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Abstract*
' /

This report covers the Phase II progress in a two-phase effort to

develop the full-potential finite-volume algorithm for transonic flow

over wing-body configurations. The work included investigations of

grid-generation schemes, extension of the wing-body code to more complex

configurations, and the effects of vortex wake modeling.

The wing-body code was used to analyze a computer-designed military

aircraft wing which had been wind tunnel tested. Computed results agree

quite well with the experimental data. A second test case was also run

for a business jet aircraft. Unfortunately, experimental data for the

test case were not available for comparison.

*This work was supported by the Office of Naval Research and NASA Ames
Research Center under ONR contract N00014-78-C-0079.
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1. Introduction
The development of transonic calculations has progressed rapidly

over the past several years. Small-disturbance codes have been developed

(Bailey and Ballhaus, 1975; Mason et al., 1978; Boppe and Stern, 1980)

which can model a wide range of geometrical configurations and even

account for viscous effects. Small-disturbance codes do have limita-

tions, though. In general they cannot accurately treat the flow around

leading edges (Hinson and Burdges, 1980), especially for advanced air-

foil designs. They also have difficulty treating moderate to strong

shocks.

In order to overcome these deficiencies, transonic full-potential

codes have been developed. One of the most promising schemes in terms

of extension to arbitrary configurations is the Jameson-Caughey finite-

volume algorithm (Jameson and Caughey, 1977). This scheme decouples the

geometry from the differencing algorithm so that the main difficulty in

applying the method is to develop a geometry package which can generate

a grid that adequately defines the configuration and has certain smoothness

requirements.

The work reported in this document has been sponsored jointly by

the Office of Naval Research and NASA Ames Research Center. It covers

the second phase of an effort to develop a computer code to model

arbitrary wing-body configurations.

The first phase of the effort was reported in Caughey, Jameson, and

Nixon (1979). This work produced two codes, one using a quasi-conservative

differencing formulation of the finite-volume scheme developed by

David Caughey and the other a fully conservative differencing of the

scheme developed by Antony Jameson. The quasi-conservative code,

FLO 25, can treat wing-body combinations where the body has infinite

length extending upstream and downstream of the physical fuselage. The

fully-conservative code, FLO 28, can also treat wing-body combinations

and can handle finite-length fuselages. The two codes use entirely

different techniques to generate the grids. The grid generated by

FLO 25 is entirely boundary conforming while the grid generated by

FLO 28 does not conform to the fuselage. The latter grid system causes
pressure oscillations in the fuselage-wing junction area (Caughey and

Jameson, 1979).
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The goal of the Phase II work reported here was to overcome the

deficiencies noted in the codes developed in the Phase I work and to

demonstratp the resultant code on test cases. Another goal was to

investigate grid-generation schemes which might readily be extended to

wing-body-tail configurations.

This report covers the wing-body code development and an investiga-

tion of grid systems which could model more elaborate configurations, such

as wing-body-tail configurations. A general surmmary of the Phase II

wing-body code development was presented in Mercer and Murman (1980),

in which code comparisons with experimental data are given.

Previous work led to the development of two wing-body codes, FLO 28,

which is based on Joukowsky transformation for the fuselage representa-

tion, and FLO 30, which is based on a cylindrical mapping for the fuselage

representation. The present work evaluated the two codes and selected

one (FLO 30) for further development and demonstration. As part of the

development, a reconsideration of the vortex wake model was accomplished

to determine the adequacy of the original assumptions. Additionally, a

special subroutine was developed so that velocities and pressures at any

point in the computational field could be printed.

Along with the wing-body code development was an investigation of

grid systems. The grid work covered two separate areas. The first was

aimed at obtaining a better wing-body mesh; the second was aimed at

developing a tail mesh compatible with the wing-body mesh. The need for

the first area was diminished when the cylindrical mesh system in FLO 30

was adopted. The work did demonstrate, however, that two mesh systems

could be overlapped and the numerics would converge. A description of

the method is included in the appendix. Another effort devoted to

improving the basic wing-body mesh was an investigation of slit trans-

formations. This work showed that a direct application of the mesh is

not feasible. The mesh does offer possibilities of modeling more complex

geometries provided that the inherent singularities associated with the

mesh could be overcome.

The tail mesh generation was approached using two different philo-

sophies. The first is based on a ratio of inner to outer boundary

coordinates, while the second is based on a family of super ellipses and
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shearing. The latter approach eliminated problems in dealing with mesh-

line kinks and was found to be more desirable. Both methods are reported

here. The first method is presented in the appendix.

All the work described in the appendix was performed by Dr. David

Nixon while at Flow Research Company.

I
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2. Finite-Volume Algorithm

The finite-volume algorithm assumes that the six-sided elements

comprising the mesh in the physical space can be transformed to cubes in

the computational space. The mapping to each cube is assumed to be

local so that transformations can be based on the physical values of the

vertices of the six-sided elements. The location of the vertices (or

mesh points) in physical space may be determined by any suitable pro-

cedure, and two specific examples are given in following sections. The

mapped cubes have trilinear variations of coordinates ranging from - to

(Figure 1), and the potential is assumed to vary trilinearly within

each cell. With the coordinate variation assumption, the corresponding

points in the physical space can be located from points in the computa-

tional space by the local trilinear mapping formula:

8
X= 8 X x 1 ( k + Xk)( Z)

E4 4+XX( 
+  k Y ) (4 + kZ ()

k=l

where Xk I Yk and Zk are the mapped vertices of the cubes (+4) and

the xk terms are the corresponding physical values. There are

equivalent formulas for y , z , and # , the velocity potential.

With this mapping, continuity of x , y , z , and is preserved at

the cell boundaries. The mapping also allows derivatives of the trans-

formation and potential to be evaluated anywhere in the cell.

The flow equation that we wish to solve is the conservation rela-

tion:

T (Pu) + ay (Pv) + az (pw) = __ (Pui) = 0 . (2)
ax

The finite-volume algorithm is a conservative differencing scheme which

satisfies the above equation using the cubical cells in the computational

space. Density is computed from the isentropic relation:

1

P + 2 (1 - 2)] y-T (3)

2 -.
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where q2  2 2 2weeq= u + v+ w (4)

The first step in the procedure is to determine the governing

equation [Equation (2)] in computational space. The result is

(phi) =0 (5)

ax i

where Xi are the transformed coordinates [X, Y, and Z in Equation (1)]

Ui are the contravariant velocity components, and h is the determinant

of the transformation matrix H with the elements axi/xi . The

contravariant velocity is defined by

i = gij 3 =(-TH)- (6)ax - ax(

A differencing algorithm which conserves phUl on the cubical

cells is derived by creating a set of secondary cells whose vertices lie

at the centers of the primary cubical cells. The flux quantity phUi is

evaluated at the center of each primary cell (the vertices of the

secondary cell, Figure 2). The flux computed at the corner is assumed

to be constant over that portion of the secondary cell face that lies

within the primary cell. If the global mapping is sufficiently smooth

to allow a Taylor series expansion of the physical coordinates in terms

of the computational coordinates, then the local linear truncation error

terms for the flux will cancel and the flux conservation formula will be

accurate to the second order.

With this approach a problem arises in that the difference operator

decouples odd and even points as shown in Figure 3. This results in a

homogeneous solution where can be 1 at odd points and -1 at even

points. This problem is overcome by displacing the flux evaluation

point away from the vertices by adding a higher-order correction term.

This displacement recouples the odd and even points and eliminates the
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Figure 2. Primary and Secondary Cell in Computational Plane.



Flow Research Report No. 166
August 1980

U)

0OC

- D

1~ 7 0

0

U) 0'-

.0

EE

0
CD.

CC

CN ~cv

L4-

C 4)

CL
0



Flow Research Report No. 166
August 1980

-9-

homogeneous solution. For the simple case of the flux being given by

x 9 the displacement relation used by Jameson and Caughey is

x =x + ' (7)

where the subscript o represents the center of the primary cell and

c can vary from 0 to where the cell height is assumed to be 1 (Figure 4).

Computation of these recoupling terms requires time, and other methods

involving averaging which do not require adding terms are currently

under investigation by other researchers.

In regions where the flow is supersonic, upwind differencing is

employed. This is accomplished by adding terms to the conservation

equation which produce an upwind bias. The terms are selected such that

the proper domain of dependence is used in the differencing. The effect

of this is to produce a rotated difference operator of the form

21=-U 4(8)
as q ax

where s is the streamwise direction, q c is the contravariant velocity,

and the first-order difference operators a/aX i are chosen to be in the

upwind direction. The terms added to the flux equation are

Pi - iiouipxi , (9)

where p is a switching function

= max [0, (1 - a2/q2)] (10)

and q/a is the local Mach number. The presence of these terms has the

effect of adding artificial viscosity to the solution. This does

require, however, that the mesh be smooth in the supersonic zone or the

effect of the higher-order derivatives associated with the artificial

viscosity will cause the solution to give erroneous results.
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The last terms which have to be added to the equation are timelike

derivatives which have the effect of embedding the steady-state equation

in an artificial, time-dependent equation. The final equation that is

solved is a discrete approximation to

pUi +Pi + +Y
a hU + P =~ XT + YT +~ ZT + T '(

where the P are the upwind biasing terms in the supersonic zones,

a , , and yare chosen to make the flow direction timelike, as in

the steady state, and 64 T is a damping factor.

The complete numerical scheme is outlined below.

(1) Evaluate the contravariant velocity components and densities at the

centers of the primary cells.

(2) Satisfy continuity on the secondary cells using the flux values

calculated in step 1 plus the recoupling terms.

(3) Add artificial viscosity in the supersonic zones to produce an

upwind bias and enforce the entropy condition.

