration: (1) mental concentration (i.e.

focusing all mental energy on a single objective), and (2) material con-

centration (i.e. focusing all material means on a single objective).

He will focus on the second aspect of the principle of concentration (i.e.

material concentration), however.

In other words, LANCHESTER hypothesizes that in "modern" warfare

there are substantial benefits to be gained from merely committing more

forces to battle. He will seek to investigate the underlying principles

that cause such "economies of scale" in combat. As we have seen above,

his models of combat (2.2.1) and (2.4.1) were the result of this investi-

gation. Not only did LANCHESTER show that there were increasing returns

to scale from committing additional force to battle, but he also developed

an important tradeoff for quality versus quantity of weapon systems by

means of his famous square law, namely, the condition for equality of

"fighting strength"

( 11) 0 (2.9.1)
'• ~YO
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Before going further, however, let us point out an important dis-

tinction between the sense in which we and LANCHESTER use the term "con-

centration" and that used by most military analysts today. 2 9 Today the

term "concentration" of forces is usually used in the context of a single

force split into two or more subunits for purposes of massing and/or

economy of force. In this sense, one must consider the cost to the parent
unit of concentration of forces in one sector at the expense of another

sector. As COLONEL VASILIY Y. SAVKIN [71] of the USSR has stated,

"To attain victory over the enemy one must not dissipate

his forces and means equally across the entire front,

but the main efforts must be concentrated on the most

important axis or sector and at the right time in order

to form there the necessary superiority over the enemy

in men and weapons."

We will not use the term in this more sophisticated sense, but we will

consider only one battle and will examine the consequences of initially

committing additional forces to combat.

Let us now address the question, "What are the benefits to be

gained from committing additional. forces to battle?" Our problem is to

model and evaluate the consequences of this action. We have given this

question a cursory examination in Section 2.1 above, and we will examine

it in more depth here. In particular, we will contrast results for the

two models (2.2.1) and (2.4.1).

I
4 4



Let us now consider the question of whether or not to commit

additional forces to battle as a decision problem faced by one of two

commanders about to engage in combat. Without loss of generality, we

may play the role of the Y commander. Our problem is to find the

"best" value for the initial number of forces committed to battle by Y,

denoted as yo. In other words, yo is the decision variable for Y in

our decision problem. Let us now ask ourselves what are the factors

affecting Y's decision. The main factors affecting Y's initial commit-

ment of forces appear to be:

(Fl) what the Y commander knows about the battlefield situation,

(F2) what the enemy commander (i.e. X) will decide to do,

(F3) nature of the combat attrition processes,

(F4) criterion selected by Y for evaluating the consequences

of his action,

(F5) how the battle will be terminated,

(F6) who will win the battle,

(F7) subsequent combat actions.

For simplicity, we will ignore the last factor (F7) and consider only the

battle at hand. Let us consider the case in which Y will be the victor

(i.e. assume that he has more than enough forces available to "win" the

battle). We will then consider the initial-commitment decision by Y as

a one-sided optimization problem: we assume that the X-force commander

had adopted a known course of action and consider Y's initial-commitment

decision in this light.

Based on the above consideration, the essential aspects of the

decision process for Y in deciding whether or not to concentrate forces
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(i.e. initially commit as many as possible to battle) are the following:

(1) action to be taken (decision variable),

(2) information available to decision maker,

(3) outcome "yardstick" (decision criterion),

(4) relationship of action to outcome (slystem dynamics and nature

of planning horizon).

In our initial investigation here let us not consider the inherent uncertainty

in the decision problems and assume that Y has perfect knowledge about

x0 and y0, the battle dynamics (assumed deterministic) and battle termi-

nation (also assumed deterministic) 3 Hence, we will not consider the

information structure here further, although it will certainly play a

major role in actual real-world military decisions. Let us summarize, our

assumptions about our decision problem:

(Al) enemy (i.e. X's) course of action fixed,

(A2) nature of battle dynamics remains the same during the

engagement,

(A3) Y has more than enough forces to "win" the battle and

additional forces can be committed to battle in any quantity

desired,

(A4) Y knows the numerical strengths and capability of each side,

(A5) battle will be terminated by a fixed force-level breakpoint

force level being reached.

As we have discussed in Chapter 1 above, one of the major decisions

in evaluating any system or operation is the selection ot the appropriate

evaluation criteria or measures of effectiveness. For our idealized

concentration-of-forces decision, we will consider a single measure of

"effectiveness (MOE). We are assuming that Y has more than enough forces
available to "win" the battle, so therefore Y will always wind up in
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sole possession of the battlefield. It therefore seems appropriate

to take some measure of the cost of achieving this victory as the criterion

for deciding whether or not it will be worthwhile to commit additional

forces to battle. A natural measure of the "cost of doing battle" is

the number of casualties sustained by the Y force. Let us denote the

number of casualties as yc. We have then that y. -yy0  where yf

denotes the final Y force level at the end of battle when the X break-

point (denoted as xp) has been reached. We also have then xf xBp

XfX x Let us note that since the battle is terminated by X reaching
BP 0*

his breakpoint, X's casualties are always the same [namely, x - x -x
C. fO0

- (1-f p)], regardless of how many forces Y initially commits to battle.

Thus, we may state in quantitative terms the decision problem of

determining the "best" initial commitment of Y's forces as

min maxminimize C, subject to: y0  y Y0 < y0  , (2.9.2)
YO

where C - yc M YffYo denotes the cost of doing combat (i.e. the decision

criterion or objective function), y0  is the decision variable for which

the best (i.e. optimal) value is to be determined, ym0 = YOraw + E, C > 0,

and y0  denotes the value of the initial Y force level that leads to

a draw in a fixed-force-level-breakpoint battle. We will denote the optimal

value of yo as y.. We have now specified all aspects of our combat

optimization problem except for the combat dynamics. We will consider

the above combat-optimization problem (2.9.2) for two classes of battle

dynamics:

(Cl) "square-law" battles, and

(C2) "linear-law" battles.
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By a "square-law battle" we mean any LANCHESTER-type battle for

which LANCHESTER's square-law,

2 2_ 2 2 (2..3b{x 0  x2(t)} - a{y 0  y2(01. (2.9.3)

holds as the state equation. It follows that the combat dynamics must be

given by

( dt -ay'y(t,x,y)

(2.9.4)

-bxy•(t,x,y) .
dt

To insure a militarily realistic situation in which both dx/dt and

dy/dt < 0 for x, y > 0, we assume that y(t,x,y) > 0 for x, y > 0 and

all t. Lanchester'- equations for modern warfare (2.2.1) are, of course,

an example of such battle dynamics. However, any battle for which (2.9.3)

holds will yield the same results as far as concentration of forces is

concerned, and this is why we consider the more general combat dynamics

(2.9.4). To insure that the battle terminates in finite time, we assume

that

T
lim f y(t, x(t) t)) , +®. (2.9.5)

T-*- 0

Results for a "square-law" battle are shown in Table 2.XIV. In

this case, Y will win a fixed-force-level-breakpoint battle (in finite

time) if and only if

l1 (fBp)
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TABLE 2.XTV

Variation in Ovin Casualties for Changes in Initial Number

of Own Forces in "Square-Law" Battle with

Fixed Force-Level Breakpoint

d - -ay'y (tx,y)

Combat Dynamics:

4- -bx'y(t,x,y)
dt

xf afYp BXX

A.~~~~~ BBPl Oucm0Y iswt

B. Own Casualties, Yc YO - Yf

c 'Yo i- -a - )2 Ill- (fBX) 2  }
a (YO Yf\

3yO Yfj

2

-> 0
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When Y wins, the cost of doing battle, namely C - yc, is given by

C - Y - 1 O -2 (2.9.6)

* max

Since DC!3y0 < 0 always (see Table 2.9.1), y y , and the victory

Y should always initially commit aa many forces as possible to battle,

regardless of what the breakpoints are (as long as Y will win). Further-

more, a 2C/ay02 > 0 so there are diminishing returns from committing additional

forces to battle. Thus, irrespective of what the breakpoints are (as long

as Y will win), Y should always initially comnmit as many forces as

possible to battle when combat attrition yields Lanchester's square law

(2.9.3). The reader should recall that in Section 2.1 we said that

Lanchester's square law (2.1.5) yields the important implication that a side

can always significantly reduce its own casualties by initially committing

additional forces to battle. However, we did not prove the validity of

this assertion earlier but merely contented ourselves with a numerical

demonstration of its plausibility.

Similarly, by a "lincar-law battle" we mean any Lanchester-type

battle for which Lanchester's linear law,

b{x 0 - x(t)} - afy 0 - y(t)}, (2.9.6)

holds as the state equation. It follows that the combat dynamics must be

given by

d- -a'P(t,x,y)
dt

(2.9.7)

- -b-(t,x,y)dt
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Again we assume that p(t,x,y) > 0 so that both dx/dt and dy/dt . 0.

Lanchester postulated (s.ee Section 2.1 above) that such oquations held for

ancient warfare. He alan postulated that another cope was that for "area"

fire [ace equation (2.4.1)). To insure that one side or the other is

eventually annihilated, we assume that

for 9>-•- for YO -- b
Lra f ii(t,x(t),y(r)) dt L (2.9.8)

T-• +® 0 x0  x
--. for < a

Results for a "linear-law" battle are ahown in Table 2.XV. In

this case, Y will win a fixed-force-level-breakpoint battle if and only

if

x 0  al BPf I

YO 1-1 fBP

BP

When Y wins, the cost of doing combat, namely, C = Yc is given by

C - - fXJ . (2.9,9)'
a BPX0

Since 3C/ayy0 - 0 (see also Table 2.XV), C does not depend on yo at

all, so that the cost oi doing combat is not affected by varying the

initial numbur of friendly forces committed to battle. In other words,

there is no advantage to be gained trom concentration of forces in a

"linear-law" battle.

Thus, we have shown that the victor's decision as to whether or

not to concentrate forces in a fixed-force-level-breakpoint battle for
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TABLE 2.XV

Variation in Own Casuilties Zor Change in Initial Number

of Own Forces in "Linear-Law" Battle with

Fixed Force-Level Ereakpoint

dx
d-T = -a"p(t,x,y)

Combat Dynamics:
dy=-b.•(t,x,y)

dt

xo a __1__fB

For -- < BP

I b X

A. Battle Outcome: Y wins with
X

f BP x

B. Own Casualties, y y - Yf:

b Ic " a - fBP0xO

DyO

Syc

C 202
ay0
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which (Al) through (A5) hold is fundamentally different for square-law

battles and for linear-law battles: in a square-law battle it is always

best for the victor to initially commit as many forces as possible to

combat, while in a linear law battle there is no benefit to be gained from

concentrating forces. If we assume (as Lanchester did) that warfare in

ancient times consisted of linear-law battles (in which "weapon directly

answered weapon" in one-on-one duels) while under modern conditions it

consists of square-law battles (in which fire from many may be concentrated

on a few), then we see that the importance of concentrating forces has

changed appreciably from ancient times to modern times. Under modern con-

ditions, there is then a tremendous advantage to concentrating forces (or

at least Lanchester hypothesized so31 ). These results are independent of

the breakpoints of both sides (as long as the outcome is not changed).

They also hold for any decision criterion, C, which is of the form

C - F(y 0 ), where F(v) is a strictly increasing function of its argument v.

In general, we would want to include enemy casualties32 in Y's

force-concentration decision. However, if we had considered a decision

criterion of the form C - G(xcYc ), where G(u,v) is a strictly increasing

function of its second argument for any fixed value of its first argument

u, then we would have reached the same force-concentration decisions as

above (e.g. vector should concentrate forces in square-law battle), since

Xc M x0 - xBP - CONSTANT. Thus, one would make the same force-concentration

decision for other criteria (i.e. measures of effectiveness) such as the

loss difference, Dc - Yc - xc, or the loss ratio, Rc - Yc /x c. Later on,

we see that such insensitivity to changes in the decision criterion is

due to the battle termination rule (fixed force-load breakpoint), and in

other cases the force-concentration decision may depend on the decision

criterion (§&2 also TAYLOR [911).
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There is, however, a very simple principle that underlies all the

above concentration-of-forces results: namely, the instantaneous casualty-

exchange ratio determines the overall casualty-exchange ratio and related

measures of relative casualty-production effectiveness; in particular, if

the instantaneous casualty-exchange ratio (friendly to enemy) always

* decreases as the force ratio (enemy to friendly) decreases, then additional

forces should be committed to battle by the victor (friendly forces). Let

us heuristically show why the latter decision rule for initially committing

* additional forces to battle is optimal. The key point is that we should

think of the instantaneous casualty-exchange ratio dy/dx, as the

"cost" to Y of reducing the X force level a unit amount. Thus,

/ nsanaeou \ ( "cost" to Y of
casualty-exchange - reducing X force level (2.9.10)

dxratio a unit amount

Next, we observe that if Y initially commits more forces to

battle, then the battle is fought at lower force ratios (regardless of the

breakpoints of the two forces). Here we take the force ratio to be the

ratio of the enemy (i.e. X) force level to the friendly force level.

In other words, we have that the force ratio, u, is given by u W x/y.

What happens to the instantaneous casualty-exchange ratio if the battle is

fought at lower force ratios? The answer to this question may be obtained

by considering the following partial derivative

(- (2.9.11)
au dx
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which tells us how the instantaneous casualty-exchange ratio varies as

the force ratio changes. A positive value for this partial derivative

(2.9.11) means that the instantaneous casualty-exchange ratio decreases

as the force ratio decreases. It follows that if (O/au)(dy/dx) >0 always,

then the Y force (whom we assume will win) can reduce the "cost" of doing

combat by initially committing more forces to battle and fighting the

battle at lower force ratios with their more favorable exchange ratios.

For the "square-law" battle (2.9.4), we have

ay bx b_d x a ub (2.9.12)
dx ay a

where u - x/y, and hence

dx 0 - (2.9.13)__ __ • u (dx a

"It is this result (2.9.13) that explains why it is always a good tactic

for Y to concentrate forces (i.e. make yo as large as possible in

"square-law battles). For the "linear-law" battle (2.9.7), however, we have

S.. .b (2.9.14)
dx a'

so that

a (4Xi) -0 .(..5

Tu dx (29.5
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In this latter case, therefore, the instantaneous casualty-exchange ratio

cannot be changed by varying the force ratio. Hence, the overall casualty-

exchange ratio cannot be changed by committing more forces to battle, and

there is no advantage to concentrating forces in a fixed force-level break-

point battle. In Chapter 8 we will rigorously prove such statements in

general for Lanchester-type combat with two force-level variables.

Some final reflections seem to be in order. Our heuristic

explanation of the underlying reason for wanting to concentrate Zorces in

square-law battles (namely, to reduce the instantaneous casualty-exchange

ratio) has shown us that the instantaneous casualty-exchange ratio conveys

the basic nature of the casualty-exchange process. We immediately know

(without having to explicitly determine any type of state equation) the

sensitivity of the overall casualty-exchange ratio and related measures to

variatious in the initial number of forces committed to battle by deter-

mining this key quantity (namely, the instantaneous casualty-exchange

ratio), and its sensitivity to force-level changes. Thus, important

information about the behavior of our combat model has been obtained

without having to spend the time and effort to explicitly compute force-

level trajectories.
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*2.10. FISKE-Ty_ _Eqguations of Warfare.

H. K. WEISS [101] has pointed out that LANCHESTER, an Englishman,

was anticipated (in qualitative but not quantitative terms) in 1905 by

BRADLEY A. FISKE (thý.n Commander but later Rear Admiral, USN), an American.

FISKE won the Naval Institute Prize for 1905 for his essay entitled

"American Naval Policy." In this work he considered a "fire fighr" between

two fleets (i.e. shots being exchanged between the two fleets within ef-

fective gun range of each other) and assumed that both the strengths of

the forces and damages sustained could be given numeral values.33 FISKE

then assumed that the damage done to one force by the other, in a given

time period, was proportional to the value of the opposing force at the

beginning of the time period. He then developed tables to show "how the

values of two contending forces change as the fight goes on." He found

that the decrease in offensive power of a weaker fleet. fighting a stronger,

is geometrical (instead of arithmetical) and that there is a continually

increasing difference between the powers of the two fleets as an action

that favors the stronger fleet) progresses. Although no equations were

given, it is clear that FISKE had gone through all of the logical develop-

ment for the model (2.2.1).

J. ENGEL [25] subsequently pointed out that FISKE's verbal model

is equivalent to a system of difference equations. Let us accordingly

consider combat between two homogeneous forces in which casualties are

assumed at discrete points in time. We may think of the engagement as

being fought in distinct volleys (i.e. discrete exchanges of fire).
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Assuming that casualtie8 during a time p4riod are proportional to the

number of energy firers at the beginning of the time period, we find that

the general equations of FISKE's model are34

x Xn+l - Xn ' '"'n with x n.0 -x0,nw (2.10.1)

I Yn+l " Yn " -aX n with yn-0 y0

where the subscript n denotes the nth time period (i.e. just after the

nth volley), the battle begins at n - 0, xn and yn denote the numbers

of X and Y combatants that are effective at the beginning of the nth

time period, and a and 6 are positive constants that represent the

effectiveness of each side's fire. For example, a denotes the number of

X casualties produced by a single Y firer during one time period. Let

us refer to the above equations (2.10.1) as FISKE's equations for modern

warfare. They are the discrete analogue of LANCHESTER's equations for

modern warfare (2.1.1). The relationship between these two models is

examined more closely in Appendix E. Intuitively, we would expect the model

(2.2.1) and all associated results to be the limiting case of (2.10.1) as

the time between volleys becomes arbitrarily small. For now, however, we

will briefly examine some of the principal properties and results for the

model, with their development deferred until Section 7.5 below.

The X force level at the beginning of time period n, x , is

given byi-i
xn -~)[I + +(I (2.10.2)
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and similarly for tlhe 7 force level

~ { + Y+x/)[ W11 (2.10.3)

'35
Let us assume that- a$ < 1 so that I - A > 0. Similar to the proof

of Proposition 2.2,1, it follows that only one of xn and y can ever

become negative (i.e. if xN < 0 for some N, then Yn > 0 for all n > 0). Since
[1+ n > 0 and - + - as n w and [I-/ ]n> 0 and - 0 as

n - •, it follows from (2.10.2) that the following proposition holds.

PROPOSITION 2.10.1: Y will win a fight-to-the-finish in finite

time if and ouly if xo/Y0 < .'7,/.

Furthermore, it follows from (2.10.1) that

n~l 2 !-aS)x2} - a{y n (1- aB)y } (2.10.4)

from which we obtain the discrete-time state equation for FISKE's model

of modern warfare.

B{X2 - (1-8B)nx2} 2 (1 - 2s) (2.10.5)
n 0n Y}(.05

We will also refer to (2.10.5) as FISKE's square law. Let us observe that

FISKE's square law (2.10.5) is somewhat different than LANCHESTER's square

law (2.2.1) because of the "time-dependent" factor (I - ,S)n. However,
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the parametric dependence of force annihilation (compare Propositions

2.2.1 and 2.10.1) is exactly the same. In fact most of the solution

properties of (2.2.1) and (2.10.1) and their implications are exactly

the same.

From the above and results given in Sections 2.2 and 2.3, we see

that the models of LANCHESTER and FISKE exhibit the same general behavior.

Thus, it has not been critical whether we model time as being continuous

or discrete. It is reassuring that the representation of time in our

combat model is not the significant feature, but rather the functional

relationship for casualty trading is the underlying significant feature.

Our model possesses a basic type of invariance that does not depend on

the representation of time. Many scientists believe that such invariance

is the most significant aspect of many physical laws. 3 6
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2.11. Comparison of LANCHESTER's Two Basic Models and Summary.

In this section we collect and compare results for LANCHESTER's two

classic combat models, i.e. his equations for modern warfare and those for

area fire (see Table 2.XVI), with each other. For convenience and also

reasons of historical precedence, we have, for example, referred to (2.2.1)

15as simply LANCHESTER's equations of modern warfare , although, of course,

several sets of assumptions have been hypothesized to yield them. In the

next section (i.e. Section 2.12), however, we develop a more precise notation

for referring to such attrition processes.

In table 2.XVII we give an abbreviated description, denoted as "short

form," of two alternative sets of assumptions that have been hypothesized to

yield each of LANCHESTER's two classic combat models. A more thorough

enumeration, denoted as "long form," of the first set of these assumptions

is given in each of Tables 2.XVIII and 2.XIX for each of these two basic and

classic combat models. The reader should observe in Tables 2.XVIII and

2.XIX that the three assumptions above the dotted line are the same for

each model. Also, we have given explicit expressions for the attrition-rate

coefficients in each model. To keep these expressions simple, we have made

assumption (A3), which is not esseutial for the functional form of these

attrition rates (e.g. attrition rate proportional to the number of enemy

firers). Also, WEISS (99, pp. 83-84] has pointed out that assumption (A2)

can be weakened: the same equations apply when two homogeneous forces are

deployed along a front facing each other with uniform troop density on each

side provided that (A2) holds within given force boundaries or "cells" on

each side of the front.

In Table 2.XVIII, t denotes the time for a Y firer to acquire

an X target. Here the first force subscript, i.e. the X which is the

"one closest to the left-hand side of the differential equation, refers to
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II
Table 2.XVT. LANCHESTER's Two Basic Combat Models.

LANCHESTER' s LANCHESTER' s

Equations for Equations for

Modern Warfare Area Fire

dx dx

-2j3.bx -- bxy

-. 1
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m 4 Table 2.XVII. SHORT FORM of Alternate!e Conditions

Under Which LANCHESTER's Two Basic Combat

Models Have Been Hypothesized to Apply.

LANCHESTER' s LANCHESTER' s

Equations for Equations for

Modern Warfare Area Fire

1. First Alternative (Ml) "simed" fire (Al) "area" fire
Simple Set of

.ui (M2) time to acquire an (A2) constant-area
8 tOenemy target inde- defense

pendent of enemy
force level (a
special case which
is that in which
target-acquisition
time is negligible)

2. Second Alternative (MI) "area" fire (Al) "aimed" fire

Simple Set of
•(2) constant-density (12) time to detect an

Assumptions defense enemy target in-
versely propor-
tional to enemy
force level and much
greater than time to

i kill an acquired
target
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Table 2.XVIII. LONG FORM of Conditions Under Which

LANCRESTER's Equations for Modern Warfare

Have Been Hypothesized to Apply.

-a with -. tS+ 1

EQUATIONS:

d1 '-bx with t + 1
dt b acyx 'K FSSKyx

ASSUMPTIONS (after H. K. WEISS [99]):

(Al) Two homogeneous forces are ,angaged in a fire fight. In other words,
the units (i.e. weapon systems) on each side are identical (i.e. every
unit on a particular side has exactly the same capability for killing
enemy forces and also exactly the same vulnerability to enemy action),
but the units on one side may have a different kill rate than opposirng
enemy units.

(A2) Each unit on either side is within weapon range of all units on the
other side.

(A3) The effects of successive rounds in the target areas are independent.

(A4) Each unit is sufficiently well aware of the location and condition of
all enemy units so that it engages only live enemy units (one at a
time) and kills them at a constant rate, which does not depend on the
enemy force level. When an enemy target is killed, search begins for
a new target, with the rate of acquiring a new enemy target being
independent of the enemy's force level.

(A5) Fire is uniformly distributed over surviving enemy units.

NOTE: See text for explanation of notation.
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Table 2.XIX. LONG FORM of Conditions Under Which

LANCHESTER's Equation for Area Fire

Have Been Hypothesized to Apply.

dx -X vP(KlH) XY

EQUATIONS:
d- - v P(K H) xy

dt Ay X yx

ASSUMPTIONS (After H. K. WEISS [99]):

(Al) Two homogeneous forces are engaged in a fire fight. In other words,
the units (i.e. weapon systems) on each side are identical (i.e. every
unit on a particular side has exactly the same capability for killing
enemy forces and also exactly the same vulnerability to enemy action),
but the units on one side may have a different kill rate than opposing
enemy units.

(A2) Each unit on either side is within weapon range of all units on the
other side.

(A3) The effects of successive rounds in the target areas are independent.

(A4) Each firing unit is aware only of the general area in which enemy
forces are located and fires into this area without feedback about the
consequences of its fire.

(AW) Fire from surviving units is uniformly distributed over the area in
which enemy forces are located, i.e. unaimed fire (in the sense of not
being directed at specific enemy targets).

(A6) Each unit presents the same vulnerable area to enemy fire. This
vulnerable area is much larger than the effective (or lethal) area of
a single round of enemy fire, e.g. small arms fire at infantry targets.
Additionally, the number of hits required for a kill obeye a geometric
probability law.

NOTE: See text for explanation of notation.
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the target (who suffers the attrition), while the second refers to the firer.

We will always use this convention when there are double subscripts referring

to both firer and target. Also, v y denotes a single Y combatant's firing

rate when he is engaging an acquired target, and PSSK denotes a single-shot
kill probability. Their product is then the rate at which acquired targets are

killed by a single firer in this model. In Table 2.XIX, a V denotes the
x

vulnerable presented area of a single X combatant, AX denotes the presented

area occupied by the X force (and into which the Y force is assumed to fire),

"and P(KIH) denotes the probability that a target is killed given that it

is hit (i.e. conditional kill probability).

In Table 2.XX we summarize results for LANCHESTER's two classic models

so that we can contrast their properties with each other. The term "aimed" fire

is used in this table with the understanding that the target forces are "easily

acquired," while the term "area" fire is used with the understanding that the

target forces maintain a constant-area defense (cf. Table 2.XVII). Table 2.XX

tells us that we may think of equations (2.2.1), i.e. LANCHESTER's equations

for modern warfare, as arising when we fire only at live targets, while (2.4.1)

arise when we fire at the original target positions with no feedback as to the

consequences of our fire (see SCHREIBER (73]). Consequently, equations (2.4.1)

implicitly involve "over-kill" (in the sense that one may continue to fire at

dead targets), while equations (2.2.1) do not. Hence, we are not surprised

that there is no advantage to the victor from concentrating forces in combat

modelled by LANCHESTER's equations for area fire, but that there is for combat

modelled by LANCHESTER's equations for modern warfare. Other results are

similarly summarized. In the table, x - (x0 + x f)/2 denotes X's "average"

force level in the engagement, x - 0- X0 f denotes X's casualties in the

engagement, and u - x/y denotes the force ratio.
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Table 2.XX. Comparison of LANCHESTER's Two Basic

Combat Models.

LANCHESTER's LANCHESTER's
Equations for Equations for

Modern Warfare Area Fire

1. Simple Statement of "Aimed" Fire "Area" Fire
Basic Model Assumption

2. Feedback Mechanism Fire at Only Fire at Original
Live Targets Targets with No Feedback

3. Overkill? NO YES

4. State Equation b(x2-x 2 ) * a(y2-y 2) b(Xo-X) - a(Yo-y)

5. Concentration of
Forces Advantageous YES NO
for Victor?

6. Instantaneous Casualtyadx aa
Exchange Ratio, dx b(x/y) b

7. Overall Casualty- Xc aa
Exchange Ratio, b- b(x/y) b

Yc b

8. Victory Predicted for (y)2)___

BP BP

9. Rate of Change of bu A}bx{u-~-
du b bForce Ratio, T

10. Negative Rate of fia aChange for ForceA

Ratio When -- <
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In summary, Table 2.XX lists various results for and properties of

LANCHESTER's two classic combat models. We should take these two models

as limiting cases for the mutual attrition of two homogeneous

forces: the modern-warfare equations (2.2.1) represent in some sense the

"l"most. effective" application of firepower (i.e. perfect feedback as to the

consequences of one's fire), while the area-fire equations (2.4.1) represent

a "less effective" one, with no feedback as to the consequences of one's

fire. In other words, we may take equations (2.2.1) to represent the

case in which fire is concentrated on individual targets, while equations

(2.4.1) represent the case in which it is not. Moreover, TAYLOR [84] has

shown that these two types of target attrition processes yield quite dif-

ferent structures for optimal time-sequential fire-distribution policies in

a more general model for combat against heterogeneous forces. We have al-

ready seen that these two attrition processes yield quite different returns

to a commander from concentrating his forces.

Thus, these two basic models may be considered in some sense to be

limiting cases for possible force-attrition processes. One is tempted to

conjecture that they bound most real-world attrition processes, i.e. in

some sense most real-world attrition processes lie between these two extreme

points. Furthermore, they form the basis for essentially all further de-

velopments in the LANCHESTER theory of combat and yield important insights

into the behavior of more complex models? 8
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2.12. A Classification Scheme for Homogeneous-Force LANCHESTER-Type Attrition

Processes and Some Additional Functional Forms for Attrition Rates.

As we have seen above for LANCHESTER's two basic combat models,

several different sets of physical assumptions may be hypothesized to yield

the same functional form for an attrition rate. Consequently, it is more con-

venient to refer to a model for combat between two homcgeneous forces in terms

of the functional forms for the two attrition rates than to refer in terms of

the assumptions (as we have done above). Let us now introduce a very convenient

shorthand for referring to such homogeneous-force LANCHESTER-type combat models.

It basically involves using a two-part descriptor XjY, where X describee the

attrition rate for the X force and similarly for Y. X and Y take on their

values according to the type of proportionality for the various terms in a

side's attrition rate. This proportionality is expressed in terms of the

number of firers (denoted as F) and/or the number of targets (denoted as T).

If the attrition rate is independent of the numbers of firers and targets, we

use the letter C (for constant attrition rate). When there is more than

one term in a side's attriton rate, the same approach is applied to each term,

with a plus sign separating each component term of the attrition rate.

Let us now consider some examples to illustrate this shorthand. For

example, for LANCHESTER's equations of modern warfare (2.2.1), the X-force

attrition rate is (-dx/dt) - ay so that it is proportional to only the

number of enemy firers (and similarly for the Y-force attrition rate). Con-

sequently, we will refer to it as a FIF LANCHESTER-type attrition process

(or, simply, FIF attrition). Similarly, LANCHESTER's equations for area

fire (2.4.1) represent FTIFT attrition, since each side's attrition rate

is proportional to the product of the number of firers and the number of

targets. As a final example (with two terms in each side's attrition rate),

167



the equations

dx . _ ax "Iy Bx1  2 y 2

dy.x - V 3 - 2 •x y

dt

will be said to represent (F 1' TI + F 2 T 2 ) (F 3 T 3 + F T4)

LANCHESTER-type attrition.

Figure 2.14 shows various attrition-rate functional forms that have

been considered in the literature of the LANCHESTER theory of combat. We

have used the above shorthand notation for referring to these various

attrition processes in the figure. Also shown for each process are the

state equation (if not too complicated) and the first person (known to this

author) to have considered it. Table 2.XXI gives an enumeration of authors

who have studied each of these various "basic" attrition-rate processes.

Let us now briefly examine the various sets of physical assumptions

that have been hypothesized to yield the five basic attrition-rate functional

forms shown in Figure 2.14. Conditions hypothesized to yield the FIF and

FTIFT attrition processes have been discussed previously in Section 2.11

(see, for example, Table 2.XVII), and conditions for the FIFT process

(equivalently, the FTIF process), of course, are just a combination of

these two sets, with one set applying for each side. For example, BRACKNEY

[15] has hypothesized that the FIFT attrition process occurs for an assault

by the X forces on defensive Y positions, in which the defenders use

aimed fire (with X targets readily acquired by virtue of their "assault"

posture) and so do the attackers, only their search time for Y targets is

relatively large (and inversely proportional to enemy troop density) by

virtue of the enemy's remaining under cover in their defensive positions.

In other words, assumptions (Al) and (A2) of Table 2.XVII apply to X,

while (Ml) and (M2) apply to Y.
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a

4

ATTRITION DIFFERENTIAL STATE
PROCESS EQUATIONS EQUATION

dx -ayLANCESTER (1914)

FIF d - b(X 2 -x 2) = a(y 2 -y 2)
ýZ- bx0 0

Sdt square law

dx LANCHESTER (1914)
-- , d-t -axy

I FT-xy b(xo-x) = a(y 0-y)AXd-• -bxy

dt linear law

dx BRACKNEY (1959), m- M -ay
tt bf

FIFT dt d(x2-x2) - a(yo-y)

dt - -bxy. i mixed law

dx PETERSON (1953)

TIT ,t, b n-- - atnL
__ -by x y
dt; logarithmic law

dx MORSE and KIMBALL (1951)

(F+T) I (F+T) dt (generally very complicated)
m - -bx-aydt

Figure 2.14. Various functional forms for attrition rates

that have been considered in the LANCHESTER-

combat-theory literature.
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Also, DEITCHMAN (221 has used the FIFT attrition model for

insurgency operations (i.e. guerrilla warfare) to represent the ambush of

X-force counterinsurgents by Y-force guerrillas. He hypothesized that

(MI) and (MZ) hold for the Y force, which fires on the X force, "caught

in the open," but that the ambushed X force can only return area fire,

since its members do not know the exact positions of individual Y

ambushers and consequently return fire into only the general area known

to be occupied by the enemy.

PETERSON [69;70j has hypothesized that TIT attrition, i.e.

-.. . ax , and - by (2.21.1)
dt idt

.characterizes the early stages of a small-unit engagement in which the

vulnerability of a force dominates its ability to acquire enemy targets.

In other words, TIT attrition occurs when the exposure of individual

weapons to be acquired as targets determines the occurrences of initial

casualties.

PETERSON [69] introduced this model to extend the available choice

of basic combat models and also because it does fit limited data for a

certain type of engagement, i.e. a tactical situation in which all weapons

of the two forces are within effective range of the enemy but when (due

to cover, concealment, or expert camouflage) no two opposing weapons

are actually intervisible. In such a situation, it is not unreasonable

to assume that the probability that the first unit to betray his cover,

concealment, or camouflage is in the X force is given by the ratio

ax/(ax + by), whence follows (2.12.1) (see Chapter 4). However, once the

battle actually begins, this model is no longer applicable.
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WEISS (102] has suggested that force vulnerability may become the

dominant factor in causing losses as combat units increase in size and

become increasingly inefficient. G. CLARK [201 has used this TIT attrition

model (2.12.1) for the early stages of a small-unit engagement in his COMAN

model.

The last attrition-rate functional form shown in Table 2.14 is

that of fF + T)I(F + T) attrition, i.e.

!i ~dx d
ay -x, and - bx - ay. (2.12.2)dt dt

Two situations that have been hypothesized to yield the above equations

are (see Figure 2.15):

(Sl) FIF attrition in combat between two homogeneous forces

with "operational" losses [3;64],

(02) FIF attrition in combat between two homogeneous primary

forces (see WEISS [100]) with superimposed effects of

supporting fires not subject to attrition [95].

In the first situation (S1), for example, the term (Bx) in

X's loss rate, i.e. (-dx/dt), represents "operational" losses, i.e. losses

due to causes other than enemy action [3] (e.g. losses due to sickness,

accidents, desertions, etc.)3. In other words, the model holds that a

force suffers a certain amount of casualties due to its very size. In

the second situation (S2), it is assumed that FIF attrition holds between

the primary fighting forces, e.g. infantries, and that the supporting weapons

employ area fire against enemy infantry (again see Figure 2.15).

Let us note that the state equation is quite simple (and is trivially

derived) for each of the first four attrition processes shown in Figure 2.14.
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(a) 2perational losses

a

(b) combat with supporting fires not subject to attrition

S~INFANTRY

X-FORCE Y-FORCE

FIRE , Y FIRE
SUPPORT SUPPORT

SX(t) y(t:)
INFANTRY b

Figure 2.15. Two different combat situations that ha--

been hypothesized to yield (F+T) I (F+T)

attrition.
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wow!

However, the state equation for the last one, the (F + T)I(F + T)

attrition process, is generally quite complicated, namely [95]

y(t){o + (•)I-bx(t)

yo(O - (-.)} + bx 0a .. .. (x0202.12.3)
[y0 (80{ 2- N)+ bx0]~t)){

where 8 - /ab'+ [(B-a)/2] 2 and v - (6 - (c+a)/2}/{o + (a+0)/2}. However,

as first noted by Taylor and Parry [95], when ab - a8, then e - (a+B)/2

and v - 0, so tnat (2.12.3) becomes

Oy(t) - bx(t) - 8y 0 - bx 0  for ab -ta , (2.12.4)

which is a totally unexpected result. Later in this book we will give some

insights as to why this complicated state equation (2.12.3) for the

(F + T)I(F + T) model (2.12.2) reduces to the "linear law" (2.12.4) in

this special case.

A general form for homogeneous-force attrit,.on rates (which yields

the square, linear, and ;ogarithmic laws as special cases) has been given

by HELMBOLD [36], whc hypothesized that the larger force suffers inefficlences

of scale when force sizes are grossly unequal. 4 0 He has emphasized that

LANCHESTER's classic equations for modern warfare (2.2.1), i.e. the FIF

attrition model, imply that no matter how unequal the opposing strengths

may be, the full destructive capability of each side can be focused with

undiminished effects on the enemy. However, sheer limitations of available
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space, to say nothing of terrain-masking and reaction-time effects, may

well prevent the larger force from using its full destructive capability.

has In consonance with the above line of reasoning, HELMBOLD [36]

has suggested the following LANCHESTER-type equations

-- 'dx x dy "h- )"b

dx- -a.g( -).y , and -b'h(-)x, (2.12.5)
dt y dt x

where, for exampla, g(x/y) is a function that is used to modify the

fire effectiveness cf an individual Y combatant at extreme force ratios

and similarly for h(y/x). HELMBOLD argued that the effectivenss-modifi-

cation functions should satisfy the following three requirewents

(RI) g(l) - h(l) -1 ((2.12.5) reduces to (2.2.1) for forces

of equal size),

(R2) g(q) - h(q) (same inefficiencies of scale for each side),

(R3) g(q) is a strictly increasing function of its argument.

Hence, (2.12.5) becomes

dx = -a.h(y).y, and AZ= _b.h(xZ).x , (2.12.6)
dt y dt x

Swhich we will refer to as the equations for generalized HELMBOLD-type

combit (see Figure 2.16). Here, the effectiveness-modification function

h(z) has the following properties:

(P1) h(z) is a strictly increasing function of its argument,

(P2) h(l) - 1.

HELMBOLD [36] also considered the special case of (2.12.6) in

which h(z) is a power function of its argument, 4 1 i.e. h(z) uc.

Then, (2.12.6) becomes
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HELMBOLD (1965)

ad- h(x/y)

x~~t) b - h(ylx) yt

dx =-ah(--x Y, dy=-b h(l) x

dt y dtx

Figure 2.16. Generalized Helmbold-type combat

which incorporates inefficiencies

of scale for the larger force when

force sizes are grossly unequal.
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dx -. .xRd)t y and -b "x (2.12.7)
,a" dt

which we will refer to as the equations for HELMBOLD-type combat 4 2 (see

Figure 2.17). It follows that the instantaneous exchange ratio, dx/dy,

is given by
43

dx _ a •(x\2C d- , (2.12.8)
dy y d

where d - 2(1-c). Hence, the state equation may be written (for d # 0)

as

b(x d d -d (2.12.9)
b~0 - ~ 0  )

and for d 0

b Zn - . a Zn- . (2.12.10)
x y

Thus, the equation for HELMBOLD-type combat yield the square law when

c - 0, the linear law when c - 1/2, and the logarithmic law when c = 1

(see Figure 2.17).

Moreover, there is an intimate relationship between the equations

for HELMBOLD-type combat (2.12.7) and those of LANCHESTER for modern

warfare (2.2.1). It is convenient, however, to first introduce the

"Weiss parameter" W defined by

W - d/2 I 1 - c , (2.12.11)

and to write (2.12.7) as

NN NIdx 1-Wd

d-.s..ta. / -y , and -dt -b x "x (2.12.12)

177

.. • m. I . . . . ..



Mo .x x

Md:a -a(-) yydt y dt x

dx x ax2c-1 a y d-l

Instantaneous Exchange Ratio: by b -i;bx

State Equation: b(x-d d dd

0-x 

a(y0
-y

EXPONENTS LAW COMMENTS
c d

SPECIAL 0 2 SQUARE CONCENTRATE
CASES 1/2 1 LINEAR

(WEISS, 1966B) -.-
3/4 1/2 SQUARE ROOT EXERCISE ECONOMY OF FORCE

1 0 LOGARITHMIC "ALL FORCES ARE EQUAL"

'NI Figure 2.17. HELMBOLD-type combat which incorporates

inefficiencies of scale for the larger force

when force sizes are grossly unequal.
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where W e (0,1] for c E (0,1). Introducing the force ratio u - x/y,

we obtain the force-ratio equation

du u1-W 2wu (d- - a) . (2.12.13)

The form of the equation (2.12.13) suggests letting v u . Doing this,

we may transform the force-ratio equation into the following RICCATI

equation

dv . W(bv 2 - a) , (2.12.14)
dt

W W
with initial condition v(O) - x0 /y 0  Since we have encountered a RICCATI

equation for v - x /yW, we know that both x and y satisfy linear

differential equations (see Appendix A.3). Setting p xW and q - yW,

we find that

(dt. with j(0) I x 0

dd = -Waq ,4
tw h ((2.12.15)
d-K -Wbp with q(0) a YW

dt Y0"

The result (2.12.15) is highly significant, since it shows that

the nonlinear differential-equation model of HELMBOLD-type combat (2.12.7)

can be transformed into the familiar linear model (2.2.1) so that all

the known results for the linear model can be invoked. In particular, it
d/2 d/2follows that (2.12.9) holds (since p - x and q - yd) and
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I-

xW(t) x cosh W v'ab t - O sinh W /a t . (2.12.16)

Thus, for the model of HELMBOLD-type combat, one can readily answer

questions (QI) through (Q7) posed in Section 2.2 above. For example, Y

will win a fixed-force-level-breakpoint battle in finite time if and

only if

- (fY )d}

S a BP (2.12.17)

Yo b {1- (fX )d}

As we pointed out in Section 2.9, many different differential-

equation combat mudels can yield LANCHESTER's linear law (2.4.3) (including

the (F + T)I(F + T) model (2.12.2) when ab - aa). We did not call

(2.4.1) the equations for a linear-law attrition process for this reason.

When c - 1/2 and consequently d 1 1, (2.12.9) becomes the linear law,

4! but the X force level as a function of time is given (implicitly) by

- x/- cosh( Ua t/2) - /Yo a/b sinh(Va' t/2) , (2.12.18)
00

which should be contrasted with the corresponding result (2.4.7) for the

FTIFT attrition process. In particular, it should be noted that (2.12.18)

implies that, for example, the X force can be annihilated in finite time,

whereas this outcome is impossible for "linear-law" combat modelled

with (2.4.1) (see Proposition 2.4.2).

Let us finally note that the above transformation of the non-

linear equations for HELMBOLD-type combat (2.12.12) (equivalently, (2.12.7))

into a linear differential-equation model also holds for time-dependent
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i ,7,

attrition-rate coefficients. Moreover, (2.12.7) is the only such non-

linear, combat model with a "separable" efficiency factor (i.e. h(x/y)-

f(x)/g(y) in (2.12.6)) that can be transformed into the FIF attrition

"model (see Section 6.11 below).
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PROBLEMS for Chapter 2

1. What did F. W. LANCHESTER hope to prove with his simple mathematical

models of combat?

2. What are three important characteristics of a good analytical model?

(Short answer in words is all that is sought. You may wan" to refer back

to Chapter 1.)

3. With reference to LANCHESTER's original work, what is the major differ-

ence between the conditions under which the FTIFT attrition process

has been hypothesized to occur and those for the FIF attrition process?

(A single phrase for each will suffice here.)

4. Fill in the missing entries in the below table that illustrates how

under "modern conditions" of warfare there is an advantage from concen-

trating forces. For these computations assume:

• a
EO 0.25, x0 - 100, and xf - O,

where x0 denotes the initial value for the X force level and xf

denotes its final value.
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YO 200 250 300 400 500 1000

yf 0 --- 223.6 ... ...

Y's loss 200 -.---- 41.7

5. Redo the table that you constructed for Problem 4, but instead of a

fight to the finish, consider a fixed-force-level-breakpoint battle

with fBP fBP 0.25, where f xx and similarly for YBP

Thus, your input data will be a/b E - 0.25, x0 a 100, xf xB•p 25,

a fX -B f 0.25, with the table containing entries for yo - 200,an BP B?

250, 300, 400, 500, and 1000.

6. Consider combat between two homogeneous forces modelled by the following

FIF LANCHESTER-type equations (for x and y> O)

tdx

- -bx with y(O) -YO,dt Y ih yO

where a and b denote positive constants.

Part a. What assumptions have been hypothesized to yield the above

combat dynamics? (Only one set of simple assumptions sought.)
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Part b. What are the constants a and b called in the above LANCHESTER-

type combat model?

Part c. What are the dimensions of a?

Part d. What is the quantity /ab called? The quantity a/b?

Part e. What is the X force level given by?

Part f. Let Y attack the X force, which defends. How are X's

fractional casualties per unit time related to the force ratio

of the attacker to the defender? Sketch a plot of this rela-

tionship. How is the constant a related to this plot?

[HINT: Observe that X's fractional casualties per unit time

are given by (-l/x) dx/dt.

7. Let us further consider the LANCHESTER-type combat model of Problem 6.

Part a. If a - 0.06 X caualties/minute/Y combatant, b - 0.01 Y

casualties/minute/X combatant, x0 200, and y0 - 100,

who will win a ;ight to the finish?
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Part b. For the data given in Part a above, how long will it take

for the loser to be annihilated?

Part c. For the data given in Part a above, plot the X force level

x(t) as a function of time. What is x(t) for L - 60

minutes?

Part d. Frur the data given in Part a above, plot the Y force level

,(t) as a function of time. What is y(t) for t - 60

minutes?

Part e. If a reserve force of 70 X combatants (assume that these

reintorcements are identical to the original members of the

X force) arrives after 30 minutes and is immediately com-

mitted to battle, who will win this fight to the finish?

What would have been the outcome if X could have initially

committed his reserve?

Part f. Who will win a fight to the finish if a - 0.09 X casualties/

minute/Y combatant, b - 0.02 Y casualties/minute/X combatant,

x0  300, and y. w 100? What is x when y 75? When

y -50? When y- 25? When y -O?
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Part a. If a - 0.01 X casualtios/minute/Y combatant, b - 0.01 Y

casualties/minute/X combatant, x0 a 300, and yo - 100,

who will win a fight to the finish? Who wrll win if x0 - 350?

If x 0 - 400? If x0 - 500?

8. Let us further consider the LANCHESTER-type combat modal of Problems 6

and 7, only this time we will assume that the engagement is a fixed-

force-level breaikpoint battle. As usual, we viii represent the force-

level breakpoints as xP =fX x0  n BP infY

Part a. If a - 0.01 X casulaties/minute/Y combatant, b - 0.04 Y

casualties/sinute/X combatant, x0 a 100, Y - 225, fBP - 0.5,

and f - 0.7, who will win a fixed-force-level breakpoint

battle?

Part b. For the data given in Part a above, how long will it take for

the loser to read his breakpoint?

Part c. For the data given in Part a above, plot the X force level

x(t) as a function of time. What is x(t) for t - 45

minutes?
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Part d. For the data given in Part a above, plot the Y force level

y(t) as a function of time. What is y(t) for t - 45

minutes?

Part e. Who will win a fixed-force-level-breakpoint battle if a - 0.01

X casualties/minute/Y combatant, b - 0.05 Y casualties/minute/X
x Y

combatant, x0 = 100, yo 300, f x 0.5, and f - 0.7?
BP BP

Who will win if Yo - 250?

Part f. Who will win a fixed-force-level-breakpoint battle if a = 0.001

X casualties/minute/Y combatant, b - 0.01 Y casualties/minute/X

combatant, x0 = 100, yo - 400, f 0.4, and 0.65?

Who will win if yo - 350?

Part g. If a - 0.06 X casualties/minute/Y combatant, b - 0.01 Y
x Y

casualties/minute/X combatant, fBP = 0.65, and fBP - 0.5,

what initial force rctio is required for X to win a fixed-

force-level-breakpoint battle? What do these numbers suggest

to you as far as who is the attacker and who is the defender?

If you were the commander of the X force, what initial force

ratio would you want before you engaged the enemy? Why?
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9. Now let both sides receive replacements contiuuousiy over time at

constant icates. The above combat maodel then biomes

(dx "ay+r with x(O) - xO,

-bx+s with x(O) - Yo,
dt

where the positive constants r and s denote the replacement rates

for the X and Y forces, respectively. What is the state equation

for the above LANCHESTER-type combat model with continuous replacements?

10. The model. of the previous problem possesses the conceptual shortcoming

chat both sides have essentially been assumed to possess unlimited

reserves. How would you modify the model of Problem 9 to reflect the

situation in which both sides have available only limited pools of

manpower out of which to draw replacements? Let R0 denote the total

ntumber of replacements that X can commit to battle, and similarly let

S denote the total number of replacements available to Y.

n0

11. S. J. DEITCHMAN (221 has proposed the following LANCHESTER-type model to

represent the ambush of X-force counterinsurgents by Y-force guerrillas

in guerrilla-warfare operations

dx

- bxy with y(O) -YO

dt
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where a and b denote LANCHESTER attrition-rate coefficients that

are positive constants. He hypothesized that the ambushers (i.e. the

Y force) would use aimed fire from well-chosen and concealed positions,

and that the ambushees (i.e. the X force) would only be able to return

area fire into the general region occupied by the enemy because they

(i.e. the ambushees) have been "caught in the open" and do not know the

positions of individual Y ambitshers.

Part a. What is the state equation for DEITCHKAN's ambush model given by?

Part b. What condition on the initial force levels predicts victory for

the abmusher in a fight to the finish?

12. Consider combat between homogeneous X and Y forces

in which the artillery of the X force delivers area fire against the

Y force, which occupies a consuant area. This artillery is out of

firing range of the Y force and hence suffers no attrition. Conse-

quently, the LANCHESTER-type equation that describes this combat-

attrition process is
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- -W(t)y with y(O) ydt

where %(t) denotes a time-dependent IANCHESTER attrition-rate

coefficient.

Part a. What is the Y force level y(t) given by?

Now let the fire effectiveness of the X-force artillery be constant

(i.e. let .- constant) and let the Y force withdraw from their

original positions at a variable rate, denoted as W(t), to new posi-

tions that are free from the effects of the enemy's artillery fire.

The corresponding LANCHESTER-type combat equation then becomes (for y> 0)

a y-W(t) with y(O) Y
dt

where W(t) > 0.

Part b. What is the Y force level y(t) now given by?

Part c. Denote the number of casualties of the Y force as c(t). What

is c(t) given by?
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Now let the withdrawal rate of the Y force be constant so that the

LANCHESTER-type combat model becomes

- y -W for y >0,

d 0-fowith y(O) y0,

0 for y =0,

where W > 0.

Part d. What is the Y force level y(t) now given by?

Part e. If a - 0.1 Y casualties/minute/Y combatant, W 10 men/

minute, and yO M 100; will an air strike after 7.5 minutes

help the X force?

Part f. If a - 0.1 Y casualties/minute/Y combatant, W 1 10 men/

minute, and yO 100; how many casulaties will the Y

force suffer?
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13. To each of the entries on the left below, match the entry on the right to
which it is most closely related. Do this by placing the latter of the
appropriate entry on the right in the answer space on the left.

(1) dx a. TIT attrition process,
* d a b. FTIT attrition process,

(2) - -dt c. FTjF attrition process,

dt d. "aimed-fire" combat with supporting
fires not subject to attrition,

dxf(3) T -axy, e. state equation,

y -bx, f. force-ratio equation for FIF
dt attrition process,

Sdx g. force-ratio equation for (F+T) I(F+T)
(-4 -ay-$x. attrition process,

-bx-_ay h. force-ratio equation for FTIFT
dt attrition process,

(5) a b i. force-annihilation-prediction condition
for FIF attrition process,

a J. force-level change per unit time,

b(x/y) k. casualties per unit time,

du 2  1. fractional casualties per unit time,
Sdt m. overall casualties for X force,

n. total replacements,
So. LANCHESTER-type equations for a skirmish,

dx c p. instantaneous casualty-exchange ratio,

y y q. unit deterioration due to attrition,

/1 dx r. Y force ambushing the X force,

- \x dt " s. inefficiencies of scale for larger force
when force sizes are grossly unequal,

t. overall casualty-exchange ratio for

FIF attrition process,

u. overall casualty-exchange ratio for

FTIFT attrition process,

v. relative fire effectiveness,

w. intensity of combat.
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14. Consider the ambush of a homogeneous Y force by a

• ' x (t)

X-FORCE 'amd r

ARTILLERY

AMBUSHERS a (t) AMBUSHEES

homogeneous X force, both of which are armed with small arms. The X

force uses aimed fire, with an associated time-dependent LANCHESTER

attrition-rate coefficient denoted as b(t); and the Y force returns

area fire, with an associated time-dependent LANCHESTER attrition-rate

coefficient denoted as a(t). In other words, the X force ambushes

with aimed fire, the Y force returns area fire, and on each side the

fire effectiveness of an individual firer changes over time during the

fire fight. Moreover, the X force has called for supporting fire from

artillery that is out of range of any return fire from the Y force and

that consequently suffers no attrition. This artillery causes attrition

to the Y force at a rate proportional to the Y force level with an

associated "constant" of proportionality a(t). This attrition-rate

coefficient is time depeident and accounts for the number of firing tubes

(i.e. artillery pieces). Because of the ambush and also this fire support,

the Y force wants to terminate the engagement, and consequently it

gradually disengages from combat with the X force (including its fire
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Asupport). Let W(t) > 0 denote the time-dependent rate at which the Y

force withdraws from this engagement to a position that is out of range

of all enemy firers. Let x(t) denote X's force level (with initial

value denoted as x0 ), and similarly let y(t) denote Y's force level

(with initial value denoted as y0 ). Consider only that phase of the

engagement during which both x and y > 0. What are appropriate

LANCHESTER-type equations for the rates of change of the X and Y

force levels?

15. Consider LANCHESTER-type combat between homogeneous

X- FORCE y FORCE

ARTILLERY RILf

--- •J2r' •• INFA1NTRY b INFANTRY

d

X and Y infantry forces with supporting artillery not subject to

attrition. Each member of the Y force uses aimed fire to destroy the

X force at a rate a. Similarly, each member of the X force uses aimed

fire to destroy the Y force at a rate b. Both sides have artillery,

which does not suffer any attrition and delivers "area" fire against the

S_-enemy infantry. The Y-force artillery fires at a constant rate and
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causes attrition to the enemy infantry at a rate proportional to the X

force level with an associated constant of proportionality c (which

accounts for the constant number of firing tubes). Similarly, the X-

force artillery fires at a constant rate and causes attrition to the

enemy infantry at a rate proportional to the Y force level with an

i associated constant of proportionality d (which accounts for the con-

stant number of firing tubes). Let x(t) denote the force level of

X's infantry (with initial value denoted as xo), and similarly let

y(t) denote the force level of Y's infantry (with initial value

denoted as y0 ). Consider only that phase of the engagement during which

both x and y > 0. What are appropriate LANCHESTER-type equations for

the rates of change of the X and Y force levels?

