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SECTION I

INFLUENCE OF DIFFUSION ON FLUORESCENCE

QUENCHING.

This section deals with our attempts over the past several
years to devise a more spphisticated theory of diffis ion controlled
reactions than that presented by Collins and Kimball. In particular,
we were interested in a more realistic formulation of the problem
of high concentration quenching where quenches in the vicinity of
the molecule to be quenche'd must be considered. It was desired
however, to obtain a formalism which was tractable mathematically
and which contained parameters which would be related to experiment.

1. SOW. HISTORY

Early interest in diffusion controlled processes centred around
the coagulation of colloidal particles. These particles were large
enough that the solvent provided an almost perfect continuum for
diffusion. Pick's laws were invoked and concentration independent
diffusion coefficients employed. It was assumed that one could use
a mutual diffusion coefficient (DA + [ ) to describe diffusion in a
system where only D or Q was allowed to move.

Smoluchowski 1in 1917 published a paper describing the solution
to Pick's second law for reactions occurring with 100% efficiency upon
each encounter. Collins and Kimball2 modified this approach to take
into account the possibility of non-productive encounters. Their work
was in part stimulated by a paper by Sveshnikoff3 which improperly
treated this problem of inefficiency.

Noyes 4in a series of papers in the 60's examined the problem from
the point of view of pair diffusion with essentially the same results.
Noyes' analysis provides valuable insight into the origin of the phen-
omenon.
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Others active in this fieldwere Waite, 5 Weller, 6 La Mer and
tUberger, 7 and Yguerabidi, Dillon and Burton.8

9
In 1973, Fixuan and Wilemski described a more general approach

to the problem. Recently, Andre, Niclause and Warelu starting with
Fixman-Wilemski equation have attempted to develop more realistic
models for diffusion controlled and partially diffusion controlled
reactions.

In spite of all this theoretical work, very little experimental
work has been published which provides laboratory verification to the
equations which are in common use for correcting for transient effects
in diffusion controlled processes. Ware and Novros 1 1 and Ware and
Nemzek 12 studied systems where the non-exponential decay could be
subjected to quantitative analysis and a comparison made between
transient and steady-state quenching. Work in the author's laboratory
in collaboration with J.C. Andre, M. Bouchy and M. Niclause1 3 has
recently resulted in additional experimental work and the re-analysis
of some of the data from earlier work. However, the integrated
theoretical output still exceeds experimental work in this field
by a wide margin.

2. SIMPLE THEORY

Smoluchowski Isolved Fick's second law

ac 2= D Vc(1)

for the case where one particle is fixed at the origin and the other
particle moves with diffusion coefficient DAB. c is the concentra-
tion of the diffusing species, in molecules per cm3 , and for radial
diffusion

2 (a 2  231
8r2 ¥ (2)

Smoluchowski considered every encounter between particles to result

in reaction and therefore used the boundary conditions

c(r,O) - c 0 , c(-,t) - co , c(G,t) = 0 (3)

where c o is the initial concentration of the diffusing species, r is
the distance from the origin, and a is the sum of the radii of the
two particles.

The solution to Eq. (2) with these boundary conditions is
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c(rt) = 1O~-2 erfc (~~ 8 ~)(4)

where

2
erfc(x) 2 f e-Z dz

x

The flux at time t, through the sphere of radius a around the origin,
is

4) = 47ra 2 D (Dc(r~t) ) ~(5)t

Taking the derivative of Eq. (4), one obtains

4) = 4'7D Bc 0 + a (6)

The observed rate constant is thus

k(t) - o 4-cDAN'( + (7)

where Co is now expressed in moles per liter, and N' is Avogadro's
number divided by 1000.

Collins and Kimble2 pointed out that the equations derived by
Smoluchowski contained certain disturbing features. Firstly, at
t = 0, the flux as given by Eq. (6) was infinite. Secondly, the
theory made no provision for cases wherein the probability of reaction
on encounter was less than unity. Sveshnikoff3 had attempted to
correct for this second point by multiplying the flux by a factor, a,
less than unity. Collins and Kimble showed that this procedure was
incorrect since it implied that the flux differed from the decrease
in the total amount of the diffusing species.

Collins and Kimble eliminated these difficulties by allowing for
the possibility that not every particle reacted on reaching distance
o from the origin. This was done by assuming that the rate of reac-
tion was proportional to the probability that the diffusing particle
was between a and (a + do). That is,

4) K < 4w a2 c(a,t) (8)

!-
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where K is some rate constant. Since the flux is also given by Eq.
(5), one obtains the condition

DAB ( cr'tl 9
c(G,t) = K r r=a (9)

This is known as the "radiation boundary condition", due to its use
in heat conduction problems. Eq. (1) is now solved with the boundary
conditions

c(r,O) = 0

c(ao,t) = c (10)

DAB rt
c(Oct) = -i- tr .r=a

The solution with these boundary conditions is well known,

c(rt) = co 1 - b erfc rf 

-~erf\ .. ~+ A ) ( 11
ABA

where

AB (12)='DA + KC

Using Eq. (8) and setting r equal to a in Eq. (II), one obtains for
the flux

41TDABCo + KO X (3
SDA e erfc(x (13)

1.-
Ka

where

x A--- (14)

Bt



For x > 1, one may use the asymptotic expression for erfc(x)

2x  1 1 3 15

xrff 2x 4x 8x

The error involved in truncating this expansion is less than the
value of the first neglected term. For ordinary values of K, DAB,
and a, as will be shown later, the term (1/2x 2) is equal to 0.01 in
approximately 10-10 sec. Thus, all but the first term in the expan-
sion can be neglected, and

0x  erfc(x) 1 (16)

The flux then becomes

= 4 7rDABa c, 1l + - (17)

where

(D (18)

1.-

The time dependent rate constant, k(t), is then given by

k(t) - = 4rDoN' 1 + (19)c A

This equation is of the same form as Smoluchowski's equation, Eq.
(7), except that o has been replaced by a.

It is of interest to examine the flux as the time approaches
zero. For small values of t, one cannot use the asymptotic expansion
of erfc(x), but instead must integrate the Taylor's series expansion
of e-X2 to obtain

2 FT x2 2x 1  x2  x

erfc(x) 2 e-x  dx = 1 - 2 (I 4 .) (20)r 3 ~ ()1 -I (S)21

x
2
x

On multiplying this expression by the Taylor's series expansion of e
one finds that the flux at small t is given by

K) ~ 4
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Iia~ + MY (1 2 Dt .B ) (21)
KU

+A,

The flux as given by this equation is finite as t approaches 0. At
t = 0, the flux is equal to 4c 2KC

0
Eq. (19) is the basic equation which is used in the analysis of

the fluorescence quenching data. The derivation of this equation 2
depends crtically on the validity of truncating the asymptotic expan-
sion of ex erfc(x). This truncation neglects the term (2x 2) - 1 where

(DAB + KC)
x=D.t (22)

OAB A

2 1
In order to truncate the expansion in this fashion, (2x2)_ must be
much less than unity. It is desirable to determine the range of a,
DAB, and t over which Eq. (19) can be used. To do this, one must
estimate the value of K, and then calculate values of (2x2)-l for
given a, DAB, and t.

As can be seen from Eq. (8), K has the units of cm sec -1
Noyes 4 assumed that one can relate K to the rate constant, kg, cal-
culated from the kinetic theory of gases, using the relation

2
K = 41To2K (23)

where Kg is on the order of 1 - 0 cm molecule sec . Let us take
S x 10-8 cm as a reasonable estimate of a. Then in non-viscous
media, with DAB = 5 x 10-5 cm2 sec- 1 , x is equal to 5.9 x 105 t.
When t is 10 psec, (2x2)- I is found to be 0.14, which is not neglig-
ible compared to unity. When t is 100 psec, (2x2)-l is equal to
0.014, which is small compared to unity.

In more viscous media, with D = 5 x 0 - 6 cm2 sec - I x is equal
to 1.47 x 106 /F. When t is 10 psec, (2x )-l is 0.023. When t is
100 psec, (2x2)-1 is 0.0023.