(4) Add the time-dependent terms to embed the steady-state equation in

a convergent, time-dependent process which evolves to the solution.

The main difficulty associated with developing a computer code

based on the finite-volume algorithm is that of generating a grid system

and incorporating boundary conditions. A desirable grid is one which

conforms to all the solid boundaries. Boundary-conforming grids provide

an accurate and convenient means of specifying boundary conditions.

They also can be made very efficient in that the grid density can be

readily controlled at the boundaries where the gradients of the flow

parameters can vary most rapidly.

Since the finite-volume method only requires sets of coordinates

corresponding to the corner points of the six-sided computational cells,

there is no need to have a single mapping function to generate the grid.

The procedure choosen is one that uses a sequence of rather simple

transformations. The overall mapping is required to be smooth so that

the higher-order effects of the transformations do not cause numerical

instabilities, particularly in the vicinity of shocks.
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3. Field-Point Calculations

In order to calculate velocities in the field, the location of the

field point relative to the grid points must first be determined. This

is done by transforming the field point to the computational grid. In

this Cartesian coordinate system, the eight grid points surrounding the

field point can be readily identified. Once this has been determined,

the velocities, pressures, and local Mach numbers at the grid points can

be calculated using the chain rule

u= 2--= ax i 2j (12);x 1x 3xi Mij

Central differencinq is used to calculate the derivatives. Once the U.

components have been determined, the local Mach number and pressure can

be calculated. The values at the field points are then found by using

trilinear interpolation which is consistent with the order of variation

assumed in the finite-volume algorithm.

Figure 5 shows a comparison of velocities computed using the field-

point interpolation data with an analytical solution. The case shown is

a Karman-Treftz airfoil for which an analytical solution exists. The

line of computed points starts at the leading edge of the airfoil where

velocities change rapidly. This provides a good test of the interpolation

procedure. The agreement is excellent. The calculation was done using

a code which models wings in a wind tunnel. This code uses the same

grid-generation technique as the FLO 30 code. However, there is no body

in this code, so that the spanwise grid sections are planes rather than

cylinders. Unfortunately, time did not permit us to fully implement the

field-point calculation into the FLO 30 code, so this should be done

later.
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4. Wing-Body Code Development

4.1 Introduction

An investigation was made of the two wing-body finite-volume codes

developed in the Phase I work by Caughey, Jameson, and Nixon (1979).

Descriptions of the grid systems for the two codes and the results of

the study are presented below.

The first task which was accomplished was to complete the work

started in Phase I for conveiting the quasi-conservative differencing

scheme used in FLO 25 to one which is fully conservative. The resulting

code has been named FLO 30. This new code differs from FLO 28 in the

grid system used to define the computational space. The FLO 28 grid

system uses a Joukowsky transformation to map the noncircular fuselage

to a slit with the wing extending outward. A grid system is then

established with planes parallel to the freestream cutting the wing, and

a parabolic C-type mesh is used within each plane. Results presented in

Caughey and Jameson (1979) revealed oscillations in the pressure distri-

bution in the wing root area. Further analysis revealed that these were

boundaries which resulted in an irregular fuselage geometry in the

computation. Although ways could be developed to modify this grid and

overcome this problem, this approach was not undertaken as the other

grid system appeared to provide better wing root-fuselage geometry

modeling and did not suffer from the problem mentioned above. The

problem noted became more severe for high- and low-mounted wings which

are the typical configurations.

The FLO 30 grid system described by Caughey and Jameson (1979) uses

a cylindrical-type system. Quasi-cylindrical shells surround the

fuselage. The inner shell corresponds to the actual fuselage geometry

and the outer shell to a cylinder on which the far-field boundary condi-

tion is applied. On each shell a parabolic C-type mesh is used. This

system provides excellent modeling in the wing root area and also pro-

vides more mesh points on the fuselage than the slit-type transformation.

Two expected drawbacks from this system did not present any significant

difficulties. For a closed body, the cylindrical system collapses to a

I|
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line. In practice a very small cylindrical extension to the body is

used and the results appear satisfactory. Also, since the system is

cylindrical, the vertical mesh spacing above and below the wing increases

with distance outboard from the body. However, in practice, vertical

mesh spacing near the wing tip is comparable for the cylindrical- and

slit-type systems, with the result that the wing root mesh spacing is

better.

The remainder of this section will describe the mesh system in more

detail and explain some improvements which were necessary to make the

earlier version reported in Caughey and Jameson (1979) more robust.

Example calculations for a Learjet and an A-7 will be presented.

4.2 Grid Generation

The cylindrical computational surfaces are formed by first defining

the fuselage surface as

r = R f(x,6) (13)

where

e = tan- (y/z) .(14)

The coordinate system is shown in Figure 6. A nondimensional radius is

formed by

r - f(X~e)
rt - Rfx) (15)

Here R tis the radius of the cylinder passing through the wing tip.

Within each surface of constant r , the configuration appears as a

wing in a wind tunnel with 6 being the ordinate and the "wind tunnel

walls" as the symmetry planes. A C-type mesh is used in this plane.

The mesh conforms to the wing's surface and the "wind tunnel walls."

The mesh is generated by "unwrapping" the airfoil about a line

which starts at the center of curvature of the leading edge and proceeds

downstream bisecting the trailing-edge angle and coincident with the

wake. The wake position is assumed such that it bisects the trailing-

IS edge angle and follows a body contour line downstream. The purpose of
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the unwrapping is to create a Cartesian grid system in a transformed

plane which will allow a convenient distribution of mesh lines to be

specified. The grid points in the transformed plane can then be trans-

formed back to the physical plane.

The transformation procedure consists of several transformations

and is outlined in Figure 7. First a coordinate shift is made to remove

the sweep and place one coordinate axis at the center of curvature of

the wing's leading edge. Next an elliptic transformation is made to

shift the wing to the center of a tunnel whose walls are at ±7

(- a) 2 + [2(6 - es) - b]2 = R2(16)

where a , b , and R are selected to meet the contraints

y = +1T at e6 +7T/2
y = -7 at 6 =-71/2 ,and (17)

y =0at 0= 6

Here 6 sis the angular location of the center of curvature of the wing

section formed by the intersection of the cylindrical grid surface and

the wing. The factor 2 appears on the 6 - 6 sterm so that the global

scaling of the e to y transformation can be accounted for. This

latter transformation allows the wing to be displaced from the center-

line (6 = 00) by as much as ±65.880. This has been found to be

adequate for all the test cases run so far. If still further displace-

ments are required, an exponential transformation could be used. This

function would always provide a unique mapping regardless of the amount

of displacement from the centerline.

Next an unwrapping function is used.

+ in cos- 1 ( eX+(8

This transformation makes the wing and wake appear as a slowly varying

curve about n w in the ,nplane. Finally the ,n plane is

sheared using

Y n/ ning-wake (19)
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This produces the desired parallel line representation of the wing-wake

and tunnel wall shown in Figure 7d. The remaining procedure is to

distribute Cartesian grid lines in this space and transform the inter-

section points back to the physical plane by reversing the transforma-

tion procedure just described. Figure 8 shows a coarse grid generated

by the procedure. The fine grid used for the final computation has four

times as many divisions in each direction.

One additional transformation was found to be necessary to handle

highly swept wing configurations. For swept wings that are highly

tapered, the mesh system described above becomes very highly swept far

upstream or downstream. This causes numerical instability problems.

The reason that the mesh sweep increases upstream or downstream is that

for each cylindrical surface the nondimensionalization used is based on

the local wing chord. With a highly tapered wing, the mesh lines

advance upstream more rapidly at the root than at the tip. This adds to

the basic sweep of the mesh system due to wing sweep. To overcome this

problem, the grid points obtained by the transformations described so

far were shifted according to:

x = 'LE + (x - xLE)[1 4 -1 tanh2 (x - xLE)l for x < XLE (20)

X = xTE + (x -XTE) 1 +( - 1) tanh2 (x - xTE) for x > xTE (21)

where xLE is the local wing leading edge, XTE is the local wing

trailing edge, C is the local wing section chord, and CR is the root

section chord. These stretching functions have the effect of changing

the local scaling from the local chord to the root chord far upstream

and downstream of the wing. This removes much of the added sweep due to

taper and provides the more stable computational grid.

4.3 Boundary Conditions

Boundary conditions for the wing-body code can be divided into

specifications on the configuration, specifications on the far-field

boundaries, and specifications on the lifting-surface wake. The actual
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wake position is part of the solution since it corresponds to a stream-

line surface. However, it has been demonstrated in the past that an

approximation to this surface is actually good enough (see Section 6).

An approximation which works fairly well is to assume that the wake

leaves the wing's trailing edge at the bisecting angle, and its position

varies smoothly downstream. The wake is not assumed to be a streamline

surface (i.e., normal flow is enforced). The wake does have a jump in

velocity potential across it but the downstream and normal components of

velocity are forced to be continuous. Therefore, there is only a

discontinuity in the spanwise component of velocity, and the pressure is

continuous to the first order.

On the body and wing, no normal flow is enforced. Also, no normal

flow is enforced at the upper and lower boundaries of the two-dimensional

grids on the cylindrical (r = constant) surfaces since these lines

correspond to the planes of symmetry. Flow normal to these lines corre-

sponds to cross flow which must be zero for symmetry reasons.

Upstream, the Mach number and angle of attack are specified, and,

the perturbation velocity potential vanishes. Downstream, the perturba-

tion velocity in the x-direction is assumed to vanish. This produces a

first-order approximation to a return to freestream pressure. On the

outer shell, all the perturbation velocity components are assumed to

vanish. The far-field boundaries in the finite-volume algorithm are

actually at a finite distance from the configuration. This in itself

introduces some error; however, comparisons with other analyses and wind

tunnel data would indicate the effect to be small.

