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Numercal olutins o the ABSTRACT _

Numerical solutions of the compressible Navier-Stokes equations are presenTe
for a laminar horseshoe vortex flow created by the interaction of a boundary layer
on a flat surface and an elliptical strut leadi~g edge mounted normal to the flat
surface. The computational approach utilizes zone embeddingesurface-oriented
elliptic-cylindrical coordinates, interactive boundary conditions, and a consistently-
split linearized block implicit (LBI) scheme developed by the authors. Mesh resolu-
tion tests are performed, and the horseshoe vortex flow is discussed.\

INTRODUCTION

The present study considers three-dimensional leading-edge horseshoe vortex flow
representing the interaction of a two-dimensional wall boundary layer approaching an
elliptical strut leading edge mounted normal to a flat surface. An example of this
type of flow occurs near the junction of an airfoil or wing and its supporting sur-
face. Another example is present in axial compressors and turbines, where boundary
layers which develop on the annular surfaces of the axial flow passage encounter rows
of stationary and rotating blades. The flow is of interest in connection with flow
degradation, its tendency to cause high local heat transfer rates, and its role as
the origin of corner flows. Numerous experimental flow visualization studies (e.g.,
[1-31) have established that the flow consists of a three-dimensional boundary layer
separation in front of the obstruction followed by a vortex flow which wraps around
the obstruction. Little is available in the way of detailed flow measurements, how-
ever, particularly downstream of separation. Previous analytical studies have con-
sidered the three-dimensional boundary layer flow upstream of separation (e.g., [4])
and have used rotational inviscid flow theory to estimate secondary flows [5]. The
horseshoe vortex flow is treated here by numerical solution of the compressible
Navier-Stokes equations for laminar flow at moderate Reynolds number Re and low Mach
number M. The study has as its goals an improved understanding of the horseshoe
vortex region and formation of corner flows, and also the development of flow pre-
diction techniques.

ZONE EMBEDDING AND INTERACTIVE BOUNDARY CONDITIONS

The compressible Navier-Stokes equations in general orthogonal coordinates are
solved using analytical coordinate data for an elliptic-cylindrical coordinate sys-
tem which fits all solid surfaces within the computational domain but is not aligned
with the direction of the free stream flow. In selecting the computational domain,

a "zone embedding" approach is adopted whereby attention is focused on a subregion
of the overall flow field in the immediate vicinity of the leading edge horseshoe
vortex flow. A perspective view of the geometry, coordinate system ( ,n,z) and a
representative computational grid is shown in Fig. 1. The elliptic coordinates &,n
are related to Cartesian coordinates x,y by x-cosh & cos n, y-sinh sin n, and the

(conformal) metric scale factor h is given by h 2=cosh 2-cos 2n. The computational
domain is defined by 0.251.6, -/2: r/2, Ozsl.

Symmetry conditions are applied at z=l, so that the flow represented is that
past an elliptical cylinder (of major semi-axis a-l.02 and minor semi-axis b-0.2)
between parallel flat plates with spacing H-2. Velocity boundary conditions at no-
slip and symmetry surfaces are straightforward and self-explanatory, The remaining
condition applied at these boundaries is 3p/3n-0, where p is pressure and n denotes
the normal coordinate direction. The condition p/?n-O at a no-slip surface is cor-
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rect to order Re for viscous flow at high Reynolds number.

The treatment of inflow and out-
flow conditions is the principal
obstacle to be overcome within the
present zone embedding approach. At Z
curved boundaries located within the F
free stream region, interactive
boundary conditions are derived from
an assumed flow structure and physi-
cal approximations which permit in-
flow of a boundary layer and inviscid --

free stream, and which permit outflow LL,
in the presence of shear layers, cor- /
ner flow, streamwise vorticity and a 01
nonuniform free stream. The initial
conditions and interactive boundary
conditions are devised from the in-- ALL .
compressible potential flow velocity Fig. 1 - Geometry, Coordinate System, and
Ul(C,n) about the ellipse, together Representative Grid
with two-dimensional estimates of the
boundary layer thicknesses on the end-
wall flat plate, 61 (x), and on the
ellipse, 62 (n), and finally from an

estimate of the blockage correction factor B(x) for the core flow velocity due to the
endwall boundary layer growth. The complex potential W for flow past an ellipse at
incidence a with circulation k is given by Milne-Thomson [61 as W=Ur (a+b) cosh