It is thus apparent, that even if the estimate of K is only
approximately correct, the truncation of the expansion is valid for
nsec time scales in viscous media.

3. APPLICATION TO FLUORESCENCE QUENCHING

Consider the following fluorescence reaction mechanism:
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A-A*

k

A* - A

k2
A* - A + hy

A* + B k(t) ) Products

The rate constant k(t) is given by Eq. (19), and (kl + k2 )-1 is equal
to To, the unquenched lifetime of the system. For 6-pulse excitation

d[A*] [A* k(t)[B) (24)dt T

When the concentration of B is much larger than [A*lo, then B can be
considered to be time independent, and

= exp (-at - 2bert ) (25)

where [Ao*) is the concentration of A* at time 0, and
0

a =-+ 4ra D N' [B] (26)
T 0 AQ

b = 4A 5A 2 N' [B] (27)

The decay law, G(t), is predicted to be

G(t) = exp (-at - 2b-) (28)

The response of the system under steady state illumination is
obtained by considering excitation by a step function Fo . If the
number of excited molecules of A is given by nA(t), we have that

t t

rdrr
n A(t) fJ F(t - t') G(t') dt' F F0 Jf G(t') dt'

0 0

when F(t) is a step function. On obtaining an expression for nA(t),
one then lets t - o in order to arrive at the number of molecules,
nA() , in the steady state.



8

12
The result is

1°  nA(-)B=O (1 + 4Tr&DAQN'EB) (

a ~aa

This expression may be used for analysis of steady state data obtained
under conditions where the time dependence of the rate constant is
expected to be important.

Eqs. (28) and (29) are frequently used for the analysis of dif-
fusion controlled reactions.

Experimental studies of the validity of Eqs. (28) and (29) indi-

cate the following:ll,12,14,15

(a) a is always greater than the collisional distance a.

(b) Calculated values of & from steady state measurements are
greater than values of a from decay law analysis; with dramatic depart-
ures in some cases, of the Stern-Volmer plot from that predicted from
the decay law parameters.

4. AN IMPROVED MODEL

A more realistic, but still simle model, has recently been
proposed by Andre, Niclaus and Ware.70

Theoretically, it is possible to determine variations of
apparent rate constant of reaction ka(t) versus time by resolution of
the classical equation of Wilemski and Fixman:

9

p(r,t)/at + (r,t) =-k(r)p(r,t), (30)

where 0(r,t) is the ratio of the configuration distribution function

of the molecules B to the mean concentration of B, . is a time evolu-
tion operator relating to the diffusion processl6

2 2
x -DV x + KV • Vx + KV Tx, (31)

with: Y the electrical potential around the molecule A*, K a mobility
coefficient.

k(r) is a rate constant (expressed in s - ) of reaction of an A*
molecule with a B molecule at the distance r.

The analytical or numerical variations of k(r) versus r have not
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been reported in the literature (except for F*rster energy trans-
fer).l Except in the case of chemical reaction between ions, the
value of T is not known. However, one can assume that, in the case
of unmcharged molecules, T takes a significant value only for values
of r near of a. 1 8

The model of Andre, Niclause and Ware is a diffusion model con-
sisting of two distinct volumes in the reacting system centered on a
molecule A* towards which molecules B diffuse:

(i) a reaction range between a and c' wherein the chemical
reaction occurs with a chemical rate constant practically infinite;
we assume that no diffusion occurs in this range, i.e., O(r,t) = 0
for rE'

(ii) an external volume (r > c') in which no chemical reaction

but only diffusion occurs.

Then, we have to solve the following system:

for r E [a,o'] and t > 0

q(r,t) = 0;

for r > a'

90(r,t)/t c(r,t) =0,

with

O(r,t)H -DV 2(r,t). (32)

Under these conditions, the value of the apparent rate constant
is given: 1 ,19

k a(t) = 4rNa'D[3a(r,t)/3r] ,,

which becomes

ka(t) = ko[ + a'(Dt)- ], (33)

where k = 4nNa'D.o

If A* is a singlet excited state, one can measure the intensity
of fluorescence of A* in the presence (I) or in the absence

(1o) of B, all other experimental conditions being constant.

Theoretically, one determines the variations of I with concentra-
tion [B] taking into account that for t =0, there is a probability P



of finding a molecule B inside the chemical reaction volume V1 [V1 =

4/3 ir(o' 3 0 c 3)]. Then one can postulate

(i) practically instantaneous deactivation of A* having at
least one B molecule in V1 ,

(ii) deactivation from B molecules reaching a' after diffusion
(Smoluchowski).

All other conditions being constant, for the steady-state
experiment, the ratio of Io over I can be expressed by:

= [B]-O (A*) rB]#odt. (34)

0 0

On the contrary, by flash excitation where one measures the
relative variations of A* versus time, only dynamic quenehing will be
observed.

20
The generalized distribution of Smoluchowski gives the proba-

bility of having a given distribution of B molecules between a and a'
around A*.

If [B] is the average concentration of B, N the Avogadro's
number, the probability P(n) to have n molecules B in V1 is:

-NV [B]
P(n) = e (NV1[B)n/n!, (35)

or

P(n) = e-Wwn/n!

with

w = NV [B].

The probability P to have at least one B in V1 is expressed by:

P = ew n/n! = 1 - e
i=l

Then f (A)o molecules are excited at t = 0, we obtain
(A)oe-NVlBi excited molecules after this very fast deactivation
process.
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The following scheme for the disappearance of A* can be used

-1
k=

A* 0 ... unimolecular relaxation to ground state

ka(t)

A* + B . bimolecular quenching

then

d(A*)/dt = - [k + ka(t)[B]](A*)

leading to

(A*)(t) = (A*) 0 exp[-NV1 [B]] x exp{- [k + ko[B]

+ 2a' (TrDt) -ko[B]]t}, (36)

and

O

exp[NV1 [B]] f exp(-kt)dt
f

0 0 (37)

7 exp{- [k + ko[B] + 2o' (7rDt)-XIko[B]]t}dt
0

then

NV [B)

[1 + k T[B]], (38)

where

2 ko0 [B] ____

STr [1 + k0T0 [B]]
1 (DT0)

and

00

(A) -- J exp(-u - u1 )du

0

ii
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2 1.1- M ~ A 2)Erfc(1 A

Then, by flash excitation, one measures the relative variations
of (A*)(t) (Eq. (36)) due to unimolecular relaxation and to the reac-
tion of A* and B molecules reaching a' (the true transient effect
occurs in a' (7Dt) - ). On the contrary, by steady-state measurement,
one other effect, due to the reaction of A* with B presents in VI is
sopefi posed on the other (apparent transient effect due toeNVlLBI)

For small quencher concentrations, the first and the second
terms of the Taylor series of Io/I versus [B] are:

I I!

2= 1 + {NV 1 + koTo[l + a'(DT ) 1 ')[B] + ... (39)

!i
All other terms in this expansion can be neglected. Then, the

apparent constant of quenching KSV is equal to:

KSV = NV1 + koTo[(l + a'(DTo)]. (40)

0 For most of the studies which are reported, values of a' around
10 A (+ 1) were obtained (for example, refs. 11,12,14,15). But, the
calculated collision value is always around 6 X. Then, under these
conditions, the importance of NV 1 is about NV1 O1 mole-

1 X.

For low viscosity solutions and for excited molecules with life-
times greater than 10 ns, one can neglect this static effect. On the
contrary in order to observe transient effects, one needs a value of
0 (DTo)- as great as possible which can be obtained by lowering D
(or increasing viscosity n) and by decreasing ko, i.e., by increasing
relative importance of static quenching term (see Eqs. (38) and (39)).

5. A HIGHER LEVEL OF SOPHISTICATION

A more rigorous theory, but one that still yields relatively
simple equations, has been developed by Andre, Bouchy, Niclause and
Ware. 13

One again starts with

30(r,t) + 0(r,t) = -k(r) • *(r,t) (30)
at

Knowing band k(r), it is possible to determine the variation of
*(r,t) with t, by using the Laplace transform or numerical tech-
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niques. 13 The apparent rate constant is given in M-l sec " I by the
expression

a,

2
ka(t) 47rr Nk(r)(r, t)dr

In the case where a chemical reaction occurs, the variation of
k(r) is not well known and a simplified model must still be employed.
Reaction or interaction between molecules requires the overlap of the
external molecular orbitals of the two molecules. The value of the
overlap of molecular orbitals is known' it is a decreasing function
of r and, beyond a value of r of some A, there is practically no
overlap.