4.4 Check Cases

The wing-body code has been exercised for several representative

configurations. Results have shown good agreement with other numerical

techniques in their common range of validity. Two sample results are

presented. The first example is a Learjet for which no wind tunnel data

are available for comparison. The second configuration is a Navy attack

aircraft (A-7) with a nonstandard supercritical wing which was designed

for the configuration using numerical optimization techniques (see

Haney, Johnson, and Hicks, 1979, and Haney and Johnson, 1980). The

wing-body configuration was tested at NASA PAmes Research Center to
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verify the new design goals and, hence, wind tunnel data is available

for comparison. The redesigned wing configuration resulted from a

design exercise to test transonic numerical design techniques.

Figure 9 shows a coarse computational grid on the Learjet. The

final computational mesh has four times as many grid lines in each

direction and is formed dividing the mesh spacing shown in half and then

in half again. Figure 10 shows the pressure distribution on the wing at

a span station near the root and one near the tip. Unfortunately, no

wind tunnel data were available for comparison.

Comparisons of wind tunnel resuls with FLO 30 calculations are

shown in Figure 11. Except for very close to the root, the computed

lower surface pressure agrees almost exactly with experimental results.

Upper surface pressures, in general, are lower than computed. This

could be caused by either wind tunnel interference or code modeling

accuracy. The angle of attack used for the computer analysis was

identical to the wind tunnel angle of attack of 4.68 . Closer upper

surface pressure agreement might be obtained if lift coefficients were

matched. Also, the effect of viscosity has an influence on the pressures.

Near the tip (ii = 0.878), the boundary layer reduces the amount of

recompression behind the shock and weakens the shock strength. Overall

the comparison shows excellent agreement.

Haney and Johnson (1980) describe the models and test procedure

used to obtain the wind tunnel data. Comparisons in that report with a

computer code that does not include the fuselage are not as good as

those shown in Figure 12. In order to demonstrate the effect of the

fuselage on the pressure data, the FLO 28 code was used to model the

wing alone. For the wing-alone calculation, the wing planform was

extended to the plane of symmetry. The first station shown on Figure 12

(Y = 0.146) is close to the wing-body juncture (n = 0.12) . These

results show the strong influence of the fuselage and the good agreement

of the wing-body code with the wind tunnel data. Both the wing-body and

wing-alone computer codes were run at the same angle of attack as the

wind tunnel model; as for the previous comparisons, there was no attempt

to match overall lift.
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Figure 13 shows the effect of the fuselage on the spanwise loading.

The results are nondimensionalized by the total lift coefficient so that

the comparison shows the distribution effect. The presence of the

fuselage tends to increase the nondimensionalized loading inboard on the

wing. The effect of the fuselage on the total lift is indicated on the

figure. For an angle of attack of 4.680, the fuselage reduced the total

lift by 38 percent from 0.485 for the wing-alone case to 0.300 for the

wing-fuselage case.

-
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5. Slit Transformations

A slit transformation is a mapping which compresses a finite-

thickness body into a zero-thickness sheet. One example of such a

transformation is the Joukowsky and shearing transformations that FLO 28

uses for the fuselage representation. By employing a sequence of such

transformations, a complex wing-body-tail-nacelle configuration can be

reduced to a configuration whose fuselage, wing, tail, and nacelles are

all slits being on Cartesian planes. Generation of the computational

grid for such a configuration would be quite easy. Therefore, a pre-

liminary study using a two-dimensional airfoil code was initiated to

test the feasibility of such a transformation. Results for a NACA 0012

airfoil are presented.

The grids obtained by a slit transformation are shown in Figure 14.

The grid lines are similar to streamlines and potential lines. The

distribution of lines is selected to give good resolution in the areas

of interest and where the flow variables are changing rapidly. Away

from the airfoil, the streamlines spread.

This type of mesh can easily be blended into a Cartesian mesh for

the far field. A disadvantage of this mesh system is that the stream-

line and potential-like lines maintain their spacing throughout the flow

field so that the dense spacing of lines emanating from the airfoil

leading edge remain densely spaced in the far field where this density

is not required. Another disadvantage is that the transformation is

singular at the leading edge of the airfoil. This transformation

singularity causes the velocity potential variation to also become

singular, even though the velocity potential variation is regular in the

physical domain.

A computer code was assembled which implemented the slit transfor-

mation into a two-dimensional finite-volume code. Figures 15 and 16

show results for a sample calculation. For this test case, no special

treatment was made for the leading edge region. Rather the fact that

the discretization does not produce a singularity was used as a means to

eliminate any special treatment of the leading edge. The results show

substantial differences between the coarse and fine meshes in both

minimum pressure level and shock position. The convergence rate was
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slow. Although the fine-mesh results appear to be in general agreement

with results obtained from other grids, the computing time was too

large.

Several possible reasons could cause the slow convergence. The two

most likely are the treatment of the mesh singularity at the leading

edge and the relatively high aspect ratio of the mesh cells in the far

field caused by the narrow potential-like lines.

Unfortunately, time did not allow a thorough investigation of the

reasons for the slow convergence so that the study was limited to the

results presented. The advantages of this type of coordinate system are

substantial, particularly for complex configurations. Therefore, the

study should be continued to resolve the current problems.
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6. Consistent Vortex Wake Model

The vortex wake behind a lifting surface is a contact discontinuity

in the context of inviscid aerodynamics. Certain "slip conditions" are

allowed across the vortex sheet. The conditions to be satisfied on the

vortex sheet can be stated by a kinematic condition and a dynamic

condition. The kinematic condition to be imposed is that the vortex

sheet is a stream surface so that no fluid is allowed to pass through.

The dynamic condition is that the pressure at both sides of the surface

must be equal. These two conditions together with the potential equa-

tion in the flow field determine the position of the sheet and the flow

condition on both sides of the sheet, much like the determination of the

shock wave in the flow field in the compressible flow.

The approximate vortex wake model is assumed in the present code

FLO 30 as follows. The position of the vortex wake is assumed to come

off the trailing edge at its bisection angle and follow a prescribed

trajectory downstream. Thus, the kinematic condition is satisfied only

at the trailing edge. The flow is allowed to pass through the wake.

The dynamic pressure continuity condition is also treated in an approxi-

mate manner. The numerical procedure in the code implies that there is

no pressure jump to first order. That is enforced by requiring the

component of velocity in the X (freestream) direction to be continuous

across the wake. Also the Y-component of velocity is forced to be

continuous (no sources in the wake). The possible source of error in

the dynamic condition across the wake is the contribution to the pres-

sure by the Z-coinponent of the velocity.

In the following, we shall make an estimation of the error based on

the parameters in the practical range. The deviation of the pressure

from the freestream value to the second order can be written as:

P, = 0(u) + 0(u' 2) + O(v 2 ) + ONw'2 ) . (22)

The first three terms on the right-hand side are continuous across the

wake. The possible error may come from the last term. Let us make an

estimation based on the lifting line theory.
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The circulation r at a certain section can be expressed in terms

of the sectional lift coefficient C as

P UUr C 0 2cC (23)
2 00

where c is the chord length.

The shed vortex is the spanwise derivative of F

d. 1 d
dy 2 y (Czc) (24)

Let C c be the reference quantity. Then:

~ U - P = U= C , (25)

where b is the wing span and AR is the wing's aspect ratio.

The perturbation velocity w' is related to o by:

2U 2AR(26)

Compare the contribution of w'2  to the perturbation pressure p to

that of u' = 0(C) , we have:

o(w 2)
0 (27)

For C = 0.3 and AR = 4 , the contribution from the cross-flow com-
ponent w'2 of velocity to the pressure is only 0.5 percent. This

estimation is based on the assumption that the w'2 component is

completely wrong or ignores.

To actually demonstrate that the pressures computed on two sides of

the vortex sheet satisfy the dynamic condition to a high degree of

accuracy, we have printed the pressure coefficients as well as the

velocity components U , V , and W on either side of the sheet.
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For an M-6 wing with a Mach number of 0.84 and an angle of attack

of 3.060, the largest error (AC p/C p)max is 0.014. We do not believe

this error will cause a significant impact on the calculated pressures

on the solid surfaces.

An inspection of the computational results in the w' component of

the velocity at both sides of the wake shows that they are indeed

approximately equal and opposite in the far field where the lifting line

theory is applicable. Their contributions to the pressure disturbance

will be equal across the wake.

The numerical computation shows that the approximate wake model in

the code is adequate for all practical purposes. The improvement of the

model either in kinematic condition or in dynamic condition requires

substantial effort which is not justifiable in terms of the actual

improvement in the accuracy of the computation.

Another consequence of assuming a wake position comes into account

when considering the effect of a wake on the horizontal tail. If we

assume that the wing span loading is approximately elliptical, then the

downwash induced by the wake in the Treftz plane will be uniform across

the wake. If we now examine the variation of the downwash as a function

of the vertical displacement from the wake at the wake centerline

1

S -X X dx (28)
-l f 2 x2 + y2

we find that for a 0.1 semispan displacement, the induced downwash is

0.9 times the downwash on the wake. At 0.2 semispans away, the downwash

drops to 0.8. Since the downwash in general represents a fraction of

the angle of attack,

4
CT AR4 + 2 (lifting line) , (29)

we see that the effect of wake displacement is small for even displace-

ments as large as 0.2 semispans.
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The net result is that the exact wake location is not necessary to

model the flow on the horizontal tail. Of course this analysis assumes

that the span of the tail is less than the span of the wing. If this

assumption is violated, then not only will the vertical variation be

stronger, the effects of wake roll-up will also become very important.
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7. Generation of Embedded Tail-Plane Mesh

7.1 Introduction

Due to the complexity of the general geometry of an aircraft, it is

felt that it will be extremely difficult, if not impossible, to describe

the flow space around it by a single mesh system, particularly when the

mesh must be subjected to several constraints. For finite-volume com.-

putation of transonic flow, the following requirements on the mesh

system must be satisfied.