16. Consider LANCHESTER-type combat between an X force and a Y force

x(t) a Yl(t) Y2(t)

-- - -.- ' '-r

•~ X- FORCE
ARTILLERY ,W2R

--- •_•-•i•(initially all in bunkers). Denote the initial Y force level as y0'

SEl Also, denote that part of the Y force which is in the fortified position
•--RI(i.e. in the bunkers) as YI Each member of the X force uses aimed
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fire to destroy the Y force at a rate denoted as b. Similarly, eachJ 1

member of the Y1 force uses aimed fire to destroy the X force at a

rate denoted as a. Additionally, the Y force withdraws from the

bunkers at a rate W to become withdrawing troops, denoted as Y2 " The

Y 2 force does not exchange fire with the X force, but Y2 is subject

to receive supporting fire from X's artillery. Members of the Yr2

force retreat further to positions that are not vulnerable to the X-force

artillery fire. Let the rate at which the vulnerable Y2 force is dimin-

ished by this retreat by denoted as R (where O< R<W). The artillery

of the X force does not suffer any attrition and divides its area fire

between Y and Y Firing at a constant rate, the artillery causes

attrition to Y at a rate proportional to the Y force level with an

associated constant of proportionality cI (which accounts for both the

constant number of firing tubes and the allocation of fire) and similarly

to Y2 with an associated constant of proportionality c2. Let x(t)

* denote X's force level (with initial value denoted as x0 ), yl(rc)
denote Y 's force level, and y2 (t) denote Y2's force level. Consider

i1

only that phase of the engagement during which x, y1, and Y2 > 0.

What are appropriate LANCHESTER-type equations for the rates of change of

the X, YI' and Y2 force levels?

17. Consider a homogeneous X force that attacks in two echelons a homogeneous

Y force in a hasty-defense position. Assume that the FIF LANCHESTER-

type equations (2.2.11) describe --h .........------ te _ .

of the X force against the Y defenders in this attack. The two echelons

of the X force move in such a way that the second echelon does not inflict
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nor sustain any casualties while the first echelon is fighting, but that

the second echelon can quickly replace the first at the appropriate time

during the attack (assume that the time required to effect this replace-

ment is negligible). Furthermore, assume that for this attack a - 0.05

X casualties/minute/Y combatant, b - 0.01 Y casualties/minute/X combatant,

the initial strength of the first echelon of the X force is 2000, that

of the second echelon of the X force is 1250, that the Y force will

withdraw when it has suffered 75 percent casualties, and that the first

echelon of the X force fights until it reaches 25 percent of its initial

strength at which time it is replaced in toto by the second echelon, which

fights on with the same combat effectiveness (and vulnerability) per man

and also the same engagement-termination conditions as the first echelon.

Plot the X and Y force levels x(t) and y(t) as a function of time

for this two-echelon attack of X against Y.

18. COL. T. S. SCHREIBER [731 has proposed the following simple LANCHESTER-

type model in order to quantitati~vely relate the efficiency of intelli-

gence and command and control Fystems to firepower and numerical strength

S- .a x-ey(XoX) with x(0) -x,

(_ d - -b - eX(XoX) with y(O) - YO'

where a and b denote constant LANCHESTER attrition-rate coefficients

and eX and ey denote constants that are called the "command efficien-

cies" of the X and Y forces, respectively. Here both e• and
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eyE [0,1]. It should be noted that for "perfect" command efficiency for

the Y force (i.e. ey-1.0) the X force undergoes attrition at a rate

proportional to only the number of enemy firers, while for ey M 0 this

attrition rate is proportional to the product of the numbers of firers

and targets. What is the state equation for SCHREIBER's LANCHESTER-type

model given by?

19. Consider the following HELMBOLD-type equations for combat between two

homogeneous forces in which the larger force suffers inefficiencies of

scale when force sizes are grossly unequal.

dx.- (E W wt ()-x~dta ) ywih ()

S- b 1' x with y(O) - yo 9

where W denotes a constant and WE [0,1]. What is the state equation

for the above LANCHESTER-type combat model given by?

20. The model of the preceding problem treats both forces symmetrically with

respect *.o their inefficiencies of scale in producing casualties in

combat operations. Consider now the apparently less symmetric form for

such combat with inefficiencies of scale for the larger force
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S- - d y with x(O) - xO ,

d b x with y(O) - yo 'dt

where d and e are constants satisfying 0 _5 d, e 1 1. What is

the state equation for the above LANCHESTER-type combat model given

by? How do you account for the complete symmetry between the two

opposing forces in this state equation?

21. Consider a skirmish between homogeneous X and Y forces in which

the X force is supported by artillery which delivers area fire

against the Y forne. This artillery is out of the firing range of

the Y force, and hence it suffers no attrition. The Y force with-

draws at a constant rate W. Assume that the following LANCHESTER-type

equations n odel the attrition process for this engagement (for x and

Sy> 0)

dx_
t dt ay with x(0) - x0

dmdy - bx -cay-W with y(0) - yo
i dt

where a, b, a, and W are all positive constants. Assume that

x and y> 0. What is the Y force level y(t) given by?
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22. Consider the following LANCHESTER-type equations for "two-versus-one"

aimed-fire combat

S -A y with x (0) 0 xI

dx 2  0d-x 2 -a 2 y with x2 (0) - x2 ,

d -bx -b x with y(0) - y0
dt 11 22

where al, a 2 , b1 , and b2  are positive constants.

Part a. What is the Y force level y(t) given by?

Part b. Show that the state equation for the above LANCHESTER-type

2 2 2 2
model is given by zo0 -z - (a 1 b 1 +a 2 b2 )(yO-y ), where

z b1 X1 + b2 x2..

We will now generalize the above results by considering the following

LANCHESTER-type equations for "n-versus-one" aimed-fire combat

dx± -a iy with xy(O) - for i -

where ai and bi for i 1,2,...,n are positive constants.
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Part c. What is the state equation for "n-versus-one" combat?

Part d.. For "n-versts-one" combat, what is the Xi force level x.(t)
_ 1

given by?

23. Consider the following LANCHESTER-type equations for aimed-fire combat

between two homogeneous forces with superimposed effects of supporting

fires that are not subject to attrition (see Figure 2.15 above)

dx
Sdt Sa-X with x(O) - x

d D - y with y(O) a yo0dt

where a, b, a, and B are all positive constants. Assume that

x and y > 0.

Part a. What is the X force level x(t) given by?

Part b. What equation is satisfied by the force ratio u x/y?
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24. Consider S. DEITCHMAN's [22] LANCHESTER-type model

dxST - -ay with x(O) - x

( -bxy with y(O) - yo

for the ambush of a homogeneous X counterinsurgent force by a homogeneous

Y guerrilla force. Here an individual ambushee returns area fire against

aimed fire of the ambushers, since he is "caught in the open by surprise"

and only aware of the general region occupied by the ambushers. Consider

only that phase of the engagement during which x and y > 0.

Part a. Combine the above two LANCHESTER-type equations (I) to obtain a

I single second-order nonlinear differential equation for the X

force level x(t).

Part b. Integrate the second-order equation obtained in Part a to obtain

a first-order monlinear differential equation for x(t), i.e. an

equatior, involving only the X force level x(t) for the rate

dxof change of the X force level -(t)

Part c., Integrate the first-order equation obtained in Part b to obtain

the X force level x(t).
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FOOTNOTES for Chapter 2

1. H. K. WEISS [101]has pointed out that LANCHESTER, an Englishman, was

anticipated (in qualitative but not quantitative terms) in 1905 by

BRADLEY A. FISKE (then Commander, but later Rear Admiral, USN), an

American. For a sketch of the life and accomplishments of BRADL,.

ALLEN FISKE (1854-1942), see [66, pp. 298-299]. J. ENGEL (25] sub-

sequently showed that FISKE's verbal model is equivalent to a Sys-

tem of difference equations (in contrast to LANCHESTER's differential

equations) and examined some of the mathematical consequences of

these Fiske-type equations of warfare. See Section 2.10 for further

details.

2. FREDERICK W. LANCHESTER (1,868-1946) was a leading English automotive

and aeronautical engineer. In his lifetime, LANCHESTER won the high-

est honors that his associates could award him [601: Fellow of the

Royal Society, Honorary Doctor of Laws, Honorary Member of the Insti-

tution of Mechanical Engineers, Honorary Member and President (1910)

of the Institution of Automotive Engineers, and Honorary FeJlow of

the Royal Aeronautical Society; recipient of the Gold Medal of the

Royal Aeronautical Society (1926), of the Daniel Guggenheim Medal

(1931.), of the Ewing Medal of the Institution of Civil Engineers

(1941), and of the James Watt International Medal of the Institu-

tion of Mechanical Engineers (1945). For further information about

his many scientific and engineering contributions, see McCLOSKEY [60].

In recognition of LANCHESTER's pioneering 1914 contribution [55]

(also, again see [60]), which elegantly used mathematical methods

for developing insights into the solution of operational prcblems
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long before the term "operations research" was coined, the Operations

Research Society of America annually awards the Lanchester Prize

"for the paper cn operations research judged to be the best of the

S•_calendar year."

3. The influential 19th-century German military philosopher, Carl von

Clausewitz (1780-1831), stated in his classic work On War (Vom Kriege)

[21, p. 276], "The best strategy is always to be very strong, first

generally then at the decisive point . ... There is no more im-

perative and no simpler law for strategy than to keep the forces

concentrated."

4. However, such analytical models may be enriched in detail to become

useful operational models through the inclusion of additional state

variables, use of more complicated functional relationships between

model parameters, etc. (see, for example, W. T. MORRIS [63] for

further discussion of the process of such enrichment). Examples of

such enriched models that have been used for defense planning are

BONDER/IUA, DIVOPS, VECTOR-2, etc. (see Section 1.3).

5. C. ANCKER [1] has pointed out that in 1832 KARL von CLAUSEWITZ

[21, p. 101] said that "war is nothing but a duel on an extensive

scale."

6. LANCHESTER [(55, p. 422] did point out, however, that there were some

situations in ancient warfare in which concentration was advantageous.
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7. It is still worthwhile to read LANCHESTER's lucid verbal description

of combat. The mast accessible source is probably HORSE and KIMBALL

[64, p. 64] (see also NEWMAN (67, pp. 2138-21.40] or, of course,

LANCHESTER's original paper (55, column 1 of p. 422]).

8. However, the appropriate equations for such ancient warfare appear

in MORSE and KIMBALL (64, p. 65] (see also DOLANSKY [23, p. 346]).

These equations are

* i i ,Ij

dx/dt. - -1/(l + E) with x(0) - P

dy/dt - -E/(1 + E) with y(O) -yo

where all symbols are as defined in the main text.

9. Such an examination does not appear in LANCHESTER's [55] original

paper or elsewhere.

10. It should be noted, however, that the concept of equality of fighting

strengths must be operationally defined, and such a definition in-

variably involves a model of battle termination, i.e. the specifica-

tions of "victory" and "draw" conditions. With this in mind, we

observe that L.ANCHESTER (implicitly) developed (2.1.6) for a "fight-

to-the-f inish," and the condition for equality of fighting strengths

must be modified in other cases (see Section 2.8 and Chapter 3).

11. In fact, LANCHESTER (55] did not develop (2.1.5) at all. Equation

(2.1.5) was apparently first given by MORSE and KIMBALL (64, p. 651
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and called "LANCHESTER's square law" by them.

12. In his original 1914 paper [55], LANCHESTER did not explicitly give

the force-ratio equation (2.1.7) in his development of the "square law"

(2.1.6), but he enigmatically determined conditions under which

(i/x)dx/at - (1/y)dy/dt - (l/u)du/dt - 0. Thus, LANCHESTER himself

only implicitly considered the force-ratio equation (2.1.7) in the

development of his famous square law (2.1.6).

13. In modelling combat with two such differential equations for the two

force levels, one is implicitly assuming that the force levels are

the state variables, i.e the future course of combat may be predicted

from knowledge of only the current values of the force levels (assuming

that the attrition-rate coefficients a and b are known) (see Sec-

tion 1.6 above). There is, moreover, far from universal agreement as

to what are the significant (i.e. state) variables for modelling military

combat. For some other views, see HAYWARD [30] or LIDDELL HART [56].

14. Corresponding stochastic combat formulations (i.e. MARKOV-chain ana-

logues) are for all practical purposes analytically intractable. Fur-

thermore, very nearly the same trends for the combat dynamics are ob-

tained from deterministic and corresponding stochastic models although

some caution must be exercised in considering only the deterministic

model for small numbers of combatants or when the forces are "near
parity" (see Chapter 4 below). Moreover, BONDER and FARRELL (111 have

reported excellent agreement between Monte Carlo or stochastic simula-

tion results and those for a corresponding deterministic LANCHESTER-

type model.
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15. Initially, we were tempted to call (2.2.1) "LANCHESTER's equations

for a 'square-law' attrition process," since they do yield the quadratic

state equation (2.2.5) (see TAYLOR [82; 84]). However, there are

many differential combat models besides (2.2.1) that yield (2.2.5)

(see Section 2.9 below). Consequently, we have chosen the name "LAN-

CHESTER's equations for modern warfare," although the equations (2.2.1)

have been hypothesized to apply under other conditions. Sometimes it

will be more convenient to refer to (2.2.1) as a FIF LANCHESTER-type

attrition process (or, simply, FIF attrition) when greater preciseness

is required (see Section 2.12).

16. Of course, the exact information to be extracted from a model (even a

simple one) depends on the purpose of the study under consideration.

17. Except for the special case of quasi-autonomous equations in which

case the equations may be transformed to constant-coefficient ones

by a change of the time scale (see Section 6.3 below).

18. Actually, if we recall (2.2.2), the X force level is given by

I. when xo/y 0 , a•7•:

x(t) - x0e for 0 < t < +,

II. when x / < :

cosh a/• t -Y sinh ab t for 0 < t < tx

- .• m ' ix ( t ) =
0.-- -' f o r t > t x

where
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a 1 / yo + /b-xO
t X 2/-- raYZn r 0)

III. when x 0 /y 0 > a-/b:

x).X0 cosh va-b t -yo• sinh ra/b t for 0 < t < a

x(t) 0 
ý 

t

x Al- (alb)(Yo/xo)2 for t > a

where ( V 0 o + aY

a 0 0n

'" 2/ab; . x0 - 1a Y

It will be convenient in subsequent developments to relax the requirement

that x, y > 0.

19. To see this, consider the solution to (2.2.1) for t > ta> 0 wth in-

termediate condition x(ta) - 0 and y(t) -0 but xvY # 0. Clearly,
a a 0-0

x - y - 0 is a solution to (2.2.1). By a standard uniqueness theorem,

it is the solution, and we must have x- " Y0 W 0, which is a contra-

diction. Hence, it is impossible to have both x(t) and y(t) equal

to zero at any finite time if x0 Y0 # 0.

20. Of course, the easiest way to determine u(t) is to form the ratio

x(t)/y(t) with x(t) given by (2.2.13) and y(t) given by (2.2.15).

21. Or, equivalently, a quasi-autonomous model, i.e. one that may be trans-

formed into a constant-coefficient model by a transformation of the

battle's time scale.
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22. Initially, were tempted to call (2.4.1) "LANCHESTER's equations for a

'linear-law' attrition process," since they do yield the linear state

equation (2.4.3) (see TAYLOR (82; 84]). However, there are many dif.-

ferential combat models besides (2.4.1) that yield (2.4.3) (see Section

2.9 below). Consequently, we have chosen the name "LANCHESTER's equations

for area fire," although the equations (2.4.1) have been hypothesized

to apply under other conditions. Sometimes it will be more convenient

to refer to (2.4.1) as a ETIFT LANCHESTER-type attrition process (or,

simply, FTJFT attrition) when greater preciseness is required (see

Section 2.12).

23. Namely, the class of differential equations of the form

* -d 2w . F(z,w,w')

dz 
2

where F is rational in w and w', and analytic in z, which have

all their critical points (i.e. branch points and essential singu-

larities) ft'.zed (Lee INIE [41, p. 3351).

24. We again caution the reader that the attrition-rate coefficients a

and b, however, represent different physical quantities in the two

models (2.2.1) and (2.4.1).

25. In general, we have

du
dt dx
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which (assuming that dy/dt < 0) shows that the difference between

the force ratio u and the differential force-change ratio (for

cases of no replacements and withdrawals, the differential casualty-

exchange ratio) dx/dy determines the sign of the rate of change of

the force ratio (see TAYLUR [89]).

26. For example, a tank designer might be interested in developing an ex-

plicit tradeoff between certain performance parameters of a tank weapon

system or between different tanks (e.g. weight of armor (i.e. degree

of protection] versus mobility for a tank). Moreover, although a

simplified analytical model may well be far too simple to be able to

solve by itself such an operational problem (i.e. neither assert what

decisions should be made nor predict what decisions will be made), it

may be quite useful in exposing the bare determinants of the tradeoff

or decision (i.e. identifying the major factors and developing a rough

quantitative relationship between them). See SHUBIK and BREWER [74]

and PAXSON [68, p. 8] for further discussions.

27. Her,' we are using the word uncertainty in a nontechnical sense [as

opposed to the usual technical sense in which the word is used in OR

(see for example, LUCE and RAIFFA [58, p. 13])].

28. As pointed out by TAYLOR and PARRY [95], the entire subject of modelling

battle termination is a problem area in contemporary defense-planning

studies. There is far from universal agreement on this topic (see

TAYLOR [83] and also Chapter 3 for further references).
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29. This distinction was kindly pointed out to the author by the referees

to his paper TAYLOR 1911.

30. As emphasized in TAYLOR (91], it will not make much sense to study

decisions under uncertainty unless we know how to make decisions under

full certainty.

-, i

31. In reality, however, the actual trend in combat operations over the

past two thousand years of military history (see [40]) has been towards

greater dispersion of forces (i.e. lower troop density). We will dis-

cuss this point further below in Chapter 6 and will explain why it is

so with another equally simple model.

32. For the adopted battle-termination conditions (each side has a fixed

breakpoint), enemy casualties have been fixed, and consequently it was

not necessary to consider them. In other cases, however, the victor

might very well want to also consider enemy losses in his force-

concentration decision.

33. FISKE essentially developed his own version of firepower scores for

naval engagements. This was, of course, done long before the term

"firepower score" was coined.

34. Clearly, the equations are physically meaningful only for x ,n > 0,

Strictly speaking thus, we should adopt. some convention like (2.2.2),

but for simplicity have omitted this.
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35. As shown in Chapter 7, we can always achieve this condition by taking

the length of the time period to be short enough.

36. See, for example,.SOKOLINKOFF [79, p. 51 and p. 263] or BUNGE [18, p. 349]

(also LINDSAY and MARGENAU (57]).

37. G. CLARK (20] has emphasized that one may consider target-acquisition

capability as the distinguishing characteristic between the two sets

of physical circumstances (i.e. those given in Tables 2.XVIII and 2.XIX)

that have been hypothesized to yield these two different basic combat

models. When targets are readily acquired, the modern-warfare equations

(2.2.1) arise; while when only general knowledge of target locations

is available, the area-fire equations (2.4.1) arise. However, CLARK

[20; p. 19] erroneously attributes this observation to LANCHESTER [55].

It apparently is due to WEISS (99].

38. For example, Taylor and Brown [92] and Taylor and Comstock [94] show

that the representation of solutions (92] and the development of force-

annihilation-prediction conditions [94] for variable-coefficient LAN-

CHESTER-type equations of modern warfare may be considered to be a

generalization of these constant-coefficient results.

39. MORSE and KIMBALL [64, p. 71] originally did not use the term "operational"

losses in this sense: they used it to denote war losses under operating

conditions. MORSE and KIMBALL considered a simple model for the overall

trend of a war and hypothesized that besides a term of the form ay in
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X's operational loss rate, i.e (-dx/dt), there should be one propor-

tional to X's size, i.e. ax. Apparently, this terminology was later

changed by BACH, DOLANSKY, and STUBBS [3] to denote losses not due to

enemy action.

40. Although not explictly stated in his paper [361, HELMBOLD apparently

Sbased his modification of LANCHESTER's equations for modern warfare

(2.2.1) on the results of rather extensive empirical investigations

(see HELMBOLD [32-34]). His basic idea for these investigations was

to find regularities or "patterns" in historical battle data and then

to determine whether or not a given simple combat models (HELMBOLD took

LANCHESTER's equations of modern warfare) exhibits a similar "pattern."

From his historical data, HELMBOLD found that relative fire effective-

ness a/b (i.e. the ratio of the fire effectiveness of an individual

Y combatant to that of an individual X combatant) to be strongly

correlated with the initial force ratio x0/yO.

HELMBOLD's data base consisted of initial and final force levels

for both sides for several hundred historical battles, with one side

identified as the attacker (X) and the other (Y) as the defender.

Assuming that the square law (2.2.5) held, HELMBOLD computed the initiel

force ratio x0/yO, survivor fractions xf/x 0  and yf/yo, advantage

parameter V - ln p where 4 - (1 - (xf/x0) 2 }/{l - (yf/yo) 2 }, activity

ratio (in our terminology, relative fire effectiveness) a/b, and the

"bitterness" parameter c - /i- tf for each of (all told for the three

investigations (32 - 34]) several hundred battles. As indicated above,

his idea was to collect a sizable body of data dealing with the historical
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battles, use this data to compute parameters (advantage, activity

ratio, and bitterness) associated with each battle, and search the

results for regularities. Although we would expect the initial force

ratio x0/Y0 and the relative fire effectiveness a/b to be inde-

pendent parameters, in carrying out the above program, HELMBOLD found

them to be strongly positively correlated (see., in particular, (32,

p. 7; 33, pp. 31-35 and 58-59]).

Thus, if one assumes that the square law (2.2.5) holds, then

available historical battle data says that x0 /Y and a/b are

strongly positively correlated: as the initial force ratio of X to

Y increases, the relative fire effectiveness of an individual K

combatant to that of an individual Y one decreases. Thus, one is led

to abandon the model (2.2.1) and to conjecture that the larger force

suffers inefficiencies of scale when force sizes are grossly unequal.

HELMBOLD's model (2.12.6) is a mathematical expression of this hypothesis.

41. .Although not stated by HELMBOLD [36], this particular functional form

is suggested by his linear regression results for in a/b against

In x0 /y 0  (see [33; 34]). See also above footnote.

42. This model is particularly important because an extension of it can

be used to model the casualty-rate curves used in several theater-level

combat models (see Chapter 8).

43. The greater convenience and insight to be gained by introducing the

parameter J was apparently first observed by H. K. WEISS (103].
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APPENDIX A: BACKGROUND FOR THE MATHEMATICS OF LANCHESTER'S

CLASSIC COMBAT FORMULATIONS

Appendix A consists of three parts: A.1 The Hyperbolic

Functions, A.2 Solution to the nth Order Constant-Coefficient Linear

Differential Equation, and A.3 The Generalized RICCATI Equation. Its

purpose is to provide some general mathematical background for

Chapter 2, which was not convenient to incorporate into the main text.

The reader who is familiar with the hyperbolic functions, solving

constant-coefficient linear differential equations, and the RICCATI

equation may skip this material.
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APPENDIX A.1: The Hyperbolic Functions

1. Background.

* The so-called hyperbolic functions are similar to the well-known

circular functions (e.g. sine, cosine, etc.). Let us recall that via

Euler's formula (here i - /V)

ie
e cos 8 + i sin 6 (A.1.1)

we may write

iie ie

es- e + e , (A.1.2)
2

.nd

ie -ie

eini- -e-i

Sn e e -e (A.1.3)S~2i

It has been convenient to introduce into mathematical analysis related

functions called the h3perbolic functions, since in many applications the

1 a -8
exponential ftuiction enters in combinations of the form i (e + e-) or

1 e -E)21 (e - e ). Thus, we introduce the so-called hyperbolic cosine

a --

cosh 8 - (A.1,4)
2

and the hyperbolic sine

8 -8e_• ee -e

2sin e -2. (A.1.5)

Replacing 8 by i8 in (A.1.2) and (A.1.3), we see that cos £8L cosh 8

and sin i - i sinh 8, which provides one motivation for the names

hyperbolic cosine and hyperbolic sine.
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2. Properties Useful for LANCHESTER Combat Theory.

From the above definitions of the hyperbolic functions, one readily

deduces (show this yourself) the following properties:

dO(P1) cosh 0 = sinh e,
(P2) ý sinh b t v cosh/at

dt

(P3) for t - 0, cash /a t - 1 and sinh /V t - 0,

. (P4) cosh(u-v) - cash u cosh v - sinh u sinh v,

and (P5) sinh(u-v) - sinh u cosh v - cosh u sinh v.

* Let us now briefly show how the above properties are useful for

LANCHESTER combat theory. Properties (PI) and (P2) imply that the

general solution to

, d2x
d-- ab x 0 (A.1.6)dt2

is given by

x(t) = A cash /a t + B sinh V'a t. (A.1.7)

We recall that (A.1.6) is the X force-level equation, which appears in

the main text as (2.2.10), so that its initial conditions are

x(O) - x 0  and dx (0)--ay (A.1.8)' ~~~dt =-Y

Property (P3) is useful for evaluating the constants A and B in

(A.1.7): using (A.1.8), we find that A - x0  and B -y - va7b so that

_ y'(t)- x0 cosh ,Z t,- Yo sinh /a t , (A.1.9)
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which appears in the main text as (2.2.9). The reader should note the

great convenience for evaluating the constants in the general solution to

(A.1.6) (see Appendix A.2) when it is expressed in terms of the hyperbolic

functions.

Properties (P4) and (P5) are two of the so-called algebraic addition

theorems possessed by the hyperbolic functions. If we consider the

battle to begin at to, then the initial conditions to (A.1.6) are

x(t 0 ) ,0 and dx (t =

whence (A.1.7) yields

x(t) - x0(cosh Va t cosh wa t - sinh /F t0 sinh ab t)

+Y (cosh Vib to sinh /aT t - sinh Va- to cosh /ah t). (A.1.10)

The addition theorems (P4) and (P5) yield, however, that (A.1.10) may

be simplified to

x(t) = X cosh hF (t-to) - YO o sinh hF (t-to) . (A.I.Ji)

Let us emphasize that the algebraic addition theorems of the hyperbolic

functions are the reason that (A.1.10) may be simplified to (AI.II).

It is also convenient to introduce the so-called hyperbolic tangent

defined by, in analogy with the circular functions,

------- •' tsinh 6

tanh h - (A.1.12)
25cosh
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It may be shown that the hyperbolic tangent has the following properties:

(P6) tanh 0 is a strictly increasing function of 8, with

tanh 6 - 0 for e - 0,

(P7) lim tanh 8 - 1.
t -

If we write the X force level as a function of time as

x(t) W x- y A tanh a/a t cosh a-b t , (A.1.13)

then the terms within the brackets (namely, F(t) 0 - Y0 Yv'7 tanh Ya t)

determine the sign of x(t), since cosh 8 is always positive. Observing

that F(t) is a strictly decreasing function of time with F(O) = x0 > 0

and lim F(t) = x -, yO /a-/b, we see from (A.l.13) that x(t) > 0 for all
t -)+CO0

t > 0 if and only if xo/Y 0 / > VFb. Conversely, X will be anuihilated

in finite time if and only if x 0 /Y 0 < /a/b. Furthermore, the time at

which X is annihilated, i.e. t such that x(t X) 0, is given by
a a

x' 1 tah 1 ( h0vl' t~~a = -•-i tanh-(oa/ )

a ~ y a/

which is well defined for x0 /y 0 < av/b by virtue of (P6) and (P7). What

this all shows is that force-annihilation prediction for the model (2.2.1)

is intimately related tc the properties (P6) and (P7) of the hyperbolic

tangent.

Finally, the material in this section is essential for understand-

in3 TAYLOR and BROWN's [2] ideas for representing the solution to variable-

coefficient LANCHESTER-type equations of modern warfare (see Chapter 6).
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For further information about the hyperbolic functions, the reader can

consult any good text on the calculus (see, for example, COURANT and

JOHN [I, pp. 228-236]).
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APPENDIX A.2: Solution to the nth Order Constant-Coefficient

Linear Differential Equation

1. General Results.

All force-level equations for LANCHESTER's equations of modern

warfare (2.2.1) and its extension to combat between heterogeneous forces

land many other differential combat models) are in one sense or another

special cases of the nth order constant-coefficient linear homogeneous

differential equation

_d nx + n1dx
Lx ++ ... + a d- + a - 0 (A.2.1)L n 1 tn-I n-l dt n

where the coefficients a k are constants.

We first attempt to determine n linearly independent solutions

to (A.2.1). The appearance of this homogeneous equation suggests homogeneous

solutions of the form ePt, where p is a constant, since all derivatives

of e~t are constant multiplies of the function itself, i.e.

dm pt mPt
dtm

We have then

LePt -(pn + alpn-+ + +a an)ept

1 n-I n i
This result shows that ePt is a solution of (A.2.1) if p satisfies

the so-called characteristic equation
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p + a i0p + + an-iP + a n 0 . (A.2.2)

Let us note that the characteristic equation may be obtained from the

original homogeneous differential equation (A.2.1) simply by formally

replacing d kx/dtk by k, with the convention that d 0x/dt0 = x.

Since (A.2.2) has n roots P1, P2 ,... , pn, it may be written

in the form

(-oQ )(P-P 2 ) ... (o-oa) - 0

If the n roots are distinct, exactly n linearly independent solutions
p~t p2 t png

e , e , ... , e to (A.2.1) are obtained, and the general solution

to this homogeneous equation is

x(t)- n eke . (A.2.3)
k=l

However, if one or more of the roots is repeated, then less than n

linearly independent solutions are obtained in this way. It may be shown

that (see, for example, HILDEBRAND [1, pp. 9-101 or INCE (2,pp. 133-137])

the part of the solution to (A.2.1) corresponding to an m-fold root p1

is of the form

{c1 + c2 t + ... + c tm}e ft

Hence, to each of the n roots of the characteilistic equation (A.2.2),

repeated roots being counted according co their multiplicity, we can find

a corresponding solution Lo (i.2.1), and the general solution to (A.2.1)

is simply a linear combination of these n indepandent solutions.

However, for force-level equations in the LANCHESTER theory of combat,
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such ropeated roots do not arise unless a force type in our model gets

fired upon wizhout returning fire. Unlejs this happens, such repeated

roots do not arise for FIF attrttion and its generalizations.

2. Applicaticn to LANCHESTER's Equations for Modern Warfare.

The X force-level equation for LANCHESTER's equations of modern

warfare (2.2.1) is given by equation (2.2.10) of the main text, which

we write here as

d2 x
2  ab x 0 (A.2.4)dr2

whence the characteristic equation is given by

2P- ab -0 .(A.2.5)

It has two distinct roots p1 = /ab and P 2 -vab for ab > 0 so that

the general solution to (A.2.4) is given by

/- t -ýbt
x(t) A' e + B' e (...2.6)

where A' and B' are constants, or, in terms of the hyperbolic functions

(see Appvendix A.1), as

x(t) - A coshvab t + B sinh/ab t , (A.2.7)

for equation (2.2,10) of the main text, we can evaluate the constants in

(A.2.7) (see Appendix A.1) to obtaia
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x(t) - x0 coshva- t - YOV snabt

which appears in the main text as equation (2.2.9).

REFERENCES for Apendix A.2

1. F. B. Hildebrand, Advanced Calculus for Engineers, Prentice-Hall,
Englewood Cliffs, N.J., 1949.

2. E. L. Ince, Ordinary Differential Equaticns, Longmans, Green and Co.,
London, 1927 (reprinted by Dover Publications, Inc., New York, 1956).
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APPENDIX A.3: The Generalized RICCATI Equation.

The nonlineac first-order ordinary differential equation

Fdt- A(t) + B(t)u + C(t)u , (•.3.l)

is called the generalized RICCATI equation. Although specialized esoteric

solution methods have been developed (see BELLMAN (1]), the standard solution

method for this nonlinear first-order differential equation is to transform

it to a linear second-order differential equation by a transformation of

the dependent variable. If we let

Li 1 w'
u - C(t) w (A.3.2)

where w' - dw/dt, then (A.3.1) is transformed into

w" + (-B -Q- w' + AC w -0 .(A.3.3)C

Thus we see the intimate connection between the ger-'ral linear second-order

differential equation and the generalized RICCATI equa:ion.

Although the above connection was already '.,own to LEONHARD EULER

(1707-1783) (see WATSON [3, p. 92]), the role played by the RICCATI equation

ii, LANCHESTER combat theory has been recognized only recently. TAYLOR

and PARRY [2] have shown that for the differential combat model

dx a~ty -(t)x, and - -b(t)x - a(t)y (A.3.4)• dL dt'
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introduction of the force ratio u - x/y yields the following (generalized)

RICCATI equation

du = b(t)u 2 + {a(t) - 8(t)}u - a(t) (A.3.5)
dt

Finally, as TAYLOR and PARRY [2, p. 525] have emphasized, the

primary value of the force-ratio equation (A.3.5) is not for explicitly

computing the force ratio, since we have seen that the standard technique

for solving the generalized RICCATI equation (A.3.1) is to transform it

into a linear second-order equation (A.3.3), which in LANCHESTER-theory

applications turns out to be either the X or Y force-level equation.

The importance of the force-ratio equation is that it directly provides

much useful information about the battle's outcome without one having

to spend the time and effort of explicitly computing the force-ratio

trajectory (see, for example, Section 2.2).

REFERENCES for Appendix A.3

1. R. Bellman, Methods of Nonlinear Analysis, Volumes 1 and 2, Academic
Press, New York, 1970 (Volume 1) and 1973 (Volume 2).

2. J. Taylor and S. Parry, "Force-Ratio Considerations for Some Lanchester-
Type Models of Warfare," Opns. Res. 23, 522-533 (1975).

3. G. Watson, A Treatise on the Theory of Bessel Functions, Cambridge
University Press, Cambridge, 1944 (Second Edition).
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Chapter 3. SOME SIMPLE MODELS OF BATTLE TERMINATION

3.1. Introduction.

As pointed out in Section 2.8, the military operations analyst needs

some type of "combat results table" for assessing the outcomes of combat

engagements between opposing units in combat models, simulations, and war

games. Let us therefore consider how one would construct such a combat

results table that relates the engagement's initial conditions to probable

outcomes. Recalling from Section 1.3 that there are basically three ap-

proaches for assessing the outcomes of tactical engagements (i.e. fire-

power scores, Monte Carlo simulation, and analytical models), we realize

after a little reflection that in all cases there are essentially two

aspects of assessing such outcomes: (Al) the dynamics of the engagement,

and (A2) the engagement-termination conditions (or "rules").

Although we will proceed analytically via LANCHESTER-type models

of warfare, all combat modelling approaches must in some sense include

these two aspects. Thus, modelling engagement termination is an essential

ingredient for combat analysis, since determination of battle outcome de-

pends on not only the dynamics of combat but also the engagement-termination

rules used. Furthermore, any shortcomings in modelling the engagement-

termination process are not limited to LANCHESTER-type models: they are

basic shortcomings of the state-of-the-art of combat modelling.

It is important for the military operations analyst to have a clear

understanding of how force-level and weapon-system-performance factors

interact to determine the outcome of battle. In other words, one seeks to

answer questions such as, "Who will win the battle? What is the tradeoff

between the quality and quantity of weapon systems? When are two forces

of equal strength?" For answering such questions, we will assume that the
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combat dynamica are given by LANCHESTER-type equations of warfare. With

the specification of engagement-termination rules (i.e. an engagement-

termination model), we can, of course, determine the outcome of (the simu-

lated) battle simply by plotting the decay of the force levels (or any other

state variables) and observing which side reaches its engagement-termination

conditions first. Besides being a time consuming approach, this method

does not provide any clear understanding of how force-level and weapon-

system-performance factors interact to determine the outcome of battle.

What is needed are explicit conditions that relate the initial conditions

of battle, weapon system capabilities, tactics, and the outcome of battle.

Accordingly, we will develop explicit battle-outcome-prediction con-

ditions for autonomous (i.e. time-invariant) combat dynamics and a certain

simple model of engagement termination. We have previously given some of

these battle-outcome-prediction results in Section 2.8 without justification.

Here we will give theoretical justification for many such results. We must

first, however, discuss the modelling of engagement termination. Moreover,

the engagement-termination model should be considered to be different and

distinct from the combat attrition model.

In this chapter we will consider the modelling of engagement termi-

nation and the development of associated battle-outcome-prediction condi-

tions for both deterministic and also stochastic engagement-termination

processes. We will consequently be able to answer questions (Ql) through

(Q4) posed in Section 2.2 (e.g. "Who will win? What initial force ratio

is required to guarantee victory?) for many LANCHESTER-type models. Both

theoretical developments and also empirical verification of such models

will be discussed.
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3.2. Modelling Battle Termination.

As H. K. WEISS [22, has emphasized, engagements that continue until one

side is wiped out are rare. Rather, retreat (or disengagement) may begin

when the number of casualties sustained by a side approaches 10% or so of its

initial strength (22, P. 16]. Possibly the occurrence of some other event

S I' (for example, the enemy "taking the high ground") may trigger retreat or

disengagement. In any case, though, we should examine the battle-termination

process more closely.

Let us therefore consider two forces in ground combat. The engage-

ment begins, the forces interact and casualties are exchanged as battlefield

activities are performed, and eventually the battle will end. How did the

battle end? Who "won" the battle? What caused the battle to erd? These

are important (and difficult to answer) questions for the military opera-

tions analyst. They are also very important for the combat modeller.

R. L. HELMBOLD[10] has considered that there are four possible out-

comes for such a battle:

(01) one side has been annihilated, with its opponent thereby

in undisputed control of the battlefield,

M(Oi) one side surrenders and submits to the will of its opponent,

who thereby gains ctontrol of the battlefield,

(03) neither side surrenders or is annihilated, but one of them

has disengaged and either has withdrawn or is in the process

of doing so, leaving its opponent in rather clear control of

the battlefield.

(04) neither side has surrendered or been annihilated, but both

sidea have disengaged and have either withdrawn from the
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combat area or are in the process of doing so; the withdrawal

is muL..l, and control of the battlefield is uncertain for

either side.

HELMBOLD [10, pp. 1-2] has considered the battle-termination process further,

and he has consequently concluded that outcomes (02) and (03) are the most

likely to occur. Thus, he has taken possession of the battlefield as the

criterion for victory in battle, although others1 have stated that addi-

tional factors must be considered in evaluating battle outcomes.

However, for simplicity, we will follow HELMBOLD and take possession

if the battlefield as the criterion for victory. More precisely, we will

determine thp winner of an engagement and then assume that he takes pos-

session of the batt:lefield. Thus, the battle-termination process involves

retreat: or surrender for the loser. HELDBOLD [10, p. 2] has stated that "in

general, a weakening side will prefer to withdraw and abandon the field

rather than surrender to its opponent, and (if withdrawal is not feasible)

will usually prefer to surrender at some casualty level short of 100 per-

cent total annihilation."

Let us now turn to the modelling of the battle-termination process.

Conceptually, we have two forces on the battlefield, each purruing its own

conflicting interests. In general terms, the battle may be considered to

be over when one side has decided to abandon its goal (or mission), whatever

this may be. In other words, we may say that thL battle is over when one

unit has ceased to be combat effective. This situation roughly corresponds

to HEIMBOLD's outcomes (02) and (03) above. In consonance with common

military OR usage, let us refar to the onset of the inability of a unit

to fulfill its mission as that unit's breakpoint. We will assume that

4 • •when a unit's breakpoint is reached, the unit will aba'ndon its mission and

"break off" the engagement to leave the enemy force is possession of the
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field of battle.

The important question for the combat modeller to address is, "What

are the significant variables upon which battle termination (i.e. a unit

.1reaching its breakpoint) depends?" Although one can hypothesize many fac-

3tore upon which battle termination might depend (e.g. casualties, casualty

rate, force ratio, tactical situation, perceived tactical situation, etc.),

we will assume for simplicity that it depends on the unit's force level 4

5
as well as the following three factors

(Fl) type of unit,

(F2) size of unit,

and (F3) mission of unit (a.g. attack or defend).

We now formally state these assumptions as the Breakpoint Hypothesis.

BREAKPOINT HYPOTHESIS: A unit will cease to be an effective

fighting force in a fire fight when a given force level is reached.

When this evernt happens, the unit loses its ability to perform its

mission and will "break off" the engagement. This force-level

breakpoint depends on the unit'e type, size, and mission.

We will refer to this force level at which a -mit ceases to be combat ef-

fective as that unit's breakpoint force level (or, simply, its breakpoint).

Thus, we are assuming that when a unit's breakpoint is reached, the unit

will "break off" the engagement and leave the enemy force In possession of

the battlefield. In other words, the first unit that reaches its break-

point loses the engagemenc.

Consider now combat between two homcgeneous forces (denoted as X ar.d

Y) and denote X's breakpoint force level as '-P, with yBP being similarly

defined. Then, for example, a ' victory may be described mathematically

in the following way: 238
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(Cl) x f •P,

Y wins when (C2) Yf > YBP' (3.2.1)

P(C3 x~) >•p nd ~t)> YBP for 0 <_ t < tf

where x(t) and y(t) denote the X and Y force levels at time t,

and tf3 xf = x(tf), and yf - y(tf) denote final values at the end of bat-

tle. It is also convenient to write, for example, that

f X , (3.2.2)

where f denotes a given fraction of X's initial force level. Thewhr BP

above Breakpoint Hypothesis implie's that fBp depends on the unit's type,

size, and mission. As noted previcusly in Section 2.8, typical values for

a company-sized infantry unit are the following:

fPX M 0.7 for an attacking force,
BP

and

X B 0.5 for a defending force.

What happens after a unit reaches i.ts breakpoint? Tne modelling of

subsequent combat actions will, of course, deper.d on the specific tactical

situation being considered. For example, if the Y force cannot disengage

(i.e. retreat) upon reaching its breakpoint, then it must either surrender

or be annihilated (or at least continue the fire fight at greatly reduced

effectiveness to reflect the combat behavior of a fighting unit that has

become ineffective and is trying to disengage). If the Y force can retreat,

then we might, for example, model. combat activities after Y's breakpoint

has been reached by a continuous withdrawal of the Y force from battle,

a different rate of sustaining casualties for the remaining Y force, and

a greatly reduced rate of inflicting casualties for the remaining Y force

(to reflect the Y force's lack of combat effectiveness and preoccupation
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with retreat),
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3.3 Developing Battle-Outcome-Prediction Conditions.

It is important for the military operations analyst to have

a clear understanding of how the initial force levels and weapon-system-

performance parameters interact to determine the outcome of battle. For

any particular battle (e.g. in the stationary case, for specified values

of the attrition-rate coefficients and initial force levels), we can

always, of course, determine the outcome by explicitly computing the

force-level trajectories and plotting their decay over time: the loser

is simply the side that first reaches its breakpoint. This approach,

however, is time consuming and by itself tells us essentially nothing

about the parametric dependence of battle outcome on initial force levels

and weapon-system-performance parameters.

It is therefore of interest to develop victory-prediction conditions,

which facilitate sensitivity analysis and help one obtain insights into

the dynamics of combat by explicitly portraying the relationship between these

various factors in the combat-attrition process and battle outcome. As we

have discussed just above and in Section 2.8, such battle-outcome-prediction

conditions depend not only on the combat dynamics (e.g. LANCHESTER-type

differential equations) but also on the battle-termination model. We will

assume here that the battle ends when one side first reaches its breakpoint

force level (see the Breakpoint Hypothesis of Section 3.2). We will then

see that for certain battle dynamics we need not spend the time and effort

of explicitly computing force-level trajectories in order to determine the

victor in such fixed-force-level-breakpoint battles. We have already given

in Section 2.8 special cases of such victory-prediction conditions for

LANCHESTER's classic combat formulations. Furthermore, the force-annihilation-

prediction conditions that we developed in Sections 2.2 and 2.4 (see, for
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example, Proposition 2.2.1) are also special cases of these more general

victory-prediction conditions.

We will now present two different methods for developing conditions

that predict the outcome of fixed-force-level-breakpoint battles between

two homogeneous forces with fairly general combat dynamics. These two

methods for developing battle-outcome-prediction conditions involve

(A) determining the minimum of two first-passage times,

and (B) using the time-independent coupling of the force levels.

Both approaches many times lead to conditions that predict the outcome of

battle without having to spend the time and effort of explicitly computing

force-level trajectories. Restrictions that must be placed on the combat

dynamics for each of these two approaches are briefly discussed. Applica-

tions of these methods to specific LANCHESTER-type combat models (generally

LANCHESTER's classic combat formulations) are given in Sect:ions 3.6 through

3.9 below.

The first (and conceptually more general) way to develop victory-

prediction conditions for a fixed-force-level-breakpoint battle with general

battle dynamics is to determine the minimum of the first passage times for

each side's force level going through its breakpoint. We will refer to

this approach as Method A. Let us denote the first-passage time for X's
X ad

similarly for t Y We have then, for example, from the definition of

thiatl for tBP f

that x(t) > for all t e [0,t p) It follows that tBp is

the smallest positive root of the equation

x(t) - XBp f x (3.3.1)
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in calculating x(t) for the determination of tBp, we will assume thae

the two forces never disengage, i.e. thL combat dynamics hold for all

time. We will also set t - + - if no such positive root to equationBP

(3.3.1) exists.

It follows then that, for example, f will win if and only if

X V
t~p < tp This situation is shown in Figure 3.], in which, for example,

BP BP*

we have terminated the force-attrition process for Y once hin breakpoint

has been reached (i.e. y(t) -BP y for all t > typ). In actuality (if

we assume that disengagement is possible), however, attrition for both

sides stops az Y - t p < t p,. as shown in Figure 3.2. Here tW

denotes the time for Y to win a fixed-force-level-breakpoint battle.

Although Method A conceptually applies to any LANCHESTER-type attrition

process, victory-prediction-condition results have so far only been

obtained for LANCHESTER's classic combat formulations (i.e. the FIF

and FTIFT attribition processes) by this method.

The second (and conceptually more restrictive) way6 to develop

victory-prediction conditions for a fixed-force-level-breakpoint battle

between two homogeneous forces involves use of HELMBOLD's monotonicity

condition that one force level must be a strictly increasing function of

the other one, i.e.

x - g(y) , (3.3.2)

where g(y) is strictly increasing for yf i y - Y0 " The desired victory-

prediction conditions readily follow from such a monotonicity condition.

We will refer to this approazh as Method B. The monotonicity condition

is developed, however, from the state equation (see Secticn 2.2) so

that this approach is limited to LANCHESTER-type models for which a state
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equation of the form (2.2.3) holds.7 It will be shown below that

(provided a certain additional "reasonable" technical condition is

satisfied) Y will win (in finite time) such a battle if and only if

XBP > g(yBp) . (3.3.3)

This is the key result for developing victory-prediction conditions

by Method B, since g - g(y;xoy 0 ).

Let us now demonstrate the validity of the fairly general

victory-prediction corndition, i.e. (3.3.3), indicated in the preceding

paragraph. First, let us restaZe (3.3.2) somewhat more formally as

Condition (FI).

CONDITION (Fl): The X and Y force levels are

(deterministically) related to each other by x - g(y)

& g(Y;xoYO), where g(y) is strictly increasing for

yf < y L y0  and yf denotes the final Y force level

at the end of battle.

Then, the key result for battle-outcome prediction by Method B is

(3.3.3), which we restate as Proposition 3.3.1.

PROPOSITION 3.3.1: Assume that Condition (FI) holds and

that tX is finite. Then, Y will win a fixed-force-BP

level-breakpoint battle in finite time if and only if

x > g(Y' ) - g(Y~p;XoY 0 ).

246

*........



PROOF: To prove necessity, we assume that Y wins, which implies that

xf - XBP and Yf > yBP. It follows that g(yf) > g(yBP), since g(y)

is strictly increasing. Thus, xBP - xf - 8(yf) > g(yBp) so that

xBp > g(yBp), and necessity has been proved. To prove sufficiency, we assume

that xBp > (y). It follows that g[y(t)] - x(t) > x > g(yp), whence

y(t) > yB for 0 < t < tf, since g(y) is strictly increasing. Also, tBpX

being finite implies that x(t) > x for 0 < t < tf but xf M x(tf)

x K
- x(tBp) B XBp with tBP finite. Hence, Y will win the battle in finite

8time. Q.E.D.

As we have just seen, this second method of developing victory-

prediction conditions depends in an essential way on Condition (FI). So

far we have not discussed which class of LANCHESTER-type equations (if any)

corresponds to (3.3.2). We will now show that a certain class of rather

simple LANCHESTER-type equations for combat between two homogeneous forces

(although somewhat restrictive) does indeed yield (3.3.2). Furthermore,

the simple combat models (2.2.1) and (2.4.1) belong to this class of

LANCHESTER-type equations.

Thus, we consider the following LANCHESTER-type equations

dx -f(t) F (x) F2 (Y) with x(O) -x

(3.3.4)( "-f(t) Gl(x) G2 (Y) with y(O) -yo,

where f(t) > 0 almost everywhere (e.g. except for a finite number of

points) in time, and F1, F2, G1, and G2 > 0 for x > XBP and y > yBP'

It follows that

p(x 0 ) - p(x) - q(yo) - q(y) , (3.3.5)
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where

p(x 0 ) - p(x) - H(x0 ,x) d f & dS, (3.3.6)

and

YO F 2 W
q(y°) - q(y) - K(y0 'y) f Y -- - dE . (3.3.7)

0 y 2

It is readily seen that p(x) is strictly increasing for Xp < x <

similarly, q(y) is strictly increasing for yBP- y Y0 " Hence, the

inverse function p (n) is also strictly increasing for p(xBp) < n

< p(x 0 ). It therefore follows from (3.3.4) that

•-l

x - p [p(x 0 ) - q(y 0 ) + q(y)] , (3.3.8)

for yBP - Yf < y -< y0  Thus, for the battle dynamics (3.3.4), we can

always develop a functional relationship between the force levels of the

form of (3.3.2). In other words, we have proven the following proposition

PROPOSITION 3.3.2: Condition (FI) is satisfied for all

LANCHESTER-type equations with two force-level variables

of the form (3.3.4).

HELHBOLD [10], however, has developed his pioneering results in a

different form: he has given his victory-prediction conditions (somewhat

less explicitly) in terms of the casualty fractions of the combatants.

We will now show how our results are equivalent to his. Let us accordingly

denote X's casualty fraction as fc i.e. fXc (Xox)/xo, and similarly
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for fY. We will aIs.- denote X's breakpoint casualty fraction corre-
sponding to xp as (fc)BP, and similarly for (f Y)BP Then corresponding

to Condition (FI) we have Condition (CFI).

CONDITION (CFI): The X and Y ca3ualty fractions are

(deterministically) related to each other by fX . (p(f )
c c

=P(f ;X0oYo) where p(f ) is strictly increasing for

So_< f _Y < (fY) and (fY) denotes the final Y casualty
- c- C f c f

fraction at the end of battle.

It is easy to show that Conditions (FI) and (CFI) are equivalent.

PROPOSITION 3.3.3: x - g(y) with g(y) strictly increasing
I'i nd°l i X Y Y

if and only if fX M(p(f ) with ýp(f ) strictly increasing.
c c c

Consequently, the following is the analogue of Proposition 3.3.1.

PROPOSITION 3.3.1': Assume that Condition (CFI) holds and

that tBP is finite. Then Y will win a fixed-force-level-
BI x

breakpoint battle in finite time if and only if (fc)BP <
i--~ Y ) I-01fY ) B; 09YO1

_ BP cBP y

It is very convenient when, for example, the initial force level

x. and the casualty fraction fX are "separable" in H(x09 x), i.e.

cSBiH(xo'x) "y(xO) h(f X) (3.3.9)
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Lat us therefore introduce the concept of a function being quasi-homogeneous:

we will refer to a function of two variables F(x,y) as being quasi-homo-

geneous when

F(x,y) - X(x) f(Z-)

x

Hence, if H(xox) and K(yo,y) are quasi-homogeneous functions, ther;

(XoX)- Y(xO) hl( 5 ) - Y(xO) h(fX) , (3.3.10)

and

K(y 0 ,y) - k(y0 )y) k(fY)y, (3.3.11)

xwhere y(&), X(&) > 0 for > 0. It is easily shown that h(f ) is
C

strictly increasing and positive for 0 < fX < X Y•~~ ~ c- (c)BP; siialy c

is strictly increasing for 0 < fY- < (fc)B It follows that

fx h 1 [h(y 0 ) ~ 1 f- ) (3.3.12)

c IY(xO) c ''C~

-1 y
where h denotes the inverse function and (p(f ) is strictly increasing

for 0 < fY < Also,
- c- cBP'

x x h 1 E XyO) k(-- 1 g(y) ,(3.3.13)0 1 Ly(xo) 1 y -

where h-1  denotes the inverse function, and g(y) is strictly increasing

for yBP -< y ! Y0"

As we have noted above, we actually have that

- (f Y;x . (3.3.14)
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It is of interest in milltary OR to consiaer the case in whiech results

do not depend on the absolu•s initial force levels but on the initial

force ratio, i.e.

iO(fY;x 0 ,y 0) .;x0/Y0) (3.3.15)

In this case, (3.3.12) implies that there is a * - /yx0/Y0 ) such that

(X/YO) 0- (3.3.16)

However, (3.3.16) is equivalent to the functional equation

f(xy) - g(x) h(y)

which has the general solution [1, pp. 144-145]

ic

• !g(t) - atc h(t) = btc

so that the only functions that satisfy (3.3.16) are

y(x 0 ) Clx0 , x(y 0 ) x C2 Y0 (3.3.17)

Thus, "absorbing the constant C1  into the function h" we may write

when H(x0 ,x) and K(y0 ,y) are quasi-homogeneous functions and (3.3.15)

holds

H(x 0 ,x) - X~hl( , (3.3.18)
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so that both H(x0 ,x) and K(y0 ,y) are homogeneous functions of degree c

when they are quasi-homogereous and results do not depend on the absolute

initial force levuls but only on the initial force ratio.