In our model, we take k(r) to be practically constant and equal
to some value K for distances smaller than a', i.e., for a < r < a'.
At distances greater than a', k(r) is set equal to zero. Thus, the
equation for K (t) becomes

a

of

Ka(t) = 47Nk 0(r,t)r 2dr (41)a fr

We have proposed a diffusion model considering of two distinct
volumes in the reacting system centered on a molecule A toward which
molecules B diffuse:

- a reaction zone consisting of the volume between a sphere of
radius a' and a sphere of radius c wherein the chemical reaction
occurs with a rate constant k; we assume that no diffusion occurs in
this range, i.e., O(r,t) is independent of r.

- an external volume (r > a') in which no chemical reaction but
only diffusion occurs.

The value of J' and the rate constant k are determined by the
variation of $ and by the particular value k(r) in the vicinity to
the molecule A. The model is illustrated in Fig. 1.

For r > a', taking p = 0 for uncharged particles,

-~=DV
2 0 = Dra 2 1 (42)at L ar 2 r r

For a < r < a', the flow of molecules B at the distance a' of A
has to be equal to both the accumulation of B inside the reaction
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volume and the disappearance of B in the chemical reaction A + B . C.

Thus, we must have

47rNa 2D (,<[BJ> (a' 3 - 0,<[B]>

+.i 4rNCa, - 3) k( ),<[B]> (43)

The macroscopic bimolecular rate constant kc (in mole - 1 s - 1 ) is
related to the rate constant k by the equation

BC) = kc [A]JB a, = [AJBJIN a47rrkdr

then

c* T± N(o' 3 - o3 )k NV k (44)
3

By including this macroscopic term in Eq. (43), one obtains the
following relation:

koO ;'( = + k Ck ) (4S)

where ko = 4fNo'D.

Eqs. 42 and 45 together define the systems.

It is convenient to use the dimensionless terms p r/a' and
T= t/a'2; eqs. 42 and 45 become

2 +  2" 3pC4 )

This system lends itselff to resolution by Laplace transform !
techniques.

The transform y~p) of (t), is defined as

(46)

k~
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y (p) uf e Pt$(t) dt

0

Then, we have (cf. Ref. 13)

- p + + +1

with

/L
y8p= e-t()kt"

The value Ol(T) of the distribution function at the distance
o'I(p =1) gives several analytical solutions which depend on the
value of the quantity ct(B + 1) .

(i) Case Where a(+) = 0

*(T) + e- exp + +1) T)] E rfc [( 1) r) (48)

This relation is similar to that proposed by Ware et al. *,lby1

Owen21 and Collins and IKimball. 2 However, this equation corresponds
to the case where al a, whereas these authors assume 0T' > CT, but do
not take into account the accumulation of B corresponding to the term

NvJ(alu ftheqatiy.B

(ii) Case Where a(8 + i)E]O, 1/4[

1 + B exp[( + 1) T
. Erfc [1 )''] (8

yO1 + y) ~ a 2ai+ L

€ ---=B+1 2ct __1

\2 f
YO -Y) exp[I T]~rErfc[ r (49)

wi t • 40 + j
with y = /1 - 4(8 + 1)c .

*.

. .. . ........ + .: . .. , ,t.I,, < , ,,, ' ,, .. + ,
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(iii) Case Where a(JB + 1) = 1/4

2 4a2F(T (50),()= (1 - 4a 4 ~ a 2  e xp ErfcK 2a ra I](0

(iv) Case Where a($ + 1) > 1/4

8+1 2' y 2aEj(T) -- 17" +  + 7

1 - 2y' T] 
2 aI "] (511

2with i = -1, and y' = V'4a(O + 1) 1.

From above, one obtains

k a(T) - NV1k4 1 (T) = kC(T) (52)

The variations of ka (T) are therefore given by the expression of
y1T). 

a

At large values of time, the above relations can be simplified
by using the Taylor series expansion of the transform yl(p). One
obtains

1(T) 8 1 + (53)

and

k kM 0 k + kC a~wtJ (54)ka~t ko + kc k kc(4

This simplified relation is identical to that proposed by Nemzek
and Ware.12

The limit of ka (t) as t approaches infinity is

k
Lim k C

t., o a I + kc/k o

or

z4
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and when k /k approaches infinity, k (t) becomes

a o
ka~t) = k °  1 +S- j.

which is identical to Eq. (19), except for the value of a which has V
been replaced by a'.

In the analysis of experiments on fluorescence quenching using
conventional flash excitation, Eq. (54) can be used .I 3 If the pheno-
menon is recorded during a very short interval (several picoseconds),
the former expression of ka(t) is no longer valid. A Taylor series
of yI(p) in the term l/1r leads to the following expression of k a(t)
valid for short times

ka(t) _ + 4 t3/2 + (+a 2

aR aR 2ax

8B(2aO + 2a - 1) 5/2+1 (56)
4v t15a4/' "  J

Time evolution of the apparent rate constant ka is given in Fig.
2 by using the three equations 51, 54 (for long times) and 56 (for
short times). The range of validity for each equation is clear from
the diagram.

6. CONSEQUENCES

Consider the following scheme for the deactivation of A*:

hv
A ----- A*

A*A + hV F
A*F

A or T

kc l(t)
A* +B

After 6-pulse excitation,

= - [(k + k [B]¢1 (t)][A*]  (57)
dt
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Transforming to non-dimensional variables as before,

d D + D [B]oa1 CT) (58)

Then, if we define

Z(T) log

and

A1  D --'-

k a1
2

A [B] ,
A2  D

we obtain

S= -A1 - () (59)

It is possible to resolve this system using Laplace transforms. One
obtains

AI
pZ(p) - (O=--A2Ylp

with

yl(p) f ePt 1 (t)dt

0

leading in Laplace transform space to

Z(p) A1  A2  A2  1 (60)
P p + 2 ap + p + + I

It is also possible to obtain the value Z(T), of the decay func-
tion of A*. Several analytical solutions are obtained which depend
on the value of the product a(0 + 1) (cf. Ref. 13):

k 
"-
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(i) Case Where aCO(81) -0
S AB-TT 2A21 "

Z(T) A- A1 + T 2
1 + 1) 2

A28 + 1)

+ + 1 - exp((g + 1)2j)Erfc((O + 1)r")] (61)

(ii) Case Where t(8 + 1)E]O, 1/4(

A 2A 2 8 A2 8( -ca(8 + 1))
ZT)= A 1 + T t + Ef

S L 3  +exp 2 f

273 2 0t21+)(1 -1 )

- y) 3 exp (1+ 242

( (1 - y) Erf -Y (62)

with y = /i - 4a(8 + 1)

(iii) Case Where C(8 + 1)_ = 1/4

A 2A8 3A28zCT) A A +T 22T +
(a + 1)2 4( + 1)

4(8 A 1) (2(0 + 1) - Erfc( ) exp T,) (63)

(iv) Case Where c*(B + 1) > 1/4

A_ 2A28 A,8O( - oz(8 + 1))zCT) , - I  - 2a 2 /  8+

Z(,) A ex1 + T

(1 - iy') 3  (1 -iy') 2  (1 -c "
-0 -, 1 1 W II y /)

.4 !
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22

ep 1 4a2 f 2a ( i (64)
(1 + iy')3  j ir,) G + iY')

with i2 = -1 and y' = '4a( + 1) - 1

These different expressions lead to variations of the value

A2 2 2 0

as it is shown in Fig. 3.

As can be seen from Fig. 3, for values of T of the order of mag-
nitude of unity, or greater than unity, the difference between Z(T)
and the decay function Z'(T), which contains only terms proportional
to T and 77, i.e.,

(T)= - A1 + _ +2r___

is practically constant.