(1) Any aircraft surface must be a coordinate surface.

(2) The mesh lines near wings and tail planes must wrap around the

leading edge.

(3) The mesh must be dense near the expected regions of fast variation,

i.e., the leading edges and the expected position of shock waves.

(4) The vortex sheets behind lifting surfaces must be coordinate

surfaces.

The FLO 30 code developed in the present contract satisfies the above

requirements for the wing-body combination. But, it is unlikely that

one can extend the mesh-generation scheme used in FLO 30 to include tail

planes and other appendices.

Instead, thoughts are given to the approach of embedded mesh

systems and interactive computation, as described in the following.

Local meshes may be installed around the tail planes and other appen-

dices. These local meshes will be embedded in the wing-body mesh of

FLO 30 by using common boundaries. Computations can be performed

separately in the local meshes, and the interaction between the wing-

body computation and the local computations can be made by iterating

through common boundary values.

To demonstrate the feasibility of the idea given above, the local

mesh around a tail plane will be chosen as an example. We shall first

discuss the common boundaries in three-dimensional space for both the

tail-on-fuselage and the high-tail cases. The mesh system on a "two-

dimensional cut" will be generated. A two-dimensional finite-volume

computation will be performed on the generated mesh system to demon-

strate its computational quality. Suggestions on the method of inter-

active computation will be given.
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7.2 Embedded Tail-Plane Mesh

Two views of the tail-plane location in the wing-body mesh of

FLO 30 are shown in Figure 17 for the tail-on-fuselage case. It is

natural to choose the fuselage surface and a spanwise surface Z = Z0

as two boundaries of the tail mesh. The other four tail mesh boundaries

can be chosen as the box ABCD shown in Figure 17. Within the tail

region, we can again choose the Z = constant surfaces as the coordinate

surfaces, although it may be desirable to increase the number of span-

wise stations locally. Now on the Z = constant surfaces, the tail plane

becomes a wing-in-a-box configuration. A family of wraparound C-type

coordinate lines must be generated so that they vary continuously from

the shape of the airfoil to the rectangular shape ABCD. Here, it should

be remembered that any deviation of the shape of ABCD from a rectangle

can be accounted for by a shearing transformation. In the rest of the

work, we shall assume that this transformation has been done. The

generation of the mesh on the Z = constant surface will be discussed in

Section 7.3.

For the high-tail case, it is advisable to modify the Z = constant

surface in the wing-body mesh so that the tail planes are on the surface,

as shown in Figure 18. This modification can be done either by shearing

transformation or by use of the "super ellipse", similar to that used

later in Section 7.3. In this case, the tail region is bounded on two

sides by the plane of symmetry and the Y = Y surface as shown in

Figure 18. Now, we can use Y = constant surfaces as our coordinate

strfaces in the local mesh. On these surfaces, again, the wing-in-a-box

configuration is obtained.

From the discussion given above, it is clear that the first step

toward the goal is to generate a two-dimensional local mesh for the

wing-in-a-box configuration.

4
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7.3 Grid Generation

As discussed in Section 7.2, the mesh in the tail region consists

of planes on which the cross section of the tail plane and the common

boundaries with the wing-body mesh form the wing-in-a-box configuration.

In this section, we shall generate the mesh lines in this plane.

7.3.1 Wraparound C-Type Lines

Consider a family of curves

(x)m + 1n (30)A Bn

where m , n , A , and B are the parameters with A greater than B

These curves are a family of super ellipses with major axis A and

minor axis B . For m = n = 2 , it is the regular ellipse. As m

approaches infinity and n approaches infinity, it becomes a rectangle

with 2A and 2B as its sides. If m and n are varied from 2 to

infinity, the family of curves will vary continuously from an ellipse to

a rectangle.

In this work we shall use this property of the super ellipse to

generate the C-type mesh line for an airfoil in a box.

Let Y C (0, 1) be the computational variable with Y = 0 on the

airfoil surface and Y = 1 on the rectangular outer boundary. In

Equation (30), the parameters A , B , m , and n are assumed to be

functions of the computational variable Y . Consider a family of super

ellipses with the center at the trailing edge. On the airfoil surface

Y = 0 , we choose a regular ellipse m(O) = n(O) = Z with the major

axis A(O) = Lc , where Lc is the chord length of the airfoil. The

minor axis B(O) is chosen so that the curvature of the ellipse at the

leading edge X = -Lc matches that of the given airfoil. For Y > 0

the parameters are given the following variations:

m(Y) = n(Y) 2 (31)

I A(°) IA()-(0
JA= + F(Y) (32)

B B(O) B(1) - B(O)



Flow Research Report No. 166
August 1980

-50-

where F(Y) is a monotonically increasing polynomial function with

F(0) =0 and F(1) = 1 .These ellipses are terminated at the trailing

edge forming a family of C-type mesh lines which vary continuously from-

a regular ellipse on the airfoil to a rectangular shape as the outer boun-

dary is approached. Now the Y = 0 line is oscillating to the airfoil

at the nose and deviating from the given airfoil on other points. A

simple shear transformation moves the Y = 0 line to the airfoil surface.

These C-type lines are first continued horizontally into the wake region.

As it turns out, this process produces an extremely large aspect ratio
Ax >> 1 of the mesh cell as one proceeds into the far wake. The large
AY
aspect ratio of the mesh causes the numerical scheme to diverge for the

two-dimensional lifting case.

To avoid this difficulty, the vertical spacing of the mesh lines is

adjusted smoothly to a new distribution within a distance of the order

of one chord length downstream of the trailing edge. This smooth tran-

sition is achieved by use of tanh 2 x - X TE)

7.3.2 X =Constant Lines

To form a computational mesh, another family of curves intersecting

the C-type mesh lines must be generated. The generation of this family

of curves can be described in two parts.

The first part is the generation of a mesh upstream of the trailing

edge. For each "ioop" where Y = constant , the parametric form of the

super ellipse X(s) and Y(s) is computed, where (X, Y) is the

physical coordinate and S f (0, 1) is the normalized arc length. 0On

the airfoil surface where Y = 0 , the arc length distribution S C Y =0)

of mesh points is chosen so that the meshes are concentrated near the

vicinity of the leading and trailing edges. On the outer boundary where

Y 1 I, the other arc length distribution S.i(Y = 1) is also chosen.

For intermediate "loops" where 0 < Y < 1 , the combinations of the two

S 1(Y) = (i1 - f(Y) ) S i(Y = 0) + f(Y) S ( = 1) (33)

are used where f(Y) is a monotonic polynomial with f(O) =0 and

f(1) 1I The choices of S i(Y =1) and f(Y) are quite arbitrary.
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They are chosen in such a way that the resulting mesh is not unreasonably

skewed as judged by the visual inspection.

Figure 19 shows the mesh generated by the method discussed above.

Figure 20 shows the detail of the mesh lines in the neighborhood of the

airfoil. The mesh lines are nonorthogonal though they are not unreason-

ably skewed.

It is felt that the success of a mesh-generation scheme must be

demonstrated by actual finite-volume computations of the transopic flow

in the supercritical regime.

7.4 Finite-Volume Computation with Tail-Plane Mesh

It has been mentioned by Jameson and Caughey (1977) and demonstrated

by Jameson and Jou (1979) that the smoothness of the mesh is a require-

ment of the finite-volume computation using the artificial viscosity

model. The discontinuity of the transformation matrix xX  can be

tolerated by the subsonic flow but will give erratic results if the flow

in the region of mesh singularity is supersonic.

To demonstrate the success of the mesh-generation scheme developed

here, the two-dimensional finite-volume code by Jameson, FLO 26, is

modified to accommodate the new mesh.

The calculations are performed in the rectangular region (9 chord

lengths by 8 chord lengths) in terms of the NACA 0012 airfoil. Figure 21

shows the pressure distribution for the nonlifting case where the Mach

number is 0.85 and the angle of attack is 00. Figure 22 shows the

pressure distribution for the lifting case where the Mach number is 0.75

and the angle of attack is 20. Both are in good agreement with the

computations performed by using the original parabolic mesh system.

It is demonstrated that the mesh generated here for a wing-in-a-box

configuration gives good computational results for supercritical flow.

The only place of mesh discontinuity is along the vertical line through

the trailing edge. For the usual operating Mach number for which the

potential flow computation is useful, the flow at the trailing edge is

subsonic. There should not be any difficulty associated with the mesh

property there.
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8. Conclusions

Over the past two years of development much progress has been made

with the full-potential transonic wing-body code. Several aircraft

companies have used the code to develop confidence in it as a design and

analysis tool. The work has been very successful in showing good com-

parisons with available experimental data. Issues regarding modeling

and computed results raised on the Phase I effort were resolved in the

Phase II effort. The general direction of future work has been outlined

and some preliminary efforts started.

The second phase of the transonic wing-body work reported here has

demonstrated that realistic configurations can be analyzed with the code

developed (FLO 30). Comparisons of computed and experimental results

show that the primary differences can be attributed to the effects

of viscosity. FLO 30 appears to be very robust in that it has been used

to model several configurations without any changes to the code.

Improvements made to the basic grid-generation scheme used in

FLO 25 allow FLO 30 to treat highly swept and tapered wings. Additional

testing of the code should be done to establish the limits to which the

code can be applied. Other means of unsweeping the mesh upstream and

downstream than the one described in this report may be required for

some extreme wing configurations.