Now let us show how Proposition 3.3.1 and (3.3.13) yield an

explicit victory-prediction corLdition when H(x0 ,x) and K(yo,y) are

quasi-homogeneous. We begin by observing that Proposition 3.3.1 and

(3.3.13) yields

X BP " fBX > -1 [-(YO) (fBP k " (3.3.19)

UCnsider next the quantity y(x 0 ) hl(XBp/Xo), where h (1) is strictly

increasing and positive for 0 < < 1. Making use of (3.3.19), we find that

Y(x0 ) hl(f ) < Y(X0) hl h k((Y0)k
S1BP 0 1 [ 1 BP

Xso that when t is finite and H(x 0 ,x) and K(y 0 ,y) are quasi-homo-StBP

geneous,

y(xo) k l(fp)
Y will win if and only if - < (3.3.20)X(Yo) hl(f;Xp)

Furthermore, the length of battle is finite. We will not repeat this

fact any more, although it does hold for all the victory-prediction con-

ditions in the remainder of this section, since we will always assume

that tBP is finite. Also, let us continue to assume that H(x 0 x) and

K(y 0 ,y) are quasi-homogeneous. Then, we may also show that

y
_Y(xO k[(fc)Bp]

Y will win if and only if 0 _'-0_ < c " (3.3.21)
Sh[(f)BP
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Recalling (3.3.18), we also see that when y(x 0 )/X(y 0 ) - O(x0 /y0 ) and

c > 0, the above victory-prediction conditio's become

xo Vk(f )
0c 1 BP

Y will win if and only if -< (3.3.22)
O h( x

1 BP

and

'Y will win if and only if xO< k[(fX) (3.3.23)

In other words, when the functions H(xo,x) and K(y0 ,y) are

quasi-homogeneous, we have the explicit victory-prediction condition

(3.3.20) or, equivalently, (3.3.21). If additionally y(x 0 )/A(y 0 ) -

, •(0 /y0) and c > 0, these results simplify still further. We will see

below that the victory-prediction conditions given in Section 2.8 (namely,

(2.8.3) and (2.8.13)) are special cases of (3.3.22). For a discussion

of the insights into the dynamics of combat to be gained from such victory-

prediction conditions, the reader is directed to Section 2.8.
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3.4. Modelling a Unit's Force-Level Breakpoint.

Thus, an engagement's outcome depends on both the combat dynamics and

also the battle-termination model. Even having decided to assume the Break-

point Hypothesis (see Section 3.2 above) for combat between two homogeneous

forces (denoted as X and Y), we are not finished with battle-termination

modelling: for a force-level-breakpoint battle, we can model a unit's

breakpoint as being either a random variable (realized before the battle)

or a deterministic quantity. Thus, we have the two general models for a

side's battle-termination process:

(Ml) deterministic breakpoint,

(M2) random breakpoint. 9

Clearly, a deterministic breakpoint may be considered to be a special case

of a random breakpoint. The latter is used to model battle termination via

a so-called "break curve," which gives the probability that a force will

discontinue the engagement as a function of its current force level (usually

normalized as a fraction of the initial force level).

Figure 3.3 shows a hypothetical force-level break curve for the X

force. We may think of such a break curve as modelling battle termination

in the following manner. At or before the beginning of battle, a sample

breakpoint force level is drawn from the distribution of such values as given

by the appropriate break curve. This is done for each side, and the values

so drawn are called the "breakpoints" of the two sides. The battle then

begins and continues until one side's force level becomes equal to its pre-

selected breakpoint. At this point, the side whose preselected breakpoint

has been reached is said to "break," meaning that it is presumed to abandon

its mission and to discontinue or "break off" the engagement. Thus, the

side that breaks is the loser according to this model.
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A deterministic break curve may be thought to be a special case of

such a random break curve. A deterministic force-level break curve is shown

in Figure 3.4. For such a deterministic break curve, we can immediately

apply the results of Section 3.3 (e.g. Propos:Ition 3.3.1 or (3.3.20)) and

obtain battle-ottcome-prediction conditions. However, if the breakpoints

are random variables, then further analysis ia required as shown in Section

3.7.

Before continuing further, let us point out that even if we consider

that the force levels are the significant variables in the battle-termination

process and that the breakpoints are either deterministic or stochastic,

we still may consider two different types of battle-termination models:

(Ti) descriptive,

(T2) adaptive behavioral.

By a descriptive model of the battle-termination process, we mean

a model that describes the battle-termination process in terms of one or

more independent variables, like the models described above. Consequently,

such a descriptive model can give us (if only in a probabilistic sense)

each side's breakpoint before the battle begins.

By an adaptive behavioral model, we mean one in which each side con-

siders the progress of the battle and accordingly decides whether or not

to continue the engagement. In such a model, each side behaves according

to the results of a dynamic rational-decision process rather than simply

preselecting a specific breakpoint. HELMBOLD [10] has shown, however, that

both models are equivalent in the simple case in which each side governs its

behavior according to only its own state (i.e. own casualty fraction). He

has concluded [10, p. 5] that break curves (i.e. a descriptive model of bat-

tle termination) do reflect the dynamic decision process taking place in

combat unless, for example, one side's breakpoint distribution depends on
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the other side's casualty level.

A final word of caution to the reader. Unfortunately, HELMBOLD (10,1

has shown (see also Section 3.13 below) that if one considers two homogeneous

forces in deterministic LANCHESTER -type combat without replacements and

withdrawals and assumes

(Al) a breakpoint hypothesis is applicable to all battles, 
11

and (A2) a universally applicable deterministic attrition process,

then the breakpoint hypothesis "yields theoretical implications that are

at variance with the available battle-termination data in several essential

aspects." HELMBOLD [10] has considered random breakpoints in his work. Thus,

such a simple model of battle termination is not scientifically valid. Never-

theless, this simple battle-termination model is widely used in defense

analyses (see HELMBOLD (10] for numerous examples), and the author knows of

no alternative battle-termination model that has been widely used and has

passed the same stringent scientific test of validity that this simple

model has failed. Thus, we will continue to assume that our Breakpoint

Hypothesis is true. It therefore seems appropriate to develop the relation-

ship between the initial force levels, weapon-system-performance factors,

and the outcome of battle for simple LANCHESTER-type models such as

(2.2.1) and (2.4.1) above.
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3.5. Victory-Prediction Conditions for Deterministic LANCHESTER-Type

Attrition Processes with Deterministic Force-Level Breakpolnts.

When both sides' force-level breakpoints are deterministic, then

Method B of Section 3.3 provides some explicit victory-prediction conditions

(namely, Propositions 3.3.1 and 3.3.1'). For convenience, we restate them

here as Propositions 3.5.1 and 3.5.1':

PROPOSITION 3.5.1: Assume that Condition (FI) holds, that

tPX is finite, and that the breakpoints are deterministic.

Then, Y will win a fixed-force-level-breakpoint battle in

finite time if and only if xBP > g(yBp) - g(yBp ;XoaY).

PROPOSITION 3.5.1': Assume that Conditi'.n (CFI) holds,

that tPx is finite, and that the breakpoints are deterministic.

Then, Y will win a fixed-force-level-breakpoint battle in

finite time if and only if ( X ) < [(fY)BpI -] ((f) ;xc BPB P O'

Moreoever, we know by Proposition 3.3.2 that Condition (FI)

(equivalently, Condition (CFI)) holds for all LiNCHESTER-type equatiuns

of the formfdx_
-t f(t) Fl(x) F2 (y) with x(O) -x0

(3.5.2 )

dt -f(t) Gl(x) G2(Y) with y(O) - yo

where f(t) > 0 almoat everywhere (e.g. except for a finite number of
points) in time, iid FI, F2 , G1. and G2 > 0 for x > xBP and y > yBP"
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Furthermore, for combat modelled by the LANCHESTER-type equations (3.5.1),

we showed in Section 3.3 that when H(x0 ,x) and K(yo0 y) [defined by

(3.3.6) and (3.3.7), respectively] are quasi-homogeneous functions and

t X is finite, thentBP

[Y(x o k (f e)

Y will win in finite time if and onlv '.f 775 < h f X (3.5.2)

1 B

where h and k are defined by (3.3.10) and (3.3.11) and, for example,1 1x

SX BP x 0 or (equivalently)

* Y(x) k((f )BP
Y will win in finite time if and only if 0) c)BP]T X(y0) h[(f x 'fc)BP]

where h and k are also defined by (3.3.10) and (3.3.11) and, for

example, (f(x -xp)IX0. Additionally, wben y(x 0 )/X(yo) -

O(x0 /yO) and c > 0, the above victory-prediction conditions simplify

to (see Section 3,2 for proof)

0_ B/• P)
Y will win in finite time if and only if ( (3.5.4)

hl (fB)

and (equivalently)

x0 c/[(c) BL]

Y will win in finite time if and only if < . (3.5.5)
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The above are fairly general victory-prediction conditions.

In the next section we apply them to LANCHESTER's classic combat

formulations (2.2.1) and (2.4.1) (i.e. LANCHESTER-type equations for

the FIF attrition process and also for the FTIFT process, respectively).

A discussion of the insights into the dynamics of combat to be gained

from such victory-prediction conditions is to be found in Section 2.8.
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3.6. Development of Victory-Prediction Conditions for LANCHESTER's

Classic Models with Deterministic Force-Level Breakpoints.

In this section we will show how to develop victory-prediction

conditions by the two methods discussed above in Section 3.3 (i.e. Methods

A and B) for LANCHESTER's two classic combat models (2.2.1) and (2.4.1),

i.e. the equations for the FIF attrition process and for the FTIFT

process. We have previously given these results without justification in

Section 2.8, where a detailed examination and discussion of the insights

into the dynamics of combat to be gained from these victory-prediction

conditions is, however, given. For both these two combat models, we have

a choice of which method to use for developing victory-prediction conditions

for deterministic breakpoints. Method B, however, is better suited to

combat modelled with random breakpoints and is therefore very important

for our developments in the next couple of sections.

We first consider that the combat dynamics are given by LANCHESTER's

equations for modern warfare (2.2.1). First, we will develop a victory-

prediction condition by Method A, i.e. by determining the minimum of the

first passage times for each side's force level to reach its breakpoint

value. For (2.2.1) the time for the X force to reach its breakpoint,

Xdenoted as tBP, may be obtained by determining the smallest positive

root of the equation (3.3.1) with x(t) given by (2.2.8). Consequently,

we find that
'•~ x in 0o'••P Xo

.n for -- . .

- (3.6.1)

+ a2 2 x2

I n _xBP VbYO OX+BP} for X
YO -Fl _x.
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and similarly for t Y When tBx is not defined, we will take it to
BP'B

be (+co), It follows [with three cases having to be considered:

(A) x0/y0 < ra7W, (B) x0/y0 - /a-b- , and (C) x0/y0 > /a/b] thatii i A X/0 < "",() o/0 ,o/0

X i 2 2 2 2

tBp < tBP if and only if a(yo-yBF) > b(x 0 - xBp) (3.6.2)

Letn - X g

Letting fBP x and yBP - fBP Y0, we may state the above result

(3.6.2) as

PROPOSITION 3.6.1: When the combat dynamics are given by

LANCHESTER's equations for modern warfare (2.2.1), Y will

win a fixed-force-level-breakpoint battle in finite time if

and only if

0 _ < a (3.6.3)

The victory-prediction condition (3.6.3) of Proposition 3.6.1 was given

previously without justification in Section 2.8 as (2.8.3).

Alternatively, we could have developed Proposition 3.6.1 by

Method B, i.e. by using HELMBOLD's monotonicity condition that one force

level must be a strictly increasing function of the other one. By

Proposition 3.3.2, we know that Condition (FI) is satisfied for the model

(2.2.1) so that we could use Proposition 3.5.1 (equivalently, Proposition

S, .3.3.1) to prove Proposition 3.6.1. However, it is much more convenient

to invoke the victory-prediction condition (3.5.4), which is a special

case of the victory-prediction condition in Proposition 3.5.1 (namely,
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(3.3.3)). To invoke (3.5.4), we observe that H(x0 ,x) (as given by

(3.3.6)) is quasi-homogeneous and (3.3.10) yields that

X2 adx b )2

Y(X0 ) 9x0 , and h (X) - (- ) (3.6.4)

00

1 x0  xo(Y_
since H(xo,X) m b(x 0 - x2). Similarly,

(YO 2 1 I a y. (O i (3.6.5)

2
Consequently, X(xO)/y(y 0 ) - c(xo/YO) - (x 0 /YO) so that c - 2 > 0, and

xx
we may invoke (3.5.4) to prove Proposition 3.6.1 provided that t is

finite. Thus, we must again consider tEp as given by (3.6.1). Proposition

3.6.1, however, requires that

a2 a( -_2B) > X2 - x 2 (3.6.6)

X

so that (3.6.1) yields that tBp is well defined and finite. We finally

note that the force-annihilation-prediction condition given in Proposition

2.2.1 may be obtained from Proposition 3.6.1 by setting fB . f 0.
BP BP

Let us now give an example that shows that the requirement that

tBPX be finite is absolutely necessary for Proposition 3.5.1 to be

true. Accordingly, we consider the following variable-coefficient

LANCHESTER-type equations 12

dx

S-a(t)y with x(O) -Xo

(3.6.7)
- -b(t)x with y(O) -yo

dt

where
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a(t) k h(t), b(t) kbh(t) (3.6.8)

h(t) > 0 for all t > 0, and k and kb are constants. We observe

that the equations (3.6.7) are a special case of the equations (3.3.4)

so tbat we know by Proposition 3.3.2 that Condition (FI) holds for them.

13In fact, we have the following-square law

k( 2 -2) 2 ka(Yo-y 2 ) (3.6.9)

Moreover, the substitution

t
s- a k f h(u) du, (3.6.10)

0

transforms (3.6.7) into

T d. with x(O) - x0 ,

(3.6 .11)

x with y(O) -yo 9
ds VT-

0R

where the relative-fire-effectiveness parameter X is defined by

AR = ka/kb (3.6.12)

Consequently, x(s) is given by 14

x(s) x cosh s - yo/X- sinh s

whence
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;kax(t) W x cosh 6(t) - a sinh P(t) (3.6.13)
0 b

where
t

6(t) - akb f h(s) ds

S0

It now follows, however, that

0 k <- YB2

Y X )(fX2 } (3.6.14)

(B?

does not always imply that the X force will lose such a fixed-force-level-

breakpoint battle with combat dynamics (3.6.7) (as Proposition 3.5.1 implies

it should when t is finite).BP

The nonsufficiency of (3.6.14) to effect a Y victory occurs

when tBPx is not finite, i.e. when lime + a (t) M < + -. For example,

consider a fire fight in which the combatants take cover and continue to

reduce their vulnerability so that each side's fire effectiveness decays

exponentially over time, i.e. a(t) - ka e-Yt and b(t) - be-Yt. Then

e(t) U - e-Yt
Y

and lim 8(t) - M - aTi/y. Hence, when (3.6.14) holds, we can

always choose y so that limt+ x(t) - x cosh M - yB PR sinh M >

In other words, we can always pick y so that tBp is not finite, and then

(3.6.14) does not imply that the X force will lose such a fixed-force-

level-breakpoint battle.

266



We nexK ..... Eider that the combat dynamics are given by constant-

coefficient LANCHESTER-type equai.ons for an FTIFT attrition process

(2.4.1). We will again first develop victory-prediction conditions by

Method A. For (2.4.1) the time for the X force to reach its breakpoint

may be obtained by determining the smallest positive root of the equation

(3.3.1) with x(t) given by (2.4.1)). Accordingly, we find that

S(_. - -- ) for P = 1
b x xBp x 0

tX (3.6.15)

1 in p+- (1-P) for p0 1,ay 0 (1- P) xB

where p - bx 0 /ay 0  and is not defined for 0 < x < x0 -y 0 a/b----- whre 0 n BP _ BP

when p > 1. When tBX is not defined, we will set it equal to (+ a)

Similarly,

_ _ ) for p1,
a y y__ _=-Ia BP YO

"tBP" (3.6.16)

1 1 YO 1Sin +_- (1 --) for P#l
ayo(P-l) i YBP p

y

where tBp is not defined for 0 < YBP < YO - x0b/a when P < 1. It

follows [again with three cases to be considered] that

Sx < tBpY if and only if a(yo-YBp) > b(x-x) . (3.16.17)

xWe observe that t is well defined and finite when (3.6.17) holds

and xp> 0. From the above we may conclude
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PROPOSITION 3.6.2: When the combat dynamics are given by

the LANCHESTER-type equations for an FrIFT attrition

process (2.4.1), Y will win a fixed-force-level-

breakpoint battle if and only if

i __ O< •_fP(3.6.18)
!YO b 1i fBPX

ix

The duration of combat is finite if and only if f > 0
BP

i.e. xBP >0.

Alternatively, we could have developed Proposition 3.6.2 by

Method B. Again, we know that Condition (FI) is satisfied so that we

can use (3.5.4), which is a special case of the victory-prediction condition

in Proposition 3.5.1, to prove Proposition 3.6.2. To invoke (3.5.4), we

observe that H(xox) (as given by (3.3.6)) is quasi-homogeneous and

(3.3.10) yields that

Y(xO) - xo, and hi(-) 0 b 1 - (x--) (3.6.19)01x0 x0

since H(x0 ,x) - b(x 0 -x). Similarly,

X(Y0 ) y0 Y and k (-Y-) -a 1 - (X) .(3.6.20)

Consequently, y(x 0 )/X(yO) (x 0 /y 0 ) - xo/y 0  so that c - 1 > 0, and

we may invoke (3.5.4) to prove Proposition 3.6.2 provided that tx isBP

finite. Thus, we must consider tBP as given by (3.6.15). Proposition

3.6.2, however, requires that
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a > ( -(Y > Xo -X (3.6.21)

xso that (3.6.15) yields that t is well defined and finite if and

only If xBp > 0. We finally note that the force-annihilation-prediction

condition given in Proposition 2.4.1 may be obtained from Proposition 3.6.2

x "Yby setting fBP "BP "
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3.7. Development of General Battle-Outcome-Prediction Conditions

for Deterministic LANCHESTER-Type Attrition Processes with

Stochastic Casualty-Fraction Breakpoints.

In this case we consider that each side's force-level breakpoint

is a random variable that is realized before the beginning of battle (see

Section 3.4 above). Although this model may seem somewhat restrictive, it

is equivalent (see Section 3.4 above and HELMBOLD [lO,p. 5 and pp. 68-69])

to one in which each side considers its own force level and governs its

behavior according to its own state, i.e. force level. We will denote

random variables by upper-case letters, with their realizations being

denoted by the corresponding lower-case letters. Thus, XBP is a random

variable (frequently abbreviated r.v.) and denotes X's force-level break-

point. The realization of XBP in a particular battle will be denoted as

xBP in consonance with out previous notation.

The outcome of battle is now a random variable that depends on both

the deterministic battle dynamics and the distribution functions for the two

force-level breakpoints. Quantities that are of interest for our combat

model include the following:

(Ql) the probability of winning,

(Q2) the casualty-fraction distributions (both conditional and

also unconditional),

and (Q3) the average casualty fraction for each side.

Let us first consider the probability of winning. We assume that the random

variables X and YBP are independent and continuous. Let us further

assume that TXB is finite, where TX denotes the time at which XBP is
BP BP B

reached. Invoking Proposition 3.3.1, we see that Y will win if and only if
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"XBp g(YBp) " g(YBP"XOYO) . (3.7.1)

Hence, the probability that Y will win is given by Prob[X > g( )

which we mqy write as Prob[XBp> g(Y )], since by assumption

Prob[X - g(Z~)] - 0, For convenience, we will denote Prob[Xp •g(Y~p)]'[XBP - gB~ 'XP (YBp)

as P[ • ]. Although we could proceed to develop the desired

results in terms of force levels or force-level fractions (e.g. x/x0),

I.t is more convenient to develop them in terms of the casualty-

fractions, since the results that appear in the literature [10; 251

are expressed this way. Both approaches are, of course, equivalent as

Proposition 3.3.3 and comparison of Propositions 3.3.1 and 3.3.1' shows us.

We now develop expressions for the probability that Y will win a

battle with deterministic LANCHESTER-type combat dynamics and stochastic

(or random) casualty-fraction breakpoints by considering Proposition 3.3.1'.

Recalling that the X and Y casualty fractions are given by

Sf Xo-X Y0 -y
f " M 0 and f Y Y (3.7.2)0c Y c

we will denote X's casualty-fraction breakpoint (a r.v.) as (FX with
c BP' wt

corresponding distribution function (d.f.) denoted as Fx[(f X)p. In
X ~C BP'

other words, Fx(s) denotes P[(F ) < s1. We will also denote the
X c BP

corresponding d.f. as Fx(s). In other words, F 1s) - I Fx(s). Further-

by

BX

4We will also write dFX(s) -fX(s)ds, where f X s) is called the proba-

bility density function (p.d.f.) of the random variable (F d From the
,c BP

i27].
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assumed independence of pand BP' it follows that (F)BP and
Y

(F ) are independent.
'cBP

With the above notation defined, we may invoke Proposition 3.3.1'

to find that the probability that Y will win is given by

Py- P[Y will win] - P[(FX)P < (p((F)B (3.7.4)

It follows from the assume. independence of (F ) and (F (see
c BP ceBP

Appendix B concerning the probability that one random variable is less

than another independent one) that

1

Py f Fx(P(t)) dF y(t) , (3.7.5)
0

where we have truncated (p(t) by defining (see HELMBOLD [10, pp. 12-13] for

a further discussion)

,p(t) - Minimum[p(t),1] . (3.7.6)

Moreover, the probability that Y will win may also be written as

Py =P[N-I((F)) < (F)B (3.7.7)
Sc. BP c BP

so that we also have

1
Py f Fy( -l(s)) dFx(S) . (3.7.8)

0

In the above formulas (3.7.5) and (3.7.8), the variables s and t

are thus related by
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' s - ,(t) . (3.7.9)

In order to preserve the correctness of the above formulas when p(l) < 1,

we define t-l(s) - 1 for p(l) < s < 1 (see HELMBOLD [10, p. 13]).

Equation (3.7.8) also follows from (3.7.5) by an integration by parts

and the change of variable (3.7.9). In a similar fashion, it may be shown

that

PX f F ('-lCs)) dF (s) -f _FG (t)) dF (t) • (3.7.10)0 0 Y 0 X Y

The development of expressions for the casualty-fraction

conditional distributions15 is somewhat more involved. We begin by consider-

ing the event that a battle is fought and we observe s < (FX)Bp < s + ds.

The probability that this happens in any battle is given by

P[s < (FX) < s + ds] a y(-l(s)) dFx(S) -(3.7.11)
c BP - FCP C) ~~).(..1

It follows that

X P[(FBp F ( )) dFs)

P[(F0 BP d .xfS) " (3.7.12)

Consequently, the probability that this happuns in a battle won by Y

is given by

P[(FX) BP< pjy wins]- f T(ý-l s)) JFx(s) .(3.7.13)

In a battle won by Y, however, we have (F) (F) where (F
c BP cf cf

denotes Y's final casualty fraction at the end of battie. Hence,
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P[(F )f I plY wins] - 1 (ý-l(s)) dFx(S) (3.7.14)
! Yo

In such a battle, the probability that (F ) < q is the same ast

(FY)f 1ni (( < q or (F X f.! (q), since f - W ) It follows that

P((F ) < q Y wins] - 0 y(ý-l(s)) dFx(S) (3.7.15)

Thus, we have developed essentially all the results shown in Table 3.1

except for the unconditional casualty-fraction distributions and the

average casualty fractions.

To develop the expressions for the average casualty fractions

given in Table 3.1, we first develop the distribution of, for example, X's

final casualty fraction, denoted as (6F)f, and then simply compute its

expected value. Since either X or Y must win, the law of total

probability yields

x X X
P[(F C) : p1 P[I(FC) f <PIX wins]P PX + P[ (F )f < pjY wins] .Py (3.7.16)

so that (3.7.14) and the X analogue of (3.7.15) yield

1, (p) 
p- -

P[()f f P F'X((t)) dFy(t) - f F (4- (s)) dFx(s) . (3.7.17)
0 0

Recalling that t -- 1 (s), we may change the variable of integration in

the first term on the right-hand side of (3.7.17) to obtain

-1 (p) _p -

0 0
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TABLE 3.1. Quantities of Interest for Battle with Random
Casualty-Fraction Breakpoints.

1. Probabilities of Winning

1 1PX * f FY(ip (s)) dFx(s) f TF"X(I(t)) dFy(t)0 0

1 1

Py " f Fx(4b(t)) dFy(t) f Fy(* (s)) dFx(s)
0 0

2a. Casualty-Fraction Conditional Distributions
-1~p

I(FX 1 _ () -P( Xf <__ plx wins] - F f (i(t)) dFY(t)

P[(F )f < qlX wins] - 0 - -P((F B < qlx wina]

x 1 x 0 x y C BPE(F

P[(F )f < PlY wins] - 1- f F-y (-(s)) dFx(s) - P B <pj wins]

iyo y -- 1)
P[(F C) < qlY wins] - -pý f FX

y 0

2b. Casualty-Fraction Distributions

Pt(FX) p]- -F )F(j 4 p)C f- 1 P= x)TY t()

P[(Fy)cf L q] 1 - F(IP(q)) FTY(q)

3. Average Casualty Fractions

Vx FX(s) F (s)) ds
C f0

1 1 -1 ds
-TY f F ((t)) Fy(t) dt-f Fx F() (s)) -)

0 0 (s))
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whence (3.7.17) becomes

P <(F _ fP d{Fx(s) F•(,-ls))) (3.7.18)
0

Integration of the above then yields the desired result for the casualty-

fraction distribution

P((FX)£ P1 = 1 - x(p) F"',(p)) (3.7.19)

Let us also observe that16

P[(FX)f I p] - FX'(p) Fy(, (p)) (3.7.20)

From (3.7.18) we see that the expected value of (FX) is given by

c f

- - f s d{F (s) F (8P())}
c 0 X Y

whence an integration by parts yields the desired result given in Table 3.1.

The expressions for P[(FY)f < q] and VY may be developed in a similar

fashion.

Thus, we have developed general expressions for the three measures

of combat outcomes: (1) the probability of winning, (2) the casualty-

fraction distributions, and (3) the average casualty fraction for eech

side. We did this for the case in which (1) combat attrition was modelled

by deterministic LANCHESTER-type equations for which Condition (CFI) held,

and (2) the casualty-fraction breakpoint for each side was a random

variable independent of the other side's breakpoint and with known

distribution. Unfortunately, the general combat-outcome-prediction
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expressions given in Table 3.1 do not by themselves provide any insight

(such as that provided by Proposition 3.6.1 discussed in Sections 3.6

and 2.8 above) into the relationship between the distribution of combat

outcomes and various factors in the combat model (such as the initial

force ratio xo/y 0 , relative fire effectiveness, parameters of the

breakpoint distributions, etc.). To develop such parametric insights

into the distribution of combat outcomes, we must consider some specific

instances.

One general case, however, for which fairly explicit results

arise is that in which 1 7

F x(s) - [F y(0)a (3.7.21)

where s - 0(t), p(t) is given by (3.7.6), and, of course, Condition (CFI)

holds. Such a case has been found to be a reasonably good approximation

to U. S. Civil War data by H. K. WEISS [25]. To develop an explicit

expression for the probability that Y wins, we let T = F (t) so that

dFy(t) = - dT and F X ((t)) T/a, and then (3.7.5) yields

Py f 0 T l/a(-dT) f 1 Ti/a dr,

1 0

or

a
m Y a + 1 (3.7.22)

To develop an explicit expression for the conditional distribution of,

for example, X's (final) casualty fraction (3.7.14), we let
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SFx(S) so that dFa) - - do and 4 - (s))(- alla, and then

(3.7.14) yields

Fx(p)

P[,,(i )f <plY wins] (-d- (----);.s l/a(_do),
c a

or

P[(FX) < plY wins] 1 - [Fx()](l+I/a) (3.7.23)

Other results may be obtained in a similar fashion, and these results are

summarized in Table 3.11. From these results, we see that the assumption

(3.7.21) has the implication that whether a side wins or loses does not

affect his casualty-fraction distribution, i.e. the unconditional casualty-

fraction distribution is the same as the conditional distributions.

We are now in a position to develop some explicit results for

LANCHESTER's two classic combat formulations: (1) LANCHESTER's equations

for area fire (2.4.1), and (2) LANCHESTER's equations for modern warfare

(2.2.1). Here we will give exact results when they are relatively simple

(i.e. for the case in which each side's casualty-fraction breakpoint is a

uniformly distributed random variable) and will use an approximation when

the results are not simple (i.e. for the special case in which each side's

casualty-fraction breakpoint is an exponentially distributed random

variable).
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TABLE 3.11. Results for Battle with Random Casualty-Fraction

Breakpoints When Fx(S) -[Fy(t)]a

xx

Probabilities of Winning:

I ap! X " -a +-- 1 "

Casualty-Fraction Conditional Distributions:

lP(•)f < pIx wins] - I - F--y(ý-()](a+l)

P( f < qIX wins] - 1 - (q)](a+l)

P((F cxf < plY wins] 1 - [Fx(P)I/a)

P[(F )f < qjY wins] 1 - ((q))]+/a)

Casualty-Fraction Distributions:

X - (1+1/Ia)XP[(F ) < p] M 1 - [F](p l M P[(FX) < p[X wins]
c f Xc f-

P[(FcY)f < q] - 1 - [-y(q)](a+l) . P[(FcY < q1Y wins]

Average Casualty Fractions:

X- -(s)](1+1I/a) ds Y f - (t)1a) dt
• mIc 0 c 0
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3.8. Battle-Outcome-Prediction Conditiona for Deterministic FTIFT

Attrition Process with Stochastic Breakpoints

In this section we develop explicit expressions for (Ql) the

probability of winning, (Q2) the casualty-fraction distributions (both

conditional. and also unconditional), and (Q3) the average casualty fraction

for each side for LANCHESTER's (deterministic) equations for area fire

(2.4.1), i.e. the equations for an RFTI attrition process, with random

breakpoints. We will do this for two specific casualty-fraction-breakpoint

distributions:

(DI) uniformly distributed breakpoints,

and (D2) exponentially distributed breakpoints.

As above, we will assume that each side's breakpoint is independent of

that for the other side. Let us observe that for random breakpoints the

analogue of the victory-prediction condition (3.6.18) is a probability of

winning such as (3.8.6) below. Also, the analogue of the victor's casualty

fraction given in Table 2.XII is, for example, a casualty-fraction condi-

tional distribution such as (3.8.7) or an average loss such as given by

(3.8.10).

We begin by developing certain key general expressions that apply

to all casualty-fraction-breakpoint distributions for an FTIFT

attrition process. First, let us observe that we may express the state

equation (2.4.3) for the FTIFT attrition equations (2.4.1) in terms of

the casualty fractions fX and fY [see (3.7.2)] asc c

"X f , (3.8.1)
c c.)

where

4 'v " .(-i• (3.8.2)
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* M1oreover, there are restrictions on the applicability of (3.8.1), i.e.,

it holds only for fX, fY E [0,1]. We observe that y > 0 is simply the
C C

ratio of fractional losses (X to Y). In other words, from (3.8.1) we

see that the function p of Condition (CFI), i.e. the function such that

fX (P(fY) is given by
c c

p(t) - yt . (3.8.3)

Since fX < 1, we must sometimes truncate the p function (i.e. when

t > 1/y) so that fX does not exceed 1. Thus, we introduce the modified
c

function i defined by (3.7.6). it is given by

yt for 0 < t <_ /y ,

1 for i/y <t (

We also observe that

(s s/y for 0 < s < y ,(3.8.5)

1 for Y < s.

NexEt, we will use the above* in conjunction with the general

expressions given in Table 3.M to develop the key general battle-outcome-

prediction expressions for an FTIFT attrition process. Considering (3.3.5),

we obtain from (3.7.8) the following expression for Py

(I Fy(•) dFx(s) for 0 < y <_

SPy 1 (3.8.6)

f FY(1 ) dFx(s) for 1 <( y
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In a similar fasnion, consideration of (3.8.5), (3.8.o), and (3.7.13) yields

for 0 < y y< p,

P[(F)f ! <PjY wins] - TY(f Fy()dFx(S)}/{fFy(•)dFx(s)} for p L < 1,
c 0 Y0 -- (3.8.7)

{fP 7FY(A)dFX(s)}/(f -fy(!)dFx(s)} for 1 < y~

0 0

The other conditional casualty-fraction distributions may be similarly

obtained. For the unconditional casualty fraction distributions, it is more

convenient to consider the complementary d.f. Hence, (3.7.20) and (3.8.5)

yields

0 for 0 < y <p,

P[(F) _> p] (3.8.8)

Similarly,

Fx(yq) Fy(q) for 0< y < l/q

P[(FY): > q] " (3.8.9)

0 for 1/q : y

Finally, Table 3.1, (3.8.4), and (3.8.5) yield the desired expression for

the average losses,
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Y
f X() ) ds f or 0 <¥ y <

Thu - (3.8.10)
S= c i

f --Fx(S) F(') ds for I < y.

From the above general battle-outcome-prediction conditions it is straight-

forward (but somecimes very messy) to compute desired quantities for a

specific casualty-fraction-breakpoint distribution.

We now will consider two such specific breakpoint distributions.

Let us first consider the case in which each side's casualty-fraction break-

point is uniformly distributed (i.e. a side is equally likely to break off

the engagement at any casualty fraction between 0 and 1) and, of course, the

battle dynamics are given by the equations for an FTIFT attrition process

(2.4.1). In this case

Fx(S) - s , and Fy(t) - t , (3.8.11)

for 0 < s, t _< 1. Use of (3.8.11) in formulas like (3.8.6) through (3.8.10)

then yields the results given in Table 3.111.

Before we proceed with the development of results for exponentially

distributed breakpoints, let us consider what insights into the dynamics

of combat we can obtain from our simple combat model. In particular (as

stressed above), we are interested in understanding the structure of the

relationship between battle outcome and values for model parameters. For

this case in which we have introduced randomness into the two (independent)

processes of breaking off the engagement, we would like to know the effects on

the nature of battle outcomes from introducing this randomness. The reader
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should therefore compare the deterministic-breakpoint results given in

:1i Table 2.XII with the uniformly-distributed-breakpoint results given in

Table 3.111. Let us now make a few such comparisons.

In Figure 3.5 we show the probability that Y will win, Py, as

a function of the "normalized" initial force ratio, y - (a/b)(y 0 /xo). Let

us recall (see (2.8.14) or Proposition 3.6.2) that for deterministic break-

points Y will win a fixed-casualty-fraction-breakpoint battle if and

only if

x (f)
0 a c(BP S< (3.8.12)

c bfBP

with the length of battle being finite if and only if (f ' < 1. Thus,

xyfor equal breakpoints, i.e. (f ) = (f)B Y will win if and only if
c BP C BPP

y > 1. In other words, for deterministic breakpoints Y will win with

probability one for y > 1 and will win with probability zero for

0 < y < 1 (see Figure 3.6). Hence, we see that the normalized initial

force ratio, y - (a/b)(y 0 /x 0 ), is the key parameter for forecasting

whether Y will win or lose for both deterministic breakpoints and also

random ones.

We may think of (Fx)f as the force-level cost to X of engaging

Y in combat without considering the outcome of battle, i.e. without

considering whether X wins cr loses. Then the casualty-fraction distri-

butions may be considered measures of the risk of doing battle. In Table

3.111 let us note that for y # 1

P[(F )f < PIX wins] # P[(F y)f < ply wins] , (3.8.13)
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Figure 3.5. Relationship between the normalized initial

force ratio y bo and the probability

of winning for bactle with deterministic

FTIFT attrition and uniformly distributed

breakpoints.
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and also that for y 0 1

P[(FcX)f.< plY wins] @ P[(FcY)f < piX wins] . (3.8.14)

Hence, for y 0 1 the distribution of X's casualties when X wins is not

the same as that of Y when Y wins, and (similarly) the distribution of

X's casualties when Y wins is not the same as that of Y when X wins.

It may be shown (see HELMBOLD [10, pp. 18-19]) that these results hold in

general for FTiFT attrition. We will return to these results, i.e. (3.8.13)

and (3.8.14), later, since they have an important role to play in the

historical validation of such breakpoint hypotheses.

In Figure 3.7 we show how P[(F)f < 0.3], where (F)f denotes a

given side's final casualty fraction, depends on the normalized initial

force ratio y and the outcome of battle. It should be clear that the

curves shown in Figure 3.7 reflect the fact that (3.8.13) and (3.8.14) hold,

e.g. the winner's casualty-fraction distribution is different for X and

Y. Finally, in Figure 3.8 we show plots of the probability that, X's final

casualty fraction exceeds a given amount p as a function of the normalized

initial force ratio y. Also shown is the probability that X wins.

Recalling the interpretation of (Fc)f as the cost to X of engaging Y

(without considering the outcome of battle), we may think of Figure 3.8

as showing the risk to X of engaging Y in combat. We should observe
iV

that P[((X)f > p] quickly reaches a limiting value for y greater than

one. Let us finally observe that for any breakpoint distribution (see

3.8.10) the average casualty fractions are related by
S---y

VXi - Y , (3.8.15)

c c
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Figure 3.8. The probability that X's casualty fraction exceeds a

given amount as a function of the normalized initial

force ratio y for battle with deterministic

FTIFT attrition and uniformly distributed breakpoints.
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which should be compared to the corresponding result for deterministic

breakpoints (see Table 2.XII or (3.8.1))

fX ,fT . (3.8.16)
C C

Thus, on the average the two sides' fractional losses bear the same relation-

ship to each other whether or not the breakpoints are modelled as random

variables.

Finally, we consider the case in which each side's casualty-fraction

breakpoint is exponentially distributed and, of course, the battle dynamics

are given by the equations for an FTIFT attrition process (2.4.1). In

this case

-XxS -xyt

F (,) 1 -A S and Fy(t) - y t (3.8.17)
I - e 1 -e•

-AX)

for 0 < s, t < 1. We have added, for example, the factor (I - e ) to

cure the defect of the distribution' 8  1 - e X at s - i, i.e. to make

FX(1) - 1. The two distribution functions (3.8.11) and (3.8.17) for X's

casualty-fraction breakpoint are graphically depicted iz Figure 3.9. The

parameter AX in (3.8.17) controls X's rate of "giving up his mission

and breaking off the engagement" as a function of his casualty fraction.

In other words, the larger AX is, the more "quickly" X gives up (as a

function of his fractional loss) as computation of X's average breakpoint

shows

E[(F)Bp] - •X A (3.8.18)

(e -
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where E[X] denotes the expected value of the random variable • Table

3.IV shows how X's average breakpoint depends on the parameter XX.

VTtLE 3.IV. X's Average Breakpoint (fX)BP as a Function of the Parameter

X for an Exponentially Distributed Casualty-Fraction Breakpoint.