The expression of Z'(T) can be obtained (Eq. (54)) from the simp-
lified expression of 01(T), then *I'(T). The curves presented in
Fig. 3 show only the difference between Z and Z' divided by A2.

(i) Z(T) < Z'(T) for a($ + 1) > 1 when 01'(T) is always greater
than 0l(T). This occurs particularly in the case presented in paper
I;1 the expression for ZCT) in this important case, when the reaction
is practically limited by diffusion, is given by

Z(t) = -NV [B] - [(k + ko[B])t + 2koBe' '7(tTD_) ]

(ii) Z(T) > Z'(T) for a(8 + 1) < 1. This result is obtained
for the conditions where *l'(T) can be less than 1 (T). The results
can be understood with the aid of the qualitative curves in Fig. 4
and from the Taylor series of Z(T) obtained for large values of T.

A 2 2A 2  A_28

Z(T) - A1 + + T 3 2a( + 1) - 1](8 +1) 2  ( + 1)

A2c12(+ 1 ) - 1) 1
+ ... (65)

+8 1)4 V
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As can be seen in Fig. 3, for small values of T (> 0.2), termin-
ation of the expression (65) after the constant term yields a good
approximtion of the time evolution of ZCr). By replacing A1 and A2,
we obtain

2

Z(t) - + k [ B t - [B NV, [B (66)k c 0(k c  + ko )  D
c oi.e.,

Z(t) -at- brt - c

with

k k k!
I  47rNa' 3  C 0 a - 1]

(k ko) "

Using the approximate form of the above equations, it is then

possible to analyze data from the following experiments:

(i) Single Photon Counting. One can obtain the values

kk kand c
k +k k +kc o c rD

Also, the variation of kc/ko can be studied by measuring the effect of
viscosity to the reaction between A* and B. Then, knowing ko , kc can
be calculated. It is thus possible to calculate all the essential
kinetic parameters of the reaction.

(ii) Steady-State Fluorescence Measurements. When the lifetime
of A*, in the absence of B, is short (less than 10 ns) it is not pos-
sible to find a good decay function of the form exp(-at - b/- - c) in
which a, b and c are constants. For these conditions, only steady-
state fluorescence measurements lead to the determination of the kin-
etics parameters for the reactions between A* and B.

When A* is a singlet excited state, we can measure the quantum
yield of fluorescence of A* in the presence (I) or in the absence
(10) of B, all other experimental conditions being constant.

Then, all other conditions being constant, for the steady-state
experiment, the ratio of I over I can be expressed as done above by

o~
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oD I ; (A*) [B] =odt

0 0

0

I 1
NV ' [B k k k

e- N 1 'B ex 4 .. B] 1 + c~k 2,,lltdtf 0 .B 0 c t
0 L

leading to

NV 1[B] k k
o e Li 0C T [B]j (67)k0+ k C 0

with ro = l/k; with I(X') =f exp (-a - X'Vu )du (1) and

0

2 k r [B]
R (k +ko) 2 kk

(k + 0) kc o+ kc C O [B]

For small quencher concentrations, the first and the second
terms of the Taylor series of @o/@ versus B are:

I°~ ~ kkc o + k a '

I + NVI + k R (I + o c )[B] +

All other terms in this expression can be neglected. Then, the
apparent constant of quenching KSV is equal to:

K c C Oa (6'8
KSV 1 k I '  c TO 1 + ko 4kk (68)

For short times (smaller than about 1 ns), a Taylor series of

' .. . ....... ......................... ... : '.. . '...-.".JI
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Z(p) lead to the following expression of Z(T):

A 2a 2 A 2  8 5/2

Z(t) - (A1 + A2)T + - 2 2
a i51W

A 2 3
+ 2 (1 - a(a + 1)) !- + ... (69)

a 3 6

7. EXPERIMENTAL RESULTS

In their study of the quenching of 1,2-benzanthracene by CBr 4 ,
Ware and Nemzek1 2 verified that the decay law for this system when
propane diol was used as solvent was not a single exponential, but
could be adequately fit by exp{-at - bt }. This is illustrated in
Fig. 4. From Eqs. (26) and (27), the a values were obtained along
with the values of D. These are listed in Table 1. If these values
are used in Eq. (29), they fail to reproduce the steady state beha-
viour by a wide margin (see dashed line, Fig. 5). On the other hand,
the diffusion coefficients are reasonable.

This discrepancy is resolved by using Eq. (38) and seeking the
best values of a' and D consistent with the set of data represented
by the points in Fig. 5. a was determined by Lebas' theory. 22 The
values of a' and D are in excellent agreement with those obtained from
exp{-at - bt }. This is illustratedoby the solid lines in Fig. 5
which were calculated from a' = 8.8 A and the values of D.

The decay law exp{-at - bt has also been verified for the

quenching of pyrene by biacetyl. 5 From Eq. (66), the values of a
and b yield [kc/(ko + kc)]a' and D. This approach, when used on
decay data analyzed either by iterative reconvolution or deconvolution
via the fast Fourier transform technique,2 4 yielded values of0

[kc/(kc + ko)]a' of 9.1 A and D = 1.53 x 10-6 cm2/sec for the quench-
ing of pyrene by biacetyl in 75% cyclohexane - 25% cyclohexane sol-
vent at 220 C (viscosity = 42 cp). The fit is illustrated in Figs.
6 and 7. Eq. (66) requires the terms a and b to depend on concentra-
tion. This is illustrated in Fig. 8. From the variation of the
quenching with viscosity, kc is estimated to be about 1010 M-1 sec -1 .
At high vi§cosity where the value of [kc4(kc + ko)]a' was determined
to be 9.1 A, kc >> ko and thus a' = 9.1 A. From the molecular dimen-
sions, 22 one calculates a = 6.5 A in keeping with the general pattern
observed in diffusion controlled processes.

A further example, where the formalism presented above has been
employed, is the system of POPOP quenched by CBr 4 in mixed cyclohex-
anol-cyclohexane solvents. 2 3 As can be seen from Fig. 9, strongly

non-linear Stern-Volmer plots are obtained. Analysis using Eq. (68)
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yielded the [kc/(k c + ko)]a' 9 A over a range of viscosity of 1.3
to 24 cp. From the analysis of the variation of [(ko + kc)/kc]O' as
a function of diffusion coefficient, k is estimated to be 3 x 1010
M-1 sec-1. For the viscosity range of the experiment of Ware and
Nemzek

12

0.98 < k /(k + ko ) < 0.998

Thus, POPOP quenched by CBr 4 in propane diol should be essentially
diffusion controlled.

12
This lends support to the assumption of Ware and Nemzek that

the quenching of 1,2-benzanthrancene by CBr 4 is
controlled in propane diol.

Application of the above formalism to fluorescence polarization
studies of quenching have also been made by Andre, Bouchy and Ware.

2 3
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TABLE 1. Values of a' and D which give the best fits to decay curves
(from Nemzek and Ware) 1 2 and to steady-state experiment of
1,2-benzanthracene quenched by CLr4 in propane-diol.

06

O',A ) D 106 cm2 sl

CBr Concentration (M) 15 C 25'C 35 C 15 C 25'C 35C
4

from decay curves

0.098 9.0 8.5 8.5 0.23 0.50 0.88
0.18 9.0 9.0 8.0 0.24 0.44 0.95
0.29 8.0 7.0 7.0 0.28 0.66 1.1

steady-state e..periments (classical model) (Ref. 12)

11.2 - - 0.287 - -

steady-state experiments (Ref. 23)

8.8 8.8 8.8 0.37 0.59 1.01
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Figure 1. Separation of space into two volumes where chemical reac-
tion Cr < ') and diffusion (r > ') occur. (A) Distribution at
t = 0. (B) Distribution at t > 0.

Figure 2. Substitution of the true value of 01(T) by Taylor series
(a = 0.3 and 0 = 0.5): (1) True analytical function of 0 1 (T);
(2) Taylor series for short values oft (Eq. 56); (3) Taylor series
for large values of T (Eq. 54).