( -_ -ic), where U ris a reference free stream velocity, =0 is the ellipse surface,

and ; is defined by x+iy=c cosh 4,_where i 2=-and c =a 2 b 2 . This defines the incom-
pressible potential flow velocity U The boundary layer thicknesses 61 and 62 are

approximated by the Blasius value 5(s/Re)1/2 where s is distance from the flat plate
or ellipse leading edges, as appropriate. The blockage factor is given by B(x)=

[H/2-6*(x)] - I . Finally, boundary layer velocity profile shapes fl(z/61 ) and

f2(&,62), Oflf 2l are defined from vonKarman-Pohlhausen polynomial profiles. The

initial velocity vector U at t=o is defined by

U47 ,Z) U1(C,n7 ) 8(x f, [ z/8(X)] Cz(-io)/S(i

(11

At the inflow boundary E-&2' a "two-layer" boundary condition is devised such

that stagnation pressure p is fixed at the free stream reference value (po)r in the

core flow region (z>61 ), and the Cartesian velocity u is set by uu e(n,t)fl(z/61 ) for
z:6 I  Here, ue is the local free stream velocity consistent with p and the local

wall static pressure (assumed constant across the shear layer), which is determined

as part of the solution and updated after each time step. The remaining inflow con-
ditions are vcdi f (z/) a 2 /3n2-o, and a2c /an g(n,z) where g is the distribution

r2-- p -

of this quantity at t-o with c defined as (1-B UI.U), its value from the potentialp

flow corrected for estimated blockage. The velocities v and w are the Cartesian
velocity components normal to the plane of the ellipse chord and normal to the flat
plate, respectively. The angle a is the approach flow incidence angle relative to

the chord of the ellipse. For outflow conditions, second normal derivatives of each

Cartesian velocity component are set to zero and cp is imposed and updated after each



time step from an interaction model relating the computed outflow velocities and the
a priori potential flow solution. The imposed Cp is obtained by integrating an in-

viscid normal momentum equation 3p/;n--q2/R I along the outflow symmetry lines

(z=l,n=7/2,3 /2) beginning with a fixed wall pressure. Here, q is the local computed

flow speed (q U.U) and RI is the local potential flow streamline radius of curvature.
The resulting static pressure distribution is imposed at the outflow surface assuming
no variation normal to the endwall.

The foregoing interactive inflow-outflow boundary conditions are designed to
permit the mass flux through the computational domain to adjust to both the imposed
downstream static pressure and to viscous losses present in the flow, while maintain-
ing a specified flow structure based on physical assumptions consistent with the flow
problem under consideration. Various refinements in the interactive boundary condi-
tions are possible, such as including the effect of local pressure gradient on
boundary layer growth and profile shape.

DIFFERENCING PROCEDURES

The differencing procedures used are a straightforward adaptation of those used
by the authors [7] in Cartesian coordinates for flow in a straight duct. The com-
pressible time-dependent Navier-Stokes equations are written in general orthogonal
coordinates, and for economy the stagnation enthalpy is assumed constant. The defini-
tion of stagnation enthalpy and the equation of state for a perfect gas can then be
used to eliminate pressure and temperature as dependent variables, and solution of
the energy equation is unnecessary. The continuity and three momentum equations are
solved with density and the ,q and z velocity components as dependent variables.
Three-point central differences were used for spatial derivatives, and second-order
artificial dissipation terms are added as in (7] to. prevent spatial oscillations at
high cell Reynolds number. This treatment lowers the formal accuracy to first order
but does not seriously degrade accuracy in representing viscous terms in thin shear
layers. Analytical coordinate transformations were used to redistribute grid points
and thus improve resolution in shear layers and near the leading edge. Derivatives
of geometric data were determined analytically for use in the difference equations.

SPLIT LBI ALGORITHM

The numerical algorithm used is the consistently-split "linearized block im-
plicit" (LBI) scheme developed by the authors [7, 8] for systematic use in solving
systems of nonlinear parabolic-hyperbolic partial differential equations (PDE's).
To illustrate the algorithm, let

(,nei _ 0 n)/,t = RD( (n I) + 0I-P)D(q n)

(2)

approximate a system of time-dependent nonlinear PDE's (centered about tn+BAt) for
the vector of dependent variables, where D is a multidimensional vector spatial
differential operator, and t is a discretized time variable such that Lt=tn+l-tn. A
local time linearization (Taylor expansion about on) is introduced, and this serves
to define a linear differential operator L such that

(pn ) =Do n ) + ) +o(&t 2 )

(3)

Eq. (2) can thus be written as the linear system

( I -0 L -  At D(0) (4) .