-X - 1.0 XX - 2.0 XX - 5. Ax -1 0.0

(fa)BP: 0.418 0.343 0.192 0.100

Exact results for the above exponential distribution functions

(3.8.17) (see HELMBOLD [10, pp. 78-82]) are so complicated that it is

difficult to clearly see the relationship between values for model parameters

and battle outcome. For example, the probability that Y will win is readily

computed from (3.8.6) and (3.8.17) to be given by

1x X Y) /j e XYI eXXY
- [(x/XY) + (ly] - e /A - (i

U(le XX) (1-e Xy) XYXY

for 0 < y < 1,
-- • . (3.8.19)

~~~~(x~yy Ax/., 1 e ' ___X Yi e } e
10 X(l/-Y x-e X)(- Y) Y), _ i[(•xIxy~) + l/,y] ....

(1 )(- (l-e

for 1 < y
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However, for XXA >A 5.0, P is very nearly given by

P [x/Y)+ l/y] (3.8.20)

where P denotes an approximate probability that Y wins.

Recalling (3.7.22), the result (3.8.20) suggests using the following

approximations for the breakpoint distribution functions for XX, Xy >_ 5.0

* -AxS -Ayt

Fx(S) - i - e , and Fy(t) - 1 - e , (3.8.21)

and taking

s - yt for all t > 0 . (3.8.22)

In this case

!: -Xxs "XxS] YXX/XY
Xs [e J Y a

F(s) -e -Y[e / [Fy(t) , (3.8.23)

where

a - yX/XY (3.8.24)

so that (3.7.22) would yield (3.8.20). Figure 3.10 shows X's exact and

approximate breakpoint distribution functions for Ax W 2.0. For Xx - 5.0,

the approximate and exact values differ by at most 0.007 at s - 1: in

other words, we would not be able to see any difference between them in

a plot like Figure 3.10. Hence, our advocacy of the approximations (3.8.21)
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Figure 3.10. Exact and approximate theoretical distribution

functions for X's casualty-fraction breakpoint

for A X 2.0 in the exponential case in which

FX(a) is given by (3.8.17).
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and (3.8.22) for XX, A, > 5.0. Such approximations have been freely used

by H. K. WEISS [25] in his very original and significant examination of

19
combat data from the U. S. Civil War.

Thus, we will make the approximations (3.8.21) and (3.8.22), and

then we can invoke the general results of Table 3.11 to obtain the

approximate results shown in Table 3.V. For X9, X > 5.0, the approximate

results should be very close to the exact ones (and almost indistinguishable

for AX, Xy 1 10.0). Figure 3.11 contrasts how the probability that Y

wins depends on the "normalized" initial force ratio y - (a/b)(yo/xO) for

such exponentially distributed breakpoints with how it does for uniformly

distributed ones. In this figure we also see the influence of the ratio

AX Ay on the probability that Y wins. For the exponentially-distributed

breakpoints, the approximate probability of a Y win Py, is given by

(3.8.20) for the curves shown in Figure 3.11. Finally, Figure 3.12 shows

some theoretical casualty-fraction distributions computed according to

exact results [10]. In this figure P(fz < uIW ) denotes P[(F )f ) ulZ wins]

for Z - X, Y. We observe in (a) of Figure 3.12 that P[(FX) f ujX wins]

P[(F f < ulY wins] - P[(FX) ~ < uY wins] - P[(F Y ) < uIX wins], i.e.

for y - 1 the casualty-fraction distribution is the same for both X

and Y, regardless of who wins (see HELMBOLD [10,p. 84]). This is not true

for y # 1, and (b) and (c) of Figure 3.12 show how X's casualty-fraction

distribution depends on who wins.

Thus, for exponentially distributed breakpoints the parameters

dependence of battle outcome on model parameters is most easily seen by

considering approximate results such as those given in Table 3.V. Although

these approximations are only "good" for X'I XY > 5.0, they do afford a

quick look at the general relationship between battle outcome and model

parameters and are to be preferred because of tne complexity of the exact
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Figure 3.11.. The approximate probability i that Y wins

as a function of the normalized initial force

ratio y - N for battle with deterministic

FTIFT attrition and random breakpoints. For

uniformly distributed breakpoints, the probability

that Y wins (dashed line) is exact.
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TABLE 3.V. Approximate Results for Battle with Deterministic FTIFT

Attrition and Exponentially Distributed Casualty-Fraction

Breakpoints with Xy > 5.0.

Approximate Casualty-Fraction-Breakpoint Distributions:

•: ^ X-X X -Xt
Fx(S) - P[(F)BP < s] 1 - e x Fy(t) - e

where

s = yt for all t > 0

Approximate Probability of Winning.

(XX/Xy)
P Y [(1x-XY) + l/]

Approximate Casualty-Fractional Distributions:

P[(F ).f' < qIX wins] P^[(F < q1Y wins]

Y -(yXX+Xy)q

P[(Fc) < q] e

Approximate Average Casualty Fractions:

-- Yf 1X299
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results (see HELMBOLD [10, pp. 78-82)). For X or Ay . 3.0, the exact

results are to be preferred. We note, however, that (for example) X's

average breakpoint is given by (3.8.18) so that AX " 3.0 corresponds to

a unit that would on the average fight to a fractional loss of 0.281 before

breaking off the engagement (see Table 3.IV).

Finally, from considering the results given in this section, we

see that although it is a very simple model and probably oversimplified, the

model with both deterministic FTIFT attrition and deterministic breakpoints

(see Section 2.8) does provide a very convenient frame of reference for

studying more complex models. Fqr this reason, we have emphasized

LANCHESTER's classic combat formulations in Chapter 2.
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3.9. Battle-Outcome-Prediction Conditions for Deterministic FIF

Attrition Process with Stochastic Breakpoints.

In this section we develop battle-outcome-prediction conditions for

LANCHESTER's (deterministic) equations of modern warfare (2.2.1), i.e. the

equations for an FIF attrition process, with random breakpoints. As above,

we will assume that the two stochastic battle-termination processes are

independent, i.e. each side's breakpoint is independent of that for the

other side. Results are then given for the two specific casualty-fraction-

breakpoint distributions considered above: namely,

(Dl) uniformly distributed breakpoints,

and (D2) exponentially distributed breakpoints.

Results have not been as completely developed as and are far more complicated

than those above for FTIFT attrition, and we will consequently focus on

the probability of winning. Because of the complexity of exact analytical

results, a couple of very useful approximations will be considi-red.

As above, we will begin by developing some general results for FIF

attrition. First, let us observe that the state equation (2.2.5) for

the FIF attrition process (2.2.1) may be expressed in terms of the

casualty fractions f X and fX as
c c

fX l - + {(l-fY(L - i} , (3.9.1)
c b x0 y c

\Xol

whence the (p function such that fX - p(fY) is given by

2 2C

P,(t) - 1 - + {(l-t)2 - } , (3.9.2)

where

=. • - -- (3.9.3)
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HELMBOLD [i0, pp. 7-81 refers to w as a measure of the relative

advantage of Y over X. In his empirical investigations of combat

models, HELMBOLD [8-10] always takes X to be the attacker and Y to be the

defender. He then introduces the defender's "advantage parameter," which

he defines as

V - In(u) . (3.9.4)

Then V will range from -• to +•0 and

< 0 if X (the attacker) has the advantage,

> 0 if X (the attacker) has the advantage,
V > 0 if Y (the defender) has the advantage.

This terminology, however, is a little misleading, since (for example)

for deterministic breakpoints V < 0 does not imply that X will always

win. Recalling (3.6.3), we see that it is indeed possible for Y to win

a fixed-force-level-breakpoint battle (in finite time) when V < 0 in

cases when the breakpoints are appreciably different in favor of Y

(see Table 2.XI). Consequently, we will not refer to U as a relative

advantage parameter but will call p the "normalized" initial force ratio.

The modified 0-function, defined by (3.7.6), is given by

I /- i+ 2{(l-t)2 -11 for 0 < t < tU,

S - (3.9.5)

1 for tu t

where
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for 0 < < 1,

t (3.9.6)

S1(2 for 1 < P.

Also,

1 - V11 + {(l-s)2 -}/p2 for 0 < s li

!7-1 (s) - (3.9.7)

1for sU _< s

where

1 -V/l- P2 for 0 < P < 1,

sU (3.9.8)

for < V.

The key general battle-outcome prediction expressions for an F IF

attrition process may be obtained by combining the above results with the

general expressions given in Table 3.1. For example, the probability

that Y will win is given by

"U Fy(q-l(s)) dFx(s) for 9 < u < 1,

PY So3.9.9)
f Fy(ý-l(s)) dFx(s) for I < U,

1-

where i-l(s) is given by (3.9.7). Again (recall (3.8.6)), we observe

that the upper limit of integration depends on the "normalized" initial

force ratio, p - (yo/xo) ia7b. Let us recall (see (2.8.3) or Proposition

3.6.1) that for determinisitic breakpoints Y will win a fixed-force-level
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breakpoint battle (in finite time) if and only if

{x Y2

X f* (3.9.10)

Hence, for equal breakpoints, i.e. fX " f-P9 Y will win if and only if* ~BP ~BP

S> 1. Thus, we see (not unexpectedly) that results for random breakpoints

are closely related to those for deterministic ones. The simple, totally

deterministic model (2.8.12) provides a very important frame of reference
for examining more complex models with random effects.

We can already see that battle-outcome-prediction results for FIF

attrition with random breakpoints will be considerably more complex than

those for the FTIFT case and (quite possibly, although we cannot prove

this assertion) not expressible in terms of so-called "elementary"

functions. Hence, some type of simplifying approximation is desirable.

HELMBOLD [10, p. 48] has suggested linearizing p(t). In other words,

if we expand p(t), as given by (3.9.2), in a TA7LOR series about t - 0,

then we obtain

22

9(t) - u t + O(t2) , (3.9.11)

where O(t ) denotes terms that are of the same order of magaitude as

t2 for t "small." Ignoring the higher order terms, we obtain

S 21
2T P t (3.9.12)
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whence

2 2
Lu t for 0 < t < 1/u

tp(t) (3.9.13)
1 for 1/U < t

and

s/u 2  2

(s) - (3.9.14), m •fo r 4 < s .

Hence, we can invoke all the results for the FTIFT process (see, for

example, (3.8.6) through (3.8.10)) with Y 2 1 to obtain approximate

results for the FIF attrition process. For example,

f -F 2T dF (S) for 0 < P_ 1

py - (3.9.15)

f Fy dFx(s) for 1 < u,

where P denotes an approximate probability that Y wJ]l win.Ly

As we have done in the previous section, let us now consider

two specific breakpoint distributions. First, we consider uniformly

.distributed casualty-fraction breakpoints, i.e. we assume that (3.8.11)

holds. For simplicity, let us focus on the probability of winning, say

(for example) for Y. In this case, (3.8.11) and (3.9.9) yield
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-. , I.1,..1....1... .1,1,• ,o

sU

f l-'-(s){ ds for 0 <1

Py M (3.9.16)

1f fI-p -(s)}ds for 1 < ,
0

where i-l(s) is given by (3.9.7) and s is given by (3.9.8).

Fortunately, the integral in (3.9.16) may be evaluated in terms of

elementary functtins, namely

S"1 + ( 2 ) , ('3.9.17)

which is the exact result for Y's win probability for a battle with

FIF attrition and aniformly distributed casualty-fraction breakpoints.

The dependence of this prob6ibility on the normalized initial force ratio,

S= (Yo/xo) a-7/b, is shown in Figure 3.13.

If we compare the shape of the plot of Py versus the normalized

initial force ratio in Figure 3.3 with that in Figure 3.13 (bearing in

i! mind, however, that y # P), we see that the curve is much steeper in

the neighborhood of pi 1 in Figure 3.13 than it is near y = 1 in

Figure 3.5. This is a reflection of the fact that additional initial

forces have a much greater impact on the outcome of a battle with FIF

attrition then one with FTIFT attrition (recall Section 2.9 on concen-

tration of forces).

Now let us consider HELMBOLD's approximation of using a linearization

of the nonlinear 0-function, denoted as OW(t) [see (3.9.13) and (3.9.14)1

Again, we will focus on the probability that Y will win. In this case,
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(3.8.11) and (3.9.15) yield

p2 /2 for 0 < P < 1,

Py 2 (3.9.18)

1 - 1/(2p2 ) for 1 < I.

This approximate win probability is shown in Figure 3.13 as the dashed

line. We see that for uniformly distributed breakpoints, HELMBOLD's

approximation is quite good. A complete error analysis of HELMBOLD's

approximation is, however, beyond the scope of our current examination.

Other results (e.g. various casualty-fraction distributions) may be

obtained in a similar fashion. Some additional results are to be found

in HELMBOLD [10].

Finally, let us briefly consider the case of exponentially

distributed casualty-fraction breakpoints, i.e. we assume that (3.8.17)

holds. Exact results in this case are difficult to obtain so that some

type of approximation seems in order. As above, let us focus on the

probability that Y will win. If we use WEISS's approximations (3.8.21)

and (3.8.22) for the breakpoint distributions and HELMBOLD's linearization

(3.9.12) of the (p-function, then for XX, xy_> 5.0 the following should

be a good approximation for Py

_;; ;•(xx/XY)
,y- 2 (3.9.19)

Other results may be obtained in a similar fashion.-
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*3.10. Another Model that Considers Unit Deterioration Due to Attrition.

Most ground-combat models determine the level of combat effective-

ness of forces by considering the loss of personnel or supplies and equip-

ment. For example, ATLAS (see [7, p. 6-3]) considers that the effevtive-

ness (measured in terms of a firepower score) of a combat unit to depend

on the percent casualties of the unit, the level of the unit's supplios

and equipment, and the tactical posture of the unit, i.e. whether it is

attacking or defending. In particular, (nonlinear) effectiveness curves

relating percent degradation in unit effectiveness to percent casualties

are used in ATLAS (see [7, p. 6-4]). These curves implicitly supply unit

breakpoints by providing a casualty level (equivalently, a force level) at

which a unit ceases to be effective and must break off the engagement,

Accordingly, a major combat modelling issue is to determine how to relate

force effectiveness to personnel strength. We will now analytically

examine this via LANCHESTER-type models of combat.

Let us consider two homogeneo-is forces in LANCHESTER-type combat.

For illustrative purposes we will model the basic combat attrition process

with LANCHESTER's equations for modern warfare (2.2.1), i.e. the equations

for an FIF attrition process (see Figure 2.14), although our approach

does apply to other attrition structures. We will additionally assume that

cr Breakpoint Hypothesis holds (see Section 3.2). In this case, we may

consider that a force is effective only when its personnel strength is above

its breakpoint force level, since the disengagement process is triggered

when the unit's breakpoint is reached. Therefore, as first noted in

Section 2.8, we should in this case write LANCHESTER's equations for modern

warfare ns
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dx - -ay for x > xBP and y > y BP '

0 otherwise,

dd -bx for x>xBp and y > YBP

0 otherwise.

It is instructive to examine the (casualty) effectiveness, for

example, of the Y force in the above combat model. Measured in terms of

its kill rate, the Y-force effecziveness is given by

Y-force casualty dx) ayf (3.10.2)

1 effectiveness - dy 0 for 0 < y . yBP

This dependence of unit effectivenss on personnel strength (for cases of

no replacements and withdrawals, personnel casualties) is diagrammatically

shown in Figure 3.14.

We see from Figure 3.14 that this combat formulation suffers from

having a discontinuity in force effectiveness when a side reaches its

breakpoint: just above its breakpoint a force may be quite effective in

producing enemy casualties; while upon reaching its breakpoint, it becomes

totally ineffective. This somewhat unsatisfactory situation is the direct

consequence of combining the Breakpoint Hypothesis (see Section 3.2) with

equations for FIF atttition without any modification of the latter.

Thus, this battle-termination model may be considered to be slightly

imcompatible with Lhe usual FIF combat dynamics. Moreover, a combat

model such as ATLAS [7, Figure 6-4 on p. 6-4] uses a continuous degradation

in unit effectiveness (over the strictly linear reduction expected from
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Figure 3.14. Relation between force effectiveness and unit

strength for Y force in combat modelled by
FIF attrition equations (3.10.1).
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reduced force levels) as force levels are reduced through attrition

until its breakpoint is reached. Let us therefore develop from physically

motivated hypotheses an alternative model that possesses such a feature

of unit deterioration.

11. seems reasonable to hypothesize that the fraction of a force

that is effective depends on the number of casualties that the force has

suffered (for cases of no replacements and withdrawals, equivalently, the

force level). For example, the loss of one or two men should have little

effect except for reducing the unit's force level (i.e. number of avail-

able firers). Higher levels of casualties, however, might well affect

the organizational integrity of the unit and reduce its effectiveness

more than in just direct proportion to its casualty level. SPRING and

MILLER [17] and others have postulated such a relationship between the

fraction of a force that is effective and the force's casualty level.

Let us now consider how such a hypothesis leads to a modification of

LANCHESTER's classic equations for modern warfare. We will see that

such a hypothesized relationship generally leads to the following type

of combat model

-a.f ZLo; YBP y . y for xBp <x <x and ypy<y

ddx -- 0 -BP -Y

0 otherwise,

(3.10.3)

X, xB
S" xo 6 -x for < x° and

dx-

0 other-wise,
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Ywhere fE denotes the fraction of the X force that is effective and
E

depends on y/y 0  and the parameters yBp/yo and ey. Similarly for

Xf E. Here 0y denotes all other model parameters that pertain to Y.

If we express, for example, yBP in the form given by (3.2.2); then

YBP/y0 - fBP and we then have

Y Y Y
fE - rE(Y/YO; fBP'y (3.10.4)

We will develop below that SPRING and MILLER's [17] functional relationship

between effectiveness and casualties yields

Y Y Y = (lfI)
fE(Y/yo0;f BPfIV) (1-f�) y-YBpl,) (3.10.5)

where f Y denotes the fraction of the initial Y force that is inherently
I

ineffective in combat (i.e. they never do fire their weapons) and yBP
X X X

is given by the analogue of (3.2.2). Similarly for fE(X/x0;fPfl,).

We will now develop the expression for aY given by (3.10.5).
E as

Y
Let f now denote the fraction of the surviving Y force that is

ineffective and recall that Y's casualty fraction is given by

fY YO-y
f y (3.10.6)

We will denote Y's casualty fraction at his breakpoint when y y yBP as

(f)) SPRING and MILLER [17, pp 12-17] have postulated a relationship
c BP*

such as that shown in Figure 3.15 between the fraction of survivors

that are ineffective, r1, and the casualty fraction, fY. The shape of

the curve in Figure 3.15 suggests the following type of functional

relation
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c

Figure 3.15. Functional relation between a unit's casualty

fratio, fY and the fraction of the surviving

force that is ineffective, f , as originally

postulated by SPRING and MILLER [17] for an

infantry company in the attack.
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SY Y Y + (3.10.7)
I CI C2 ( )

Y Y
where C1  and C2  are constants. If f (0) - 0 and f [f ")BP i,

then C - 0 and C2  1 i/[(f )BP] so that (3.10.7) becomes

f- (Y--BP (3.10.8)

REDDOCK (15] has found that values of v between 2.5 and 3.8 give a

reasonable fit to the curves in SPRING and MILLER [17].

We will, however, modify the type of functional relation originally

considered by SPRING and MILLER [17] by assuming that a certain fraction
Y

of the Y force, denoted as (fi)0 , will essentially always be ineffective

and will never fire their weapons in combat, regardless of what the
20

casualty level is. Assuming that the remaining force suffers degradation

as postulated by SPRING and MILLER, we will consider the type of relation

shown in Figure 3.16, namely

fY (fY) + {(- (f() ()Y , (3.10.9)I-' 0 10 yo-YBP)

where (f ) denotes the fraction of the initial Y force that is
1 0

ineffective (i.e. that never fires its weapons). It should be noted that

(3.10.9) reduces to (3.10.8) when (f ) 0" 0. The fraction of the YY
force that is effective, denoted as fE' is then given by (3.10.5),

where for convenience we have denoted (f ) simply as fl"
I 0f 1

Thus, our combat model that considers deterioration in unit fire

effectiveness due to casualties and that not every man fires his weapon
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in combat may be written as

-a(l-fY) Y - Y y for xE<x <_X and yp< y.YO

dx
dt j0 otherwise,

(3. 10. 10)

--b(l-4 ) -x x for x <x<x and <Yo'
XO-XBp/ ) BP -0 YBP

dt
0 otherwise,

where, for example, fY denotes the fraction of the Y force that is

always ineffective. Before proceeding further, let us make a few obser-

vations about our modification of LANCHESTER's classic FIF attrition

model to incorporate ineffective combatants and unit deterioriation due

to attrition. For f1 - f1 - 0 and i. v +i , the equations (3.10.10)

reduce to (3.10.1). However, our combat formulation (3.10.10) is very

nonlinear in the force levels. In Figure 3.17 we show how the Y-force

effectiveness for our new model (3,10.10) varies with the Y force level.

There is no longer a discontinuity in unit effectiveness at the unit's

breakpoint. Moreover, it is indeed surprising (as we will show below)

that when BpX . fY , fiX " FI, and u = v, the Y force will still winBP BF' I I

(in fiztite time) if and only if

X0 Is
<o. (3.10.1)YO

317

III-



x 41

4-6

-- B 0

Force Level, y

Figure 3.17. Relation between force effectiveness and unit

strength for Y force in combat modelled by

nonlinear equations (3.10.10). [Here we have
let fY 0.4 and v - 2.5 The dashed(cfsp

line is for combat modelled by the FIF

attrition equations (3.10.1) (se_.e Figure 3.14).]
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To obtain the state equation that relates the X and Y force

levels for x > xBp and y BP' we first divide the first equation

of (3.10.10) by the second to obtain the instantaneous (or differential)

casualty-exchange ratio

a(l-f) 1 (70'BP Y*1dx ___2_ yYp/
dy " _ 

(3.10.12)

b(l-fx) I (i p)

Separating variables and integratiag, we obtain the following state

equation for x > xBp and Y ->YBP

H(xo,x) - K(yoy) , (3.10.13)

where

x) ýL x2_x2 (x _'BP (iA-1)x+x ) ~x0-
iH(x0 ,x) 2 2 ( 0 ) 0 + \x ) --+ , (3.10.14)

and

K(Yy) 2_ 2 )-a2 (Yo-YB/?) 04-+Y2 YO- (3.10.15)

We have not been able to obtain a time solution, e.g. the X

force level as a function of time x(t), for the model (3.10.10), even

in cases of particular (but finite)",val es for V and v. It does not

appear that the time solution, e.g. x(t), is expressible in terms of any

of the standard functions of mathmatcql analysis. We can, however, use
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finite-difference methods to "numerically integrate" (3.10.10) and obtain

an approximate value of, for example, the X force level, denoted as

x(t) (see Chapter 7). Such a numerical solution is usually generated

(with the help of a digital computer) for particular numerical values of

the model parameters and initial conditions, and consequently it does not

by itself provide any insights into the dynamics of combat. Moreover, it

is even essentially impossible to explicitly solve (3.10.13) through

(3.10.15) for x in terms of y (except for the special case of

v 1). Thus, the state equation (3.10.13) appears to be of little

use. However, we will now show that Y will win (in finite time) if

and only if

-I H(xoX1 p) < K(y 0 ,y3 p) . (3.10.16)

Furthermore, (3.10.16) is of considerable value for providing some

important insights into the dynamics of combat.

In developing the Y-victory-prediction condition (3.10.16), we

first observp that equations (3.10.10) are of the same form as (3.3.4),

namely

dx - f(t) F (x) F (Y) with x(O) x0

dt 1 20

(3.10.17)

Id f(t) G (x) G2(Y) with y(0) yo

where f(t)> 0 and F., F, Gand G > 0 for x > x and
i. 29~ 2 BP

IY > YB" Other assiimptions will be stated presently. We have shown

(see Section 3.3) that Y ill win (in finite time) if and only if

'BP > g(yBp), where
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g(Y) P- [p(xO) - q(yO) + q(y)] (3.10.18)

- (n) is a strictly increasing function of n, and p and q are

given by (3.3.6) and (3.3.7), respectively. Thus Y will win if and only

if

X > p p(x - q(y) + q(y

or (3.10.19)

P(xBP) > p(x 0 ) - q(y 0 ) + q(YBp)

since p(x) is strictly increasing. Recalling (3...6) and (3.3.7), we

see that (3.10.16) follows from (3.10.19). Let us observe that p(x)

p(x;0,Xpx)0, where 6 denotes the X-force parameters.
BP ', X x
It remains to show that tEp is finite. We now make the following

assumptions:

(1) F1, F2 , G., and G2 are strictly increasing functions of

their arguments with Fl(XBp) > 0,

T
(2) f f(t)dt exists and is finite for any finite T but

0
T

lim f f(t)dt +o.
T-~+-0

Then (3.10.16) implies that t is finite. The proof is as follows.
.BP

If H(xo,XBp) < K(yoy p), then y > yf > yB so that

dtX f(t) Fl(x) F2 (y) <- f(t) Fl(xBp) F2 (Yf)
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whence
t

x(t) <.x 0 - F1(xB? F(2(Yf) f(s) ds
0

From the assumption that limTT .+. fT f(t)dt -+ , it follows that

x(t) - XBP in finite time. Thus, we have proven the following important

proposition.

PROPOSITION 3.10.1: Consider the LANCHESTER-type equations

(3.10.17) and assume that

(Al) Fi, F 2 , GI, and G2 > 0 for x > xBP and y > yBP'

(A2) Fl(x), F2 (y), Gl(X), and G2 (y) are strictly

increasing functions of their arguments for

x > xBP and y > yBP with FI(XBP) > 0,

T
(A3) f(t) > 0, f f(t)dt exists and is finite for every

0

finite value of T, and limT÷++-oT f(t)dt

Then Y will win a fixed-force-level-breakpoint battle in

finite time if and only if

H(x 0Bp) < K(yO yBP) (3.10.20)

where

Xo G. (G,) Y0 F2

'4(xox) f F M d& and K(yo,Y) f f • d& . (3.10.21)
im x y 2

_-- 1
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Considering (3.10.14), (3.10.15), and (3.10.20), we may develop

victory-prediction conditions for our combat model (3.10.10). We state

these results as Proposition 3.10.2.

PROPOSITION 3.10.2: Consider combat modelled by (3.10.10).

Y will win a fixed-force-level-breakpoint battle in finite

time if and only if

-0 < ,Q(fBPfBPfI'fI''v) (3.10.22)

where

X yY XQ~BP' BP'f'l )

'~ BP ý(l 2 1+1+xp.• . (3.10.2,3)
1L -f• x l-fB (t+3)/(, )+

SX Y X Y

It may be shown that the function Q(fBP' fBP' flI f' IP, v) possesses

the following properties for 0 < fBP' fBP' f fl < 1 and u, v > 0:

BPI IP I

(P2) IQ IQ > O,

BP I

(P) af~ , af Y
BP I

(P3) _Q < 0

(P4) 0
3V
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and

(P5) Q(fBPfBp fI,fIlv) " 1.

Y X Y XIt follows that, for example, if fBP > fBPI f -- f I and P > v, then

1. In this case, X will win (in finite time) if

S0>- > Q>V
•;iYO b -- b

Our analytical model is particularly valuable because it yields

a battle-outcome-prediction condition, namely (3.10.22), that explicitly

shows the parametric dependence of battle outcome on model parameters.

Sensitivity analysis has thus been greatly facilitated. Proposition 3.10.2

is particularly significant because it shows us that the outcomo of battle

depends on only seven factors (three relative factors and four model

parameters), even though our combat model (3.10.10) (with battle-

termination conditions included) contains ten independent parameters:

X Y X Ynamely, a, b, x0 , Y fI f I f fBPI fBP' p, and v. Thus, the outcome

of a fixed-force-level-breakpoint battle modelled with the combat dynamics

(3.10.10) depends on the following seven factors:

(Fl) the initial force ratio, u0 = Xo/Yo,

(F2) relative fire effectiveness, R - a/b,

(F3) relative fraction of initially effective forces,

P0 (1-f Y)/(l-fx),
PE I

(F4-5) the two breakpoint-force-level fractions, fXa fY
fBPn BPI

(F6-7) the two unit degradation parameters, p and v.
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For simplicity, let us rewrite the battle-outcome-prediction

condition (3.10.22) of Proposition 3.10.2 as

Y will win (in finite times) if and only if Q0O)

Thus, X can only win if the initial force ratio x0 /y 0  exceeds the

critical value Q'a-/b. Numerical values for Q and Q/a-7/b for various

X Y X Yrepresentative values of the parameters fBP' fBP' f I fI V , and v

are shown in Table 3.VI. Parameter values were chosen to be representative

of an attack by the X forces against Y. These particular parameter

values are similar to those used for the numerical examples shown in

Table 2.X1 of Section 2.8. Before discussing the contents of Table 3.VI,

let us observe that our combat model (3.10.10) may be considered to be a

generalization of LANCHESTER's classic FIF attrition model, since (for

example) (1 - [(y0-y)/(yOYBp)] V) - 1 as v - + - for y e (yBp'yo]X Y
so that for f-= fl = 0 the combat model (3.10.10) - the classic combat

model (3.10.1) as v, v - + . Additionally, two particular cases of

parametric values merit special attention. Specifically, the victory-

prediction condition (3.10.24) reduces to previous encountered results

in the two special cases:

() X fY VfX fY, and P - v,(Cl) fBP = BP' fI - fIa

and

(C2) fX- f1  and v - +

S~X W Y X . Y a d U " •
In the first case (Cl) in which fX - fYP9 fK fYP

BP BP I1  I 1  n ~-v
we obtain from (3.10.23) that Q - 1 so that the victory-prediction
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TABLE 3.VI. Numerical Values for Q and QVa-7b as the Combat Parameters
fX Y X Y

fBP' fBP' f I f I' , and v are Varied.

0 x fy

CASE a/b p0  fP f P Q Q
E BP ~BP V Q Q'/

1 5.0 1.0 f v 1.000 2.236
BP BP

2 5.0 0.8 0.7 0.7 2.5 3.8 0.938 2.097

3 5.0 1.0 0.7 0.7 2.5 3.8 1.048 2.344

4 5.0 1.0 0.7 0.7 3.8 2.5 0.954 2.133

5 5.0 1.2 0.7 0.7 2.5 3.8 1.148 2.568

6 5.0 1.0 0.7 0.5 2.5 3.8 1.288 2.880

7 5.0 1.0 0.7 0.5 5.0 5.0 1.226 2.741

8 5°0 1.0 0.7 0.5 + G + 0 1.213 2.712.

9 5.0 1.2 0.7 0.5 2.5 3.8 1.411 3.155

10 5.0 1.2 0.8 0.5 2.5 3.8 1.691 3.781

NOTES:

(1) X is the attacker

(2) o0- (1-fy)/(l-fX).
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condition (3.10.24) reduces to previously encountered results in the

two special cases:
X Y X Y

(CI) fB " fBPs fl fI' and P -,

and
:qi ( c z) x Y

(C2) f f and v = + .

.X Y X Y adpuv
In the first case (Cl) in which fBP f PO f" f a w

we obtain from (3.10.23) that Q - 1 so that the victory-prediction

condition (3.10.24) is identical to the force-annihilation-prediction

condition given in Proposition 2.2.1. Thus, we see that results for

the simple combat model (2.2.1) are basic for understanding more complex

combat models such as the one at hand. In the second case (C2) in
x Y

which f M f and P U U + -, we obtain from (3.10.23) that
I I

Q l - (fYp)2}/{l - f~p)} so that the victory-prediction condition
BP B

(3.10.24) for the nonlinear combat model (3.10.10) is the same as that

for a battle with FIF attrition (see (2.8.3)).

Let us now return to the contents of Table 3.VI. As stated above,

parameter values have been chosen to be representative of an attack by

the X forces against Y. As we have noted before, one frequently hears

in military circles that a three-to-one force ratio is required for a

successful attack against an enemy position. Table 3.VI provides some

theoretical Justification for this well-known rule-of-thumb. We recall

that our model (3.10.10) says that X will win if and only if the

initial force ratio Y 0i/y0  exceeds the critical threshold value Qa7/b.

The values for Qi7b in the last column of Table 3.VI shows

us that relatively minor-looking changes in the combat parameters can

change this critical value by two hundred percent or so. We observe
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that Q 1.I yields that x /YC / (a/h implies that Y will win.

In other words, if Y can annihi.late X in thi classic FIF battle

(2.2.1), he will win this one modelled by (3.10.10). Moreover, the

contents of Table 3.VI: are probably most fruitfully studied by the reader

referring back to properties (P1) through (P5) of the Q function,

which follow (3.10.23). Let us also note that for the situation.s con-

sidered by Table 3.VI the breakpoint force level (expressed as a fraction

of the initial force level) and consequently the effect of a given

casualty level is greater for an attacking unit than for a defending one.

This is because an attack normally requires rapid movement, good coordi-

nation, and high organizational integrity (see (7] for further details).

Let us finally note that the qualitative behavior of the nonlinear

combat model (3.10.10) is probably best understood by relating it to that

for the linear combat model (3.10.1). Thus, the simple model (3.10.1)

(equivalently, (2.2.1)) provides an essential frame of reference for

studying more complicated combat models. This fact is the reason why we

have spent so much time examining the simple ,odel (2.2.1). Moreover,

the nonlinear combat model (3.10.10) is just coiplicated enough so that

we apparently cannot express the time solutl-., .e.g. the X force level

as a function of time x(t)) in terms of "elementary" functions. Further-

more, the state equation (3.10.13) is so complicated that, for example,

for v > 0 and finite it is essentially impossible (except when v - 1)

to solve for y in terms of x. Nevertheless, we were able to explicitly

predict battle outcome in all cases. It was indeed somewhat surprising

to obtain a victory-prediction condition of the form (3.10.22), i.e.

surprising to obtain a sort of "square law." We will now show that

this is a general consequence of combat dynamics of the form (3.10.3).
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Irom (3.10.3) we obtain that Y will win (in finite time) if

and only if

Hl(xoxBp) < Kl(Yoygp), (3.10..25)

X

wbere fE is a strictly increasing function of X and is positive for

S(xBp,Xo, and similarly for Y . Hence, we have

x 0 x'P O) x
(xb f f , x dx , (3.10-26)

'BP

and

Kl(Yo'YBP) a f 8 (3.10-27)

YBP ( Y Yy

However, an integration by parts yields, for example,

x0  x 0  x

HI(xOIxBp) bxBp f fE (-I-)dx - b f dx f fE (u d.
xBP xBP XBP

or

2 x
HI(xO'xsp) bx2 F(fBP'X) (3.10-28)

x x
where F(fBP~ 8X) denotes a function of only fBP and the other modelwherandf ianl 1h fore with

parameters and similarly for KI wth associated function G(fBP, 6 y).

It is readily seen that F(fBp,0x) > 0 for xBp < xO. Thus, in

general for the model (3.10.3)
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x 0 aG(f BP'eY)
Y will win (in finite time) if and only if 0  (fBp ) (3.10.29)

YO F~ BP 'ex)

This certainly is an unexpected result. Moreover, it shows how intimately

the two combat models (3.10.1) and (3.10.3) are related.
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3.11. WEISS's Model of Battle Termination.

H. K. WEISS [24] has considered modelling the ending of a war as a

MARKOV process (more precisely, as a continuous-parameter MARKOV chain (see

Section 4.2)) and has reported fairly good agreement between his model and

*- available historical war data. Subsequently, in his examination of combat

!data for the U. S. Civil War, WEISS (25] has also considered modelling

battle termination as a MARKOV process: every time that a side sustains a

casualty, its commander makes a decision as to whether or not to continue

the battle. In other words, the basic idea behind WEISS's model of battle

termination is that during a battle (as it progresses and casualties mount

on both sides) each side considers only its own observed cumulative fractional

loss to the moment of evaluation as the sole criterion for deciding whether

or not to continue the battle. When a side has decided not to continue the

engagement, it will abandon its mission and will try to break off the engage-

ment. Thus, WEISS's model generates a casualty-fraction-breakpoint distri-

bution for each side. 2 1

In other words, WEISS [25] has assumed that a side's own fractional

loss (or casualty fraction) is the significant variable governing the battle-

termination process. After introducing some necessary notation, we will

develop WEISS's model, which yields an exponentially-distributed casualty-

fraction breakpoint for each side. In our development here, we will focus

on just one of the sides engaged in combat. Let f denote the force's own

fractional loss, i.e.

--- f - (the side's own fractional loss)

- [(initial force level)-(current force level)]/(initial force level). (3.11.1)
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The following assumptions are made for WEISS's model of battle termination:

(Al) a side in combat considers only its own observed cumulative

fractional loss (i.e. cumulative casualty fraction) to the

moment of evaluation as the sole criterion for deciding whether

or not to continue the battle; when the side has decided not to

continue the engagement, it will abandon its mission and will

try to break off the engagement,

(A2) battle termination in the future is independent of what has

happened in the past (i.e. independence of nonoverlapping

casualty-fraction intervala),

stde terminates the battle at the side has continued to(A)Pcasualty fraction between f flight until casualty

Land (f + Af) Ifraction f I

S(f)Af + O t) 2

Let

Pfside fights at least until caEualty fraction > fj

= P[breakpoint > f]

SF(f) ,(3.11.2)

where F(f) denotes the d.f. for the side's casualty-fraction breakpoint

(F) i.e. F(f) - P[(F ) < f]. For notational convenience, let us
c BP' c BP-

denote F(t) as 1(f). Then assumptions (Al) through (A3) and the usual

conditional-probability arguments yield
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i'a

P side fights at least until

"",casualty fraction > (f+Af)

F side fights at least until 11 Fside does not terminate battle1

L casualty fraction > f " between f and (f+Af)

, or

-f + Af) - ,(f) {l - X(f)6f} + O((Af) 2

whence

Sf - ( . (f) $(f) + O(Af)

Letting Af 0 0, we obtain

df

When f - 0, we have 0(0) - 1, since it is certain that a side (if it does

initial the battle) will suffer some casuaities, i.e., PIside fights at

least until casualty fraction > 0] - 1. Thus, assumptionL (Al) through (A3)

yield the following differential equation for the breakpoint complementary

d.f.

d__ A(f)D with 4(0) - 1 . (3.11.3)
df

Separating variables and integrating, we obtain

if
"M(f) - exp{- f A(s)ds} (3.11.4)

0
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Since F(f) is a distribution function, we must have F(1) =

lim F(f) F(l + 0) - 1 - 1 - F(l + 0). In other words, we must have
f~ 1
if > 1

F(i + 0) - 0. However, if X(f) is bounded for all f ( [0,1], rhenI 1
-(l) - exp{- f X(f)df} > 0 so that in order for O(f) to be a comple-

0

mentary d.f. we must somehow deft'ne D(l + 0) to be 0. In any case,

assumption (A!) through (A3) are not quite compatible with a casualty-

fraction-breakpoint distribution function for a continuouply-distributed

brea1kpoint.

One way to obtain a distribution function is to take

f
1 - exp{- f X(s)ds} for 0 < f < 1,

i 0

(Modification 1) F(f) - (3.11.5)

i for f -1.

HELYMOLD[(O] has given battle-outcome-prediction results for such

exponentially-distributed breakpoints. However, the casualty-fraction

breakpoint is no longer continuously distributed. Moreover, on physical

grounds, we must have P[casualty-fraction breakpoint < 1] - 1, since a

force cannot continue the battle (with probability one) once it has been

annihilated. Another way to obtain a distribution function is to rescale

F f) by the appropriate factor, namely

f
1 - exp{- f X(s)ds}

0
(Modification 2) F(f) - I (3.11.6)

1 - exp{- f A(s)ds}
0
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However, the battle ,.ermination process is not quite MARKOVIAN in this

second case. When A(f) - constant, the above expressions for F(f)

simplify to

l-e for 0 <f <l1

(Modification 1) F(f) - (3.11.7)
and 1 for f- 1,

i and

e-Af
(Modification 2) F(f) - -A (3.11.8)

le

It essentially does not matter which modified expression (i.e. either

(3.11.5) or (3.11.6)) we use when A(f) > 5.0 for all f ( [0,1], since

then there is negligible difference between them and consequently approxi-

mately the same battle-outcome-prediction results are to be obtained from

each. For example, in the case of a constant battle-termination rate A

the expressions (3.11.7) and (3.11.8) differ by at most 0.007 near f - 1

when A > 5.0 (see Section 3.8). In such cases, essentially the same

battle-outcome-prediction results are obtained for either (3.11.7) or

(3.11.8), and it is therefore immaterial as to which we use. In his examina-

tion of combat data for the U.S. Civil War, WEISS [25] found that A > 100.0

for both sides for all types of battles, but HELMBOLD [10, p. 39] has found

values of A < 1.0 for other sets of historical combat data.

In summary, in this section we have examined WEISS's [25] battle-

termination model. We have seen that this particular model yields casualty-

fraction breakpoints that are independent and exponentially distributed.

We finally observe that a uniformly-distributed breakpoint corresponds

to the case of "greatest uncertainty" in a side's engagement-termination

process, i.e. the "most random" state of nature.
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3.12. WEISS's Model of Engagement Outcomes in the U.S. Civil War.

As we have stressed above (see, for example, Section 2.8), the

determination of battle outcome depends not only on the dynamics of combat

(i.e. the model of the force-attrition process) but also on the battle-

termination process. Thus, in order to obtain a complete model of engage-

ment outcomes, one must add a model of force attrition to WEISS's above

battle-termination model. This program was in fact carried out by H. K. WEISS

in his very interesting and significant paper [25]. From examining battle-

casualty data for the U.S. Civil War, WEISS [25] fouaid that a FTIFT

attrition process was suggested for combat attrition. The data also suggested

a variety of exponential breakpoint for each side. WEISS then explored the

consequences of these assumptions and found that the available historical

combat data for the U.S. Civil War was in fairly good agreement with these

hypotheses. Let us now examine his model in detail.

In addition to assumptions (Al) through (A3) given in the above section,

WEISS assumed that combat attrition was a FTIFT process in "meeting

engagements" (i.e. battles other than assaults on fortified lines). For

the reader's convenience we collect here all the assumptions for WEISS's

[25] model of engagement outcomes in the U.S. Civil War:

(Al) a side in combat considers only its own observed cumulative

fractional loss (i.e. cumulative casualty fraction) to the

moment of evaluation as the sole criterion for deciding whether

or not to continue the battle; when the side has decided not to

continue the engagement, it will abandon its mission and will

try to break off the engagement,
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(A2) battle termination in the future is independent of what has

happened in the past (i.e. independence of nonoverlapping

casualty-fraction intervals),

(A3) [Fa side terminates the battlelthe side has con.inued toLat casualty fraction between fight until casualty fractionjtf and (f+A)i

X- (f)Af + O((Af)2

(A4) for a given battle, the casualty-exchange ratio is constant,

e.g. x C/YC constant where (for example) x denotes X's
cc2

cumulative casualties. 22

Now, assumption (A4) implies that for a given battle

fX . yf Y (3.12.1)
C c

where, for example, f denotes X's casualty fraction and
c

y M a •(3.12.2)

For a given battle. y is constant, but it may vary in a random fashion

from battle to battle. In other words y is the realization of the

random variable r and is realized before each battle. Accordingly, the

modified ip-function used for developing battle-outcome-prediction conditions

is given by

yt for 0 < t < l/y,

ýW~) (3.12.3)

1 for 1/y < t
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Thus, we can invoke all the general rentults for the FTIFT attrition

process with random breakpoints (see, for example, equations (3.8.6)

through (3.8.10)).

As we have seen above in Section 3.11, assumptions (Al) through (A3)

imply that each side's casualty-fraction breakpoint is independent of the

other side's and has some type of exponential-like distribution (possibly

with a variable termination rate). In other words, the casualty-fraction-

breakpoint distribution, for example, for X must be of the form (see

Section 3.11)

P[(FX < s]

{ - expf- f AX(o)da} for 0 < s < 1
0

F x(s) - (3.12.4)

for s-i.

Alternatively, we could have chosen

S

1 - exp{- f )X(a)da}

F x(s) - 0 . (3.12.5)

1 - exp{- f X (o)d }0

We have already developed exact and approximate results for breakpoint

x
distributions of the form (3.12.5) with X (f ) - constant -= However,

we will now develop results for breakpoint distributions of the form

(3.12.4) (see also HELMBOLD [101). In this case,
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t exp(- X (c)dai for 0 < s < ,
0

-X(S") - (3.12.6)

0 for s -I.

WEISS [25] found that the Civil War combat data is fit by the following

functional form of (3.12.6)

3Zn{I/F (S)} - XXs

or

exp(-Xxs 3) for 0 < s < 1

Fx(s) (3.12.7)

0 for s - 1.

Similarly,

exp(- y t3) for 0 < t < ,

Fy(t) - (3.12.8)

0 for t-1.

Although

3
3 F ()a

F (s) - t [( , (3.12.9)

with

a - y3X /Xy (3.12.10)

the battle-outcome-prediction results of Table 3.11 do not hold exactly,

since the breakpoint distribution functions are not continuous.

Using (3.12.7) and (3.12.8) to evaluate the STIELTJES integral 23

(3.8.6), we obtain the following exact result for the probability that Y

will win 24
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-(Y 3

X~ iY 1- e X for 0 < y <1XX/A Y + 1/7.3 
-

Py ) 3 (3.12.11)

A + i -+

*~ xY!iX YXX /Y/7

+ e for 1 < Y,

so that we see that a good approximation to this exact result when 11.1

Xy > 5.0 is (see also Section 3.8).

3 , (3.12.12)
[(Ax/A y) + /V 31

where P denotes an approximate probability that Y wins. Let us also

compute the average casualty fractions from (3.6.10), namely

T- Yu -(X+x/y 3)s3
. fc M f e ds , (3.12.13)

0

where u - Minimum(y,1). The substitution t Xy(X X AY + /y 3)s3

transfirms (3.12.13) into

• ¥•- •I;/3(XxX/Y + l/y3)-1/3 fq t-2/3 e-t d a1.4
*~~*X~ t /%13 ~ 1  et dt ,(3.1.2.14)

0

where q "- (xx/,Y + 1/y 3 ) Minimum(y 3 1), whence
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-x -1/3 3 -1/3 1

YX- A. ' 0A + 1/-y r S ,(3.12.15)

where

* y +l// 3)-/3 ; t-2/3 e-t- 1 / + .1/3 e d t . (3.12.16)

X Y q

Observing that q > 1 for AX, Xy > 1, we find that S has the following

bound for XX' X > 1

S 3,-1/3 e-q 1 -
S < I (•A + Xy/y ) e < e , (3.12.17)

where X - Mi-imum(, A ). Thus, we have WEISS's (25] approximation forX' Y'
iX, Ay 5.0 (here S < 0.0013)

Y-1/2 2-X 1Y/2 f r(4/3)
c (0X'Y3/2 + X y-3/2)i13 (3.12.18)

Thus, relatively simple approximate results are available for WEISS's model

of eagagewent outcomes in the U.S. Civil War when XXI Xy . 5.0.

Thus we have completed our examination of the theoretical basis of

WEISS's (25] model of engagement outcomes in the U.S. Civil War. The

model is based on assumptions (Al) through (A4) above, which delineate the

battle-termination process and the combat dynamics. We have subsequently

deduced both exact and approximate results for the following quantities:

(Ql) probability of winning,

and (Q2) the average casualty fractions.
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In the nexc: section, we will see how WEISS's model provides a theoretical

framework for analyzing combat data for the U.S. Civil War. Furthermore,

agreement between historical combat data and theoretical predictions by

the model is reasonably good.
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3.13. WEISS's Empirical Examination of Engagement Outcomes in the

U. S. Civil War.

In a very significant (and now classic) paper [25], H. K. WEISS has

examined combat data on the U. S. Civil War to determine the extent to which

it can be explained by simple mathematical relations, and he found some

support (as well as problems) for such modelling. As we have seen above

in Section 2.7, such attempts at empirical verification of LANCHESTER-type

combat models have been rare. Such work is very important, however, since

it may establish a scientific basis for combat modelling.

WEISS's Civil War paper should be considered to be the culmination

of his work on LANCHESTER-type models of combat. This paper more fully

develops ideas expressed in some of his earlier work [22-24]; namely,

empirical investigation of the applicability of LANCHESTER-type equations

to real combat [22-23] and the modelling of battle termination as a MARKOV

process [241. WEISS [23, p. 84] had earlier pointed out that an important

question for military OR is whether, on the average, the outcome of actual

combat tends to follow the linear law (2.4.3) or the square law (2.2.5).

Additionally, some type of engagement-termination model is-necessary for

military analysis of combat (as we have repeatedly noted above). In [25]

WEISS considered battle termination to be a MARKOV process: each time that

a side sustains a casualty, its commander decides whether or not to continue

the battle. He had previously used this type of model for the termination

of a war. Additionally, WEISS's investigations [24 - 25] are more or less

the point of departure for HELMBOLD's work.

WEISS's paper [25] began with a brief review of the overall character-

istics of the U. S. Civil War with respect to the sizes of the forces in-

volved, number of battles, total losses, and some distributional data on

force ratios and casualty ratios. It then examined the applicability of
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LANCHESTER's classic "combat laws." WEISS showed that a categorization

of battles into "assaults on fortified lines" and "other battles" is

significant. He then developed a mathematical relation between a side's

fractional loss and its ability to continue a battle, and he showed that

this describes fairly well the probability of winning a battle as a function

of the relative casualty rates. The influence of fortification was

demonstrated (although we will not examine it here). Finally, WEISS

suggested some areas for future analysis.

After a discussion of the sources, availability, and quality of

combat data for the U. S. Civil War, WEISS [25, pp. 765-766] examined data

on force ratios in battles. Next, he examined the influence of the force

ratio on the exchange ratio in order to establish the nature of the combat

dynamics. WEISS sought to establish whether or not a simple form of

LANCHESTER-type equations (i.e. LANCHESTER's classic combat formulations

(2.2.1) and (2.4.1)) is consistent with the available historical combat

data. Let us recall (see, for example, Table 2.XX) that LANCHESTER's

Square Law b(x2 - x2) 2 a(y - y 2) implies that the overall casualty-

exchange ratio should be inversely proportional to the "average" force

ratio, namely

x
c a (3.13.1)

Yc b(x/y)

where xc - x - xf denotes X's casualties in the battle, x- (x0 +X f)/2
denotes X's average force level, b represents X's fire effectiveness,

and similarly for the Y quantities yc, y, and a. If combat were to

obey LANCHESTER's Square Law, then we would expect the loss ratio to be
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strongly correlated with the force ratio (see WEISS (23, PP. 84-87]). On

the other hand, LANCHESTER's Linear Law b(x 0-x) - a(y 0 -y) implies that

the overall casualty-exchange ratio should be independent of the (initial)

force ratio, namely

xc a a (3.13.2)

From an examination of a scatter diagram (with coordinates of casualty

ratio and loss ratio) for "all" battles, WEISS [25, p. 768] found no

apparent correlation of the casualty ratio with the force ratio. He then

aggregated battles into two classes: (I) "attacks on fortified lines,"

and (II) all other battles, called for convenience "meeting engagements."

Figure 3.18 shows the loss ratio plotted against the initial force

ratio for "attacks on fortified lines." The data shows considerable

scatter with no pattern immediately discernable. Examination of battles

other than assaults on fortified lines (denoted by WEISS as "meeting

engagements") yield a "more homogeneous picture" [25, p. 770], as shown

in Figure 3.19. In this figure there is no obvious correlation between

the casualty ratio and the initial force ratio, suggesting that LANCHESTER's

Linear Law might be justified here. WEISS noted that the "scatter in

exchange ratio from battle to battle amounts to only a factor of two at

most." Hence, one is led to postulate that attrition in Civil War

"meeting engagements" followed FTIFT attrition, with the casualty-exchange

ratio x /Yc M a/b being a random variable realized before each indi-
cc

vidual battle.

WEISS (25, pp. 770-775] went on to examine data for "meeting

engagements" in greater detail. He found for a somewhat limited sample
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(28 battles in all) that the probability of winning was strongly related

to the initial force ratio, as shown in Table 3.VII and Figure 3.20.

Also shown as the smooth curve in Figure 3.20 is the function

P - 1/(l + Pi) , (3.13.3)

where P denotes the probability of a Union win and pi initial force

ratio: Confederate/Union. WEISS also found that casualties tended to be

about equal and the larger force tended to win. This suggested to him a

combat model based on ability to continue fighting as a function of sustained

fractional losses. The end result was WEISS's model for combat outcomes,

which we have considered in the previous section. His model was based on

the following empirical findinqs for "meeting engagements" in the U. S.

Civil War:

(Fl) the probability of winning appeared to be a strong function

of the initial force ratio,

(F2) casualty ratios were independent of which side attacked, or

who won, or the initial force ratio, and they lay within the

extreme values 0.46 and 2.33,

(F3) on the average the loser sustained 15 per cent casualties;

the winner, 12 per cent.

The above is the motivation for WEISS's nodel of engagement out-

comes, which we have studied in Section 3.12. The main information

extracted by WEISS from his model was (1) the probabilities of winning,

and (2) the average casualty fractions, WEISS estimated model parameters

(the fractional loss ratio. -.(, and the battle-termination rates, A and Xy)X |y

from the combat data in the following fashions. He first estimated,

'i 348



TABLE 3.VII. Fraction of Union (X) Wins in "Meeting Engagements"

as a Function of the Initial Force Ratio for U.S.

Civil War (from WEISS [25]).

Fraction of Union Wins
Initial Force Ratio: Number

of 50% Confidence
Confederate/Union Strength Cases Average Limits

0.40 - 0.49 3 1.00 1.00 0.63

0.50 - 0.79 11 0.68 0.80 0.54

0.80 - 1.25 11 0.50 0.64 0.36

1.26 - 2.00 1 0 0.75 0

2.01 - 2.50 2 0 0,50 0

28

349



44~

Ni44

0

.- 4

4a.-
4  

w C4J

0 0 C4

- -4
*-4 (3 x

"0 0

k 4
A4 *

04

C4. ci Ui

350.

-M-' Ti



for example, 0x(f X) - f) P[X fights at least until casualty

fraction > f ] by doing the following:

S(Tl) rank all battles in order of increasing (f )f, where
cc

XX

(j)f denotes the fractional loss of X at the time the

battle ended, regardless of who won the battle,

X
(T2) estimate probability of continuing battle, (P ), from

X c

the formula

?X • (fclfI Ox!(N 0-Lv) (3.13.4)

where OX -0 x[(fX)f] dernotes the observed number of battles

that lasted until (fX)f, NO denotes the total number of

battles, and Ly denotes the number of battles lost by Y

at lesser value of (fX )
C f

The estimate (3.13.4) for 0Cxf ) may be justified as follows. If we
X c

forget about Y losing (i.e. Y deciding to quit), then we would expect

(on the average) N0.(fX) battles to continue past f . However,

Xbattles ended at lesser value of f since Y decided to terminate the

engagement. If Y had not decided to terminate these engagements, then

L.Yx*0(f X) battles would have continued at least until f X. In other words,Y~c c

Oox N 0.0 xDfX) - LYxYfx) ,

whence follows (3.13.4). We can similarly estimate 0 (fY) - Fy (fY)
Y C YC

from the formula
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4ýy- I y(f')f - oy/(No-Lx) (3.13.5)

In other words, from tabulations of the final casualty fractions (f)f

and (fY)f in each battle, one can estimate values for the casualty-

fraction-breakpoint complementary distribution functions 0 (f ) - F (fx)
X c X c

and 0 (f ) - F (fy).
Y c Yc

WEISS [25, p. 7781 plotted Zn(i/0) against f and found that
c

kn(1/0) kf , k - 150, (3.13.6)
C

gave a good fit to the data for both sides (see Figure 3.21), although the

fit could be improved by considering different functions for the two sides.

In other words, the Civil War data suggested that for "meeting engagements"

7exp(-ks3) for 0< s < 1 ,
Fx(S) = -- (3.13.7)

0 for s-1,

and

exp(-kt 3) for 0 < t < 1
"y (t) - -- (3.13.8)

,•0for t - 1

where Fx(s) - x(f ), etc. Consequently. for "meeting engagements" in

the U. S. Civil War, battle outcome may be approximately modelled by

(see Section 3.12)25

^ y3

PPX 'mli(i+ ) , (3.13.9)

and
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-1/2 1X =yl/-f (Y3/2 y- 3/2 1/3

fX - r(4/3)/(k + ky, (3.13.10)
C c

x Y

where y - fc /f denotes the fractional-loss ratio (also referred to
c c

elsewhere as the "normalized" initial force ratio). WEISS [25, p. 780]

also subdivided the battle data by ranges of y, i.e. ranges of the

fractional-loss ratio, into four equal groups and compared (3.13.9) and

(3.13.10) with the averages of the data in each group. Results are shown

in Table 3.VIII.

Thus, WEISS [251 developed a model of engagement outcomes in

the U. S.. Civil War, and this model yielded theoretical predictions that

were in fairly good agreement with the historical Lata. Whether or not

such a model is generally applicable to modern warfare was, however, not

decided by WEISS's investigation (and, indeed, it cannot be so decided).

Moreover, WEISS clearly states that the purpose of his investigation [25]

was to indicate some of the factors possibly involved in modelling combat

operations and to stimulate further research on the scientific study of

warfare. WEISS's work (25] provides many of the ideas upon which HELMBOLD's

investigation [l0]of various breakpoint hypotheses is based.

One final point, however, merits further discussion, and that is

the general nature of scientific verification of a combat model. The

process Is an indirect one in which we must deduce testable consequences

from the modelling assumptions (or hypotheses). Furthermore, we can never

"prove that a model is true," but we can sometimes determine that a model

yields theoretical implications (i.e. consequences) that are at variance

with available empirical evidence. In this case, we should reject the

model as being untenable in light of empirical evidence and seek alternative

tenable hypotheses.
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"TABLE 3.VIII. Comparison of Historical Combat Data with Model
Results for "Meeting Engagements" in the U.S.

Civil War (from WEISS (25]).

7I

Range of Y 0.22-0.69 0,70-0.79 0.80-1.11 1.12-2.78

Average Y 0.56 0.73 0.94 1.91

Number of battles 7 7 7 7

Fraction of Union (K) wins 0.79 0.57 0.50 0.29

P from ave. Y [aq. (3,13.9)] 0.85 0.72 0.55 0.13

Average Confederate (Y) fractional loss 0.17 0.19 0.11 0.08

?Y from eq. (3.13.10) 0.16 0.15 0.13 0.08
C

NOTE: Model parameters, i.e. AX X AY - k, are estimated from same data for

which the above comparison is made.
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3.14. HELBOLD's Empirical Investigation of the Validity of

Breakpoint Hypotheses.

Finally, we come to HELM1OLD's work [10] concerning the scientific

validity of a certain breakpoint hypothesis and several variants thereof.

This work should be considered to be the extension and synthesis of earlier

work by both H. K. WEISS [22-25] and HELMBOLD himself [8-9]. HELMBOLD's

RAND report [10] is in our opinion probably the most significant piece of

work on either the scientific aspects of modelling engagement termination

or the scientific evaluation of the validity of combat models.

This remarkable report first establishes a rather comprehensive