Figure 3. Variation of Y = {Z(T) + [Al + A2/(0 + 1)]T + 2A 2 0/(0 +
l)2 (T7./) )/A 2 versus T (see text). B = 5. (1) a = 0; (2) a = 1/6;
(3) a = 2/3; (4) a = 1/3.

Figure 4. Open points: flashlamp. Solid points: observed fluores-
cence decay of 1,2-benzanthracene in 1,2-propanediol quenched by
0.29 M CBr 4 . At 300 C. Dashed line: attempt to fit with G(t) c
exp{t/T) to minimize the sum of the squares of the qeighted residuals.
Solid line: fit with G(t) exp(-at - 2b/) by iterative convolution.
Best a and b give R' = 7.5 and DAQ 0.79 x 10-6 cm2 sec- 1 .

Figure 5. Steady-state experiments of fluorescence quenching of 1,2-
benzanthracene by CBr 4 in 1,2-propanediol at different temperatures:
(A) 150 C; (B) 250 C; (C) 350 C. Solid lines: calculated from Eq.
(10) with parameters from Table 1 (our model). Dashed line: calcu-
lated from Eq. (20) for 150 C.

Figure 6. (1) Flash lamp, (2) observed fluorescence decay of pyrene
in mixing 75% cyclohexanol, 25% cyclohexane as solvent at 220 C,
quenched by biacetyl (0.0677 mole k-1). (a) Attempt to fit with
G(t)cexp-t/t) to minimize the sum of the squares of the weighted
residuals. (b) Fit with G(t) = exp(-at - jt ) by iterative convolu-
tion (a = 6.3 x 107 R-1, b = 7.1 x 105 ns- ). I channel = 0.44 ns.

Figure 7. (a) Deconvoluted curve of fluorescence decay of pyrene, in
mixing 75% cyclohexanol, 25% cyclohexane as solvent, at 220 C, quenched
by biacetyl (0.0677 mol k-1) by using Fast Fourier transform programme.
(b) (1) Flash lamp; (2) observed fluorescence decay of pyrene;
(3) flash lamp convoluted with the curve a. k channel = 0.285 ns.

Figure 8. Variations of (a) and (b) with (biacetyl).

Figure 9. Steady-state fluorescence experiments: variation of
versus (CBr 4 ). (1) r = 1.32 cp; (2) n = 2.04 cp; (3) n = 2.47 cp;
(4) n = 3.02 cp; (5) n = 6.72 cp; (6) n = 11.63 cp; (7) n = 24 cp,
0 = 220 C.

..- n
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SECTION II

EXCIPLEX PHOTOPHYSICS

While exciplexes have been known for several decades, there
has been remarkably little work reported in which the details of
the kinetics are examined with sufficient precision and over a
sufficient range of condition such that a critical test of proposed
kinetic models is possible. Even the simple "Excimer' model for
the kinetics involves a minimum of six rate constants. In what
follows the recent work along these lines done to elucidate the
details of exciplex photokinetics is reports.

The photophysics of systems exhibiting molecular association
both in the ground and excited states has been studied. The emphasis
has been on kinetic models, the measurement of rate constants
associated with these models, and the determination of activation
parameters and equilibrium thermodynamic parameters associated with
the exciplex formation and disappearance. Studies of solvent effects
and steric effects on the behaviour of exciplex systems have been
carried out. The case of rapid equilibrium where the mono'mer and
exciplex decay with the same rate constant has also been examined.

1. INTRODUCTION

The terms "excimer" and "exciplex" are used ' o describe molecu-

lar or atomic aggregates which are unstable in their ground states
but possess significant binding energy in their electronically exci-
ted states. The term excimer was first used by Stevens end Hutton1

to describe aggregates of like molecules. The term exciplex is due
to Walker, Bender and Lumry2 and pertains to the association of unlike
species. Mataga, Okada and Ochari3 introduced the de. criptive term
"heteroexcimer" for the exciplex and both are in comimon use today.
However, the phenomena described by these terms preclates the nomen-
clature. F6rster and Kasper 4 first observed the characteristic red-
shifted exciplex emission in concentrated pyrene solutions and Leon-
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hardt and eller 5 were the first to observe exciplex emission in the
system perylene quenched by NN-dimethylaniline.

Excited states of EDA (electron donor-acceptor) complexes formed
by direct excitation into the CT band have many properties in common
with exciplexes and in general differ only in the ground state sta-
bility.6,7

Excimers and exciplexes play an important role in photochemical
transformations. 8 In the exciplex, one has exchange and charge trans-
fer interactions which hold the pair in close proximity allowing for
the possibility of dimerization. In the exciplex, one has not only a
large charge separation in the bound excited complex, but radical
ions can be generated in the exciplex dissociation process in polar
media. In addition, triplet formation via the exciplex is well estab-
lished. Thus, in polar solvents, one frequently sees radical ion
chemistry from exciplex forming systems with the "photochemistry"
acting merely to generate radicals. Excited charge-transfer complexes
can also serve as intermediates in photochemical reactions.9

2. PRIMARY PROCESSES IN EXCIPLEX SYSTEMS

Two aspects related to the primary processes in exciplex systems
have generated considerable controversy over the past 15 years. One
concerns the question of radical ion generation directly from the
encounter complex prior to relaxation to form the bound exciplex.
The other question concerns the formation of triplet states through
the donor-acceptor interaction, but without the bound exciplex acting
as an intermediate (the so-called "fast" triplet production).

The first problem had its origin in the observation 10 11 that
the exciplex emission yield fell off much more rapidly than the exci-
plex lifetime as the solvent dielectric constant was raised from 2.5
to 10. Mata a and co-workers initially attributed this to a decline
in the excipfex radiative lifetime as well as to enhanced radiation-
less processes as the solvent polarity increased.12

13
Weller and co-workers argued that as the polarity of the sol-

vent increased, the direct generation of radical ions took place from
the encounter complex. These ideas can be combined in the following
scheme:

(AD)* -D + A
1 1_. A + D + hv F

A* + D A*...D) 2 +

2A- 2D

where A s...2 D ) is the solvent shared ion pair. Laser photocon-where

is.
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ductivity studies of Mataga and co-workers provide evidence for the
direct generation of the solvent shared ion pair from the encounter
complex. However, they also observed the growth of conductivity
matching the decay of the exciplex thus confirming the path whereby
the exciplex thermally dissociates into radical ions. There is also
direct evidence for the sensitivity of the rate of exciplex emission
to solvent polarity, 15 but the effects are not large. Thus, the
scheme presented above is probably correct in general, but with
solvent effects present in most if not all of the individual steps.

In non-polar solvents, the energy of dissociation of the exciplex
is high and the exciplex does not dissociate into radical ions to a
significant extent. This simplifies the photophysics somewhat.

The second controversial topic relates to triplet production
and can be illustrated by two quite different schemes:

1 1 ISC 3(a) A* + D -(AD)* A + D

1 2 2+ [2 +2 3
(b) A* + C [ At() + D+() [A-(+) + D(+)] + A* + D

In non-polar solvents, it appears that process (a) is the only
important one and that process (b), which would generate the triplet
via a fast process which bypasses the exciplex, does not occur to a
significant extent.16 However, in highly polar solvents, the weight
of the evidence points toward process (b) and the existence of a
"fast" triplet generation route. The currently popular model involves
hyperfine coupling interactions in the radical ion pair in highly
polar solvents.16,l

7

3. KINETIC ASPECTS OF EXCIMER AND EXCIPLEX PHOTOPHYSICS

The simples reaction scheme for quenching is

A h A* + Q - (AQ)* products

A + hv A or A

In this scheme, there is no regeneration of A* from (AQ)* and the
photokinetics correspond to ordinary fluorescence quenching kinetics.
(AQ)*, being non-emissive in this scheme, remains an elusive tran-
sient species, detectable perhaps by absorption spectroscopy. Its
presence as an intermediate may be inferred from the products
observed (e.g., products of radical ion reactions), but frequently,
one can only guess as to the structure and properties of this inter-
mediate. The rate of the forward or quenching reaction will probably
be diffusion controlled which limits the information available from
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photophysical studies. Nevertheless, the transient may be a genuine
exciplex which is merely very unstable relative to products in the
solvent used.