The multidimensional operator L is divided into three "one-dimensional" sub-operators
L=L +L2+L (associated here with the three coordinate directions), and Eq. (4) is

1
split as in the scalar development of Douglas & Gunn [91 and is written as

(I-_8t L n( n ) A C) S,n)  (5a) i

cI1 3 )9 AtL2n) **  -5 on (5b)
-), *** -n = "-,n (50

n.i=.' . + O(At3 ) (5d)

If spatial derivatives appearing in L are replaced by three-point difference formulas,

then each step in Eqs. (5a-c) can be solved by a block-tridaigonal "inversion".
Eliminating the intermediate steps in Eqs. (5a-d) results in

3
which approximates Eq. (4) to order Lt3 . Complete derivations are given by the
authors in [7, 8]. It is noted that Beam & Warming [101 have reformulated this al-
gorithm as a widely-used "delta form" approximate factorization scheme whose two-
level form is identical to Eq. (5).

MESH REFINEMENT IN TWO AND THREE DIMENSIONS

Solutions were computed for three-dimensional horseshoe vortex flow past an el-
liptical leading edge for free stream angle of incidence a of zero and five degrees.
These solutions have the following flow parameters: 5:1 ellipse, chordal Reynolds
number of 400, Mach number P.2, and flat plate leading edge located 1.25 chords up-
stream of the leading edge of the ellipse. For reasons of economy, these solutions
were computed using a coarse computational grid, the finest being 14x28x14 ( ,n,z)
for i=5 ° . However, the geometry, flow conditions, and grid distributions were care-
fully adjusted to provide the best resolution possible within this constraint. Most
length scales expected to be present in this type of flow receive at least modest
resolution. Specifically, care was taken to provide resolution of boundary layers on
the endwall and ellipse, of the Heimenz layer at the leading edge stagnation point,
and of the flow region within one leading edge radius of both the leading edge and
the endwall. The only potentially-relevant unresolved length scale is an 0(Re- 3/8 )

streamwise distance predicted by two-dimensional "triple deck" theory near a separa-
tion point.

The truncation error associated with the present flow and computational grid
was examined by mesh refinement and by comparison with an incompressible solution of
Lugt and Ohring [11] for two-dimensional flow past a 10:1 ellipse at zero incidence
and Re=200. The latter comparison for streamwise velocity at the present outflow
boundary (n=-/2) is shown in Fig. 2. The agreement is quite reassuring in light of
the respective differencing procedures and meshes. Good agreement was also obtained
for surface pressure distributions. Additional two-dimensional solutions for the
forward half of a 5:1 ellipse (a-00 ,Re'200,q=0.2) were computed assuming symmetry
about the chord line n1? and using both 14x14 and 28x28 grids. The streamwise
velocity U along the stagnation streamline is a sensitive indicator of mesh depend-

ence and is shown on a logarithmic scale in Fig. 3. The 14x14 mesh is identical to
the 14x28 mesh used for ,n in the three-dimensional solutions without svmmetrv about
n-i, and the small amount of mesh dependence in Fig. 3 indicates that this mesh
should be adequate, at least away from the endwall. Finally, resolution normal to
the endwall (z direction) was examined for three-dimensional flow at 50 incidence
using both 14x28x10 and 14x28x14 grids. The velocity profile at x--l.06,V-0 near
separation is the most sensitive indicator and is shown in Fig. 4. The finer mesh
improves resolution considerably very near the endwall flow reversal, but makes
little difference elsewhere.
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Boundary (n=ir/2) for 10:1 (f= ) for 5:1 Ellipse, -t=0° ,  le4O
Ellipse, a=00 , Re=200.

The foregoing results provide a
limited but informative assessment of N 1.0 '
truncation error associated with the --j- 14x28x14 GRID
present calculations. The solutions may 0 14x28x10 GRID
be characterized as having both qualita- a
tiv4 significance and reasonable quanti- Z
tative accuracy. Any potential concern O
that failure to provide high resolution I
near separation would cause serious er- < 0.5ror (beyond a local smoothing of the 1
flow) may be unwarranted in light of c -