theoretical framework for modelling engagement termination and then deduces

testable consequences of the modelling hypotheses (i.e. the assumptions).

These consequences are then compared with empirical evidence (i.e. historical

combat data) to evaluate the model's scientific validity. HELMBOLD found

that his basic breakpoint hypothesis was at variance with empirical evidence,

but he advanced no alternate hypothesis that he felt was satisfactory.

Consequently, this fine work has apparently had little influence on the

combat-modelling community.

HELMBOLD's work on modelling battle termination rI0] has greatly

influenced this chapter. His theoretical treatment of modelling battle

termination is both significant and interesting. Moreover, this work contains

the germs of many ideas that are significant in their own right (e.g. the

approach used in Section 3.5 for developing victory-prediction conditions 26).

HELMBOLD's basic breakpoint hypothesis [10] consisted of the follow-

ing three assumptions-

(Al) each side independently selects a breakpoint from a distri-

bution of such breakpoints and gives up the basle when its

casualty fraction reaches this breakpoint,
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(A2) these breakpoint distribution curves are generally

applicable,

(A3) the casualty fractions of the forces are deterministically

and monotonically related to each other via the P-function,

i.e. f (t) - O'f (t))] for 0 < t tf.
c Cf

How does one go about showing whether or not HELMBOLD's breakpoint hypothesis

27
is true . This task indeed appears formidable, since the assumptions (Al)

through (A3) do not specify either (1) a specific breakpoint distribution

for each side, or (2) a specific 0-function, which relates the two casualty

fractions by f W Y(f ). HELMBOLD has overcome this difficulty brilliantly:c c

he has shown how observed casualty-fraction distributions can be used to test

the breakpoint hypothesis. More precisely, HELMBOLD [10, pp. 16-171 has

shown how the 0-function and its inverse P-1 may be determined from the

casualty-fraction conditional distributions. In other words, one may estimate

0 and 4- (denote these estimated functions as 4 and -'i, respectively)

from available historical combat data by developing casualty-fraction con-

ditional distributions.

Having determined i and -'i by HELMBOLD's graphical procedure,

we may plot the estimated functions on a graph and see whether or not they

are indeed inverse functions, i.e. whether or not 4 is a reflection of

'•- in the 45 degree line through the origin (see Figure 3.22). If

and 4- satisfy the inverse functional relationship, then this evidence

would lend support to HELMBOLD's breakpoint hypothesis. If ' and 4-

do not satisfy the necessary mathematical relationship between inverse

functions, then HELMBOLD's breakpoint hypothesis would be definitely dis-
!1

proven. In other words, that ' and t-I as developed from the casualty-

fraction conditional distributions should be inverse functions is a testable
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consequence of HELMBOLD's breakpoint hypothesis (i.e. assumptions (Al)

-- through 'A3) above). The validity of the breakpoint hypothesis may there-

fore be tasted by seeing whether or not actual combat data has this inverse-

function property inherent in it.

Let us now show how ' and '- may be determined from the casualty-

fraction conditional distributions. For convenience let us introduce the

following notation for the casualty-fraction conditional distributions

x
A XX(s) P[(F C _< sIX wins] , (3.14.1)

and

y(t) - P[(F ) < tIx wins] . (3.14.2)

It follows that

Ax(s) - P[(FX) < SIX wins] yx (C-f

- P[(F )f _< -l(slJX wins] A Y0 (.(s)) , (3.14.3)

since FX *(F ). In other words, A and A have the same value for
c c XX YX

s and '-1(s), respectively. We may similarly define A yy(t) and Axy(s)

and it follows that

i W - Axy('(t)) . (3.14.4)

Now suppose that tie had a graphical plot of the observed casualty fraction

for a set of battles won by X (chosen to be the attacker). Such a

hypothetical plot is shown in Figure 3.23. Using (3.14.3) and a plot like

that shown in Figure 3.23, we may graphically determine the estimated value

-• 1- 1-
of 0 (s), denoted as 'P (s), by repeatedly determining . (sI) for
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several different given values of X's casualty fraction, s 1* In a similar

fashion, we may graphically determine 0p(t) from the~observed casualty-

fraction distributions when Y wins.

HELMeOLDr[10] also developed certain important relationships between

in the casualty-fraction conditional distributions. These relationships played

a key role in the testing of his breakpoint hypotheses. They are contained

*i in the following two propositions (for proofs, see HELMBOLD [91).

PROPOSITION 3.14.1: If A (u) - and Ay(u) - Ax(u)

then 0 -1 , I, where I denotes the identity function.

PROPOSITION 3.14.2: If 0(s) > s for some s, then A yy(s) > Axy (s)

and A xx(s) < A yx(s). Conversely, if 0(s) < s for some s then

AW(S) < AXY(s) and A XX(s) > A yxS).

The first result (i.e. Yoposition 3.14.1) says that if the winner and the

loser have the same casualty-fraction distributions (regardless of whether

the attacker X or the defender Y wins the battle), then the b-function

must be the identity function (i.e. fractional casualties are exchanged

equally). The second result (i.e. Proposition 3.14.2) may be used to develop

the possible types of relations between the casualty-fraction distributions

(see HELMBOLD [10, pp. 33-34]).

HELMBOLD [10] went on to test in the manner outlined above his

breakpoint hypothesis by comparing the model's consequences (namely, that

_Ithe graphically determined functions and must satisfy the necessary

inverse functional relationships) with available combat data. HELMBOLD used
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several sets of empirical data on casualty-fraction distributions in this

work: namely,

(Sl) data from his earlier empirical work (see HELMBOLD (8-9]).

(S2) data extracted from BODART's Krie s-L~exicon (2] by WILLARD

(261, as modified by SCHMIEMAN [161.

Let us first consider HELMBOLD's comparison of his model with the data

base generated by his earlier work [8-9]. From the raw combat data (i.e.

the initial and final force levels for the attacker and the defender),

HELMBOLD obtained the casualty-fraction conditional distributions shown in

Figure 3.24 (see HELMBOLD [10, pp. 21-22] for more detailed casualty-fraction

data). The values for $(q) and ý- (q) read graphically from the plots

of this figure (according to the procedure described above) are plotted

in Figure 3.25. From this latter figure we see that ' and '-i are

clearly not inverse functions, which is a necessary consequence of HELMBOLD's

breakpoint hypothesis. This fact is strong evidence against this breakpoint

hypothesis being true (see discussion above).

HELMBOLD [10, pp. 25-32] then performed the same test with a much

larger sample of combat data, data extracted from BODART's Kreigs-Lexicon

[2] by WILLARD [26] (as modified by SCHMIEMAN [16]). le considered three

different groupings of this data: (I) the entire set of 1080 battles,

(II) Category I battles (i.e. "open" battles in the sense that both sides

could, with about equal facility, disengage and conduct an orderly with-

drawal), and (III) Category II battles (i.e. "closed" battles in the sense

that one side was encircled or otherwise in a position from which an

orderly withdrawal could not be readily made, and whose optiuns for maneuver

were markedly more restricted than those of his opponent).
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Figure 3.25. Values of iand V derived from

Figure 3.24 (from HELMBOLD [10]).

HELHBOLD's Figure 7 is our Figure 3.24.
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The overall BODART data showed [10, pp. 26-26] that the distribution

of the attacker's (i.e. X's) casualties when the attacker won is about

equal to the distribution of the defender's casualties when the defender

won; and it showed that the distribution of the defender's casualties when

the attacker won is about equal to the distribution of the attacker's

casualties when the defender won, i.e.

uxx(u) A yy(u) , (3.14.5)

and

6VX(u) %-i A y(u) (3.14.6)

Proposition 3.14.1 says, however, that we shou~ld have

Ip-1

and this consequence was contradicted by the empirical evidence. HEIMBOLD

then examined daLS for only Category I battles and also data for only

Category II battles and found further contradiction to the breakpoint

hypothesis.

Thus, HELMBOLD [10] found that for all of the data sets that he

analyzed, ý and ý-" were clearly not mutually iniverse mathematical functions

as required by his original breakpoint hypothesis (see Figures 3.25 and

"3.26). Consequently, this breakpoint hypothesis is not tenable. However,

instead of being inverse functions it appears that
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*1
but that (3.14.5) and (3.14.6) held, at least approximately, for all the

data analyzed. HELMBOLD [10, p. 32] concluded that this latter empirical

fact (i.e. (3.14.5) and (3.14.6) holding) was at the crux of the contradiction

of the breakpoint hypothesis by the available historical combat data.

HELMROLD [10, pp. 33-61] went on to consider some tentative modifi-

cations of his original breakpoint hypothesis and discussed them in terms

of the light they shed on the prospects for developing a theory that would

satisfactorily explain the available combat data. His modifications may

roughly be stated as follows (see [10] for further details):

(Modification 1) Use one t-function when the attacker (X) wins, and a

different tp-function when the defender wins.

(Modification 2) Replace (A3) in HELMBOLD's original breakpoint hypothesis

by the following: the casualty fractions of the forces

engaged in a given battle are related to each other by

fc = Yc

where y is the realization of the random variable F,

which is realized before each battle, and r is log-

normally distributed with mean zero and standard deviation

of 0.76.

(Modification 3) Give up (A2) in HELMBOLD's original breakpoint hypothesis

and let the break curves depend on the class or type of

battle that is under study.
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Each of these three tentative modifications was then shown by HELBOLD

"to be unsatisfactory, i.e. yield some consequence contradicted by the

available combat data. For example, Proposition 3.14.2 was used to show

that the observed casualty-fraction distributions have shapes that are at

variance with theoretical predictiona. HELMBOLD finally outlined the

properties that a satisfactory theory of battle termination should possess.

All the above versions of the breakpoint hypothesis violates some of

HELMBOLD's criteria.

Thus, HELMBOLD's principal finding [10, p. v] was that the breakpoint

hypothesis yielded theoretical implications that are at variance with the

available battle termination data in several essential respects. He also

discussed the properties of a satisfactory theory of battle termination

but did not develop such a theory that could satisfactorily account for the

available data. HELMBOLD [10, p. v] felt that "until a better theoretical

explanation of the battle termination process becomes available, the sound-

ness of models of combat such as war games and computer simulations that

make essential use of breakpoint hypotheses is suspect." Nevertheless, the

assessment of the outcomes of tactical engagements does require the use

of some type of engagement-termination conditions (i.e. battle-termination

nmodel). We (and the rest of the military OR community) will continue to

use our Breakpoint Hypothesis (see Section 3.2 above) until a better

alternative comes along.
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FOOTNOTES for Chapter 3

1. For example, the eminent military historian T. N. DuPUY ([ii (see

also [6]) has considered the outcome of battle to be given by the

formula

(outcome or result)

- (mission accomplishment) + (space effectiveness)+ (casualty effectiveness).

Here we should take "space effectiveness" to mean "possession of the

battlefield." There are, of course, difficulties in quantifying the

above three concepts of mission accomplishment, etc. (one should

"operationally" define them). Nevertheless, it is significant that

historically it is unclear who was the "winner" for many battles. How-

ever, combat models, which are supposed to be representations of the

real world, usually give quite clear-cut results. This shortcoming,

moreover, is not just limitdd to LANCHESTER-typp models of warfare.

2. In her classic and definitive study of the effects of casualties on

combat effectiveness, D, CLARK [5] has considered casualty and replace-

ment data from the so-called morning reports of 44 infantry battalions

taking part in seven engagements in World War II !n the European theater

of operations. In this rare empirical study, she considered the follow-

ing three categories of breakpoints:

I. attack + rapid reorganization - attack,

1I. attack - defense,

III. defense * withdrawal by order to a quieter sector.
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The reader can probably appreciate the difficulties in quantifying

such factors.

4. Equivalently, for cases of no replacements and no withdrawals such as

we consider here, we may consider the casualty level or casualty

fraction. See HELMBOLD (10, p. 7] for a discussion of the case with

replacements.

5. The selection of these three factors is motivated by the conclusions

reached by D. CLARK [5, p. 3 and also p. 34]. One might add the unit's

tactical posture (e.g. attacking, defending in a prepared position,

defending in a "hasty defense," etc.) to this list.

6. Method B is apparently due to HELMBOLD (10].

7. In practice this restriction is not as serious as it may at first seem:

much more general victory-prediction conditions have so far been obtained

by Method B than by Method A. The reason for this situation is that

the expression for a force level as a function of time may be very,

very complicated (and not expressible in terms of "elementary"

functions).

fx

8. The requirement that tBX be finite is absolutely necessary as an

example given in Section 3.6 below shows (see also Footnote 12).
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A fourth category, defense - collapse, apparently had to be discarded

because ot d.ata-base limitations. Thus, one might also call a "break-

point" a "transition point" in the activities of a combat unit. Such

details are apparently not considered in most current combat models

whether they be simulations or firepower-score models.

3. D. CLARK [51 considered the following variables in her study of break-

points:

(Vl) casualties and net casualties (expressed as a percent)

on day of breakpoint,

(V2) cumulative casualties and cumulative net casualties (again,

as a percent)

(a) for day of breakpoint plus two preceding days,

(b) from start of engagement to breakpoint. --

She also briefly considered (subjectively) the possible effects of

the following eleven variables:

(1) condition of troops at beginning of engagement,

(2) unusual environmental stresses,

(3) the imperative of the assigned mission,

(4) morale,

(5) leadership,

(6) tactical plan,

(7) reconnaissance,

(8) enemy opposition,

(9) fire support and reinforcement,

(10) logistical support,

(11) communications.
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9. Although not explicitly stated in D. CLARK's (5] study, a random-

breakpoint model is suggested by her data which showed wide variation

in the casualty percentage at which a urit became combat ineffective.

10. Usually, such a break curve relates the probability that a force

discontinues the engagement to the casualty fraction (see, for example,

HELMBOLD (10]). In cases of no replacements and withdrawals such as

the one at hand, this is, of course, equivalent to plotting the prob-

ability against the force-level fraction, e.g. x,'x For our purposes

here, it is more convenient to take the force-level fraction as the

independent variable.

11. Unlike our Breakpoint Hypothesis, HELMBOLD [10, p. 7] assumes that the

break curves (i.e. breakpoint distributions) are the same for all battles,

"irrespective of the size of forces involved or when, where, by whom,

or with what the battle was fought." His Hypotheses A and B correspond

to our Breakpoint Hypothesis.

12. This is the example that was referred to in Footnote 8 above. Moreover,

these equations are a special case of quasi-autonomous equations

discussed in Section 6.4 below (see also TAYLOR and BROWN [21, Note 4]).

13. B. 0. KOOPMAN (see MORSE and KIMBALL [14, p. 65]) apparently first

observed that variable-coefficient equations for a FIF attrition

process with attrition-rate coefficients of the form (3.6.8) yield

such a square law. This result was apparently later independently

discovered by H. K. WEISS [23, p. 88] in a different modelling context.
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14. B. 0. KOOPMAN (see MORSE and KIMBALL [14, pp. 65-67]) apparently first

observed the important result that for a constant ratio of attrition-

rate coefficients the, for example, X force level as a func. h•n of

time, i.e. x(t), takes a form no more complicated than that for constant

coefficients: namely, the result (3.6.13) is the same as (2.2.9) except

for a transformation of the time scale. Subsequently, ISAACS [12,

pp. 327-328], FARRELL [4, pp. 180-184], and TAYLOR (18. Appendix D; 19]

have inadvertently rediscovered this result in different modelling

contexts (see also TAYLOR [20]). Solutions for special cases of (3.6.8)

had been given earlier by BONDER [3].

15. The casualty-fraction conditional distributions have been used in

IHELMBOLD's [10] empirical investigation of breakpoint hypotheses.

JX

16. Here we have made use of the fact that P[(FX)f > p] - P[(Fc)f > pI,C f]

since (F) is a continuously distributed r.v.
csf

17. It should be noted that for (3.7.21) to hold we must have s - I

when t - 1. Furthermore, the results given in Table 3.11 apply for

continuously distributed breakpoints. It does not appear that (3.7.21)

ever holds exactly in practice for continuously distributed break-

points, although the results given in Table 3.11 are apparently usually

excellent approximations to the exact results.
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18. HELMBOLD [10, p. 79] has considered (in our notation), for example

the d.f.

-AXs
1 -e for 0 < s <,

F (s)-

1 for s- 1,

and consequently our results are not directly comparable to his, We
-A

have chosen to "rescale" the distribution 1 - e by the factor
S-X -XAs -X

1 - e , i.e. set Fx (s) - (1 - e )/(I - e ) as given by (3.8.17),

since we felt that results could consequently be more readily compared

with those of H. K. WEISS (25].

19. These approxtmations are not identified as such in WEISS's [25] paper,

however. Exact results for Py, P[(X)f < pVX wins], etc. for

distribution functions of the type discussed in Footnote 17 have been

given by HELMiOLD [10, pp. 78-82]. Furthermore, WEISS [25] found that,

for example, the functional form

4^ -ks 3
F X (S) - e

gave a good fit to combat data from the U. S. Civil War. He also found

that k > 100 so that such an approximate complementary d.f. and an

approximation ltke (3.8.22) do indeed yield results extremely close to

the exact ones.
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20. The historical evidence about the fraction of soldiers who never fire

their weapons reported by S. L. A. MARSHALL t131 supports this

hypothesis.

21. HELMBOLD [10, pp. 68-691 has shown how such a casualty-fraction break-

point distribution may be generated from the conditional probability

that a side will fight at least to a specified casualty fraction (f + h)

given that it has fought to a given casualty fraction f, i.e.

P [side will fight at least side has fought to °

P [to casualty fraction (t+h) casualty fractior f -X(h,f)

Thus, a break curve may be developed from a continuous model of decision

behavior in which a side observes his fractional loss and then decides

a MARKOVIAN fashion whether or not continue fighting.

22. Thus, the normalized exchange ratio (or fractional-loss ratio) r,

defined by r - f /f , is a random variable, which we may considerC. c
to be realized (i.e. r - y) before a given battle. This aspect was

not explicitly stated by WEISS [251, and subsequently HELMBOLD

[10, pp. 50-58] has given the model a more careful examination. Our

discussion here, however, follows WEISS [251.

23. Technically speaking, the STIELTJES integral (3.8.6) does not exist

when y 1 1, since both integrand and integrator are discontinuous at

the same point (see Appendix B for a further discussion).
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24. Strictly speaking, the probability given by (3.12.11) is a conditional

probability depending on the realization of the random variable F,

i.e. P[Y will winlr w y]. Then, the unconditional probability that

Y will win is given by

Py f P(Y will winji y' fr (y) dy.
0

This point is not explicitly stated in WEISS's paper [25] in which

P[Y will winjr - y] as given by (3.12.11) would be imprecisely denoted

as Py. However, to make WEISS's paper [25] accessible to the reader,

we have nevertheless chosen to overlook the fact that, for example,

(3.12.11) and (3.12.18) are actually conditional results (see

HELMBOLD (10, pp. 50-51] for a later and further discussion of this

point).

25. Strictly speaking, these results are conditioned on a given realization

of the random variable r. WEISS does not note this point, and the

expressions (3.13.9) and (3.13.10) are the ones actually given by him

in [25]. See also Footnote 24 above.

26. HELMBOLD's [10] statement of a general principle for developing

victory-prediction conditions (see, for example, our Proposition 3.5.1)

is incomplete, however. In order for it to be entirely correct, an

addditional condition must be added, namely (for the situation con-

sidered by Proposition 3.5.1) that t p must be finite.
BP
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27. Actually, one cannot "prove" that HEL1BOLD's [10] breakpoint hypothesis

is true, but one may be able to show that the hypothesis is at variance

with available empirical evidence (and hence untenable).
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APPFNDIX B: VIE PROBABiLITY THAT ONE RANDOM VARIABLE

IS LESS THAN ANOTHER

1. Introduction.

As we have discussed in Section 3.3 above, many times a military operations

analyst would like to have battle-outcome-prediction conditions for various types

of tactical engagements. If the combat model of such a tactical situation is

simple enough, then one may indeed be able to develop explicit battle-outcome-

prediction conditions. Such analytical results are very useful for developing

insights into the dynamics of combat. When there are random effects in the

combat model, developing such battle-outcome-prediction conditions usually

involves, in one way or another, determining the probability that one randcm

variable is less than another that is statistically independent of the first.

One such case that we considered in Chapter 3 was that of determining

the probability of winning a battle modelled with deterministic attrition and

random breakpoints. Another is that of determining the outcome of a duel

between two individual weapon systems, cf. the theory of stochastic duals (1].

In the latter case, the probability of winning the duel is equal to the proba-

bility of the duelist having the smaller of the two times to kill a passive

target. In fact, determining the distribution of combat outcomes for almost

any stochastic combat model will invariably involve some type of probability

that one random variable is less than another independent one. Although this

is certainly not the most general case possible, it does correspond to the

only one considered in the literature, and consequently for our present pur-

poses it suffices to consider the case of two independent random variables.
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2. Basic Theo.r.

Consider two independent random variables, denoted as S and T.

qUESTION: What is the probability that S is less than T, i.e.

P[S < T]?

Before answering this question, let us introduce some necessary notation. We

denote the distribution function (d.f.) of the random variable (r.v.) S,

also frequently called the cumulative distribution function (c.d.f.), as

Fs(s), i.e.

S

Fs(S) - P[S < s] - f dFs(O)
-00

and similarly for FT(t). When the random variable S is continuous, i.e. FS(s)

is a continuous function, then the d.f. may be expressed in terms of a. probability

density function, denoted as fs(s), i.e.

s

Fs(S) f fs(O) do
-00

Also, we will denote the corresponding complementary d.f. as F (s), i.e.

F F(s) P[S > s] - 1 - Fs(s). When S is continuous, then

FS(S) f f 5s(a) do
s

To develop an expression for P[S < T], we first consider the probability

that the r.v. T is greater than a given realization s of the independent

r.v. S. Hence, we consider (see Figure B.1)

P~s < T] 1 F-(s) F ( PFS TIs sl (B.1)T T~
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Shaded area is

aP[s <T).

.0/
04

,p.d.f. for S, p.d.f. for T,

0 x S

Figure B.1. The probability that one random variable

is greater than a given realization of

another independent random variable,

P(s<T] =[s <TJ Ss].
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the last equality on the right-hand side of (B.1) holding by the assumed

indnpandence of S and T. Then, unconditioning [i.e. "averaging" the above

conditinnal probability (B.l) over "all possible values of x"], we have

P[S < T] m P[S < TIS s]IP[s < S < a + do]
all possible
values of s

00

- I (s) dFS(S)

Thus,

P[S < TI F-'T(s) dFs(s) , (B.2)

which holds for any two independent random variables. When the random

variable S is continuous, the above becomes

00

P[S < T] -f FT(s) fs(s) do . (B.3)
-00

One can also show (either by integrating (B.2) by parts or by using first

principles) that

CO

P[S < T] - f Fs(t) dFT(t) . (B.4)
-00

Thus, we observe that when one of the r.v. is continuous, then P[S < T]

P[S < T). In summary, we have found that for two independent random variables

S and T

P[S < T] - f FT(s) dFs(s) - f Fs(t) dFT(t) (B.5)
A -o -- c
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Another case of considerable interest, which is a generalization of the

above, is that in which we have a function of the random variable T, denoted

here as *(T). Again, we assume that the random variables S and T are

independent. We now seek to determine the probability that S < p(T), namely

P[S < q(T)]. We assume that J has a well-defined inverse function, denoted

as I. Replacing T by ý(T) in the above development, we have

P[S < tp(T)] P[- (S) < T]

- PW-l(S) < TIs s]'P[s < S < s + ds]

all possible
values of s

or

P[S < p(T)] f TT(-I(s)) dFs(s) , (B.6)

by virtue of the assumed independence of S and T. Alternatively, we may

write

P[S < p(T)] - P[S < qp(T)IT = t]'P[t < T < t + dt]

all possible
values of t

or

P[S < p(T)] = f FS(p(t)) dFT(t) , (B.7)

since FT(t) is continuous from the right, and the integrand P[S < p(T)IT - t]

as a function of t must be continuous from the left at points of discontinuity

of FT(t) (i.e. P[S < *(T)IT - t] - P[S < q(T)IT - t]) in order for the

STIELTJES integral to exist (see APOSTOL [2, pp. 212-213]).

Thus, for s - *(t) such that ip is well defined, we have shown that

P[S < p(T)] -f FT -(s)) dFs(s) -f FS(I(t)) dFT(t) (B.8)
--o3 -84
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3. Probability of Winning Battle with Deterministic Attrition and Random

Breakpoints.

In this section we apply the above basic theory to develop equations

(3.7.5) and (3.7.8) of Chapter 3. Consider combat between two homogeneous

forces, denoted as X and Y. As in Chapter 3, let FX(s) denote the d.f.

for X's casualty-fraction breakpoint (a r.v.) (FX)Bp, i.e.

FX(s) P[(FX) < s]
X c BP

and similarly for Fy(t). For convenience let us denote (FX)BP simply as
Y

S and (F )BP as T. Then, equation (3.7.4) of Chapter 3 reads
cB.

Py - P[Y will win] - P[S < ip(T)] , (B.9)

where p(t) denotes the "truncated" (p-function, i.e. t(t) - Minimum(p(t),l],

and p is the strictly increasing function that relates the combatants' casualty

fractions, i.e. fX - P(f ). As discussed in Section 3.7, is then well

defined. Assuming that (F)BP and (Fc)BP are independent, we can combine

(B.8) and (B.9) to find that

Py- . F -y(5-(s)) dFx(s) - Jf FX(,(t)) dFy(t) . (B.10)
0 0

since, for example, dFx (s) - 0 for s< 0 or s > 1. Equation (B.10) appears

in Chapter 3 as (3.7.5) and (3.7.8).
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4. Probability That Next Casualty is of a Given Type in Battle with Aandomly

Occurring Casulaties (Includes Stochastic Duels).

Other applications of the above basic theory occur in the theory of

stochastic duels (see ANCKER (1]) and also for MARKOV-chain versions of

LANCHESTER-type combat models (see BROWN (3], SMITH [4], or Chapter 4). We

will consider the special case in which the times between casualties are

exponentially distributed.

Again, we consider combat between two homogeneous forces, denoted as X

and Y. Let S denote the time to the next X casualty and T denote the

time to the next Y casualty. Then

P[next casualty is an X casualty] - P[S < T] . (,B.ll)

We will assume that S and T are independent. This assumption is the usual

one made in the theory of stochastic duels and is also well known to hold for

such MARKOV-.chain attrition models. If the times between casualties are expo-

nentially distributed, i.e. S - e(X ) and T - e(XT) where S e(NS) means

that "S is exponentially distributed with parameter X " (namely,
• -AsS

SP[s<S!s+ds] X S e ds for s > 0), then it follows that for s > 0

-tT TF-T(s) uf XT e dt e
s

and
-ssf S(s) X AS e

Hence, by (B.3) we have

386



'• ® ® - ( S + T ) S

P[S < Ti f FT(s) f(S) ds -f XS e ds
0 0

- - -S -- )-+T e s-O

Thus, for times between events (i.e. casualties) being exponentially distributed,

we have

P(next casualty is an X casualty] - AS (B.12)
XS+ XA

where AS denotes X's casualty rate and AT denotes Y's casualty rate.
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Chapter 4. STOCHASTIC LANCHESTER-TYPE COMBAT MODELS

4.1. Introduction.

Combat is anything but a deterministic process. Military history

gives us innumerable examples of random effects (or just plain luck) play-

ing a major role in warfare. Why, then, have we been considering only de-

terministic combat formulations so far in this book? The reason is quite

simple: although there is no mathematical difficulty in formulating sto-

chastic LANCHESTER-type combat models, it is very difficult to obtain

information about the dynamical behavior of the model (e.g. to answer ques-

tions like questions (Ql) through (Q7) posed in Section 2.2 above). Fur-

thermore, although random effects may at first appear to be significant

in combat, we feel that for many combat situations the "first order" (or

primary) nature of the combat dynamics may be observed'in a deterministic

model, with the random effects usually being secondary and qualifying the

"first order" behavior observed in the deterministic model.

Many times, however, a deterministic model may be a very bad repre-

sentation of random combat phenomena and may yield misleading insights

into the dynamics of combat. Thus, there is a greatly enhanced value to

deterministic formulations of the combat attrition process when properly

interpreted within the framework of more comprehensive stochastic models

(including Monte Carlo simulations). In fact, the "empirical" estimation

of LANCHESTER attrition-rate coefficients (for a deterministic combat

model) from high-resolution Monte Carlo simulation or field experimentation

data can be based on a stochastic model of the combat attrition process.

LANCHESTER himself had in the back of his mind that the true nature

of combat was stochastic and that his simple deterministic differential-

equation models were only approximations (valid to some extent for large
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numbers of combatants) to the average, or mean, .ourse of battle. Con-

sidering the decay of the force levels in rombat, LANCHESTER [56, p. 422,

column 31 said,

"Since the forces actually consist of a finite number of units

(instead of an infinite number of infinitesimal units), the end

of the curve must show discontinuity, and break off abruptly when

the last man is reached; the law based on averages evidently does

not hold rigidly when the numbers become small."

Thus, LANCHESTER stated that his deterministic differential-equation models

were "based on averages," implying an underlying stochastic process. Fur-

thermore, as the above quotation shows, he realized that such deterministic

differential equations may yield good approximations to the mean of the

underlying stochastic process only when the force sizes are "large." We

should therefore view detcrministic LANCHESTER-type equations as repre-

senting (in some sense) the mean or expected course of battle and view

them somewhat skeptically for "small" numbers cf combatants.

During World War II, B. O KOOPMAN (see MORSE and KIMBALL [65,

pp. 67-711 extended LANCHESTER's [56] resuics and developed stocba3tit

versions of LANCHESTER's original models, which we have considered above

in Chapter 2. Many other workers have subsequently considered a stochastic

analysis of cobat attrition.

There are many random factors present on the battlefield in com-

bat. We can improve the realism of LANCHESTER-type models by including

random variations in the following:
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(RI) the attrition-rate coefficients (they may be random variables

that are realized before the engagement begins),

(R2) the enemy's initial force level (the exact numerical strength

of the enemy is usually unknown at the beginning of a battle

for it, i.e. random initial conditions for the enemy),

(R3) the breakpoints (i.e. random stopping mechanism),

and (R4) the occurrence of casualties (but at specified rates).

In this book, however, we will consider only random variations in the oc-

currence of casualties over time. Moreover, this is apparently the only

source of random effects that has so far been considered in the combat-

modelling literature.

As we will see in the next section, it is a simple task to formuldte

stochastic versions of any particular deterministic LANCHESTER-type model.

However, there is usually at least an order of magnitude more difficulty

in analytically extracting information from such a stochastic model than

in extracting the analogous information from a corresponding deterministic

model. Fortunately, the behavior of the deterministic model is a good

guide for studying and describing the behavior of a stochastic version2

of this model. Thus, we should view thb deterministic results as a bench-

mark, a point of departure for discussing stochastic results.

In other words, we should ask ourselves, "How do random fluctuations

in the occurrence of casualties modify the deterministic results?" This
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appears to be a reasonable approach for studying probabilistic combat

dynamics, and f.t is the one that we will follow. Accordingly, in Section

4.4 below, we will discuss what information should be obtained from the

model. Basically, we seek answers to probabilistic versions of questions

(Qi) through (Q7) posed in Section 2.2 above. Typical quantities of in-

terest are now expressed in probabilistic terms, e.g.

(1) the probability of winning,

(2) the average force levels as a function of time.

As G. CLARK [16] has emphasized, the deterministic and stochastic

models are related, since the deterministic model should represent the mean

or expected course of battle. Moreover, an analysis of the stochastic

formulations is useful in understanding the impact of random fluctuations

in the occurrences of casualties upon the outcome of battle. It is also

useful for interpreting the deterministic model in the sense that it can

reveal how accurately the deterministic model approximates the expected out-

come of a more general stochastic combat process.
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4.2. Probabilistic Dynamic Models.

In this chapter we will study a probabilistic version (in which casu-

alties occur randomly over time) of the LANCHESTER-type equations for com-

3bat between two homogeneous forces . Extension to combat between heterogeneous

forces follows along obvious lines.

We begin by first considering a deterministic combat-attrition model

and then develop its stochastic analogue in which there are random fluctua-

tions in the occurrences of casualties over time. Let us therefore consider

combat between two homogeneous forces described by the following deterministic

LANCHESTER-type equations for x,y > 0 [the first equation, for example,

becomes dx/dt - 0 for x - 01

t- - G(tvx~y) with x(0) -x0

(4.2.1)

H(t,x,y) with y(O) -yo

where x(t) and y(t) denote the X and Y force levels at time t, and

G and H denote force-chqnge rates (with a negative force-change rate

signifying a net influx of replacements). For simplicity we assume that

there are no replacements and withdrawals; and, in this case, G and H are

simply casualty rates. This nimple combat situation is shcwn diagrammatically

in Figure 4.1.

The above equations (4.2.1) are a deterministic dynamic model of com-

bat between two homogeneous forces. In this model

t W' "time" parameter
4

x,y - state variables
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x )

H(t, xy)

Figure 4.1. Combat between two homogeneous forces with

no replacements and no withdrawals.
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Both the time parameter and the state variables are taken in (4.2.1) to be

nonnegative real numbers. It is intuitively appealing to model time as a

continuous variable (i.e. a variable that can take on a continuum of values),

although many times it is more convenient to consider the evolution of a

dynamic system at only discrete points in time and to consider time as a

discrete variable.

In choosing to use a deterministic model such as (4.2.1), we have

found it convenient to represent, for example, the integral number of X

combatants (i.e. physically the X force level can only be a nonnegative

integer) with the real number x(t). In other words, although we know it

really isn't true, we consider that the force levels are continuous variables.

This is a compromise that one must frequently make in order to use a differential-

equation model (which here implies differentiability of the force levels)

to represent the evolution of a dynamic system. We intuitively feel that

this is a "reasonable" idealization for "large" force levels, and we should

bear in mind that all models involve such abstractions (see Section 1.1.2

for further discussion of this point).

Thus, we seek a probabilistic version of the above deterministic

LANCHESTER-type model (4.2.1). Such a model is called a MARKOV process,

since the probability of any particular future behavior of the process is

entirely determined by the present state. More formally, we have the fol-

lowing definition of a MARKOV process (for further details, see PARZEN [691

or KARLIN [44]:

DEFINITION 4.1: A random process is called a MARKOV process

when there is no dependence on past history; the future

probabilistic behavior of the system depends solely on its

current state.
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In fact, the concept of a MARKOV process was developed to be a probabilistic

analogue of a deterministic process modellud by differential equations like
5

(4.2.1).

Depending on how we model "time" and the system state, there are dif-

ferent types of MARKOV processes which we can use to model a dynamic ays-

tem. It is therefore convenient to classify MARKOV processes according tu

[69, p. 188]

(Cl) the nature of the "time" parameter (whether it is a discrete

or a continuous variable),

(C2) the nature of the state space of the process.

Such a classification is more or less the standard one.

Thus, we have a choice of the type of probabilistic version kor (4.2.1)

to consider. Of all the different types of MARKOV processes shown in Figure

4.2, it is easiest to extract the information in which we are interested

(see Section 4.4) from the continuous-parameter MARKOV-chain model, and this

model does take into consideration the integer restrictions on the combat-

ants' force levels. Thus, we will consider combat modelled as a continiuous-

parameter MARKOV chain. [In order to heuristically develop the relationship

between the deterministic model (4.2.1) and its MARKOV-process analogue,

however, we will also briefly consid-r combat modelled as a contiuuous-

parameter MARKOV process, i.e. diffusiou process.] In fact, since we will

assume that no more than one casualty can occur at a time, the MARKOV chain

will be of a special type called a birth-death process (acfuaily a pure

death process; se.e KLEINROCK [54, especially p. 251 for further details).
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4.3. A MARKOV-Chain Model for LANCHESTER-Type Combat.

Let us therefore consider combat attrition modelled as a continuous-

parameter MARKOV chain corresponding to the general deterministic LANCHESTER-

type homogeneous attrition process (4.2.1). Thus, time varies continuously in

our model, but the number of live (i.e. effective) combatants (assumed to be

homogeneous) on each side is a nonnegative integer. Furthermore, the number

of live combatants on each side is a random variable, since we are now

assuming that casualties occur randomly over time.

Following our notational convention of denoting random variables

by upper-case letters and their realizations by the corresponding lower-case

letters, we will denote the X force level at time t, a random variable

(frequently abbreviated r.v.), as M(t), with its realization at time t

being denoted as m. Corresponding quantities for the Y forces will be denoted

as N(t) and n. Initially in the battle (i.e. at t = 0) there are m0  X

combatants and n0  Y combatancs with certainty, i.e. with probability one.

All these quantities M, N, m, and n are restricted to be nonnegative integers.

Hence, the random variable M(t) can take on the value m - 0,1,2,..., mo, each

with some positive probability in a fight to the finish; and similarly for N(t).

Our simple combat situation is shown diagrammatically in Figure 4.3. Here

G - G(t,m,n) denotes the casualty rate of the X force, since we are assuming

no replacements and withdrawals (see Section 4.2), and similarly for H- H(t,m,n).

Corresponding to the two deterministic differential equations (4.2.1)

is a system of many more differential-difference equations.6 Furthermore, this

system of equations is actually influenced by the engagement-termination model

adopted for the battle. For simplicity, we will first consider a fight to the

finish (i.e. a fight that lasts until the annihilation of one side or the other),

4 and then we will subsequently consider the equations for a fixed-force-level-
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!~ 0~, m, n)

M t), a random N (t ), a random
variable with variable with
realization realization

m n

i H (t, m, n)

Figure 4.3. Homogeneous-force combat modelled as a continuous-

parameter MARKOV chain. Here M(t), a random variable

(r.v.), denotes the number of X combatants at

time t; and N(t), a r.v., denotes the corresponding

number for Y. The combat depicted here is the

stochastic analogue of that shown in Figure 4.1

(i.e. combat with no replacements and no withdrawals).
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breakpoint battle (see Section 2.8). Thus, we now turn to the development of

7
the equations (here the so-called forward KOLMOGOROV equations ) that govern

the evolution of the probability distribution for the number of survivors; some

people call this vector of state probabilities the state-probability vector.

It is more convenient, however, for us to consider the evolution of

individual components of the state-probability vector than to consider the

vector itself. Let us therefore denote an individual component of state-

probability vector as follows

M(t)-m M(0)um

P~t~~n;~mOnO), PN(t)-n IN(0)-n 0J

where P[A - a I denotes the probability that a random event A has the out-

come a1V For notational convenience, we will denote P(t,m,n;0,m0 ,n0 ) simply

as P(t,m,n). In other words, we have

FM(t)-m M(0)-m 0

P(t,m,n) - P . (4.3.1)

[N(t)-n N(O)-no0

We will now briefly focus on the assumed attrition-rates of our model.

In the deterministic model (4.2.1) with no replacements and withdrawals, G

is called the attrition rate of the entire X force, since (-dx/dt) - G(t,x,y).

In our MARKOV-chain model, the stochastic analogue of (4.2.1), we analogously

have
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- -.---- rate of attrition for th entre fo-e

C(t,m,n) - rate of attrition for the entire X force,

L H(t,m,n) - rate of attrition for the entire Y force.

Then, as one usually assumes (e.g. see KARLIN [44, p. 189]), we assume that

P one X casualty during interval

[of time from t to t + At - G(t,m,n)6t ,

(4.3.2)

r [one Y casualty during interval 1

Lof time from t to t + At - H(t,m,n)At

We further assume that during any short interval of time of length At the

probability of more than one casualty (either on the same side or on both

sides) is negligible. In mathematical terms we express this assumption as

Lmore than one casualty during interval] O(At))

where O(x) denotes dependence on x such that limx 0 O(x)/x- CONSTANT,

i.e. lim 0 O(x 2)/x - 0.

The battle-termination conditions are the final ingredient to our

combat model and are incorporated into the model in the following way.

Corresponding to the assumption made for the deterministic model that dx/dt - 0

and dy/dt - 0 when x a 0 or y - 0 is the assumption that no more casualties

can occur when m - 0 or n - 0. The quantification of this assumption in-

corporates the battle-termination conditions into our combat model. Thus,

when m - 0 or n - 0, the combat state is absorbing, and the dynamics of
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)
our stochastic combat model must be modified. We will see how this is done

below. Accordingly, we will first consider the case in which 0 < m < m0

and 0 < n < n

After these preliminaries, we will now turn to the development of

the forward KOLMOGOROV equations, which desc:ribe the probabilistic evolution

of the. state of each of our two opposing coubat systems. Let us first observe

that the initial conditions for the forward KOLMOGOROV equations are given by

I for ra M m 0 and n - not

P(O,m,n) - (4.3.4)

0 otherwise,

since we have assumed that there are initially m0  X combatants and no Y

combatants with certainty. Also, since we are assuming that there are no

replacements, it is impossible to have m > m0  or n > no0 , Thus, we conclude

that

P(t,m,n) = C for m > m0  or n > n 0  (4.3.5)

This result will allow us to simplify the development of the forward KOLMOGOROV

equations by allowing battle states (m,n) with m - m0  or n - no to be

considered as special cases of those for 0 < m < m0  and 0 < n < no. We

now consider the development of these basic equations for this latter general

case (slightly different developments are required when m = 0 or n - 0

(see below)).

Thus, for 0 < m < m0  and 0 < n < no, the usual conditional prob-

ability arguments (e.g. see FELLER [25, pp. 407-408])' yield
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-Mt + At)- mM

P N(t + At) - n

FM(t)W - M no casualty occurred on either side in
"P LN(t) nt P Linterval of time from t to t + At

rM )- m+1 1 [one X casualty occurred in intervall

LN(t) -n of time from t to t + At

[M(t) - m Fone Y casualty occurred in intervall

N(t) -n+ " Pof time from t to t + At

E combatants in some] [more than one casualty occurred 1(4.3.6)
[other state at t J Lin inteival of time from t to t + At

since if we find ourselves (with some probability) at battle state (m,n) at

time t + At, then one of the following four mutually exclusive events must

have occurred (see Figure 4.4.):

1. we were in battle state (m,n) at time t and no casualty

occurred in the time interval (t, t + At).

2. we were in battle state (m+l, n) at time t and one X

casualty occurred in the time interval (t, t + At),

3. we were in battle state (m, n+l) at time t and one Y

casualty occurred in the time interval (t, t + At),

4. we were in some other battle state at time t and more than

one casualty occurred in the time interval (t, t + At).
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Here the MARKOV assumption tha'c the future depends only on the present, i.e.

it is independent of past history (recall Definition 4.1), allows us to write,

for example,

14(t) - m+1 and N(t) - n and one X casualty

[occurred in interval of time from t to t + At

FM(t) - M+e X casualty occurred in interval

IN(t) - n of tm from t to t + At]

where for notational convenience we have denoted, for example,

P I~t - I()-m simply as P .Mt Considering (4.3.2),

[N(t) - n IN(0) - n0J [N(t) - n

we observe that

[ [no casualty occurred on either side
ilin interval of time from t to t + a t

- {i - G(t,mr,n)at},{l - H(t,m,n)6t}

I - {G(t,m,n) + H(t,m,n)}At + O((At) 2 ) . (4.3.7)

Next, ignoring8 terms 0((A:)2), we obtain from (4.3.6)

P(t + At,m,n) - P(t,m,n){l - G(t,m,n)Lt - H(t,m,n)At} + P(t,mil,n) G(t,m+l,n)At

+ P(t,m,n+l) H(t,m,n+l)At, (4.3.8)

where we have made use of (4.3.l), (4.3.2), (4.3.5), and (4.3.7). Writing

(4.3.8) as
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P(t + Atmn) - P(tm,n)
At

- G(t,m+l,n) P(t,m+l,n) + H(tm,n+l) P(t,m,n+l)

- {G(t,m,n) + H(t,m,n)} P(t,m,n)

and letting At ÷ 0, we obtain the forward KOLMOGOROV equations for the

(forward) probabilistic evolution of the probability distribution over the

numbers of survivors on both sides in our stochastic battle. Thus, we obtain

for 0 < m < mO and 0 < n < n0

d_• (t,m,n) = G(t,m+l,n) P(tm+l,n) + H(t,m,n+l) P(t,m,n+l)dt

- {G(t,m,n) + H(t,m,n)} P(t,m,n), (4.3.9)

with initial conditions (4.3.4) at t - 0. Here the reader should keep in
9

mind the result (4.3.5). This LANCHESTER-type stochastic process is called

(appropriately enough) a "pure death" process, since we can only have

"downward" state transitions from (m+l,n) to (m,n) or from (m,n+l)

to (m,n). However, the above forward KOLMOGOROV equations only apply for

m and n > 0. On the boundary of the state space they take a slightly

different form.

On the boundary of the state space where m - 0 or n - 0, no more

casualties can occur, and the above developments must be slightly modified.

Thus, for m - 0 and 0 < a <_ n
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-0
E [M(t + At) -0

N(t+ At) + n

M(t) -0 M(t) - Lone X casualty occurred in

N(t) - n N(t) - n interval of time from t to t + At

+ P combatants in some] .P [more than one casualty occurred in 1

[other state at t J Iinterval of time from t to t + Atj

since if we find ourselves (with some probability) at battle state (m,n) at

time t + At, then one of the following three mutually exclusive events must

have occurred

1. we were in battle state (O,n) at time t and with certainty

no casualties occurred in the time interval (t, t + At),

2. we were in battle state (l,n) at time t and one X casualty

occurred in the time interval (t, t + At),

3. we were in some other battle state at time t and more than

one casualty occurred in the time interval (t, t + At).

Here the first term on the right-hand side of the above equation of total

probability is a reflection of the battle-termination model, i.e. fixed-force-

level-breakpoint battle. The usual arguments based on passing to the limit

as At ÷0 now yield that for n- 0 and 0 < n < n0
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dP (t,O,n) -G(t,l,n) P(t,l,n) (4.3.10)
dt

Similarly, we find that for 0 < m <. m0  and n 0

idP
dlP (t,m,0) , H(t,m,l) P(t,m,l) . (4.3.11)
dt

"Tinally, the assumption that it is impossible for more than one casualty at

a time to occur, cf. (4.3.3), yields that it is impossible to reach the state

(0,0), and hence

P(t,0,0) - 0 (4.3.12)

The system of forward KOLMOGOROV equations (4.3.9) through (4.3.12)

with initial conditions (4.3.4) is a stochastic version (otbers are possible;

see Footnote 2) of the deterministic combat-attrition model (4.2.1) with

battle-te-mination conditions that dx/dt and dy/dr - 0 wben either x - 0

or y = 0. The reader should keep in mind that the result (4.3.5) applies to

(4.3.9) so that the forward KOLMOGOROV equations take a special form when

m - m0  and n - no. Consequently, the reader should think of (4.3.9) (and

hence the entire system) as an "abbreviated" form of the stochastic combat

equations. Thus, although it may sometimes be convenient for one to consider

this abbreviated form of the forward KOLMOGOROV equations (4.3.9) through

(4.3112), the reader should note that written out in full the forward

KOLMOGOROV equations are
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for mn-rn0  and n n 0

dP (t,rno,n0) *-{G(t,rn 0,n0 ) + H(t,mrn0,i) P(t,rOn0,n)l (4.3.13)

for 0 < m <m. and n -n.

- G(t,rn,n 0  + H(t,m,n 0) P(t,m,n 0) ,(4.3.14)

for m -rn and 0 <n <no

dP
T (t,m 0 n) - 1(t,m0,n+l) P(t,rn0 n+l)

-{G(t,m,,n) + H(t,mn.,n)} P(t,%.0 n), (4.3.15)

for 0 < m <rn and 0(<n <n.

dP
T- (t,rn,n) -G(t,rn+l,n) P(t,rn+l,n) + H(t,rn,n+1) P(t,rn,n+1)

-{G(t,rn,n) + H(t,m,n)) P(t,rn,n), (4.3.16)

for m -0 and 0 <n< n
-0

dP
Tt (t,0~n) -G(t,1~n) P(t,1~n) ,(4.3.17)
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for 0<m<mo and n-0

S(t,m,O) * H(t,m,l) P(t,m,1), (4.3.18)dt

and for m- 0 and n- 0

P(t,0,O) 0 for all t > 0 , (4.3.19)

with initial conditions (4.3.4). The reader should observe the symmetry

exhibited by the forward equations (4.3.13) through (4.3.15) and (4.3.17)

through (4.3.19) on symmetric portions of the szate-space boundary where

m = 0 or m0 and/or n - 0 or nn.

Let us now summarize the assumptions made for the development of the

above equations for this MARKOU-type attrition process:

(Al) the attr.tior process depends on the current system state

and time, but it does not depend on past history,

[one X casualty during interval
(A2) P [of time from t to t + At G(t,m,n)At,

Sand Fone Y casualty during interval
P [of time from t to r + At H(t,m,n)t,

(A3 nor: than one casualty during (A2)- Linterval of time from t to t. + Ad

(A) no more casualties can occur once m =0 or n 0.
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The reader should observe that assumptions (Al) through (A3) pertain to the

casualty process, while (A4) pertains to the battle-termination process. The

significant thing to note is that our stochastic combat model integrates

together both an attrition-process model and also a battle-termination-process

model.

There are many different other battle-termination models (e.g. see

Chapter 3) that could be used in our stochastic combat model. We will only

consider one of them here, though: we will assume that the battle terminates

,when one side's force level reaches a fixed "breakpoint" value (fixed-force-

level-breakpoint battle) (see Sections 3.2 and 6.6). It follows that the

force level of the other side (i.e. the winner) will always have been above

its breakpoint value.

For such a fixed-force-level-breakpoint battle, the abuve forward

KOLMOGOROV equations take a slightly different form on the boundary of the

state space, which itself is different. For the deterministic model we

assume that dx/dt - 0 and dy/dt - 0 when x -BP or y - yBP' where

X denotes X's breakpoint force level and yP denotes that of Y. The

corresponding assumption for the stochastic model is that no more casualties

can occur when m - mBP or n - nP. Here denotes X's fixed-force-

level-breakpoint for this MARKOV-chain model and similarly for nBP. Making

the standard assumptions (Al) through (A3) and

(A4') no more casualties can occur once m - or n - BP'

we may develop the following forward KOLMOGOROV equations for such a battle
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for rn-rn and n-n 0

dP (..0
dt(t,rn0,n0) - -G~t,rn 0 ,n0, H(tvrn0,n0)) P~t~m,rn03 0 (.320

for 0O< B <rnm< o and n n.

dP
dt(t,m,n) G(t,rn4-,n) P(t,rn+1,n)

-{G(t,rn,n) + H(t,rn,n0) P(t,m,n0) (4.3.21)

for mn-rn and 0 <fBp < n< no

dP (t,mn~n) -H(t,rn 0,n+1) P(t,m0 ,n+1)

-{G(t~m0,n) + H(t,m0 1n)l P(tpmo,n), (4.3.22)

for nBp < m <mo and nB < <n

dP (t,m,n) -G(t,rn+1,n) P(t,n*1,n) + H(t,rn,n+l) P(t,rn,n+1)
dt

-{G(t,rn,n) + H(t,rn,n)} P(t,rn,n), (4.3.23)

for m mmr and n BP < <n

TP (t,mrnB,n) G(t,mrnB+1,n) P(t,rnBp+l,n) ,(4.3.24)

411



for mBp<m<m0  and n- nBP

dP
dt• (t,m,nBp) - H(tm,nBP + i) P(t,m,nBP + 1), (4.3.25)

and for m - mBp and n - nBP

P(t,mBP,nBP) - 0 for all t > 0, (4.3.26)

with initial conditions (4.3.4). This system of forward KOLMOGOROV equations

(4.3.20) through (4.3.26) with initial conditions (4.3.4) is a stochastic

version of the deterministic combat-attrition model (4.2.1) with battle-

termination conditions that dx/dt and dy/dt - 0 when either x - xBp

or y - BPy A fight-to-the-finish is a special case of these equations.

Thus, when mBp - 0 and nBp - 0 in equations (4.3.20) through (4.3.26)

this model reduces to equations (4.3.13) through (4.3.19).
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4.4. Information to be Obtained from the Model.

The above forward KOLMOGOROV equations (4.3.13) through (4.3.19)

with initial conditions (4.3.4) comprise our formulation of a stochastic

analogue of the deterministic LANCHESTER-type combat model (4.2.1). The

analysis of such a model should be guided by what information one would

like to obtain from the model. Conversely, the analytical results that

have appeared in the literature are a reflection of such considerations

and may therefore be placed in proper perspective by considering the

question of what information to extract from the model. Furthermore, such

questions are equally valuable for guiding computational work in those cases

in which the model is not particularly tractable analytically.

What information should we seek to obtain from a stochastic

combat model? Although the specific information to extract from any

combat model depends, of course, on the purpose of the OR study using

that model, one can anticipate such demands by considering the questions

shown in Table 4.1. Analogous questions for a deterministic combat

model are given in Table 6.1 (see Section 6.3). Basically, we are

interested in what will happen in the battle according to the stochastic

model and how this compares with that according to the corresponding

deterministic model. In fact, because it is relatively so much more

difficult (recall that Footnote 6 has told us that there are many more

equations for the stochastic model) to extract such information from

stochastic combat models, a reasonable analysis &Zrategy appears to be

for one to become familiar with the dynamics of the deterministic model

and how those of a corresponding stochastic model differ (both in terms

of the mean path of battle and also in terms of stochastic variations

about this).
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Table 4.1. Information to Extract from Stochastic Combat Model.

(Qi) What is the probability that a given side will "win" the engagement?

Be, aniqiilated?

(Q2) How does the probability distribution of the number of survivors

on each side change during the course of the battle? How do the

average force levels change over time in the battle? What is the

variability in battle outcomes about these averages?

(Q3) What is the probability distribution of the numbers of final

survivors? What are the expected numbers of final survivors?

(Q4) How does a side's probability of winning vary with changes in the

initial force ratio?

(Q5) What is the probability distribution of the lengtn of the battle?

How long will the battle last on the average?

(Q6 ) How does the battle's outcome for the stochastic combat model

compare to that of a corresponding deterministic model?

414



In the remainder of this chapter we will consider answering

the questions shown in Table 4.1. One important-question, however, that

we will not consider is question (Q5 ). The interested reader can find

results on the moments of the distribution of the length of battle in

SPRINGALL's Ph.D. thesis [77, pp. 50-54].
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4.5. V eriftcation that P(tmn) Is a Probability Mass Function.

It will he instructive for us to verify that the solution