The next level of complexity introduces reversibility and exci-
plex fluorescence (hvE).

A -- A

k6
A* + Q (AQ)* Prod

A + hvF  A or A A + Q + hvE

Whether or not exciplex emission is measurable depends on equipment
sensitivity, the ratio ks/(k4 + k5 + k6), and the ratio

ks3Q]/(k
I + k2 + k3).

These photokinetics require that

[A*](t) = a e . + a2e 
()

- it -X2t
[(AQ)*](t) a3(e + e 2 (2)

where

X1,2 1/2 [k1 + k2 + k31:Q] + k4 + kp + (k + k2 +

+ kI[Q] - k 4 - kp)2 +4k k [Q]},] (3)

and

k = k + k6  (4)
p 6

Steady-state analysis gives (where OM and 4E represent the
quantum yields of monomer and exciplex, respectively)

(k 3) k3kPIQ] (5)
-k4 +k, +k2)

OM4 p
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and

'~ ks) k 3[q) (6)
T k I I (k4 + kp)

In the above equations, it has been assumed that k3 A f(t). Rate
constants can then be determined as follows:

k from the unquenched lifetime (T)Q=0 = (k1 + k2)
"1 and the

quantum yield °  kl/(k + k2).

k2: from k1 and (T)OQ0
kS : from the slope of (l + X2) vs. [Q], since X1 + X2 = (k1 +

k 2 + k3 [Q] + k4 + kp. 1 t

k4 and k : from a plot of X1X2 vs [Q] since A1X2 = (k1 +
k2) k4 + k ) + k k3 [Q]. One obtains k4 + k from the inter-
cept and from the slope. Since k3 is knwn, k4 is cal-
culated from k4 + kp. Problems obviously arise here if
k 4 << k .

k 5 from Eq. (6), k5 is obtained by plotting 4E/ M vs [Q].
The slope gives

k k
5 3

k k + k
1 4 p

from which kS is calculated since all other rate constants
are known.

k6  since kp = k + k once k is known, one can calculate k6.

Alternate methods are discussed elsewhere for evaluating some
of the rate constants in the above exciplex photokinetic scheme, but
they appear to offer no real advantage over the direct approach out-
lined above. 1 8

Once the constants (k1 + k2 ), k3 , k4 and kp have been determined,
one can calculate the Stern-Volmer constant KSV

I° 1 kkp

K V Io_1 3 kp (7)KS LQJ (k 1 + k2)(k 4 + kp )

and compare with experimental values derived from steady-state mea-
surements. Discrepancies are interpretedl9, 20 in terms of failure of
the assumption that k3 A f(t) or a failure of the kinetic scheme to
describe the system in question.

Rate constants may then be determined as a function of tempera-
ture. When linear In k. vs 1/T plots are obtained, one can calculate

\1
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the parameters in the equation

-AEiA.R
ki = Aie (8)

From the temperature coefficient of the ratio of k 3 /k 4 , one obtains

C , the enthalpy of the excited state equilibrium and from A3 and
A4 one may obtain the entropies of activation of the forward and
reverse reactions in the excited state equilibrium. Finally, from
energy conservation (see Fig. 1)

hv(A - A*) = AHc 0 + (hvE) + AH (9)

where (hVE)max is the maximum in the exciplex emission and AHR is the
repulsive potential energy in the Franck-Condon ground state at the
equilibrium separation of A and Q in the exciplex. This yields AHR .

It is emphasized that the rate constants k3 , k4 and kp are
obtained without recourse to steady-state data. It is only when one
calculates kl, k2 , kS and k6 that it is necessary to use 4W and
0E/ , the latter ideally as a function of fQ).

Likewise, one obtains AHc* without recourse to the arguments of
Stevens and Ban,21 i.e., if k4 >> k p, then

E Q k ] (10)

If this is true, then of course one obtains AHC0 from ln {4E/(.[Q)}
vs l/T at constant [Q]. As Selinger and McDonald 2 2 point out, there
are many cases where it is not clear that this is a valid approxima-
tion. One obviously needs individual rate parameters to establish
AHc* with certainty, unless one can measure O/N over so wide a
teperature range that one sees the limiting behaviour for k4 >> kp
as well as for k4 << kp. Finally, it is emphasized that KSV is a
function of k3, k4 , kS and k6 as well as (T)Qoo. Changes in KSV are
clearly almost impossible to interpret unless one has values for the
individual rate constants, since all are potentially functions of
both temperature and solvent ! KSV is in fact not a particularly
informative parameter except as a route to individual rate constants.

Some of the reasons for believing that the above model is real-
istic for many exciplex systems in non-polar or slightly polar sol-
vents are as follows: ja) Two component fluorescence decay predicted
'y Eq. (1) is observed,18,19 along with the growth and decay
predicted in Eq. (2). (b) Rate constants derived from transient
luminescent measurement agree with steady-state measurements to the
extent expected from the theory of diffusion controlled reactions. 19
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(c) The value for k3 is reasonable - generally near but never above
the diffusion control limit. Cd) The observed variation of Xl.and
X2 with [Q] can be reproduced by a single set of rate constants.

Thus, while one of course cannot rule out more complex schemes,
we have found no need to envoke them to explain numerous experimental
observations in non-polar or slightly polar solvents.

Extensive studies over the last 15 years by a number of groups
indicate that the same general conclusion is valid in excimer systems.

The process

(AQ)* + Q + Products
23

appears important only at high concentrations of quencher, but
most experimental studies have been below the quencher level where
this is kinetically significant.

The complication represented by the process
hv

A + Q (AQ) - (AQ)*

is more difficult to rule out. While the exciplex is by definition
repulsive in the ground state, some systems are certain to represent
borderline cases of weak attraction. Such weak attraction causes the
distribution of Q around A to be non-random. This alters the kinetics
of the forward reaction (k3), which are already complex due to the
time evolution of concentration gradients.1 9,20 In addition, one
must consider the photoselection of AQ pairs if one is using an
exciting wavelength which favours AQ over A.

Unfortunately, one does not always see two components in the
fluorescence decay of a fluorophor, even when the emission spectrum
clearly indicates emission from both A* and (AQ)*. Measurements in
the spectral region in which the decay is expected to be predominately
due to the exciplex are frequently found to give similar if not ide-
tical decay curves as obtained from measurements of the decay of
quenched A*. In many cases, the decay is very close to a single
exponential with a single decay constant X, and frequently X is
found to be a strong function of [Q]. It is not unusual to find for
such systems that A follows the equation

( (A + B[Q])/(l + C[QJ) (11)

If the following approximation is valid
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Ck 4 + k3 [Q])
2 + 2(k4 - k3tQ))k p - kI - k2)]

k k 2(k4 - k 310Q) k(k - k2) (12)
4  3 k + k3 Qj

Eq. (3) can be reduced to Eq. (11). This is related to the well

known condition

k4, k3 [Q] >> ki, k2, kp (13)

to which must be added the more restrictive condition

k4 + k3 [Q] > 2(k4 - k3[Q])(kp - k1 - k2) (14)

The conditions quoted in Eqs. 12 and 14 thus yield

A + (k 3kp/k 4) EQ]

-a- (15)1 + (k 3/k 4)[LQ (15

A plot of (A - Xo) 1 vs 1/[Q] should yield a straight line with slope
S given and intercept I given by

S -1 =(k )(k/k
p o 3 k4

(16)

p 0

This, S/I = k4/k and I- + o = kp. The [Q] dependence alone of X
(along with Xo) fails to yield the complete set of rate constants,
but rather yields only kp and ratio k3/k4 . However, from the steady-
state quenching measurements, we have

1/k3 - 1/(kq)ss - k4/k3kp  (17)

where

(kq)ss a KSV/T (18)

When this equation is used with values of k3/k4 and kp, one can obtain
k3. Then k4 can be deduced. It is important to recognize that the
success of this approach is the analysis of the so-called rapid
equilibrium case depends critically upon being able to obtain a
significant number from the subtraction of (l/kq)ss and k4/k3k . It
is not uncommon that the two terms in Eq. (17) are nearly idenlical,
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which causes the analysis to fail.