A systematic means of mesh embedding needs to be developed in order

to model more complex configurations. Some of the techniques described

in this report could be generalized to meet the requirements for hori-

zontal tails and nacelles. The next stage in the code development

should be to model a wing-body-tail configuration. This would provide

an opportunity to resolve the techniques of grid fitting and mesh

patching which will be necessary. Some work has already been done on

this problem (see the appendix), but more effort remains to see what is

practical.
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Appendix: A Preliminary Study of an Overlapping

Grid-Generation System

Abstract

A study is made of existing and novel grid-generation rhemes for

complex airplane configurations. It is suggested that existing grid-

generation schemes all have disadvantages when complex multicomponent

bodies are considered. Accordingly, the concept of an overlapping mesh

system has been developed in which a mean optimum grid for each con-

ponent of the body is generated and these grids are coupled by an over-

lapping system. A preliminary example of a wing-body calculation using

this type of grid system is presented. An example of a horizontal tail

grid embedded in a wing grid is also presented, although no flow calcu-

lations have been programmed.

- - w--- ---- --- -.
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1. Introduction

In order to estimate the flow distribution around a body using a

finite difference computational method, a finite difference mesh or grid

must first be constructed. When such finite difference computations

were being developed, the main problem was the derivation of stable and

rapid algorithms. The wing or airplane was represented by a somewhat

primitive model. For example, wings were represented by a plane using

the well-known thin-wing approximations (Bailey and Ballhaus, 1972); in

such cases, the computational grid was Cartesian. For a wing-body

combination (Ballhaus, Bailey, and Frick, 1976), the body was repre-

sented in a fairly crude fashion by simply taking the nearest (Cartesian)

grid points. As stable algorithms were developed, there arose a need to

devise more suitable computational grids.

The main criteria for judging the efficiency of a particular grid

is the number of grid points required for a given accuracy, since the

total computation cost decreases with the number of grid points. In

practice, this requires that mesh points be clustered near regions of

rapid gradient in the flow and be more sparsely distributed in regions

of moderate gradients. Areas of rapid flow gradients, such as the

leading edge of an airfoil, can often be specified in advance, which

helps in determining the clustering. A further problem is the accurate

and computationally simple representation of the body in the grid. This

is best achieved by the use of a body-conforming grid in which the body

surface coincides with an extreme member of one family of the coordinate

surface that constitutes the grid.

For two-dimensional airfoil computations, a circle plane mapping

which transformed the flow field exterior to the airfoil to the interior

of a unit circle (Sells, 1968) proved very satisfactory. The actual

grid is constructed by a net of concentric circles and radial lines. In

addition to being a body-conforming grid (the unit circle identifies

with the airfoil surface), this transformation clusters grid points in

regions of high curvature, such as the airfoil leading edge. This

particular grid is orthogonal. In principle, the circle plane mapping

could be used for a three-dimensional wing by transforming each wing

section to a circle, although it may be difficult to treat, for instance,

a wing-body-tail configuration.
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An alternative means of generating a mesh for an airfoil section is

by using a parabolic-shearing mesh system. Initially it is assumed that

the airfoil section is parabolic and the parabolic section is then

flunwrapped" about a regular line inside the airfoil. The airfoil leading

edge is approximately parabolic. This square-root transformation trans-

forms the airfoil section to a quietly undulating curve which can then

be removed by a simple shearing. This does lead to a nonorthogonal

grid. Application of this grid-generation system to sections of a wing

have been used by Jameson and Caughey (1977) for finite wing computations.

There are other variations of "unwrapping" grids which are similar

to those discussed above. These mesh-generation systems can be termed

analytic since they are complemented by a series of analytic operations.

A second type of classification is numerical generation of the computa-

tional mesh in which the unit is constructed by the numerical solution

of a set of partial differential equations. These equations are usually

Poisson's equations for the transformed (computational) coordinates.

The forcing terms are inserted to control clustering or possibly ortho-

gonality. It is perhaps worth noting for two-dimensional grid generations

that if the forcing terms are neglected and the set of equations solved

subject to the Cauchy-Reanann conditions, then the numerically generated

coordinates are identical to a conformal transformation generation

scheme. Generally, numerically generated coordinate systems are non-

orthogonal. Applications of this type of approach to three-dimensional

bodies are, in principle, straightforward. The most common applications

of this approach follow the work of Thompson, Thames, and Mastin (1974)

and Mastin and Thompson (1978). Further developments concerned mainly

with clustering and orthogonality are by Sorenson and Steger (1977;

Steger and Sorenson, 1978).

The present generation of transonic flow computer codes can be used

for (fairly simple) wing-body configurations. The grid-generation

schemes used are based on the above techniques. For example, Jameson

and Caughey (1977) transform the body, section by section, to a plane

using a combination of conformal transformations and simple shearing.

This transforms the problem to that of a (transformed) wing on a wall,
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and the grid can then be constructed using the parabolic-shearing trans-

formation discussed above. A recent version of this computer code is

that of Caughey and Jameson (1977) in which the mesh system consists of

a cylindrical coordinate surface based on the body axis followed by a

logarithmic unwrapping of the wing section in the intersecting cylin-

drical surface. Three-dimensional solutions of the Navier-Stokes

equations have been obtained in a numerically generated grid by Thompson,

Thames, and Mastin (1974). The physical problems treated in these

computer codes are fairly simple wing-body configurations. Even then,

the existing mesh-generation schemes sometimes have disadvantages.

In Section 2, existing and novel mesh-generation schemes are

critically discussed regarding their applicability to realistic con-

figurations. It is suggested that the best system may be an overlapping

mesh system in which a "master" grid is chosen (for example, around an

isolated wing) and each additional component (body, tail, nacelle, etc.)

has its own "slave" grid. Each slave grid ideally has common points

with the master grid and possibly other slave grids, although some form

of interpolation may be used. In principle, this allows the grid system

to be constructed as the complexity of the configuration increases.

Some general rules regarding uniqueness and orthogonality of the system

are derived. The main disadvantage seems to be an increase in the

number of iterations of the difference schemes, although this could well

be offset by the reduced local complexity of the mesh.

A grid system for a semi-infinite body, closed at the front, with a

wing has been generated using these techniques, and an example has been

computed. Comparison of these results with those of Jameson and Caughey

(1977) indicates that some problems in the generated grid remain but

that in principle the basic approach is sound. A second grid system

suitable for a wing-body horizontal tail configuration has also been

prepared and the grid constructed. However, no flow computations have

been programmed.
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2. Mesh-Generation System

Before discussing different mesh-generation systems, perhaps it is

advisable to lay down some ground rules upon which the discussion will

be based. The basic object of the present work is to devise a mesh-

generation system capable of treating realistic airplane configurations.

Consequently, the discussion of grid generation will to some extent

center around the capability to represent a wing-body comoination with

both a vertical and horizontal tail and with a nacelle someuhere on the

wing. The configuration is sketched in Figure 1. It is also helpful to

list the desirable properties of a mesh system even though it may be

impossible to satisfy all such requirements. It is suggested that the

following properties are desirable in any such system.

a. The mesh system should ultimately be capable of treating

realistic airplane configurations.

b. The mesh should be rapidly generated.

c. The mesh should have sufficient smoothness, compatible with

the difference scheme.

d. The mesh should not have excessive "skewness" which can cause

numerical inaccuracies or instability.

e. The mesh should be capable of development to an adaptive grid

in order to cluster points in regions of rapid change. Also,

it should ultimately be capable of alteration during a compu-

tation in order to treat unsteady effects.

f. The mesh system should not require a high level of computer

input.

g. The mesh should reduce to a Cartesian (or universal) mesh

outside the neighborhood of the airplane. Since the metrics

for this universal mesh can be permanently stored in the

computer, this removes the need to difference the transfor-

mation metrics in this region for each case and thus saves

computing time.

These then are the general guidelines upon which the following

discussion is based.

r7
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2.1 Jareson-Caughey Parabolic Mesh

This mesh system, described by Jameson and Caughey (1977), is

capable of treating a wing/finite body combination. In this system an

enveloping circle is constructed at each body section and this circle is

then conforinally transformed to a slit. The representation of the body

is a slowly varying curve which is then collapsed to the slit by a

shearing transformation. The resulting configuration is a (transformed)

wing on a wall. A parabolic transformation is used to unwrap the wing

about a singular line just inside the wing. The wing at any section is

then represented by a slowly varying curve which is reduced to a plane

by a shearing transformation. The "slowly varying curve" arises from

the assumption that the rapid curvature region of the airfoil section at

the leading edge can be approximated by a parabola. The wing wake

geometry can be treated adequately in this system.

This parabolic grid system is satisfactory for an isolated wing,

the main disadvantage being the tendency to give a coarse mesh in the

physical space near the wing trailing edge. However, since this grid is

wing dominated" it can produce undesirable effects on the body. After

sented by its profile. Unless this profile coincides with one of the

wing-generated "parabolic" lines, the body profile is distorted by the

appearance of "fins". This is sketched in Figure 2. Although these

fins diminish in size as the grid is refined, they still constitute a

strong disadvantage of this grid. Furthermore, the grid spacing is

determined by its desirability for the wing calculation which may not be

at all suitable for certain fuselage geometries; some of the grid cells

near the wing root or the symmetry plane may be highly skewed.

Turning to the problem of incorporating extra components such as a

horizontal tail or a nacelle, it is not at all clear how these could be

incorporated into the wing-dominated grid with satisfactory accuracy.

For example, it is difficult to see how a similar wraparound grid for a

horizontal tail could be incorporated into the existing grid for the

wing wake. However, one advantage of analytically generated grids such

as this is the speed with which it can be implemented. This would make

it easily adaptable to changing flow conditions for time-varying flows.
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Figure 2. Sketch of the Jameson-Ceughey Grid.
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2.2 Caughey-Jameson Cylindrical Mesh

The grid system developed by this method is in some respects

similar to the previous mesh but differs significantly in the treatment

of the body. The basis of the system is to introduce a distorted

cylindrical coordinate system about the axis of the body. The dis-

tortion is such that at streamise section the body surface constitutes

a coordinate line. When one of the coaxial surfaces cuts the wing, the

wing section is similar to a wing between two walls, as shown in Figure 3.