0)these resolution tests. Z -

HORSESHOE VORTEX FLOW 0Z

Representative results from solu-

tions for three-dimensional horseshoe 0 -

vortex flow at zero and five degree in- -0.1 0 0.1 0.2 0.3

cidence are shown in Figs. 5a-f. These STREAMWISE VELOCITY, u
solutions converged in about 80 time step
iterations and with a 14x28x14 grid Fig. 4 - Streamwise Velocity Profiles
(a-5°) required about 20 minutes of CDC Near Separation for 5:1 Ellipse,
7600 run time. A 14x28xlO grid was used a=5 0 , Re=400.
for cL&0° . In Figs. 5a-b, vector plots of
velocity in a plane one grid point away
from the no-slip endwall surface are shown. Here, a saddle-point type of flow separa-
tion is evident upstream of the leading edge and, in the case of tL50, toward the
(upper) high pressure surface of the ellipse. The remaining plots in Fig. 5 show flow
velocities in the plane z-O.15, located approximately in the center of both the horse-
shoe vortex flow region and the approaching boundary layer. Here, the velocity vector
plots are not much different from the two-dimensional flow region near z-l (not shown),
and the most significant feature of the flow is seen in the contours of velocity nor-
mal to the endwall (and to the page) in Figs. 5e-f. A strong downward flow toward
the endwall is present near the leading edge (behind the saddle-point separation), I
with maximum downward velocity of 28 percent of the freestream reference velocity
for a-O0 and 32 percent for a-5. Further results for a'5° are shown in Figs. 6a-f.

Contours of total pressure loss coefficient Apo/(Z U /2) for z-O.15 are shown in
0 r r



Fig. 6a. In Fig. 6b, the velocity in the stagnation plane normal to and containing
the ellipse leading edge again shows the strong downward flow toward the endwall near
the leading edge. The cross-flow velocity in outflow planes is shown in Figs. 6c-d.
A moderately strong secondary flow pattern (peak velocity 20% of u ) indicative of a
streamwise corner vortex is clearly in evidence near the suction surface in Fig. 6d.
Finally, a "limiting" surface velocity vector plot and contours of pressure coeffi-
cient are shwon in Figs. 6e-f for the surface one grid point away from the surface of
the ellipse ("unwrapped" to lie in a plane). Here there is evidence of the distorted
stagnation line near the endwall, flow toward the endwall near the stagnation line,
and finally the formation of a streamwise vortex visible mainly on the low pressure
or suction surface near the endwall.

CONCLUDING REMARKS

Although no other analytical results or experimental measurements of the three-
dimensional horseshoe vortex flow are available for comparison, the present computed
results are consistent with flow visualization studies of related leading edge vortex
flows. Computed results in three dimensions have illuminated several aspects of the
flow structure. For flows having nontrivial endwall boundary layer development up-
stream of the leading edge, the horseshoe vortex structure consists of an inertially-
dominated rotational flow except very near the solid boundaries, where viscous effects
occur within thin layers generated locally by the leading edge interaction. The ro-
tational inviscid portion of the vortex structure both upstream of the leading edge
and in the downstream corner flow region scales with the approaching endwall boundary
layer thickness. Viscous effects are confined to thin regions near the surfaces,
having a thickness which is apparently not strongly dependent on the approaching
boundary layer. The overall flow consists of a saddle-type flow separation on the
endwall upstream of the leading edge, a strong spanwise flow toward the endwall near
the leading edge, and streamwise vortices in the corner region downstream of the
leading edge. The strength of the streamwise corner vortex is significantly increased
on the suction surface corner for flow at nonzero incidence. Regarding the present
use of "zone embedding" and interactive boundary conditions to minimize the computed
flow region, the general conclusion is that while boundary ccnditions cannot be
treated with complete rigor when located within an elliptic region of nonuniform
flow, careful treatment can lead to quite reasonable results which appear completely
adequate for the present goal of horseshoe vortex analysis.
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Fig. 5 -Detail of Computed Velocity for 5:1 Ellipse with i-0and 5 0, Rem400, M-0.2.
(a,b): the plane of grid points adjacent to endwall surface; (c,d): the
plane z-0O.15 (near center of approaching boundary layer); (e,f): contours
of velocity w normal to endvall in the plane z-0O.15.
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Fig. 6 -Detail of Horseshoe Vortex Flow for 5:1 Ellipse with 1- 0 ReiniaO, M1-0.2.
(a)-Total pressure loss coefficient in z=0.15 plane; (b)-Velocity in plane
containing leading edge; (c,d)-Secondar; velocitv in outflow surfaces;
(e~f)-Velocity and contours of pressure coefficient in "unwrapped" surface
of points adjacent to ellipse.