P(t,m,n) to the forward KOLMOGOROV equations is indeed a probability

* distribution. This development is particularly significant because it

will indicate how we may compute the moments of the joint probability

distribution of the number of survivors on each side.

If P(t,m,n) is a probability mass function, then we must have

Fi i m no
m0 n0

SP(t,m,n) 1 for all t > 0. (4.5.1)
mmm:BP n=nBP

o , n0
Let us denote [ • P(t,m,n) as Z(t). It suffices to show that

inmBP nn'BP

I

d(t t) 0 for all t > 0, (4. .5.2)

with

Z(O) - 1 . (4.5.3)

The latter condition (4.5.3) readily follows from the definition of E(t)

and (4.3.4). Also, from the definition of E(t) we obtain

d n dPT (t) (t,m,n) . (4.5.4)
mmuBp nwnBP

Substituting (4.3.13) through (4.3.19) into (4.5.4) and simplifying,

we obtain

ii
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m0-1 n n

d-E ( I) I • G(t,m+l,n) P(t,m+l,n)

m- n-inBp+l

dt mum BP nnBP+

1 Z I I G(t,m,n) P(t,m,n)
im'mBp +1 nunBP +1

mo {no- 1
MO ( 0-1

+ . H(t,m,n+l) P(t,m,n+l)
mumr +1 .nun

BP BP

MOp nn0

1 I H(t,m,n) P(t,m,n) . (4.5,5)
mrmBP+l nun BP+

Transforming indices in two of the summations in (4.4.5.), we obtain,

rn MO n0
T (t) J" 1 +1 nn1+ G(t,j,n) P(t,j,n)

m 0 n° }

tG(t,m,n) P(t,m,n)

mum +1 n-n +1

BP BP

+ n I H(t,m,k) P(t,m,k)
"" +1mBp+I kn BP+

I 0 H(t,m,n) P(t,m,n)

mmBP+l nn BP+l

whence follows (5.4.2) and hence (4.5.1).
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In a similar fashion, one can show that

d
dt E[g(M) h(N)] -

mo no0
S {g(m)-g(m-l)} h(n) C(t,m,n) P(t,m,n)

m'mBp+l n-n Bp+l

n
mr; 0

- g(m) I {h(n)- h(n-l)} H(t,m,n) P(t,m,n) . (4.5.6)
"mmBP+l n-n BP+l

This result (4.5.6) is significant, since it allows us to readily compute

the average force levels and their variabilities for our LANCHESTER-type

MARKOV-chain combat model (4.3.20) through (4.3.26) with initial conditions

(4.3.4). We observe that (4.5.2) corresponds to the special case of

(4.5.6) in which g(m) - 1 and h(n) - 1.

The development of (4.5.6) is as follows. First we observe that

m0 0 o d
dE[g(M) h(N)] - g(m) h(n) d (t,m,n) (4.5.7)

mnmBp n=nBP

Substituting (4.3.20) through (4.3.26) into (4.5.7) and simplifying, we

obtain
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d
dt E[g(M) h(N)]
dt

g(m) h(n) G(t,m+l,n) P(t,m+l,n)"mrmBP n-n Bp+1

in
0o 0

- •. g(m) ). h(n) G(t,mn) P(t,m,n)
im mBP+l nmnBP+1

rn0  n-i

I g(m) I h(n) H(t,m,n4-1) P(t,m,n+l)
rrmWmBP+1 n- nBP

U'0  no

I g(m) I h(n) H(t,m,n) P(t,m,n). (4.5.8)
minmB +l nmBp+1

BP BP

Transforming indices in two of the summations in (4.5.8), we obtain

d
dt E[g(M) h(N)]

S~m 0  n

S g(J-1) • ,h(n) G(t,j,n) P(t,j,n)

J-mBPp+1 n-n BP+i

m 0 no

- I g(m) I h(n) G(t,m,n) P(t,m,n)
mumBP+1 n=nBP+1

+ I g(m) I h(k-i) H(t,m,k) P(t,m,k)
mrmBp+1 k-n +1

BP BP

m0 n
0 0

- • g(m) • h(n) H(t,m,n) P(t,m,n),
fm~Bp+1 n=n Bp+

whence follows (4.5.6).
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4.6. The Distribution of Times Between Casualties for the General Model.

The distribution of times between casualties isa basic ingredient

for much analysis of our MARKOV-chain model, and it therefore seems

appropriate for us to develop it for the general model of Section 4.3.

We begin by developing the probability that no losses occur during a

time-interval of length t. For m - M0 and n - no, we have from

(4.3.9) [equivalently, (4.3.13)]

dP (t,mo,n 0 ) = - (G(t,m0 ,n 0 ) + H(t,mo,n 0 )} P(t,m0 ,n 0 ), (4.6.1)

with initial condition P(O,mo,nO) -0.

The above differential equation (4.6.1) is readily integrated to

yield

t
P(t,m0 ,nO) - exp{- f [G(s,m0 ,n 0 ) + H(s,m0 ,no)]ds} . (4.6.2)

0

We finally observe that

P[no casualty by time t] = P(t,m0 , no) (4.6.3)

Now let T1 denote the time at whizh the first casualty occurs

(a r.v.). Since the battle begins at t - 0, T1  is also the length of

time until the occurrence of the first casualty1 in the battle. Then
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P(T 1 > t] = P[no casualty by time t]

and the distribution function (d.f.) for the time until the first

casualty FT,(t) - P[TI <_ t] is given by
T .

! ~P[T1 <_ t] - I - P[T1 > Q]

or

t
F t) - 1 - exp{- f [G(s,m 0 ,n 0 )+H(s,mo,no)]ds} (4.6.4)

The average time until the first casualty ti W E[T 1  f t f T(t)dt,

where fT(t) - dFTl/dt denotes the probability density function (p.d.f.)

for T1 , is given by

t
tj 1  f tC(t) exp{- f Xc(s)dsldt , (4.6.5)

0 0

where XC (t) - C(t,mo,nO) + H(t,mo,n0) denotes the total casualty rate

for both sides. When XC(t) is constant, say XC(t) - X, then t, W l/X,

which is a key relation for modelling LANCHESTER attrition-rate coefficients

(see Sections 4.7 and 5.1).

The above considerations are readily generalized to apply to

the occurrence of any casualty in such a battle. Accordingly, we let

T m9n denote the time between the occurrences of two successive casualties,BC

measured from the occurrence of the last casualty, which took the system

to state (m,n) (a r.v.). Then for mBP < m < m0  and nBP < n < n0
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P[Tc M < tilast casualty at to]

t o+t
. I exp( f [G(s,m,n) + H(s,m,n)]ds) , (4.6.6)

t 0

where to -0 when m - m0 and n - no. Here we must consider this

conditional distribution, since the X and Y attrition rates G and H

change over time [for fixed (m,n)] so that the d.f. for Tmn depends on

exactly when the last casualty occurred.

We will also let TX denote the time until the next X casualty,

measured from the occurrence of the last casualty which took the system

to state (m,n) (a r.v.), and we will similarly define the time until

the next Y casualty Tmyn. The assumed MARKOV property (i.e. see
y

assumption (Al) above in Section 4.3) implies that the random variables

T-mn and Tmyn are independent. It is easily shown thaLX y

P[TX'n < tilast casualty at to]x 0

t 0+t

- 1 - exp(- f G(s,m,n)ds} , (4.6.7)
tO

and similarly for PTm,n < tllast casualty at t 0 ] We also note the

following conditional. expectation

E[TM'nllast casualty at to]
X0

t t+t

" f tG(t 0 + L-,m,n) exp{- f G(s,m,n)ds)dt (4.6.8)

0 0

and similarly for E[Ty nlast asualty at t 0j.
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I*n aAn--m.n

The random variables T and Tym"' are particularly important,X Y

since we tay use our knowledge about them to compute the probability

that the next casualty will be, for example, an X casualty when it

occurs. wet us now develop this probability, which plays a key role in

developing the probability of winning. We first observe that

P[X casualtylcasualty occurs (previous one at tO)]

P[Txm,n < Tymnlnlast casualty at t (4.6.9)

Since the continuous random variables Tmn and M are independent
X y

with known distribution functions, we know from Appendix B that

P[TX'n < Ty'njlast casualty at to]

00

f F (s) f (s) ds, '4.6.10)
0 T•,n TM,

x Y

wIere F (t) denotes P[TX'n < tilast casalty at tO] and
Tm~n X -0TX

f (t) denotes the p.d.f. for mn Thus, we find that
m,n YTy

P[X casualtylcasualty occurs (previous one at t 0 )]
to+S

00 t0+
1 H(t 0+smn) exp{- f [G(r,m,n)+H(r,m,n)]drlds . (4.6.11)
0 t

0

For stationary transition probabilities, i.e. G and H independent of t,

the latter formula simplifies considerably.
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4.7. Thk Special Case of Stationary Transition Probabilities.

iWe will now consider the special case of battles in whi'.h the total-

force attrition rates depend only on the force levels and not explicitly on

time. In oth4r words, we will consider battles with stationary transition

2robabilitiee represented by time-independent 4tt'ýition rates

iG(t,m,n) - A(m,n) - rate of attrition of X force,
(4.7.1)

H(t,m.n) - B(%,n) - rate of attrition of Y Zorce.

With A few important excepticns (e.g. some general results in

Sections 4.12 and 4.14 below), we will considar only this special. case

in the remainder of this chapter. It is the only case in which anaiytical

results for the questions posed in Section 4.4 are available (and even

then results are fragmentary), In particular, it is essentially the only

case for which analytical results for the state probabilities (i.e.

distribution of the numbers of survivors) and t',e probability of winning

have been obtained. In Chapter 6 we show how dititcult it is to obtain

analytical results for the corresponding determi-stic LANCHESTER-type

equaLions with time-dependent attrition-rate coefficients. Consequently,

since there afe many more equations for the stochastic model (recall

Footnote 6), the reader should not be surprised that, except for results

like (4.6.2), general analytical results do not exist for stochastic

battles with time-dependent attricion-rate coefficients.

Let us now write out in full the forward KOLMOGOROV equations for

our battle with stationary transition probabilities. As we saw in Section

4.3 above, the exact form of the complete system is influenced by the
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battle-termination model. For the sake of concreteness, we will consider

a fixed-2orce-level-breakpoint battle, with (as usual) mEp denoting X's

breakpoint and nBP denoting Y's breakpoint. In this case the forward

KOLMOGOROV equations (written out in full) take the following form

for m -mo and n - no

dP= (t,Li 0,n 0 ) - -{A(m 0 ,n 0 ) + B(m0 ,n0 )} P(t,m0 ,n 0 ), (4.7.2)

* for o <_mBp < m< mo and n no

dP

- A(m+l,n 0 ) P(t,m+l,n 0 ) - {A(m,n 0 )+B(m,n 0 )1 P(t,m,n 0 ) , (4.7.3)

for m =rm0  and 0 <.n < n < no
--- BP

dl'- (t,mon)

- B(m0,n+l) P(tm 0 ,n+l) - {A(m 0'n) +B(m0,n)} P(tm0 ,n) ' (4.7.4)

"for mBP < m < mo and nBp < n < no

dl' (tm,n) - A(m+l,n) P(t,m+l,n) + B(m,n+l) P(t,mn+l)s ~ i dt

- {A(m,n) + B(m,n)} P(t,m,n)}, (4.7.5)
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for m m.fP and nBP < n < n

(t ,n)- A(m + l,n) P(t,m +1,n), (4.7.6)
dt PBP BP

for mBp < m m0  and n n

dPd nn) B(m'np+1) P(tmnBp+l) (4.7.7)dt 'BP BP B

and for m mrB and n nBp

P(t,mBp,nBp) - 0 , (4.7.8)

with initial conditions (4.3.4). Since (4.7.8) always holds, we will not

write it out explicitly when we consider special cases of (4.7.2)

through (4.7.8).

The analytical extraction of information from the above general

model with stationary transition probabilities about the dynamics of

10combat is still too difficult to contemplate. It corresponds to obtaining

analytical results from a deterministic model like (5.1.1), and we show

elsewhere in this monograph that even this is impossible for such a

simpler deterministic model. Returning to the above stochastic model,

we note that to obtain the state-probability vector (i.e. probability

distributions of the number of survivors on each side, which may be
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considered to be a basic ingredient of computing such results)

one must solve the system of equations (4.7.2) through11 (4.7.7)

with initial conditiois (4.3.4). This may be done by, for example,

recursively solving the equations by elementary integration means

(see Example 4.7.1 below). Although partial results are readily

obtained, a general solution for P(t,m,n) that holds for all values

of m and n has only been obtained in a few special cases. More-

over, when m and n are large, such an analytical solution becomes

too complicated to be of any direct practical use. Nevertheless,

some important partial results are easily obtained for the general

model.

For time-independent attrition rates, the results of Section 4.6

simplify considerably. We find that

P[no casualty by time t] exp[-{A(m0 ,nO)+B(m0 ,nO)}t] . (4.7.9)

The times between casualties are exponentially distributed (but state

dependent) with

P[Tm'n < t] - I - exp[-{A(m,n) + B(m,n)}t] , (4.7.10)
BC -

_m,n
where TmBn denotes the time between the occurrences of two casualties

(see Section 4.6 for a precise definition of this and the following random

variables Tm,n and Tmyn). Considering these random variables, we
x Y

observe that we no longer have to condition on when the last casualty
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has occurred, since the attrition rates A and B do not explicitly

depend on time. The expected time between casualties is given by

ETmn] -4.71 1
BC A(mn) + B(n_)(71

Similarly, the time until the occurrence of the next X casualty T m,

x
is also exponentially distributed (but state dependent) with

P(mn < tj A(m,n)tp[ n t] -I - e-Am (4.7.12)

an iial o m,n _m,nan

and similarly for Ty n We recall that the random variables TmX and

Tm,n m,n
T are independent. The expected value of Tx is given by

E[Tinn], - (4.7.13)S A(m,n)

and similarly for Tm'n. Finally, we find that the probability that the

next casualty is, for example, an X casualty, which we know is given by
_n m n.

PIIX casualtyl casualty occurs] - P[Tm'n < y Jreduces to [cf. (4.6.11)

above]

P[X casualtyicasualty occurs] A(mn) (4.7.14)
A(m,n) + B(m,n)

Again, the time of occurrence of the last casualty does not influence this

probability.

Returning now to the state-probability vector, we note that

results (i.e. a general solution for the complete state-probability vector)

have appeared in the literature for the following special cases of the
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attrition rates A and B (see Section 2.12 for a diLscussion of the

physical circumstances hypothesized to yield such attrition processes

and also an explanation of notation):

,a) FIF stochastic LANCHESTER-type attrition process

A(m,n) - an
(4.7.15)

B(m,n) - bm

(b) FTIFT stochastic LANCHESTER-type attriton process

A(m,n) n amn ,
(4.7.16)

B(m,n) - bn ,(

(c) (F+ T)I(F+ T) stochastic LANCHESTER-type attrition process

A(m,n) - Om + an
(4.7.17)

B(m,n) - bm + an

A general expression for P(t,m,n), holding for all values of m and n,

has only been obtained for the FTIFT stochastic LANCHESTER-type

attriton process (see CLARK [16]) and for the (F+T)I(F+ T) process

for the special case in which a + am b + a (see ISBELL and MARLCW

[401). Other results (e.g. probability of winning) have appeared for

the FIFT process:

(d) FIFT stochasti'c LANCHESTER-type attrition process

A(m,n) - an
(4.7.18)

B(m,n) - bmn.
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Example 4.7.i. For the FIF stochastic LANCHESTER--type attrition process

with time-indeFzndnt attrition-zate coefficients, the substitution of

(4.7.15) into the forward KOLMOGOROV equations (4.7.2) through (4.7.7)

yields

for m - m0 and n- no

L; dri • (t'mo no " - (anO + bmO P (t 'mo 'n0) ' (4.7.19)

for 0 m8P N Lu wO and n no

dPd. (t,m,no) - anoP(t,m+l,no) 0 (an0 + bm) P(tm,n0 ) (4.7.20)

dP
Sfor m -m0 and 0 <_ n BP < n < no

dP (t,mOn) - bm0 P(t,mon+l) - (an + bm) P(t,in,n) , (4.7.21)

for m BP < m < m0 and nBP < n < no

dPd (t,m,n) -anP(t,m+l,n) + bmP(t,m,n+l) - (an+ bin) P(t,m,n) (4.7.22)
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for m -m. and nB < n < n

d3P BP.7.23
dP (tmBpn) anP(t,mBp+ l,n), (4.7.23)

for mB( < m < m0  and n - nBP

dtdP (t,m'na) bmP(t,m,n p+ ), (4.7.ý4)

with initial conditions (4.3.4). Recursively solving the above equations

(4.7.19) through (4.7.24) "from the top down," one obtains for

mBP < m m0

P(t(m.n0) __2 - expl(bm0 + an)t (4.7.25)

where J m0 -m. Similarly, we find that for n B n < no

bm Ce at K
P(t,mo,n) e -- - 1) exp[-(bm0 + ano)t] (4.7.26)

where K - n 0 -n. Further results become fantastically complex and are

discussed in Section 4.9 below. Let us now, however, indicate how

(4.7.25) may be obtained by recursively solving (4.7.19) and (4.7.20) "from

the top down" by elementary means.
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Figute 4.5 schematically shows that analytical calculation of

Ip(t,m,n) requires previous determination of p(t,m+l~n) and P(tm,n+l)

[cf. (4.7.2) through (4.7.7) or (4.7.19) through (4.7.24)]. This "from-

the-top-down" sequence of integration of the forward KOLMOGOROV equations

must be followed, of course, for any battle dynamics [recall (4.3.20)

through (4.3.25)]. Returning to the specifics of the FIF stochastic

LANCIIESTER-type attrition process, we see that equation (4.7.19) with

rbe initial condition P(0,mo,nO) 1 1 is readily integrated to yield

P(t,m0 ,nO) exp[-(bm0 + an0 )t] " (4.7.27)

We observe that (4.7.27) is just a special case of (4.6.2) [see also

(4.7.9)]. For m- m0- 1 and n no, equation (4.7.20) with (4.7.27)

substituted into it reads

d+ {b(mol) + ano}p an0 exp[-(bm0 + an0 )t] (4.7.28)
dt

with initial condition

p(O) 0 0

where for convenience we have denoted P(t,m0-1,nO) simply as p(t).

Multiplying both sides of (4.7.28) by the integrating factor

exp [b(m0 -1) + an0 ]t , we find that

d (p(t) exp([b(mo-l) + ano]t)} - ane bt

Tdt
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BATTLE STATE BATTLE STATE

(m+l,n) (m,n+l)

BATTLE STATE
S(m, n)

Figure 4.5. Dependence of the calculation of the component

P(t,m,n) of the state-probability vector for

battle state (m,n) on the previous determination

of those for other battle states.
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whence

P(t,mo0 l,no) a(n) (ebt l)exp[-(bmo+ano)t]" (4.7.29)

Using (4.7.29), we may solve (4.7.20) for P(t,mo-2,no), whence follows

(4.7.25) by repeated application of the above procedure.
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4.8. An Important Tie-In to the Modelling of LANCHESTER Attrition-Rate

Coefficients.

When the attrition rates in a battle are independent of time,

computation of the average time for the occurrence of, for example, an

X casualty suggests that X's loss rate be modelled by the reciprocal

of the expected time for the Y force to kill an X target. This simple

result is quite important, since it forms the conceptual basis for the

analytical modelling of LANCHESTER attriton-rate coefficients (see

Chapter 5, especially Section 5.1). Because of its great importance,

let vs develop (5.1.3), even though it is implicit in previous results

of Section 4.7.

For conformance with notation used elsewhere in this book, we

will denote TX,. simply as Ty. Thus, T represents the time (a r.v.)

for the entire Y force to kill a single X combatant in our stochastic

battle in which casualties occur randomly over time. This time is measured

from the occurrence of the last casualty in the battle. Likewise, we

will denote Tyn simply as Tyx, the time for the entire X force to

kill a single Y combatant. For battles with stationary transition

probabilities (i.e. the attrition rates depend only on the force levels

and not explicitly on time; cf. Section 4.7), the average time for, for

example, the Y force to kill an X target takes a particularly

enlightning form. First of all, we have shown that TXy is exponentially

distributed, with

P[Txy < t] - 1 - e-(nt, (4.8.1)
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and similarly for TX. Here the distribution function for Ty does

not depend on to (cf. (4.6.7)], since the attrition rate A does not

explicitly contain time t. It follows that [cf. (4.7.13)]

1[T (4.8.2)
E(ri Amn)

and we similarly find that

E[Tyx] " B(m,n) (4.8.3)

In other words, the reciprocal of the attrition rate is equal to

the expected time to kill an enemy combatant. Conversely, the expected

time to kill an enemy combatant may be usc J to predict a numerical value

for the corresponding attrition rate, and thus the relations (4.8.2) and

(4.8.3) form the conceptual basia for the modelling of LANCHESTER

attrition-rate coefficients (see Chapter 5 for further details). They

suggest the following "estimators" for the X and Y loss rates

A --- , aid B -- , (4.8.4)
tx[ tyx

where A denotes an estimate of the X loss rate, XY denotes the

average time for the Y force to destroy a single X combatant, and

similarly for B and t

In particular, for the FIF LANCHESTER-type attrition process,

we have A(m,n) - an and B(m,n) - bm, and we may write
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E[T-' and b E(T - (4.8.5)

where TKy now denotes the time for a single Y firer to kill an

X target (a r.v.) and similarly for Tyx. The above expressions (4.8.5)

form the conceptual basis of S. BONDER's modelling of the LANCIESTER

attrition-rate coefficients for combat modelled by LANCHESTER-type

equations of modern warfare or its heterogeneous-force extension (see

Chapter 5 for further details).
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4.9. The State Probabi.lities.

The probability distribution of the joint number of survivors on epch

side (i.e. the state-probability vector) may be directly computed from the

forward &OLMOGOROV equations. From the joint distribution of survivors otte

can compute many other quantities of interest, e.g. average force levels,

dist:ibution of final survivors, etc. (cf. Table 4.1). We will see, however,

that such derived quantities can many times be computed more simply by other

means, without having to first dep'ermine the joint distribution of su-vivorn.

Technically speaking, P(tun) is the joint probability distribution of

M(t) and N(t). We observe that the set of joint possible battle realizations

' at any time t > 0 may be rather large: there are (m0+l-mBp) x (no+l-nBP)

possible battle realizations at any time t > 0. Thus, for even rather

* model numbers of combatants (say m 0  and n0 > 10) the joint dIstribution

of survivors is rather unwieldy. Consequently, even when numerical results

are available for the joint distribution of survivors, they are by themselves

so uninformative that other measures of battle-state realization are

desirable.

Since P(t,m,n) is a joint probability distribution, we know that we

must have 0 < P(t,m,n) < I and

S0 n0

SP(t,m,n) 1 . (4.9.1)

"Brui n~n3 p

The reader will recall that we have already verified that (4.9.1) indeed

holds for the general model with forward KOLMOGOROV equations given by

(4.3.13) through (4.3.19).
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There are three basic methods for computing the joint probability

distribution of the numbers of survivors:

(Ml') from an analytical expression,

(MV2') by numerical integration of the forward KOLMOGOROV equations,

(M3') by a hybrid analytical-numerical approach (i.e. from an

analytical expression with coefficients numerically determined
'• eqation13)

from a system of partial-difference equations 1.

For convenience, we will refer to these three basic methods simply as follows:

(Ml) analytical,

(M2) numerical,

(M3) hybrid.

The analytical method (Ml) recursively uses the forward KOLMOGOROV equations

to develop anexplicit closed-form solution for the state probabilities.

Such analytical expressions have been developed in only a few isolated

special cases (see below for further details) and then are so complicated

that no insights can be directly obtained into the probabilistic dynamics

of combat. Furthermore, such analytical expressions are not even apparently
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the most computationally efficient (see CLARK (16, p. 115]). The numerical

method (M2) uses finite-difference methods (e.g. see HILDEBRAND [37; 38],

McCRACKEN and DORN [62], MILNE [63], TODD [80], or Appendix E for further

details) to numerically integrate the forward equations. This method always

produces numerical results for any given initial numbers of combatants and

functional forms of attrition rates but by itself does not directly provide

any insights into the dynamics of combat without laboriously grinding out

parametric results for judiciously chosen input values (see below for further

discussion). Furthermore, such numerical integration is quite computationally

inferior to the hybrid method (M3), which in some sense combines the best

aspects of the analytical and the numerical methods. The hybrid analytical-

numerical method (M3) was apparently first proposed in the Ph.D. thesis of

G. M. CLARK [16] and is unfortunately not very widely known. Although some-

what complicated and tedious, it is by far the most computationally efficient

approach (see CLARK [16, p. 105]). As with the other methods, it is difficult

to obtain insights (without using approximations) into the probabilistic

dynamics of combat because of the inherent complexity of results, but the

possibilities of this promising approach have not been thoroughly explored.

In the remainder of this section we will focus on reviewing what

analytical results have been developed for the joint probability distribution

of the numbers of survivors, and we will briefly consider a specific numerical
example (with "snapshots" produced by computer graphics of what the joint

probability distribution looks like at different points in time over the

course of battle). Let us first, however, briefly present CLARK's hybrid

method (M3). Connections between results obtainable by this method and
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existing analytical results have apparently net been explored at all. In

fact, most results in the probabilistic analysis of combat have been more

or less ad hoc and isolated. What is needed is a unification and simplifi-

cation of results, with interrelationships pointed out.

Based on consideration of his specific analytical results for the

FTIFT attrition process (see below for speciics), G. M. CLARK [16, p. 106]

very insightfully guessed (and then inductively confirmed) that for a fight

to the finish modelled by the general stochastic LANCHESTER-type homogeneous-

force autonomous combat model [i.e. (4.7.2) through (4.7.8) hold with

mBp - nBP " 0] the state probabilities are given by

for 0 < m< m0 and 0 < n < no

mo nom0n0

P(t,mn) = 7 . Cm ' exp[-{A(J,k) + B(J,k)}t] , (4.9.2)
rJnm k-n

for 0 < mn < MO.

m0 no

P(t,m,0) - C0 + C M exp[-{A(J k) + B(j,k)}t] , (4.9.3)
0 j-m k-l jk

for 0 < n <n

i in 0

P(t,0,n) 0:0O + .0,0 C exp[-{A(J,k) + B(J,k)}lt , (4.9.4)
j-l k-n j
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and we recall that P(t,0,0) 0 0. Using the LAPLACE transform (e.g. see

HILDEBRAND (36), PADULO and ARBIB [67], or KLEINROCK [54]), CLARK (16, pp.

109-1121 haL shown that the constants Cm are determined by the following

system of partial-difference equations

for 0 < m < j <_.o and 0 < n < k_< no

ncm+-l, n mn+lCim,n A(m+l,n) Ck + B(m,n+l) Cmii(.95

mnJ_,k j.
j,k A(m,n) + B(m,n) - A(j,k) - B(J,k)

- r

for 0 < m < j <m 0  andd 0 < n < n0

• , Cm+l n
A(m+l,n) CI,n

•__cm~ (4.9.6)
Cin A(m,n) + B(m,n) - AJ,n) Bjn)

for 0 < m <_m0 and 0 < n < k < nO

• iB (m, n+l) C mn+l

C m,n mCk (4.9.7)
nm,k A(m,n) + B(m,n) - A(m,k) - B(m,k)

and for 0 < m_< m0 and 0 < n< no but (m,n) # (m0 ,no)

in m MS•u 0 0 in0

Si =Cm,n Cm,n(4.9.8)
"m,n - k'n J,k -mr4" -- J-m k-n+l J-m+l
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with C - 1. Also,

for 0< _w<j <m 0  and i< k< no

m 1B (m, 1) Ck(499

Jk A(Jk) + B(Jk)

for lI<m<m0

m0 no
C mO = k1 (4.9.10)

00 n 0ku in
and similarly for and C0,n. The above expressions (4.9.2) through

audsiilrl fr j,k 0,O.

(4.9.4) are explicit analytical results for the state probabilities, with

the constants C mk determined by (4.9.5) through (4.9.10). CLARK [16]
J~kbl _m,n

proposed that the constants C be numerically determined by recursive
J,k

solution of the system of partial-difference equations, and hence we have

called this approach the h_,brid analytical-numerical method.

It is indeed disappointing that essentially all the analytical results

known to this author for the probability distribution P(t,m,n) for such

LANCHES'LER-type battles are probably best classified as "symbolic," have

essentially no computational value, and furthermore provide absolutely no

insights into the probabilistic dynamics of combat. Such "symbolic" results

are epitomized by the result14 given by R. H. BROWN [14] for the general

stochastic LANCHESTER-type homogeneous- force autonomous (i.e. with time-

independent attrition rates) combat model with forward KOLMOGOROV equations
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(4.7.2) through (4.7.8). In preparation for stating BROWN's result, we consider

a path from the initial state (mo,nO) to state (m,n). Such a path in the

state space may be described as a sequence of J - m0 - m zeros and

K - nO - n ones, where a zero corresponds to a step to the left in the state

space (i.e. an X casualty) and a one corresponds to a step down (i.e. a Y

casualty) (see Figure 4.6). By considering the binary representation of a

positive integer, we (following BROWN [14]) may make correspond to each

realization of a battle path an integer k given by

k -6 6 "... (4.9.11)
k,l k,2 k,J+K

* where (see BROWN [14, pp. 13-14] for further details)

I 1 if rth casualty along battle path

corresponding to k is a Y combatant,

k,r

0 otherwise

Let us denote by I the set of all positive integers whose binary

J,K

representation contains exactly K ones and no more than J zeroes (again,

see BROWN [14, pp. 3.3-14] for complete details). After r such transitions

(provided that r < J + K), the system will be in state (mk,r, nk r)' where

II I4
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mk~r
Mkr m 0 -r + k,j

and (4.9.12)
r

k,r = no - 7k 6 krj •
i1 

6ki

Then, BROWN [14, pp. 14-16] shows that

SP(t'm'n) = 12- [. • 0 J+K-I , I $exp(-iut)-exp[-t'(mkrnKr)] .. du,
ffkE, r-O kmk,r, nk,r) iu
kJ K (4.9.13)

where i - /T denotes the purely imaginary number of unit magnitude, .

denotes the total casualty rate given by

X(m,n) - A(m,n) + B(m,n) , (4.9.14)

K k - Ykr+l (4.9.15)k,r - iu/X(mk,r k,r)

and

Yk,r+l a k,r+l A(mk rnk, r) + {1 - 6k,r+ I B(mk,r'nk,r) (4.9.16)

BROWN [14, p. 13] points out, though, that unless m is close to m0  and n

is close to no, this result is of "little practical interest in the general

case.11

Although the above expression (4.9.13) is an exact result for the joint

probability distribution of the numbers of survivors in the general homogeneous-

force LANCHESTER-type battle modelled by a continuous-time MARKOV chain with

stationary transition probabilities, the author knows no computational use
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(or, for that matter, any use at all) that has ever been made of this imposing

formula. Even practical results for special cases of (4.7.2) through (4.7.8)

(i.e. for particular functional forms of A(m,n) and B(m,n) in these

equations) have been elusive for any and all analytical solution approaches.

The difficulty is not in integrating the forward KOLMOGOROV equations for a

given initial number of combatants on each side (which can be done by elementary

methods in the "top-down" manner discussed in Section 4.7)l5 but in finding

a general expression that holds for arbitrary initial numbers of combatants

(i.e. for any m0  and n0 > 0). Let us now examine what analytical results

have been obtained by any means for such special cases of the general model

(4.7.2) through (4.7.8). We will review essentially all the analytical results

known to this author.

The joint probability distribution for the number of survivors on each

side has been investigated for the following probabilistic versions of the

homogeneous-force battle (4.2.1) with stationary transition probabilities

corresponding to the time-independent attrition rates (4.7.1):

(a) FTIFT stochastic LANCHESTER-type attrition process

A(m,n) - amn and B(m,n) - bmn , (4.9.17)

(b) (F+T) I(F+T) stochastic LANCHESTER-type attrition process

A(m,n) - an + Om and B(m,n) - bm + 8n, (4.9.18)
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(c) FIF stochastic LANCHESTER-type attrition process

A(m,n) an and B(m,n) - bm . (4.9.19)

We will now examine what analytical results for the state-probability vector

have been obtained for each of the above three attrition processes.

For the FTIFT stochastic LANCHESTER-type attrition process with --

attrition rates (4.9.17), G. CLARK [16] has used the LAPLACE transform to find

that for 0 < m <_ m and 0 < n < no

P(t,m,n)

a bK m0  no (_l)J+k-m-n(m0)! (no)
abJ+K J m! n! (k-n)! (J-m)! (no-J)! (no-k)!

(a+b) J+K-r nm k-n 0 0+

1 Jj+ku + k + u) exp[-(a+b)jkt] (4.9.20)

where (as above) J = m0 -m and K - n0 -n. When m 0, he has also shown

[16, pp. 102-103] that for 0 < n < n0

P(t,0,n)

aM0bK mo no (_l)J+k-l-n (mi0 )! (n 0 )!
-m,+k j -n (n-l)! (k-n)! J! (m0 -j) (n 0 -).

J-1 jOk- +nn

m0-n ( 0 - exp[-(a+b).kt]
k4 (4.9.21)
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and sim4lmarly for P(tm,0). It is clear that no insights into the dynamics

of combat are directly obtainable from (4.9.20).

For the CF+T) I(F+T) stochastic LANCRESTER-type attrition 2rocess with

attrition rates (4.9.18), ISBELL and MARLOW [40] assumed that a + a - b +

and found that for 'P < m< m0  and nBp < 0nno

P(t,m,n;O,m0 ,nO)

P m,n (m0n 0 {exp[(b+a)t]-l} J+K exp[-(b+8)(m0 +no)t] , (4.9.22)
J+K/

where J - m0 - m denotes the number of X casualties, similarly for K,

and Pm,n (m0 ,n 0 ) denotes the probability that the system passes through the

transient battle state (m,n) at some time during the battle. In general

(i.e for the general attrition process with stationary transition probabilities

and no restriction on the attrition-rate coefficients such as a + a - b + 8),

this latter probability satisfies the following partial-difference equation

for m0 2 m > i p and no > n > nBP

Pn(min, P(NC(moonO) P (mo-l,no) + PNY(mnno) Pmn( o 1,no-l) , (4.9.23)i m,n m0,0) NC 0 mnNYm m

with boundary conditions

1 for - (4.9.24)

P (in (m,n) m-
ki NC( +k,n) for m0 > mi

and
' m,n (m-l,n 0 ) 0 for n0 > n.
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Here P (m,n) denotes the probability that the next casualty is taken by the
NC

X force when the battle state is (m,n), i.e. P(X casualtylcasualty occurs]
Y

which we have seen is given by (4.7.14), and similarly for PN(m,n). The

derivation of the above partial-difference equation for P (mo'no) (4.9.23)

is similar to that for P (mo,nO) (4.10.6) given in Section 4.10 below.
m,nBp

*1 It should be noted that, alternatively, we could have taken the partial-differ-

ence equation (4.9.23) for P m, (mo,no) to hold for m0 > m and n0 > n

with the boundary conditions then being

(I for .n

Pmn(mno) TI PNC(m,n+k) for n0 > n,

k-i

and (4.9.25)

Pmn(m0 ,n-l) - 0 for m0 > m.

Fcr an autonomous (F+T)I(F+T) attrition process, the above equation (4.9.23)

becomes [corresponding to the first of the above two equivalent sets of

boundary conditions (4.9.24)] for m0 - m > mBp and mo > n > nBP

P mon('no $m +b•" an (-') mon(-l'no)
S(b+)mo+ no I (aun

+ I bnm0 + an 0  Pm'n(mO nO-1) (4.9.26)(b+6)in0 + (a+%)n 0 $lun'0'~1

with boundary conditions
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= ' 7\

1 for m0 -iM,

p (rn n)i

and (4.9.27)

Pmn-Ono) o for no > n.

When a + c• - b + •, the above equation (4.9.26) further reduces to (again,

for 0 >r> pand n 0- nf m > ,)

P~ I (r-i

Pm,n(mo'no) = (b0•) ( 0o+nO) n 0m, >0

+ ( bm+no + p (mor,no-1) , (4.9.28)

• ~+ (hO + a)(onO
(b b+ )(in 0 +n0 )) 'm,n m0 n0 -)(..8

with boundary conditions

I for i 0 = in,

Sm,n ( ',n) + a -(r.-r) 0°- m 1 + (S,/an) (k+m) f o

k-i or~i5~'
:• z +a k-1 1 + (1ln)(k+m) o 0>'

and (4.9.29)

P (m-1,Ou) -0 for n 0 n
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SIt is worth emphasizing that (4.9.22) holds only when a + a b + B, but

that (4.9.26) and (4.9.27) hold without any such restriction on the attrition-

rate coofficients. Finally, it: should be noted that for this special case

in which a + a a b + 6 not only can (4.9.22) (after one has analytically

solved (4.9.28) with the boundary conditions (4.9.29)] be used to provide an

analytical result for P(t,m,n), but it can also be used to provide a hybrid

* analytical-numerical result (cf. our discussion about the three basic methods

for computing the joint probability distribution for the numbers of survivors).

In other words, (4.9.22) also provides a basis for a hybrid analytical-

numerical approach for computing P(t,m,n) when used in conjunction with a

numerical solution (for example, recursively generated with the help of a

digital computer) to the partial-difference equation (4.9.28) with the

boundary conditions (4.9.29). Thus, we see that there is more than one way

to effect a hybrid analytical-numerical solution to the forward KOLMOGOROV

equations [cf. CLARK's approach given above and epitomized by (4.9.2)]. It

appears that within this context, (4.9.22) provides a more efficient way to

compute P(tm,n) than does (4.9.2), but computational studies are required

to confirm this conjecture. In fact, such computational studies are sorely

needed in this entire field.

For the FIF stochastic LANCHESTER-type attrition process with attrition

rates (4.9.19), the author knows of no general analytical result16 for the

state-probability vector (outside of the partial result given in Section 4.7

above). Before we give an analytical result for the state-probability vector

in a special case, it will be convenient for us to first give an important

analytical result for P m~n(r1ogn 0), which holds in general for the FIF

"attrition process and is used to compute P(t,m,n). Accordingly, we observe

that GOLDIE (31] has recently shown (using generating functions) that for
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the FIF stochastic LANCHESTER-type attrition process with no restriction

on the attrition-rate coefficients a and b (other than that they be

positive), the probability that the system passes through the battle state

(m,n) at some time during the battle Pmn (mo,no) is given for m0 > >

and no > n > nBP by

Pm,n (m0 ,n)

no-n m ( mo-) mo+no-m-n bb Ib) -i)r(aJ +n)
(am+n) b ( - a__ (4.9.30)

aaJ-m (M0-j)! (j-m)' r(a j + n +)

GOLDIE [31] also gave the following alternate representation for Pm,n(mo'no)'

whose duality with (4.9.30) should be noted.

Pm,n (mo,no)

n -k m (+n -m-n
m nm n (_l)~ 0 0  0 rm+k-(m + 1 n) b (4.9.31)

b bk-n (n 0 -k)! (k-n)! r(m 0 + a k + 1)

These results may also be obtained by R. H. BROWN's separation-of-variable's

method (see Appendix C), but the easiest way to obtain them is to use the

expression (4.10.2) for P (m0 ,no), the probability that X wins a!I m, nBp

fixed-force-level-breakpoint battle with m final survivors, and the follow-

ing recursion (first apparently formally observed by GOLDIE [31])

iiiilBP n 0(m0 ,n0 ) - P nBp+l(mo,n 0 ) PNC (m,nBp+I), (4.9.32)iiiIBP m,n P+
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which holds for the general LANCHESTER-type stochastic attrition process with

time-independent attrition-rate coefficients and is readily developed by

elementary probability arguments. To see how (for example) (4.9.30) may be

developed by using (4.9.32), it is convenient to denote the probability

P (m0 ,n 0 ) of passing through the transient state (m,n) as P Tn(m0 ,n0 ).

Similarly, we will denote the probability P (m0,no) of reaching the

absorbing state (m,nBp) as PA (m0 ,n 0 ). Using this notation, we may

BA-P PNnmn.+I ,049.3
write (4.9.32) more explicitly for mo0> m > m'. and no n > nP as

m~n~p

m,n BP is nlBP +1 NC P

whence follows

P A _ (m0'n0)
P TN(m n -m ,n (4.9.34)

M~n 0 0 P Y(m,n)
NC

The desired result (4.9.30) for P (m0 ,n0 ) - PT,(m 0 ,n0 ) follows from sub-
stituting the expression for P A (m0,n0) obtained from (4.10.21) and

PNYc(m,n) - {(b/a)m}/{(b/a)m + n} into equation (4.9.34) above. We are now

ready to give a result for P(tm,n) for the FIF stochastic LANCHESTER-type

attrition process for the special case of equal attrition-rate coefficients.

In this special case in which a - b we may invoke (4.9.22) by setting

a 8 0, and consequently we find that for -o _ m > m.BP and no _> n > nBp

(m+n
P(tmn) P (is,n mo 0) (ebt 1 ) J+K exp[-b(mo+no)t], (4.9.35)

m,n 0 0oJ+K
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where (as above) J m m0-m and K n n0-n. By setting a -b in (4.9,30),

we find that P (mo,no) in (4.9.35) is given by

r7,In

-- - • !-- • ~ M O ( _~0- j m O -m -n,
P (m (m~n Y . -l00 (n-I--i)! (..6

iPmn(o,no) - (+n) 0 (m1-J)! (J-m)! (no+j)! (4.9.36)

Furthermore, F. C. BROOKS [13] has made the very insightful observation that

for this special case in which a - b one can very easily obtain simple

analytical results for the total number of casualties on both sides. Thus,

if the state space is appropriately defined, some very useful information is

readily obtained for these stochastic battles. The reader should bear in

mind, though, that the basic untractability of quantities like the state-

probability vector remain unchanged by such transformations. Thus, BROOKS

[13, p. 9] considered the probability that a total of L - J + K -

(mo-m) + (n0 -n) casualties have occurred on both sides by time t, PL(t),

and found that (still for the special case in which a - b) for a fight to

the finish in which L < mol, no

-- (mo+no) (bt iL

P L(t) Ce -1) exp[-b(m0 + no)t] (4.9.37)LL

It will be instructive for us to show how BROOKS's [13] result (4.9.37)

may be obtained from (4.9.27), which is a special case of ISBELL and

MARLOW's [401 more general result (4.9.22). To this end, we observe that
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L
P(t) L P(t,mo-L+J,no-J) , (4.9.38)j=O

and hence (4.9.35) yields

P(t) - S (m,n0) (e) ( - exp[-b(L + +n)t] (4.9.39)

L L L [

where L - J + K and

L
SL (m0 ,n0 ) - Pm0_L•,n0(m0,n0) ,L(4.9.40)

J=O 0 +nj

whence (4.9.37) follows from (4.9.35) provided that SL(mo,no) - 1.0. We

will now give a probabilistic argument that SL(mO,n0) - 1.0, but a direct

verification of this fact through use of the above result (4.9.30) for

P m, (m0 ,n 0 ) has so far proven to be elusive. We first observe that

a total of L casualties on both 1
SL (,n 0 ) - P sides have occurred at aome time . (4.9.41)

L during the course of the battle

Assuming that the battle's termination condition involves more than a total

of L casualties on both sides, then it is clear that SL(mo,no) - 1.0.

Considering the aboave results, we begin to gain some appreciation

for the great increase in difficulty in analytically extracting information

(cf. Table 4.1 again) from a simple homogeneous-force combat model by the

inclusion of randomness In the attrition process. Especially because of
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the combinatorial aspects involved, a modern large-scale, high-speed

$ digital computer must be used to generate numerical (as opposed to analytical)

results and can always readily generate such numerical results for a partlcular

set of input values for the battle parameters. Although such particular

numerical examples can always be more or less readily generated by a modern

digital computer, general insights into the dynamics of combat are again quite

difficult to develop and can only be obtained by laboriously grinding out

numerical results for given ranges of input values for the battle parameters

(see Appendix E for a further discussion of such numerical methods). Never-

theless, at this juncture consideration of a specific computer-generated

numerical example should at least provide the reader with some better under-

standing about the basic nature of probabilistic LANCHESTER-type combat dynamics

as portrayed by the joint probability distribution for the numbers of

survivors 14(t) and N(t), i.e. P(t,m,n).

It is indeed surprising that more use has not been made of the modern

large-scale, high-speed digitial computer and associated computer graphics to

at least computationally investigate stochastic LANCHESTER-type force-on-force

attrition models. Let us now consider such a computer-generated numerical

example for the joint probability distribution of M(t) and N(t) for the

FIF stochastic LANCHESTER-type attrition process (4.9.10). Numerical results

are depicted (for the battle-input data shown in Table 4.11) at five different

points in time for this fight to the finish in Figures 4.7 through 4.11.

In the corresponding deterministic battle, the X force is annihilated at

DXr - 155.81 minutes; and these plots (i.e. Figures 4.7 through 4.11) correspondi• a

DX DX DX DX DXto t - 0.025 t , 0.25 t , 0.50 t , 0.75 t , and 1.0 t , respectively.
a a a a a
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TABLE 4.11. Particulars for the Numerical Example for the Evolution of

the Joint Probability Distribution for M(t) and N(t) for

the FIF Stochastic LANCHESTER-Type Attrition Process (4.9.10)

for a Fight to the Finish.

.1

1. Basic Input Data

a - 0.008 X casualties/minute/Y firer

b - 0.004 Y casualties/minute/X firer

m0 - 40, n 0  40

'BP ' 0 n nBP 0

2. Computed Quantities for Corresponding Deterministic Battle

tDX . 155.81 minutes [from equation (2.2.20)]a

with xf - 0.00 and yf - 28.28

458



F~ttm,n)

0y

10

10o, 2e

30

20
40

30 Y
Force Level, n

Force Level, m

Figure 4.7. Joint probability distribution for M(t) and N(t)

for the FIF stochastic LANCHESTER-type attrition

process (4.9.10) for the input data given in Table
• m-'---iDX

4.11 at t - 0.025 tD.
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Figure 4.8. Joint probability distribution for M(t) and N(t)

for the FIF stochastic LANCHESTER-type attrition

process (4.9.10) for the input data given in Table
DX4.11 at t 0.25 t
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Figure 4.9. Joint probability distribution for M(t) and N(t)

for the FIF stochastic LANCHESTER-type attrition

process (4.9.10) for the input data given in Table

4.II at t -0.50 tDX
a
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Figure 4.10. Joint probability distribution for M(t) and N(t)

for the FIF stochastic LANCHESTER-type attrition

process (4.9.10) for the input data given in Table

4.11 at t = 0.75 tDX.
a
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i Figure 4.11. Joint probability distribution for M(t) and N(t)

° for the F11' stochastic LANCHESTER-type attrition

process (4.9.10) for the input data given in Table
m• tDX

• ,4.11 at t "1.0t
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In other words, the time for each of the joint probability distributions

DX
shown in Figures 4.7 through 4.11 is expressed in units of t a, how long it

takes for the X force to be annihilated in the corresponding battle repre-

sented by the deterministic model.

The Figures 4.7 through 4.11 may be thought of as "snapshots" of the

joint probability for survivors in this battle taken at a sequence of increasing

times. From sequentally lookiag at these figures, the reader can see how the

probability distribution evolves over time. At t - 0 all probability is

located at the single point (mo0 , no) - (40, 40) in the state space. By

t - 0.025 tDXa this "spike" originally at (noO, no) has evolved at a "needle"

near (toO, no) (see Figure 4.7). As time goes on, this "needle" of prob-

ability mass becomes more and more blunted and moves towards the n-axis

(i.e. m - 0). The blunting of the probability mass corresponds to diffusion

of probability from the mode (i.e. the "high point") of the joint distribution,

while the movement of the probability mass in the state space corresponds

to convective transport of probability towards the end-of-battle condition

in the state space17 (i.e. annihilation of one side or the other) (see

Figures 4.8 through 4.11). Since (m, 0) and (0, n) are absorbing states

in this fight to the finish, probability "sticks" to the boundary of the

state space as some of the probability mass reaches the boundary (see

Figures 4.10 and 4.11). As time increases without bound, all the probability

mass becomes absorbed on either the m-axis or the n-axis, and this situation

corresponds to the mathematical fact that limt ,+-, P(t,r,n) - 0 when both

m and n > 0. The total amount of probability mass ultimately accumulated

on the n-axis is simply the probability that Y wins 18, i.e. P[Y wins]f limt n P(t,0,n), and similarly for P[X wins]. For the example
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at hand, the reader can see from Figure 4.11 that P[Y wins] is rather large
and corresponds to a "decisive" win by Y in the deterministic battle. If

the opposing forces were closer to "parity" (i.e. the initial force levels

were such that in the corresponding deterministic ba-ter the opposing forces

would be closer to "parity"), more probability would be absorbed on the n-axis,

corresponding to a larger value for P[X wins].

The effect of using deterministic force-level breakpoints in our combat

* model (cf. Sections 3.2 and 3.4 above) is simply to reduce the state space,

with the probability mass moving over time in the same general qualitative

manner as in the previous example. To see this in a specific numerical

example, let us modify the previous example by changing each side's force-

level breakpoint from 0 to 8 (see Table 4.111). The evolution of the joint

probability distribution for this fixed-force-level-breakpoint battle for

DY DY DY DY DY
t - 0.025 tDw , 0.25 tw , 0.50 t, , 0.75 tY , and 1.0 tw is shown in

Figures4.12 through 4.16 and closely resembles that of the previous example,

except that the state space is reduced to (m,n) with m - 8, 9, 40

and n - 8, 9, ... , 40. Here tY denotes the duration of the corresponding

deterministic battle ("the time for Y to win the deterministic battle")

and has been computed according to the result given in Table 2.X for the

data shown in Table 4.111 (see CRAIG [19] for further computational results).
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TABLE 4.111. Particulars for the Second Numerical Example for the Evolution

of the Joint Probability Distribution for M(t) and N(t) for

the FIF Stochastic LANCHESTER-Type Attrition Process (4.9.10)

for a Fixed-Force-Level-Breakpoint Battle.

1. Basic Input Data

a - 0.008 X casualties/minute/Y firer

b - 0.004 Y casualties/minute/X firer

m0 - 40, no 0  40

mBP 8, BP- 8

2. Computed Quantities for Corresponding Deterministic Battle

DY
-t " 120.68 minutes!W
with xf - 8.00 and Yf - 28.84
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Figure 4.12. Joint probability distribution for M(t) and N(t)

for the FJF stochastic LANCHESTER-type attrition
process (4.9.10) for the input data given in Table

DY4.111 at t = 0.025 tY

467



P~t,m,n)

10• 20

30

20
40

Y

Force Level, n

x

Force Level, m

Figure 4.13. Joint probability distribution for M(t) and N(t)

for the FIF stochastic LANCHESTER-type attrition

process (4.9.10) for the input data given in Table

DY
4.111 at t 0.25 tw
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Figure 4.14. Joint probability distributIon for M(t) and N(t)

for the FIF stochastic LANCHESTER-type attrition

process (4.~9.10) for the input data given in Tabli.

4.111 at t -0.50 tD
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Figure 4.15. Joint probability distribution for M(t) and N(t)

for the FIF stochastic LANCHESTER-type attrition

process (4.9.10) for the input data given in Table

DY
4.111 at t -0.75
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Figure 4.16. Joint probability distribution for Mrt) and N(t)

for the FIF stochastic LANCHESTER-t:,p~t attrition

process (4.9.10) for the input data given in Table

4.111 at t 1.0 tDY

w
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4.10. The Probability of Winning.

For such a stochastic combat model, other quantities of interest

to the combat analyst (recall Table 4.1) are (a) the probability of winning,

(b) the distribution of the winner's final survivors at the end of battle,

and (c) the expected numbers of final survivors. In this section we will

give the fundamental equations that yield the first two important quantities,

and then we will give analytical results for all these quantities for the

basic homogeneous-force LANCHESTER-type models for the FTIFT, FIF, and

FIFT attrition processes. As we have stressed many times above (especially

for deterministic attrition processes), such results are heavily dependent

on the model taken for battle termination. Moreover, all the results

given in this section are for fixed-force-level-breakpoint battles19 (a

special case of which is the fight to the finish).

Thus, in th's section we will develop the fundamental partial-differ-

ence equations for determining

(I) the probability of winning,

and (II) the distribution of the winner's survivors,

for fixed-force-level-breakpoint battles. Then we will gi,,e analytical

results for the following probabilistic versions of the homogeneous-force

battle (4.2.1) with stationary transition probabilities corresponding to

the time-independent attrition rates (4.7.1):
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(a) FTIFT stochastic LANCHESTER-type attrition process

A(m,n) - amn and B(m,n) - bmn , (4,10.1)

(b) FIF stochastic LANCHESTER-type attrition process

A(m,n) - an and B(m,n) - bn, (4.10.2)

(c) FIFT stochastic LANCHESTER-type attrition process

A(m,n) - an and B(m,n) - bmn . (4.10.3)

Finally, we will consider a n,,merical example to give the reader a feel for

the nature of such results.

We begin by developing the fundamental partial-difference equation

for the probability of winning for a fixed-force-level-breakpoint battle.

Let us denote P[X wins] as Px a Px(m0 ,n 0 ), where m0  and no (as usual)

denote the initial numbers of X and Y combatants in the battle. Here,

a win for X means that the Y force reached its breakpoint first (see

Chapter 3 for further details), i.e. N(tf) nB- p at the end of battle

but M(t) > mp throughout the battle for 0 < t < tf. To develop the

fundamental equation for Px(m0,n 0 ), we consider the event that X wins

a battle in which the initial X force level is m0  and that of Y is

n0. Let the next casualty occur and consider what X must do in order to

win:

1. if an X casualty has occurred, then X must win the

remaining battle in which his initial force level is

(m0 -1) and that of Y is n o;
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2. if a Y casualty has occurred, then X must win the remain-

ing battle in which his initial force level is mn0 and that of

Y is (no0 -).

Since these events are mutually exclusive and exhaustive, by the theorem of

total probability it follows that

Px(m 0 ,n 0 ) - PNC(mo,no) Px(m0 -l,n 0 ) + P NC (mo,n 0 ) PX(monol)

where PNC(mo,no) f P[X casualtylcasualty occurs], which is given by
Y

(4.7.1k), and similarly for PNC(mo,no). To make our mathematical model

"properly posed," i.e. have a well-determined solution (e.g. see COURANT

and HILBERT (18, pp. 226-227] for further discussion), we must also specify

the appropriate boundary conditions for Px(mo,n 0 ). The natural ones are

that X must win if Y starts at his breakpoint, i.e. PX(mo,nBp)

for m0 > mBp, and that Y must win if X starts at his, i.e.

Px(mBp,n0) - 0 for nO > nBp. Thus, the fundamental partial-difference

equation satisfied by the probability of X winning Px(m0 ,n 0 ) in a fixed-

force-level-breakpoint battle is given by (for m0 > mBP and no > n BP)

P (m n ( ,n) PX(m-ln + PNC(mn) Px(mn0-1) (4.10.4)X m0,n0 - PNCmono) ,nOO +,n0') x 0  0 l , (.04

with boundary conditions

Px(mo,n~p) - 1 and Px(mBP,no) - 0 . (4.10.5)
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The initial state space and boundary conditions are shown in Figure 4.17.

Since ue have assumed [see assumption (A3) of Section 4.3] that casualties

n.an only ocrur sl-ngly ,..l\i lhey do otLvr, i.e. P[more than one casualty in

short time interval of length At) - 0((At) 2) or P[more than one casualty

at a time] - 0, it is impossible to have the battle end in a draw and then

the probability that Y wins Py(mo,nO) is given by Py(mopnO) -

1 - Px(mono).

The probability distribution for the winner's survivors satisfies

a similar partial-difference equation. Let us denote P[X wins and has

m survivors] as P ,nBP(mO,n 0 ). To be more precise, P MXBP(mo,n 0 ) really

denotes Plat some time during the battle there are m X survivors and

nBP for Y], and the fact that we are considering a fixed-force-level-

breakpoint battle (with no replacements and no withdrawals) yields that this

probabilty is equivalent to P[X wins and has m survivors]. [If we

were to have need for it, P MEp"(mo,n 0 ) would be similarly defined.]

Then, arguments similar to those used above yield the following fundamental

partial-difference equation for the probability that X wins with m

final survivors Pm,nBP(mo0nO) in a fixed-force-level-breakpoint battle is

given by (for mo l m > mBP and no > nBp)

xPm.nBP(mO,nO) - PNC(mopno) Pm nBP(mo-lnO)

+P~ (m0 ,n0 ) Pm,n(m 0 ,n0 -1) (4.10.6)

with boundary conditions
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I1 for - m >m

BmnP(momnBp) 0 0 otherwise

and (4.10.7)

PM, nBP(m-l,n 0 ) 0 0 for nO > 'BP'

The initial state space and boundary conditions are shown in Figure 4.18.

It should be noted that the partial-difference equation (4.10.6) is just a

special case of (4.9.23), but that the boundary conditions for the former

(4.10.7) are not a special case of those for the latter (4.9.24). We now

also observe that

MO
Px(m0 ,n 0 )o- P (m0 ,n 0 ) , (4.10.8)

m'.rP,+ B

whence follow (4.10.4) and (4.10.5) from (4.10.6) and (4.1.0.7). We will

now examine what analytical results for P X(mood and P mp(m0,n0) havemnBP

been obtained for each of the above three attrition processes (4.10.1)

through (4.10.3).

For the FTIFT stochastic LANCHESTER-type attrition process with

attrition rates (4.10.1), one finds that20 (see MORSE and KIMBALL (65,

pp. 67-68], BROWN [15], G. H. WEISS [89], and SMITH (75] for furth6r

details)

(m0 +n --n BP ab
Pm, nBp n0  (4.10.9)

07 BP
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m0+n O -mBp -n- a \m0-N P bp n0O-n

P (mo-•P-1 ) aTb] b (4.10.10)

'Px (nn~B 1 n~~ \nob (aB+J )( ) 1.1

,X b)\O/ B (.1 a (4.10.11)

P-. aJ'-~pn0 _ Pl(OmPKl b)_+ 41.2

Heefo eapl, mn P(m0 o)a given by (4.10.9) is the solution to

the following partial-difference equation for in _ m Impand noInB

-o " - nO¢fl

( m0 , 0 -1 a,. (4.10.13)

with boundary conditions (4.10.7), since P~ NC ( -

A(mi,no)/eA(mmne) + B(mo,nO)} and similarly for P(4(mono). The solution

•'C

(4.10.9) to this partial-difference equation (4.10.13) with boundary

conditions (4.10.7) is developed by the method of generating functions

below in Appendix C. However, for the FTIPT stochastic LANCHESTER-type

battle, simple probabilistic arguments may also be used to obtain (4.10.9).

Using the results of PEARSON [70], one may show that (see G. H. WEISS [89]

for further details)

P(m(,n) n - n - ) , (4.10.14)

"iN 479

' im



where

b (4.10.15)
+b

I (a,b) denotes the incomplete beta functionwhich may be defined by

x

J1 X ~a-l b-i
(a b) ab

Ix(~b B(a~b) 0 (a1(-t)b- dt , (4.10.16)

and B(a,b) denotes the usual beta function defined by

B(a,b) - f ta- (l-t)b-I dt (4.10.17)
0

Tables of the incomplete beta function (equivalently, cumulative binomial

probability distribution) are fairly readily available (e.g. see PEARSON

[711 or WEINTRAUB (88]; see also further tables listed in ABRAMOWITZ and

STEGUN [1, p. 963]). We also have the conditional distribution

(mO- m-n ~~BP- 1) \mo-ml-nO~

P[Mf umIX wins] - i8(no0n p,m0_m~p ) ano , (4.10.18)

and the conditional expectation 0 - mix wins] given bym W-mBp+l m[f=mXwn] ivnb

(see G. H. WEISS [89] for further details)

mX mo - mp - R(n 0 - 'B)

+ (m0-mp) -np .1 (l+R)mnomBPBp (4.10.19)
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where (as usual)

R - a/b . (4.10.20)

For the FIF stochastic LANCHESTER-type attrition process with

-I attrition rates (4.10.2), one finds that (see BROWN [151 and SMITH (75]

for futher details)

m-j mo+o-m-n -1
no-nBP mo (-1) m 0 0 B r( b j + n

* amBP l) (4.10.21)
mnBP J-m (m0 - j)! (J - m)! r(- j + no + 1)

a 0
m, j mno+n0-m~nBp-lIl

(b \ n-nBp m0 ( ml)0 -j r(a m + nBP + 1)P ,(4.10.22)
P X a (m0- - P '( j + no +1)

with the corresponding expressions for P and P being symmetric
mBp,n

to the above results. SMITH's [75] results for P (moi,n0 ) and

Px(mi0 ,no) with mBp , n BP 0 have been subsequently rediscovered by

GYE and Lewis [34] and extended to results equivalent to (4.10.21) and

(4.10.22) by GOLDIE [31]. Here, for example, P m,np(mono) as given by

(4.10.21) is the solution to the following partial-difference equation for

in Ž>m, P and no >nBP

P (mo,nO) o an0  (m0 -1,n o )

minpn bin0 + an/ B~nP

+ bin + amO Pm, (mO, no-1) (4.10.23)
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with boundary conditions (4.10.5), since PNC m0,n 0)

A(m0,n0 )/(A(m0 ,n0 ) + B(m0 ,n0 )) and P NC(m0 ,no) - 1 - P NC The solution

(4.10.21) to this partial-difference equation (4.10.23) with boundary

conditions (4.10.7) is developed by BROWN's separation-of-variables

method below in Appendix C. In obtaining PX from P nBp, one makes

use of the facts that 22

p (j - ). (- p-1):' (4.10.24)
mm'BP +1 ) (i -B UP -

) and also that l/(J-m)!' - l/r(j-m+l) 0 for all integers j < m.

For the FIFT stochastic LANCHESTER-type attrition process with

attrition rates (4.10.3), one finds that (see SMITH [75] or KISI and HIROSE

(53] for further details)

m 0  mo-Jj moi+no--nBp-1

P m (-1) ,n ,n (4.10.25)
BP J-m (m0J). (J-m)! (j + a/b) 0- BP

P ~ ~ ~~ rn0MO (l)m-k kimn0+n 0mBP n-l(41.6
\bJ\n /B ) n -n+l (41.6p'BP k-mBp+l (mo-k)! (k-mBp-l)! (k + a/b) 0

M0 io-nj imO+nO -fBp-nBP-l

(PX =-) a no- (4.10.27)

JiBp+l (too-j)! (J-mBp-l)! (j + a 0b)

MO in in in-k inOiBP n0-n Bn0-n B

P I 0 (-1) k (k +a/b) k