Figures 2, 3 and 4 illustrate experimental data consistent with
Eqs. (15). and.(16). The use of steady-state (Fig. 5) gata with
Eqs. (17) and (18) yielded individual rate constants. 1  As will be
discussed below, by varying the temperature, one can cause the cyano-
naphthalene-olefin system to exhibit the classical two component
decay. The rate constants obtained are consistent with those obtained
in the rapid equilibrium region. 1 8

3. EFFECT OF SOLVENT AND TEMPERATURE ON PHOTOKINETICS

Consider first a-cyanonaphthalene (CCN) quenched by 1,2-dimethyl
cyclopentene (DNCP). When this system is examined in the vapour
phase,24 the quenching is observed to be very inefficient. One can
estimate from lifetime measurements that the effective rate constant
for quenching is about 10- 3 of the gas kinetic limiting rate. One
sees single exponential decay provided a buffer gas is present, but
the system has thus far resisted attempts to recover rate constants.

18
If one now examines this same system in hexane, one finds that

the observed photokinetic behaviour is a strong function of tempera-
ture. At room temperature and above, this system provides a classic
example of the rapid equilibrium case. Eq. (15) is followed exactly
and rate constants can be derived.18 The fluorescence decay follows
a single exponential. If one now decreases the temperature at about
00 C, two component fluorescent decay becomes measurable (see Figs.
6 and 7) and rate constants can be obtained by the analysis described
above. The agreement between calculated and observed values of X1
and X2 is shown in Figs. 8 and 9. These rate constants are consistent
with those obtained from the analysis of the rapid equilibrium case.

1 8

The temperature range of 400 to -400 C takes one from one limiting
case to the other. The reason for this is that k4 varies by three
orders of magnitude over this temperature range. At a low tempera-
ture, the reverse reaction is slowed down and one can see two compo-
nent decay, whereas at high temperature, the excited state quasi-
equilibrium is the dominant kinetic process and the other processes
merely bleed off excited species from this quasi-equilibrium. This
is illustrated in Fig. 10.

Not only does k4 control the photokinetic behaviour in non-polar
solvents, but also, it rather than kp, is the most solvent-sensitive
rate constant in this system.25 Merely changing the solvent from
hexane to diethyl ether decreases k4 at a given temperature by a
factor of 20. If one uses a solvent such as TliF, the photokinetics
are now simply those of a diffusion controlled reaction. The solvent
polarity has presumably reduced k4 to the point where there is no sig-
nificant reversibility, and individual rate constants cannot be
recovered by nanosecond fluorometry.
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A study1 8 . 2 5 of the temperature coefficients of k3 and k4
revealed that AHc, the enthalpy change of the excited state reac-
tion, is independe t of the solvent chanje from hexane to ethyl
acetate, as is A 4 P, the activation energy for the reverse reaction.
The dramatic drop in k4 with solvent is thus due to the pre-exponen-
tial term and can be interpreted as an entropy of activation effect
associated with changes in specific solvation by these two solvents
of the highly dipolar exciplex.

k4 also appears to depend upon the ionization potential of the
donor when CCN is quenched by various olefins and a diene in hexane.
As the ionization potential of the donor decreases, k4 dramatically
increases. 1 8 This phenomenon deserves much more detailed study
including the recovery of thermodynamic parameters for a number of
donors.

k is also observed to decrease as one increases the solvent
polarity. This is in part due to a drop in ks, but the largest
contribution is a drop in k6 .

Two products are observed by other laboratories 26 -2 8 for the
reaction of excited CCN with DMCP. These are a ring adduct (I) and
a nitrile adduct (II). Lewis and Hoyle 2 7 have in fact observed that
nitrile addition is favoured in hexane and ring addition in ethyl
acetate and that the quantum yield of each product decreases with
increasing solvent polarity. This is consistent with our results
for the variation of k6 with solvent polarity if one assumes that k6
is predominantly the product formation rate constant.

A similar trend is found in the k5 values. k5 , which was cal-
culated with Eq. (S) on the assumption that kl, the CNN fluorescence
probability, is temperature independent, decreases with increased
solvent polarity. Owing to the problem of evaluating the contribu-
tions of various component configtirations to the total exciplex wave
function, a rigorous calculation of the radiative transition probabil-
ity is not possible. However, the observed decrease in k5 supports
the opinion that the electronic structure of the complex changes as
the solvent polarity is changed. k is related to the transition

CN

(I) (II)

I.
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29i

dipole moment, ", for the exciplex through the equation2 9

=641r4nv 3 (19)

M in turn is given by

ME =<E I Pp I'G> (0

in which iop is the electric dipole moment operator, and E and G
are given by

= a 1 (AD) a22AD ) + a3 P3(A*D) + a4 4 (AD*) (21)

*G = %o(AD) (22)

Because the ground state is dissociative, it has been assumed for the
present argument that charge-transfer contributions to its wave func-
tion are negligible. If the second and fourth terms in E are neg-
lected, M is given by

ME = al < '(AD)i) > +a3 < (A*D) o [%(AD)> (23)

The matrix element <4i(A D+) I'ipj~0 (AD)> is approximately proportional
to the overlap of the donor orbital in D and the acceptor orbital in
A;29 consequently, it is rather small and decreases with increasing
intermolecular distance. As the exciple becomes more onic, a3
decreases; thus, the dominating term in It, a3< (A*D) Iijp pIo(AD)>,
decreases in more polar solvents. According to Ks analysis, there-
fore, both the increasing charge-transfer contribution, which reduces
the second term in Eq. (23) and the probable increase in the inter-
molecular distance which reduces the first term, contribute to the
decrease in k with increasing solvent polarity.30,31

5
Although kS decreases in the more polar solvents, the quantum

yield of exciplex emission, E, given by

k (k3  24)
E = ko(k4 + kp + kpk3 ]  (24)

o 4 p p k~ 3L

or, at infinite quencher concentration, by

Ic5  (25)
-- ..- 

...
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increases. In general, in exciplexes, OE decreases with increasing
solvent polarity;32 but an increased OE has also been observed in
media of moderate dielectric constant.33 Obviously, when increased
solvent polarity induces an increase in k or a high probability for
instantaneous radical ion production, with rate constant k3 ', OE will
decrease. 4E is then given by

_ kk
-~ 53

(k 3 + k3,)kp + k3 k4  (26)

However, the present results show that neither of these effects occurs
for the CNN-DMCP system in the studied solvents. It is worthy of
that, in the present range of solvent polarity, both increases30,3R-U

and decreases3 1,33 in k have been observed.P
37

We have recently examined the quenching of pyrene with N,N-
dimethylaniline (DMA) substituted on the ring with tert-butyl groups.
This work was suggested by the observation of Taylor et al. 38 that
the Stern-Volmer constant for quenching strongly increases upon 3,5
di-tert butyl (DBDMA) substitution. The question then was: which
rate constants in the expression

k k
k = (27)

q 4  p

were being influenced?

Detailed kinetic studies using the method of analysis described
above conclusively demonstrate that the large increase in kq for this
system in non-polar solvents is due to a large decrease in R4 . The
forward reaction is diffusion controlled for both DMA and DBDMA
quenchers. kp decreased somewhat upon di-tert butyl substitution.
These results point to the danger associated associated with inter-
pretation of k . In this case, one has several remarkable effects
occurring simultaneously. Di-tert butyl substitution increases the
stability of the exciplex while altering the close sandwich pair
configuration. Thus, there are both electronic and steric effects in
operation and considerable information can be obtained from detailed
kinetic studies as a function of solvent and temperature. 3 7 kq alone
tells one almost 

nothing!

The formation of exciplexes and excimers is almost always at the
diffusion controlled limit. Thus, the formalism presented above, and
almost universally used to analyze the photokinetics of these systems,
is an approximation to the truth because in fact k 3 is a complex func-
tion of time. This subject has received detailed attention in another
lecture by the author, but the subject requires some comnent in the
present context.