Each wing section is then unwrapped in a similar fashion as in the

Jameson-Caughey mesh except that a logarithmic transformation is used

instead of the parabolic transformation. This mesh can be termed body

dominated and can cause difficulties in resolution near the wing tips if

the radial surfaces are far apart. Also there are difficulties asso-

ciated with a closed body since the "body radius" is then zero; special

difference operators have to be used for the axial points. In practice

it has been found that a very small radius can be used without difficulty.

Futherinore, the location of the upstream boundary is represented in the

transformed plane by a singular point so that a special treatment of

this region is necessary.

2.3 Numerical Generation of Coordinates

The basic idea is to solve elliptic partial differential equations

for the computational coordinates. In two dimensions, two equations are

required while for three dimensions, three equations are required.

Since the basic equations are elliptic, values of the transformed co-

ordinates can be specified on the boundaries; one of these coordinate

surfaces is taken to be coincident with the body or bodies. Examples of

this method of grid generation are given in Thompson, Thames, and Mastin

(1974); Mastin and Thompson (1978); Sorenson and Steger (1977); and

Steger and Sorenson (1978). Initially, the elliptic differential

equations were Laplace's equation, but this did not really allow much

flexibility in clustering the grid points at will, for example in

regions of high curvature. Consequently, nonhomogeneous terms were

added to the equations so that the desired clustering occurred. In

spite of these modifications, the grids generated can exhibit undesirable

features. For example, in two-dimensional applications the generated
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grid may have excessive skewness (Sorenson and Steger, 1977) or the

clustering may still be inadequate. However, at least in two dimensions,

it is possible to introduce some orthogonality condition into the equations

which alleviates the problem of skewness (see Steger and Sorenson,

1978). It is not clear whether this technique can be applied to complex

three-dimensional configurations.

Generally, numerically generated coordinate systems can be altered

during the iteration or for a time-dependent computation. All that is

required is that the equations for the coordinate system be solved

simultaneously with the equations governing the physical process. If

the physical equations are complex, e.g., the Navier-Stokes equations,

these additional equations for the mesh do not require a significant

portion of the total computing time. However, for potential equation

calculations the additional complexity of numerically generated co-

ordinate systems may increase the total computation time significantly.

2.4 Matching Mesh Systems

One possible grid-generation system is to have a separate system

for each component and match or patch each individual grid at the inter-

face in such a way as to minimize any undesirable interference dif-

ficulties. A sketch of the proposed scheme is shown in Figure 4. From

a study of the difference equations used in the finite-volume method,

it seems that across each interface the grid should have at least con-

tinuity of second derivatives. Although superficially attractive

because of the choice of a near optimum grid for each component and the

possibility of reversion to a Cartesian mesh outside the body, there are

some difficulties with this type of mesh. One main difficulty is the

construction of the individual mesh system at junctions of two components,

e.g., wing-fuselage since if the fuselage surface, say, is the inner

coordinate surface for the wing, it must, at least at the wing root,

also be the outer coordinate surface for this body subgrid. A second

difficulty is the necessary matching of the smoothness at the interface.

A third difficulty is in the ordering of the grid lines from one subgrid

to another. In spite of these difficulties it is probable that a good

modular mesh of this type could be constructed by the same variant of
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the numerical generation technique discussed in the previous section

which allowed some control over the smoothness of the interfaces.

However, this would be a major piece of work which the possible gain in

efficiency may not warrant.

2.5 Over lapinLesh vstems

The overlapping mesh-generation scheme was developed to have most

of the advantages of the modular grid system mentioned above but without

most of the disadvantages. Thus, the overlapping grid has a nearly

optimum separate grid for each component but does not have the dif-

ficulties of enforcing smoothness at the interface of the modular

system or the difficulties at junctions of components. The basic idea

is best illustrated in two dimensions as shown in Figure 5.

In this scheme, a master grid, say one suitable for a wing, is

chosen, and a series of slave grids which are optimum for the body, tail

plane, nacelle, etc., are embedded or attached to this master grid. The

main requirement is that the boundary of the master grid should be

either at a known physical boundary or consist of grid points that are

common with one of the slave grids. A similar condition applies to each

of the slave grids. By this means, an optimum grid for each component

can be used in the computation. In this scheme, each component is

solved in isolation with the boundary conditions on the grid boundary

taking into account the interaction effects.

Any means, numerical or analytic, may be used to generate both

master and slave grids, provided the rules for overlapping (discussed

later) are satisfied. Note that the grids need only overlap by the two

coordinate surfaces necessary to obtain a central difference with a

Dirichlet boundary condition. This overlapping mesh scheme will allow

not only a near optimum mesh for each component but can, in principle,

allow each component to be solved to a different order of accuracy or

convergence level. It will also allow additional components, such as

nacelles, stores, etc., to be "plugged" in once the ground rules for the

overlapping are established. Furthermore, one such overlappiag could be

a wing-body mesh combination with the exterior Cartesian mesh. The main

disadvantage is the multiple iteration required in the overlap region.
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Figure 5. Sketch at an Overlapping Mesh.
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This problem may not be critical since the better mesh systems may

require fewer total iterations than a universal mesh. Furthermore, if

the overlapping meshes are chosen in the optimum fashion, the overlap

region need only consist of two coordinate surfaces. Also, if it is

desirable, each component can be solved to a different convergence level

if the effect of that component is required in only a global sense.

The basic idea of overlapping meshes as discussed above requires

some ground rules to determine how universal the scheme is and how (if

possible) to predict its characteristics. These are discussed in the

next section. It is felt, however, that the overlapping mesh technique

shows considerable promise for the computation of complex configurations.

K
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3. Overlapping Grid System

If a primary grid for a particular component of the configuration

is chosen, the question of determining the grid for the secondary com-

ponent arises. Obviously there are certain restrictions on the choice

of this second grid since one coordinate surface must be coincident with

the secondary component. Also, by the definition of the overlapping

grid concept, certain points in this secondary grid must be coincident

with the specified points in the primary grid. In this section, the

necessary restrictions or ground rules for the secondary mesh are

examined by writing each grid curvilinear coordinate system as a func-

tion of known coordinate surfaces (x, y, z) and constructing the

necessary equations that each coordinate surface must satisfy for the

overlap to exist. Also, the degree of orthogonality and the question of

a one-to-one mapping for a point in each coordinate is considered. A

typical example of an overlap grid scheme is also given.

3.1 Statement of the Problem

In a three-dimensional physical space a point in a curvilinear co-

ordinate system is defined by the point of intersection of three families

of coordinate surfaces, each of which in general only intersects a

member of another family once. Each member of a particular family of

surfaces does not intersect another member of the same family. Each

point of the physical space is therefore represented uniquely by the

specification of a particular member of each of the three families of

coordinate surfaces. If these coordinate surfaces intersect each other

at right angles, then the coordinate system is orthogonal. It follows

fairly obviously that any given point in the physical space can be

represented in any coordinate system that covers all or at least the

necessary part of the physical space.

As outlined in the introduction, the basic idea of the overlapping

mesh system is to first choose a master grid suitable for the most

important part of the configuration (e.g., the wing) and then attach

slave grids suitable for the other components. The slave grids are

bounded by a coordinate surface of one family representing the component

and another surface of the same or another family consisting entirely of

points in the master system or known far-field boundary points. The
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wing grid has a bounding surface consisting entirely of points in the

slave grid. Consider now tTo such overlapping grids.

Let the master grid, fitted to component A, be defined by the

families of coordinate surfaces.

91 (x, y, z) E= 1, N I

(x, y, z) E m(2) m 2 (1)

$3 (x, y, z) = E n = 1, N3

(1) (2) (3)
where the parameters E E , and E denote the members of' m n

each of the families of coordinate surfaces '2' and . The

specifications of the parameters E£ k E ,and E n ,i.e., the'm n '
points of intersection of the coordinate surfaces, are the coordinates

of a point in space. In the system, Equation (1), there are N N N

such points. It is assumed that one of the coordinate surfaces coin-

cides with the component A, that is, the component A is defined by:

(x, y, z) = E(1) (2)

Let the specified set of points (i.e., the common points of the overlap

region) in this coordinate system be defined as E() , E , and
(3)• .Now introduce a new system of coordinate surfaces:

n

01 (x, y, z) - 6( p = 1, Np

2 (x, y, z) 6q (2) q = 1, N (3)q q

43 (x, y, z) 6r(3) r 1, Nr

It is assumed that one of these coordinate surfaces, say

(x, y, z) = 6p(1) (4)
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coincides with component B. That is, the surface of component B is

defined by Equation (4). The problem is to construct the slave co-

ordinate system such that one coordinate surface, say:

1 (x, y, z) = Np (1), (5)

-_ (1) -(2) (3contains all the specified (common) points, E , E(2) (3)' m ' n '
of the coordinate system, Equation (1).

If it is assumed that the master grid is satisfactorily close to

orthogonality as regards component A, then a second problem is to

control, if possible, the orthogonality of the slave coordinate system.

Third, it is imperative that this slave coordinate system be unique

so that the mapping from the system in Equation (1) to the system in

Equation (3) is one to one.