mBp k-mBp+l n 0-n BPP (m0 -k) (k - m.p - 1) (k + a/b)

(4.10.28)
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Here, for example, the solution (4.10.25) to the fundamental pzrtlal-differ-

ence equation for P (MO~n may be developed by BROWN's separation-

of-variables method (seeeAppendix C). Again, to obtain (for example)

(4.10.27) from (4.10.25) one uses (4.10.24) and the fact that

1/(j-m)! - i/r(j-m+1) - 0 for all integers j < m.

In Figure 4.19 we have plotted for the FTIFT attrition process and

a fight to the finish Py versus the quantity bm0 /(an 0 ), which the reader

may think of as the deterministic-battle-outcome-prediction variable.

Although (strictly speaking) for fixed n0  and a given bound on m0

the dependent variable P y is only defined for a finite set of values of

the independent variable bmo/(an0 ), we have taken the liberty of drawing

"continuously-connected" curves. The reader can see that Py depends

on the absolute numbers of initial combatants in the battle and that

PY ( (deterministic-battle-outcome-prediction result) as n0 - + - if

we give the appropriate probabilistic interpretation to the force-annihila-

tion-prediction condition (i.e. P - 1.0 for xo0 / < a/b). Thus, thePy0

deterministic-battle-outcome-prediction result may be considered to be

a step function when the probability of winning is plotted against the

appropriate measure of parity between the two opposing forces. The prob-

ability of winning as a function of this measure of parity asymptotically

approaches this step function as the initial number of combatants becomes

arbitrarily large. This same type of behavior also holds for the other

two stochastic LANCHESTER-type attrition processes considered above (i.e.

the FIF and FIFT stochastic attrition process). In all the cases known

to this author, the slope of the curve of the probability of winning
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Normalized Initial Force Ratio, bm 0 /(onO)

Figure 4.19. The probability that Y wins P as a function

of the normalized initial force ratio bmo/(an 0 )

for the FT(FT attrition process and a fight to the

finish. Shown here are curves for no - 1, 2, 5,

and 80 and also the corresponding deterministic-

battle-outcome-prediction result which corresponds

to no +oo. For the calculations shown here we

have taken a-b, and consequently

P,[X casualty~casualty occurs] 0.5.
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versus the appropriate measure of force parity is steepest at the point

of parity between the forces. In other words, at parity the addition of

one more combatant initially to battle has its greatest impact on the

outcome of the battle (as quantified by the probability of winning)

(see LEE and WANNASILPA [57] or CRAIG [19] for many additional such plots

of the probability of winning versus some measure of force parity). Here

it has seemed dppropriate to say that two forces are at parity in such a

stochastic battle if either is equally likely to win (i.e. PX PY 0.5).
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4.11. Approximations to the Probability of Winning.

As the results of the previous secti6on show, the exact analytical

expression for the probability that a given side will win is far too compli-

cared to be of practical use2 3 . Moreover, if one tries to use such an exact

analytical expression for computation on, for example, a large-scale digital

computer of results for a battle'4with any appreciable numbers of initial

combatants, one finds that the attempt to compute a factorial quantity
(m0 +n0 )

such as (m0 + n,)! or a power quantity such as m0  causes all. sorts

of numerical problems 24. To avoid such numerical problems, one can try to

recursively compute such quantities, and after much involved labor along these

lines, one finds out that he has rediscovered the fundamental partial-differ-

ence equation that gave rise to the exact analytical results in the first

place. In other words, it is easier to use the fundamental partial-differ-

ence equation directly in a numerical algorithm than to use the exact

analytical results for the probability of winning or the distribution of the

winner's final survivors (see CRAIG [19, p. 26 and pp. 43-521 for further

details). Because of these computational shortcomings of exact results, one

must rely on approximations instead of exact analytical results to develop

insights into how the distribution of battle outcomes is celated to the

25initial numbers of combatants and the probabilistic combat dynamics . What

is needed is a simple approximation that will enable one to perceive the

role played by the combatants' attrition rates A(m,n) and B(m,n) and

initial numbers in determining the probability of winning.

Thus, in this section we will give some simple approximations to

the probability of winning for the FTIFT, FIF, and FIFT attrtion processes
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with attrition rates (4.10.1) through (4.10.3) for which we have developed

exact analytical results in the previous section. These results are given

for fixed-force-level-breakpoint battles except for the FIF attrition process

for which results are given only for a fight to the finish. All the approxi-

mations given in this section for the stochastic battles of the previous

section are essentially of the form

-X 0 D(v) , (4.11.1)

where PX denotes the approximation to Px(mo,no), ý(v) denotes the cumulative

distribution function (c.d.f.) of the unit (or standardized) normal deviate,

i.e.

v _2/

0(v) e -" t 2 d, (4.11.2)

and the argument v depends on the type of attrition process and the battle-

termination conditions. However, KISI and HIROSE [53] have given a POISSON

approximation (see also SPRINGALL [77, pp. 133-136 and pp. 167-171]) for

the probability of winning in the FIFT battle (4.10.3).

The great value of the normal approximation (4.11.1), however, is

that the c.d.f. of the unit normal is so extremely well known and tables (and

also computer routines) are readily available (e.g. ABRAMOWITZ and STEGUN

(1, pp. 966-972]). Furthermore, we will see that as the initial force ratio

110 - m0 /n 0 varies between 0 and + -, the argument v in (4.11.1) varies

between - and +4, and we may therefore invoke under the appropriate
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conditions the following asymptotic approximations based on the well-known

simple asymptotic approximations to the c.d.f. for the normal distribution

(e.g. see FELLER (25, p. 166])

T for v ++o:

2

PX 1 v e-v /2 (4.11.3)

II. for v-0---:

I -v212Px IvI /2 2 (4.11.4)

where the symbol - is used to indicate that the ratio of the two sides tends

to one under the stated limiting condition.

Before we consider the particularts of the approximations that have

been developed, the author would like to point out to the reader the follow-

ing shortcomings of this work:

(SI) no a priori error bounds exist,

(S2) no general method is known for developing such approximations.

With respect to this latter shortcoming lS2), BROWN [15] (see also BROWN [14])

has given an approach that might contain the germ of an idea for developing

the desired unified approach. Let us now examine what approximations to the
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probability of winning have been developed for the above three attrition

processes with attrition rates (4.10.1) through (4.10.3) fc•r a fixed-force-

26level-breakpoint battle . For each of these battle types, we will denote

the approximation to the probability of winning as PX"

For the FTIFT stochastic LANCHESTER-type attrition process with

attrition rates (4.10.1) and a fixed-force-level-breakpoint battle, one may

27develop (see BROWN r14; 15] and G. H. WEISS [89] for further details2)

the approximation (4.11.1) with argument v given by

/no 1 -
BP 0 - (4.11.5)

R u 0 + fC

where R - a/b, u0  m0 /n 0 , fc ' (I - fYP)/(l - f~p) , and the breakpoints

are (as usual) expressed in the form p fBpX0 a BP x ad It is
X Y

worthwhile noting the following special case: fBP - f BP 0 and a - b.

In this case (4.11.5) reduces to

m0 - no
0 0

which clearly shows that the probability of winning is dependent upon the

total number of combatants in the battle except when parity exists between

the forces and PX M 0.5. There are "better" choices for v in the sense

that they give closer approximations (see FELLER [23]), but the above choice

(made by BROWN [15]) has the merit of simplicity. The above approximation

(4.11.1) with ergument v given by (4.11.5) follows from BROWN's [15, p. 422]

result for a fight to the finish and the observation that the exact result

for a fixed-force-level-breakpoint battle (4.10.14) may be obtained from

that for a fight to the finish by replacing m0 by (m0 - Bp) and no
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by (no - np), whence follows (4.11.1) with argument v given by

b(m0 - mBp) - a(n 0 - ngp)!iBP) (4.11.6)

""ab(m 0 - mp +no - nBp)

which is equivalent to (4.11.5).

For the FIF stochastic LANCHESTER-type attrition process with attrition

rates (4.10.2) and a fight to the finish, BROWN [14; 15] has developed the

approximation (4.11.1) with argument v given by

F3n ____ 
(4.11.7)

Again, (4.11.7) shows us that the probability of winning (at least according

to the above approximation) is dependent on the total numbar of combatants

in the battle except when parity exiats between the forces with u0 . /R.

For the FIFT stochastic LANCHESTER-type attrition process with

attrition rates (4.10.3) and a fixed-force-level-breakpoint battle, KISE and

HIROSE [53] have developed the following POISSON approximation from consider-

ation of a generating function

nonBP-'-
eM -1 ,0 (4.11.8)

where q - ( )/(2R) and R - a/b. However, since the POISSON and
2 'BP

chi-square (or X ) distributions arE. rclated (e.g. see PARZEN [68, p. 178
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and p. 181] or ABRAMOWITZ and STEGUN [1, p. 941]), we mAy also write

:X 1 - Q(2q, 2{n0 - nBp) (4.11.9)

where Q(X 2v) denotes the complementary cumulative distribution function for
• ' 2

the X distribution with v degrees of freedom. Although (4.11.8) and

(4.11.9) are, of course, entirely equivalent, the latter result is somewhat
: 2

more significant, since not only are more tables available for the X

distribution but also there are well-known normal approximations to it (e.g.

"see KENDALL [52, p. 294] and ABRAMOWITZ and STEGUN (1, p. 941]). Thus, we
i 2

may use normal approximations to the X distribution to obtain further

(and in some sense simpler) approximations to the probability of winning:

namely,

ix = (v ) (4.11.10)

where

(I) for n0 - nBP > 50, i - 1 and then the argument v1  is given by

R I - (no - np - 0.25 ; (4.11.11)

(II) for n - nBP > 15, i - 2 and then the argument v 2 is given by

Sr 2 2 -1/3

v I o1 m -(1-_ E) (4.11.12)
ie = 2R(n - n,) j

with

E 1/ (3 r/0- p)
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* 4 The above regions of applicability for the approximation (4.11.10) are based

on conditions given by ABRAMOWITZ and STEGUN il, p. 941] for the normal

2
approximation to the X . These limits for the regions of the approximation's

applicability may be very conservative, and in practice one may be able to

I use (4.11.11) and (4.11.12) for the values of (no - nBp) as small as 10.

- . Aloig these lines, it will be instructive to consider a numerical example due

to KISE and HIROSE [53]: let m0 - 100, no - 10, R - 500, and mNp - nBp 0.

Then one finds that

PX(100, 10) - 0.5460

P' - 0.5421 from (4.11.9)

XlP PX(V) 1 0.5317 from (4.11.10) and (4.11.11),

and Px(v 2) - 0.5420 from (4.11.10) and (4.11.12).

Thus (at least in this one specific example), the above normal approximation

(4.11.10) with argument given by either (4.11.11) or (4.11.12) are very good

(less than 2 percent error) for even no - n 10, with the more complicated

approximation (4.11.12) being more accurate (less than 1 percent error).
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4.12. The Average Force Levels.

As we have seen above in Section 4.9, the joint probability distri-

bution for the numbers of survivors is not a very enlightening measure of a

battle's progress for even rather modest numbers of combatants because of

its inherent complexity in terms of number of components. Most decision

makers and many practical analysts prefer one number to represent the military

strength of each of the two opposing forces. One such obvious number of

interest to the military analyst (cf. Table 4.1) is the average number of

combatants on each side (here assumed to be homogeneous). One is also interested

in the variability in the mean course of combat (i.e. the dispersion of the

number of survivors about its mean value) in order to gauge the risk in using

these mean values to represent the probabilistic evolution of combat. Thus,

in this section we will consider the average force levels, while in the next

one we will examine the variance and covariance (e.g. see PARZEN [68, p. 356])

of the force levels. These quantities are related to the first two moments of

the force levels, and for purposes of discussing their numerical computation,

it is convenient to first discuss the general computation of force-level

moments.

There are essentially two methods for computing the moments of each

side's force level:

(MV') compute them directly from the joint distribution of the

numbers of survivors (i.e. from P(t,m,n)],

or (MM2') compute them by first determining the differential equation

satisfied by the moment under consideration and then solving

this equation.
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For convenience, we will refer to these two basic moment-calculation methods-

simply as follows:

* ~(bM() direct-computation method,

"and (MN2) moment-differential-equation method.

The direct-computation method (MMI) uses the joint probability distribution for

the number3 of survivors, i.e. P(t,m,n) for mBp. m < m0  and nBP j n < no,

to compute the moment under consideration directly from the definition of

mathematical expectation, i.e.

m 0 n 0

E[f(M,N)] = f(m,n) P(t,mn)
minBp n'nBP

Consequently, one must have previously determined P(t,m,n) to use the direct-

computation method. As we saw in Section 4.9, there are basically three

methods for computing the distribution of survivors (i.e. the state probability

vector): (Ml) the analytical method, (M2) the numerical method, and (M3) the

hybrid analytical-numerical method. After P(t,m,n) has been numerically

determined by one of these three computational methods, one can simply compute
/

the desired moment directly from its definition. On the other hand, the

moment-differential-equation method (MM2) is completely different in seeking

to determine an equation for the rate of change of the force-level moment under

consideration by using, for example, the forward KOLMOGOROV equations, e.g.

(4.7.2) through (4.7.8). The basic idea behind this method is to be able
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rI,

to solve the resulting moment differential equation (or system of equations

if the moment under consideration cannot be decoupled from others) for the

sought quantity. Unfortunately (as we will see below), one still needs to

know P(t,m,n) to be able to solve the moment differential equation, but

one can make some rough approximations to eliminate this requirement and simplify

this method. We will now examine these two moment-calculation methods (MMl)

and (MM2) further, with emphasis being given to the second one (MM2) for the

calculation of the average force levels.

Direct computation of the average force levels, i.e. method (MMI),

is straightforward and merely involves computing

m no

;(t) - E[M(t)] - I I mP(t,m,n) , (4.12.1)
mmBp nf n BP

and m0  no

;n(t) - E[N(t)] - nP(t,m,n) , (4.12.2)
m-mBP n'nB

where ;(t) denotes the average X force level at time t and similarly for

n(t). As already mentiotted above, one must know P(t,m,n) for mp < m < m0

and np ý n < no in order to use this force-level-moment-calculation method,

and we have previously discussed in Section 4.9 three methods for numerically

determining P(t,m,n). One point that does merit further discussion, however,

is the tremendous computational advantage in using CLARK's hybrid analytical-

numerical method for such calculations, for computing not only the joint

probability distribution for the numbers of survivors but also the moments

of each side's force level (including both the average force levels and also
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their variability). G. CLARK [16, pp. 112-114] has shown that the iL

moment of, for example, the X force level may be computed as follows

m n
i0 0

E[Mi(t)] =D(i) + r • DM) exp[-{A(J,k) + B(J,k)}t] (4.12.3)0,0 J ,k

where a coefficient such as DO) is the i-h "incomplete moment" of the Cmr
J,k Cik

coefficients from CLARK's hybrid expression for the state probabilities. More

specifically, the moment coefficients DJi for 1 < j < mo and 1 < k < no
j,k Sr.

are given by

(i) m k
D l n- C J,k (4.12.4)
''k m-l n-0jO

and

D(i) mi C0 'n (4.12.5)0,0 m-l 0,0

where the coefficients e,n are given by (4.9.5) through (4.9.10). The great

j,k

computational advantage in computing the i-h moment from the analytical

expression (4.12.3) with the ti) coefficients numerically determined by
J,k

(4.12.4) and (4.12.5) lies in the facts that (1) these coefficients are
simply and easily computed from the numerical results for the C •mn coefficients

j k

of the state probabilities and (2) they need only ba computed once for a given

set of battle parameters. Thus, this hybrid analytical-numerical method is

very efficient (in fact, over 50 times faster than using exact analytical

results according to an example reported by CLARK [16, p. 115]) for computing

time histories of the moments.
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Let us now turn to the moment-differential-equation method (MM2) for

computing the average force levels for the general homogeneous-force autonomous

model given by (4.7.2) through (4.7.8). We will see that although this method

is not at all useful for directly computing exact values of the average force

levels, it does provide considerable insight into the behzvior of, for example,

X's average force level, which (however) is much more efficiently computed

from (4.12.3) with i - 1. For the general model given by (4.7.2) through

(4.7.8) we find that

d A E[M] - -E(G(t,M,N)] + Z Wt with E[M(O)] -o
dt X

-. E[N] - -E[H(t,M,N)] + Z t with E[N(O) n 4. 6

where the boundary-sum terms z(t) and r.(t) > 0 are given by

EX(t) -M G(.t,m, nBP) P(t,m,nBP)
x m.%mBP+l

n n0
+ I G(t,mBp,n) P(t,mBp,n) (4.12.7)

n-nBj+l

and

m 0
E(t) W H(t,m,nBp) P(t,m,nBp)

mutmBP+l

no

+ I H(tmBPn) P(t,mBp,n) . (4.12.8)
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These terms arise from accumulation of probability on the boundary of the state

spate as the system evolves over time and reaches its terminal state. In the

steady (i.e. in the long run) all probability has accumulated on the state-

space boundary and the average force levels reach their strictly positive limit-

ing values. The boundary-sum terms perfotm for this behavior the attendant

bookkeeping in the expression (4.12,6) for the average force levels.

Let us now sketch the derivation of (4.12.6). It suffices to consider

the first equation of (4.12.6). Using (4.5.6) with g(M) - M and h(N) - 1,

we find that

mO no
d E[M] - - G(t,m,n) P(t,mn) k4.12.9)

dt
mmmBp+l n-nBp+l

Also, recalling (4.7.8), one can easily show that
m n
0 0

G(t,m,n) P(t,m,n)
m-mBP+l n-nBp+l

- E[G(t,M,N)] - ) G(tm,nBP) P(t,m,nBp)
m..BP+l

n no

- [ G(tmBp,n) P(t,mBP,) . (4.12.10)Snu'nBp+l

Combination of (4.12.9) and (4.12.10) yields our desired result, the firstI equation of (4.12.6) with Ex(t) given by (4.12.7).

Example 4.12.1. For the autonomous stochastic FIF attrition process in which

G(t,m,n) an and H(t,m,n) = bm, the average-force-level equntions (4.12.6)

become
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m mm

Tdm -an + aSy(t) with ;(0) mo
dt Y

(4. 12. 11)

dn _b; + bS x(t) with ;(O) -no(Sdt '

where m- E[M], n- EN] ,

Sminmp+l n'nBp+l

'm and

nMO 0

Sy(t) I n P(t,m,nBP) + [ nP(t,mBp,n) . (4.12.13)
m-mp+l nmnBP+l

S~From their definitions, it is clear that both Sx(t) and Sy(t) > 0 for all

an

t > 0. The following interpretation for S x(t) is worthy of note: S x(t)

is the expected number of X survivors in a battle-terminated otate by time t

for a fixed-force-level-breakpoint battle. In particular, when ,p = nBP = 0,

Sx(t) denotes the expected number of X survivors in a battle-terminated state

(here, one side or the other annihilated) by time t for a fight to the finish.

A similar interpretation applies to S y(t). Intuitively we know that both

Sx(t) and Sy(t) are "small," at least as long as there is little chance that

the battle has ended by time t. Finally, since all but the terminal battle

states are transient, the average force levels approach positive limiting

values, and we may accordingly infer the asymptotic behavior

Sx(t) 0 (t) ÷ r(+ ®) as t + + , (4.12.14)

and similarly for Sy (t).
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Example 4.12.2. For the autonomous stochastic FTIFT attrition process in which

G(t,m,n) - amn and H(t,m,n) - bmn, the average-force-level equations (4.12.6)

become

SE[M] -aE[MN] + aS(t) with E[M(O)] - m0 ,

iI (4.12.15)

dE(N] - -bE[MN + bS(t) with E[N(O)] n(

where S(t) > 0 for t > 0 is given by

MO no0

S(t) - n~p 1 mP(t,m,nrp) + mBp nP(t,mBp,n) . (4.12.16)
mmBp+l nlnBp+I

Here, S(t) may be interpreted as the expected value for the product of the

numbers of survivors in a battle-terminated state by time t for a fixed-force-

level-breakpoint battle.

We will now briefly consider a preliminary theoretical analysia of

average force-level behavior based on the above average-force-level differential

equations (4.12.6). We will also mention some corroborating numerical

j investigations.

For the autonomous stochastic FIF attrition process considered in

Example 4.12.1 above, let us examine how the average force levels compare with

those generated by the correspcnding deterministic model with the same

attrition-rate coefficients a and b and the same initial numbers of

combatants M0  and n0. Thus, we consider the corresponding deterministic

attrition process
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dxt - -aywith x(0) - m0

with y(0) - no (4.12.17)
dt0

Then, if we let

Ax m-X, and A - n - y , (4.12.18)

it follows that

Sd = A -A + aSy(t) with A(0) - 0,
dt X Y Y X

(4.12.19)
d.y " -bAx + bSx(t) with A (O) - 0

which has the solution

Stt
L (t) raý f ~S (S) \/~cosh(/'-- (t - s)]

- Sx(s) sinh[/a" (t - s)] ds , (4.12.20)

and

A Ag(t) - ra f ýSx(s) cosh[/a• (t - s)]
0

- Sy (s) sinh[/a (t - s)]Ids . (4.12.21)

Here, for example, A X(t) represents the bias in the average force level of

the X force in an FIF LANCHESTER-type stochastic attrition process. It measures

the departure of the average X force level obtained from this stochastic model

from the X force level obtained from the corresponding deterministic model

with the same attrition-rate coefficients a and b and the same initial

numbers of combatants m0  and no. Thus, AX(t) > 0 means that the stochastic

model on the average yields higher force levels than does the corresponding
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deterministic model for the same set of input data. From (4.12.20) and (4.12.21),

we can identify cases in which one can easily determine the signs of A Wt)x
and Ay(t):

1. X wins very decisively in a fight to the finish.

In this case Sy(t) 0 all during the battle, and from (4.12.20)

and (4.12.21) we see that AxCt) < 0 and Ay(t) > 0 for all

t > 0. Thus, m(t) < x(t) and ;(t) > y(t) for all t > 0.

2. Symmetric parity, i.e. a - b, m0 - no, and mBp - n.

In this case S x(t) - S y(t) - S(t), and from (4.12.20) and

(4.12.21) we find that .A(t) - A(t) = a 0(s) exp[/a(t-s)]ds > 0.

Thus, m,(t) > x(t) and n(t) > y(t) for all t > 0.

Numerical investigations concerning the above biases have been pre-

formed by CLARK [16] and CRAIG [19]. Figure 4.20 is from CLARK [16] and

shows the large biases typically present for small numbers of combatants in

the symmetric-parity case just discussed above. CRAIG [191 took CLARK's

[16] work as a point of departure and did more extensive numerical investi-

gations. CRAIG [19] computed the average force levels from state prob-

abilities determined by the numerical method (M2), i.e. numerical integration

of the forward KOLMOGOROV equations. Based on consideration of many, many

specific numerical examples, he formulated the following interesting hypotheses

concerning the biases in the average force levels:

(Hl) for fixed initial force levels and attrition-rate coefficients,

the final force-level biases at the deterministic battle's end

decrease as the breakpoint force levels increase (however, as
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FIF ATTRITION PROCESS

5-
_j

W
w4
uJ --Averoage force level,

IQ

x2
x Force level,

1-x M ory ( t), from BIAS - A x( t ) A-Zy( t)

deterministic model

0 200 400 600 800 1,000

BATTLE TIME t (SECONDS)

Figure 4.20. Large biases A x(t) and Ly(t) in the average force

levels in an FIF LANCHESTER-type stochastic attrition

process for the symmetric-parity case with small numbers

of initial combatants. Here the bias in the average,

for example, X force level A x(t) is defined as

;(t) - x(t). The input data for this case is

a - 0.004 X (casualties/second) per Y firer,

b - 0.004 Y (casualties/second) per X firer,

n0 - 6. and n 0  6.
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a percentage of casualties in the deterministic model,

the biases increase);

(H2) for everything else equal, the larger the initial force levels

become, the larger the numerical biases become in absolute

terms but smaller percentagewise;

(H3) the closer the forces come to parity in the deterministic battle,

the larger become the biases at the time corresponding to the

deterministic battle's end, which itself becomes extended in

time;

and (H4) the biases at times corresponding to less than one-half the

duration of the deterministic battle are negligible.

For the autonomous stochastic FTIFT attrition process considered in Example 4.12.2

above, we will also theoretically examine the biases A (t) and A.(t). First,
x

though, let us develop a very interestiiig result. Multiplying the first of

equations (4.12.15) by b, the second by a, and subtracting, we obtain the

stochastic linear law for fixed-force-level-breakpoint battles

bm - an - bmi - an 0  (4.12.22)

This result is particularly remarkable, since no corresponding simple result

holds for the FIF stochastic attrition process. Consider now the corresponding

deterministic attrition process for the FTIFT attrition process under con-

sideration
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i~ i Idx
T-- = -axy with x(O)-m0

(4.12.23)
-4 d -bxy with y(O) - no

dt 0

From (4.12.23) we obtain the deterministic linear law bx - ay = bm0 -ano

whence combination with (4.12.22) yields

(t) A Uy(t) (4.12.21)

whence
k•i i'•m (t ) > x(t) if and only if n(t) > y(t) (4.12.25)

It is interesting to note that even when mBP - nBP " 0 and consequently

S(t) = 0 in (4.12.15), we still have, for example, Ax(t) W 0, since

E[MN] # E[M] E[N] (see CLARK [16, pp. 81-83] for further details). Numerical

investigation of these biases theoretically considered here has been performed

by CLARK [16, pp. 116-124]. Some typical results for relatively small numbers

of combatants are shown in Figures 4.21 and 4.22, which are from CLARK 116].
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FTIFT ATTRITION PROCESS
15

S12
w
-j

w 9
-Average X force level,•0/ilit )zE[M(t)],from

x 6 -MARKOV-choin model

X force level,
3 _x t ), from

deterministicmodel A Ix(t )

0
0 z00 200 300 400

BATTLE TIME t (SECONDS)

Figure 4.21. Bias Ax(t) - M(t) - x(t) in the average X force

level that is typical for small numbers of combatants

in an FTIFT LANCHESTER-type stochastic attrition

process. The input data for this case is a - 0.004 X

(casualties/second) per Y firer, b - 0.001 Y

(casualties/second) per X firer, m0 - 18, and n. - 6.
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Figure 4.22. Bias Ay(t) - n(t) - y(t) in the average Y force
level that is typical for small numbers of combatants
in an FTIFT LANCHESTER-type stochastic attrition
process. The input data for this case is a - 0.004 X
(casualties/second) per Y firer, b - 0.001 Y
(casualties/second) per X firer, m- 18, and
n 0 6.
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4.13. Variability in the Mean Course of Combat.

Besides the mean course of combat itself, one is also interested in

its variability (i.e. the dispersion of the numbers of survivors about their

mean values) in order to gauge the risk in using these mean values to represent

the probabilistic evolution of combat. Thus, we will now consider the variance

and standard deviation of a combatant's force level. The reader will, of

course, recall that the variance in, for example, X's force level Vx(t) is

given by

2 2SVx(t) - E[M (t)] - {E([M(t)]}2, (4.13.1)

and the standard deviation is the square root of this quatity. Similar to as

we saw in general for the calculation of the force-level moments in the

previous section, there are essentially two methods for computing the variance

of each side's force level. We will analogously refer to these two variance-

calculation methods simply as follows:

(VM1) direct-computation method,

and (VM2) variance-covariance-differential-equation m-thod.

The reader should also recall from above in Section 4.9 that there are basically

three methods of numerically calculating the joint probability distribution of

the numbers of survivors for use in the variance-direct-computation method

(VMI): the analytical method (Ml), the numerical method (Y2), and the hybrid

analytical-numerical method (M3).
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Little that was not said in the previous section about the moment-

calculation methods remains to be said about the above variance--calculation

methods. The variance-direct-computation method (VMI) certainly deserves

no further discussion, and we will close this section with an example of the

variance-covariance-differential-equation method (VM2). Let us first, however,

review what various authors have found out and said about the variability in

the mean course of combat.

Using analytical results for the distribution of survivors, F. C. BROOKS

[13] concluded that the FTIFT and FIF stochastic LANCHESTER-type attrition

processes (the latter only for the special case in which a - b) are

stochastically determined. Here, stochastically determined means that the

standard deviation in the losses is small compared to the initial numbers of

weapons engaged. Following BROOKS [13, p. 2], we may then say that the model,

although stochastic in detail, is very nearly deterministic in its gross

behavior. BROOKS [13, p. 2] has stressed that "the presence of stochastic

determinism suggests that the complex stochastic model may be subject to at

least a crude approximation by a simpler deterministic model." On the other

hand, G. CLARK [161 concluded that variability in the mean course of battle

can be appreciable in small unit engagements, although his evidence for

large battles (i.e. 100,000 or more combatants on each side) was not incon-

sistent with BROOKS' [13? conclusions on stochastic determinism.

Using his hybrid-analytical-numerical-computation method, CLARK [16,

pp. 124-129] has computed the force-level variances for quite a few "typical"

homogeneous-force battles in which attrition was modelled as FIF and FTIFT

LANCHESTER-type stochastic processes. He concluded that the survivor
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standard deviation depends on the following factors:

(Fl) force size,

(F2) forc.e ratio,

(FE) battle time,

and (F4) both attrition-rate coefficients.

Unfortunately, one does not know a priori what this dependence is. For battles

between small numbers of combatants (i.e. under 15 on each side), CLARK

observed that the magnitude of stochastic, variability can be sizeable: the

standard deviation approaches an asymptotic limiting value sometimes greater

than one third of the initial force size and usually in the neighborhood of

15 percent.

Based on his computational studies for the FiF anc FTIFT LANCHESTER-

type stochastic attrition processes, CLARK [16, pp. 124-123] has hypothesized

that there are two characteristic types of behavior for the survivor standard

deviation of a force as a function of time:

(Tl) the survivor standard deviation is an increasing function of

time until a maximum value is achieved, and then it decreases

"to an asymptotic limiting value;
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* i
or (T2) the survivor standard deviation is an increasing function

of time and is asymptotic to a limiting value.

Figures 4.23 and 4.24 show these two different types of behavior for the

survivor standard deviation. Further computational studies on the FIF

attrition process at the Naval Postgraduate School led CRAIG (19, p. 1321

to conclude that the nature of the survivor standard deviation's time history

is dependent on the relative attrition of the two opposing sides (i.e. the

outcome of the battle). He has hypothesized that if a side has a high

probability of winning, the standard deviation in its force level continually

grows over time [i.e. type (T2) behavior occurs]. Furthermore, if a side

has a high probability of losing, the standard deviation "peaks out" and

then decreases to a asymptotic limiting value [i.e. type (Ti) behavior

occurs] (see CRAIG [19; pp. 127-134] for further details).

We will now close this section by developing the variance-covariance

differential equation for the FIF LANCUESTER-type stochastic attrition process.

Our results show that the variance-covariance-differential-equation method

(VM2) fails to explicitly yield exact values for the sought quantities

(i.e. the variances and covariance of the force levels) because one still

needs to know P(t,m,n) to be able to solve the system of differential

equations. All is not lost, however, since some valuable insights into the

variability of the mean course of combat are still obtainable. Thus, from

the definitions

m E [M] , n EN]'2 2

a E[M2] - E [M],

a - E[MN] - E[M] E(N], (4.1.3.2)

2 2
aI ." - 1 -E E N],
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FIF ATTRITION PROCESS

"I- 2.0-

S1.5

1.0-

W TYPE (Ti) BEHAVIOR
S0.5

0-

0 100 200 300 400 500 600 700 800
x

BATTLE TIME t (SECONDS)

Figure 4.23. Tpe (TI) behavior for the survivor scandard deviation.

Shown here is the standard deviation of the X force

level /rV(t) in an FIF LANCHESTER-type stochasticx
attrition process for the input data a - 0.004 X

(casualties/second) per Y firer, b - 0.001 Y

(casualties/second) per X firer, and m - no - 8.
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FIF ATTRITION PROCESS

2
TYPE (T2) BEHAVIOR

>1

LU
r0-

0 100 200 300 400 .'500 600 700 800
xx BATTLE TIME t (SECONDS)

Figure 4.24. Type (T2) behavior for the survivor standard deviation.

Shown here is the standard deviation of the X Zorce

level AVx(t) in an FIF LANCHESTER-type stochasticx
attrition process for the input data a - 0.004 X

(casualties/second) per Y firer, b - 0.0015 Y

(casualties/second) per X firer, m0 12, and

n 0-6.
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and the relation (4.12.10), we find that for the FIF LANCHESTER-type stochastic

attrition process

!d*
Sd m a; + as y(t) with m(O) - • ,

Idn - -b; + bS (t) with n(0) no ,

dt Y

diXX -2a_ y + at + S) (t) with ax(0) n 0 (4.13.3)
dt KY Xx

do~

' . -bx - ay + S (t) with a (0) - 0 ,

dt XX YYXKY

S• - -2ba + b; + S (t) with a (0) - 0
dt KY YY Y

where S x(t) is given by (4.12.12), S (t) is given by (4.12.13),

MO 0

S xx (t) - 2a )P mP(t,m,n + nP(t'mBp'n)

wnmBp+l n

aP p(t,iM,n,,p) + 1 nP(t,mBp,n) (4.13.4)

• -a(2rn + 1) nBp mmBBPp+l nlmBp+l
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sx•(t)

n0

m0n

S2 2p ,b mp (tm,, BPn + m P(t,mB pn)
flflBp+l

+ anBp p+l n-nlp+l
+ +1n m p(t,m,n BP + m ~ n n I P(t,rnBp,n)

m0 no
01 00

+ al n P(t,m,nBp) + nP(tm)m~p~n)] , (4.13.5)

n m m1 +l nnnBp+l

and Syy(t) is symmetric to Sxx(t). It is unfortunately impossible to solve

the above system of equations (4.13.3) without knowing P(t,m,n) on the

boundary of the state space.

In light of the above essentially insuperable difficulty, one is con-

sequently quite tempted to approximate the solution to this system of differ-

ential equations by assuming that these latter state probabilities are

negligible and solving the resultant simplified system. Thus, for Sx(t) F

Sy(t) Sxx(t) S y(t) Syy(t) 0, the above system (4.13.13) becomes
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dm
dtn -an with m(0) - m0dt

dnT_ -bm with n(0) -no
dt

d -2tXy + an with a XX(0) - 0 , (4.13.6)

d -baxx - yy with a (0) 0,

XX YYX

d y aba + bm with a (0) 0-- - a XY YY'

where m denotei an approximation to m-, etc. An equivalent form of these

equations was first given by SNOW [76, p. 25] in 1948. CLARK [16, pp. 130-132]

has solved an equivalent form of this system of equations to find that the

approximate variance in X's force level V x(t) W - X(t) is given by

ST " 6 - cosh(2,/aE t) + 3 + \ sinh(2a/ t)

A ~ ~ m 2n0 na(in (2m, a/b (n 0
- 3 cosh(y/aab t) - _ sinh(vab t) , (4.13.7)

and similarly for V (c). Unfortunately, this expression (4.13.7) is compli-

cated enough that insights into how even the approximate force-level variance

evolves over time are quite difficult (if not impossible) to obtain without

expenditure of considerable computational effort. G. CLARK (16, pp. 133-1341

hao briefly numerically investigated the behavior of these expressions for

the approximatt= force-level variances.
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4.14. Monte Carlo Methods.

One can use so-called Monte Carlo methods to generate a realization

of force-on-force combat modelled as a continvoup-parameter MARKOV chain

kor, for that matter, aa any arbitrary but well-defined stochastic process)

and hence to generate by appropriate replication battle data from which

battle-summary statistics can be computed. Here we use the term Monte Carlo

method to denote any procedure that utilizes statistical sampling techniques,

involving the use of random numbers (more precisely, pseudorandom numbers

[26, p. 1711), to determine the outcomes of random events. Although we will

examine such methods here only within the context of developing estimates of

desired statistics for simple LANCHESTER-type battles analytically modelled

as continuous-time MARKOV chains, these methods can well be used with far

more detailed models (i.e. ones enriched in operational details) that may

not have such a corresponding simple analytical formulation. The reader

should bear in mind that we will illustrate the basic ideas behind these

Monte Carlo methods for analytical models for which other computational

procedures (e.g. see the computational methods discussed in Section 4.9

above) are more efficient. Moreover, it is the author's firm opinion that

many military OR analysts and (to be certain) military decision makers feel

much more comfortable about using Monte Carlo methods because of their

inherent concreteness (i.e. the generation of battle realizations) than

they do about using analytical models directly, even when the desired informa-

tion about system performance may be far more conveniently extracted from

the appropriate corresponding analytical model (see BONDER [11, pp. 74-75]

for further discussion).

This section is organized in the following fashion. First, we will

discuss the simple analytical stochastic combat model to which we will
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apply these methods and the analytical structures that will be utilized.

Then, we will discuss in general terms how to generate needed samples of

a given randon variable from its cumulative distribution function and how

to dete=mine the outcome of a needed associated random event. Next, we will

show how this general mei.hodology is applied to the simple stochastic combat

model under consideration. Finally, we will present an alternative Montu

Carlo approach and will summarize the two approaches that could be used

f or this particular example.

We will consider the class of stochastic battles considered in

Section 4.7, i.e. battles in which the attrition rates depend only on.-the

combatants' force levels and not explicitly on time and which are modelled

as continuous-time MARKOV chains. For such battles with stationary

transition probabilities (4.7.1), we can build a simple Monte Carlo simu-

lation based on the following two mathematical properties given in Section

4.7:

(P1) the time between casualties Tm'n is exponentiallyBC

distributed (with state-dependent attrition rateL), i.e.

pmnTBC _ - 1 - exp[-{A(m,n)+B(m,n)}t] ; (4.14.1)

and (P2) the probability that the next casualty will be an X

casualty is given by

P[X casualtylcasualty occurs A(m,n)+B(m,n) (4.14.2)
58 A(mn)
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If we are in battle state (m,n), then we will denore the next casualty

to occur as the i-11, where i - m0 - m + 11 - n + 1. We will denote the

corresponding re&lization of TBcmn (see Section 4.6 for explanatlon of

notation) simply as th The total elapsed (or cumulat-'ve) time for the
occurrence of the kth casualty will therefore have realization tkur

where

t um t~ ~ (4.14-3)k i-

The above two porperties (P1) anJ (P2) are used with a random-numlier gen-

erator that produces samples of a random variable that is uniformly distri-

buted over t:he interval [0, 1]. Two samplea from such a unit uniform

variate are required to produce the realization of the occurrence of each

battle casualty. In order to develop an algorithm to generate such reali-

zations, we must discuss how the following two tasks are done by Monte

Carlo methods:

-Il (Tl) generate a sample of a random variable (r.v.) for which

the cumulative distribution function (c.d.f) is given,

and (T2) generate a sample of a binomial (or, more generally, multi-

nominal) random variable that models the various possible

outcomes of a random event with given probabilities of

occurrence.
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We therefore now turn to the first task (Ti', to generate a sample

oA' a r.v. witb given c.d.f. Consider the continuously distributed r.v.

V with distribution function Fv(v) =P(V < v]. Then for u E [0, 1],

we may write

u F (V) (4. 14.4)
V

iHowever, we may consider u and v to be realizations of the random

variibles U and V, with U E (0, 1] with certainty. Hence, we may write

I

U Fv(V) (4,14.5)

whence

V FM F(i) , (4.14.6)

p-l

where F1 denotes the inverse function of f•e dis!.ribution function Fv(u).

Such an inverse function is well defined from ,he pro-perties of the distri-

bution function for a continuously distribixted random variable. It may be

shown (e.g. see FISHM4A (26, pp. 167-1681) that U defined by (4.14.5) is

a uniformly distributed r.v. on [0, l1. Thus, we rcan use (4.14.6) to

generate samples of the r.v. V from samples of the unit uniform variate28

iU (see FISWMAN [26, p. 167]). 'This approach is, not unsurprisingly,

known as the inverse-transformation method.

We may formalize the above approach by delineating the following

procedure (composed of two steps) for generating a sample of the random
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variable V with cumulative distribution function Fv(v) - P[V < v] by

the inverse-transformation method (see Figure 4.25, which is for the

important special case in which V > 0):

(SI) generate sample of random variable U uniformly

distributed on [0, 1], call this u;

0(2) determine v such that Fv(V) - u, i.e. the desired

sample value is v FvI(u).

As shown in Figure 4.25, P[V < Vo] - P[U < u0 ] so that v0  (generated by

v0 M F vI-(u0), where u0  is a sample of a unit uniform variate) has all

the statistical properties as a direct sample of the random variable V.

We may also use independent samples of the unit uniform variate U

to generate realizations of discrete random events. In the simplest case,

we consider the BERNOULLI random variable W, which takes on the value 1

with probability p and the value 0 with probability (1-p). Thus, if

T'e define

: 1 for 0< U_< p (

for (4.14.7)
• 0 for p < U < 1

then we can use samples of U to simulate sampling of W, since

P[O < U < p] - P[W - 1]. The above procedure is for a binominal r.v.,

and extension to a multinomial r.v. is carried out in the obvious manner.
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One can now easily build a Monte Carlo simulation of such a stochastic

attrition process based on the flw chart shown in Figure 4.26. To generate

a realization of the random occurrence of a casualty in our continuous-

. time MARKOV-chain combat-attrition model, we must generate two independent

samples of a unit uniform variate, denoted as u1  and u2 , and operate on

them in the following fashion. First, we use the first uniform-variate

- sample u1  to generate a realization of the time of occurrence for the

th ati7-- casualty after the (i-l)!- one with the following formula

1. 1
ti {A(mn) + B(m,n)} In1 - u(4.14.8)

which is just the inverse-transformation method (4.14.6) applied to the

exponentially-distributed time between casualties (4.14.1). The time of

th cumoccurrence of the k- casualty tk is then given by (4.14.3). Next,.we

use the second uniform-variate sample u2  to determine the type of casualty

by the procedure that we have outlined above for binomial variates.

Accordingly, we assess an X casualty if 0 < u2 < A(m,n)/{A(m,n) +B(m,n)},

and a Y casualty otherwise. Thus, one can build a Monte Carlo simulation

to generate realizations of the stochastic homogeneous-force battle with

stationary transition probabilities of Section 4.7, and extension to

heterogeneous-force combat occurs in the obvious fashion (see CLARK

(16, pp. 166-173] or ANDRIGHETTI (4, pp. 29-301 for further details).

We will close this section by briefly mentioning an alternative

method (still involving, however, the generation of two independent unit-

uniform-variate samples for each casulaty realization) for building such a
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•-- * Figure 4.26. Flow chart of Monte Carlo simulation of continuous-time

MARKOV-chain model of LANCHESTER-type attrition process.
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Monte Carlo homogeneous-force simulation. Instead of basing our Monte Carlo

approach on the two mathematical properties (PI) and (P2) given above, we

could base it on the following two equivalent ones (again, ccf. Section 4.7):

(P1') the time between occurrences of two X casualties TX

is exponentially distributed with rate A(m,n), i.e.

P (Tm n < t] 1 I - exp[-A(m,n)t]; (4.14.9)

and (P2') the time between occurrences of two Y casualties Tymn

is exponentially distributed with rate B(m,n), i.e.

-[Tmyn < t] - 1 - exp[-B(m,n)t]. (4.14.10)
Y

From these two properties (P1') and (P2'), one can develop a Monte Carlo

method which generates a realization of the time interval to the next

occurren'.e of both an X ca3ualty and also a Y one and then Lakes the

earlier of the two realizations to have occurred. Thus, we have outlined

two equivalent Monte Carlo approaches:

Method A: generate time to next casualty and then determine type,

and Method B: generate time to next casualty of each type and then

take earliest event to have occurred.
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*4.15. Behavior for Large Numbers.

The results concerning approximations to the probability of winning

that we have given in Section 4.11 above suggest that a limiting distribution

for large numbers of combatants in the sense of the classic Central Limit

Theorem of probability theory (e.g. see FELLER (25, p. 229]) lurks somewhere

in the background of our stochastic combat model. In this section we

will briefly consider a few heuristic arguments to shed some light onto

this mutter, particularly as they pertain to the mean course of combat. A

complete mathematical discussion, however, would contain a number of subtle

mathematical points that are well beyond the scope of our current cursory

examination (see PERLA and LEHOCZKY [72] for details of such a deeper investi-

gation invoking results from the theory of stochastic differential equations

(5; 29] and diffusion approximations [24; 39]).

We begin by considering a heuristic argument that has appeared in

a number of places in LANCHESTER combat theory (see WILLARD [91], ETTER [20],

and KOOPMAN [55]). This argument will show us that as in so many other

places in mathematical analysis, the taking of a limit can involve some

subtle points. As pertains to MARKOVIAN combat-attrition processes, it

means that transition from a discrete state space (i.e. MARKOV chain) to

a continuous one (i.e. diffusion process) must be done in such a way that

statistical properties of the process (i.e. means and variances of the

force levels) are preserved.

Thus, we will (for illustrative purposes) consider the forward

KOLMOGOROV equations for the FIF attrition process and heuristically

investigate what happens as the number of each type of combatant becomes
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large. Let us therefore rewrite (4.7.22) as

dT P(t,m,n) - an{P(t,m+l,n) - P(t,m,n)}+bm{P(t,m,n+l) - p(t,m,n)}. (4.15.1)

Strictly speaking, m and n can take on only nonnegative integer values.

However, it is intuitively appealing to relax this restricLion for large

numbers of combatants and to replace m and n by x and y which are

no longer restricted to be integers. Also, let us observe that when m

was restricted to integer values, we could have written

M +1 m + Am,

i.e., Am- 1, and similarly for An. Thus, we could rewrite (4.15.1) as

a~ P(txy) - ay P(t, x + Ax, y) - P(t
T-)t Pxy)nay)AX

+ bxLý.LxY + Ay) P(t'x'y) (4.15.2)•i + bx IAy"

For large numbers of combatants, Ax and Ay will be small compared to

x and y, and consequently passing to the limit as Ax ÷ 0, Ay ÷ 0, and

P(t,x,y) + p(t,xy), we (naively) obtain the following first order partial

differential equation (P.D.E.)

ay + bx -. Ri=0  (4.15.3)
ax ay at

with initial condition

P(O,x,y) 6 6(x xO).6(y yo) ,(4.15.4)
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where 6(x) denotes the so-called DIRAC delta function which may be

defined by"' f- *(x) 6(x - a)dx - @(a) for all O(x) E {appropriately

defined class of"test" functions}. Here p(t,x,y) denotes the joint

p.:obability density function for the X and Y forces, i.e.[ force level between x and x + dx and Y

p(t,x,y)dx dy -P J
force level between y and y + dy at time t.

Thus, our investigation of the behavior of our MARKOV-chain model

of combat attrition has led us to the above first-order quasi-linear

partial differential equation (P.D.E.) (4.15.3). To solve this equation

for the joint probability density function p(t,x,y), we will invoke the

following result (for a proof and further details, see COURANT and HILBERT

[18, pp. 62-69] or GARABEDIAN [28, pp. 18-22]; also HILDEBRAND [36,

pp. 368-378]).

THEOREM 4.15.1 (MONGE): The solution to the first-order quasi-

linear P.D.E. in the unknown function z - z(x,y)

P(x,y,z) 11 + Q(x,y,z) 3z - R(x,y,z)

is given by two independent integrals to the following system

of first-order ordinary differential equations

dx dy dz
P(x,y,z) Q(x,y,z) R(xy,z)"

Thus, solving (4.15.3) by the method of characteristics (i.e. invoking

Theorem 4.15.1), we find that
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Sdx d tA
ay bx --1 0

or p(t,x,y) - CONSTANT for

dtX -ay with x(O) - x0

J' (4.15.5)

dy,-bx with y(O) - ydt0

It is also easily shown using (4.15.4) and the definitions of average force

levels, e.g. x(t) - f f xp(t,x,y)dx dy , that
-. 00 -. 00

dx=-ay with x(O) - xo
dt

(4.15.6)

dt= -bx with y(O) - yo

but that Vx(t) Vy(M) 0, where (for example) V (t) denotes the variance

in X's force level. Thus, in passing to the limit for our stochastic

combat model given by (4.7.19) through (4.7.24), we have recovered the

deterministic battle equations for the FIF attrition process, but we have

inadvertently destroyed the probabilistic nature of the model in a rather

cavalier fashion. A more careful passage to the limit is required. A

guiding principle in such a passage to the limit would be to preserve

both the force-level means and also variances, which we have computed to

be given by (4.13.3). Thus, our new results (4.13.3) should play an

important role in developing approximations to solutions of the forward

KOLMOGOROV equations.
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A more careful passage-to-the-limit argument has been shown

(see TAYLOR (78, pp. 1-42 through 1-46]) to yield the following diffusion

approximation (e.g. see FELLER (24] or IGLEHART (39]) to the forward

KOLMOGOROV equations

ýay +bx +a p+ bx lk (4.15.7)2 1 ax 2 1ay 2 ax ay at'

with initial condition (4.15.4). Here a > 0 and bI > 0 insure that

the probability density diffuses over time (cf. the figures in Section 4.9).

Unfortunately, finding a solution to the parabolic P.D.E. (4.15.7) has

proven to be quite elusive. However, PERLA and LEHOCZKY [72] have invoked

results from the theory of stochastic differential equations (e.g. see

GIHMAN and SKOROHOD (29] or ARNOLD [5j) to develop a diffusion approximation

based on the stochastic differential equations corresponding to the

parabolic P.D.E. (4.15.7). PERLA and LEHOCZKY [72] have thereby obtained

the approximate force-level-mean-and-variance equations (4.13.6), which

we have obtained as approximations to the exact system of equations (4.13.3)

without any assumption concerning large numbers of combatants. Furthermore,

our development in Section 4.13 shows that (4.13.6) is a good approximation

to (4.13.3) only as long as a significant amount of probability has not

30
accumulated on the boundary of the state space . Thus, we feel that the

exact force-level-mean-and-variance equations (4.13.3) develop2d in

Section 4.13 should prove quite useful for developing approximations to

the forward KO0NOGOROV equations in the future.
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Finally, it should be pointed out that both G. CLARK (16, pp.

133-134] and also PERLA and LEHOCZKY (72] (the latter authors aIso giving

results for other attrition processes) have numerically investigated the

behavior of the approximate force-level-mean-and-variance equations for the

FIF attrition process. CIAMK (16, p. 1371 concluded that the force-level

variability for larger units (i.e. large numbers) is larger in absolute

terms but is a much smaller percentage of the force size than for small

units. PERLA and LEHOCZKY [72, p. 26] concluded that the approximate

equations (4.13.6) provide "good results" for initial force, levels as

small as 30 on each side. Extensive numerical computations and represen-

tative results for the approximate force-level means and standard

deviations and a comparison of these approximations with exact Monte Carlo

results (cf. Section 4.14) have also been reported by these latter authors.
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4.16. Comparison of Deterministic and Stochastic Attrition Models.

In this section we will consider the important question, "How do

random fluctuations in the occurrence of casualties modify the results obtained

from determinstic LANCHESTER-type combat models?" A number of authors (e.g.

SPRINGALL [77], CLARK [16], and CRAIG [19]) have investigated various aspects

of this very important question in considerable detail, and we will summarize

their findings later in this section. However, there is a broader context in

which we can view this question and which is more consistent with the research

philosophy espoused several places elsewhere in this monograph (cf. Sections

4.4 and 6.3): we can view a stochastic force-on-force combat model as an

abstraction of reality that should capture the essence of the combat-attrition

process and provide information on the essential underlying dynamics of combat.

This information itself should, of course, be responsive to the demands of

military OR/systems analysis for defense-planning purposes. The essential

underlying question concerning the comparison of deterministic and stochastic

force-on-force attrition models is then, "How does the information that each

combat-model type provides on the dynamics of combat compare and influence

defense decision making?" Unfortunately, we will only be able to address the

first aspect (i.e. comparison of information generated by each combat-model

type) here, but the entire issue ultimately rests on the second.

Viewed within the context of information provided on the dynamics of

combat, one single model can never be sufficient for the purposes of military

OR. We should instead consult several different complementary models that

provide information over a spectrum of issues at various levels of detail.

Within this context, the crucial question concerning the comparison of
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deterministic and stochastic force-on-force attrition models is whether

they both provide consistent information about the dyinLmics of combat. If

(for example) a deterministic force-on-force actrition model provides "first-

order" information about trends, while a stochastic one provides "second-order"

information about these trenda that merely refines rather than revises, then

the choice of the more appropriate type of model rests solely on how refined an

answer is desired. This is the basic conclusion drawn by this author after

considering many different aspects of the problem and the results uZ many authors,

In other words, the deterministic models serve to provide us with a basic

orientation about the dynamics of combat, and the stochastic models usually

serve to refine this orientation. There are, of course, exceptions and future

research should concentrate on more clearly delineating when such exceptions

occur.

Basically, the deterministic models provide information much more

conveniently about the dynamics of combat than the corresponding stochastic

models do. In general terms, a stochastic combat model. provides distributional

information about combat outcomes. However, not only is such probabilistic

information relatively difficult to extract from the stochastic model but one

must also employ summary statistics to transform it into a less complicated

and more convenient form for decision making. Moreover, if such distributional

information is not used, then we do not learn any more from the stochastic

model than from the correspndin_ origina. deterministic model. Along these

lines, such advantages and disadvatnages of deterministic and stochastic

LANCHESTER-type combat mocels are summarized in Table 4.IV.

It is the opinion of this author that deterministic LANCHESTER-type

combat models do capture the "first-order" trends of combat dynamics31 except

533



TABLE 4.lV. Advantages and Disadvantages of Deterministic and Stochastic

LANCHESTER-Type Combat Models.

Deterministic LANCHESTER,-Type Combat Models

ADVANTAGES DISADVANTAGES

1i. Information easily extracted 1. Further abstraction from

from model reality (randomness

suppressed)

2. Dynamics of combat trans-

parently revealed

Stochasti±. LANCHESTER-Type Combat Models

ADVANTAGES DISADVANTAGES

1. Closer to reality in sense 1. Information not easily

that one type of randomness extracted from model

explicitly portrayed (and only then with con-

siderable computational

cost)

2. Dynamics of combat (i.e.

driving factors) not

readily revealed
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for small numbers of potential casualties (i.e. each side can take under 20

casualties before its breakpoint is reached) and initial conditions of near

32parity . However, more experimental computation and theoretical work is

required to identify more precisly a priori circumstances under which results

from the deterministic models may be misleading. We will now review what

other authors have concluded about this important subject.

Work on the topic of comparison of deterministic and stochastic

LANCHESTER-type combat models falls naturally into three chronological

categories:

(Cl) that done before the workof SPRINGALL [77] and CLARK (161,

(C2) the work of SPRINGALL [77] and CLARK (16],

and (C3) that done after the work of SPRINGALL [77] and CLARK [161.

The work of SPRINGALL (77] and that of CLARK [16] must be regarded as definitive,

were done simultaneously and independently of each other, and reached apparently