49

Mention must first be made of the studies of Eisenthal and
co-workers. 39 They employed a mode-locked laser for picosecond exci-
tation and were able by optical absorption to observe the growth of
the exciplex between anthracene and diethylaniline in hexane. Their
data fit the theory of diffusion controlled reactions quite well at
the level of sophistication described by Smolochowski4D including
terms normally ignored, but important at short times.

Ware and Hui19 have also examined this problem by introducing an
approximate time dependent for k3 into the differential equations
for the exciplex-excimer kinetic scheme, i.e.,

d[Al= k [AQ* ] - [k 1 k2 + k3(t)[Q]][A*]
dt 4AQ] [k 2k
d[AQ k3(t)[Q][A*] - [k + k + k][AQ*]

dt 3 t)L.J' 4 5 6

This system of equations was then solved by numerical integration.
It was found that distortions to the leading edge of both the exciplex
growth curve and the monomer decay curve were caused by the time
dependence of k5 .

However, if deconvolution was carried out only over those por-
tions of the decay curves where k3(t) had reached its limiting time
independent value, the problem could be avoided.19

4. FLUORESCENCE QUENCHIING VIA H-BOND FORMATION

The techniques described above are readily applicable to the
quenching of excited species by H-bond formation. However, one
frequently has the added complication of a bound ground state complex
which competes with A* for the incident radiation. The photokinetic
scheme can now be depicted by

AH+Q - AkgiAHQAli+ QAH--q

Ilabs X6 labsX( 1-6)

* + Q ----- (AH Q)*

k 2 4  k k

AH + hVf AH CAH--Q) + hvf' (AH--Q)
1 1.1 -1

To= - T = (k5+k6)

A number of years ago, the author published4 1 an account of the behav-
iour of such a system where k3 >> k4 . Recently, Dr. M. Martin and

..=t
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and the author have completed a study4 2 in this laboratory of a more
difficult system, carbazole quenched by pyridine and substituted
pyridines. This system exhibits weak fluorescence from the excited
H-bond complex. Steady-state analysis of the above scheme yields

k 4'(l -6) - 6)

1 + k 4T' k T (1 + k 4T')

4 T 10

0 I ok3 r[,
1+1 + t'k 4 )

f k 5 Ttk 3  + 1 k4 TV" k3 kT'(I - 6)

kI (1 = k4 T') + .. . .+Q

+ k(1 + k4 ' 2  (28)

+ 1 0k) IQ]

whereas the transient behaviour is given by modifications of Eqs.
(1) and (2), provided th! excitation is almost entirely to A* for
the lifetime measurements. In this system, the absorption due to the
ground state complex is somewhat separated from that of the carbazole.
Our kinetic studies have resulted in the following conclusions:

(a) The kinetic model given above appears valid. Rate cons-
tants derived from the kinetics by transient measurements, when intro-
duced into Eq. (28), yield excellent fits such as that illustrated
in Figs. 11 and 12. The only adjustable parameter is the excited
state complex lifetime T' which is found by an iterative procedure.
For the carbazole-pyridine excited complex, we obtain a lifetime of
52 psec. Thus, there are very rapid radiationless processes in this
excited state complex which probably yield the ground state molec-
ule. 4 3 No photochemistry or proton transfer is observed.

(b) The effect of methyl and phenyl substitution on the pyridine
has also been studied and leads to the conclusion that the coplanarity
of the carbazole and pyridine ring systems is not significant in
determining the quenching probability.

(c) The deuteration of the amine hydrogen of the carbazole also
produces no change in the photophysical behaviour, which suggests that
N-H Franck-Condon overlap is not involved in determining the radia-
tionless process in this excited complex. Thus, the notion4 3 that
quenching involves a delocalization type interaction between the T

systems of the carbazole and pyridine is probably not correct.
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S. OTHER TOPICS

Time and space limitations obviously make it impossible to deal
with all aspects of excimer-exciplex photophysics. The emphasis in
in this work has been on the determination of rate constants by
pulse fluorometry and steady-state fluorescence spectroscopy and
relative steady-state intensity measurements.

For more information, the reader should consult the revinws
by Mataga and Ottolenghi, 16 Davidson 9 Ware,44 Stevens,45 Birks,4 6

Ware and Gordon,4 7 Beens and Weller,1 as well as the classical works
of Birks 48 and Mataga and Kubota.4 3

Examination of these reviews will reveal the great impact of
laser spectroscopic techniques in this field as an approach to under-
standing the structure of the excimer and exciplex which compliments
pulse fluorometry studies.

6. CONCLUSIONS

The molecular complex stable in its ground electronic state
has been studied extensively over the past several decades and while
there are many unaswered questions, the properties and behaviour of
such species is reasonably well understood. The exciplex offers a
much greater challenge. One cannot study its physical and chemical
properties at one's leisure. It cannot be crystallized and subjected
to x-ray analysis. One must depend upon indirect observations, the
interpretation of which is rarely straightforward. It is reasonable
to expect that as we learn more about the physical and chemical
properties of the exciplex, we will see many more applications of
this particular electron donor-acceptor phenomenon. One, however,
should not underestimate the time required to collect quantitative
kinetic and thermodynamic data. To study a single system as a func-
tion of solvent, temperature and concentration of quencher requires
one half of a man year, provided there are no unexpected problems and
the system is "cooperative". If one so wishes to study in this detail
a whole set of donors and acceptors, the magnitude of the task is
somewhat frightening as well as expensive. Add to this studies of
photochemical products and laser flash photolysis studies of tran-
sient spectra, and one may begin to visualize the magnitude of the
exciplex problem. Finally, all the work should be done in four or
five solvents.
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Figure 1. Schematic potential energy diagram for exciplex forma-
tion. E0 _0 : A* 0-0 molecular fluorescence energy; AHO:' exciplex
binding energy; hvE: energy of exciplex fluorescence maximum;
ER: ground state repulsion energy.

Figure 2. Typical exciplex fluorescence decay curves for a-cyano-
naphthalene unquenched and quenched 1,2-dimethylcyclopentene in hex-
ane at 250.

Figure 3. Exciplex fluorescence decay constant in hexane as a func-
tion of 1,2-dimethylcyclopentene concentration. Points, experimental.
Lines, best fit using Eq. (25).

Figure 4. Linearization of the curves shown in Fig. 3.

Figure S. Steady-state Stern-Volmer plots for a-cyanonaphthalene
quenched by 1,2-dimethylcyclopentene in hexane.

Figure 6. Typical monomer decay curve: a-cyanonaphthalene +
dimethylcyclopentene-l,2 (2.85 x 10-2 M) at -310 C.

Figure 7. Typical exciplex decay curve: a-cyanoanpthalene +
dimethylcyclopentene-l,2 (1.92 x 10-2 M) at -40 ° C.

Figure 8. Comparison of experimental and calculated X V

Figure 9. Comparison of experimental and calculated X2 '

Figure 10. Arrhenius plots of ks, k4 , k . Open circle values were
taken from paper I.

Figure 11. Best fit obtained between experimental and calculated
data for the change in the total carbazole fluorescence yield (free
and bonded carbazole), with increasing quencher concentration, in
oxygen-free solution: (0) Q = pyridine; (0) Q = 2,6-DP.

Figure 12. Best fit obtained between experimental and calculated
data for the change in the total carbazole fluorescence yield (free
and bonded carbazole), with increasing quencher concentration, in
air-saturated solution: ( Q - pyridine; ( Q 2,6-DW.



I KINETIC ASPECTS OF EXCIPLEX PHOTOPHYSICS

R~e.t

rA-Q



56

KINETIC ASPECTS OF EXCIPLEX P110TOPIIYSICS
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KINETIC ASPECTS OF EXCIPLEX PIIOTOPIIYSICS
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KINETIC ASPECTS OF EXCIPLEX PHOTOPIIYSICS
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KINETIC ASPECTS OF EXCIPLEX P1OTOPHYSICS
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KINETIC ASPECTS OF EXCIPLEX PHOTOPH-YSICS
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KINETIC ASPECTS OF EXCIPLEX P1IOTOPIIYSICS
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