Any point in some domain of physical space can be described not

only in the Cartesian coordinates x, y, z but also in the master grid

system I' 2 ' 2 3 '

Now the slave coordinate system, Equation (3), can be written in

terms of the master system; thus

l ( 1' 2' 3) = p (1)

-- (2)(6

'2 ( '2' 1P ) = q (6)

3 (I' $' $3 = 6(3)

If the coordinate surface, Equation (5), contains all the common points

E , (2) and (3), then the equation
m n (

(1) - (2)(3is satisfied for all Ek , E , and En(3) This is the first

restriction on the choice of the slave grid surface Also, the

| II 
' ':

i-t i
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specific points on the surface must be contained in the surface, hence

the choice of the other coordinate surfaces, 2 and 3 must be

such that the equations

2 (E9k(), Em(2) En ( 3 )) q (2) for all q

(8)
3-- (1) E (2) (3) = (3) for all r

are satisfied in total for all E (1) f (2) , and En(3) This

ensures that every coordinate point on the surface

S(1) - (2) (N(3)
coincides with one of the specified points, E , E , or E(n9. m 'n '

of the master system. The primary requirements for the above grid are

therefore that it must satisfy Equations (5), (7), and (8). Other

considerations are that it must be smooth, unique, and possibly orthogonal.

It is assumed that a smooth mesh can be constructed; the other points

will be discussed later. As well as requirements for the slave grid,

there are some requirements for the master grid; that is, one extreme of

the master grid must consist solely of points in the slave grid. This

requirement can be easily formulated by writing the master coordinate

system in terms of the slave coordinates. Thus, if the specified over-

lap points in the slave grid are defined by , (2) , and
P q

r , and if the extreme surface of the master grid is chosen to be

4)3 (i' 2' c3) = En(3)' (9)

then the master grid must be such that the equation

3 rp q(3)) = E 3n (10)

.,!isfied for all values of p (1) , q (2), and & (3) Also, by
p q r

ir .irginent as the slave grid, the equations
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S(_p) (q2 ) 
(3)  = E (1 ) for all k

I (11)

-2 I p() (2) (3)i m for all m

must be satisfied in total for all E (1) , q (2), and (3). Thus,p q r

the master grid must satisfy Equations (2),(10), and (11). If the

master grid is single valued, then the slave grid is single value

(McConnell, 1957) if the Jacobian of the transformation from the master

coordinate system is nonzero. Thus, if

J = # 0 (all i, j) (12)

J

then the slave grid is single valued. Also the mesh is orthogonal if

= 0 (i # j) (13)

gijgii

where gij is the transformation metric given by

d$k k

g. 8 k (14)

The above analysis gives the requirements for an overlapping mesh system.

The next problem is to devise some means of constructing such a mesh

system either numerically or analytically.

3.2 _Overlapj innMesh Scheme for an Arbitrary Semiclosed Bod-Wing

Combination

It is proposed in this section to indicate how to construct an

overlapping mesh system for a wing-body combination when the body is a

semiclosed arbitrary shape. The body is closed at the front and open at

the rear, a configuration typical of a representation of a closed fuse-

lage with a wake model. A wing is mounted at any location on the body.

The object of this section is to suggest a scheme for generating a body-

conforming grid for the body matched to a wing grid.

7'
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In the Jameson-Caughey computer code, the body is transformed to a

slit by means of a Joukowsky transformation in conjunction with a simple

shearing. This reduces the problem of grid generation to that for a

wing on a wall. In this transformed domain the wing grid is formed at

selected spanwise stations in a similar manner as in two-dimensional

airfoil problems. This scheme is sketched in Figure 6. As noted in

Section 2.1, this grid-generation scheme can cause difficulties in the

representation of the body due to the appearance of "fins" (see for

example, Figure 2). The present idea is to use the overlapping grid

scheme to avoid this difficulty.

Considering the transformed "wing-on-a-wall" problem, the procedure

is initially the same as in the previous section. First, the usual

parabolic transformation used by Jameson is made for the wing sections.

In this scheme the physical coordinates x, y, z are transformed to

the parabolic coordinates C, n, as follows

+ in' = 'x - x) + i(y - y) i

(15)

= z

where x 0 YO is the location of a singular line inside the wing.

This transformation unwraps the wing about the singular line giving a

slowly undulating surface S() representing the wing. A shearing

transformation

n = n' - S() (16)

then makes the wing a surface of constant n . Thus the final trans-

formation is

x = 0 + 2 - ( + S)2

Y = YO + 2C(n + S) (17)

.Z
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Now let the preliminary master coordinate i be given as

K2 = (18)

J3 =

where , f, are defined for the transformed wing by Equations (15)

and (16). Retaining the coordinate for the body (in this case the

transformed "wall"), it can be seen that a = constant line will cut

the body profile at some location "a", as shown in Figure 7. Now this

line, AB in Figure 7, is the limiting form of a family of ellipses,

thus the body grid is constructed by using a family of ellipses in a

., 1 plane as one coordinate surface. A coordinate surface orthogonal

to this is a family of hyperbolas. Thus, the body grid is then a system

of elliptic cylindrical coordinates and, in the notation of Section 3.1,

= a cosh i cos 3 0 ! I 1L (19)

3 = a sinh I sin 0 < < -

where a is the intercept made by a = constant line on the trans-

formed body profile. The outer limit of 01 ' OIL ' is chosen such that

the point defined by (0IL '2 ' 0) coincides with a specified

=L line in the wing grid. Thus,

L 1 + a (20)

Equation (19) then gives the body grid in the transformed domain. In

order to match the wing and body grids, it is simpler to replace the

W3 grid lines by a continuation of the favily of ellipses in Equation (19).
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Figure 7. Overlapping Grid Systemn for the Transformed Body.
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Thus the wing grid is now

2 = T1 (21)

16 = a sinh u sin v

It should be noted that the outer parts of the wing grid ellipses are

the far-field representation, where

U _ [(a + + a (22)

and v is given by

sec2 v - cosec 2 v = 1 (23)

Having obtained the overlapping wing-body grid in the transformed domain,

the physical grid is obtained by reversal of the Joukowsky and shearing

transformation. In summary then

a. Use the existing Joukowsky and shearing transformations to

reduce the wing-body problem to that of a wing on a wall.

b. Construct the usual wing parabolic coordinates C, n, .

c. Determine the intercept, "a", of a = constant line with the

body profile.

d. Construct the transformed body coordinate system, Equation

(19).

e. Construct the modified wing coordinate system, Equation (21).

f. Use the reversal of the shearing and Joukowsky transformations

to construct the mesh points in the physical plane.

Note that since both the I and 2 surfaces and the i3 and 0

surfaces are coincident in the overlap region, interpolation of the 1P

or coordinates for the overlap region is simple to implement if

this should be necessary.

9
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The above mesh-generation scheme has been coded for a cylindrical

body with a nose consisting of an elliptical body of revolution.

Sections of both the body grid (along a constant line) and the wing

grid are shown in Figures 8 and 9. It can be seen that the body grid

has a highly skewed mesh cell adjoining the plane of symmetry. A

probable cause of this error is a computer "bug" at the plane of sym-

metry itself where certain functions in the Joukowsky transformation can

have branch points. It is suggested that in the generation of the body

grid this singular behavior is not correctly represented.

3.3 KExample

The transonic flow around a semi-infinite body with a mid-mounted

wing was computed on the overlap mesh by using the finite-volume method.

The body is closed at the front and extends an infinite distance down-

stream. The wing is the ONERA M-6 wing at 00 angle of attack. The

freestream Mach number is 0.85. A sketch of the configuration is shown

in Figure 10. The basic code is FLO 28 with a modified mesh system.

Separate iterations for both body and wing are programmed with the

overlap concept being used to generate the necessary boundary condi-

tions. A one-dimensional interpolation (in the y-direction) is used in

the overlap region. It was found necessary to replace the iteration

subroutine YSWEEP with XSWEEP in the code because for a swept wing the

marching direction could be in the upstream direction with YSWEEP.

The pressure distributions at specified spanwise stations computed

using the present mesh are shown in Figure 11. Also shown are results

of Jameson's FLO 28 finite-volume code with a different mesh structure.

It can be seen that the present grid gives pressures that are in quali-

tative agreement with those of FLO 28 but which are in general much too

low. The probable cause of this error is that the representation of the

"far field" in the present grid is much too close to the wing surface,

and modification to alter the location of the outer grid point should be

incorporated into the mesh. A further point that should be considered

is the accuracy in the overlap region itself. The present indications

are that the accuracy is worse in this region than in other parts of the
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Figure 8(a). Body Grid Along a 1 4 23 Line (32 x 8 x 4 Grid).
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Figure 8(b). Body Grid Along a =430 Line (32 x 8 x 4 Grid).
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Figure 9(b). Wing Grid Along a 4 = 30 Line (32 x 8 x 4 Grid).
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Figure 10. Wing-Body Configuration.
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Figure 11. Pressure Distribution Around a Wing-Body Combination Moo = 0.85.
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flow field. This may be due to the interpolation procedure used in this

region or simply another manifestation of the "far-field representation"

error. Finally, the option of iterating the body and wing calculations
at different rates should be investigated since this could reduce the

computation time.
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4. Grid-Generation Procedure for a Tail Plane

4.1 Type and Restrictions of Tail-Plane Grid

The basic idea is to use the overlapping grid technique developed

in Section 3 for a wing-body combination. Basically, this technique

develops a separate grid for each component of an airplane, e.g., the

wing and body and tail plane. One grid, probably that for the wing,

is designated a master grid, and the others are slave grids. Each grid

overlaps the grid of a neighboring component by at least one grid cell

which allows a (usually spanwise) marching procedure for each component.

The boundary, the extreme limit of a component grid system, is either a

far-field grid line or a common line with another grid. Dirichlet

boundary conditions can then be applied along this boundary.