contradictory conclusions (SPRINGALL [77, p. 186] concluding that a

deterministic formulation captures the essence of trends in such combat

dynamics and CLARK [16, p. 243] concluding that deterministic models are

inadequate for small-unit engagements). Work before that of these two authors

never systematically examined the issue of deterministic versus stochastic

LANCHESTER-type combat models as deeply, and subsequent work has tended to

take their two Ph.D. theses as a point of departure.
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Work in the first chronological category (Cl) was done far before

LANCHESTER-type combat models had had any widespread application to defense-

planning problems and also before the widespread routine use of the large-scale

digital computer in general scientific computation. The classic book by

MORSE and KIMBALL [65, pp. 63-71] contains not only the earliest work in the

western world (exclusive of LANCHESTER's [56] original 1914 paper) on simple

deterministic-type models but also the earliest work on stochastic ones and

comparison of the deterministic and stochastic models [65, pp. 67-71].

MORE and KIMBALL made such comparisons for the FIF and the FTIFT LANCHESTER-type
33

attrition processes and concluded [65, p. 69 and p. 71] that "as long as

the equations are not pressed too hard (such as by going to the annihilation

of one force)" such deterministic models do capture the first-order prob-

abilistic trends in the dynamics of combat and may be thought of as represent-

ing the mean course of combat (i.e. such deterministic models may be thought

of as "expected-value" models). For both the FIF and FT!FT attrition processes,

MORSE and KIMBALL have compared some expected values from the stochastic model

with force levels obtained from the corresponding deterministic model. For

example, for the stochastic FIF LANCHESTER-type attrition process, MORSE

and KIMBALL [65, Tables 3 and 4 on p. 70] (see also SNOW [76, pp. 26-27])

explicitly solved the applicable system of 23 forward KOLMOGOROV equations

in a special case (i.e. m0 -5, no - 3, and a - b - 1.0) and calculated

limt÷+0 E[M(t)] and limt+ E[N(t)] to obtain the results shown in

34
Table 4.V. SNOW (19] later examined such questions in greater depth

He [76, p. 27] apparently first obtained the average-force-level equations

for the FIF attrition process (4.12.11) in the special case of a fight to the
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TABLE 4.V. Comparison of End-of-Battle Results from Deterministic and

Stochastic Models for the FIF Attrition Process and a

Fight to the Finish.

Limiting Value 6f
Expected Force Level Force Level from
from Stochastic Model Deterministic Model

,

X Force Level 3.492 4.000

Y Force Level 0.232 0.000

The number in the first column represents lim E+M(t)1 as determined
t 0.++00

from the stochastic model, while that in the second represents x(tf) as

determined from the corresponding deterministic model when y(tf) o 0.
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finish, i.e. 0p - np - 0. SNOW [76, p. 281 concluded that deterministic

LANCHESTER-type equations (at least for the special case of the FIF attrition

process) could be considered as approximations to the mean-value equations for

the corresponding continuous-time MARKOV-chain model (cf. Section 4.12).

This material on comparing deterministic and stochastic LANCHESTER-type

combat models presented by MORSE and KI14BALL [65] and SNOW [76] in some sense

represents the point of departure for G. CLARK's [16] much more detailed and

comprehenisve investigation of this important modelling issue. Again, it

should be emphasized that the need for such a theoretical comparison did not

appear to be very important to military OR workers until circumstances (in-

cludLng the advent of the large-scale digital computer) had led to the

widespread use of computer-based-combat-model decision' aids by the U. S.

Department of Defense in the later 1960's. At that time this theoretical

modelling issue assumed practical significance for guiding the development of

operational models.

Other work in the first chronological category (Cl) has considered

other aspects and issues subsequently investigated in the stochastic-versus-

deterministic-models debate. SNOW [76, p. 25] apparently first raised the

question about considering the higher moments (in particular, the variability)

of the stochastic results. BROOKS [13, p. 1] suggested that survivor -vari-

ability (more precisely, survivor standard deviation) generally decreases for

many combat models in relation to the initial force levels as the latter are

increased. He concluded that sochastic determinism (see [13, pp. 1-21 or

Section 4.13 above) exists for many force-on-force combat models and that

there is an approximately deterministic relation between the initial conditions

4 538

'"'A_



and the gross results. WILLARD [91] (see also KOOPMAN L55] and ETTER [20])

suggested that the stochastic FIF LANC•HESTER-type actrition process converges

to a deterministic process as force sizes increase (see Section 4.15 above,

however), and CLARK [16, p. 54] subsequently perceived confusion on this

point of force-level variability. Other points of comparison have been investi-

gated by G. H. WEISS (89, 90], whose efforts more or less anticipated the

later more detailed and comprehensive investigations of SPRINGALL (77].

G. H. WEISS (89; 90] concluded that the deterministic models produced results

not contradicted by stochastic-model results and that such qualitative agreement

increases as the numbers of combatants increases.

SPRINGALL [77] obtained time-dependent results (in particular, the

distribution for the duration of battle) for all the simple LANCHESTER-type

stochastic combat models and developed expressions for the victory probabilities

and distribution of survivors for some more complicated models. He then used

these results to investigate the issue of stochastic versus deterministic

combat models. SPRINGALL [77, p. 152] pointed out that although deterministic

and stochastic LANCRESTER-type models yield results that are (at first sight

at least) entirely different in their basic nature (although based on equiva-

lent premises), one would expect that the two types of models lead to approxi-

mately the same conclusions concerning (cf. the analysis questions presented

in Table 4.1):

(QI) Who will be the victor?

(Q2) How many survivors will he have?

(Q3) How long will the battle last?
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SPRINGALL argued that the most important comparison criterion was the prediction

of battle outcome and that if the two types of models could not agree on this,

there would be little hope for agreement on subsidiary attributes. Based on

both theoretical and also many numerical comparisons for a number of different

models [77, pp. 151-166], SPRINGALL [77, p. 167] concluded that

(Cl) the deterministic results most adequately describe force-on-

force attrition in combat when the number of combatants on
35

each side is large ,

and (C2) although it is capable of providing reasonable approximations

to the expected values of the force levels, a deterministic

model (by its very nature) cannot give any insight into their

variances (which can be appreciable).

These conclusions were based on consideration of numerical results for a

variety of models concerning (i) prediction of battle outcome, (2) the

average force levels, (3) force-level variability, and (4) the expected

duration of battle. At the end of this thesis, SPRINGALL [77, p. 187] has

reiterated his general conclusion concerning these two basic types of

models that (where appropriate) a deterministic LANCHESTER-type combat model

is increasingly valid as an approximation to the results from a corresponding

stochastic (i.e. continuous-time MARKOV-chain) model aj the number of combatants

on each side increases. The stochastic results however, did not seem to

converge completely to the deterministic results under all conditions. This

latter point apparently did not concern SPRINGALL very much (see [77, p. 187] for
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further details), although it was the source of much concern for

CLARK [161.

G. M. CLARK [16] has presented an even more detailed and comprehensive

comparison of deterministic and stochastic LANCHESTER-type combat models

in his Ph.D. thesis. Much bf his supporting analysis has already been presented

in Sections 4.9, 4.12, and 4.13 above, and consequently complete details need

not be given here. CLARK [16, p. 243] concluded that "analysis of the bias in

LANCHESTER combat models and of the survivor standard deviation supports the

choice of stochastic models over deterministic models when describing small

unit engagements" (say under 12 weapons on each side). Here CLARK [16, p. 59]

took the term bias in the determirnisic model to mean the difference between

the deterministic model's result and the expected state of the corresponding

stochastic attrition process. CLARK [16, p. 243], however, added that for

large-unit engagements (say, over 100,000 combatants on each side) results

indicated that deterministic force-on-force combat models are (for the most part)

satisfactory, i.e. survivor bias and stochastic variability appear negligible.

CLARK apparently based these conclusions on rather extensive computations

of force-level means and standard deviations for the FIF and FTIFT stochastic

LANCHESTER-type combat models and comparison of these stochastic-model results

with the appropriate corresponding deterministic-model results. Some of these

computational results are shown in Tables 4.VI and 4.VII (see CLARK [16] for

further details; also see the figures (extracted from his Ph.D. thesis) in

Sections 4.12 and 4.13 above). It should be pointed out that from CLARK's

computational results it appears that he took the term "small-unit engagement"

to mean approximately 12 or less combatants on each side. Thus, SPRINGALL's

and G. CLARK's conclusions about the comparative quantitative behavior of
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TABLE 4.VII. Typical Terminal Values for the Standard Deviation of a

Combatant's Force Level in an FTIFT LANCHESTER-type

Stochastic Attrition Process and a Fight-to-the-Finish

(from CL.MK [161).

Initial Effectiveness of Individual Firers Battle Standard Deviation
Force Levels a b Time t of Force Level

S(Y combatant) (X combatant) (seconds) v • (t) AV-(t)
MO no

6 6 0.004 0.001 1500. 0.241 1.346

6 6 0.004 0.0015 1500. 0.530 1.642

6 6 0.004 0.002 1500. 0.840 1.811

6 6 0.004 0.004 2500. 1.678 1.678

8 8 0.004 0.001 1500, 0.158 1.571

8 8 0.004 0.0015 1500. 0.441 1.954

8 8 0.004 0.002 1500. 0.808 2.192

8 8 0M004 0.004 2500. 1.990 1.990

12 6 0.004 0.001 1500. 1.283 1.723

12 6 0.004 0.0015 1500. 2.271 1.743

12 6 0.004 0.002 2500. 2.987 1.493

12 6 0.004 0.004 1500. 3.120 0.565

1
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deterministic and stochastic LANCHESTER-type combat models are not really

contradictory. Each researcher was apparently considering a diffqrent realm

of applicability as regards initial force levels, CLARK ten or less on each

side and SPRINGALL over thirty.

We next turn to work in the last chrono.Logical category (C3), which

has appeared subsequent to that of SPRINGALL [77] and CLARK [16]. It is

indeed paradoxical that today when LANCHESTER-type models are more widely

used than ever before for defense planning in the U.S. DoD and elsewhere

(many times for investigating very praccical operational-planning questions),

very little material is being published on such models, with next to nil

36
about stochastic variations (and with at least even an order of magnitude

less information appearing about comparisons of stochastic with det ministic

LANCHESTER-type combat models). To be sure, there are significant research

activities going on, but for various reasons most of it does not ever get

documented and/or published 37. With this important qualification being

observed, we will now briefly examine what investigations concerning comparison

of deterministic and stochastic LANCHESTER-type combat models h&.e appeared

subsequent to 1969. The major pieces of work concerning such comparisons

known to this author are by CRAIG [19] and KARR [47; 481. The former autir

presents far more computational results than does the latter author, and

consequently we will focus on CRAIG's work [19], which is corroborated

by that of KARR [47; 48].

CRAIG [19] took SPRINGALL's [77] and CLARK's [161 work as a point of

departure and did extensive numerical calculations upon which he based his

comparison of deterministic and stochastic LANCHESTER-type combat models.
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He considered only the FIF attrition process, though. CRAIG [19, p. 140] concluded

that the complex random process of force-on-.force combat can be adequately

represented by a deterministic model if

(1) there are at least 20 combatants on each side,

"(2) force-level breakpoints are such that each side is willing and

I'capable of taking at least 20 casualties,

(3) the forces are not near parity,

and (4) if near parity, then each side initially has at least 40

combatants and is willing and capable of taking at least 20

casualties.

In other words, unless the two homogeneous forces are near parity, essentially

the same information about the dynamics of combat is obtained from both

deterministlc and stochastic LANCHESTER-type combat models (i.e. the models

are not significantly different in term of the outputs that they produce, at

least in qualitative terms). CRAIG [19] based these conclusions on extensive

computations of the probability of winning and the force-level means and

variances (see Tables 4.VIII and 4.11 for some- representative computational

results from [19]).
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Based on careful review of all the work discussed above, we have

veached the coxclusions regarding the relative mer.its of deterministic and

stochastic LANCHESTER-type combat models that we have pxesented earlier in

this section: in essence, unlebs the force levels are appreciably below 20

on each side and the forcesnaavit. a deterministic LANCRESTER-type

model is quits adequate for representing force-on-force attrition (particularly

if distributional information is not required). These conclusions must be

regarded as somewhat tentative, however, and more computational and theoretical

work is required to more clearly delineate when exceptions to the above general

rule of thumb should be expected to occur.
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V

FOOTNOTES FOR CHAPTER 4

'1

1. The principal subsequent works on stochastic combat models that have

appeared in the unclassified literature are the ones by SNOW [76], BROWN

(14; 151, BROOKS [13], D. G. SMITH [75], SPRINGALL [77], CLARK [16; 17],

GRUBBS and SHUFORD [33], and BOWEN [25]. The reader may also find it

worthwhile to read the more recent paper by KOOPMAN (55]. It contains a

number of interesting conceptual ideas about the representation of combat

attrition as a stochastic process. For the sake of completeness we also

note here the following papers: ISBELL and MARLOW [40], MARADUDIN and

WEISS [591, WILLARD [91], C. MARSHALL [61], KISI and HIROSE [531, MARMA

and DEUTSCH [60], MJELDE [64], JAIN and NAGABHUSHANAM [41], SHUFORD and

GRUBBS [74], FARRELL and FREEDMAN [22], WATSON [81], GYE and LEWIS [34],

and GOLDIE [31]. Finally, mention should be made of the eight reports

from the Defence Operational Analysis Establishment (DOAE) (of the

Ministry of Defence of the United Kingdom) by WEALE [82-86], JENNINGS

[42-43], and WEALE and PERYER [87], the work at the Institute for Defense

Analyses by KARR [45-49], and the M.Sc. thesis by GRAINGER [32]. The

first seven DOAE reports [42-43; 82-87] have been reviewed and critiqued

by KARR [50]. No further readily available work on stochastic

LANCIIESTER-type models could be found in the recently published list

of references on the LANCHESTER theory of combat by HAYSMAN and

MORTAGY [35].
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2. BARTLETT [7] has pointed out that many different stochastic birth-and-

death models are compatible with a given deterministic differential-

equation population-growth model. Clearly, the same is true for combat

attrition models. For example, MARADUDIN and WEISS [59] and G. H. WEISS

[89] have considered different stochastic birth-and-death models that

are compatible with the deterministic FTIFT attrition process.

3. Similar stochastic models arise in various fields of science and technology

such as mathematical biology [7; 8; 30; 51; 58; 89], ecology [73],

epidemiology [6; 90], etc. (e.g. se_ BHARUCHA-REID [10] for some further

fields of application in which such sLmilar models arise). Further refer-

ences to the literature are to be found in the above cited work, which

may be taken as an abbreviated (but selective) guide for further reading.

In particular, a fairly extenslve literature on stochastic population

models exists and is readily available to the interested reader (see

KENDALL [51] for a review and summary oE earlier, i.e. pre-1950, work on

stochastic population models, while more recent activities have been

reported in BARTLETT [8], GOEL et al. [30], and LUDWIG [58]). lt should

be pointed out, however, that although concepts and even most details of

model formulation are essentially the same in these related fields and

LANCHESTER combat theory, few results from these allied fields have been

found to be directly applicable to LANCHESTER-type combat models (see

G. H. WEISS [89] for a notable exception, though). The reasons for this

state of affairs are apparently that (RI) somewhat different information

about a model is required in these related fields (cf. Table 4.1 above),
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and (R2) combat models (in contrast to such related models) apply to

systemi with bounded and essentially always declining numbers of

combatants.

4. As pointed out in Section 1.6, the state variables describe the system

state, which is the minimum amount of information that allows one to

predict the system's future from the past. This point is crucial for

applications, since it forms the conceptual basis for formulating differ-

ential combat models. In other words, the state variables are the

significant variables for describing and predicting, for example, the

future evolution of the combat attrition process.

5. FELLER [25, p. 369] has said, "Conceputally, a MARKOV process is the

probabilistic analogue of the processes of classical mecLanics, where

the future development is completely determined by the present state

and is independent of the way in which the present state has developed.

The processes of mechanics are in contrast to processes with after

effect (or hereditary processes), such as occur in the theory of plasticity,

where the whole past history of the system influences its future."

We observe that all the LANCHESTER-type combat processes considered in

this book are equivalent to the processes of classical mechanics in

the sense of not containing any hereditary effects.
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6. For example, in a fixed-force-level-breakpoint battle (cf. Section 2.8

and also Chapter 3) there will be (m0+i - mBp) x (no + 1 - nBp)

* •essential components in the state-probability vector, and corresponding

to each such component is a differential-difference equation for its

H probabilistic evolution. Here mp denotes X's fixed force-level

breakpoint, and similarly for np.

7. There are also backward KOLMOGOROV equations (e.g. see FELLER [25,

pp1 426-427]), but these are not of interest to us here.

8. The reader will find it instructive to show that such terms make no
S~2

contribution to our final result (4.3.8), since lim &tO 0((At) )/At - 0.

9. The (continuous-parameter MARKOV-chain) stochastic process corresponding

to LANCHESTER's equations for modern warfare (2.2.1) has been called by

B. 0. KOOPMAN [55, p. 8691 the LANCHESTER stochastic process. Here we

"have extended such terminology to include any stochastic-process version

of LANCHESTER-type combat equations.

10. dowever, we may always use finite-difference techniques (see Appendix E)

to numerically compute (with the aid of some type of automated computa-

J tional device) approximate results for any specific battle.

11. We will omit any further explicit reference to the result (4.7.8).

since it always holds. The reader should not forget this fact.

552



12. A few additional methods for computing the joint probability distribution

of the numbers of survivors are given by KOOPMAN [55, pp. 863-866]. The

author knows of no application of any of these additional methods to

LANCHESTFR combat theory. One significant omission by KOOPMAN [55]

is the use of Monte Carlo methods, which are discussed in detail in

Section 4.14 below. Although KOOPMAN [55, pp. 866-867] does talk about

Monte Carlo simulations, he is using the term "Monte Carlo" in the sense

of a modelling approach (see Chapter 1) and not in the sense of a

computational procedure for estimating the state probabilities or some

other statistical measure of battle outcome.

13. For a very readable introduction to a1rterence equations, see

HILDEBRAND [38].

14. The relationship between BROWN's [14] general result and CLARK'a [16]

hybrid method for the same general model has apparently never been

explored.

15. See MORSE and KIMBALL [65, p. 70] for an example of such a calculation

being carried out for the FIF attrition process with m - 5 and no 3

for the special case in which a - b. Nevertheless (as we discuss below

in the main text), no general analytical result that holds for all MO

and n0 > 0 is known to this author. It is interesting to note that

although the CHAPMAN-KOLMOGOROV equation for the autonomouj model (4.7.2)

through (4.7.8) expresses the semi-group property of the state probabili-

ties (see KOOPMAN [55, pp. 862-863]) and consequently the state-probability

vector must be expressible in terms of a matrix-exponential function (e.g. see
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BELLMAN [9, pp. 173-174])(i.e. each state probability is the sum of

appropriately weighted exponential terms), the explicit analytical

representation of the latter can be a formidable task (although trivial

to represent symbolically) as attested to by the lack of analytical

results for the state probabilities (cf. the analytical results for

heterogeneous-force models in Section 7.8). Furthermore, CLARK's hybrid

results (4.9.2) through (4.9.4) may be considered to be a manifestation

of this latter faet of expressibility in terms of the matrix exponential.

16. Recently, GOLDIE [31] has given an analytical result that represents

P(t,m,n) as a double summation of negative exponentials similar to

CLARK's [16] general result (4.9.2) but with undetermined coefficients

(for which generating functions have been given, though). Moreover,

GOLDIE [31, p. 606] has inferred that the result (4.9.35) was first given

by GYE and LEWIS (see [34]) in 1974, whereas in reality ISBELL and

MARLOW's [40] more general result (4.9.22) dates back to 1956. GOLDIE

[31, p. 608] also attributes (4.10.21) and (4.10.22) to GYE and LEWIS

[34] and makes no mention at all to the earlier work of D. G. SMITH [75].

17. A related heurirtic discussion of the mechanisms of convective transport

and diffusion of probability is to be found in Section 4.15 below.

18. From this discussion the reader should be able to geometrically visualize

the relationship of the joint probability distribution to the win prob-

abilities for such battles: the probability that one side wins is simply

4i the total amount of probability that is "absorbed" onto the appropriate

J axis.
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19. Except for the results of KISE and HIROSE [30] for the F!FT stochastic

LANCHESTER-type attrition process, all the results that have appeared

in the open literature have been for a fight to the finish.

20. Here, as for the FIF attrition process, all the results that have previously

appeared in the open literature have been for a fight to the finish (see

also Footnote 19 above).

21. These arguments, which are identical to those usually used to develop

the negative binomial distribution for the number of independent BERNOULLI

trials required to achieve a given number of successes (e.g. see FELLER

[25, p. 1551, go as follows. Denote the probability that the next

casualty is an X casualty as p - a/(a+b) - P (mn) and similarly

q - 1- p - PNC(m,n). The probability that there are exactly nO - nBp

Y casualties out of a total of m0 + no - m - nBP - 1 total casualties

is given by

S+ n 0o m - nBp mo-m no-nBP-i

( no BP- 1

The event that X wins with m final survivors occurs if (and only if)

the battle state (m, n B + i) has been reached, i.e. exactly

no - nBP - 1 Y casualties out of a total of m0 + no Bp

casualties, and the next casualty is a Y one, with the corresponding

probability of occurrence begin given by
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'0 ~no - rnnBP - c 0fl-BP-'P q q

o0  - - ) P

whence follows (4.10.9). More formally, one could invoke (4.9.33)

with

P T (Mopntoo + no - m - n BP - 11 0-m qn C-n Bp-I

m'n BP+1 0 no0  - 1

and PNC(m,nBp + 1) - q.

22. Professor G. E. LATTA has generously privately communicated the following

proof of (4.10.24) to the author.

J=mBP-l j- (Q-k)
'V I .(j -k)(

_Irns+l (J-Mr)! k-:

j kO *k (k-l)!

(J-mBP) -mBp

ij i(J-mP-l)! (J-mBp-1).

23. The reader will recognize that the situation here is exactly analogous

to that concerning the practical usefulness of exact analytical expressions

for the state-probability vector (i.e. the joint probability distribution

for the number of survivors on each side).
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24. For example, when m0  no 30, we have (mt + no)! - 1.39 x 1080

(mo+no)
<<< m , and such a computed numerical result will cause an overflow

on, for example, the IBM 360/67 computer.

25. One could, of course, use a large-scale digital computer to compute

for "enough" cases the probability of winning directly from the

fundamental partial-difference equation (4.10.4) and to determine from

this "data" the functional relationship between the battle-outcome

probability distribution and the battle's parameters. Exactly how to

do this and how to determine how many cases are "enough" are unanswered

questions that doom this approach to failure. Thus, although it is easy

to compute "by brute force" the probability of winning for specific

numerical values of the battle parameters, the parametric determination

of the probabilistic relation between battle inputs and outputs must

apparently depend on having available simplifying approximations to the

exact analytical results for the probability of winning.

26. In the second case of the FIF attrition process, however, the approximation

applies to only a fight to the finish (i.e. a fixed-force-level-breakpoint

battle in which xBP " YBP ' 0).

27. Both BROWN [14; 15] and G. H. WEISS [89] give their results for a fight

to the finish. Our result (4.11.5) for a fixed-force-level-breakpoint

battle follows from (4.10.14) and consideration of their results (also,

see below in main text).
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28. All modern computing systems contain algorithms for generating samples

of such unit uniform variates (e.g. see NAYLOR et al. (66, Chapter 3],

EVANS, WALLACE, and SUTHCRLAND [21, pp. 187-189], or FISHMAN (26,

Chapter 7]).

29. Here we have defined the DIRAC delta function as a so-called ideal function

or distribution (e.g. see COURANT and HILBERT [18, pp. 766-798] or

FRIEDMAN [27] for further details).

30. Previously, researchers hava always stated that the approximation is

"good" as long as there is "little probability" that either side is

annihilated, which is quite different from the correct statement that

it is "good" as long as there is "little probability" that either side

has reached its breakpoint.

31. This statement definitely appears to hold for continuous-time MARKOV-

chain models in which the times between casualties are exponentially

distributed. There has been some computational evidence, however, that

in other cases (e.g. some other distribution for the times between

casualties) this is not always true. Thus, without the appropriate

qualifications being observed, it is simply not true that such a

deterministic model invariably yields the same results for the mean

course of combat as does a corresponding stochastic attrition model

(e.g. a Monte Carlo simulation). More generally, as the author's

colleague Professor C. J. ANCKER of the University of Southern California
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has emphasized [3] to him, it is generally not true that a so-called

mean-value model (obtained by replacing a random variable in a stochastic

model by its mean value) yields a good approximation to the mean value

of the corresponding stochastic process. Hopefully, we will see further

clarification of this important point in the literature in the future.

32. Aspoin.ed out by TAYLOR and PARRY [79, p. 527] for the (F+T) I(F+T)

attrition process and a fixed-force-ratio-b.eakpoint battle, the condition

of parity (i.e. neither side can win) between forces is an unstable

equilibrium point. The author conjectures that this situation holds in

general and leads to maximum dispersion of combat results under ouch

initial conditions for stochastic LANCHESTER-type models.

33. These two attrition processes were treated in different ways by MORSE and

KIMBALL (65, pp. 67-71]. For the FIF LANCdESTER-type stochastic attrition

process, the complete system of forward KOLMOGOROV equations were

explicitly solved in one special case of numerical input values, and the

average force levels at the end of battle (one side or the other

annihilated) computed from these results [65, pp. 70-71]. For the FTIFT

LANCHESTER-type stochastic attritioax process, only the random valk in

the state space (corresponding to the state equation which in this case

is the linear law) was considered [65, pp. 67-69].

34. SNOW [76, pp. 23-27] considered only the (F+T)I(F+T) LANCHESTER-type

stochastic attrition process (and its important special case, the FIF

attrition process) in his work. In other words, the FTIFT LANCHESTER-type
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stochastic attrition process was not investigated by him at all.

Moreover, for the VFI stochastic attrition process, no new computational

results were presented by SNOW [76] which are not to be already found it

MORSE and KIMBAll (65, pp. 67-71].

35. From the numerical results presented by SPRINGALL [77, pp. 151-166], it

is apparent that "large" here means more than 30 or 40 combatants o-i

each side (in contrast to CLARK's [16, pp. 133-134, p. 137, and p. 243]

in which "large" is taken to mean 100,000 or more combatants on each

side).

36. Concering stochastic LANCHESTER-type combat models themselves, the follow-

ing papers have appeared in the open literature subsequent to the work

of SPRINGALL (77] and CLARK [16]: GRUBBS and SHUFORD £33], MARMA and

DEUTSCH [60], MJELDE [64], JAIN and NAGABHUSHANAM [41], SHUFORD and

GRUBBS [74], WATSON [81], GYE and LEWIS [34], and GOLDIE [31]. Mention

should also be made of the reports by WEALE [82-86), JENNINGS [(42-3],

WEALE and PERYER [87], and KARR [45-50] and the M.Sc. thesis by

GRAINGER (32]. In (50] KARR has reviewed and critiqued the seven DOAE

reports (42-43; 82-85; 87].

37. Consideration of national security (i.e. classified material) is not a

reason for this state of affairs, since there 6o exist classified

channels of information dissemination. Along these lines, C. J. ANCKER

[2] has observed that although analysis of military operations as a
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basis for many types of expensive decisions consumes large amounts of

time and money every year in U. S. military ectablishments, relatively

little of the attention is focussed on actual combat (as opposed to

combat-support operations), and even less on mathematical analysis of

combat (as opposed to computer simulation of combat).

561



REFERENCES for Chapter 4

1. M. Abramowitz and I. A. Stegun (Editors), Handbook of Mathematical
Functions, National Bureau of Standards Applied Mathematics Series,
No. 55, Washington, D.C., 1964.

2. C. J. Ancker, "Review of the Book Force-on-Force Attrition Modelling,"
Phalanx 12, No. 4, 3 (1979).

3. C. J. Ancker, private communication, November 1979.

4. J. Andrighetti, "A Model for the Statistical Analysis of Land Combat
Simulation and Field Experimentation Data," M.S. Thesis in Operations
Research, Naval Postgraduate School, Monterey, California, September
1973 (AD 769 387).

5. L. Arnold, Stochastic Differential Equations: Theory and Applications,
John Wiley, New York, 1974.

6. M. S. Bartlett, "Deterministic and Stochastic Models for Recurrent Epi-
demics," pp. 81-109 in Proceedings of the Third Berkeley Symposium on
Mathematical Statistics and Probability, J. Neyman (Editor), University
of California Press, Berkeley and Los Angeles, 1956.

7. M. S. Bartlett, "On Theoretical Models for Competitive and Predatory
Biological Systems," Biometrika 44, 27-42 (1957).

8. M. S. Bartlett, Stochastic Population Models, Methuen, London, 1960.

9. R. E. Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York,
1960.

10. A. T. Bharucha-Reid, Elements of the Theory of Markov Processes and
Their Applications, McGraw-Hill, New York, 1960.

11. S. Bonder, "An Overview of Land Battle Modelling in the U.S.," pp.
73-88 in Proceedings of the Thirteenth Annual U.S. Army Operations
Research Symposium, Fort Lee, Virginia, 1974.

12. K. C. Bowen, "Mathematical Battles," Bulletin of the Institute of
Mathematics and Its Applications 9, 310-315 (1973).

13. F. C. Brooks, "The Stochastic Properties of Large Scale Battle Models,
Opns. Res. 13, 1-17 (1965).

14. R. H. Brown, "A Stochastic Analysis of Lanchester's Theory of Combat,"
ORO-T-323, Operations Research Office, The Johns Hopkins University,
Chevy Chase, Maryland, December 1955 (AD 82 944).

15. R. H. Brown, "Theory of Combat: The Probability of Winning," Opns.
Res. 11, 418-425 (1963).

562



16. G. M. Clark, "The Combat Analysis Model," Ph.D. Thesis, The Ohio
State University, Columbus, Ohio, 1969.

17. G. M. Clark, "The Combat Analysis Model," Chapter 11 in "The Tank
Weapon System," A. B. Bishop and G. M. Clark (Editors), Report No.
AR 69-2B, Systems Research Group, The Ohio State University,
Columbus, Ohio, September 1969.

18. R. Courant and D. Hilbert, Methods of Mathematical Physics, Volume
II, Interscience, New York, 1962.

19. J. D. Craig, "The Effect of Uncertainty on Lanchester-Type Equations
of Combat," M.S. Thesis in Operations Research, Naval Postgraduate
School, Monterey, California, September 1975 (AD A017 550).

20. D. 0. Etter, "Deterministic Combat Attrition Models for Spatially
Distributed Forces," P-577, Institute for Defense Analyses, Arling-
ton, Virginia, May 1971.

21. G. W. Evans, G. F. Wallace, and G. L. Sutherland, Simulation Using
Digital Computers, Prentice-Hall, Englewood Cliffs, New Jersey,
1967.

"22. R. L. Farrell and R. J. Freedman, "Investigations of the Variation
of Combat Model Predictions with Terrain Line of Sight," Report No.
AMSAA-l, FR75-1, Vector Research, Inc., Ann Arbor, Michigan, January
1975.

23. W. Feller, "On the Normal Approximation to the Binomial Distribution,"
Ann. Math. Stat. 16, 319-329 (1945).

24. W. Feller, "Diffusion Processes in Genetics," pp. 227-246 in Proceed-
ings of the Second Berkeley Symposium on Mathematical Statistics and
Probability, J. Neyman (Editor), University of California Press,
Berkeley and Los Angeles, 1951.

25. W. Feller, An Introduction to Probability Theory and Its Applications,
Volume I (Second Edition), John Wiley, New York, 1957.

26. G. S. Fishman, Concepts and Methods in Discrete Event Digital Simula-
tion, John Wiley, New York, 1973.

27. A. Friedman, Generalized Functions and Partial Differential Equations,
Prentice-Hall, Englewood Cliffs, New Jersey, 1963.

28. P. R. Garabedian, Partial Differential Equations, John Wiley, New York,
1964.

29. I. 1. Gibman and A. V. Skorohod, Stochastic Differential Equations,
Springer-Verlag, New York, Heidelberg, Berlin, 1972.

30. N. S. Goel, S. C. Maitra, and E. W. Montroll, "On the Volterra and
Other Nonlinear Models of Interacting Populations," Rev. Mod. Phys. 43,
231-276 (1971) (also published as a monograph with the same title by
Academic Press, New York, 1971).

563

-- AL



r • • - - • •-i -- •7 1- ... .

31. C. M. Goldie, "Lanchester Square-Law Battles: Transient and Terminal
Distributions," J. Appl. Prob. 14, 604-610 (1977).

32. P. L. Grainger, "The Use of a Stochastic Tank Engagement Model to
Examine the Effects of Moving Target Correlation and to Derive Equiva-
lent Lanchester Equations," M. Sc. Thesis in Operational Research,
Department of Statistics and OR, Brunel University, Uxbridge, United
Kingdom, June 1976.

33. F. E. Grubbs and J. H. Shuford, "A New Formulation of Lanchester Com-
bat Theory," Opns. Res. 21, 926-941 (1973).

34. R. Gye and T. Lewis, "Lanchester's Equations" Mathematics and the Art
of War, A Historical Survey and Some New Results," Math. Scientist 1,
107-119 (1976).

35. P. J. Haysman and B. E. Mortagy, "References on the Lanchester Theory
of Combat to 1980," Working Paper OR/WP/6, Department of Management
Sciences, The Royal Military College of Science, Shrivenham, United
Kingdom, January 1980.

36. F. B. Hildebrand, Advanced Calculus for Engineers, Prentice-Hall,
Englewood Cliffs, 1948.

37. F. B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill,
New York, 1956.

38. F. B. Hildebrand, Finite-Difference Equations and Simulations, Prentice-
Hall, Englewood Cliffs, 1968.

39. D. L. Iglehart, "Diffusion Approximations in Applied Probability," pp.
235-254 in Mathematics of the Decision Sciences, Part 2, G. B. Dantzig
and A. F. Veinott (Editors), American Mathematical Society, Providence,
Rhode Island, 1968.

40. J. R. Isbell and W. H. Marlow, "Attrition Games," Naval Res. Log. Quart.
3, 71-94 (1956).

41. G. C. Jain and A. Nagabhushanam, "A Two-State Markovian Correlated Com-
bat," Opns. Res. 22, 440-444 (1974).

42. N. Jennings, "The Mathematics of Battle III. Approximate Moments of
the Distribution of States of a Simple Heterogeneous Battle," M7315,
Defence Operational Analysis Establishment, West Byfleet, United King-
dom, June 1973.

43. N. Jennings, "The Mathematics of Battle IV. Stochastic 'Linear Law'
Battles," M7316, Defence Operational Analysis Establishment, West By-
fleet, United Kingdom, June 1973.

44. S. Karlin, A First Course in Stochastic Processes, Academic Press, New
York, 1966.

564



45. A. F. Karr, "Stochastic Attrition Models of Lanchester Type," P-1030,
Institute for Defense Analyses, Arlington, Virginia, June 1974.

46. A. F. Karr, "A Generalized Stochastic Lanchester Attrition Process,"
P-1080, Institute for Defense Analyses, Arlington, Virginia, September
1975.

47. A. F. Karr, "On Simulations of the Stochastic, Homogeneous, Lanchester
Square-Law Attrition Processes," P-1112, Institute for Defense Analyses,
Arlington, Virginia, September 1975.

48. A. F. Karr, "On Simulations of the Stochastic, Homogeneous, Lanchester
Linear-Law Attrition Process," P-1113, Institute for Defense Analyses,
Arlington, Virginia, September 1975.

49. A. F. Karr, "A Class of Lanchester Attrition Processes," P-1230, Insti-
tute for Defense Analyses, Arlington, Virginia, December 1976.

50. A. F. Karr, "A Review of Seven DOAE Papers on Mathematical Modell of
Attrition,"u P-1249, Institute for Defense Analyses, Arlington, Virginia,
November 1977.

51. D. G. Kendall, "Stochastic Processes and Population Growth," J. Roy.
Stat. Soc., Series B 11, 230-264 (1949).

52. M. G. Kendall, The Advanced Theory of Statistics, Volume 1, Charles
Griffin & Company Limited, London, 1945.

53. T. Kisi and T. Hirose, "Winning Probability in an Ambush Engagement,"
Opns. Res. 14, 1137-1138 (1966).

54. L. Kleinrock, Queueing Systems, Volume I: Theory, John Wiley, New York,
1975.

55. B. 0. Koopman, "A Study of the Logical Basis of Combat Simulation,"
Opns. Res. 18, 855-882 (1970).

56. F. W. Lanchester, "Aircraft in Warfare: The Dawn of the Fourth Arm -
No. V., The Principle of Concentration," Engineering 98, 422-423 (1914),
(reprinted on pp. 2138-2148 of the World of Mathematics, Vol. IV, J.
Newman (Editor), Simon and Schuster, New York, 1956).

57. W. U. Lee and A. Wannasilpa, "Comparison of a Deterministic and a
Stochastic Model for the Probability of Winning in a Two-Sided Combat
Situation," M.S. Thesis in Operations Research, Naval Postgraduate
School, Monterey, California, September 1972 (AD 756 536).

58. D. Ludwig, Stochastic Population Theories, Vol. 3 in Lecture Notes in
Biomathematics, Springer-Verlag, Berlin, Heidelberg, and New York,
1974.

59. A. Maradudin and G. H. Weiss, "A Study of Some Lanchester-Like Equa-
tions," Tech. Report No. 95, Physics Dept., University of Maryland,
College Park, Maryland, 1958 (AD 154 168).

565

.- r S- i -



60. V. Marma and K. Deutsch, "Survival in Unfair Conflict: Odds, Resources,

and Random Walk Models," Behavioral Science 18, 313-334 (1973).

61. C. Marshall, "Probabilistic Models in the Theory of Combat," Trans.
New York Acad. Sciences, Series II, 27, 477-487 (1965).

62. D. D. McCracken and W. S. Dorn, Numerical Methods and FORTRAN Program-
m.in, John Wiley, New York, 1964.

63. W. E. Milne, Numerical Solution of Differential Equations, John Wiley,
New York, 1953.

64. K. M. Mjelde, "An Analytical Approach to a Class of Battles," _pne.
Res. 22, 93-99 (1974).

65. P. M. Morse and G. E. Kimball, Methods of Operations Research, The
M.I.T. Press, Cambridge, Massachusetts, 1951.

66. T. H. Naylor, J. L. Balintfy, D. S. Burdick, and K. Chu, Computer
Simulation Techniques, John Wiley, New York, 1966.

67. L. Padulo and M. A. Arbib, System Theory, Saunders, Philadelphia,
1974.

68. E. Parzen, Modern Probability Theory and Its Applications, John Wiley,

New York, 1960.

69. E. Parzen, Stochastic Processes, Holden-Day, San Francisco, 1962.

70. K. Pearson, "On the Applications of the Double Bessel Function
K qT1,T2(X) to Statistical Problems," Biometrika 25, 158-178 (1933).

71. K. Pearson (Editor), Tables of the Incomplete Beta-Function, Cambridge
University Press, Cambridge, 1934.

72. P. P. Perla and J. P. Lehoczky, "A New Approach to the Analysis of
Stochastic Lanchester Processes: I. Time Evolution," Tech. Report
No. 135, Department of Statistics, Carnegie-Mellon University, Pitts-
burgh, Pennsylvania, September 1977 (AD A045 176).

73. E. C. Pielou, An Introduction to Mathematical Ecology, Wiley-
Interscience, New York, 1969.

74. J. H. Shuford and F. E. Grubbs, "Stopping Rules for War Games or
Combat Simulations with Exponential Life Times," Opns. Res. 23,
824-829 (1975).

75. D. G. Smith, "The Probability Distribution of the Number of Survivors
in a Two-Sided Combat Situation," Operational Res. quart. 16, 429-437
(1965).

566

----- r --•



76. R. N. Snow, "Contributions to Lanchester Attrition Theory," Report
RA-15078, The RAND Corporation, Santa Monica, California, April 1948.

77. A. Springall, "Contributions to Lanchester Combat Theory," Ph.D.
Thesis, Virginia Polytechnic Institute, Blacksburg, Virginia, March
1968.

78. J. G. Taylor, "Application of Differential Games to Problems of Mili-
tary Conflict: Tactical Allocation Problems - Part II," Tech. Report
NPS 55Tw72111A, Naval Postgraduate School, Monterey, California,
November 1972 (AD 758 663).

79. J. G. Taylor and S. H. Parry, "Force-Ratio Considerations for Some
Lanchester-Type Models of Warfare," Opus. Res. 23, 522-533 (1975).

80. J. Todd (Editor), Survey of Numerical Analysis, McGraw-Hill, New
York, 1962.

81. R. K. Watson, "An Application of Martingale Methods to Conflict
Models," Opns. Res. 24, 380-382 (1976).

82. T. G. Weale, "The Mathematics of Battle I. A Bivariate Probability
Distributution," M7129, Defence Operational Analysis Establishment,
West Byfleet, United Kingdom, December 1971.

83. T. G. Weale, "The Mathematics of Battle II. The Moments of the
Distributution of Battle States," M7130, Defence Operational Analysis
Establishment, West Byfleet, United Kingdom, October 1972.

84. T. G. Weale, "The Mathematics of Battle V. Homogeneous Battles with
General Attrition Functions," M7511, Defence Operational Analysis
Establishment, West Byfleet, United Kingdom, August 1975.

85. T. G. Weale, "The Mathematics of Battle VI. The Distribution of the
Duration of Battle," M76126, Defence Operational Analysis Establish-
ment, West Byfleet, United Kingdom, June 1976.

86. T. G. Weale, "Mathematics of Battle VIII. The Heterogeneous Battle
Model," M78106, Defence Operational Analysis Establishment, West
Byfleet, United Kingdom, April 1978.

87. T. G. Weale and E. Peryer, "The Mathematics of Battle VII. Moments
of the Distributution of States for a Battle with General Attrition
Functions," M77105, Defence Operational Analysis Establishment, West
Byfleet, United Kingdom, January 1977.

88. S. Weintraub, Tables of the Cumulative Binomial Probability Distribu-
tion for Small Values of p, The Free Press of Glencoe (A Division of
The Macmillan Company), New York, 1963.

89. G. H. Weiss, "Comparison of a Deterministic and a Stochastic Model for
Interaction Between Antagonistic Species," Biometrics 19, 595-602 (1963).

567

SIiii
i u 4



90. G. H. Weiss, "On the Spread of Epidemics by Carriers," Biometrics
21, 481-490 (1965).

91. D. Willard, "Lanchester as Force in History: An Analysis of Land
Battles of the Years 1618-1905," RAC-TP-74, Research Analysis
Corporatl.on, Bethesda, Maryland, November 1962 (AD 297 375).

I

568

Fj -



*APPENDIX C: SOLUTION OF THE FUNDAMENTAL PARTIAL-DIFFERENCE EQUATION FOR

THE PROBABILITY THAT X WINS WITH m FINAL SURVIVORS

P ~ P (m0 ,n0 )Pm,nBp~m'O

1. Introduction.

In this appendix we will show how to develop the analytical solution

to the fundamental partial-difference equation for the probability that X

wins with m final survivors P mnBP(m0,n 0 ) for the stochastic FTIFT

and FIF LANCHESTER-type attrition processes. We will also consider the

analogous development for the probability that the course of the battle

passes through the transient state (m,n) at some time during the battle

for the FIF attrition process. In all cases we will consider only a

fixed-force-level-breakpoint battle. Not only are these results of interest

in their own right, but the analytical-solution approaches presented here

should be of use for solving other partial-difference equations that arise

in the LANCHESTER theory of combat, e.g. the partial-difference equation

for the coefficients in CLARK's [51 analytical representation of the

state-probability vector (4.9.2) [see equations (4.9.5) through (4.9.8)

above]. We will show how to solve such partial-difference equations by

using both generating functions and also a separation-of-variables approach.

2. Development for the FTIFT Att:ition Process.

For the FTIFT stochastic LANCHESTER-type attrition process, the

fundamental partial-difference equation for the probability that X wins

a fixed-force-level-breakpoint battle with m final survivors P m,nBP(m 0,n 0 )

reads for m0 > m > mBp and no > nBP
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m, Bp(m0 ,no) ,, pslBp(mz0-l,n 0 ) + qPm, (m0 ,n 0 -1) (C.1)

with boundary conditions

1 for m0 - m,

m'nBP n " 0 for m > m ,

and (C.2)

P (m-ia 0  o for no > BP

Here, for convenience we have let

a b

- and q = I P " b (C.3)

The above partial-difference equation (C.1) with boundary condition

(C.2) is most conveniently analytically solved (by nonprobabilistic methods)

by using the generating-function approach (e.g. see HILDEBRAND [8] for

further details) as follows. First, we observe that P m,np(m0 ,n0 ) - 0

when either mo < m. or no < np, since it is impossible for either side

to have a final force level greater than its initial one. Introducing the

generating function

G(n0 s) I Ps m p (m 0n) , (C.4)

m0=

m0
we can multiply (C.1) by s and sum over mo from m to to find

after some straightforward manipulations that the fundamental partial-difference
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equation with its associated boundary conditions yields the following

ordinary-difference equation for the generating function: for no >n

G(noS) " q- - ps G(n0-l, s) , (C.5)

with initial condition

G(nBp'1 sm (C.6)

Solving che above difference equation (C.5) with initial condition (C.6),

we find that the generating function G(nos) is given by

n0 -%

G(n-vs) ps s (C.7)

To obtain Pm ,BP(m 0 ,n 0 ) from its generating function G(n0 ,s) given by

(C.7), we recall (C.4) and observe that

P (m0 ,nO) I 0 G(nos) (C.8)
mBP 0 ds s0

Recalling LEIBNITZ's rule that (7]

dN N N-k k
d (uv) IN id ( dudv
ds k-0 d ds

we see that
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ono-np MO MO)(uO-n~p d ksm(.9

dn 0 rnP 0  BP kr

G(n-q O :o) s. -k ( i-ps) 1- (c.9)

dsk dsk

Let us also observe that for N > 0

dN -(n 0 -nP) PN (tO - nBP + N(-.i))
-T (1 - Ps) - n W

It follows from (C.8), (C.9), and (C.1O) that for mo > m > mBp and no >nBP

nnnB (00 , 0  -nB \rn0 m/ (n0 + no-m-nBp i
P ~n (o~o q(M) (o -n. Im!

or

S(n 0 o + no - m- 1BP - mo-m q n-npC.1)P nBPto n) no - n BP-1P"(.1

Using (C.3), we finally obtain

innB mn 1)BPb o-
no +- (a ) a4+m (C.12)

which appears in the main text as (4.10.9).
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elo FIF Attrition Process.

For the FIF attrition process, the fundamental partial-difference

equation for P Mp(m 0 'no) reads for m > m > mP and n0 > nBP

'~BP O m

Pm-- " p~mno - (mtn) P , 'o•-1, no)
S('Br m0 I no )m ,BP

!m no-i) , (C.13)
Sm0 + no B

with boundary conditions (C.2). Unfortunately, the generating-function approach

used above no longer very conveniently yields the solution to this partial-

difference equation because of the complexity of its coefficients.

Following R. H. BROWN [3; 4], we will use the approach of separation

of variables to solve the fundamental partial-difference equation (C.13).

Accordingly, we essume that Pm, (m0 ,n 0 ) has the form

P Pm, C BP(mo,nO) - g(mO) h(nO) F(m,nBp) • (C.14)

It follows that for m0 _ m > m3 and n0 > n~p

g(mo-1)- g(m0 ) I h(no-l) - h(uo) (C.15)

Since the left-hand side of (C.15) is independent of n0  and the right-hand

side is independent of mo, they each must be equal to the same constant

value (independent of both m0  and n. Let us call this constant value
0 0
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1/X and write for m0 > m > mp and n0 > nBP

g(m0-l) -(O b _________-____ h1 - x) (C.16)( m~gm0)a n h(n)

It follows that

g(m0) " x g(MO-/) for m0 m, (C.17)

and

h(n 0 ) b h(no-1) for n0 > n BP (C.18)

Hence, save for multiplicative factors that are arbitra•r functions of period 1

(or "periodic constants") [2; 8; 11], we find that

mo
0

- (-A) (c.19)g(mo) " rm 0 -,X+l)'

and b no

h(nO) - b a (C,20)0 r (a X + n + 1)
a 0

Let us now formally acknowledge the dependence of the g and h

functions on A and write

g - g(x,mO), h - h(W,no), F - F(X,m,nBp) . (C.21)

If g(X,n 0 ) h(A,n 0) F(X,m,nBP) satisfies the linear partial-difference

equations (C.13), then so will IA ES g(A,m0 ) h(A,nO) F(A,m,np) for any
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finite set of values for A (here denoted as SA). Hence, we will assume a

solution of the form

P (monO) - • g(A,m 0) h(X,no) F(A.mn 3 r) , (C.22)
M '~BP X ,5

and then we will try to choose S and F(X,m,np) in order to satisfy the

boundary condition (C.2). By coastruction then, we will have obtained the

solution to our problem (well-known to be unique) once the boundary conditions

(C.2) have been satisfied.

Thus, we will look for a solution of the form

(-A) (, A)n° F(X, m, n(.)P, n(%,'no) a (C.23)
"BP XE S r (mO- X+) ,.(bA + n +)

XEA a 0

The second boundary condition of (C.2) that P (m-l,nO) - 0 for allm,n~

no > nBP yields that

1
r(m- \)

whence A - m, m+l, m+2, ... , since the gamma, function is an analytic function

except for isolated poles at 0 and integer points on the negative real axis

in the complex plane (6, pp. 206-207]. Hence, X takes on only integer values,

and we will henceforth always replace X by J. Observing that for

j- mo+l, me+2,

1 0
r(m 0 - j + l)
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we find that the second boundary condition of (C.2) has yielded that

b 0"'° "- r(j, M, %p)
P (m0 n0 ) m (m-j)! r( b + n + )(C.24)

Before invoking the first boundary condition of (C.2), however, it will be

convenient to transform the expression (C.24) with no a nBP to a more useful
form. Thus letting k - m0-J, we find that for no - n (C.24) becomes

'BP

fidBP (-t) frM n0 + nBP k! F(J,mnBP) (C.25)

Pm, nBp (ionsnP) )BP 0I k• ~ (k + m) b (C.25)b
a a M! l)

inB 0B k-O r (- j + nBP + l

ta

where M - m0 - m. Further manipulations then yield that we may write (C.25)

for m > mBP

- n (mo, n(p) (-i)k (k + mM G(k,m,nBp) (C.26)

where

G(k,m,nBp) - k= r + +1) (C.27)r r(t i + nsP+)

Using the above result (C.26) for P (mn, nBl), we find that the

first boundary condition of (C.2) then yields

H (-1)M M! for M - 0

y (O ) (-l)k(k+ m)M G(k,m,nBp) (C.28)i k=0 k

S0 for M > O.
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According to Lemma C.1, which is stated and proven in the last section of

this appendix, it follows that for M > 0 and L > 1

S-

M M•) 0)-
-( ) (-)k (k + .. 0 . (C.29)Sk=C (k

In order that (C.29) holds for all M > 0, we must have L - 1, and hence

for M > 0

G(kmnBp) k + m(C.30)

will satisfy the lower condition on the right-hand side of (C.28). For

M = 0, (C.28) yields that C - m and hence

G(k,mnBp) m (C.31)

leads to the satisfying of the first boundary condition of (C.2). From (C.27)

it then follows that

-n -m-n BP-1 b
1 B\iP (-l) i rc- j + nB'--1F(j ,m.np) - m (b- aP + (C.32)

whence

w e e -bn 0-nBP I 0  (-1)m0  j mm0 +n0 -m-nBp- i b nBP + i)

0 -n-j) j m r(- j + nB + 1)
P (Mn b) a (C.33)m'n NP a J-m (m0 - J)! (Q - m)' r(a bJ + no + i

a 0

which appears in the main text as (4.10.21). We will refer to the above

approach for solving the fundamental partial-difference equation for
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P (mo,no) as BROWN's separation-of-variables method. It finally should

be noted that (C.33) may also be written for m0 I m > m., and no > nBP

as

m(-l)M M (-) (k + m) P
P MO (m,% o,no) M! ... ! I (C. 34)

'Pk-O a {k+mk ) nBp,+ N

a BP

NBp

where k J-m, M - m0 -m, and NBP nO - nB.

4. Development of the Transient-State-Passage Probability P m,n (m,n0)

for the FIF Attrition Process.

For the FIF attrition process, the fundamental partial-difference

equation for the probability that the battle passes through the transient

state (m,n) at some time during the battle P C(m, no) reads for
M'n 0'

m _>m> mBP and no >n >nBp

Pm'n(mono) ( mo+ no0  Pmn(mo-ltn o )

+ mo+ ) PmOn(mo,no-l) , (C.35)

with boundary conditions
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i 1
, { 1 for m0 M,

P m'U(mo0 in) = (C,36)

/[ {l + (b/an) (k+m)} for M0 > m
/"k-1

and
P (m-ln) o for n Bp

nn f n1BP

It should be observed that P m,n(mo,no) satisfies the same fundamental

partial-difference equation as does P (m.,n0 ) but that the boundary

conditions differ for these two probabilities. In this respect, the reader

should compare (C.2) with (C.36).

Since the fundamental partial-difference equation for P m,n 0(,n 0 )

and its second boundary condition are the same as that for Pm,'BP(mO~n0),

BROWN's separation-of-variables approach and use of the second boundary

condition of (C.36) yield for m0 > m > mp and n0 _> n > ,p

on0  mo i0mo 00

-- (mo j F(j, k,nI (C.37)
jn a) b +(i.-i r + n0 + 1)

a

Again, it is convenient to rewrite (C.37) for no - n as

(n) (~tM N/M \()M"""n (m.n) M () (k +m) G(k,m,n) , (C.38)
i iiii•k-0 k

where
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M- m0 - m,

G(kmn) a k J- ' .M 'J'M' , (C.39)
a) r (k j + n + 1)

a
and

Let us also observe that the first boundary condition of (C.36) may be written as

( 1 for M - 0

P m,n(mm,n) - (C.40)

kRi ( + (b/aa)(k + m)} for M > 0

It is then convenient to write (C.40) for M > 0 as

Pmnn(moin) " M 1 (C.41)

TI {1 + (b/an)(k + m)}
k-0

Applying the first boundary condition of (C.36) in the form (C.41)

to (C.38), we find that

(-I( ) (-)k + m) H(k,m,n) H (

TI {1 + (b/an)(k + m)I)
k-O

where
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b)n (_1J jm•n (J-)! _ (.4
H(k,m,n) - ) (C. 4 3)

a (a m + n) r(k j + n + 1)

It remains to find H(k,m,n) such that (C.42) is satisfied. To do this, let

us first observe that for M - 0, (C.42) yields that

1H(O,m,n) - 1 + {b/(an)}m (C.44)

which can then itself be used in (C.43) with M - 1 to show that

H(l,m,n) - 1 + {b/(an)}(m+l) (C.45)

Using (C.44) and (C.45), we can then show with a somewhat lengthier calculation

for M - 2 in (C.42) that

1
H(2,m,n) 1 + {b/(an)}(m+2) " (C.46)

Thus, we are led to conjecture that

1
H(k,m,n) - 1 + {b/(an)}(m+k) (C.47)

will satisfy (C.42), and application of Lemma C.2. (which is stated and proven

in the next section of this appendix) confirms this conjecture. From (C.44)

it then follows that
-n (- 1) - r(; j + n)
/~~\ ~\n a(c.48)

F(j'm,n) m ~~ + n)t (j-M)!

4 whence
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PM, (mono)

0,-j m0 +n -r-n r(j

-(�()no-n m. (-1) a + n)

am a (mor•i (i-m)! r(- j + n + i)

/I which appears in the main text as (4.9.30). It finally should be noted that

(C.49) may also be written as
!"b MbN lk(+H-N

~(mon aa (c.50)
0 •. k- a {k+m} + n + N

N+l

where k - J-m, M - mo-m, and N n0 -n.

5. Two Important Identities Used in Solving the Fundamental Partial-Difference

Equations for the FIF Attrition Process.

In this section we will state and prove two lemmas that we have invoked

above in solving the fundamental partial-difference equations for PmnBP(mO,nO)

and P m, 0 (mo,no) for the FIF attrition process.

LEMMA C.A: For any integers M and N > 0 and real number a,

we have that

j 0 for 0 < N < M,

k1 k (_)k (k+a)N - (-l) M! for N - H , (C.51)
k-O k'M

(-I)M M.! ! + a) for N - M+l
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PROOF. Consider

e Xe (J- 1)) e •( 1 -eX)M -(-1)M eax M. (_)k ekx

Consequently,

i~a x e - r(iM/ (-i) e(k+a)x,

k-,0 k

whence follows

e (e -1) - (-1) m - I ( 1 l)k (k+ a)~ (C.52)
j k-O - k

We also have that

ax X m OX (x x + .)
ea (eX-l)M e + + 2 (C.53)

I3!
Observing that

x +I-+-- + 2L . . x i+ I+ 2L+ + a-- +

we may write (C.53) as

e aX (eX-l)M xM1 + ax + m 2 i +. x + 4(M+l) x2 +
e ~ ~ ~ -(=-i - ~ a+. 4 + 2.. 4; ~ -~-

whence follows

e x(eX- 1) x m+ )M+la -I+ "" (C. 54)

The lemma readily follows by equating the coefficients of x in (C.52)

and (C.54). Q.E.D.
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It should be noted that for a M 0 the above identity (C.51) reduces to

an important result closely related to the definition of STIRLING numbers

of the second kind (e.g. see ABRAMOWITZ and STEGUN [1, p. 824] or JORDAN

[9, pp. 168-1691; see also SCHWATT (13, pp. 100-101]).

The above lemma allows us to easily prove the following important

result, whose proof was generously provided to the author by G. E. LATTA.

LEMMA C.2: For any integers M and N such that 0 < N < M

and real numbers a and B > 0, we have that

( l (k+a) -1) N M 8M-N (C.55)

k-0 k 1 {+ + 8(k+ci)}

k-O

PROOF (LATTA [10]). Define F(B, M, N) as follows

M M k N
F(O, M, N) - I I + l(k + a) (C56)

k-O k kI{ ( ~

Consider now

M M k N-1
BF(0, M, N)- -1) (k+a) {[B(k + a) -+,

whence IF($, M, N) - F(0, M, N-1) - F(6, M, N-l) . (C.57)

By Lemma C.1, however, we know that F(O, M, L) - 0 for all integers L

such that 0 < L < M, whence F(O, M, N-1) - 0 for all integers N such
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that 1 < N < M. Hence, (C.57) yields that for 0 < N <1M

F($, M, N) -- F(, , N-1)

whence for 0 < N_< M

F($, M, N) - (-I) B- F(0 1, 0) (C.58)

Recalling that the gamma function satisfies [6; 12]

r(x)r(y) - tx- (l-t)y-l dt
T(x + y) 0

for all positive real numbers x and y (and also serves to define the

beta function), we consider

F(8, 1, 0) (k) (_)k 1

k 10 k (k + a + 1/8)

which may also be written as

F(B, M, 0) -g~ ( -(i)k f tk+a+I/81 dt,
k=O (k 0

whence follows

F(B, M, 0) - f Q+l/8-1 (l-t) (M1)-i dt
0

and finally

F(B, M. 0) 1- r(a + 1/8) M!
M r(M + a + 1/s + 1) (c.59)

Observing that for M > 0
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I
r(a + l/s) 1

r(m+ + a+ 1/B + 1) M11 (a + + +M- J)
J.0

•I one may also readily show that for M _> 0

Sr(a + 1/0) BM+lC.0r(M+ a+ Is + 1) "M .(.0
R { + 0(k + )1

k-O

Combining (C.58), (C.59), and (C.60), we find that for 0 < N < M and

Ca and 0 > 0.

( 1 -N
F(B, M, N) - (I M !Ha

I {I + B(k +a)}
k-O

whence follows the lemma. Q.E.D.
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