The existing wing-body grid (see Section 3.2) consists of the

following steps:

a. Conformally transforming and shearing the body to a slit as in

the existing Jameson-Caughey finite-volume code.

b. Generating a "shell" type body grid enclosing the body which

is assumed to be semi-infinite. These shells will probably

extend about 1/3 of the wing semispan.

c. Constructing the wing grid using a continuation of the shell-

ordinates but changing the "normal" coordinate, the 2

coordinate in Equation (21), to avoid coarse mesh cells near

the wing tip.

For a tail-plane grid, it is assumed that the tail will not extend

sufficiently in a lateral direction as to lie outside the body grid

(i.e., less than one-third semispan). Consequently, the tail-plane grid

will be embedded in the body grid alone and will not intersect the wing

grid. This is the main restriction on the tail-plane dimensions. A

second restriction is that the tail-plane lies at least one grid line

from the wing wake in order to avoid double valuedness on the C-coordinate

lines.

4.2 General Formulation

First let the body be compressed to a slit as in Section 3.2,

with the corresponding changes to the tail-plane input stations X,t______
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YT' ZT to the transformed coordinates XT9 YT' ZT ' Then find where

these points (X' YT' ZT) occur in the body grid as follows.

The body grid is given by a series of ellipses and hyperbolas

together with the original wing grid value of F , as shown in Figure 7.

The body grid lines are given by

= a cosh u cos v

(24)

= a sinh u sin v

where F, f, are the coordinates found from the original wing grid.

Hence, the transformed tail-plane input stations XT' YT' ZT

are transformed to the original 
wing coordinates CT' lT' T9 T

From Equation (24) we have the equivalent stations in F, U, V

coordinates where T is as before, VT is found from

o T  a n T  (25)
(aOS VT)2  (sV)=

and UT  is given by

UT = cos (26)
U~~~ ~ T oh ( -osV)

Having obtained the input stations of the tail plane in the body grid,

bounding lines are then constructed as follows.

A search is made to find the body grid surfaces N' UN' VN that

always completely enclose the tail plane. A second set of grid surfaces

is then found, probably obtained by simply changing the grid index by

one such that they move further from the tail plane. For each U = constant

surface for U <UN , the tail plane (and wake) will look as shown in

Figure 12. Hence, if the tail-plane geometry is known for this section,

the grid generation reduces to a two-dimensional problem. The tail-

plane geometry at the required computational F , U stations can be

obtained from the input values T' UTo VT given by Equations (25) and

(26) by using interpolation. Thus, we now know the T' VT data for the

0
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Figure 12. Tail-Plane Embedding in Transformed Domain.
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computational section shown in Figure 12. The problem is now to develop

a coordinate system for this configuration.

Let the coordinate lines be denoted as follows. The outer boundary

grid lines are denoted by

g( , V) - 0 . (27a)

The inner bounding grid lines are denoted by

g2 (c, V) - 0 , (27b)

and the tail-plane section and wake are denoted by

f($, V) = 0 (27c)

We want a system of grid lines that coincide with the body f( , V) 0

and also, on the outer bound, essentially coincide with the curve

gl(C, V) - 0 (the corners are "rounded" to avoid singularities). This

arrangement is sketched in Figure 13.

Consider the set of parameter curves

( V) f( , V) (1-A) + X g1 (, V) =0 , (28)

where

When

X 0 , Mf(, V)

I- 1 , g1( , V)

Hence, Equation (28) is one family of coordinate lines, for each A , if

the lines do not intersect. Two members of the family (AP x2 ) will
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B - - 1 (4, V) =0

I f(4,V) =0

AL- ---------------

Figure 13. Sketch of Tall-Plane Embedded Coordinate System.
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intersect at (C1, V) if l( i V 1 A = x2 * This is obviously

impossible unless X I x 2 a a trivial condition. Hence, we now have

one of our two coordinate lines:

f( 1 V)
- X (29)

f(Cl' V) - g ( 1, V)

For the second coordinate line there is probably no easier method than

to use the parabolic mapping of the type used for the wing. Thus for

the tail plane we have

+ i n' = [( - s) + i (v- V s )  (30)

where S Vs is the location of a singular line just inside the

tail plane. Thus

2 _ ,2 = -

(31)
2 n = V - V

As before, shear the T' coordinates to remove the "slowly undulating

curve" referred to in Section 3.2. Thus

qV ' -VT M (32)

Combination of Equations (31) and (32) gives

r2 -2 (33)

Note that the f(&, V) - 0 line in Equation (28) is given by

n(V, v) = 0 . (34)

Now the bounding line g1( , V) = 0 consists solely of lines of

- constant n and V - constant. Hence, the point of intersection of

any C line with the outer boundary, including the location of the
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corner points, is simple. An important difficulty arises at the corner

points in the tail-plane mesh since in the two-dimensional problem a

mesh cell containing these corner points may be a five-sided cell rather

than the required four-sided cell. This difficulty can be removed by

first ensuring that Ci # 4 and then, as far as the tail-plane mesh is

concerned, replacing the "corner" by a smooth curve joining the 4 = constant

and V = constant lines. For the overlapping points at the corners,

the body grid extrapolation can easily be used. Denote a typical point

as (CI. V1 ) 1 The tail-plane coordinate lines are now

= constant

A=(

The next task is the construction of the intermediate coordinate

lines X.(4.) . Ideally we would like the A.(4.) lines to essentially31 31

coincide with the g2 (C, V) = 0 bounding line (again the corners are

"rounded" to avoid singularity). For a constant Aj(Fi) (i.e., independent

J Jiof $i ) this would probably be impractical. Hence choose Aj f %J(Yi

such that

M, V) I - XJ(Y I + XJ( ) g1 , V) g2(4, V) = 0 . (35)

Again, since the curve g2(4, V) = 0 is either a line of constant

or a line of constant V , the point of intersection of a = constant

line with g2^ is easily found from Equation (33), and the required

value of Xj(4i) is found from Equation (35). It is proposed that

( be monotonic functions of J and that X be one of this set,

possibly the penultimate value (the extremes are 0 = , 1 ). When the

curve g2(4, V) - 0 changes from a 4 - constant line to a V = constant

line, it is possible that the curves for a given Xj^ are not continuous.

Aj( i) must therefore be chosen such that each Xj( 4i) curve is con-

tinuous through the corner junction. Thus we now have a grid system

&V XJ(
4i) that coincides with the tail plane, the outer boundary line

91( , V) - 0 , and the overlap boundary g2 (4, V) - 0 . The actual

i intersection point on these second two lines will not in general

coincide with the body grid point, and interpolation will have to be used.
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Having chosen both the xi A.( i) and the Uk lines, the reverse

set of transformations are as follows.

The i are known, but for the inverse transformation of Equation (31)

it is necessary to know n( , V) . By definition,

n(V, V) = sin 8/2 , (36)

where
R = [(V -V)2 + (C -)2]

e t a n ( :)(3 7 )

and s' V are the coordinates of the singular point of the tail-

plane section. Using Equation (35), it follows for Ci < c

- Y id 1 - xi(i)] + x 1((i) (C = 0 (38a)

AA

where T( i) are the coordinates corresponding to the i on the

section surface and = is the bounding line of gl(&, V) = 0

for i less than the corner value c"

For >

[V - VT(i)] [ - y i)] + (V - V1) 0 (38b)

where VT( i) is the V-coordinate corresponding to the Ci on the

section surface, and V = V1  is the bounding line of g,( , V) = 0

for > &c "

Using Equation (36) and Equation (38) with Equation (31) and Equa-

tion (32), the coordinates CiJ, Vij corresponding to the points

i )J( ) can be obtained. Having obtained CiJ, Vij (and U) the

inverse tranformation for the wing-body mesh can then be used to recover

the physical grid points.

The suggested iteration sequence is as follows.
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(1) Sweeping down each of the shells (U = constant lines), sweep

to end boundary*, noting the values of 4 on the g, grid

lines.

(2) Using interpolation, get the Dirichlet boundary conditions for

the tail plane.

(3) Compute the tail-plane flow, noting the values on the g.,

grid lines.

(4) Sweep out along the span as before. No extra work is involved

at the tail-plane tip since it should be identical to the

wing-body procedure.

(5) Replace 4 on the body mesh lines, g2 by their values from

step (3) using interpolation.

(6) Repeat.

An example of an embedded tail-plane mesh is shown in Figure 14. The

section shown is the mesh in a = constant surface of a typical wing

grid. No attempt was made at clustering the tail-plane grid lines,

although this is easy to do by simply choosing the X.( i) in Equation (35).

*Not strictly necessary but avoids complex logic.
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5. Conclusions

An attempt has been made to evaluate existing mesh-generation

schemes for their ability to model complex airplane geometries. It is

felt that all existing generation techniques have significant drawbacks

in this regard, mainly because of the different topological characteristics

of the airplane components, such as the fuselage, wing, and nacelles. A

new method of overlapping meshes has been formulated to overcome this

problem. In this system, a near optimum mesh system for each component

is overlapped with adjacent component meshes allowing a satisfactory

iteration procedure with little or no interpolation. A detailed mesh-

generation scheme for a semi-infinite body closed at the front with a

wing mounted at any location has been derived. It is felt that the

present overlapping mesh approach shows considerable promise for complex

airplane configurations since additional component meshes can be even-

tually "plugged in"~ to existing or master meshes. However, the example

presented does have deficiencies which should be corrected before any

further extension is made. It is suggested that the existing problems

are due to a computer coding error and to a lack of flexibility in

locating the far-field point. Neither of these problems should be

insurmountabie.

A means of embedding a mesh system for a horizontal tail into a

* wing or body mesh has also been developed. A simple example of such a

mesh has been computed and appears satisfactory. No flow computations

have been performed.
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Authors Note

This report represents the state of the work when the author (David

Nixon) left Flow Research Company. The report should not be considered

as an account of a completed research program.
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